
ZADÁNÍ DIPLOMOVÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

393072Osobní číslo:MatějJméno:DoležalPříjmení:

Fakulta elektrotechnickáFakulta/ústav:

Zadávající katedra/ústav: Katedra počítačů

Otevřená informatikaStudijní program:

Umělá inteligenceStudijní obor:

II. ÚDAJE K DIPLOMOVÉ PRÁCI

Název diplomové práce:

Celulární kódování pro hluboké neuronové sítě

Název diplomové práce anglicky:

Cellular Encoding for Deep Neural Networks

Pokyny pro vypracování:
Learning artificial neural networks (ANNs) is mostly understood as a continuous optimization problem of selecting appropriate
parameter (weight) values. The complementary discrete optimization task of selecting an appropriate architecture of the
network is, on the other hand, mostly solved by human experts. Although there exist several approaches to optimize the
ANN architecture none of them scales well to network sizes present in state-of-the-art applications. The objectives of this
work are:
1) Study methods for ANN architecture optimization. Focus on indirect encoding approaches and Cellular Encoding (CE)
in particular.
2) Design and implement an algorithm based on CE allowing optimization of deep neural network architectures (e.g.,
Convolutional Neural Networks).
3) Evaluate your algorithm experimentally. Focus mostly on scalability and ability to encode modular and hierarchical
architectures.

Seznam doporučené literatury:
Drchal, J. (2013). Base Algorithms for Hypercube-based Encoding of Artificial Neural Networks. Czech Technical University.
Gruau, F. (1994). Neural Network Synthesis Using Cellular Encoding And The Genetic Algorithm. Ecole Normale Supérieure
de Lyon, France.
Miikkulainen, R., Liang, J., Meyerson et al. (2017). Evolving Deep Neural Networks. Retrieved from
http://arxiv.org/abs/1703.00548
Real, E., Moore, S., Selle, A., Saxena, S., Suematsu, Y. L., Le, Q., & Kurakin, A. (2016). Large-Scale Evolution of Image
Classifiers. Retrieved from http://arxiv.org/abs/1703.01041

Jméno a pracoviště vedoucí(ho) diplomové práce:

Ing. Jan Drchal, Ph.D., centrum umělé inteligence FEL

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) diplomové práce:

Termín odevzdání diplomové práce: 09.01.2018Datum zadání diplomové práce: 21.06.2017

Platnost zadání diplomové práce:
do konce letního semestru 2018/2019

prof. Ing. Pavel Ripka, CSc.

podpis děkana(ky)
podpis vedoucí(ho) ústavu/katedryIng. Jan Drchal, Ph.D.

podpis vedoucí(ho) práce

© ČVUT v Praze, Design: ČVUT v Praze, VICStrana 1 z 2CVUT-CZ-ZDP-2015.1

Czech Technical University in Prague

Faculty of Electrical Engineering

Department of Open Informatics

Master’s thesis

Cellular Encoding for Deep Neural

Networks

Bc. Matěj Doležal

Supervisor: Ing. Jan Drchal, Ph.D.

January 6, 2018

Acknowledgements

I would like to express my gratitude to my supervisor, Ing. Jan Drchal Ph.D.
He consistently provided me with guidance and steered me in the right the
direction whenever I got lost. His patience and kindness have created a perfect
environment for my research.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on January 6, 2018 .

Czech Technical University in Prague
Faculty of Electrical Engineering
© 2018 Matěj Doležal. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Electrical Engineering. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

0.0.1 Citation of this thesis

Doležal, Matěj. Cellular Encoding for Deep Neural Networks. Master’s thesis.
Czech Technical University in Prague, Faculty of Electrical Engineering, 2018.

Abstrakt

Umělá neuronová śı̌t je výpočetńı model, který je inspirován chováńım a
strukturou lidského mozku. Vetšina př́ıstupu pro stavěńı neuronových śıt́ı
se snaž́ı optimalizovat topologii a zároveň parametry śıtě. Tento př́ıstup se na
prvńı pohled mu̇že zdát ideálńı, ale pro velké neuronové śıtě je nepoužitelný,
předevš́ım kvu̇li vysokému počtu vnitřńıch parametru̇.

Námi zvolený př́ıstup je zaměřený pouze na optimalizaci topologie za
použit́ı Buněčného Kódováńı, Evolučńıho Algoritmu a Gradientńı Metody.
Tato kombinace vytvář́ı ideálńı nástroj pro hledáńı topologie neuronových śıt́ı.
Na základě vstupńıch dat a vstupńıch parametru̇ najde algoritmus neuronovou
śı̌t s nejvyš́ı možnou přesnost́ı.

Kĺıčová slova neuronové śıtě, nepř́ımé kódováńı, buněčné kódováńı, evolučńı
algoritmy, genetické programováńı, konvolučńı neuronové śıtě, hluboké neu-
ronové śıtě

Abstract

Artificial Neural Network (ANN) is a computational system based on the
structure and behaviour of a human brain. Most of the current approaches
for building neural networks (NN) are trying to optimise both topology and

vii

the parameters of the neural network (synaptic weights, biases, etc.). Even
though it seems like the ideal approach to let the algorithm optimise all the
parameters it proved that for large networks it is unusable because the number
of parameters is very high and with it the computational complexity.

Our approach is focusing solely on topology optimisation by exploring the
possibilities of Cellular Encoding (CE), Evolutionary Algorithms (EA) and
gradient method. This combination provides an ideal tool for evolving neural
network structures. Based on the input dataset and the input parameters the
algorithm searches for the NN topology with the highest accuracy.

Keywords artificial neural network, indirect encoding, cellular encoding,
evolutionary algorithm, genetic programming, convolutional neural networks,
deep neural networks

viii

Contents

0.0.1 Citation of this thesis vi

Contents ix

1 Introduction 1
1.1 Problem Statement . 3
1.2 Goals of the Thesis . 3

2 Theoretical Background 5
2.1 State of the art . 5
2.2 Artificial Neural Network . 6

2.2.1 Neuron Model . 7
2.2.2 Activation Function . 8
2.2.3 Data sets for ANN . 9

2.2.3.1 Data properties 9
2.2.3.2 Overfitting and Underfitting 10
2.2.3.3 K-fold cross validation 11

2.2.4 Learning process . 12
2.2.5 ANN architecture . 13
2.2.6 Deep Neural Network 13
2.2.7 Fully Connected Feed Forward Neural Network 14
2.2.8 Recurrent Neural Network (RNN) 15
2.2.9 Convolutional Networks (CNN) 15

2.2.9.1 Convolution 16
2.2.9.2 Padding . 18
2.2.9.3 Pooling . 19
2.2.9.4 Dropout . 20
2.2.9.5 Fully Connected Layer 20
2.2.9.6 Gradient Descent 20

2.3 Evolutionary Algorithms . 21

ix

2.3.1 Overview . 22
2.3.2 Genetic Representation 24
2.3.3 Fitness Function . 24
2.3.4 Genetic Operators . 26

2.3.4.1 Crossover . 26
2.3.4.2 Mutation . 28

2.3.5 Selection . 30
2.3.5.1 Roulette Wheel 30
2.3.5.2 Stochastic Universal Sampling 31
2.3.5.3 Tournament Selection 31

2.4 Genetic Programming . 32
2.5 Neural Network Encodings . 33

2.5.1 Direct Encoding . 33
2.5.2 Indirect Encoding . 33

2.5.2.1 Cellular encoding 33
2.5.2.2 Edge encoding 37

3 Program 39
3.1 Analysis . 39

3.1.1 Code Development . 39
3.1.2 Environment . 40
3.1.3 Installation . 40
3.1.4 Custom Genetic Operators 41

3.2 Implementation . 42
3.2.1 Operator . 42
3.2.2 Library . 43
3.2.3 Individual . 45
3.2.4 Node . 45
3.2.5 Evolution . 45

3.2.5.1 DEAP initialization 46
3.2.5.2 Fitness function and Mutation 48
3.2.5.3 Evolution process 49

3.3 Genotype to Phenotype . 51
3.4 Phenotype to Neural Network 54

4 Experiments 61
4.1 Parameters overview . 61
4.2 Datasets . 64

4.2.1 MNIST . 65
4.2.2 CIFAR 10 . 65

4.3 Format . 66
4.4 MNIST experiments . 67

4.4.1 Accuracy . 67
4.4.2 Learning . 69

x

4.4.3 Scalability . 70
4.4.4 Modularity . 72

4.5 CIFAR10 experiments . 75
4.5.1 CIFAR10 experiments CNN 76

Conclusion 79

Future Work 83
More experiments . 83
Modularity . 83
NORB dataset . 84

Bibliography 85

A Acronyms 89

B Contents of enclosed CD 91

xi

List of Figures

2.1 Perceptron model . 7
2.2 Sigmoid and Hyperbolic Tangent activation function (image from

another source [1]) . 8
2.3 ReLU activation function (image from another source [1]) 9
2.4 Overfitting and Underfitting . 11
2.5 K-fold cross-validation . 12
2.6 Deep Neural Network (image from another source [2]) 14
2.7 Fully Connected Feed Forward Neural Network 14
2.8 Convolutional Neural Network tree (image from another source [3]) 16
2.9 RGB - channel matrices . 17
2.10 Convolutional step . 17
2.11 Zero padding (image from another source [4]) 18
2.12 Pooling process . 19
2.13 Dropout process (image from another source [5]) 20
2.14 Gradient descent (image from another source [6]) 21
2.15 Evolutionary cycle . 22
2.16 1 - point crossover (non-binary values are used only for better ex-

planation) . 27
2.17 2 - point crossover (non-binary values are used only for better ex-

planation) . 28
2.18 Single bit flip mutation . 28
2.19 Wrong population initialization, duplicates and missing informa-

tion in the population. 29
2.20 Roulette Wheel selection . 30
2.21 Stochastic Universal Sampling . 31
2.22 Tournament selection . 32
2.23 Genotype tree structure . 34
2.24 Genotype to phenotype mapping function 35
2.25 Genotype to phenotype mapping function, REC operator 36

xiii

2.26 Edge encoding chromosome which describes an NFA that reads the
regular expression ((01)*101 (image from another source [7]) . . . 38

3.1 Implementation structure . 42
3.2 SEQ operator definition . 44
3.3 Initialization of DEAP enviroment 46
3.4 Fitness function and Mutation . 48
3.5 Mutation and Elitism . 50
3.6 Removing duplicates and Tuning the individuals 51
3.7 Entry point for genotype to phenotype conversion 52
3.8 Recursive processing . 52
3.9 Genetic operator application . 54
3.10 Dataset loading . 55
3.11 Change the size of the dataset . 55
3.12 Prepare the data shape for NN . 56
3.13 Bulding NN in Keras . 58
3.14 Initialisation of the CNN layer . 59
3.15 Model initialisation and NN evaluation 59

4.1 MNIST dataset example (image from another source [8]) 65
4.2 CIFAR 10 dataset example (image from another source [8]) 66
4.3 Accuracy graph [Test 1.] . 67
4.4 Genotype and phenotype [Test 3. (best solution)] (phenotype’s

node name is index-neuron count) 68
4.5 Accuracy graph with nice learning curve [test 4.] 70
4.6 Large scale phenotype (36.000 neurons) [test 13.] 72
4.7 Genotype and phenotype with two REC calls [Test 13.] 74
4.8 Train and Test accuracy[test 6.] . 75
4.9 Accuracy graph with nice learning curve [test 12.] 77

4.10 NORB dataset (image from another source [9]) 84

xiv

List of Tables

4.1 Accuracy on MNIST with full training set. 67
4.2 Reduced training set to 6000 training samples. 69
4.3 Testing modularity . 72
4.4 Testing modularity . 73
4.5 Testing accuracy on CIFAR10 . 76
4.6 CNN accuracy testing on CIFAR10 77
4.7 CNN accuracy testing on CIFAR10 78

xv

Chapter 1
Introduction

Artificial Intelligence (AI) is a science that focuses on creating intelligent sys-
tems and especially intelligent computer programs. It mostly focuses on simu-
lating the human intelligence, but even a program that is capable of impressive
performance on a specific task can be considered intelligent. The question that
arises from that statement is: What is intelligence and how can we measure
it? For measuring human intelligence, we use the IQ tests, which are capable
of evaluating the intelligence of an individual but they are unusable for com-
puters. The easiest explanation is that some parts of the IQ test are based
on memorization and ”in-mind” computations that can be quite di�cult for
a human brain but form no challenge even for a very low-performance com-
puter. Probably one of the first mechanisms for computer intelligence testing
was invented by the famous Alan Turing. For the first time, in 1950’s article
Computing Machinery and Intelligence [10], the Alan Turing introduced his
idea of a Turing’s test. He argued that any AI system that can successfully
pretend to be a human and fool a knowledgeable observer should be consid-
ered intelligent. The test itself was based on interactions via teletype, which
allowed the computer program not to have a voice imitation and visual ap-
pearance. The most noticeable flaw in this theory is the inconsistency, the
same program may both fail and succeed the Turing’s test based on the ob-
server’s IQ(low IQ = program succeed, high IQ = program may not succeed).
Other than that the theory seemed logical and certainly very progressive for
that period.

Since 1950 the AI has changed quite dramatically, and one might not even
realise to what extent AI is part of our everyday life. Our generation had
witnessed a real breakthrough in AI when robots with primitive intelligence
started to help around the house in the form of vacuum cleaners, lawn mowers
and others assistants. Recently we have even moved beyond that, trusting AI
with our own lives by using car autopilots, which are o�ered for civilian use.
The speed of the progress in AI is di�cult to ignore, and we can only guess

1

1. Introduction

where the AI is going to be in the future since we have already got to a point
where the virtual reality and augmented reality is hard to distinguish from the
real world. The Elon Musk said on stage at Recode’s Code Conference that
”There’s a billion to one chance we are living in base reality”.[11]. The idea
that we are a simulation of a more evolved civilisation can be quite di�cult
to comprehend. If we take a look back at the progress since 1950, it is not
impossible to imagine a future where we will be able to create a simulation like
that. At the end of the conference, Elon stated this: ”Either we are going to
create simulations that are indistinguishable from reality, or civilisation will
cease to exist.”

Probably the most important part of AI is the ability to mimic the behaviour
of a human brain. The structure that attempts to emulate the human brain
is called the Artificial Neural Network (ANN). Even though we are nowhere
close to simulating the human brain complexity, we mark the ANN as one
of the most prominent approaches for solving complicated problems. Neural
Networks (NN) already exist for some time, but it is only recently that we
have reached the performance point where neural networks, and more specif-
ically Convolutional Neural Networks (CNN), started to thrive. Having the
performance for testing out the di�erent structures, it now comes down to
problems, like creating the better network topology and finding the correct
initial parameters. To this day a lot of ANN topology optimisation is done
by hand. Even though there exist algorithms for that, they may not always
be the ideal solution. Problem with both hand and algorithm attitudes is the
scalability. Setting up large networks by hand is very demanding on experi-
ence and knowledge in the field and also very tedious. Using algorithms is
very hardware demanding, due to the enormous number of parameters that
are being evolved along with the topology.

This thesis deals with the scalability issue by exploring the possibilities of
Evolutionary Algorithms (EA). Evolutionary algorithms, also part of AI, is
a population-based optimisation technique. The whole concept behind EA
is based on biological evolution. Using populations of individuals, where
each represents a solution to a given problem. Operations like mutation and
crossover are used to combine positive attributes of di�erent individuals.

Evolutionary algorithms have been used before to evolve neural networks, but
mostly the experiments turned out ine�cient due to the number of evolving
parameters. We have decided to use a di�erent approach, by using a gradient
descent method for learning optimal parameters of the network, we have more
resources both computational and time, to find the ideal network’s topology.
We believe that using a computational power, to find a suitable NN, should
bring far superior results over manual approaches.

2

1.1. Problem Statement

Most of the state of the art (SOTA) techniques for finding the ideal network’s
structure are experimental. The website from Rodrigo Benenson [8] o�ers
an overview of SOTA approaches for some of the most common datasets,
such as MNIST, CIFAR10, CIFAR100, STL10, SVHN and others. For each,
dataset the overview o�ers most relevant approach and also the research paper
explaining the details.

1.1 Problem Statement

The most significant problem this thesis is trying to deal with is a fact that
there does not exist any general approach for finding an ideal network’s topol-
ogy. In most cases, this work is done by experts. People who have a significant
amount of experience with neural networks, deep understanding of learning
algorithms, networks structures and all the mathematical background. We
need a new approach that is capable of finding NN on its own. The automa-
tisation of this process o�ers two significant advantages. The first is saving
the precious time of our expert. The second is that unlike the expert, the
algorithm is able to find dependencies between modules.

1.2 Goals of the Thesis

The first goal is to create a knowledge foundation for the reader, to explain
all the di�culties and all the necessary technical details of this work. After
reading the theoretical introduction, the reader should be able to follow the
procedure of evolving NN and understand the conclusion of this work.

The second goal is to build a functional algorithm that is capable of evolving
neural networks. This section should also provide all the necessary instructions
on how to prepare the environment with all its dependencies, how to run the
program and how to set up all the parameters.

The third and last goal is to create enough experiments to prove the ability
of evolutionary algorithms to find a suitable topology. Explain all the experi-
ments and the outcomes. Last but not least, create a conclusion that evaluates
the approach and o�ers some guidance for future work.

3

Chapter 2
Theoretical Background

This chapter provides all the vital information to understand the experimental
work and its procedures. The topics explained in this chapter are Artificial
Neural Networks (ANN), Evolutionary Algorithm (EA) and Genetic Program-
ming (GP). All the theoretical background is explained only deep enough so
that the reader can understand this work. Despite this section being a theo-
retical background, it serves more as an overview of the concepts used in this
work. However, all the sections contain references to more in-depth theoretical
materials.

2.1 State of the art

Most of the current state of the art approaches for Deep Neural Network
(DNN) optimisation are using human-designed modules to operate. Convo-
lutional networks are combining modules of a non-linear layer (e.g.ReLU),
max-pooling layers, and fully connected layers for feature detection [12]. The
SOTA approach for MNIST is using DropConnect modules [13]. Similarly,
ResNet uses modules with skip connections and batch normalization [14] [15],
Recurrent Neural Networks regularly contain LSTM modules for memory re-
alization [16] [17]. Based on the dataset it is possible to find the correct
research paper and use the appropriately prepared module. However, a more
convenient approach would be to have an algorithm that is capable of incor-
porating such modules automatically into our network. Simply by presenting
the input dataset, the algorithm will find the most suitable neural network
that is trainable to a reasonable level of accuracy.

The Neuro-evolution approach for automatic ANN topology optimisation has
already been considered, and the results proved that this direction is capable
of finding very promising results. Optimization methods that optimise both
structure and parameters are often marked with the TWEAN abbreviation

5

2. Theoretical Background

that translates to Topology and Weight Evolving Artificial Neural Network.
Amongst the most famous algorithms are SANE [18], ESP [19] or NEAT [20].

The biggest problem with all the above-mentioned approaches is the scala-
bility because all the algorithms turned out to be unusable for current deep
neural networks. Due to the recent changes in HW performance, the sizes
of DNN have changed quite dramatically, from tens to thousands of neurons.
The inability of scalability is caused by the direct encoding approach, where
network’s representation is proportional to its size, which makes it unusable
for large networks.

To be able to use bigger DNN we need to get rid of the direct correlation be-
tween the actual size and the representation. That can be done by using the
indirect encoding [21] approach. The most relevant method is a Hypercube-
based encoding [22] used in the HyperNeat (HN) [22] algorithm. HyperNeat
does use, as the name suggests, the fundamental principle of the NEAT algo-
rithm, but it is modified to o�er a better scalability. HN also incorporates a
new feature for weight computations called Compositional Pattern Producing
Networks (CPPNs) [23]. However, even the CPPN is not able to evolve deep
architectures. Fernando et al. introduced an interesting approach called Dif-
ferentiable Pattern Producing Network (DPPN) [24] where the CPPN from
HyperNEAT is optimised by a gradient method [25].

Our approach is inspired by the idea used in a research paper from Estaban
Real et al. [26], where they use the cellular encoding and treat each node
as a whole layer instead of one neuron. That approach significantly reduces
the complexity of individuals. On top of that, we use a gradient method to
optimise the network’s parameters, more specifically a gradient-based method
called Adam [27]. We believe that the combination of Gruau’s, Estaban’s,
and Fernando’s approaches may provide some interesting results and a solid
foundation for future experiments.

2.2 Artificial Neural Network

The Artificial Neural Network (ANN) is a computational system inspired by
the brain of a living organism. Despite the fact that first research papers
appeared around the year 1940 (1943 McCulloch and Pitts), it is still a very
fresh field of study. We do not understand how precisely the biological neural
network works. Most of the work in ANNs is about mimicking a brain’s
behaviour and testing out new approaches. Fortunately for us, the hardware
is becoming better and faster every year, and we can simulate more extensive
and more complicated NN. However, we are still very far from simulating

6

2.2. Artificial Neural Network

networks close to human’s brain complexity. This thesis is focused solely on
deep neural networks and convolutional neural networks.

2.2.1 Neuron Model

A neuron in living organisms is a cell that allows transferring information,
through electrical and chemical processes. To understand neuron cell’s struc-
ture and its functionality is quite di�cult, but to explain neuron’s function in
ANN, we can luckily omit a lot. Neuron model in ANN is a simplified version
of a biological neuron cell, and it is a building block for neural networks. In
this thesis, we only consider a perceptron type neuron.

By looking at the perceptron model in figure 2.1 we can see that it basically
works in three steps/layers.

Figure 2.1: Perceptron model

Input, weight layer
Every input/signal that comes into the neuron cell gets multiplied by a
weight assigned to the input. These weights are individually adjusted
by a learning process of the neural network. From a mathematical point
of view, the first step is only a sum of all inputs xi multiplied by the
synaptic weights wi.

Up =
nÿ

i=1
xi ú wi (2.1)

7

2. Theoretical Background

Weighted sum layer
This layer takes all the weighted input values and sums them up to a
single value. This final value is modified by the bias. Bias value helps
to shift the behaviour of the neuron, and it is adjusted by the learning
process. The second step represents a sum of weighted input sum Up

and bias value bp.

Ubp = (Up + bp) (2.2)

Activation function
The final stage of every neuron is an activation function that takes as
an input a numerical value and outputs a number based on the selected
activation function „.

Yp = „(Ubp) (2.3)

Mathematical background used for perceptron explanation is inspired by the
materials in Simon Haykin’s book [28].

2.2.2 Activation Function

To allow NN to learn a non-linear function, we introduce the activation func-
tions. Every activation function takes a single number and performs a math-
ematical operation and outputs the resulting number. The most often used
activation functions are sigmoid and hyperbolic tangent (TanH).

Figure 2.2: Sigmoid and Hyperbolic Tangent activation function (image from
another source [1])

8

2.2. Artificial Neural Network

Recently a new activation function was introduced and it quickly became very
popular. ReLU ’Rectified Linear Unit’ can be implemented very e�ciently
comparing to a tanh/sigmoid function, and it was proved [29], that ReLU
greatly accelerates the convergence of stochastic gradient descent.

Figure 2.3: ReLU activation function (image from another source [1])

2.2.3 Data sets for ANN

For training and testing the neural networks, we need data. The input data
type is based on the problem. It can be represented as vector, matrix, image,
tree or any other data structure. The following conditions help to achieve
better performance.

2.2.3.1 Data properties

Quantity
The size of the input dataset is important. For instance, MNIST dataset
has 60.000 images. All pictures should be normalised, meaning that ev-
ery picture has the same size and image quality. In the ideal case, the
data should be as diverse as possible. For instance, for MNIST it is ideal
to have a number of various types of people. People with high income,
low income, high intelligence, low intelligence, with dyslexia or any other
disability, both right and left hand. We should also consider di�erent
types of personalities since writing reflects all of that. The concept is

9

2. Theoretical Background

simple, gather input data with the most extensive variety, and the model
will perform as expected for any test data.

Correct Labeling
Having correct labelling is crucial for a functional network. It might
seem like an obvious statement, but labelling is one of the most tedious
tasks when it comes to neural networks, and there is a big space for
human error.

Class balance
To prevent the model from mistakes, it is imperative that every class
represented in the data should have the same amount of samples. For
MNIST it means that the number of images across the whole set, that
is from zero to nine, is precisely the same (number of images with zero
equals to the number of images with any other number in the dataset).
Later in this thesis, we show how to correctly create a subset of MNIST.

When it comes to NN every dataset is most often split into three di�erent
sets. Training, validation and test, where the split ratio is usually close to
[80%, 10%, 10%]

Training set
Training set is used for learning and finding the optimal parameters of
the classifier.

Validation set
The validation set is used to tune up the parameters. By having a val-
idation set, we reduce the possibility of having a bad result on the test
data.
Using a validation set in optional.

Test set
Test set is used to determine the final performance on a real-life data.

2.2.3.2 Overfitting and Underfitting

Over and underfitting are terms used in machine learning that explain the
behaviour of a classifier.

OverFitting is a case when the network’s model performs flawlessly on the
training set and poorly on a testing set. It is often described as a state, where
the model starts to memorise the data, rather than understanding it. Over-

10

2.2. Artificial Neural Network

fitting can be caused by having a data set that violates any of the condition
defined above 2.2.3.1 or by simply pushing too hard and forcing the model to
reduce the final error. Such overfitted model may entirely lose the ability to
generalise and perform well on unseen data.

Underfitting on the other hand, is the exact opposite, a state where your
model performs very poorly on your training set because it is not able to fit
the data well enough. That can be caused either by having an insu�cient
amount of training data or by fitting the data with a wrong model (liner
non-separability).

Figure 2.4: Overfitting and Underfitting

2.2.3.3 K-fold cross validation

K-fold cross-validation (CV) is a process that helps with finding the perfect
model for given dataset while ensuring to avoid overfitting. The first problem
when it comes to a dataset is how to split it into train and test sets. Ideally,
we want the biggest test set possible to ensure the model can deal with any
data, but at the same time, we need most of the data for training purpose.
The fewer samples we have, the more relevant this problem becomes. The
greatest advantage of K-fold CV is that we can use the whole set for both
training and testing.

1. We divide our dataset to K folds with roughly the same size (some
datasets may not be divisible by K).

11

2. Theoretical Background

2. Create a K iteration cycle. For every cycle, one fold represents a test
set, and the rest is for training. See the graphical explanation in figure
2.5.

Figure 2.5: K-fold cross-validation

3. Calculate the cross-validation error

CVerror = 1
K

Kÿ

k=1
Ek (2.4)

Ek is a test error on kth fold

2.2.4 Learning process

Learning in ANN is a process that was already explained to some extent in
previous sections. It is a process where all the internal parameters are tuned
(weights, bias, thresholds, etc.). This section provides only a very superficial
introduction to learning mechanisms used in ANN.

Supervised learning.
Supervised learning represents a learning where we have a set of pairs (training
set). Each pair is defined by an input x and output y vector. We use our
algorithm to find a mapping function y = f(x). The word supervised is
derived from the fact that we have a training set/teacher, that helps us find
the ideal mapping.
(classification, regression)

12

2.2. Artificial Neural Network

Unsupervised learning.
Unsupervised learning is a method used, for situations when we only have a
training data x. The outcome of unsupervised learning is a to find a model
that understands the data’s distribution and nature. (clustering, association)

Reinforcement learning.
Reinforcement learning is probably the most interesting learning mechanism.
It is a scenario where we do not have any data neither x nor y. All the data is
generated by interactions with the system. The best explanation is imagining
a robot controlled by AI. When we turn on the robot, we have no data, but
when the robot starts interacting with the surroundings, the model receives
all the data from all the sensors.

This thesis does not provide a mathematical background for understanding the
learning process of neural networks. To understand the concept of a learning
process, consider reading a book on neural networks from Simon Haykin [28].

2.2.5 ANN architecture

Using neurons as building blocks, we can construct sophisticated networks,
with very specific properties. Di�erent architectures vary from each other
by size and number of connections between neurons. Finding the perfect
network’s topology for a given problem can create a task on its own. Following
existing guidelines can help to select a network’s shape, but the size and
density are usually tuned by trial and error method.

2.2.6 Deep Neural Network

A Deep Neural Network(DNN) is a just a name convention used for neural
networks with a certain depth. We can divide ANNs into two subgroups by
its depth, shallow and deep neural networks. Regular NN has three di�erent
layer types, input, hidden and output. For NN to be considered shallow, it
must have no hidden layer or at most one. For any other number of hidden
layers, the NN is considered as deep.

Using more hidden layers created an innovation known as ’feature hierarchy’.
Each hidden layer is trained for a distinct feature based on the previous layer’s
output. Deeper we go the more complex features NN recognises. That allows
NN to handle high dimensional data sets.

13

2. Theoretical Background

Figure 2.6: Deep Neural Network (image from another source [2])

2.2.7 Fully Connected Feed Forward Neural Network

A fully connected feed-forward neural network is one of the simplest neural
network structures. It is a combination of two elementary rules. Fully con-
nected layers represent architecture, where all neurons are connected to each
other, and feedforward is a promise that the connections between neurons are
only in on direction, no cycles. See the structure in figure 2.7.

Figure 2.7: Fully Connected Feed Forward Neural Network

14

2.2. Artificial Neural Network

2.2.8 Recurrent Neural Network (RNN)

Recurrent neural network introduces quite a unique feature of neural networks,
and that is a memory. Unlike feedforward networks, RNN allows connections
that can create a directed cycle in the network. The possibility of having a
cycle creates a structure that is capable of holding information about already
processed inputs (memory). For more in-depth explanation consider reading
the book on RNN [16].

2.2.9 Convolutional Networks (CNN)

Convolutional Neural Network (CNN) is a deep learning architecture that
is designed to recognise and classify images. CNNs are extensively studied
in last few years, due to the hardware innovations. Not only that we have
better calculation power, but we also have vast labelled datasets, that are
being created on an everyday basis due to the extensive use of internet in
combination with mobile cameras.

CNN has many di�erent components that you can see depicted in the CNN
structure below, created by authors of a research paper [3] that nicely sums
up all the recent advances in CNN (The original picture was slightly modified
for better printability).

15

2. Theoretical Background

Figure 2.8: Convolutional Neural Network tree (image from another source
[3])

Let’s introduce the basic blocks in CNN networks that are common across all
architectures.

2.2.9.1 Convolution

We have already stated that CNNs are used for recognising images. Any
image can be represented as a series of matrices with numbers from 0 to
255. A regular image has three matrices one for each colour channel (RGB).
Dimension of the image is the dimension of a matrix, where each position in
the matrix is specific pixel in the image.

16

2.2. Artificial Neural Network

Figure 2.9: RGB - channel matrices

For an easier explanation of convolutional step we only consider the black
and white image, that is an image with a single colour channel (black) with
normalised values from 0 to 1 (usually black and white pictures have values
from 0 to 255 to display grey and its shades). A convolutional step has the
ability to extract specific features from the image. We will not go into detail
on how exactly this works, but we will cover the basics to understand the
overall idea.

One part of the convolutional step is our image. In our case a matrix with
values 0, 1 with dimensions mún. The second part is usually a smaller matrix
with values in the same interval. This second matrix is often called ’kernel’,
’filter’ or ’feature detector’.

Figure 2.10: Convolutional step

17

2. Theoretical Background

By sliding the kernel over the original image and calculating the outputs we
receive the final matrix. Every position in the final matrix is calculated as a
sum of multiplications of elements at the same position. Calculation of the
first value is depicted in figure 2.10, for other values, simply slide the kernel
right or down. The example in in figure 2.10 is using a stride equal to one.
The stride value determines by how much we slide the filter at each step.

The final matrix created by this procedure is called the ’convolved feature’,
’activation map’ or ’feature map’. By using di�erent filters, we can filter out
di�erent features like edges curves etc. By specifying feature map parameters
such as the number of filters, network’s architecture, filter size etc. the CNN
can create the necessary filters on its own.

2.2.9.2 Padding

Some of the mechanisms (convolutional step, pooling) used in CNN are chang-
ing the original image dimensions. The change in size may cause problems
when it comes to concatenating layers because the inputs will probably have
di�erent dimensions. To ensure the dimensions stay the same we must use a
zero padding. To understand how to apply the zero padding see figure 2.11.

Figure 2.11: Zero padding (image from another source [4])

The output dimension can be calculated by the equation 2.5. From the equa-
tion 2.5 we can easily calculate what padding to add to keep the same dimen-
sionality 2.6.

O = (W ≠ K + 2P)
S

+ 1 (2.5)

18

2.2. Artificial Neural Network

O output dimension W input dimension K a filter size P is the added padding
S is the Stride

O = (W ≠ K + 2P)
S

+ 1

(S = 1, O = W)

O = (W ≠ K + 2P) + 1
≠2P = ≠K + 1

P = (K ≠ 1)
2

(2.6)

2.2.9.3 Pooling

Pooling layer is a feature introduced for the purpose of reducing the dimen-
sionality and detecting the most important segments in the picture. Spatial
pooling reduces the image size while keeping the most important informa-
tion alive. There are many di�erent types of generic pooling such as MAX,
AVERAGE, SUM and others.

Figure 2.12: Pooling process

Pooling layer is an essential feature of ANN. It helps to reduce the number
of connections between convolutional layers. Generic pooling methods are
straightforward, but there are also more sophisticated mechanisms for pooling.
Few of the most recent pooling techniques are Lp, Mixed, Stochastic, Spectral,
Spatial Pyramid or Multi-scale Orderless pooling [3].

19

2. Theoretical Background

2.2.9.4 Dropout

Dropout is one of the most popular regularisation techniques for DNN [5].
It is designed to prevent the neural network from overfitting. During the
learning process, the neural network temporarily discards a neuron with a
probability p. The reason behind dropping the neurons is to train the neurons
independently and thus forcing every neuron to perform well on its own.

Figure 2.13: Dropout process (image from another source [5])

2.2.9.5 Fully Connected Layer

In combination with pooling layers, it is useful to use fully connected layers.
Such layer takes all the neurons from the previous layer and connects them to
all neurons in the current layer. The purpose of using fully connected layer
is to classify the image based on the features obtained from pooling layers.
It works as a multilayer perceptron that uses softmax or SVM classification
method. On top of classification, a fully connected layer is also capable of
finding non-linear combinations of features. Using a combination of features
from pooling layers can create a better classifier than just a classifier from
individual features.

2.2.9.6 Gradient Descent

Training NNs, in general, is a very complicated process. The number of pa-
rameters necessary to train is enormous and to include these parameters in EA

20

2.3. Evolutionary Algorithms

is impossible. In our thesis, we use EA only for topology-related parameters,
and we leave the training entirely to a gradient descent method. Gradient
descent is an optimization function that is capable of changing parameters to
decrease error. Various intuitive explanations of what gradient descent exist.

Imagine a situation where a hiker is on the top of a mountain. He has
a car in a parking lot at the very bottom of the hill. Unfortunately, he got
to the summit later than expected and the night has already fallen. He has
no visibility and no light. Intuitively he can feel the ground beneath his feet
and determine if it tends to descent. The very basic strategy is always to go
down if possible, and most probably he will reach the bottom. The graphical
representation can look like the graph below.

Figure 2.14: Gradient descent (image from another source [6])

The goal is to set parameters on y and x axis to get to blue areas which symbol-
ise the optimum. There are di�erent techniques on how to get to the bottom
of the hill such as ”Full Batch Gradient Descent Algorithm” or ”Stochastic
Gradient Descent Algorithm”. Based on the research from Sebastian Ruder it
appears that one of the most favourite gradient descent types is mini-batch
gradient descent. There are many strategies to get to the optimum, to read
more about individual optimizers read Sebastian Ruder’s research paper [25]
[30] [31].

2.3 Evolutionary Algorithms

This section is dedicated to Evolutionary Algorithms (EA). It covers basics of
EA and all the knowledge necessary to understand this thesis and its experi-
ments.

21

2. Theoretical Background

2.3.1 Overview

Evolutionary algorithms are an e�cient and elegant way of finding a solution
to a given problem. The biggest advantage of EA is the capability of finding
solutions to problems with no assigned solving technique. It is an optimisation
technique based on an evolution process entirely inspired by Nature. The
algorithm itself finds a solution by evolving from poor solutions to very good
ones.

The basic concept is straightforward. First, create an initial population, of
an arbitrary size, filled with individuals, where each represents a solution to
the problem. Every individual gets evaluated by a fitness function, which
describes the quality of the solution. The search for the best solution is done
iteratively, generation by generation. Slight combination and modification
of individuals in each generation result in finding better solutions. Every
generation is created by predefined rules. There exist two basic concepts on
how to create a new generation. Every replacement strategy precisely defines
how big portion of the current generation will be replaced and exactly which
individuals are not fit enough for the new generation. Take a look at the
following figure 2.15 to understand the evolution process.

Figure 2.15: Evolutionary cycle

Generational strategy - the whole old population is completely rebuild in each
generation (analogy of short-life species)

22

2.3. Evolutionary Algorithms

– Generational Replacement Strategy –
1 i n i t i a l i z e (o ldPopulat ion)
2 eva luate (o ldPopulat ion)
3 whi l e (te rminat ion cond i t i on)
4 newPopulation Ω bestOf (o ldPopulat ion)
5 whi l e (newPopulation not f u l l)
6 parents Ω s e l e c t (o ldPopulat ion)
7 o f f s p r i n g Ω c r o s s o v e r (parents)
8 mutate (o f f s p r i n g)
9 eva luate (o f f s p r i n g)
10 newPopulation Ω o f f s p r i n g
11 swap (oldPopulat ion , newPopulation)
12 return bestOf (o ldPopulat ion)

Steady-state - just certain individuals are replaced in a generation (analogy
of long-life species)

– Steady-State Replacement Strategy –
1 i n i t i a l i z e (populat ion)
2 eva luate (populat ion)
3 whi l e (te rminat ion cond i t i on)
4 parents Ω s e l e c t (populat ion)
5 o f f s p r i n g Ω c r o s s o v e r (parents)
6 mutate (o f f s p r i n g)
7 eva luate (o f f s p r i n g)
8 populat ion Ω o f f s p r i n g
9 return bestOf (populat ion)

The Evolutionary algorithm is a general bundle that contains many di�er-
ent approaches for finding solutions. Amongst the most popular are Genetic
Algorithms (GAs), Evolutionary Programming (EP), Evolutionary Strategies
(ES) and Genetic Programming (GP). Di�erent problems require di�erent
approaches. The main di�erence between all these methods is a structure by
which is the individual encoded or the process of creation.

Genetic Algorithms [GA]
Uses binary string for representation and genetic operators (mutation,
crossover) for evolving.

Genetic Programming [GP]
Automated method for finding the best form of a program tree [symbolic
regression].

23

2. Theoretical Background

Evolutionary Programming [EP]
It is similar to genetic programming, but the structure of the program
to be optimised is fixed, while its numerical parameters are allowed to
evolve.

Evolutionary Strategy [ES]
Searches through the space of real vectors.

2.3.2 Genetic Representation

Genetic representation as the name suggests is describing how the individual
can be represented. Using the correct representation is very important. The
structure has to be sophisticated enough to encode all the necessary properties
and at the same time simple as it can be for the implementation. Represen-
tation of an individual is inspired by a living organism, and it has two forms
a genome or a chromosome.

A genome is a genetical material of an organism that contains all the necessary
information about the organism, and it is usually represented by a string of
data. Such a string contains chunks of information that represents individual
genes (organism’s features).

Every individual is represented by a pair of a genotype and phenotype. Geno-
type is a specific genome setup. The phenotype is a set of actual features
(weight, height, eye colour etc.). In most cases, both genotype and phenotype
are used. Genotype is most often used for an evolution and phenotype for the
evaluation process. Transformation genotype-to-phenotype is described by a
mapping function.

2.3.3 Fitness Function

Overview section already mentioned a fitness function (FF), we will explain its
importance. After sorting out the individual’s representation, it is important
to find a way of assigning a score to every individual to compare their quality.
Fitness function does exactly that, it takes an individual in a genotype form,
calls the mapping function to obtain a phenotype and then assigns a score in
a meaningful way. In math terms, a fitness function is a function that can
map any individual to a real number.

f : G æ R (2.7)

24

2.3. Evolutionary Algorithms

G - is a space of all possible genotypes
R - real number value

A form of a fitness function should be easy to create because it always repre-
sents the quality of a solution. For robots, it could be a Manhattan distance
to the finish location plus penalty collected on the way, for a math problem
it could be the accuracy of a result. The following list of tips should provide
guidance on how to create a fitness function.

Accuracy
The accuracy of an evaluation directly a�ects both precision and quality
of the result.

Simplicity
Trying to keep the fitness function as lightweight as possible is a direc-
tion to take. Think about how big the population is going to be, how
many generations and based on that derive the function’s complexity.
To avoid slow performing FF, it is important to focus on selecting the
ideal representation and implementing e�cient mapping function (geno-
type to phenotype).

Direction
It is a standard to define FF to return higher score for better indi-
viduals. For instance, using an error rate on a data set would not be
a correct implementation, because it would get smaller over generations.

Invalid individuals
Genetic operators such as crossover and sometimes even mutation can
create an individual that no longer represents a valid solution to the
problem. For such individuals, a generic fitness function will not work
correctly unless it is prepared for situations like that. The algorithm
should be capable of detecting invalid individuals. Any of the following
strategies can deal with this issue.

Discard
Check satisfiability after every operation that modifies the individ-
ual and if the new o�spring is not valid, then discard it. Be aware
that this strategy will change the size of the population which may
be undesirable behaviour. Either generate a new individual, use
parents (individuals that created invalid o�spring) or use Repair
strategy.

Repair
Create a method that is capable of analysing the genotype and

25

2. Theoretical Background

detecting the faulty section. Create a method that can fix the
genotype and ideally keep the diversity introduced by the genetic
operator.

Penalize
Prepare fitness function for invalid individuals and penalise them in
a meaningful way. This penalisation will help the Evolution algo-
rithm to detect such individuals and discard them over generations.
However, keep in mind that using this strategy can easily discard
an optimal solution, by an unfortunate crossover. This problem
can be partially solved by including elitism in EA.

Avoid
This strategy is probably the best one, but it can be challenging to
implement. Ensure that all genetic operators can create only valid
o�springs.

Stability
It probably does not come as a surprise, but FF should always return the
same score for two individuals. Using any randomness in the evaluation
process can lead to mistakes. For cases with randomness, it is wise to
use an average of multiple evaluations or at least try to minimise the
error that the random generator can bring in the result.

Example:
In some cases, using random values is inevitable. A good example would
be a neural network training. Some algorithms use the random generator
for initialisation. Selecting a wrong set of parameters at the start can
profoundly a�ect the network’s accuracy. This error can be minimised
by multiple runs and averaging all results. (for some networks, multiple
runs can be impossible due to the time complexity)

2.3.4 Genetic Operators

Genetic operators are used for modifying individuals by mimicking a process
of natural reproduction. Each operator has di�erent properties and di�erent
goal in the evolution. For standard GAs, there are two operators, mutation
and crossover.

2.3.4.1 Crossover

Crossover combines two individuals (parents), of the same size, and outputs
two new individuals (o�springs). The process of crossover in GA is inspired

26

2.3. Evolutionary Algorithms

by the process of reproduction in natural evolution. Children are created by
a random combination of parent’s chromosomes.

Typical example is 1-point 2.16 or 2-point 2.17 crossover, having more points
of crossing rarely makes any sense, but there exists multi-point crossover op-
erator. To make a successful crossover, the algorithm has to randomly select
a crossover point and after that create new o�springs by combining contents
of parents. Rules are depicted in visual examples figure 2.16 and figure 2.17.

Correct implementation of the crossover operator is very important. Despite
the fact, that it was designed to help with the evolution process, there are
few traps, that can cause an error. In this particular case, the error is repre-
sented by invalid o�springs and possible loss of the optimal solution (parents
are discarded). Read fitness function tips 2.3.3 on how to work with invalid
individuals. Genetic Algorithms in most cases benefit from using the crossover
operator, but there are some cases which can su�er by using it. In that case,
it is recommended to either think of a di�erent approach or does not use the
crossover at all.

Figure 2.16: 1 - point crossover (non-binary values are used only for better
explanation)

27

2. Theoretical Background

Figure 2.17: 2 - point crossover (non-binary values are used only for better
explanation)

2.3.4.2 Mutation

Mutation is a simple and extremely helpful component, that should appear
in every evolutionary algorithm. Unlike crossover, the mutation operator is
capable of introducing a new genetic information to the individuals. The basic
type of mutation is a single bit-flip mutation 2.18.

Figure 2.18: Single bit flip mutation

Implementations can di�er based on the specific needs. In general, we mutate
one bit per individual with a certain probability, but multiple bit-flip muta-
tions may prove also beneficial. The variety is endless, but it it is important
to keep the original idea alive. The mutation should always be able to intro-

28

2.3. Evolutionary Algorithms

duce new information to the individual. The following list explains the most
important advantages of a mutation operator.

Diversity
Diversity is a serious topic when it comes to population. Problems
with diversity may occur in very early stages. With small diversity,
the chances of finding the optimal solution are slim to none. Having a
diverse population is an essential prerequisite for finding the best solu-
tion. An ideal population has individuals spread out through the whole
search space, which is not a trivial condition.

When creating the initial population, the best start is having the biggest
diversity possible. By using the random generator, selection of individ-
uals can result in having only a particular area of the search space or
even having duplicates 2.19. A better choice is to create the initial pop-
ulation with heuristics or select the population wisely. An example of
the wrong initialisation would be to use a first x permutations, that way
all the individuals would be very similar to each other.

Figure 2.19: Wrong population initialization, duplicates and missing informa-
tion in the population.

Finding dependencies
For complicated issues where the solution is di�cult to imagine one may
not realise, the existence of dependencies between bits. Mutation can
help to discover certain correlations between bits.

Dead end
Mutation is beneficial when evolution gets stuck in local minima. Hav-
ing a group of individuals all lacking specific information, no crossover
can help to fill that gap, and the evolution gets stuck.

Final Stages

29

2. Theoretical Background

When evolution comes close to an optimal solution, the crossover op-
erator begins to perform poorly, that it is given by the nature of the
operator. Crossover usually introduces quite dramatic changes to the
individual, whereas all the individual needs are tiny changes.

2.3.5 Selection

Selection is an important process of evolution, where individuals from the
current population are inspected and evaluated. Only the fittest candidates
have a chance to appear in the next generation. The quality of an individual
is solely measured by its fitness score. Learning about the common selection
strategies is a good start to understand the process and all its challenges.

2.3.5.1 Roulette Wheel

Roulette wheel selection is a technique for random selection of individuals.
The process is best to be explained with a visual aid figure 2.20. The proba-
bility of selecting an individual is equivalent to its fitness value. Individual’s
fitness value is depicted by the size of assigned roulette wheel section.

Figure 2.20: Roulette Wheel selection

Pi = fiqP
i=0 fi

(2.8)

P - probability of selection, f - fitness value

30

2.3. Evolutionary Algorithms

Expected vs. Observed frequency
The probability of selecting an individual is proportional to individual’s fitness
value divided by a sum that represents population’s fitness. The problem is
that selecting an individual takes one spin at the roulette wheel and selection
conditions are same for all the spins.

2.3.5.2 Stochastic Universal Sampling

Stochastic universal sampling is similar to a roulette wheel technique, but it
tackles the problem with expected vs observed frequency. By spreading the
pointers on the wheel with the uniform distance and using only one spin, that
ensures to obtain expected frequencies in line with observed frequencies.

S = 360
n

(2.9)

S - step in degrees, n - number of selections

Figure 2.21: Stochastic Universal Sampling

2.3.5.3 Tournament Selection

Randomly selecting n individuals from the population and place them in a
tournament. Tournament order is decided by the score from a fitness function.

31

2. Theoretical Background

Figure 2.22: Tournament selection

2.4 Genetic Programming

Genetic programming (GP) [32] [33] is a form of an evolutionary algorithm,
that evolves programs. Every individual in the population represents an exe-
cutable program. The optimisation technique is the same as we described in
Evolutionary Algorithms section, the only di�erence is that GP optimises tree
structures.

The tree structure is a trivial representation that every reader should be fa-
miliarised with. Each node in the tree can represent terminal (constants, vari-
ables) or non-terminal (functions). Non-terminal nodes in the tree structure
have an additional property called arity that defines the number of children.
In our development, we only use functions of arity one and two, so we can
consider our trees binary. When it comes to modifying a tree structure, it is
important to be in control of the tree’s size, because GP algorithms tend to
bloat the tree out of desired proportion. In our case, we can control the bloat
with tree’s depth, since we only use binary operators the that also controls
the width.

Nc = 2k+1 ≠ 1; k Ø 1 (2.10)

Dc = 2d (2.11)

(Nc is node count for the whole tree
Dc is depth count (number of neurons in the depth d))

32

2.5. Neural Network Encodings

2.5 Neural Network Encodings

To be able to work with NN and make modifications, there has to be a way
of an e�ective encoding. This section is not focused on new approaches in
the area of encoding since what we used in this thesis is already around for
some time, and we only slightly modified it to work for our purpose. There
are two main types of encoding direct and indirect and both approaches are
important and still in use.

2.5.1 Direct Encoding

The name ”Direct Encoding” is derived from the fact that this type of encoding
provides a direct mapping from genotype to phenotype. Direct in a sense, that
every network’s property is unmistakably understandable from the encoding,
both network’s connections and their weights. Most often such encoding is
represented by a matrix of n ú n, where n is equal to the number of nodes in
the network. Every number then describes the connection between the nodes.
It follows the standard behaviour of graphs represented by a matrix. The
main diagonal is for loop connections and under the main diagonal are the
weights for backward connections. You can find an excellent explanation in
the research paper for neural network topologies [34].

2.5.2 Indirect Encoding

The Indirect Encoding [34] [35] is used for problems, where we need to evolve
larger networks. The problem with direct encoding is that it holds information
about every potential connection, saved in the matrix n ú n. Unless we use
fully connected network, we store information about connections that do not
exist, and for large networks, the matrix becomes unreasonably large. On top
of that direct encoding does not o�er the possibility to evolve any modularity
or regularity [34].

2.5.2.1 Cellular encoding

Often used part of indirect encoding is cellular encoding. Gruau’s (1993)
Cellular Encoding (CE) method is inspired by the process of cell division
in living organisms and used for NN evolution. The progress of network’s
developments is captured in a development tree. Development tree starts
with a single node/root that symbolises the initial cell at the very beginning
of the evolution. By using cell divisions, the tree is branched, and the cell
evolves. There are various possible cell division operations. In our research,
we used following genetic operators.

operator [arity] - description

33

2. Theoretical Background

SEQ [2]
Sequential division (has two descendants) new cell inherits mother cell’s
outputs, the input of a new cell is connected to the mother cell’s output.
Development instructions for the mother cell continue in a left subtree,
while for the new cell in the right.

PAR [2]
Parallel division (two descendants) creates a new cell which has the same
set of inputs and outputs as the mother cell. Again, development in-
structions for the mother cell continue in a left subtree, while for the
new cell in the right.

REC [0]
This operation is a terminal state, and it introduces the ability of re-
current call. Instead of terminating the development, the genotype is
processed from the root. This process of recursive call takes place im-
mediately before continuing to any other operation.

Figure 2.23: Genotype tree structure

The best explanation of cellular encoding is to show an example. Using the
genotype in figure 2.23 we will show a step by step procedure that explains the
behaviour of a genotype to phenotype mapping function. This exact example
is used in the materials from Gruau [36], but the visualization of the mapping
process is di�erent.

34

2.5. Neural Network Encodings

Description of figure 2.24
I. SEQ - operator on node 0, create a new child [1]. Left subtree continues
in mother cell [0] and right subtree in the new cell [1]
II. PAR - operator on node 0, create a new parallel child[2]. Left subtree
continues in mother cell [0] and right subtree is finished.
III. SEQ - operator on node 1, create a new child [3]. Left subtree con-
tinues in mother cell [1] and right subtree is finished.
IV. REC - operator on node 0, The whole tree is called in recursive, REC
operator is processed only once. This operator is processed in the figure
2.25.
V. PAR - after the REC operator we still need to process PAR.

Figure 2.24: Genotype to phenotype mapping function

35

2. Theoretical Background

Figure 2.25: Genotype to phenotype mapping function, REC operator

Description of figure 2.25
II. SEQ operator on node 0, create a new child [4]. Left subtree continues
in mother cell [0] and right subtree in the new cell [4].
III. PAR operator on node 0, create a new parallel child[5]. Left subtree
is finished and right subtree is finished.
IV. SEQ operator on node 4, create a new child [6]. Left subtree continues
in mother cell [4] and right subtree is finished.
V. PAR operator on node 4, create a new child [7]. Both subtrees are
finished. The REC is complete.
V. PAR unfinished operation. Operator on node 1, create a new child [8]

36

2.5. Neural Network Encodings

2.5.2.2 Edge encoding

Based on the Gruau’s cellular encoding, Luke and Spector published research
describing some of the weakness of cellular encoding and providing solution
that targets some of the mentioned issues, this new mechanism is called ”Edge
Encoding” [7] In Luke’s and Spector’s research paper, on edge encoding, is a
nice paragraph that sums up some of the advantages of edge encoding over
cellular encoding. Direct quotation from [7] :

Although cellular encoding is a powerful technique, it nonetheless
has weaknesses. First, cellular encoding’s chromosome traversal
(breadth-first) and highly execution-order dependent operators can
result in subtrees within the individual which, if crossed over to
other individuals, would result in very di�erent phenotypes than
they expressed in the original individual. For many domains it
may be more appropriate to use an encoding mechanism which bet-
ter preserves phenotypes through crossover. Other disadvantages
come from cellular encoding’s use of graph nodes as the target of its
operations: as cellular encoding modifies nodes, the edges multiply
rapidly, but cellular encoding provides only a very limited mech-
anism, link registers, to label and modify individual edges. Addi-
tionally, the graphs cellular encoding produces tend to consist of
highly interconnected nodes. This is useful for cellular encoding’s
primary focus, namely fully-connected graphs such as those found
in feedforward networks or Hopfield networks. However, it may be
less desirable in other domains.

Edge encoding (EE) like cellular encoding (CE) is a tree-structured encoding
that uses a direct graph as a phenotype. The biggest di�erence in EE is
that grows the tree by modifying the edges instead of nodes like CE does.
Another di�erence which is not that obvious is the fact that CE uses a breadth-
first search for iteration in the tree, but EE uses a depth-first search. To
demonstrate the underlying mechanisms of EE, we should introduce the basic
set of operators. This set is used for a subgroup of EE that is called ”Simple
EE”, and even though it cannot describe all the directed graphs, it is su�cient
for any finite state automat NFA.

operator[arity] - description
DOUBLE [2] - Create an edge F (a, b)
BUD [2] - Create a node c. Create an edge F (b, c)
SPLIT [2] - Create a node c. Modify E to be E(a,c). Create an edge
F(c,b)
LOOP[2] - Create a self-loop edge F (b, b)
REVERSE [2] - Reverse E to be E(b, a)

37

2. Theoretical Background

Figure 2.26: Edge encoding chromosome which describes an NFA that reads
the regular expression ((01)*101 (image from another source [7])

38

Chapter 3
Program

An essential part of this thesis was to implement an evolutionary algorithm
that is capable of finding an ideal network topology for given input dataset.
The idea behind the whole algorithm is straightforward. We use the EA to
evolve individuals and find better NN. Every individual can be represented by
three di�erent structures.

GENOTYPE
By using the cellular encoding, we create the genotype tree form 2.23 to
represent the individual.

PHENOTYPE
Every genotype can be transformed by the mapping function 2.25 into
phenotype. Phenotype structure is almost identical to the structure of
the final NN.

NEURAL NETWORK
An NN form is a phenotype form with assigned inputs and output. The
whole structure is defined by Keras objects, and it is the exact form that
is used for training and evaluating the input dataset.

3.1 Analysis

3.1.1 Code Development

The programming language used for this thesis is Python. The primary reason
for using a Python language is the fact that it provides the best possibilities
for outsourcing essential parts from existing libraries. Libraries used in this
thesis created a much easier environment for developing a functional product.
The following list contains all the major libraries used in this project.

39

3. Program

Tensorflow
TensorFlow is an open source software library for numerical computa-
tion using data flow graphs.
For installation follow the guide provided by TensorFlow [37]

Keras
Keras is a high-level neural networks API, written in Python and capa-
ble of running on top of TensorFlow. It was developed with a focus on
enabling fast experimentation with deep learning.
For installation follow the guide provided by Keras [38]

Deap
DEAP is an evolutionary computation framework for rapid prototyping
and testing of ideas. It seeks to make algorithms explicit and data struc-
tures transparent. It works in perfect harmony with parallelisation.
For installation follow the guide provided by DEAP [39]

3.1.2 Environment

All the code included in this thesis was developed on macOS High Sierra
platform using a Pycharm studio for IDE.

At first, the tests were calculated by the Apple MacBook Pro station. With
parameters of a standard notebook.
MacBook PRO
processor : 2.7GHz Intel Core i5
Memory: 8GB 1867 MHz DDR3

After initial tests confirmed the functionality of the algorithm and all the
major bugs were fixed, the setup proves itself insu�cient. So we decided to
find a new hardware for experimenting.

Server
processor : 2 x E5-2620v4 upto 3.00GHz (2 x 8 cores, each core handles 2
threads, 32 threads in total)
Memory: 6 X 16GB

3.1.3 Installation

To run the code that is included with this thesis, the environment needs the
following list of dependencies.

• Python 2.7+

40

3.1. Analysis

• TensorFlow [37] (we used virtualenv installation)
• Keras [38]
• DEAP [39]
• MatplotLib [40]
• GraphViz [41]

With all the necessary dependencies the project can be executed through
the terminal by running the command python -m src.Main or from IDE by
selecting Main.py as the main class.

3.1.4 Custom Genetic Operators

On top of the standard genetic operators used in cellular encoding we have
added operators to modify the layer properties. The main reason behind
adding custom operators is that we have changed the original idea where
nodes in phenotype represents individual neurons to an implementation where
a node represents a whole layer of neurons. Adding new operators for layer
modification allows the EA to still have a full control over the structure and
at the same time use more e�cient encoding.

operator [arity] - description

DOUBLE [1]
Double the neuron count (one descendant) it doubles the number of neu-
rons in the parent node/layer. This operation does not create a new cell,
so development continues in the same cell.

HALF [1]
Halve the neuron count (one descendant) it reduces the number of neu-
rons to one half in the parent node/layer. This operation does not create
a new cell, so development continues in the same cell.

CONVOLUTIONAL OPERATORS
For developing the convolutional network, the library provides operators
to set the properties of convolutional layers.

MAX P [1]
Enables the Max pooling operation after the convolutional step.

DROP 20 [1]
Applies the Dropout to the input and sets the fraction rate to 20%.

DROP 50 [1]
Applies the Dropout to the input and sets the fraction rate to 50%.

41

3. Program

DOUB F [1]
Doubles the number of filters used in the convolutional step.

KER S [1]
Changes the size of the kernel filter by one, the filter is always squared
and the stride is always one.

POOL S [1]
Changes the size of the pool filter by one, the filter is always squared.

3.2 Implementation

This section focuses on explaining the implementation details, and it provides
all the necessary information to understand the functionality. It does not go
into full detail on how everything works, but it explains the code flow with
all the important sections. The structure of the whole project is depicted in
figure 3.1. The core of this application is the Evolution class where most of
the logic happens.

Figure 3.1: Implementation structure

3.2.1 Operator

[operator.py]
Purpose of this class is to have a possibility to easily add new genetic operators.
We wanted to create a simple environment that allows very intuitive adding

42

3.2. Implementation

of new operators and on top of that, we wanted to have only one place in the
application to mention operator’s name. In early versions, we had a hard-
coded solution, and it created a lot of complications.

Operator class is an object that represents a genetic operator. Every operator
has four attributes.

Name
Every operator is recognized by the name. This name is used in geno-
type representation and it has to be unique. In our application we used
abbreviations.

Arity
Arity defines a number of descendants that the genotype operator cre-
ates.

Geno function
Based on the arity specified in the constructor, the initialisation process
selects one of the predefined functions used for building the genotype
tree.

Pheno function
Every operator introduces a new form/rule on how to modify the phe-
notype structure. This function is assigned in the constructor, and it
has to be specified by the user.

3.2.2 Library

[operatorLib.py]
All the operators used in the genotype tree form are defined in the object
OperatorLib. This object is the only place where an operator has to be
defined, after correct initialisation the operator automatically appears in in-
dividuals.

The first step is to register the operator. We register new operator with the
name SEQ with arity two. The second step is to create a phenotype function-
ality. To do that we need to summarise the expected operator’s behaviour.

Sequential division (has two descendants) new cell inherits mother cell’s
outputs, the input of a new cell is connected to the mother cell, making it the
only mother’s cell output.

43

3. Program

def addSEQ(self):
Op = Operator(�SEQ�,2)
def func(node, index):

next = Pnode(index, node.neuron_count)
next.addInput(node)
next.copyOutputs(node)
for n in node.outputs:

n.inputs.remove(node)
node.outputs = []
node.addOutput(next)
return node,next

Op.setPhenoFunc(func)
self.operators.append(Op)

Figure 3.2: SEQ operator definition

Phenotype function has two inputs, node(represents the mother cell) and
index (index is the label for the layer name in the neural network). The code
implements exactly the steps defined in the operator’s description.

node represents the mother cell and next represents the newly created cell.

1. Create a new node [pnode] with label index and the same neuron count
that mother cell has.

2. Create the input connection from the mother into the new cell.
3. Copy the output connections from the mother into the new cell.
4. Inform all mother’s output nodes that they are no longer connected and

link them to the new cell instead.
5. Remove all output connections from the mother cell.
6. Add output from mother cell into the new cell.
7. Return statements define where the next genotype operators should pro-

ceed.
8. Set the phenotype function reference by using setPhenoFunc after that

add the operator to the list of operators.

Now the initialisation of the operator is complete, and the final step is to
call the operator to register it. These calls are inside the function called
addOperators.

44

3.2. Implementation

3.2.3 Individual

[individual.py]
Individual is an object that helps with the evaluation process. It is important
to state that this object is not used for evolution process. Individual used for
the evolution is created by DEAP library, and it is explained in detail in the
Evolution class description. Individual object has two important functions.
One is that it has access to all genetic operators and in the Evolution class
all the operators are registered in the DEAP environment via this connection.
The other functionality is a phenotype converter wrapper. It provides all the
necessary calls to obtain a phenotype from genotype.

3.2.4 Node

[gnode.py] and [pnode.py]
gnode and pnode are implemented as a building blocks for di�erent tree struc-
tures. Both objects are used as a form of a linked list, meaning that every
object has a saved reference to neighbour objects. To be able to iterate through
the whole structure it is only necessary to hold the reference to its root node.

GNODE
Genotype node gnode is used for building a genotype tree, and the structure is
quite simple. It has a type attribute that represents the node’s functionality,
and it is identical to the name of the genetic operator. Since we only use
binary and unary operators the tree itself is at most in a binary form. Each
node in the tree has a link to its left and right child. Unary operators only
have a link to the left successor.

PNODE
Phenotype node pnode is used for building a phenotype structure. Unlike
gnode the pnode can have multiple inputs and outputs. The connection is
also represented by the reference to an object, and the only di�erence is that
it is stored in an array. Besides all the connections stored in this object,
there are also properties that define the neural network layer (neuron count,
activation function, layer type, etc.) and functions that help to implement the
phenotype functionality (copyInput, copyOutputs, divideNeuronCount, etc.)

3.2.5 Evolution

[evolution.py]
The Evolution class is the most crucial part of the application. All the logic
behind the evolutionary process is hidden in this class. At the very early
stages of the development, we decided to outsource evolutionary logic from
existing library. We have ended up with a library called DEAP [39], it has

45

3. Program

very detailed documentation, and it provides all the functionality we need for
this project.

3.2.5.1 DEAP initialization

The first important section in the Evolution class is the initialisation of the
DEAP environment. All the initialisation steps are in the figure 3.3.

pset = gp.PrimitiveSet("main", 0)
--- Define functions ---

Ind = Individual()
for key, value in Ind.functions.items():

pset.addPrimitive(value[0], value[1], value[2])

--- Define terminals ---

pset.addTerminal(�END�)
if parameters.USE_MODULARITY:

pset.addTerminal(�REC�)

--- Define creator ---

creator.create("FitnessMin", base.Fitness, weights=(1.0,))
creator.create("Individual", gp.PrimitiveTree, fitness=creator.FitnessMin,
pset=pset)

--- Define toolbox ---

toolbox = base.Toolbox()
toolbox.register("expr_init", gp.genFull, pset=pset, min_=1, max_=1)
toolbox.register("individual", tools.initIterate, creator.Individual,
toolbox.expr_init)
toolbox.register("population", tools.initRepeat, list, toolbox.individual)
toolbox.register("evaluate", evalGenotype)
toolbox.register("select", tools.selTournament, tournsize=3)
toolbox.register("expr_mut", gp.genFull, pset=pset, min_=1, max_=3)
toolbox.register("mutate", gp.mutUniform, expr=toolbox.expr_mut, pset=pset)

Figure 3.3: Initialization of DEAP enviroment

Define Non-terminals and terminals
By using the function addPrimitive, we can add all the non-terminals
that we have previously linked to the individual from our library. After
adding all the non-terminal operators, we add terminals, which in our

46

3.2. Implementation

case is a string value ’END’ and for modularity testing ’REC’.

Define creator
In DEAP library the creator is a helpful and simple way of dynamic
class initialisation. It is used to define classes that help to run the EA.
In our case we create a generic fitness function class and Individual class
that uses a tree structure representation.

Define toolbox
Toolbox is used directly for the evolution process and it basically cre-
ates / register functions under certain aliases. The parameters of the
register function are very simple [alias, function, ...arguments]. The
process of registering may seem a little confusing at first, but in most
cases, it has the same format

expr init
Gp.genfull generates a structure by using objects from pset with
the size defined by min and max. In this case, we use only the size
of one, for individuals in the initial population.

individual
Tool.initIterate calls the function creator.Individual with
params toolbox.expr init. It means that calling a function individual
creates an actutal individual with the shape defined by expr init.

population
Tools.initRepeat simply fills the container by using a toolbox.expr
init function. Function population takes one argument and that
is size.

evaluate
Registering the fitness function under alias evolution. Evalgenotype
is a function defined in the code.

select
Assigning a selection strategy and the tournament size.

expr mut
The same process that is defined in expr init, only with di�erent
size parameter. The di�erence is that expr init is used for gen-
erating structures for initial population and expr mut is used for
structures that are used for mutation process.

mutate

47

3. Program

This section defines the mutation operation. Gp.mutUniform ran-
domly selects a node in the tree and swaps it with another individ-
ual. The other individual is created by expr mut.

3.2.5.2 Fitness function and Mutation

DEAP initialisation will not work without defining the evaluation function
because we registered it under the alias evaluate.

--- Define Fitness function ---

def evalGenotype(individual):
genotype = gp.compile(individual, pset)
Ind.setGenotype(genotype)
self.printGenotype(individual, genotype)
result = Ind.getPhenotype(individual)
krs = KerasConstructor(result)
individual.score = krs.testAcc
individual.trainAcc = krs.trainAcc
scoreGen = krs.testAcc
scoreGen = Ind.evaluatePhenotype(individual.height, krs.testAcc)
return scoreGen,

--- Define the mutation function --

def mutateWithLimit(ancestor):
mutant = toolbox.clone(ancestor)
toolbox.mutate(mutant)
while mutant.height > BLOAT_LIMIT:

mutant = toolbox.clone(ancestor)
toolbox.mutate(mutant)

del mutant.fitness.values
mutant.fitness.values = toolbox.evaluate(mutant)
return mutant

Figure 3.4: Fitness function and Mutation

Mutation - mutateWithLimit
Toolbox.clone creates a deep copy of an object and we use it to store the
original individual. After that, the mutation process takes place. Newly
created individual must satisfy the bloat condition otherwise the mutation
is repeated. When the mutation is found, we call the evaluation process to
obtain the new score.

48

3.2. Implementation

Fitness function - evalGenotype
EvalGenotype is a function that performs all the necessary steps to find out
Iindividual’s score. The process is quite complicated and very time consuming,
especially when we consider the fact that this code is called for every modified
individual. The process of evaluation can be divided into four steps.

Genotype
The first thing the algorithm is doing is creating a genotype. The in-
ternal representation of DEAP individual is a string that contains the
name of operators. Example:

PAR(PAR(END, END), SEQ(END, END))
All these operators were registered as functions at the very beginning
of the DEAP initialization. The compile process executes all the func-
tions, and that builds the genotype tree, an interesting fact is that the
tree is built from leaves to the root.

Phenotype
With the structure stored in variable genotype we can build a pheno-
type that represents the final neural network. The algorithm performs
breadth-first-search and calls the operator’s phenotype functionality at
every node in genotype tree structure.

Neural network
At this point, we have a network structure, and we have to call the Keras
library that evaluates the neural network, this part is explained in Keras
implementation.

Score
EvaluatePhenotype does the final step, it uses the calculated accuracy
on NN and adds some custom penalisations for the layer count and the
neuron count. The penalisations are designed to prefer smaller networks.
In our thesis, we used it for some experiments, but all of the o�cial test-
ing use only model’s accuracy.

3.2.5.3 Evolution process

The DEAP library o�ers so much functionality, and the code is very compact,
for instance in one line we can simulate the whole evolution process, but in
our case, we have decided to implement it on our own, step-by-step. The for-
cycle is easily identifiable in the code, and it is the same for every population.
Operations defined on individuals can be dived into two sections, modifying
and tuning.

49

3. Program

Modification
The modification is a process that shapes the population. For every individual
in the population, we roll the dice and decide to mutate or not. Elitism is a
standard operation defined in evolutionary algorithms, and the only di�erence
is that our implementation is conditional. The swapping of best individuals
from the previous population happens only if they are better than worst in-
dividuals in current population Code for modification is in figure 3.5.

MUTATION

for ofIndex in range(len(offspring)):
mutant = offspring[ofIndex]
if random.random() < MUTPB:

ancestor = toolbox.clone(mutant)
offspring[ofIndex] = mutateWithLimit(mutant)
self.printMutationChange(ancestor, mutant)

ELITISM

for ind in range(ELITISM):
potential = population[ind]
if offspring[POPS-1-ind].score < potential.score:

offspring[POPS-1-ind] = potential

Figure 3.5: Mutation and Elitism

Tuning
After initial experiments, we have decided to add one necessary feature along
with one possible improvement. We were experiencing real issues with having
duplicates in the population. The first occurrence appeared right in the initial
population, that is caused by the low amount of terminals, non-terminals and
fact that in the initial population only has individuals of size one. The second
appearance was more serious. During the evolution process, the elitism func-
tionality slowly started replacing bad individuals with the best individuals
from the previous population. The algorithm was not able to find a better
solution, and in combination with our conditional elitism (copy individual
from the previous population only if the score is better), we ended up with a
population that had only one type of individual. That is a sign of a premature
convergence, and it is happening because the algorithm can not simply find
a better solution. Instead of using some early stopping mechanism, that is
able to recognise this premature convergence. We used a duplicate removing
strategy to avoid such situation. The introduced solution can still allow the
population to contain duplicates, but the probability is greatly reduced. Af-

50

3.3. Genotype to Phenotype

ter sorting out the issue with duplicates, we still felt like we could push the
algorithm a bit more. The final tuneup tries to mutate the best individual
x times to see if mutating the best individual can result in finding a better
solution (x is defined in parameters under constant).

DUPLICATES

for outer in range(len(offspring)):
for inner in range(outer+1, len(offspring)):

if str(offspring[outer]) == str(offspring[inner]):
offspring[inner] = mutateWithLimit(offspring[inner])

TUNE UP

for index in range(parameters.ELITISM_TUNE_UP):
best = toolbox.clone(offspring[0])
newBest = mutateWithLimit(best)
if newBest.score > best.score:

offspring[POPS-1-ind] = newBest
break

Figure 3.6: Removing duplicates and Tuning the individuals

3.3 Genotype to Phenotype

[phenoConverter.py]
Phenotype converter is a class where the actual mapping from genotype to
phenotype takes place. It has three essential methods that are explained in
this section, other methods in this class serve as assist functions with self-
explanatory nature.

Method resolvePheno in Figure 3.7 is called with two arguments, where root
is a [gnode] that represents the root of genotype tree and individual is [string]
that contains the genotype encoded in string form. This method serves as an
entry point for genotype conversion. In the first six lines, it creates the initial
structure. Every network starts with the input layer inputN and one neuron
layer mother connected to the input. The conversion itself is executed by the
command iterateThrough. After this call, all the [pnode] nodes are created,
and we only use breadth-first search for obtaining the correct order in which
we later initialise the neural layers.

51

3. Program

def resolvePheno(self, root, individual):
self.individual = individual
inputN = Pnode(0)
self.input = inputN
mother = Pnode(1)
inputN.addOutput(mother)
mother.addInput(inputN)
self.nodeLib.append(inputN)
self.iterateThrough(mother,root, �basic�)
order = self.getOrderBFS(inputN)
self.printPhenotype(self.individual, order)
library = self.convertNodeLib(self.nodeLib)
return library, order

Figure 3.7: Entry point for genotype to phenotype conversion

def iterateThrough(self, mother, root, level):
backup = self.que
self.que = Queue.Queue()
self.que.put([mother, root, 1])
while not self.que.empty():

item = self.que.get()
name = str(item[1].index)
if item[0] not in self.nodeLib:

self.nodeLib.append(item[0])
if level == �basic�:

item[1].rec_count = item[2]
if item[1].isRECWeight():

item[1].modRecCount()
if item[1].isREC() and (level == name or level == �basic�):

item[1].rec_count -= 1
if item[1].rec_count <= 0:

item[1].type = �END�
else:

self.iterateThrough(item[0], root, name)
if not item[1].isFinal():

self.iteratePheno(item[0], item[1])
self.que = backup

Figure 3.8: Recursive processing

52

3.3. Genotype to Phenotype

Method iterateTrhough in figure 3.8 receives three parameters, mother[pnode],
root[gnode] and level[string]. The whole process of conversion is imple-
mented in the same way as it is explained in the figure 2.24. To build the
phenotype structure, the process requires two pointers. One points to the
genotype tree node, that represents a genetic operator, and the second points
to a phenotype tree node, a place where to apply the operator. The whole
building process is sensitive to the operator order, so we are using a queue
structure with the FIFO property (First-In-First-Out). The queue holds a list
of three variables [pnode], [gnode] and [string] (two pointers and the string is
an identifier for recursion). By using the while method, the algorithm iter-
ates through all genetic operators and applies them based on the implemented
conditions.

if item[0] not in self.nodelib
Append all newly created nodes [pnode] into nodeLib (list that holds
the reference to all the pnodes).

if level == ’basic’
The basic level represent a first run through the tree structure. We have
decided that operators that modify the number of recurrent calls are
only recognized in the basic layer. Without this condition the REC oper-
ator would cause infinite loop.

if item[1].isREC() and level == name or level == ’basic’
The possibility of recurrent call creates complications. The biggest one
was that we need to have a way how to count the number of iterations.
If the REC operator has a weight of three, that means three recurrent
calls in a row. We need to make sure that the counter gets lowered every
time the recurrent call is processed. The real complication is that we
must only decrease the correct REC counter since the tree can have more
than one. For that reason, we are forced to push into the queue also a
REC identifier. This identifier is a unique node name. In this If block
we lower the counter and then either end the recursion or call another
iteration.

if not item[1]isFinal()
For all non-terminals call the method iteratePheno, explained in fol-
lowing section.

First and last comment with backup que are used because of the re-
cursive call. The process uses a queue in the global scope to be able
to access it from the iteratePheno method. The REC operator has to
be processed completely before any other genetic operator, and for that

53

3. Program

reason, we have to use a new queue list to create the new scope.

def iteratePheno(self, node, genoNode):
operator = self.phenoLib[genoNode.type]
func = operator[0]
arity = operator[1]
result = func(node, self.gbIndex)
if arity == 2:

self.gbIndex = self.gbIndex + 1
if arity == 1:

self.que.put([result, genoNode.getLeft(), genoNode.rec_count])
if arity == 2:

self.que.put([result[0], genoNode.getLeft(), genoNode.rec_count])
self.que.put([result[1], genoNode.getRight(), genoNode.rec_count])

return

Figure 3.9: Genetic operator application

Method iteratePheno in figure 3.9 performs the actual operator’s function-
ality. PhenoLib is an array that has access to all registered operators. So first
step is to load the appropriate phenotype mapping function defined during
the operator’s initialisation. Then the algorithm performs the operation and
obtains a result that is an array with two pnodes (child nodes). For all op-
erators of arity two, we raise the global index which is used as a unique pnode
identifier. A unary operator does not change the index because it only modi-
fies properties and does not create new nodes. Based on the operator’s arity
the algorithm adds new triplets to the queue list. The last item in the array
genoNode.rec count is simulating the inheritance of the recurrent counter.

3.4 Phenotype to Neural Network

[kerasConstructor.py]
In this file, we can find all the necessary code that performs the mapping from
a phenotype to an actual neural network. A lot of code is directly a�ected
by the switches defined in Parameters.py. This section only covers the most
critical blocks.

Great think about using external libraries is that a lot of things that can be
very tedious are already done for us and sometimes it is as simple as one line
of code. Keras library already has prepared datasets and to load them, we

54

3.4. Phenotype to Neural Network

just call the load data function. In our application we use MNIST and CIFAR10.
The actual dataset is divided into four parts x-train, y-train, x-test and y-test.

(X_train, Y_train), (X_test, Y_test) = mnist.load_data()

Figure 3.10: Dataset loading

x train - set of 60.000 train images (28x28 pixels)
y train - set of 60.000 image labels
x test - set of 10.000 test images (28x28 pixels)
y test - set of 10.000 image labels

Using a smaller dataset is not as trivial as it might seem because we need to
divide the set perfectly so that every class has the same number of pictures
and also keep track of all the correct labels. Luckily for us, this logic has
already been solved by scikit and their StratifiedShuffleSplit function
3.11 that takes four arguments.

number of splits - a number of re-shu�ing and splitting iterations
test size- a number of samples to create (takes [int] as a count or [float]
as a ratio)
train size - a number of samples to create (takes [int] as a count or
[float] as a ratio)
random seed - a number [int] that serves as a seed for the random
generator

if train_size < 60000:
sss = StratifiedShuffleSplit(n_splits=n_iter,

test_size=parameters.OUTPUT_DIMENSION,
train_size=train_size,
random_state=seed)

sss.get_n_splits(X_train, Y_train)
for train_index, test_index in sss.split(X_train, Y_train):

X_train, Y_train = X_train[train_index], Y_train[train_index]

Figure 3.11: Change the size of the dataset

With the desired number of samples, we need to shape the data into a form
that is acceptable for our neural network. The best way is to shape the data
into a form of a matrix and use the e�ciency of matrix operations 3.12. For
the MNIST case the inpDime is a 784 (28px*28px*1ch) that means that every

55

3. Program

line in the matrix represents one picture. After that we use normalisation to
convert all the values to [0,1], the reason we can do that is that in this case,
the grey has no additional value for us. The last thing is to change the form
of the labels from one integer value to list of ten distinct classes and their
probabilities.

X_train = X_train.reshape(train_size, inpDime)
X_test = X_test.reshape(10000, inpDime)
X_train = X_train.astype(�float32�)
X_test = X_test.astype(�float32�)
X_train /= 255
X_test /= 255
Y_train = np_utils.to_categorical(Y_train, num_class)
Y_test = np_utils.to_categorical(Y_test, num_class)

Figure 3.12: Prepare the data shape for NN

The building process 3.13 may seem a little complicated, but actually to build
a deep fully connected NN it takes only a few steps. We initialise an array
modelArr where we store all the Keras objects that represent individual layers.
The first layer to add is an input layer with input dimensions defined by
the user. We use the variable order to iterate through the phenotype, the
content of this variable is an index of specific pnode, and the order is created
by a breadth-first search iteration through the phenotype. The tricky part
in building an NN in Keras is that we can create a layer only when all the
input layers are already built. Through our experiments, we have found out
that even though the order is BFS, it may not always follow the left-to-right
behaviour. To avoid unexpected errors, we have implemented a safety feature
that iterates through the phenotype in given order and chooses to build layer
that has all the inputs already built. Once a layer is selected the iteration
process starts from the beginning. To avoid an infinite number of loops, the
building process allows only a certain amount of iterations.

Once the layer is ready to be build, the variable isReady is True and the if
block is executed. The building process of an NN distinguishes two di�erent
layer types, with multiple entry points and with a single one. For multiple
entry points, the algorithm first needs to connect all the inputs and then pro-
cess the data. Keras o�ers a keras.layers.concatenate that concatenates
all the layers, and that creates an input for a neuron layer. Every layer is
initialised by the phenotype’s node properties, neuron count and activation
function. The newly created object is stored in modelArr and the order index
is removed because the layer is done. During the iterative building process,

56

3.4. Phenotype to Neural Network

the algorithm stores reference to all output layers. Such layer is recognised by
having no output layers.

The iteration cycle builds almost the whole network the only thing left to do
after that is to format the output. The final layer always has to be predefined
by the user to fit the expected result. In our case, we always want class
probability, and for that reason, we use activation function softmax with
output dimension that equals to the number of classes.

The building process for CNN 3.14 di�ers in few details. The initial input
initialisation is a little bit di�erent, but it is very simple and easily recognis-
able from the code. The biggest di�erence (see the figure 3.14) is the layer
initialisation. Based on the parameters that are evolved during the evolution
process the convolutional layer can have three di�erent features, convolutional
step, max pooling and dropout. It is absolutely essential to use the parame-
ter padding=’same’, strides=1. These parameters ensure that the output
dimension is always equal to the input dimension by using the zero padding.
Without this key feature, the convolutional layer would never be able to con-
catenate layers with di�erent dimensions. The last change is that the output
layer is a little bit di�erent from the deep fully connected NN. It contains
some final flattening and normalisation, but the code is very simple and easy
to understand.

57

3. Program

modelArr = [None]*len(phenoArr)
modelArr[0] = (Input(shape=(inpDime,)))
output_layers = []
index = 0
safety = 3*len(order)
while len(order) > 0:

if safety < 0:
return 0

safety -= 1
index = index % len(order)
order_index = order[index]
layer = phenoArr[order_index]
isReady = True
for inp in layer.inputs:

if modelArr[inp.index] is None :
isReady = False
break

if isReady:
if len(layer.inputs) > 1:

layersToConcatenate = []
for inp in layer.inputs:

layersToConcatenate.append(modelArr[inp.index])
x = keras.layers.concatenate(layersToConcatenate)

else :
for inp in layer.inputs:

x = (modelArr[inp.index])
modelArr[order_index] = Dense(layer.neuron_count,

activation=layer.act_func)(x)
if len(layer.outputs) == 0:

output_layers.append(modelArr[order_index])
order.remove(order_index)
index = 0

else :
index += 1

----------- CREATE NETWORK -----------

input_layer = modelArr[0]
if len(output_layers) > 1:

x = keras.layers.concatenate(output_layers)
else:

x = output_layers[0]
output_layer = Dense(outDime, activation=actFuncExit)(x)

Figure 3.13: Bulding NN in Keras

58

3.4. Phenotype to Neural Network

im_dim = parameters.IMG_DIMENSION
filters = layer.filter_count
kernel_size = layer.kernel_size if layer.kernel_size < im_dim else im_dim
pool_size = layer.pool_size if layer.pool_size < im_dim else im_dim
dropout = layer.dropout
x = modelArr[inp.index]
x = Conv2D(filters = filters, kernel_size = kernel_size,

strides=1, padding=�same�, activation = layer.act_func)(x)
if layer.maxPooling:

x = MaxPooling2D(pool_size = (pool_size, pool_size),
strides=1, padding=�same�)(x)

if layer.dropout > 0:
Dropout(dropout)(x)

modelArr[order_index] = x

Figure 3.14: Initialisation of the CNN layer

----------- MODEL EVALUATE-----------

model = Model(inputs=input_layer, outputs=output_layer)
model.compile(loss=lossFunc, optimizer=optimizer, metrics=[�accuracy�])
model.fit(X_train, Y_train,

batch_size = batch_size,
epochs = num_epoch,
verbose = VERBOSE,
validation_data = (X_test, Y_test))

----------- NETWORK OUTPUT ACCURACY-----------

score = model.evaluate(X_test, Y_test, verbose=VERBOSE)
testScore = score[1]*100
score = model.evaluate(X_train, Y_train, verbose=VERBOSE)
trainScore = score[1]*100
return trainScore,testScore

Figure 3.15: Model initialisation and NN evaluation

The last section is the part where we feed the model with all the important
parameters and data. By using the metrics accuracy, the model will return
the accuracy evaluated on given dataset. All the parameters are explained in
the section 4.1

59

Chapter 4
Experiments

The last goal of this thesis is to perform experiments, and for that purpose,
we have created a file called parameters.py, where all the relevant parameters
are stored. The next section explains all the parameters.

4.1 Parameters overview

EVOLVE
[default: False]
The EVOLVE parameter is designed to help with debugging specific indi-
viduals. Default value is False but, when it is set to True the application
does not perform an EA but it runs an Evolution.Evaluate function,
that evaluates hard-coded individual.

USE CONVOLUTION NN
[default: False]
In later stages of development, we have switched from fully connected
networks to convolutional networks. This is a switch that decides whether
the phenotype is mapped to a CNN or DNN.

USE MODULARITY
[default: False]
Modularity switch allows that genotype can use REC terminals.

DATASET
This specifies the name of the dataset that is used for training and evalu-
ating the NN quality. Program was prepared for MNIST and CIFAR-10
dataset.

TRAIN SIZE
TRAIN SIZE determines how big portion of the examples are used for

61

4. Experiments

training. MNIST has 60.000 and CIFAR10 50.000 pictures for training.
Using a smaller number for training has its impact on accuracy. Algo-
rithm changes the number of samples by not just lowering the number
of samples, but also making sure that all classes have the same amount
of samples. Otherwise, the network might be overfitting for some input
classes.

INPUT DIMENSION
INPUT DIMENSION determines the size of the input data. MNIST has a
dataset of 60.000 images 28x28 pixels. Each individual is represented
as a vector with 784 values (28x28=784). Use 784 for the input value.
For CIFAR the calculation is 32x32x3 = 3072 (32 pixel image, 3 for 3
di�erent color channels RGB).

OUTPUT DIMENSION
[default: 10]
OUTPUT DIMENSION represents the output size. For MNIST and CIFAR
the output dimension is ten because for each image we want the prob-
ability of all the classes. This probability decides whether the classifier
thinks the image is in the given class.

BATCH SIZE
[default: 128]
The BATCH SIZE is the number of training instances used in one itera-
tion.

POPULATION SIZE
[default:]
POPULATION SIZE determines the number of individuals in a population.
The size of the populations stays constant through all generations.

NUMBER OF GENERATIONS
NUMBER OF GENERATIONS a�ects the quality of the result. It takes some
time for the evolution process to find out the ideal individual.

ELITISM
[default: PopSize / 5]
ELITISM is a process specific for evolutionary algorithm. It takes x best
individuals from the previous population and swaps them with x worst
individuals from new population.

MUTATION PROBABILITY
[default: 0.7]
Probability of performing a mutation on each individual. Algorithm iter-

62

4.1. Parameters overview

ates through all individuals in given population and generates a number
from 0 - 1, if this number is smaller then MUTATION PROBABILITY, then
the individual is mutated.

BLOAT LIMIT
[default: 5]
After the mutation is done, new individual is inspected and the depth of
its genotype tree representation must be smaller than the BLOAT LIMIT.
If the new individual is bigger than the limit, the mutations process is
repeated .

NEURON COUNT
[default: 100]
NEURON COUNT represents the default number of neurons for every layer.
Throughout the evolution the number of neurons can be modified by
certain genetic operators.

ACTIVATION FUNCTION
[default: ReLu]
This value represents the default activation function inside neurons for
the whole layer. Throughout the evolution the type of activation func-
tion can be modified by certain genetic operators. The default activation
function for our experiments was ’RELU’.

MAX NEURON THRESHOLD
[default: 10.000]
Maximal neuron threshold is a value that makes sure that some layers
do not bloat out of proportion. Topology can be a�ected by having an
extremely large layers that is capable of learning almost anything. For
instance, imagine a layer with 100.000 neurons.

MIN NEURON THRESHOLD
[default: 100]
Opposite to maximal neuron threshold is minimum count. We do not
want a layer that is not capable of learning. Imagine a layer with just
one neuron.

ACTIVATION FUNCTION FOR EXIT
[default: SOFTMAX]
Depending on the nature of our algorithm, we need di�erent output ac-
tivation function. In our experiments we need class probabilities and for
that the ideal function is ’softmax’.

63

4. Experiments

OPTIMIZER
[default: ADAM]
OPTIMIZER defines the name of the optimizer used in learning process
of the neural network in Keras. Our experiments used mostly ”adam”,
only at the very beginning we used SGD.

LOSS FUNCTION
[default: categorical crossentropy]
A LOSS FUNCTION is used for mapping multiple values onto a real num-
ber, that represents some cost associated with the action . We used
”categorical crossentropy”, that is the computation of categorical cross-
entropy between predictions and targets.

LEARN EPOCH COUNT
LEARN EPOCH COUNT defines the number of epochs used for the learning
process.

VERBOSE
[default: 0]
VERBOSE turns on and o� log for Keras library. (0-OFF, 1-ON)

PRINT PERCENT THRESHOLD
[default: 97]
When learning process is finished, the network is evaluated by using
the test dataset. The accuracy rating on the dataset must be higher
then print percent threshold, only then is the network’s topology model
printed in a seperate file. Name of the file represents the achieved accu-
racy.

OUTPUT
Output variables determine paths for algorithms outputs.

4.2 Datasets

At the early stages of development, we only used XOR for training and testing
the basic functionality. After XOR we used MNIST. MNIST obviously created
a much better challenge, but even MNIST is not that di�cult to learn. Almost
any topology with a higher count of neurons, hundreds or thousands, is capable
of achieving high accuracy. After achieving 98.3% on MNIST, we decided to
use more challenging dataset, CIFAR10.

Both MNIST and CIFAR10 are included in Keras library and are very easy

64

4.2. Datasets

to switch between.

4.2.1 MNIST

MNIST (Mixed National Institute of Standards and Technology) database
is dataset for handwritten digits, provided by Yann Lecun’s THE MNIST
DATABASE of handwritten digits website [42].

The MNIST database is a set of images containing centered handwritten im-
ages in the range [0-9]. Every image has squared shape, and the size is 28x28
pixels. A single pixel is defined by value from 0 to 255. (single channel image).
The MNIST training set is composed of 60.000 images, and another 10.000
images are used for testing.

Figure 4.1: MNIST dataset example (image from another source [8])

State of the art approach is capable of learning the dataset with an accuracy
99.79% [13]. The most e�cient solutions can be seen in a nicely created
overview by Rodrigo Benenson at [8].

4.2.2 CIFAR 10

CIFAR (Canadian Institute For Advanced Research) [43] is a dataset con-
structed from colour images. Images can be divided into ten di�erent classes
- aeroplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck.

CIFAR database consists of images where every image has squared shape, and
its size is 32x32 pixels. A single pixel is defined by three di�erent values from
0 to 255. (RGB 3 channel image). The CIFAR10 training set is composed of
50.000 images, and another 10.000 images for testing.

65

4. Experiments

Figure 4.2: CIFAR 10 dataset example (image from another source [8])

State of the art approach in convolutional networks is capable of learning
the dataset with an accuracy 96.53% [44]. State of the art approach in fully
connected networks using ReLU activation function is capable of learning the
dataset with an accuracy 54.91% [45]. The most e�cient solutions can be seen
in a nicely created overview by Rodrigo Benenson at [8].

4.3 Format

Data from all the experiments are a part of an attachment that is enclosed on
CD to this Thesis. Every experiment has the same structure.

mutchanges.txt - list of all the performed mutations
geno.txt - list of all individuals in genotype form (graphviz structure)
trainAndTest.png - train and test accuracy graph
pheno.txt - list of all individuals in phenotype form
graph.png - accuracy graph
paremters.py - copy of all the parameters used for the experiment
time.png - runtime screenshot from terminal

66

4.4. MNIST experiments

4.4 MNIST experiments

All the parameters which value is not specified by the experiment are set to
default. Default values are specified in parameters description section 4.1

4.4.1 Accuracy

Our experiments started with the MNIST dataset and a goal to achieve the
highest accuracy possible, within a reasonable time frame. We used three
di�erent sets of parameters to find out more about EA’s behaviour. Results
are summed up in table 4.1.

Table 4.1: Accuracy on MNIST with full training set.

Test 1. Test 2. Test 3.
Train size 60 000

Population size 20
Generation count 20

Neuron count 100 500 500
Learn epoch count 5 5 15

RESULTS
Best accuracy 98.41 98.37 98.56

Time (sec) 19010 42 549 78 843

Figure 4.3: Accuracy graph [Test 1.]

67

4. Experiments

Figure 4.4: Genotype and phenotype [Test 3. (best solution)] (phenotype’s
node name is index-neuron count)

We have started out with relatively small evolution parameters (popSize = 20,
genCount = 20). That may not seem like a lot, but there is a lot of computa-
tion behind the whole process. Roughly after five hours, we obtained the first
result that scored 98.41% accuracy. We wanted to achieve higher accuracy,
and so we have decided to change the default number of neurons in the layer
(from 100 to 500). The result of the second experiment was quite interest-
ing. The First thing is that the execution time changed quite dramatically
from five to twelve hours. That is caused by the increased number of neurons
and therefore an increased number of parameters in the network. The sec-
ond more interesting thing is that the accuracy dropped. Even though higher
neuron count provides a better foundation for learning, the algorithm was not
simply capable to correctly set all the parameters within five learning epochs
and thus the accuracy drop. Our reasoning behind the result suggests that
with a higher number of learning epochs the network should perform better.
When we used fifteen learning epochs, the algorithm did perform better and
the accuracy improved to 98.56%. Ideally, we could have continued with this
strategy to get closer to SOTA accuracy 99.79% [13], but it is simply not pos-
sible for us to use the same number of learning epochs that was used in SOTA
approach (600-900), such a large experiment would take a big amount of time
and also we believe the achieved accuracy is su�cient. Another major ad-
vantage of SOTA approach is using the Dropconnect strategy. Unfortunately,
Keras interface does not provide this possibility.

68

4.4. MNIST experiments

4.4.2 Learning

After the accuracy testing, we have analysed the graphs. In figure 4.3 we can
see that the evolution mechanism does find better solutions, but it seems like
the impact is not that relevant. We thought that it is because the learning
algorithm is so powerful and the dataset relatively simple. This combination
creates an environment where almost any network with a reasonable amount
of neurons is capable of scoring 90+% accuracy, and because of that, the
topology becomes almost irrelevant. The best NN from test 3. is displayed
in figure 4.4.

In this section, we wanted to prove the capability of EA by showing the ability
to learn and to find better solutions over generations. The first strategy was
to purposely handicap the learning algorithm and make the topology relevant
again. We changed the number of learning epoch and training samples (to
6000) and ran the same tests again.

Table 4.2: Reduced training set to 6000 training samples.

Test 4. Test 5. Test 6.
Train size 6000

Population size 20
Generation count 20

Neuron count 100 500 500
Learn epoch count 20 20 50

RESULTS
Best accuracy 96.29 96.52 96.58

Time (sec) 11 599 28 657 48 109

Table 4.2 shows the result of our handicapped set. The first thing we can
notice is that accuracy is still relatively high, considering we dropped the size
of the training set to 10% of the previous size, also the runtime is reduced
quite substantially.

69

4. Experiments

Figure 4.5: Accuracy graph with nice learning curve [test 4.]

Our focus in this section was to find proof that the EA is iteratively improving
the solutions. In figure 4.5 we can see a beautiful green curve that is progres-
sively growing, that means that the EA is indeed capable of finding better
solutions and therefore not only our implementations works but the whole
concept of using EA for NN is proving to be correct.

4.4.3 Scalability

Another significant milestone was to experiment with scalability. The scala-
bility is an ability to evolve small NN and also big NN with a high number
of neurons and more complicated structure. Only by looking at phenotype
in figure 4.4 it is obvious that our algorithm has no problem to evolve large
networks. Test 3. was not a particularly big experiment, and the phenotype
has already approximately 12.000 neurons. Such amount of neurons signifi-
cantly surpasses TWEAN structures. In our thesis, the ability to control the
size of NN is encoded in five parameters.

70

4.4. MNIST experiments

POPULATION SIZE AND GENERATION COUNT
It is necessary to provide enough time for the EA to find and evolve the
ideal individual. With a low number of individuals or generations, the
EA is more likely to output small NN.

BLOAT LIMIT
Bloat limit is probably the only parameter that directly a�ects the size
of the individuals. In our thesis, the bloat limit is controlling the depth
of the tree, and since the tree is at most binary, it also controls the width.

LEARN EPOCH COUNT
Learn epoch count is a very important parameter that a�ects the size
a lot. It is a fact that NN with more neurons and more layers is more
likely to succeed and learn better, but it needs more time to learn. With
the growing number of neurons also grows the number of parameters in
the NN and if the learning algorithm does not have enough time for
the learning process, then the fitness function will simply prefer smaller
networks with higher accuracy.

TRAIN SIZE AND DIFFICULTY
The model of EA is finding the ideal individuals for given input dataset.
When the dataset is too easy, the output NN is going to be small be-
cause even small NN can score high accuracy. We experimented with
penalisation for the size, when we were trying to find the smallest NN
possible, but then we have realised that this is already covered by the
learn epoch count parameter. The evolution is going to find the best
individual.

To prove the scalability even further we have selected an individual from the
Test 13. to show that the algorithm has no problem to evolve large NN. The
phenotype in figure 4.6 has almost 36.000 neurons with fully connected layers,
and that is by no means a small network.

71

4. Experiments

Figure 4.6: Large scale phenotype (36.000 neurons) [test 13.]

4.4.4 Modularity

Along with the scalability, we were also interested in modularity experiments.
For this reason alone we created a REC operator and also REC-D and REC-U. The
functionality of this operator trio was already covered in the implementation
part. The quick summary is that REC calls the whole tree from the root node
and REC-D,REC-U just specify how many times. We were curious to see if the
network itself is going to create some modules with repetition. We used the
same setup from previous tests 5. and 6., and the results are in the table 4.3.

Table 4.3: Testing modularity

Test 7. Test 8.
Use Modularity True

Train size 6000
Population size 20

Generation count 20
Neuron count 500

Learn epoch count 20 50
RESULTS

Best accuracy 96.49 96.58
Time (sec) 70 808 135 890

72

4.4. MNIST experiments

The outcome of this test turned out very similarly to the previous tests. The
big di�erence was in the runtime where the test 8. ran almost two days, but
the accuracy score was very similar. After further investigation we have found
out that the best individuals do not use the REC operator at all. It clearly
provides the possibility to build bigger NN, understand that the BLOAT LIMIT
does work only for genotype form and for that reason the NN of tests with REC
operator are bigger. The actual limitation turned out to be the LEARN EPOCH
COUNT again. To test out this theory, we lowered the number of individuals
and increased the learning epoch count, to see REC’s behaviour.

Table 4.4: Testing modularity

Test 8.
Use Modularity True

Train size 6000
Population size 15

Generation count 15
Neuron count 500

Learn epoch count 100
RESULTS

Best accuracy 96.51
Time (sec) 146 170

73

4. Experiments

Figure 4.7: Genotype and phenotype with two REC calls [Test 13.]

The increased number of learning epochs resulted in genotypes with recurrent
calls. Every REC terminal has by default a counter set to a zero. We have
done this on purpose to force the EA first to set the counter in order to
use the recurrent operator. In figure 4.7 we can see an individual with two
recurrent calls. We have successfully implemented a possibility to encode
modular and hierarchical architecture, but we are unable to go any deeper in
experiments due to its complexity. Not only we would have to perform much
larger experiments, but we would also have to implement a program that is
capable of analysing the data and finding existing modularites in the NN.

74

4.5. CIFAR10 experiments

4.5 CIFAR10 experiments

In previous experiments, we have used the strategy of reducing training sam-
ples to handicap the learning algorithm. For the purpose of showing the ability
to learn it worked great. To find the limits of the EA algorithm, or at least
get a little closer, we needed the algorithm to struggle. We tried to reduce
the training set even further, but there is a limit to this strategy. We can
obviously reduce the training set further, but then we experience the problem
with overtraining, where the error for training set is close to zero and test set
has significant error. That is caused by the di�erence in the set sizes. When
we use a 600 training samples and 10.000 testing samples it is di�cult for the
model to generalise enough to perform well on the testing set. Even for 6000
samples, the model has 100% accuracy on the training set, see the figure 4.8,
there is no more space for the EA to get better by decreasing the size of the
training set because it will always be limited by the learning algorithm.

Figure 4.8: Train and Test accuracy[test 6.]

After few experiments, which are not included in this thesis, we have realised
that we truly need a more complicated dataset. Ideally, we wanted to find a
dataset that is more challenging to learn but has similar properties. CIFAR10
turned out to be the perfect candidate. To find out how complicated the
dataset really is, we ran experiments identical to MNIST accuracy testing in
table 4.1.

75

4. Experiments

Table 4.5: Testing accuracy on CIFAR10

Test 9. Test 10. Test 11.
Train size 50 000

Population size 20
Generation count 20

Neuron count 100 500 500
Learn epoch count 5 5 25

Bloat limit 5
RESULTS

Best accuracy 49.36 48.98 54.18
Time (sec) 19 588 40 883 257 396

In table 4.5 we have the results from accuracy testing on CIFAR10. Imme-
diately, we see that the accuracy dropped drastically comparing to MNIST,
and it seems that CIFAR10 is truly way more challenging than MNIST.

For accuracy testing, we used the whole dataset (CIFAR10 - 50.000 samples),
and the behaviour was similar to MNIST experiments in table 4.1. In the
second test the accuracy went down, and when we have raised the number
of learning epochs, it got better. Our DNN scored 54.18% accuracy, which
seems like a bad result but SOTA approach scored 54.9% with ReLU activation
function neurons. The CIFAR10 is so complicated that DNN is no longer able
to perform well and it needs to be replaced by CNN. We could have probably
get closer to SOTA accuracy with the higher number of learning epochs, we
only used 25, but notice that the experiment took 257.396 sec - 72 hours.

4.5.1 CIFAR10 experiments CNN

Instead of running longer experiments to find better DNN we have decided to
modify our algorithm to create CNN. Along with the change in layer type, we
also added some new genetic operators that modify the properties of CNN.
The results of the first experiment are in the table 4.6

76

4.5. CIFAR10 experiments

Table 4.6: CNN accuracy testing on CIFAR10

Test 12.
Train size 50 000

Population size 10
Generation count 10

Neuron count 500
Learn epoch count 30

Bloat limit 10
RESULTS

Best accuracy 69.09
Time (sec) 402 466

The first CNN experiment achieved 69.09% which is nowhere close to SOTA
accuracy, but it is much better than DNN’s accuracy. We must consider that
the EA has access to only a very basic CNN features and every feature must
be triggered by a specific genetic operator. The score is not high, but even a
simple CNN can outperform a DNN and the change from 54.18% to 69.09% is
quite considerable. The only downside is the realisation that this experiment
took almost 120 hours. In the figure 4.9 we can see the accuracy evolution.

Figure 4.9: Accuracy graph with nice learning curve [test 12.]

77

4. Experiments

Based on the results we have decided to repeat the experiment and change
the default values for dropout (to 0.5) and max-pooling (always enabled).
Although we are trying to achieve higher accuracy, we are well aware that
to get anywhere close to SOTA [44] results we would have to implement the
Fractional pooling and Dropconnect , and that is beyond the scope of this
thesis.

Table 4.7: CNN accuracy testing on CIFAR10

Test 12.
Train size 50 000

Population size 10
Generation count 10

Neuron count 500
Learn epoch count 30

Bloat limit 10
RESULTS

Best accuracy 68.85
Time (sec) 803 714

The results in the table 4.7 showed that our decision to use a default dropout
value 50% was probably not the ideal direction to take. Based on the genotypes
with the high score, it appears that a reasonable value for dropout is 20%.
Despite the fact that the overall accuracy dropped it is important to also notice
the positive aspects. The most positive outcome of this experiment is the
consistency. Even though we have changed the default parameters, the EA is
still able to use the appropriate operators and reach almost identical accuracy.
Another quite interesting thing is that the algorithm ran almost 224 hours and
it finished without error or miscalculation, and that proves the stability of our
implementation that is absolutely essential for future experiments.

78

Conclusion

The goal of this thesis was to study methods for Artificial Neural Network
(ANN) architecture optimisation, with the focus on indirect encoding ap-
proaches with Cellular Encoding (CE) in particular. Based on the knowledge
gained from the research, design and implement an algorithm allowing op-
timisation of deep neural network architectures and evaluate your algorithm
experimentally.

Based on the knowledge we have gained during the extensive research, we have
produced a knowledge base for the reader, that should provide all the theo-
retical background necessary to understand Evolutionary Algorithms (EA),
Neural Networks (NN) and encoding for NN.

We have successfully implemented a fully functional program that is capable of
finding the ideal neural network’s topology for a given dataset. It is important
to understand that the EA will not likely outperform State Of The Art (SOTA)
approaches unless it has access to all the SOTA features. The EA only finds
an optimal combination of all the features that are implemented.

We have spent most of our time experimenting with deep neural networks
(DNN) to ensure the correct functionality of our algorithm. During the exper-
imental phase, we have never encountered an error or any other malfunction.
The development of our program for NN optimisation was very successful. We
have met all the initial criteria and created an environment ideal for experi-
menting with DNN as well as CNN. The program alone has about 1500 lines
of code in Python and combines three major libraries. We believe we have
created a solid foundation for any future projects, concerning the EA for NN.
To ensure a simple future extensibility, we have dedicated a whole section in
our thesis to explain all the major implementation details. The guidance in
the implementation section, along with the included code commentary should
make the extensibility accessible to any developer.

79

Conclusion

The last goal of our thesis was to evaluate our algorithm experimentally. It
took 2,2 M seconds in total to perform all the experiments included in this
thesis. That is roughly 600 hours of calculation on a supercomputer with 16
cores, 32 individual threads and 64 GB of RAM.

Experiments performed in this thesis focused mainly on three di�erent prop-
erties: accuracy, scalability, and modularity. The following section provides a
summary of achievements and conclusion for individual properties.

Accuracy The accuracy in our experiments turned out very positive. We
have successfully proven that the evolutionary algorithm is capable of finding
neural networks with very high accuracy. Even though we have never got the
exact accuracy that the SOTA approach has, we believe that it is possible as
long as the algorithm has enough learning epochs and access to all the genetic
operators to incorporate the SOTA features. In most of our experiments, we
used only a fraction of the learning epochs that are used in the SOTA. To
back up our belief, we have included graphs that prove that the EA has the
ability to learn and iteratively find better solutions.

Scalalbility The introduction of this thesis reveals the problems with scalabil-
ity of current approaches for NN optimisation and explains why it is essential
to have the option to scale the size of the final NN. Our experiments have
proven that the algorithm could easily produce NN with thousands of neurons
and connections. The initial strategy, to use cellular encoding (Grau [36]),
treat nodes as whole layers instead of single neurons (Estaban Real et al.
[26]) and optimise the network by using the gradient method(Fernando et al.
[24]), turned out to be very e�ective and functional. The size of the produced
NN is entirely dependent on the input parameters, thus leaving the user com-
plete control over the scalability. The only true limitation for large-scale NN
is the time complexity.

Modularity The common belief is that the human brain contains a lot of
repetitive modules. To incorporate any modularity in the NN, we have im-
plemented the REC operator that is capable of recurrent calls and introducing
the modularity in the NN. To allow the EA to control the modularity even
further, we have added genetic operators to control the number of recurrent
calls. Adding this functionality created substantial di�culties with the im-
plementation. However we were able to make this feature 100% functional.
We have dedicated a few experiments trying to find certain modularities, but
we have quickly realised that to actually find and prove the modularity is
beyond the scope of our thesis and it creates a challenge on its own. We have
not proved any modularity in NN, but we have implemented a possibility to
encode modularity and created a foundation for future research.

80

Our thesis consists of three major, equally important objectives that we have
targeted individually and as extensively as it was possible within the time
frame. The most di�cult part of our thesis was indisputably the code devel-
opment. The final code was not extremely complicated. The real challenge
was understanding all of the individual segments prior to the development
well enough to implement a functional program. During our research, we
have struggled mainly with the time complexity of the experiments. Every
time we found a bug in the program we had to erase all of the experiments
and start over. Despite our wish for bigger and more complicated tests, we
have ended up with no resources left. In the end, we are satisfied with the
final form of our thesis and believe that it may prove beneficial for future
experiments in the optimisation of NN.

81

Future Work

The experimental work with Artificial Intelligence is very entertaining and
fascinating, mostly because a significant portion of the research has direct
application in a real world. Neural networks are very interesting for so many
reasons. Obviously, the excitement of the unknown is very high and since
most of the major principles were not yet discovered there is a lot of room
for possible breakthroughs. Another great reason would be the unlimited
possibilities to modify NN and use them in so many di�erent ways. Neural
Networks create an enormous pool of opportunities with so much mystery
around it that ideas for future work simply present themselves.

More experiments

The number of all the possible experiments is so large that is not possible to
cover all the possible parameter combinations. However, with more available
resources we would have covered the following points.

• - Implement all the relevant SOTA strategies for CNN and DNN.
• - Create Large-scale experiments to find the real limitations of EA.
• - Implement the early stopping functionality that recognizes the conver-

gence of EA.
• - Increase the amount of NN evaluation to avoid possible inaccuracy

caused by the wrong initialisation of SGD.

Modularity

Due to the time complexity of all the experiments we were unfortunately un-
able to go deeper in examining the possible modularities in FNN and CNN.
The existence of modules in NN is obvious from the ratio of the human chromo-
some and the size of the neural structure in our brain. It could be interesting

83

Future Work

to perform experiments with a higher number of learning epochs and then
create an algorithm that can analyze the results and search for modularities.
A possible way of detecting a modularity would be to implement an algorithm
that can find the longest common substrings in the list of genotypes, in the
string representation.

NORB dataset

We have only scratched the surface with EA for ANN. With more performance
and more time we would most likely start to experiment with more challenging
datasets. An interesting candidate could be a NORB dataset, the small set
of normalised object sizes and uniform background. [9] 4.10. This dataset is
intended for experiments in 3D object and shape recognition. It contains im-
ages of 50 toys belonging to 5 generic categories: four-legged animals, human
figures, aeroplanes, trucks, and cars. The objects were imaged by two cameras
under 6 lighting conditions, 9 elevations (30 to 70 degrees every 5 degrees),
and 18 azimuths (0 to 340 every 20 degrees). The NORB dataset is marked
as one of the more challenging datasets.

Figure 4.10: NORB dataset (image from another source [9])

84

Bibliography

[1] Moujahid[online], A. A Practical Introduction to Deep Learn-
ing with Ca�e and Python. [cit. 2017-26-12]. Available from:
http://adilmoujahid.com/posts/2016/06/introduction-deep-
learning-python-caffe/

[2] Why are deep neural networks hard to train? [cit. 2017-18-10]. Available
from: http://neuralnetworksanddeeplearning.com/chap5.html

[3] Gua, J.; Wangb, Z.; et al. Recent Advances in Convolutional Neural
Networks. 2017, [cit. 2017-12-11]. Available from: https://arxiv.org/
pdf/1512.07108.pdf

[4] Deshpande[online], A. A Beginner’s Guide To Understanding Con-
volutional Neural Networks. [cit. 2017-26-12]. Available from:
https://adeshpande3.github.io/A-Beginner27s-Guide-To-
Understanding-Convolutional-Neural-Networks-Part-2/

[5] Dertat[online], A. Applied Deep Learning - Part 4: Convo-
lutional Neural Networks. [cit. 2017-26-12]. Available from:
https://towardsdatascience.com/applied-deep-learning-part-4-
convolutional-neural-networks-584bc134c1e2

[6] What is gradient descent. [cit. 2017-16-7]. Available from:
https://www.analyticsvidhya.com/blog/2017/03/introduction-
to-gradient-descent-algorithm-along-its-variants/

[7] Luke, S.; Spector[online], L. Evolving Graphs and Networks with Edge
Encoding. [cit. 2017-12-12]. Available from: https://cs.gmu.edu/˜sean/
papers/graph-paper.pdf

[8] [online], R. B. Classification datasets results. [cit. 2017-10-10]. Avail-
able from: http://rodrigob.github.io/are_we_there_yet/build/
classification_datasets_results.html

85

http://adilmoujahid.com/posts/2016/06/introduction-deep-learning-python-caffe/
http://adilmoujahid.com/posts/2016/06/introduction-deep-learning-python-caffe/
http://neuralnetworksanddeeplearning.com/chap5.html
https://arxiv.org/pdf/1512.07108.pdf
https://arxiv.org/pdf/1512.07108.pdf
https://adeshpande3.github.io/A-Beginner27s-Guide-To-Understanding-Convolutional-Neural-Networks-Part-2/
https://adeshpande3.github.io/A-Beginner27s-Guide-To-Understanding-Convolutional-Neural-Networks-Part-2/
https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2
https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2
https://cs.gmu.edu/~sean/papers/graph-paper.pdf
https://cs.gmu.edu/~sean/papers/graph-paper.pdf
http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html
http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html

Bibliography

[9] Huang, F. J.; LeCun[online], Y. THE NORB DATASET, V1.0. [cit. 2017-
26-12]. Available from: https://cs.nyu.edu/˜ylclab/data/norb-v1.0/

[10] Turing[online], A. M. COMPUTING MACHINERY AND INTELLI-
GENCE. [cit. 2017-26-12]. Available from: https://www.csee.umbc.edu/
courses/471/papers/turing.pdf

[11] McCormick[online], R. Odds are we’re living in a simulation,
says Elon Musk (Recode’s Code Conference). [cit. 2017-26-12].
Available from: https://www.theverge.com/2016/6/2/11837874/elon-
musk-says-odds-living-in-simulation

[12] Simonyan, K.; Zisserman[online], A. VERY DEEP CONVOLU-
TIONAL NETWORKS FOR LARGE-SCALE IMAGE RECOGNI-
TION. 2015, [cit. 2017-10-12]. Available from: https://arxiv.org/pdf/
1409.1556.pdf

[13] Wan, L.; Zeiler, M.; et al. Regularization of Neural Networks using Drop-
Connect. [cit. 2017-10-11]. Available from: https://cs.nyu.edu/˜wanli/
dropc/

[14] He, K.; Zhang, X.; et al. Deep Residual Learning for Image Recogni-
tion. 2015, [cit. 2017-10-12]. Available from: https://arxiv.org/pdf/
1512.03385.pdf

[15] He, K.; Zhang, X.; et al. Delving Deep into Rectifiers: Surpassing Human-
Level Performance on ImageNet Classification. 2015, [cit. 2017-10-12].
Available from: https://arxiv.org/pdf/1502.01852.pdf

[16] P.Mandic, D.; Chambers, J. A. Recurrent Neural Networks for Prediction:
Learning Algorithms, Architectures and Stability. ISBN 978-0-471-49517-
8.

[17] Hochreiter, S.; Schmidhuber[online], J. Long Short-Term Memory.
1997, [cit. 2017-10-12]. Available from: http://www.bioinf.jku.at/
publications/older/2604.pdf

[18] Moriarty, D. E. Symbiotic Evolution of Neural Networks in Se-
quential Decision Tasks. Dissertation thesis, 1997, [cit. 2017-10-
12]. Available from: http://nn.cs.utexas.edu/downloads/papers/
moriarty.diss.tr257.pdf

[19] Gomez, F.; Miikkulainen[online], R. Incremental Evolution of
Complex General Behavior. 1997, [cit. 2017-10-12]. Available
from: http://www.cs.utexas.edu/users/nn/downloads/papers/
gomez.adaptive-behavior.pdf

86

https://cs.nyu.edu/~ylclab/data/norb-v1.0/
https://www.csee.umbc.edu/courses/471/papers/turing.pdf
https://www.csee.umbc.edu/courses/471/papers/turing.pdf
https://www.theverge.com/2016/6/2/11837874/elon-musk-says-odds-living-in-simulation
https://www.theverge.com/2016/6/2/11837874/elon-musk-says-odds-living-in-simulation
https://arxiv.org/pdf/1409.1556.pdf
https://arxiv.org/pdf/1409.1556.pdf
https://cs.nyu.edu/~wanli/dropc/
https://cs.nyu.edu/~wanli/dropc/
https://arxiv.org/pdf/1512.03385.pdf
https://arxiv.org/pdf/1512.03385.pdf
https://arxiv.org/pdf/1502.01852.pdf
http://www.bioinf.jku.at/publications/older/2604.pdf
http://www.bioinf.jku.at/publications/older/2604.pdf
http://nn.cs.utexas.edu/downloads/papers/moriarty.diss.tr257.pdf
http://nn.cs.utexas.edu/downloads/papers/moriarty.diss.tr257.pdf
http://www.cs.utexas.edu/users/nn/downloads/papers/gomez.adaptive-behavior.pdf
http://www.cs.utexas.edu/users/nn/downloads/papers/gomez.adaptive-behavior.pdf

Bibliography

[20] O.Stanley, K.; [online], R. M. Evolving Neural Networks through Aug-
menting Topologies. 2002, [cit. 2017-20-10]. Available from: http://
nn.cs.utexas.edu/downloads/papers/stanley.ec02.pdf

[21] O.Stanley, K.; [online], R. M. A Taxonomy for Ar-
tificial Embryogeny. 2003, [cit. 2017-10-12]. Avail-
able from: https://pdfs.semanticscholar.org/2250/
50ee487b17ced9f05844f078ff5345f5c9cc.pdf

[22] Stanley, K. O.; D’Ambrosio, D.; et al. A Hypercube-Based Indi-
rect Encoding for Evolving Large-Scale Neural Networks. 2009, [cit.
2017-10-12]. Available from: https://pdfs.semanticscholar.org/
e1df/8d30462995c299ac33e954dc1715d150cd83.pdf?_ga=
2.203835155.262626272.1512929945-411408034.1512929945

[23] [online], K. O. Compositional Pattern Producing Networks: A Novel
Abstraction of Development. 2007, [cit. 2017-10-12]. Available from:
http://eplex.cs.ucf.edu/papers/stanley_gpem07.pdf

[24] Fernandoa, C.; Banarse, D.; et al. Convolution by Evolution. 2016, [cit.
2017-10-12]. Available from: https://arxiv.org/pdf/1606.02580.pdf

[25] [online], S. R. An Overview of Gradient Descent Optimization Algo-
rithms. 2017, [cit. 2017-10-6]. Available from: https://arxiv.org/pdf/
1609.04747.pdf

[26] Real, E.; Moore, S.; et al. Large-Scale Evolution of Image Classi-
fiers. 2017, [cit. 2017-10-12]. Available from: https://arxiv.org/pdf/
1703.01041.pdf

[27] Kingma, D. P.; [online], J. L. B. Adam: A method for Stochastic op-
timization. 2017, [cit. 2017-10-12]. Available from: https://arxiv.org/
pdf/1412.6980.pdf

[28] Haykin, S. Neural Networks and Learning Machines. Pearson, third
edition, [cit. 2017-18-10]. Available from: https://cours.etsmtl.ca/
sys843/REFS/Books/ebook_Haykin09.pdf

[29] Krizhevsky, A.; Sutskever, I.; et al. ImageNet Classification with Deep
Convolutional Neural Networks. [cit. 2017-10-9]. Available from: http:
//www.cs.toronto.edu/˜fritz/absps/imagenet.pdf

[30] [online], S. R. An Overview of Gradient Descent Optimization Algo-
rithms. [cit. 2017-10-6]. Available from: http://ruder.io/optimizing-
gradient-descent/

[31] Supervised learning tutorial [online]. [cit. 2017-10-9]. Available from:
http://ufldl.stanford.edu/tutorial/supervised/

87

http://nn.cs.utexas.edu/downloads/papers/stanley.ec02.pdf
http://nn.cs.utexas.edu/downloads/papers/stanley.ec02.pdf
https://pdfs.semanticscholar.org/2250/50ee487b17ced9f05844f078ff5345f5c9cc.pdf
https://pdfs.semanticscholar.org/2250/50ee487b17ced9f05844f078ff5345f5c9cc.pdf
https://pdfs.semanticscholar.org/e1df/8d30462995c299ac33e954dc1715d150cd83.pdf?_ga=2.203835155.262626272.1512929945-411408034.1512929945
https://pdfs.semanticscholar.org/e1df/8d30462995c299ac33e954dc1715d150cd83.pdf?_ga=2.203835155.262626272.1512929945-411408034.1512929945
https://pdfs.semanticscholar.org/e1df/8d30462995c299ac33e954dc1715d150cd83.pdf?_ga=2.203835155.262626272.1512929945-411408034.1512929945
http://eplex.cs.ucf.edu/papers/stanley_gpem07.pdf
https://arxiv.org/pdf/1606.02580.pdf
https://arxiv.org/pdf/1609.04747.pdf
https://arxiv.org/pdf/1609.04747.pdf
https://arxiv.org/pdf/1703.01041.pdf
https://arxiv.org/pdf/1703.01041.pdf
https://arxiv.org/pdf/1412.6980.pdf
https://arxiv.org/pdf/1412.6980.pdf
https://cours.etsmtl.ca/sys843/REFS/Books/ebook_Haykin09.pdf
https://cours.etsmtl.ca/sys843/REFS/Books/ebook_Haykin09.pdf
http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf
http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf
http://ruder.io/optimizing-gradient-descent/
http://ruder.io/optimizing-gradient-descent/
http://ufldl.stanford.edu/tutorial/supervised/

Bibliography

[32] [online], M. W. Introduction to Genetic Programming. 2001, [cit. 2017-
20-10]. Available from: https://www.cs.montana.edu/˜bwall/cs580/
introduction_to_gp.pdf

[33] Koza, J. R. Genetic Programming : On the Programming of Computers
by Means of Natural Selection. The MIT Press.

[34] Fekiac, J.; Zelinka, I.; et al. A Review Of Methods For Encoding Neural
Nework Topologiees In Evolutionary Computation. 2015.

[35] Gauci, J.; [online], K. O. Indirect Encoding of Neural Networks
for Scalable Go. 2010, [cit. 2017-11-9]. Available from: http://
eplex.cs.ucf.edu/papers/gauci_ppsn10.pdf

[36] Gruau, F. Neural Network Synthesis Using Cellular Encoding And The
Genetic Algorithm. Ph.d. thesis, Ecole Normale Supirieure de Lyon, 1994.

[37] How to install TensorFlow online manual [online]. [cit. 2017-2-11]. Avail-
able from: https://www.tensorflow.org/install/

[38] How to install Keras online manual [online]. [cit. 2017-2-11]. Available
from: https://keras.io/installation

[39] How to install DEAP online manual [online]. [cit. 2017-2-11]. Available
from: http://deap.readthedocs.io/en/master/installation.html

[40] How to install MATPLOTLIB online manual [online]. [cit. 2017-9-11].
Available from: https://matplotlib.org/users/installing.html

[41] How to install GraphViz online manual [online]. [cit. 2017-9-11]. Available
from: https://pypi.python.org/pypi/graphviz

[42] [online], Y. L. The MNIST Database. [cit. 2017-10-11]. Available from:
http://yann.lecun.com/exdb/mnist/

[43] [online], A. K. Learning Multiple Layers of Features from Tiny Images.
8.4.2009, [cit. 2017-10-11]. Available from: http://www.cs.toronto.edu/
˜kriz/learning-features-2009-TR.pdf

[44] [online], B. G. Fractional Max Pooling. 12.5.2015, [cit. 2017-10-11]. Avail-
able from: https://arxiv.org/pdf/1412.6071.pdf

[45] Kishore Konda, Z. L.; [online], R. M. How Far Can We Go Without
Convolution: Improving Fully Connected Networks. 9.11.2015, [cit. 2017-
10-11]. Available from: https://arxiv.org/pdf/1511.02580.pdf

88

https://www.cs.montana.edu/~bwall/cs580/introduction_to_gp.pdf
https://www.cs.montana.edu/~bwall/cs580/introduction_to_gp.pdf
http://eplex.cs.ucf.edu/papers/gauci_ppsn10.pdf
http://eplex.cs.ucf.edu/papers/gauci_ppsn10.pdf
https://www.tensorflow.org/install/
https://keras.io/installation
http://deap.readthedocs.io/en/master/installation.html
https://matplotlib.org/users/installing.html
https://pypi.python.org/pypi/graphviz
http://yann.lecun.com/exdb/mnist/
http://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
http://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://arxiv.org/pdf/1412.6071.pdf
https://arxiv.org/pdf/1511.02580.pdf

Appendix A
Acronyms

AI Artificial Intelligence
ANN Artificial Neural Network
CE Cellular Encoding
CNN Convolutional Neural Network
CPPN Compositional Pattern Producing Network
CV Cross Validation
DNN Deep Neural Network
DPPN Di�erentiable Pattern Producing Networks
EA Evolutionary Algorithm
EE Edge Encoding
EP Evolutionary Programming
ES Evolutionary Strategy
ESP Enforced Sub Populations
FF Fitness Function
FNN Fully connected Neural Network
GA Genetic Algorithms
GP Genetic Programming
HN Hyper Neuro Evolution of Augmenting Topologies
HW Hardware
IDE Integrated Development Environment
LSTM Long Short Term Memory
NEAT Neuro Evolution of Augmenting Topologies
NFA Nondeterministic Finite Automaton
NN Neural Network
RGB Red Green Blue (color channels)
RNN Recurrent Neural Network
SANE Symbiotic Adaptive Neuro-Evolution
SOTA State Of The Art
SVM Support Vector Machine
TWEAN Topology and Weight Evolving Artificial Neural Network

89

Appendix B
Contents of enclosed CD

readme.txt the file with CD contents description
src.......................................the directory of source codes

Main.py..code executable
thesis.................the directory of LATEX source codes of the thesis
experiments the directory of LATEX source codes of the thesis

Test(1-14)........................output of individual experiments
thesis.pdf..............................the thesis text in PDF format

91

	Citation of this thesis
	Contents
	Introduction
	Problem Statement
	Goals of the Thesis

	Theoretical Background
	State of the art
	Artificial Neural Network
	Neuron Model
	Activation Function
	Data sets for ANN
	Data properties
	Overfitting and Underfitting
	K-fold cross validation

	Learning process
	ANN architecture
	Deep Neural Network
	Fully Connected Feed Forward Neural Network
	Recurrent Neural Network (RNN)
	Convolutional Networks (CNN)
	Convolution
	Padding
	Pooling
	Dropout
	Fully Connected Layer
	Gradient Descent

	Evolutionary Algorithms
	Overview
	Genetic Representation
	Fitness Function
	Genetic Operators
	Crossover
	Mutation

	Selection
	Roulette Wheel
	Stochastic Universal Sampling
	Tournament Selection

	Genetic Programming
	Neural Network Encodings
	Direct Encoding
	Indirect Encoding
	Cellular encoding
	Edge encoding

	Program
	Analysis
	Code Development
	Environment
	Installation
	Custom Genetic Operators

	Implementation
	Operator
	Library
	Individual
	Node
	Evolution
	DEAP initialization
	Fitness function and Mutation
	Evolution process

	Genotype to Phenotype
	Phenotype to Neural Network

	Experiments
	Parameters overview
	Datasets
	MNIST
	CIFAR 10

	Format
	MNIST experiments
	Accuracy
	Learning
	Scalability
	Modularity

	CIFAR10 experiments
	CIFAR10 experiments CNN

	Conclusion
	Future Work
	More experiments
	Modularity
	NORB dataset

	Bibliography
	Acronyms
	Contents of enclosed CD

