CzECH TECHNICAL UNIVERSITY IN PRAGUE
FACULTY OF INFORMATION TECHNOLOGY

ASSIGNMENT OF MASTER’S THESIS

Title: Using Blockchain Smart Contracts in the DEMO Methodology
Student: Bc. Barbora Hornackové

Supervisor: Ing. Marek Skotnica

Study Programme: Informatics

Study Branch: Web and Software Engineering

Department: Department of Software Engineering

Validity: Until the end of summer semester 2017/18

Instructions

Blockchain 2.0 (BC) introduces smart contracts that help build digital decentralized autonomous
organizations. Enterprise engineering (EE) discipline may help this technology with formal ontological
foundations. The aim of the thesis is to assess whether the BC together with the EE can provide a foundation
for more secure and democratic enterprises; especially in the banking industry.

Steps to follow:

* Review BC to evaluate what this technology is capable of.

* Evaluate compatibility of BC and EE.

* Propose a software architecture of an IT system based on BC and EE.

* Compare the proposed SW architecture with the state-of-the-art of business process management systems
based on BPMN.

* Create a prototype of an exemplary banking process in Ethereum Solidity as a basis for further discussion.
* Evaluate possible benefits of application EE principles in BC implementation.

References

Will be provided by the supervisor.

Ing. Michal Valenta, Ph.D. prof. Ing. Pavel Tvrdik, CSc.
Head of Department Dean

Prague December 29, 2016

CZzECH TECHNICAL UNIVERSITY IN PRAGUE

FacurLTy OF INFORMATION TECHNOLOGY

DEPARTMENT OF SOFTWARE ENGINEERING SCIENCE

Master’s thesis

Using Blockchain Smart Contracts in the
DEMO Methodology

Be. Barbora Hornackova

Supervisor: Ing. Marek Skotnica

3rd January 2018

Acknowledgements

I would like to express my gratitude to everyone who supported me and helped
me to complete this thesis. Mostly, I would like to thank to my supervisor
Marek Skotnica for his time and guidance, but also to my family and friends,
namely Ondrej Husér and Eliska Veverkova.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on 3rd January 2018 oL

Czech Technical University in Prague

Faculty of Information Technology

(© 2018 Barbora Hornackova. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Hornackova, Barbora. Using Blockchain Smart Contracts in the DEMO Meth-
odology. Master’s thesis. Czech Technical University in Prague, Faculty of
Information Technology, 2018.

Abstrakt

Blockchain (BC) je nova technolégia prindsajuca decentralizovant, replikovant,
autonémnu a bezpecni databazu. Jej najznamejsie vyuzitie sa spaja s krypto-
menou bitcoin. Mozné s vsak aj dalsie aplikdcie, ako napriklad inteligentné
kontrakty. Inteligentny kontrakt je transakcia ulozena v blockchaine, ktora
obsahuje spustiteiny kéd a ma vlastné interné tlozisko. Ulozenie kontraktu
do blockchainu zarucuje jeho nezmenitelni exekiciu a uchovavanie dat. Inteli-
gentné kontrakty umoznuju vytvaranie komplexnejSich a decentralizovanych
aplikdcii (Dapps), ¢ decentralizovanych autonémnych organizacii (DAOs).
Enterprise Engineering (EE) je vedecka disciplina, ktord skima vsetky as-
pekty organizacii od podnikovych procesov, informaénych a technickych zdro-
jov, az po organizacné struktiry. EE zahrnuje DEMO metodologiu, ktora sa
zaoberd modelovanim a navrhom organizacii. Z toho dévodu si blockchain a
inteligentné kontrakty predmetom zdujmu EE a ich mozného prepojenia pre
podporu tvorby Daaps.

Cielom tejto prace je preskimat EE, moznosti blockchainu, a zaroven
inteligentnych kontraktov. Nasledne je vyhodnofena kompatibilita DEMO
metodoldgie a inteligentnych kontraktov, na zaklade ¢oho st predstavené dva
pristupy k pouzitiu tychto kontraktov v danej metodolégii. Néasledne je vytvorena
metoéda pre tvorbu inteligentnych kontraktov na zdklade DEMO modelov
a navrh architektiry informaéného systému zalozeného na EE s pouzitim
blockchainu. Pre overenie realizovatelnosti vytvorenej metoédy je vypracovand
ukazkova implementacia inteligentného kontraktu s pouzitim DEMO meto-
dolégie v procese ziskania a splacania hypotéky.

Klicéova slova Modelovanie podnikovych procesov, DEMO, DEMO meto-
dolégia, blockchain, blockchain 2.0, inteligentné kontrakty

ix

Abstract

Blockchain (BC) is a new technology that introduces a decentralized, replic-

ated, autonomous and secure databases. It is mostly known for its use with
bitcoin, but it has more applications beyond that, such as smart contracts.
Smart contract (SC) is a transaction embedded to blockchain that contains ex-
ecutable code and its own internal storage, offering immutable execution and
record keeping. Smart contracts enable the creation of more complex decent-
ralized applications (Dapps) and even decentralized autonomous organizations
(DAOs) on blockchain. Enterprise Engineering (EE) examines all aspects of
organizations from business processes, informational and technical resources,
to organizational structure. Its underlying DEMO methodology focuses on
modeling and designing organizations. Therefore, blockchain and smart con-
tracts have been subject of interest concerning the discipline of Enterprise
Engineering (EE) and how they can be used together, enhancing the creation
of Dapps.

Thus, this thesis reviews the discipline of EE and the capabilities of block-
chain and smart contracts. Based on that, the compatibility of DEMO meth-
odology and blockchain smart contracts are evaluated and two approaches
of using smart contracts in the DEMO methodology are introduced. Con-
sequently, a method of creating smart contracts from DEMO models is formed
and a software architecture of an IT system based on EE integrating smart
contracts is proposed. Finally, a proof of concept implementation of a smart
contract of a mortgage process using the DEMO methodology is developed,
to demonstrate the feasibility of proposed concepts.

Keywords FEnterprise Engineering, DEMO, DEMO methodology, block-
chain, blochchain 2.0, smart contract

Contents

Introduction 1
1__Theoretical Foundations| 5
1.1 DEMO Methodology| D
1.2 Blockchain|. 15
.3 Blockchain 2.00 18
(1.4 _Smart Contracts Platforms| 21
.5 __Bthereum| 21
2 Evaluation of BC and EE Compatibility| 25
2.1 ~ Smart Contract Misconceptions| 25
2.2 EE and BC Compatibility| 27
3 I'T' System Based on EE and SC| 29
B.1 SChbhased on DEMOI 29
[3.2 DSoftware Architecturel0 32
13.3 Comparison to Business Process Management Systems Based
[on BPMNI e 33
4 Proof of Concept| 35
4.1 Technologies used|. 35
4.2 Process description| 36
4.3 DEMO Modell. o 39
4.4 DEMO and Smart Contractl 50
A5 Simulationl. 55
IConclusion| 61
[Future researchl oL 62
|Bibliography| 63

xi

|IA Acronyms|

IB Contents of enclosed CDI

xii

67

69

List of Figures

[[.1 History of Enterprise Engineering [1| 6
1.2 The operation axiom: relation of performer and addressee, coordin- |
| ation act and fact (21| o o000 000000 7
|1.3 The operation axiom: relation of performer and addressee, coordin- |
| ation act and fact [2]| oo Lo 8
[[.4 The basic pattern of a transaction [3] 9
[1.5 The standard pattern of a transaction [3]] 9
[L.6 The complete transaction pattern [1I| 10
[1.7 Summary of the distinction axiom [3]] 11
[1.8 Representation of the organization theorem 3] 11
[.9 The ontological aspect models [3] 12
[L.10 Simplified chain of blocks [4] 16
[1.11 Mortgages enabled by smart contracts provide automated pro- |
| cessing of payments and release of liens on property [0, 19
[L.12 Property transfers enabled by smart contracts [b].] 19
|1.13 Unleashed power of data enabled by smart contracts provides more |
| eflicient data sharing across sectors and incentivizes pre-competitive |
| collaborations [bl.|. o o o000 0oL 20
[3.1 Architecture of an I'T" System Based on EE and BC| 33
[4.1 Mortgage process changed using smart contract [0 37
4.2 Mortgage process flow chart[. 38
4.3 Mortgage process tlow chart with identified C-acts| 39
4.4 The Actor Transaction Diagram| 42
4.5 'The Process Structure Diagram|. 43
4.6 The Object Fact Diagram| 44
4.7 Deployment of the contract| 55
4.8 Promising the Mortgage Completion| 56
4.9 Change of state of Property| 56

4.10 Reverting transaction| 57

[4.11 Mortgage Paying Off initialization| 58
|4.12 Mortgage Payment blockchain transaction| 58
4.13 State of Lien Releasel 59

Xiv

List of Tables

3.1 The Transaction Blockchain Tablel 32
M1 The Transaction Production Tablel 40
4.2 The Bank LQn. P TahId . . o oo 41

DS AR 45
H,;i Illf: JLSSI],.QI], I;”,lf: 1| 45
e "
e e d o
H.!i l lls: ‘&S:l i!z“ li“ls' 4' 47
I4.i Ills: ,A,S:tiQI], Iillls: ;il 47
— RS "
I4.!2 IIls: [LS}(],'QI], I;llls: il 48
N .
e o
e S o
H.l;i Ills: fs,szti(lll I;llls: 11| 49
414 The Action Rule 12|

XV

Introduction

Business processes are crucial parts of any company or enterprise, mainly
because every product is an outcome of a collection of actions. Understanding
the processes and their relations is an important step for the organization of
any business. Information technologies (IT) play a significant role in business
processes or processes in general, as more and more of them are supported
by IT systems. Not only are business processes essential to understand the
operation of a business on an organizational level, but they are also inevitable
for designing a flexible IT system [6]. Therefore, business process management
(BPM) and business process management systems (BPMS) have received a
lot of attention over the last years. Business process management should help
to connect the gap between the organizational aspects of business and the
information technologies applied [6].

DEMO (Design and Engineering Methodology for Organizations) is one of
the processes modeling methodologies. It is based on the scientific discipline of
Enterprise Engineering, which focuses on designing enterprises. DEMO meth-
odology brings theoretical foundation and methodology for modeling organiz-
ations. The DEMO models fulfill the C4 quality criteria (Concise, Coherent,
Consistent and Comprehensive) [3] and the methodology is used for Model
Driven Engineering (MDE)[7] approach for creating BPMS directly from the
DEMO models, such as DEMO engine [§].

As the progress of information technologies is very dynamic, their applic-
ation in IT systems should constantly be evaluated. One of the new technolo-
gies, which is a subject of many discussions concerning IT systems and EE, is
a blockchain. Blockchain is mostly known as the underlying technology of bit-
coin, but since its introduction, there has been a wide variety of applications.
Blockchain is a decentralized, replicated and secure database running on a
peer-to-peer network. Due to the solutions it brings to problems such as the
double-spend and Byzantine Generals® Problem, blockchain has been called a
breakthrough in the computer science [9]. Blockchain 2.0 enhances application
of blockchain beyond cryptocurrencies and introduces concepts for flexible and

1

INTRODUCTION

programmable transactions referred to as smart contracts. Smart contracts
enable the creation of more complex decentralized applications (Dapps) and
even decentralized autonomous organizations (DAOs) on blockchain.
Therefore, blockchain and smart contracts have been subject of interest
concerning the discipline of Enterprise Engineering (EE) and the usage of
smart contracts in the DEMO methodology, enhancing the creation of Dapps.

Goal and Research Questions

The main goal of this thesis is to form a method of using blockchain smart
contracts in the DEMO methodology. DEMO methodology presents a system
to capture the essence and model processes. Blockchain, on the other hand,
presents a new technology which can be used for implementation of processes.
The underlying intention is to determine the possible cooperation between
them in the IT system. Based on the goal of the thesis following research
questions have been defined:

1. What are the blockchain technology and smart contracts capable of?
2. Is the DEMO methodology compatible with the blockchain technology?

3. How can blockchain be used in the implementation of an enterprise in-
formation system (EIS) based on DEMO methodology?

4. How to create a smart contract based on DEMO models?

5. What would be the software architecture of an EIS integrating smart
contracts?

The structure of the thesis

The thesis is organized as follows:

e Chapter [1| provides theoretical and technical foundations about En-
terprise Engineering, DEMO modeling method, Blockchain, Blockchain
2.0, smart contracts and Ethereum, needed to gain the understanding
of the topic.

e Chapter [2| covers common smart contract misconceptions, to prevent
mistakes in our theory, evaluates the compatibility of blockchain and
DEMO methodology and introduces two approaches for using smart
contracts.

e Chapter [3[describes a method of creating smart contracts from DEMO
models, introduces a software architecture of an IT system based on
Enterprise Engineering and Blockchain and describes the interaction
between an IT system and blockchain, compares the proposed software

architecture to the state-of-the art business process management based
on BPMN and its smart contract integration.

e Chapter 4] introduces a proof of concept implementation of smart con-
tract based on DEMO models of a mortgage process in Ethereum Solid-
ity and simulation of the contract execution.

e Conclusion summarizes the results, evaluates the benefits of the pro-
posed solution and mentions further research.

CHAPTER 1

Theoretical Foundations

1.1 DEMO Methodology

DEMO means “Design and Engineering Methodology for Organizations”. Its
an enterprise modeling methodology for designing organizations developed by
Jan Dietz and others. Demo is based on the Organization Essence Revealing
(OER) paradigm and the 1-Theory (PSI, Performance in Social Interaction)
about organizations.

1.1.1 Enterprise Engineering

The term enterprise can be identified as organization, company or institution.
In more general sense, it can be defined as any kind of collaborative activity by
human beings [10]. They are complex systems, that besides human activity
comprise also information, technology and their interaction. Dietz defines
the nature of an enterprise as “enterprises are social systems, of which the
operating principle consists of the ability of human beings to enter into and
comply with commitments.”[3]

Enterprise Engineering (EE) is the scientific discipline focused on designing
whole or a part of an enterprise. It examines all aspect of the enterprise from
business processes, informational and technical resources to organizational
structure. EE is built on four pillars: Enterprise Ontology, Enterprise Ar-
chitecture, Enterprise Governance, which all together form Enterprise Design

.

1.1.2 Enterprise Ontology

Enterprise Ontology is an approach to enterprise that enhance the under-
standing and overview of the essence of the organization. It is the reveling of
“the essence of the construction and operation of enterprise independent of its
realization and implementation”[3]. The ontological model of the essence of

5

1. THEORETICAL FOUNDATIONS

Organisational

Information Systems Sciences Sciences
Data Systems
Form ----------- » Datg -------------- > Engineering <1970

| |

Information, ., Information Systems

Content ——= -\ mmunication Engineering 1970-2000
. Commitment,
Intention ---~ Cooperation Enterprise Engineering | > 2000

Figure 1.1: History of Enterprise Engineering [1]

organization satisfies a C4E quality criteria: Coherence, Comprehensiveness,
Consistency, Conciseness, and Essence [3].

1.1.3 The PSI Theory

The 1-Theory is the underlying theory of enterprise ontology. The theory
considers organization to be a group of subjects that interact with each other
in order to create certain product. The overall purpose of ¥-Theory is “to
extract the essence of an organization from its actual appearance”. The theory
is composed of of four axioms: operation, transaction, composition, distinction
and one theorem: organizational theorem [2].

1.1.4 The Operation Axiom

The operation Axiom defines that operation of an organization is based on
performing acts between subjects fulfilled by actor roles. It introduces two
main kinds of acts: production acts and coordination acts. Explanation of
Operation Axiom was taken from thesis by Zuzana Vejrazkova: [2]

The operation axiom states that the operation of an enterprise is
constituted by the activities of actor roles, which are elementary
chunks of authority and responsibility. The actor roles are fulfilled
by subjects, who can perform two kinds of acts: production acts
and coordination acts, and these have definite results: production
facts and coordination facts.

1.1. DEMO Methodology

A coordination act (C-Act) is an act by which a coordination fact
(C-fact) in the coordination world (C-world) is created. By per-
forming C-acts, subjects enter into and comply with commitments
towards each other regarding the performance of production acts.
C-act is an act performed by one actor called the performer, and
directed to another actor, called the addressee. Acts can further
be divided into intention acts and proposition acts. This concept

is displayed in

Performer (P) Addressee (A)

‘ ntention | proposition

Example. P requests A to perform transaction X on 1.1.2012 at 20:00

performer intention addressee production fact time

Figure 1.2: The operation axiom: relation of performer and ad-
dressee, coordination act and fact [2]

A production act (P-act) is an act by which a production fact (P-
fact) in the production world (P-world) is created. By performing
P-acts, the subjects contribute to bringing about goods or services
that are delivered to the environment of the enterprise. C-acts
are always, either directly or indirectly, about production acts and
production facts, which can further be divided into material or
immaterial.

Actors are the active elements of an enterprise, who operate autonom-
ously and deal with agenda according to the existing action rules.
By specifying responsibility, authority and competence, the oper-
ation axiom is related to common organizational theories. Com-
petence is the ability of a subject to perform particular P-acts as

1. THEORETICAL FOUNDATIONS

well as corresponding C-acts. Based on a competence, actors have
authority, which they are expected to exert in a responsible way.

Based on a competence, you are given authority; if you are given
authority, you have a responsibility, as displayed in figure

COORDINATION ACTORROLES PRODUCTION

C-act P-act
e —
Actors
- R
C-fact Pfact
RESPONSIBILITY AUTHORITY COMPETENCE

Figure 1.3: The operation axiom: relation of performer and ad-
dressee, coordination act and fact [2]

1.1.5 The Transaction Axiom

Transaction axiom defines the generic pattern of the occurrence of and rela-
tionship between C-Acts and P-Acts. It reveals abstraction of transaction and
divides it into three phases: order, execution and result phase. Explanation
of part the Transaction Axiom was taken from thesis by Zuzana Vejrazkova:

2]

The transaction axiom states that coordination acts are performed
as steps in universal patterns, called transactions. Every new, ori-
ginal P-fact is a result of a successful transaction. Transactions
always involve two actor roles (initiator and executor) and are
aimed to achieve a result (P-fact). A transaction consists of three
phases: the order phase (O-phase), the execution phase (E-phase)
and the result phase (R-phase). The practical relevance in trans-
action axiom lies in detecting all C-acts, even those, that are per-
formed tacitly. Steps are displayed in figure [I.4] notation used for
transaction pattern is in Appendix C.

The basic transaction pattern

In the order phase, request and promise are performed. The Initi-
ator (customer) requests a P-fact, which is created as a result of a
transaction. The executor makes a promise to create this P-fact.

1.1. DEMO Methodology

initiator executor

rq: request
pm: promise
& I q I () st: state
T =/ ac: accept
B
o
o)
7]
«©
ey
<
Ll

st

©)

Figure 1.4: The basic pattern of a transaction [3]

R-phase

In the execution phase, the execution is performed which results
in creating the P-fact. In the result phase, the executor states that
the fact has been created and the initiator accepts the result.

The standard transaction pattern

Some situations might get more complicated. In some cases, the
executor cannot promise creating the fact, so he declines it. Sim-
ilarly, the initiator cannot accept the created fact, so he rejects it.
There are three reasons for rejecting or declining, which are called
validity claims (namely claim to truth, claim to justice or claim to
sincerity) and are based on HabermasaAZ theory of communicat-
ive action.

initiator executor 1q: request

pm: promise
st: state
ac: accept

dc: decline
qt: quit

1j: reject
sp: stop

O-phase

E-phase

R-phase

Figure 1.5: The standard pattern of a transaction [3]

1. THEORETICAL FOUNDATIONS

Complete transaction pattern

In real world actors might not always be successful in delivering the agreed
results or might simply change their mind. The standard transaction pat-
tern, however, does not offer such possibility resulting in deadlock situations.
Therefore a revocation conversations (R-conversations) are introduced that
allow actors to revert the process to some previous status by revoking one of
the four basic C-acts: request, promise, state and accept. Revokes can be ini-
tiated from any status of the main transaction and repeatedly. The opposite
actor of the transaction can either allow the revoke, resulting in reverting the
process to the desired state or refuse the revoke keeping the current state [I1].

executor initiator @ executor initiator
’
1
™
r
v v
initiator @ executor initiator @ executor
initiator @ executor initiator @ executor
A A
: ®
ac St
L O] ®
executor initiator @ executor initiator

Figure 1.6: The complete transaction pattern [I]

1.1.6 The Composition Axiom

The Composition axiom defines the interrelations between P-facts. As Dietz
states “a business process is a collection of causally related transaction types,
such that the starting step is either a request performed by an actor role in
the environment (external activation) or a request by an internal actor role to
itself (self-activation).”[3] According to this the composition axiom states that
transactions are either enclosed in some other related transactions, invoked
by the customer of the organization or it can be a self-activated transaction
[3].

1.1.7 The Distinction Axiom

The Distinction axiom defines that in the operation of actors three basic hu-
man abilities play role: performa, informa and forma. The aim of the axiom is
to separate our diverse concerns and it identifies the ontological actions (per-
forma) which is crucial for reveling the essence of the organization. Figure
further explains the three human abilities [3].

10

1.1. DEMO Methodology

COORDINATION

exposing commitment
(as performer)

evoking commitment
(as addressee)

expressing thought
(formulating)

educing thought
(interpreting)

uttering information
(speaking, writing)

perceiving information
(listening, reading)

HUMAN ABILITY

PRODUCTION

ontological action
{deciding, judging)

infological action

(reproducing, deducing,
reasoning, computing, etc.)

datalogical action
(storing, transmitting,

copying, destroying, etc.)

Figure 1.7: Summary of the distinction axiom [3]

1.1.8 The Organization Theorem

Similar to human abilities in the distinction axiom, the organizational the-
orem states that “the organization of an enterprise is a heterogeneous system
that is constituted as the layered integration of three homogeneous systems:
the B-organization (from Business), the I-organization (from Intellect), and
the D-organization (from Document).”[3]. This three parts support each other
from D-organization to B-organization. They are all similar in means of co-
ordination, where actors carry out transactions in order to create production
acts, but the difference is in production, where B-organization realizes the
ontological production, I-organization the infological and D-organization the

datalogical production [3].

B-organization

lI-organization

D-organization

ontological
production

infological
production

datalogical
production

Figure 1.8: Representation of the organization theorem [3]

11

1. THEORETICAL FOUNDATIONS

1.1.9 The Modeling Method

The DEMO modeling methodology is based on the Enterprise Ontology, there-
fore the modeling of organization is focused on the ontological models inde-
pendent of its realization and implementation. The methodology provides
four aspect models that support each other and together create the complete
ontological knowledge of an organization. The aspect models are organized in
triangular shape displayed in which shows the relationship between them.
Some of the aspect models consist of more than one sub models [3].

Construction Model

Interstriction
Model

Interaction
Model

Process Model State Model

Action Model

Figure 1.9: The ontological aspect models [3]

1.1.10 The Construction Model

The construction model (CM) is located on the top of the triangle in It
means that it is the most abstract and concise model. CM “specifies the identi-
fied transaction types and the associated actor roles, as well as the information
links between the actor roles and the information banks (the collective name
for production banks and coordination banks); in short, the CM specifies the
construction of the organization.”[3] CM is further divided into interaction
model (IAM) and interstriction model (ISM). Good explanation of IAM and
ISM is in thesis by Zuzana Vejrazkové: [2]

Interaction Model

The Interaction Model shows the boundary of an organization and
transaction types with identified actor roles - the initiator and the
executor. It consists of one table and one diagram:

e Transaction Product Table (TPT) describes the identi-
fied transaction types and corresponding product types.

12

1.1. DEMO Methodology

e Actor Transaction Diagram (ATD) shows relations between
actor roles and transactions, includes markings of executor
and initiator actor roles and organizational boundary.

Interstriction Model

The Interstriction model shows passive influence between actor
roles. It is based on the IAM, to which the information flow is
added. It contains two diagrams and one table:

e Actor Bank Diagram (ABD) shows relation (information
links) between actor roles and information banks and actor
roles and transactions. In ABD only information links are
included.

e Organization Construction Diagram (OCD) combines
the ABD and the ATD. It takes the ATD and only adds
information links from the ABD to elements that are not yet
connected in the ATD.

e Bank Contents Table (BCT) specifies the fact banks in
which the elements of object classes and the instances of fact
types and result types from the SM are contained.

1.1.11 The Process Model

The process model (PM) located in the middle of the triangle in is more
complex and detailed. It looks at the transaction patterns and also the re-
lationships between transactions. It contains specific transaction pattern ac-
cording to the -theory for every transaction type identified in CM and it
defines the causal and conditional relationships between transactions. PM
shows by which transaction the process begins or ends, the order of and de-
pendences between transactions. These two parts together specifies the state
space and also the transition space of the C-world [3]. The PM model consists
of: [2]

e Process Structure Diagram (PSD) provides structure of
each process, shows process steps for every transaction and
relationships between them. Steps that are not included in
the PSD are not allowed. Normally, the disagreement pat-
terns and the cancellation patterns must be included. The
PSD of a business process should be understood as the com-
plete specification of the steps in a business process that an
enterprise wants to monitor or control. The PSD is the right
starting point for designing the workflow support systems.

13

1. THEORETICAL FOUNDATIONS

e Information Use Table (IUT) specifies for every object
class, fact type and result type from the SM, in which steps
of the PM are used its instances. It can only be created once
the SM is produced.

1.1.12 The Fact Model

The fact model (FM) is located at the same level as PM in The state
model specifies the state of the P-world, namely, the object classes, fact and
result types and ontological coexistence rules. It is located under the CM as it
specifies information banks, which are used in CM [3]. The SM model consists
of: 2]

e Object Fact Diagram (OFD) shows the relation between
object classes and declaration of result types.

e Object Property List (OPL) describes object classes. For
each object class it also describes corresponding properties
and their scale. For derived fact types, derivation rules are
included.

1.1.13 The Action Model

The action model (AM) is the lowest part of the triangle and is the most
comprehensive one. The action model defines a set of rules that serve as a
guide for actors in specific actor roles in dealing with their agenda. It defines
the action rules considering all the conditions and validity claims in order to
carry out the transaction in different states. There are action rules for every
state of the transaction (request, promise...) for every actor role in every
transaction. AM is not a graphical model, it is a textual representation of
action rules written in a pseudo-algorithmic language: action rule is enclosed
in on-no bracket pair, conditions in if-fi and repeated actions in do-od pair
[3].

14

1.2. Blockchain

1.2 Blockchain

Blockchain (BC) is a technology introduced by Satoshi Nakamot(ﬂ It is mostly
known for its use with Bitcoin as it is its underlying technology. It is a new
way of looking at transactions, assets exchange or even whole organizations. It
introduces decentralized, autonomous, replicated and secure database. Based
on cryptography offers trustless network with no need of intermediary, result-
ing in major resource and also time saving. The possibilities of applying this
technology are very broad and it could be effectively used in most of the parts
of our world.

1.2.1 Blockchain Transactions

One of the basic blockchain building block is a transaction. A blockchain
transaction is a data package. Its structure changes depending on the concrete
implementation of the blockchain, but it generally contains the transaction‘s
data, timestamp and digital signature. In Bitcoin a transaction represents a
financial transaction, exchange of possession of a bitcoin between two users or
bitcoin wallets. So depending on the use case, transactions can be modeled
into data structures to represent the needed type of information, weather it is
an exchange of assets or contract. For example, in bitcoin “each transaction
contains one or more inputs, which are debits against a bitcoin account. On
the other side of the transaction, there are one or more outputs, which are
credits added to a bitcoin account.”[12]

Assigning ownership of resources or assets used in blockchain transac-
tions is done by digital signatures using public key cryptography. By using
private/public key pair transactions can be signed providing a proof of own-
ership to whoever owns the private key. For example, in Bitcoin public key is
used to receive bitcoin and private key is used to sign or "unlock” transactions
to spend those bitcoins. “When spending bitcoins, the current bitcoin owner
presents his public key and a signature (different each time, but created from
the same private key) in a transaction to spend those bitcoins. Through the
presentation of the public key and signature, everyone in the bitcoin network
can verify and accept the transaction as valid, confirming that the person
transferring the bitcoins owned them at the time of the transfer.”[12]

1.2.2 Blocks

Each block contains number of transactions (from hundred to thousands).
After certain number of transactions is gathered or last block has been cre-
ated a new block is started to be created, using cryptography and Merkle trees
a unique hash is calculated that represents all of the content and transactions,

!Satoshi Nakamoto is probably a pseudonym for either one person or a group of people,
the identity is currently unknown.

15

1. THEORETICAL FOUNDATIONS

furthermore each block contains hash of the previous block and a timestamp
(see figure , all of these are again hashed and this hash is the repres-
entation of the block. By including the hash of the parent and timestamp,
blocks are chained on ”"top of”. This iterative process confirms the integ-
rity of the previous block, defining the exact order and history of blocks and
transactions. Thus creating the block chain‘s “public ledger, an ordered and
timestamped record of transactions.”[4] Once the transaction is contained in
a block it is considered to be valid and also providing a proof-of-existence of
the information carried by the transaction.

Block 1 Block 2 Block 3
Header Header Header
_-___""—-—._ _____"‘-'-_._

Hash Of Previous
Block Header

| Hash Of Previous

Block Header

i Hash Of Previous

Block Header

Merkle Root Merkle Root Merkle Root
A r F
1 1 1
Block 1 Block 2 Block 3

Transactions

Transactions Transactions

Figure 1.10: Simplified chain of blocks [4]

1.2.3 Network

Another building block is the blockchain decentralized peer-to-peer network,
where all the nodes are equal and share the responsibility of the providing
services. The nodes are connected in a mesh network with a "flat” topology
[12]. There are different types of nodes in the network, some nodes have a
complete copy of the blockchain or part of it, some are using APIs to obtain the
information. What they all have in common, is that they are able to validate
a transaction, based on some given rules and they are all connected to certain
number of other nodes and exchange information between each other.

For example if some node creates a new transaction, it propagates it to its
neighbors who validate the transaction and then propagate it further to their
neighbors, so eventually every node receives the transaction on the best effort
basis. Some nodes called miners are than able to gather all new transactions
that are not in a block yet and create new blocks from them, that are again
broadcasted to the network and included in the consensus blockchain.

Some nodes can have different views of the block chain, or usually just
a recent history, as some of the transactions or blocks might reach them in

16

1.2. Blockchain

different order. If such a difference is encountered, nodes synchronize their
chains by choosing the longer one.

1.2.4 Consensus algorithms

Consensus algorithm is a protocol used for creating new blocks. To provide
security and trust in blockchain there are special rules under which blocks
are created, so that the creation of new block is resource and time consuming,
making it physically impossible to change the ledger history. This is one of the
logic behind the blockchain that eliminates the need of trusted intermediary.

There are different distributed consensus protocols for creating blocks. The
most known is proof-of-work. Proof-of-work, also called mining, in blockchain
is based on solving a hard computational problem where the solution can be
proved easily. Miners are special nodes in blockchain that are able to create
new blocks and serve as timestamp servers on a peer-to-peer basis. Miners
must solve the proof-of-work, for example find a value that when hashed,
such as with SHA-256, the hash begins with number of zeros, the number of
zeros is optimized to achieve desired difficulty as the average work required
is exponential in the number of zeros. So miners try to vary the block hash
by incrementing a nonce added to the block, recalculating the hash. The first
miner that finds the right nonce, creates and propagates the new block and
collects the reward [13].

If anyone would want to change the history of the database, lets say one
block, they would need to calculate new hash of the block as it would be
different with the change of its content and not only that one block but every
block created after this one. This operation is considered to be so time and
resource consuming, that blocks that are more than six blocks deep in the
ledger are considered unchangeable. By varying the number of zeros required
we can also control the frequency of creating new blocks, in bitcoin it is every
ten minutes on average.

1.2.5 Decentralization and Distribution

Knowing the basic principles of blockchain we can review the aspects that
create its key essence: decentralization, distribution and trustlessness:

e Each node can have full copy of the ledger, data quality maintained by
database replication

e Every node is able to validate each transaction

e All nodes in the network are equal and connected, broadcasting trans-
actions and blocks on the best effort basis.

e Trusted central authority replaced by computational trust in proof-of-
work

17

1. THEORETICAL FOUNDATIONS

e Public/Private key cryptography providing proof-of-ownership

e Timestamping serving as proof-of-existence

1.3 Blockchain 2.0

The architecture of blockchain was from the beginning designed to handle
big variety of implementations. Cryptocurrencies, financial transactions or
in general decentralization of money and payments are considerer to be the
Blockchain 1.0, but further usage of blockchain is enhanced in Blockchain 2.0,
aiming at general decentralization of markets and all kind of assets other than
money. To put in parallel “Blockchain 1.0 has been likened to the underlying
TCP/IP transport layer of the Web, with the opportunity now available to
build 2.0 protocols on top of it (as HTTP, SMTP, and FTP were in the Internet
model).”[9)]

The main idea of Blockchain 2.0 is to use blockchains decentralized trans-
action ledger functionality to identify, verify and transfer all kinds of assets,
contracts and properties [9]. The pool of ideas of blockchain usage is almost
endless, as with its flexibility it could be used on so many different processes
that we come in contact with on daily bases. Some of them are public records,
properties, health care, copyrights, stocks, wills or smart contracts.

1.3.1 Smart Contracts

The idea of smart contracts (SC) is to offer more complex solutions than
just a sell/buy transactions. Smart contract is a transaction embedded to
blockchain that contains more enhanced logic, contract that is executable,
has its own data storage and can access other resources to evaluate its current
state and perform actions, a contract made of code. “A smart contract is a
set of commitments that are defined in digital form, including the agreement
on how contract participants shall fulfill these commitments.”[14]

The main characteristic of a programmable smart contract are that it does
not require trust between parties, as after its creation in blockchain it would be
able to execute itself immutably. The parties would not need to be in further
contact or use an intermediary therefore it would be autonomous. Being able
to handle resources would give it self-sufficiency and given the architecture
of blockchain decentralization. They are not doing something that was not
possible before, just reduce the complexity of common problems and help with
automation [9].

There are more possible ways of modeling contracts and processes with
smart contracts, some can be performed programmatically entirely, another
can use smart contract just for a part such as record keeping.

18

1.3. Blockchain 2.0

1.3.2 Smart Contracts Use Cases

There is a big variety of possible applications of smart contracts from finances,
government to health care.

A financial use case for smart contract application could be mortgages:
“Smart contracts can automate the otherwise confusing and manual process
behind a mortgage contract. A smart contract in this case automatically
connects the different parties involved with mortgage transactions, allowing
for a frictionless and less error-prone process.”[5] fig.

Current State Future State

Humeu\l ner [nsnrer
II me | nsurer
» E j >
l’r“P“'“' s M“"‘S‘L" Hekier ['mmn\ Smart Il ntract Mortgage Holder
2B

-lppl! ation

e.m-r wval

Banker [n(ermu Re\enne
Serviee

Figure 1.11: Mortgages enabled by smart contracts provide auto-
mated processing of payments and release of liens on property [5].

Government processes is one of an important suggested application of
Blockchain 2.0 and smart contracts. The idea is to provide governmental
services in blockchain decentralized, transparent and efficient manner. Where
blockchain could for example become the database for all document records
[9]. Land title recording is a nice example of using smart contract for trans-
parent, reliable and fraudless transfer and record of land property assets fig.
1. 12

Current State Future State

Mortgage

i

Notary

. _—
=] fiii

Deed Sertlement Agent

|

Lender County Recorder

Figure 1.12: Property transfers enabled by smart contracts [5].

Another example from a health care field is a cancer research fig.

19

1. THEORETICAL FOUNDATIONS

Cancer research or in general medical research is a complicated process that
involves many parties, data and consents. In this case a smart contract could
serve as a common source of data to contribute to and share and transparent
patient consent management process [5].

Current State Future State

Research Data Repositories Data Repositories Researcher Data Repositories @
Organization 0
/ N ¥ v

R — P
Copy of Data 5 A Smart
G Smart Contract

Researcher Analysis (Multi Party Compu

- - I
B g B g,

Review Board Researcher Review Board

Figure 1.13: Unleashed power of data enabled by smart contracts
provides more efficient data sharing across sectors and incentivizes
pre-competitive collaborations [5].

1.3.3 Dapps, DAOs and DACs

Smart contracts have the potential not just to be simple contracts between
several parties but over time they could become very complex systems in-
volving many parties and resources. The definition of decentralized applic-
ations (Dapps) can vary but in general it refers to open source autonomous
applications that use decentralized network and executes across decentralized
network nodes.

When further enhancing Dapps and creating applications that handle com-
plicated functionality, interconnect between each other and all in autonomous
decentralized manner, we could create decentralized autonomous organizations
(DAOs) and even decentralized autonomous corporations (DACs). DAOs and
DACs are “a concept derived from artificial intelligence. Here, a decentral-
ized network of autonomous agents perform tasks, which can be conceived in
the model of a corporation running without any human involvement under
the control of a set of business rules. In a DAO/DAC, there are smart con-
tracts as agents running on blockchains that execute ranges of pre-specified
or pre-approved tasks based on events and changing conditions.”[9]

1.3.4 Private and Public Blockchain

The original intention of blockchain and bitcoin-like implementation was to
create a public network, but due to some limitations it brings, private block-
chains have been developed as well. The main disadvantage of public block-
chain is the amount of computational power it needs in order to maintain the

20

1.4. Smart Contracts Platforms

ledger when used at a large scale. The second issue is the openness of the
system and consequent lack of privacy of transactions and its content. The
difference between public and private blockchain is based on controlling who
can be part of the network, in more detail, it means who can participate in the
network and in which parts, who can execute the consensus protocol and man-
age the ledger. It is also refereed to as permissioned blockchain, in contrast
to the public blockchain, which is permissionless. It requires an invitation
to join a private blockchain, where the access control mechanism may vary.
[15] This means that in private blockchain there is control over the extent to
which it is decentralized and anonymous [16]. Private blockchains, as there
is a reduced number of processing nodes, are faster and the transaction costs
might be lower[I6]. On the other hand, this access control brings extra costs
and complexity to the process of maintaining or joining the blockchain. There
are also hybrid solutions combining private and public blockchains refereed to
as “consortium blockchains” [16].

1.4 Smart Contracts Platforms

There is a lot of different platforms which support the creation of smart con-
tracts. Weather it is a public blockchain platform such as Ethereum|I7] or
private such as Hyperledger[I8]. Ethereum with its EVM (Ethereum Vir-
tual Machine) and Solidity programing language is the most known platform
bringing a standard that many other platforms, such as Hyperledger and Ubiq
[19], build on. NEO [20] platform is the first blockchain platform launched in
China, with its own NeoVM (NEO Virtual Machine).

1.5 Ethereum

Ethereum is an open-source platform for blockchain applications with its own
blockchain and cryptocurrency ether. This platform offers environment to run
decentralized applications based on smart contracts. As they claim “applic-
ations that run exactly as programmed without any possibility of downtime,
censorship, fraud or third party interference.”[I7] Unlike bitcoin it offers much
more than one kind of transaction, it allows users to create custom operations
of any complexity and ,more importantly, save the state. It is a stateful, it
can detect changes to data and remember them [21].

1.5.1 Ethereum Virtual Machine

The keystone of Ethereum is the Ethereum Virtual Machine (EVM), which is
the byte code execution environment for the Ethereum smart contracts. To
define it more closely “The EVM is a single, global 256-bit "computer” in
which all transactions are local on each node of the network, and executed in

21

1. THEORETICAL FOUNDATIONS

relative synchrony. It‘s a globally accessible virtual machine, composed of lots
of smaller computers.”[2I] EVM is Turing-complete, therefore it can execute
a byte code of discretionary algorithmic complexity. Every node in Ethereum
peer-to-peer network blockchain infrastructure runs the EVM and executes
the same instructions, in order to maintain consensus of the blockchain. “De-
centralized consensus gives Ethereum extreme levels of fault tolerance, ensures
zero downtime, and makes data stored on the blockchain forever unchangeable
and censorship-resistant.”[22]

1.5.2 Ethereum Accounts and Contracts
Externally Owned Accounts

Externally Owned Accounts (EOA) are accounts controlled by private keys.
They have their ether balance, contain no code, can transfer ethers or trigger
contract code, These accounts are usually maintained by a program called
wallet (Ethereum Mist wallet).

Contract Accounts

Ethereum contracts are peaces of code in the EVM bytecode that live on
the Ethereum blockchain. They are usually written in higher level languages,
such as Solidity. “Contracts in Ethereum should not be seen as something that
should be ’fulfilled’ or ’complied with’; rather, they are more like ’autonomous
agents’ that live inside of the Ethereum execution environment, always execut-
ing a specific piece of code when 'poked’ by a message or transaction”[22].

Contract has its own ether balance, associated code, own persistent stor-
age that it can manipulate with, it can perform complex operations and call
other contracts. Though, contracts should not perform non-deterministic op-
erations, as the result must strictly be the same across all nodes, to agree on
the outcome of the operation, and it should be obvious when to execute the
contract to all nodes, therefore contract accounts perform operations (func-
tions) that are activated by transactions from EOA or messages from other
contracts [22].

Transactions in Ethereum are signed data packages sent by an EOA to
another account and are recorded on the blockchain. Messages on the other
hand can be sent between contracts and are performed locally on the EVM.
The result of both transaction and message is the recipients account running
its code [22].

Contract Accounts are than accounts controlled by their contract code and
are created when the contract is deployed on the Ethereum blockchain.

22

1.5. Ethereum

1.5.3 Gas

Contract code executes in parallel on all network nodes, this is due to the main
principle of blockchain to achieve a consensus that all nodes share the same
code thus the result of execution is the same, without third parties needed.
But such ”parallel” execution is logically very expensive. Gas is an execution
fee payed by the sender of a transaction for every computational step that is
carried out. Every transaction sent must specify a gas limit to be spent, if the
transaction execution exceeds this limit, the execution stops and all changes
are reverted. Gas is usually purchased automatically by Ethereum clients for
ethers [22].

Because of the costs, when creating Dapps, usually only the necessary parts
are put on the blockchain and the rest of the logic is implemented outside,
communicating with blockchain through RPC interface.

1.5.4 Communication With the Network

To communication with the blockchain network is possible either through a
Ethereum client such as geth or Mist or a RPC interface, using a subset of
JSON-RPC 2.0 specification, offered by an Ethereum node. The RPC interface
gives possibility to access the blockchain and node functionality. Because
using JSON-RPC is complicated and error prone there exists libraries such
as web3d.js. Through these libraries one can deploy contracts, interact with
contracts or listen to contract Events. Therefore it enables creation of Dapps.

From the other point of view, a contract cannot directly return values.
Contract can use events, which are data structures that when raised they are
logged in the Ethereum log on the Blockchain. The frontend application can
than actively read the log and ‘listen’ for the event to perform some action in
asynchronous manner. Events and logs are mapped to contract addresses and
contain data added by contract.

23

CHAPTER 2

Evaluation of BC and EE
Compatibility

In the first chapter we were describing theoretical foundations for understand-
ing Enterprise Engineering and blockchain. Now that we understand what this
methodology and technology are capable of, we can evaluate their compatib-
ility and possible connection.

The first important thing to realize is that Enterprise Engineering is a
scientific discipline with an underlying methodology of modeling processes
DEMO. On the contrary, blockchain and smart contracts are a technology.
But from the nature of the problems they are both addressing and even from
the underlying terminology they use it seems like they could be used together.
This is of course a more challenging question and one should thoroughly un-
derstand both of them to bring about the right way of using this methodology
and technology together.

2.1 Smart Contract Misconceptions

Blockchain is undoubtedly an interesting and innovative technology with a
great potential. The solutions to common problems it introduces can change
variety of processes in many different areas. For example, it can be used to
tackle the need of trust and prevent frauds. There have been a lot of great
ideas of what could it be used for, such as suggested in a book Blockchain
by Melany Swan [9]. But some of the ideas were formed on false assumptions
or lack of insights into BC, therefore, some common misconceptions have
been developed considering blockchain and smart contract applications. We
are going to look at some of them to prevent possible misconceptions in our
theory.

25

2. EvaruatioN oF BC AND EE COMPATIBILITY

2.1.0.1 Autonomous Smart Contracts

An idea that was not clear to me as well initially is that smart contracts can
operate fully autonomously. The idea is partly true, but more in means of im-
mutably following stated logic, rather than performing actions independently.
Smart contracts are not programs, that are active all the time, they are peaces
of code that are run only when invoked. In Ethereum this is, as explained
in the first chapter, possible either by sending transaction or message to the
contracts address. So, the idea often presented, that smart contract actively
waits for some event (certain date) and than executes itself is a misconception
[23].

2.1.0.2 External services

One of the very common attributes we find, when researching smart contracts,
is that they are designed to use external data. But this is not that easy to
achieve and it is given by the very principle of determinism which is an essential
feature of blockchain. When running a smart contract, all nodes must come
to the same result, therefore must operate on the same data. Using external
data sources to gather data for the smart contract‘s execution is impossible,
as we cannot be sure that the same data will be served to all nodes. Secondly,
smart contracts cannot be self-initiated.

The solution for this is rather simple. All data used must be determined
at the evocation of the smart contract. Data must be sent to the contract as
a parameter of evoked function or produced by a so-called oracles. Oracles
are ethereum design pattern and serve as “the interface between contracts and
the outside. Technically, they are just contracts, and as such their state can
be updated by sending them transactions. In practice, instead of querying an
external service, a contract queries an oracle; and when the external service
needs to update its data, it sends a suitable transaction to the oracle.”[24] This
is a common solution to the need of external data, but the fallback is that we
again rely on an centralized external service, that we have to have trust in.

Furthermore, smart contracts should not initiate any action outside block-
chain. For example, it might be a good idea for a smart contract to call an
external API when some condition has been met. In this moment, there is at
least 23880 [25] active nodes in the Ethereum network, which would all call
an API with the same request. That is exactly what smart contract or any
blockchain transaction should not be used for. One must understand, it is
not an executional system, it is more of a notarization system or controlling
system, a trustless database.

2.1.0.3 Privacy issues

As blockchain is a distributed database, there is no access control to the data
and actions it holds. Every node can see it all, a transparency by nature. In

26

2.2. EE and BC Compatibility

Bitcoin network this is not a problem, because there is the anonymity of the
addresses, that makes it unimportant that we can see the money transfers as
we can not identify nor the sender, neither the receiver. On the other hand,
with smart contracts we can store any data. Moreover, we probably want to
recognize some addresses and know who operates behind them and restrict ac-
tions to certain addresses. Therefore, it should be considered thoroughly what
we store in public blockchain end ensure security of confidential information.

2.2 EE and BC Compatibility

Taking into consideration everything we discussed in the previous section, we
can now start to think about the proper way to connect Enterprise Engineering
and BC. We have a theoretical foundation of an enterprise and a methodology
of how to capture its essence and processes, on one side. On the other side,
blockchain is a technology. The compatibility would be a question of using
blockchain as part of the implementation of the enterprise information system,
based on EE.

2.2.1 BC As Transaction Execution System

The first idea might be to implement the whole transaction execution, Demo
engine, on blockchain through smart contracts. With all the limitations and
misconceptions introduced earlier, it might not be possible to implement full
business logic and, moreover, there is no need to run the exact same transac-
tion execution multiplied on thousands of computers. Furthermore, transac-
tion execution on blockchain is not always without expenses, this may vary
based on platform used. But in general, why chose this approach when we
have applications in "regular” programming languages, which once developed
are free of cost.

The second idea is to choose only some transactions, of which full or partial
execution on blockchain would bring benefits. We can make use of blockchain'‘s
notarization of SC code and secure a trustless transaction execution when
operating with untrusted third parties or multiple organizations. For example,
if we have a contract that states once a certain amount of money is paid an
asset will be transfered, using BC, such logic can be trustlessly implemented
by smart contract, ensuring that the transaction will execute as desired. This
alternative seems logical, practical and makes use of the primary benefits that
BC technology brings to the table.

2.2.2 BC As Notarization System

Looking at how we defined blockchain in the first chapter where we stated:
“It introduces decentralized, autonomous, replicated and secure database, that

27

2. EvaruatioN oF BC AND EE COMPATIBILITY

based on cryptography offers trustless network without a need of intermedi-
ary”, another application of BC in EE could be to serve as a notarization
system. Smart contracts can offer notarization of documents, agreements and
all information related to transactions, progress and results of transactions.
BC could than provide a consistent and reliable source of data, facts and
transaction states for all parties involved in the process.

2.2.3 Conclusion

To summarize, the enterprise engineering and DEMO methodology can be
used to understand and analyze the essence of a process and consequently,
based on that, we can decide if notarization and trustless execution of some
transactions is needed, which is where BC and smart contracts can be used.
Smart contract should not replace the whole executional logic but control
some parts of processes and enhance the recording of facts. Blockchain should
work like one part of the entire enterprise information system.

The DEMO methodology fulfills the C4 quality criteria and in its complex-
ity offers all the information about the process needed to evaluate and create
smart contracts. We already exactly know possible transactions states, their
order and names. Furthermore, from the models we know what information
or documents are needed in each transaction, what are the relations between
them, their flow and action rules. We than only need to decide which of them
need notarization or trustless execution, and then build the smart contract
fully based on what we have already revealed applying the methodology.

28

CHAPTER 3

IT System Based on EE and SC

In this chapter we are going to look at the methods of creating BC smart
contracts based on DEMO methodology, we than introduce a software archi-
tecture of an enterprise informational system based on DEMO that commu-
nicates with smart contract. Finally, we look at some existing solutions of
integrating business process management systems based on BPMN and BC.

3.1 SC based on DEMO

In the previous chapter we introduced what could be the possible usage of
smart contract in EE. We have defined that there are two possible approaches,
that can also be combined:

e Notarization of documents, agreements and all information related to
transactions, progress and results of transactions.

e Trustless execution of transactions or part of transactions.

As mentioned before the decision whether to use SC for the process imple-
mentation is individual for every case. In general, a good use case could be to
use it when operating with untrusted third parties or multiple organizations.
There is, probably, no such need for notarization or trustless execution within
the internal business processes, but ,naturally, the need arises when dealing
with transactions on the border of the scope of interest when communicating
with external actors. BC smart contract can also represent the coordination
point between the internal I'T system and external actors.

3.1.1 DEMO Transaction As Contract

On blockchain a DEMO transaction is represented as contract. Contract has
its own address, internal storage, attributes, methods and is callable by either
external actor or another contract. This means that it has the functionality

29

3. IT SysTEM BASED ON EE aAND SC

to represent a DEMO transaction. For mapping to corresponding DEMO
transaction we use the names defined in the Transaction Product Table for
contract it self and all its . The contract than encapsulates the transaction
notarization or execution.

3.1.2 Notarization

Notarization of a DEMO transaction can be divided into two parts:
e Notarization of the transaction data and documents
e Notarization of the transaction execution

In the first case, we are looking at using the smart contract as a storage
of data. To construct a smart contract carrying a transaction data we can
combine information from three models: Organization Construction Diagram,
Bank Contents Table, Object Fact Diagram and Action Model. From them we
can retrieve which object classes are needed for the transaction and where in
the transaction execution they arise, we can evaluate the changes of the objects
associated with the transaction execution. Object class can be represented as
internal state variable in the contract, with the corresponding name from the
DEMO. Smart contract than serves as a database for the transaction.

In the second case, we want to notarize the transaction execution. We use
the Complete transaction pattern fig[T.6] from where we take all possible C-
Facts and add their representation in the contract. The contract than holds
its current status as C-fact. For every C-Act we create a contract method
that changes the contract state to the corresponding C-Fact. Every change of
C-Fact issues an ethereum system-wide notification (Event), allowing external
systems to keep track of their contracts. Once the transaction is completed
and the P-fact was created, another event is emitted stating the P-fact.

3.1.3 Execution

When representing transaction execution as contract we need to consider the
purpose of the transaction and its semantics. As some parts of the transactions
can be performed tacitly some parts need a confirmation that can be performed
automatically a and some need a explicit actor based approval. In this manner
we can look at contract from two aspects:

1. “The operational aspects: these are the parts of the contract that we
wish to automate, which typically derive from consideration of precise
actions to be taken by the parties and therefore are concerned with
performing the contract.”[26]

2. “The non-operational aspects: these are the parts of the contract that
we do not wish to (or cannot) automate.”[26]

30

3.1. SC based on DEMO

To implement the transaction execution in the contract we need to un-
derstand the whole DEMO model and the relationships between transactions.
More specifically, we should focus on Organization Construction Diagram,
Process Structure Diagram and Action Model, considering those are the mod-
els we will mainly use.

In the PSD model we have defined all the response links and wait links,
and we can see the enclosed transactions. The action rules from AM define
the exact operation for actor roles, this operation can be used to construct
the execution logic. If we execute a certain C-Act in the contract we look at
the action rules that contain this C-Act and we construct the corresponding
method accordingly. Depending on the actor roles we define the executor of
the method, we define general conditions based on the transaction pattern,
such as that to perform a promise the contract must be requested. Finally,
we translate the action rule pseudo code to contract code. In this case, we
also need to add the notarization of the data that the transaction operates
on. Method to execute a C-Act is named after the C-Act concatenated with
the transaction name.

If the transaction encloses other transactions, we have to decide how to
handle them. There are three possible solutions. Firstly, the sub-transaction
can be implemented as another contract. The enclosing contract than stores
the address of the sub-contract. This way when the action rule contains a
response link for child transaction C-Act, we call the corresponding C-Act
method of the child contract. The sub-transaction can also store the reference
to the enclosing transaction to implement the wait links. Secondly, there
must not always be a need to create separate contract for sub-transactions,
we can implement the sub-transaction inside the main contract. This can
be convenient if we are interested only in partial execution on BC for the
sub-transactions. Finally, the last option is that we do not handle the sub-
transactions at all and leave this outside of BC.

3.1.4 Extending the DEMO model

Using SC with DEMO is the part of the implementation of the organization.
From this point of view the DEMO models should not change when using
SC. SC only represent transactions and, in some cases, an actor role can be
assigned to it. In both cases the underlying DEMO models are not affected.
As the implementation of contract can be derived from the DEMO models,
if more deeply formalized, the creation of the contract code could be automat-
ically produced from the DEMO models. In this case we would have to define
a way to identify the transactions and types of their integration on the BC.
A solution could be to introduce Transaction Blockchain Table fig. that
would map transactions to their BC implementation. As for the actor roles
assigned to SC, this would be defined in the Actor Function Metrix.

31

3. IT SysTEM BASED ON EE aAND SC

Transaction Data Transaction Execution
notarization notarization

T1 List of Objects | Yes/No List of C-Acts to
to notarize execute

Table 3.1: The Transaction Blockchain Table

The automation of SC creation could be a great benefit as it would bring
a level of security. As explained in the paper by Alex Norta [27] referencing
a crowdfunding project that was hacked because it contained security flaws,
resulting in a $50 million loss. “The incident shows it is not enough to merely
equip the protocol layer on top of a blockchain with a Turing-complete lan-
guage such as Solidity to realize secure smart-contract management. Instead,
we propose in this keynote paper that it is crucial to address a gap for secure
smart-contract management pertaining to the currently ignored application-
layer development.”[27]

3.2 Software Architecture

In the previous section we have introduced how a smart contract based on
DEMO methodology could be produced, we can now discuss the possible soft-
ware architecture of an IT system based on Enterprise Engineering with the
integration of blockchain.

The implementation of the I'T system would consist of three parts:

e Enterprise engineering: DEMO models

e Enterprise information system (EIS): implementation and realization of
the organization in an IT system based on EE, integration of all tech-
nologies

e Blockchain: implementation of the smart contracts based on EE

The architecture of an IT system integrating the enterprise information
system and blockchain is illustrated in the fig. The EIS contains mainly
the BPM engine and blockchain API. The BMP engine is the transaction
execution system. The blockchain API is an interface for communication
between the BPM engine and blockchain. The communication with blockchain
is carried out through a blockchain node. It contains a transaction processor
and the blockchain database, which holds the smart contracts or blockchain
logs. The DEMO models and methodology also serve as an interface for their
cooperation as all these parts BPM engine, blockchain API and smart contract
are based on them. They all use the transaction patterns, transaction names,

facts, etc. defined by DEMO.

32

3.3. Comparison to Business Process Management Systems Based on
BPMN

Blockchain

EIS Blockchain Node

«components E

* | Transaction Processor

«Compaonents E «COmponents E

BPM Engine Blockchain API

o
¢ [DEMOmodels

Process
Data

Transactions,
Smart contracts,
Assets, Log

Figure 3.1: Architecture of an IT System Based on EE and BC

EIS and BC communication

The communication between the EIS and SC is a one way interaction based
on the principles described in the section As BC cannot return values
or call external services directly, all the interaction is handled from the EIS
side.

The EIS contains an API for communicating with blockchain, such as
web3.js. This API facilitates the contract deployment, sending of transactions
to the contract, getting data from the contract. Using the events mechanism
the API monitors the blockchain log and "listens” for certain events. This
way the API can watch the change of transaction state or results of contract
execution and act on it, mostly if it is a transaction evolving external actors.

3.3 Comparison to Business Process Management
Systems Based on BPMN

In this section we are going to look at the BPMN and some ideas of its
implementation within blockchain, in order to compare it to our proposed
solution.

The BPMN (Business Process Model and Notation) is a standardized nota-
tion for business process modeling. Unlike DEMO it is not a methodology but
a standard maintained by the Object Management Group. The BPMN inten-
tion is to provide a support for variety of abstraction levels, from a business
level to a technical implementation [28]. According to the Introduction to
BPMN paper “BPMN defines a Business Process Diagram (BPD), which is
based on a flowcharting technique tailored for creating graphical models of

33

3. IT SysTEM BASED ON EE aAND SC

business process operations. A Business Process Model, then, is a network of
graphical objects, which are activities (i.e., work) and the flow controls that
define their order of performance.”[29]

3.3.1 SC based on BPMN

BPMN is one of the most widely used modeling standards, therefore, there
have been efforts to use BPMN for smart contract implementation. One of
them is described in a paper by Weber et al [6]. This paper states a similar ap-
proach to implementing a business process using BPMN on blockchain as this
thesis. It recognizes two alternatives of using blockchain as “a choreography
monitor, it stores the process execution”[6] or “as an active mediator among
the participants, it coordinates the collaborative process execution.”[6]. The
approach then introduces a method of translating the BPMN model to smart
contract. This method is mainly addressing collaborative process execution
for participants with lack of trust.

To compare, the solution in this theses seems more flexible, it is given by
the nature of DEMO models and their different approach to process modeling,
where we can define more precisely which parts of the process need the use of
smart contracts. The architecture based on DEMO is also focusing more on
the smart contract as part of a bigger EIS than just a single process between
several participants. But in general, both solutions introduce similar findings
and principles about the usage of BC and process modeling and method of
translating the models to smart contracts. In the end, it can come down to the
comparison of DEMO methodology and BPMN standard itself and evaluating
the appropriateness of their use and ability to cover all possible situations
when modeling processes.

3.3.2 SC based on Petri nets

Another interesting solution can be found in the paper by Garcia-Banuelos
[30]. This paper focuses on optimized execution on blockchain. It defines an
method of modeling processes defined by BPMN into smart contracts through
the use of optimized Petri nets. “The method takes as input a BPMN process
model. The model is fist translated into a Petri net. An analysis algorithm
is applied to determine, where applicable, the guards that constrain the ex-
ecution of each task. Next, reduction rules are applied to the Petri net to
eliminate invisible transitions and spurious places. The transitions in the re-
duced net are annotated with the guards gathered by the previous analysis.
Finally, the reduced net is compiled into Solidity.”[30]. The limitations of this
approach are that it focuses on encoding the control-flow and evaluation of
data conditions, but missing out parts like how the participants would be
bound to the contract instance and access control. It also focuses only on a
subset of BPMN notation.

34

CHAPTER 4

Proof of Concept

In previous chapters we proposed a software architecture based on connection
of DEMO methodology and blockchain smart contracts In this part we de-
scribe a proof of concept using a financial transaction, the process of mortgage,
implemented in Ethereum Solidity programing language for smart contracts.
The proof of concept is composed of

e Process description - contains description of the mortgage process
and describes the possible benefits

e DEMO models - analyses mortgage process and DEMO models of the
mortgage process based on its description

e DEMO and Smart Contract - connection of DEMO and smart con-
tract and implementation of smart contract in Ethereum Solidity based
on DEMO methodology.

Please take into consideration that this implementation serves as proof of
concept, there is need of more extensive research and testing on real block-
chain. This proof of concept also makes use hypotheses or expectations re-
garding blockchain technology such as digital identity.

4.1 Technologies used

4.1.0.1 Solidity

Solidity [31] is a programming language to implement smart contracts specially
designed for the Ethereum Virtual Machine (EVM). It is a Turing-complete
high-level language compiled to the EVM bytecode.

Solidity was chosen because it is developed under Ethereum and is the
most used language for smart contracts for EVM, although there are some
other languages, Solidity is the most developed language amongst them.

35

4. PROOF OF CONCEPT

The building block in solidity is a contract which is similar to class in
object-oriented programming. Contract contains persistent data in state vari-
ables, functions to operate on this data and it also supports inheritance. Con-
tract can further contain function modifiers, events, struct types and other
structures to allow implementation of complex contracts and full usage of
EVM and blockchain capabilities.

A smart contract written in solidity can be created either through a eth-
ereum transaction or by another already running contract, just like we would
create an instance of a class. Either way the contract code is than compiled to
the EVM bytecode, new transaction is created holding the code and deployed
to blockchain, returning the address of the contract for further interaction.

Solidity contracts can also be created, deployed and interacted with progra-
matically using the JavaScript API web3.js, which is an ethereum compatible
library implementing the Generic JSON RPC spec, that provides a convenient
interface for communication with Ethereum nodes [32].

4.1.0.2 Remix

Remix is a browser-based IDE for creating smart contracts with integrated
debugging and testing environment. Remix offers development, compilation
and deployment of solidity contracts as well as access to already deployed con-
tracts. The testing environment allows running the transactions in a sandbox
blockchain in the browser with JavaScript VM with a possibility to switch
between virtual accounts and spend virtual ethers for full smart contract test-
ing [33].

4.2 Process description

In this part the financial transaction is described and discussed to evaluate
possible benefits of modeling this process with DEMO and implementing with
smart contract. The chosen financial transaction is the process of mortgage,
as it appears as a good candidate to demonstrate the advantages and compat-
ibility of DEMO and smart contracts.

The mortgage contract is a rather confusing and complicated process in-
volving several parties, dependent processes, level of trust between parties and
a lot of documents proving results of auxiliary processes and above all not-
arization. This aspects all contribute to overall complexity and costs of the
process. Thus it appears as a good use case where modeling by DEMO would
capture the essence of the process and smart contract could offer a automated
notarization, data sharing between parties and payment processing reducing
the need of manual processes as illustrated by

The description of the mortgage process is based on research made of
several on-line mortgage guides [34] [35] and consultation with real estate
agent. The description of the process was than modeled by flow chart to fully

36

4.2. Process description

Current State Future State

I{nmm\l ner ‘ [nsurer

&y

Propertv Bank M‘“‘E‘ge Holder Smart Contract Muortgage Holder
4ppﬂwrlon

emm al

|
0 il

RS

Banker Internal Revenue

Service

Figure 4.1: Mortgage process changed using smart contract [5]

understand and illustrate the process. For needed illustration we omit the
common pre-approval faze.

Mortgage process description

1. step - Buyer applies for mortgage in bank. He fills in an application with
basic information (personal data, employment, income, marital status,
etc.). Based on primary application bank requests further documents,
needed for full client screening (credit report, account statements, in-
come certificates/invoices, etc.) and documents for desired property such
as reservation contract, property appraisal, draft of sales contract. When
the bank internally approves the mortgage, they prepare the Mortgage
contract which states all the details such as the finance charge, annual
percentage rate (APR), number of payments you will make, amount of
each payment (for fixed-rate loans), late payment charges that may ap-
ply and total amount you will pay in principal and finance charges over
the life of the loan and further conditions to be met to issue the funds
such as property insurance and states the closing date.

2. step - Once the mortgage is approved by bank and closing is scheduled,
client or bank secures a homeowner insurance for property.

3. step - At the closing, all of the needed parties (loaner, buyer, seller) meet
at a notary. The sale contract, the mortgage contract and documents
for cadastre of real estates are signed. After the documents for cadastre
and lien are registered at the cadaster, the bank issues the funds and
the deal is finalized.

4. step - The loan servicing, the steps taken to maintain a loan from the
time it is closed until it is paid off, then starts. Client is obligated to
pay monthly pay-off payments. Once the mortgage is fully paid-off the
bank releases the property lien and client becomes a rightful owner of
the property.

37

PrRoOOF OoF CONCEPT

Client applies for
martgage for property

l

Process application Decline mortgage

F

Mortgage
approved

Yes

Require property
insurance

Is property
insured?

Client signs contract
of sale of property
with seller

l

Sign Lien with seller

v

Sign mortgage
contract

l

Client registers Lien
in cadaster

Is lien
registered?

Yes

Y

Pay to seller

Yes

Release property lien

Figure 4.2: Mortgage process flow chart

38

|s mortgage
paid off?

Recieve mortgage
payment

A

Require mortgage
payment

A

Is the mortgage
interest still fixed

A

Yes

No

Update mortagage
contract

f

Fix interest for period
of time

T

4.3. DEMO Model

4.3 DEMO Model

Once the mortgage process is described and conceived we can start to re-
veal the essence of the process and model it using DEMO methodology. We
first analyze the process and than create all needed models according to the
proposed method in section chapter

Mortgage process analysis

start

. Client applies for
TUIM |mortgage for property

|

Process application Decline morigage Tlide

Mortgage
approved
Tl/pm (tacitly) Yes
|
Tairg Require property
insurance

Is property
insured?

T2ac |Yes

Client signs contract
T3/pm of sale of property
with seller

I

Sign Lien with seller

)

Sign mortgage
contract

I

Taist Cller_n registers Lien
in cadaster

Is lien
registered? Teist
- Recieve mortgage
payment
Yes|
T3lac T
Tairg 16t Require mortgage
Téirg Pay to seller Is mor e
: Y pa\dngf?’? payment

Update mortagage
contract

f

Fix interest for period

o i

Figure 4.3: Mortgage process flow chart with identified C-acts

39

4. PROOF OF CONCEPT

The most important part of revealing the essence of a process is to identify
its core transactions and distinguish documental, informational and original
acts. We will use the flow chart to analyze the process, for illustration we only
mark out C-acts fig.

As we can see in fig. there were seven different transactions identi-
fied with a transaction Mortgage completion representing the main process
covering up all other transactions.

Construction model

Based on the mortgage process analysis and identified transactions we can
produce the Transaction Product Table tab. Bank content table tab.
and Actor Transaction Diagram fig.

Transaction kind Production type
T1 Mortgage completion P1 Mortgage is completed
T2 Property insurance P2 Property is insured

T3 Property ownership transfer | P3 Property ownership is transferred

T4 Property payment P4 Property is paid

T5 Mortgage paying off P5 Mortgage is paid off

T6 Mortgage payment P6 Mortgage is paid

T7 Property lien release P7 Property lien is released

Table 4.1: The Transaction Production Table

Bank Independent /Dependent facts

T1 Mortgages comple- | MORTGAGE

tion Mortgage is completed

The receiver of Mortgage

The property of Mortgage

The amount of Mortgage

The annual percentage rate of Mortgage
The final amount to pay off for Mortgage
The number of payments for Mortgage
The amount of payment for Mortgage

40

4.3. DEMO Model

AT1 Client facts CLIENT

personal data of Client

income of Client

employment information of Client
marital status of Client

credit report of Client

account statements of Client
Income certificates of Client

T2 Property Insurance | PROPERTY
Property is insured

T3 Property ownership | PROPERTY

transfer Property ownership is transferred
The owner of the Property

The lien of the Property

The amount to pay for Property

T4 Property payment | PROPERTY
Property is paid
The amount paid for Property

T5 Mortgage paying off | MORTGAGE
Mortgage is paid off
The amount paid off for Mortgage

T6 Mortgage payment | MORTGAGE
Mortgage is paid
The amount paid for Mortgage

Table 4.2: The Bank Contents Table

41

4. PROOF OF CONCEPT

) o
o 5 2 7
i = i n
5 @ = 2
= & =
£ =
= -
§ B
g g Z
5 = z
o 2 = 5
~ z =
5 2 2
g 5 g
o = &
=
[=]
g,
=
B2
nC
28
g
1~
=}
=
=
(-]
(=
=
-
5 S
= = =
5 =
E
=
]
2 N
E -]
= a8 o ﬁ
< £ <L =
L] =
1‘::" [=]
= =
=
B
[
5 g =
o = g
=1 =
E = o
il T N -
= 0] = ~ A
g g o
g = g
=] o o
= g
&
5
5 5
] =
= =] — 2]
: @ £
35 g 5 Ly
g g
=]
= E
[=]

Figure 4.4: The Actor Transaction Diagram

Process model

To fully understand the transactions flow we use the Process Structure Dia-
gram fig. [£.5] that illustrates the dependencies between transaction‘s states.
This conditions for the order of transaction‘s state are important when imple-
menting the smart contract.

42

4.3. DEMO Model

Jafed Jaseajal
abebpop A3Uop
ad] v
Juawied afebuop wawdied fuadoid

lzlasuen
diysaaumo

memnm_E s
uz|| Apadoig
e Jaunsu)

saysuel) dig=y FauRInsul Auadoid [l

a5Eajal ual Auadoid

[- |||..._|I.|1._ | Jdaga|dwod
|||||||||||||| ————ym———_————— = N N O N N A | abeblop
’ 1 v

wd g

Japels
= abebpiop
0-%2

43

Figure 4.5: The Process Structure Diagram

4. PROOF OF CONCEPT

Fact model

Paid Mortgage

{ Mortgage \

@

amount paid[NUMBER]

Paid off Mortgage

amount[NUMBER]

annual percentage rate[NUMBEER]
final amountNUMBER]

number of payments[NUMBER]
amount of paymentNUMBER]

@

amount paid ofNUMBER]

Completed Mortgage ’

44

Property

the reciever of /_ Client \

1 Mortgage is Client 1

personal data[DATA]
income[NUMBER]
employment[DATA]
marital status[STATUS]

credit reportREPORT]
account statements[ACCOUNT]

income certificates[CERTIFICATE]

the property of
Mortgage is Property

the insurer of
1 Property is Insurer

ll

Insured Property

id[NUMBER]
owner[PERSON]

market value[NUMBER]
amount to pay[NUMBER]

@

the Property is insured

Insurer

{ Ownership transfered

Property

P3

the Property ownershio is
transferredis insured

new owner[PERSON)]

lein[DOCUMENT]
Paid Property

@

amount paidMUMBER]

the lien releser of
Property is Property
releaser

Lein released Property

e

@

lein[NULL]

Property releaser

Figure 4.6: The Object Fact Diagram

4.3. DEMO Model

Action model

The Action rules are a final DEMO model and is the one most needed for
smart contract creation. The structure and content of the smart contract
can be directly mapped to each action rule. By creating the action rules we
basically create the logic on which the smart contract operates.

when mortgage completion for new Mortgage is requested (T1/rq)
with the receiver of Mortgage is Client
the property of Mortgage is Property
assess justice: the performer of the request is the receiver of Mortgage
sincerity: <no specific conditions>
truth: Mortgage for property for receiver is approved
if complying with request is considered justifiable
then promise mortgage completion of Mortgage [T1/pm]
else decline mortgage completion for Mortgage [T1/dc]
Table 4.3: The Action Rule 1
when mortgage completion for Mortgage is promised (T1/pm)
assess justice: the performer of the promise is the mortgage completer of
Mortgage
sincerity: <no specific conditions>
truth: <no specific conditions>
if complying with request is considered justifiable
then request property insurance of Property [T2/rq]

with the property to insure is the property of Mortgage

request property ownership transfer of Property [T3/rq]
with the property to transfer ownership is the property of Mortgage
the new owner to be of property is client of Mortgage
the lien of the property will be for the loaner of Mortgage
the amount to release to pay for property is the amount of
Mortgage

Table 4.4: The Action Rule 2

45

4. PROOF OF CONCEPT

when property insurance for Property is stated (T2/pm)

assess justice: the performer of the state is the insurer of Mortgage
sincerity: <no specific conditions >
truth: The property insured is the property of Mortgage

if complying with request is considered justifiable
then accept property insurance of Property [T2/ac]
else reject property insurance of Property [T2/r]j]

Table 4.5: The Action Rule 3

when property ownership transfer is stated (T3/st)

assess justice: the performer of the state is the ownership transferer
of Property
sincerity: <no specific conditions >
truth: the property of transferred ownership is the property of
Mortgage
the new owner of property is client of Mortgage
the lien of the property is for the loaner of Mortgage

if complying with request is considered justifiable
then accept property ownership transfer of Property [T3/ac]
else reject property ownership transfer of Property [T3/rj]

Table 4.6: The Action Rule 4

when mortgage completion for Mortgage is promised (T1/pm)
while property insurance is accepted
property ownership transfer is accepted

assess justice: the performer of the promise is the mortgage completer
of Mortgage
sincerity: <no specific conditions >
truth: textless no specific conditions >
the new owner of property is client of Mortgage
the lien of the property is for the loaner of Mortgage
the amount released to pay for property is the amount
of Mortgage

46

4.3. DEMO Model

if

complying with request is considered justifiable

then

request mortgage paying off for Mortgage [T5/rq]
with the amount to pay off is the amount to pay off of Mortgage

Table 4.7: The Action Rule 5

when

mortgage completion for Mortgage is promised (T1/pm)
while property insurance is accepted
property ownership transfer is accepted

asSsess

justice: the performer of the promise is the mortgage completer

of Mortgage

sincerity: <no specific conditions >

truth: the new owner of property is client of Mortgage
the lien of the property is for the loaner of Mortgage
the amount released to pay for property is the amount
of Mortgage

if

complying with request is considered justifiable

then

request mortgage paying off for Mortgage [T5/rq]
with the amount to pay off is the amount to pay off of Mortgage

Table 4.8: The Action Rule 6

when

mortgage paying off for Mortgage is requested (T5/rq)
with the amount to pay off equals to the amount to pay off for
Mortgage

assSess

justice: the performer of the request is mortgage completer of
Mortgage

sincerity: <no specific conditions >

truth: the amount to pay off is equal the amount to pay off of
Mortgage

if

complying with request is considered justifiable

then

promise mortgage completion of Mortgage [T5/pm]

else

decline mortgage completion for Mortgage [T5/dc]

Table 4.9: The Action Rule 7

47

4. PROOF OF CONCEPT

when

mortgage paying off for Mortgage is promised (T5/pm)

asSsSess

justice: the performer of the promise is the mortgage paying
off controller of Mortgage

sincerity: <no specific conditions >

truth: <no specific conditions >

if

complying with request is considered justifiable

then

request mortgage payment for Mortgage [T6/rq]
with the amount to pay for Mortgage is equal to the amount
of each payment for Mortgage

Table 4.10: The Action Rule 8

when

mortgage payment for Mortgage is stated (T6/st)
with the amount paid for Mortgage is some Money

asSsess

justice: the performer of the state is the payer for Mortgage
sincerity: <no specific conditions >

truth: with the amount paid for Mortgage is equal to the
amount of each payment for Mortgage

if

complying with request is considered justifiable

then

accept mortgage payment for Mortgage [T6/ac]

else

reject mortgage payment for Mortgage [T6/rj]

Table 4.11: The Action Rule 9

when

mortgage paying off for Mortgage is promised (T5/pm)
while mortgage payment for Mortgage is accepted

asSSess

justice: the performer of the promise is the mortgage paying
off controller of Mortgage

sincerity: <no specific conditions >

truth: The summary of amount of mortgage payments for
Mortgage is equal to the the amount to pay off for Mortgage

if

complying with request is considered justifiable

then

execute mortgage paying off for Mortgage [T5/ex]
state mortgage paying off for Mortgage [T5/st]

48

4.3. DEMO Model

else

request mortgage payment for Mortgage [T6/rq]
with the amount to pay for Mortgage is equal to the amount
of each payment for Mortgage

Table 4.12: The Action Rule 10

when

mortgage paying off for Mortgage is stated(T5/st)

asSsSess

justice: the performer of the state is the mortgage paying off

controller of Mortgage

sincerity: <no specific conditions >

truth: the amount paid off is equal to the amount to pay off
for Mortgage

if

complying with request is considered justifiable

then

accept mortgage paying off for Mortgage [T3/ac]

request property lien release of Property [T7/rq]

with the property to release lien of is the property of Mortgage
the lien releaser is the some Property Lien Releaser

else

reject mortgage paying off for Mortgage [T3/rj]

Table 4.13: The Action Rule 11

when

property lien release of Property is stated (T7/st)

asSsSess

justice: the performer of the state is the property lien releaser
of property
sincerity: <no specific conditions >
truth: the property to be released is equal to the property of
Mortgage
The lien released is the lien of loaner of Mortgage

if

complying with request is considered justifiable

then

accept property lien release of Property [T7/ac]
execute mortgage completion of Mortgage [T1/ex]
state mortgage completion of Mortgage [T1/st]

else

reject property lien release of Property [T7/rj]

Table 4.14: The Action Rule 12

49

4. PROOF OF CONCEPT

4.4 DEMO and Smart Contract

Analyzing the process through DEMO models we can now evaluate the pos-
sible use of smart contract.
For illustration we will assign actors to the actor roles as follows:

e Loaner: A-1, A-2

e Client: CA-0, CA-1, CA-4
e Insurer: CA-2

e Property Releaser: CA-2

For illustration of possible benefits of blockchain the implementation relies
on these pre-requisites:

e Implementation of digital identity
e Adaption of public key infrastructure between actors
e Possibility of mortgage payment in cryptocurrency

Here is what smart contracts based on DEMO models described by this
theses look like. For clear connection to the DEMO methodology we use terms
from the DEMO model. Full solidity code can be found on the enclosed CD.

4.4.1 Generic Transaction as Smart Contract

We created a generic Transaction contract that serves as a parent class for
contracts based on transactions. It holds some general functionality such as
common state variables: name, product fact, current transaction fact, initiator
and executor.

contract Transaction {

enum C_facts { Initial, Requested, Promised, Declined, Stated,
Accepted, Rejected }

string name;

string P_fact;

C_facts public current_c_fact;
address public initiator;
address public executor;

The contract defines access modifiers to authorize the actor evoking the
function call or simple coordination facts control. The authorization pattern
is a common design pattern for Ethereum smart contracts to restrict code

20

4.4. DEMO and Smart Contract

execution to only certain address according to the caller address accessible in
msg.sender [24].

modifier onlyExecutor {
require(msg.sender == executor);

-

}

modifier isRequested {
require (current_c_fact == C_facts.Requested);

-

3

Further it contains functions to represent coordination acts of the standard
transaction pattern. Here we use Solidity events, which allow libraries such
as webd.js to listen to changes in transaction’s facts and also to log the new
coordination facts and thus keep the history of transaction states.

event NewFact(
C_facts c_fact,
string transaction_name

)

function request() internal {
current_c_fact = C_facts.Requested;
NewFact (C_facts.Requested, name);

3

4.4.2 Mortgage Completion as Smart Contract

We have 7 consequent transactions with the Mortgage completion being the
parent transaction. The Mortgage completion transaction can be looked at as
the contract between the Loaner and the Client with conditions needed to be
fulfilled for the contract to be finished. This contract‘s underlying transaction
needs notarization, data sharing and trustless control of the execution. So
first transaction where we can use smart contract is Mortgage completion.
The DEMO model itself would not change.

The idea is that this smart contract would be deployed to blockchain by
the Loaner of the Mortgage, after the T1-Mortgage completion is requested.

We created a contract called MortgageCompletion. The state variables
Mortgage and Property based on the BCT (fig. and OFD (fig.
models represent a data needed for the contract. Further we declare that the
contract has four sub-transactions its state depends on according to the PSD

51

4. PROOF OF CONCEPT

model (fig. . Three of them are represented by SubTransaction structure
and one is represented by another contract, which will be discussed later.
Finally we declare the addresses of the actors for the sub-transactions, for
control of access and conditions control.

contract MortgageCompletion is Transaction {

struct Property {
string id;
uint value;
address owner;
address lien;
bool insured;

struct Mortgage {
uint amount;
uint annual_percentage_rate;
uint final_amount;
uint amount_of_payment;

Mortgage public mortgage;
Property public property;

SubTransaction public propertylInsurance = SubTransaction(
"Property Insurance", C_facts.Initial);

SubTransaction public propertyOwnershipTransfer = SubTransaction(
"Property Ownership Transfer", C_facts.Initial);

SubTransaction public propertylLeinRelease = SubTransaction(
"Property Lein Release", C_facts.Initial);

MortgagePaingOff public mortgagePaingOff;

address client;
address insurer;
address property_releaser;

In the constructor of MortgageCompletion we declare the state variables
that are already known and we define the actors addresses which are definite.
(Please note that the address used are only for illustration).

function MortgageCompletion() Transaction("Mortgage completion",
"Mortgage is completed",
0x014723a09acff6d2a60dcdf7aadaf£308fddc160c,
msg.sender)

52

4.4. DEMO and Smart Contract

client = initiator;
insurer = 0x14723a09acff6d2a60dcdf7aa4aff308fddc160c;
property_releaser = 0x14723a09%acff6d2a60dcdf7aa4aff308fddc160c;
property = Property("1",
0xdd870£falb7c4700£2bd7£44238821c26£7392148,
0x0, 1000000, false);

The last part are the transaction execution functions. The logic of each
step of a transaction is based on the Action rules and data changes based on
BCT (fig. and OFD (fig. models.

The function promiseMortgageCompletion represents the promise of Mort-
gage completion based on the Action Rule 1 (tab. and the Action Rule 2
(tab. [£.4). Here the function also performs implicit transaction execution by
requesting Property insurance and Property ownership transfer.

function promiseMortgageCompletion(uint amount,
uint _annual_percentage_rate,
uint _final_ amount, uint _amount_of_payment)
isRequested onlyExecutor

promise() ;

mortgage.amount = amount;

mortgage.annual_percentage_rate = _annual_percentage_rate;
mortgage.final_amount = _final_amount;
mortgage.amount_of_payment = _amount_of_payment;
requestPropertyInsurance();
requestPropertyOwnershipTransfer();

Here we have two functions that represent the Mortgage ownership transfer
state and accept based on the Action Rule 4 (tab. . Here the performer of
the request is not considered an authority and the conditions defined in claim
to truth cannot be checked automatically, so both state and accept must be
explicit. Once the accept is performed therefore the conditions from claim to
truth have been verified outside smart contract, the state variables are set to
desired values defined by the action rule.

function statePropertyOwnershipTransfer() {
require (msg.sender == client);
stateSub(propertyOwnershipTransfer);

}

93

4. PROOF OF CONCEPT

function acceptPropertyOwnershipTransfer() onlyExecutor {
require(propertyOwnershipTransfer.current_c_fact ==
C_facts.Stated);
property.owner = client;
property.lien = this;
acceptSub(propertyOwnershipTransfer) ;

}

On the other hand the property releaser is considered an authority so when
stating the Property lien release, based on Action Rule 12 (tab. , We can
perform accept acceptSub(propertyLeinRelease) and state tacitly.

function statePropertylLeinRelease(string _property_id) {

require(propertyLeinRelease.current_c_fact ==
C_facts.Requested);

require (msg.sender == property_releaser) ;
require(keccak256(_property_id) == keccak256(property.id));
property.lien = 0x0;
acceptSub(propertylLeinRelease) ;
state();

As stated before the transaction Mortgage Paying off is represented by
another smart contract, which is created from within the MortgageContract.

function requestMortgagePaing0ff () onlyExecutor returns (address) {
require(propertyInsurance.current_c_fact == C_facts.Accepted);
require(propertyOwnershipTransfer.current_c_fact ==
C_facts.Accepted);
mortgagePaing0ff = new MortgagePaingOff (this, mortgage.final_amount,
mortgage .amount_of _payment) ;
return address(mortgagePaing0ff);

}

4.4.3 Mortgage Paying Off as Smart Contract

Mortgage paying off is another transaction that can be represented by smart
contract. The difference is that here it is not just the transaction but also
the actor A-3. This is given by the trustless payments in ethers on Ethereum
blockchain and its usage in smart contract, all the executional logic applied by
actor A-3 is then fully replaceable by smart contract. The DEMO model itself
would not change, only the actor role of A-3 is assigned to smart contract. The
initiator of this transaction is than the Mortgage completion smart contract
and executor is the contract itself.

o4

4.5. Simulation

An important function is the stateMortgagePayment based on the Action
Rule 9 (tab. [4.11)) and 10 (tab. 4.12]). A withdrawal pattern, the recommended
method by solidity to control funds transfer, was used here [36].

function stateMortgagePayment() payable {
require(mortgagePayment.current_c_fact == C_facts.Requested);
require(msg.value == amount_of_payment);
acceptSub(mortgagePayment) ;
amount_paid += msg.value;
pendingWithdrawal += msg.value;

if (amount_paid == amount) {
state();
mortgageCompletion.acceptPropertyPaing0ff () ;
} else {
requestMortgagePayment () ;
}
}

4.5 Simulation

In this section we are going to simulate the execution of the Mortgage Com-
pletion contract using Remix, to illustrate the behavior of blockchain and the
contracts.

© ' prowser/transacion.sol ¥ >+ compile Run
136 - contract MortgageConpletion is Transaction (. mortgage
138~ struct Property [
13 0o id;
1a8
1a1
142
163 6: amount_of_payment 0
143]
145 current_c_fact 0: uints: 1
146 - struct Mortgage {
147 uint amount;
128 uint annual percentage_rate; executor
ia3 uint final_amount;
150 uint amount_of_payment;
151 3
15
153 Mortgage public mortgage: propertyOwnershipT
154 Property public property; ransier
155
156 SubTransaction public propertyInsurance = SubTransaction("Property Insurance”, C_facts.Initial); - propertyLeinRelease 0: string: name Property Lein
bE C a
@ [2] only remix transactions, script ~ Listen on network v L inte: current ¢ fact O

propertylnsurance
creation of browser/transacion.sol:Mortgageconpletion pending. ..

property
Ivn] from:Bxca3...a733c, to:browser/transacion.sol:MortgageCompletion. (constructor), valu [Del] Debu
e:0 wei, data:0x606...10029, 1 logs, hash:@xeff...39811 initiator
undefined errored: Cannot read property *op' of undefined
Icalll from: - , to:browser/transacion.sol:MortgageCompletion.initiator(), data:5c39f...9 [Dems| ocou
fccl, return mortgagePaingOf
{

"g": “address: x14723a89acff6d2a60dcdf7aadaff308fddc160C" statePropertyOuner
) ShipTransier

acceptlorigageCom

Icalll from: - , to:browser/transacion.sol:MortgageConpletion.current_c_fact(), data:982f [pemi] o:bug pletion
8...febeo, return: s
{ rhpTranster
, "a": “uintg: 1" cesprgeypang
undefined errored: Cannot read property *op’ of undefined - SialsPropeWEEEn sting_property_id

Figure 4.7: Deployment of the contract

The first step is to deploy the contract to our virtual blockchain. We choose
the address to deploy from, we set the gas limit and than create the contract

95

4. PROOF OF CONCEPT

MortgageCompletion. As we can see in fig [1.7] the contract was deployed, its
public state variables and methods are listed on the right side. The message
“undefined errored: Cannot read property ’op’ of undefined” is a Remix bug,
the contract deployment was successful. This step is taken once the Mortgage
Completion has been requested. The contract is deployed by the loaner.

2 ansier
A 173+ function promiseMortgageCompletion(uint amount, uint _annual_percentage_rate, uint _final_amount, wint _amount_of_p - .
178 promise(): propertyLenRelease 0: string: name Property Lein
175 rortgage.amount = amount;
175 mortgage.annual_percentage_rate = _annual_percentage_rate;
7 rortgage.Final Srount ~__fTnal_snaint;
178 rortgage. anount_of_paynent ~ _amount_of_paynent;
179 FequastoropereyTnsarance):
180 requestPropertyOunershipiransfer(); properyinauenc:
181 }
182 property
& 183 function declineMortgageCompletion() isRequested onlyExecutor {
184 decline();
= ¥ inifator
186 -
187
T 4
(4 [2] only remix transactions, script ¥ Listen on network ¥ morigagePaingO
{ .
q statePropertyOwner N
uint256: amount 8" L
‘hipTranster
int256: annual percentage rate 6", !
int256: final amount 0" accepthorigageCom
"3vi "yint256: amount of payment o° pletion
3 acceptPropertyOwne
rshipTransfer
[call] from: - , to:browser/transacion.sol:MortgageCompletion.propertyleinRelease(), dat |Detls| Oebuy ey Tz
a:7f046. . .4649b, return: on
"§": "string: name Property Lem Release” salcPropertyinsuran <ting _propery_id
"1': "uint8: current c_fact
} decineMorigageCo
moletion
transact to browser/transacion.sol:MortgageCompletion.promiseMortgageCompletion pending ... requesProgeryPan
[vm] from:0xca3...a733c, to:browser/transacion.sol:MortgageCompletion premssMur(gage(emp Details Debug promiseMorigageCa | 1 50, 2, 1
Tetion(uint256, uint256,uint256,uint256) 6692...77b3a, value:0 wei, data:0x2d4...000 mpletion .
Togs, hash:ex014....be7da statePropertyleinRel d
case -

>

Figure 4.8: Promising the Mortgage Completion

When the request has been internally evaluated by the loaner and the con-
ditions were finalized, the Mortgage Completion is either declined or prom-
ised. In the case of promise, data about the mortgage are sent in a blockchain
transaction. For illustration we define the mortgage amount to 1 wei, with the
annual percentage rate 50% and resulting on final amount to pay of 2 wei fig.
M8 Tacit request of Property Insurance and Property Ownership Transfer is
executed.

=] [2] only remix transactions, seript v Listen on network ¥ 1: uints: current_c_fact 0

i IR cirvent ¢Fact & T £ sy
}
progery 0: string id 1
transact to browser/transacion. sul'Mnngage(nmpletinn statePropertyInsurance pel\ding 1: uint256: value
[vm] from:8x147...c160¢c, to:browser/transacion.sol: I‘Iongags(nmpletmr\ statePrnpertyInsul’a Details Debug 12646989226678830056062036415

nce(string) 0x692...77b3a, value:0 wei, data:0x2bd...00860, 1 logs, hash:xasy...453: - 32120539430171255112
transact to browser/transacion.sol:MortgageCompletion.acceptPropertyOwnershipTransfer pending ... 2

[vm] from:@xca3...a733c, to:browser/transacion.sol:MortgageCompletion.acceptPropertyOwner 'Demmis —Debug
shipTransfer() 0x692...77b3a, value:0 wei, data:0x3a6...58b54, 1 logs, hash:xlcl...7cf80

call to browser/transacion.sol:MortgageCompletion.property

[call] from: - , to:browser/transacion.sol:MortgageCompletion.property(), data:176fd...fd pemis o0
3f0, return: -

ring: id 1 inifator
int256: value 126469892261 03841532120539430171255112",

idress: owner 6x14723a09acff6d2a60dcdf7aadaf F308fddcl60c”,

"address: Llien 8x692a70d2e424a56d2c6c27aa97d1a86395877b3a",

"bool: insured true”

) - morigagePaingOff 0: address: 00

Figure 4.9: Change of state of Property

In the next step, the Property Insurance and Property Ownership Transfer
are executed. To state these transactions successfully, the blockchain transac-
tion must be sent from the address assigned to insurer and property transferer.
As the insurer is considered an authority in our scenario, the accept of the
Property Insurance is tacit. On the contrary, accept of the Property Owner-
ship Transfer must be performed explicitly. When accepted the state variable

o6

4.5. Simulation

Property is updated and the address of the client is added as owner and ad-
dress of the Mortgage Contract as the lien address fig.

When both sub-transactions are accepted, the loaner can request the Mort-
gage Paying Off. If the loaner would try to request it sooner the blockchain
transaction would not be successful and contract would be reverted fig. [£.10]
In this step the Mortgage Paying off contract is created and deployed. We can
get the contract‘s address from the main contract state variable and load it
using the address. The next steps are then performed by the Mortgage Paying
Off contract.

£
231 function requestPropertyPaing0ff() onlyExecutor returns (address) {

232+ require(propertyInsurance.current_c_fact == (_facts.Accepted);

233 require(propertyOwnershipTransfer.current_c_fact == _facts.Accepted);

234 mortgagePaingdff = new MortgagePaingOff{this, mortgage.final_amount, mortgage.amount_of payment);
235 return address(mortgagePaing0ff);

236 1

@ [2] only remix transactions, script = Listen on network L]
LU DU UALTE LUV, RV UNSE /L G0 LUI U LIV LY QYL LN LS LAV 3 LA L 1 UPSE LYVINIS] 3 CEEIST Uehug
hipTransfer{) 0x692...77b3a, value:0 wei, data:0xcl2...01lce6, 1 logs, hash:0xc@6...0cbd7

transact to browser/transacion.sol:MortgageCompletion.requestPropertyPaing0ff pending ...

[vm] from:8x147...c160c, to:browser/transacion.sol:MortgageCompletion.requestPropertyPain pemils Debug
g0ff() 6x692...77b3a, value:8 wei, data:@xafd...df6bc, @ logs, hash:8x161...2edf9 .

transact to browser/transacion.sol:MortgageCompletion. requestPropertyPaing0ff errored: WM error: rever

revert The transaction has been reverted to the initial state.
Debug the transaction to get more information.

>

Figure 4.10: Reverting transaction

The Mortgage Paying Off contract covers the corresponding transaction
and also acts like the actor A-3, because payments on blockchain can be
handled automatically. When the Mortgage Paying Off is created, the final
amount and amount of one payment are initialized from the Mortgage Com-
pletion contract, we define the address of the Loaner to pay the amount to
and, finally, its sub-transaction Mortgage Payment is requested fig.

The mortgage payment can be sent from any address. In our scenario two
payments with the amount of 1 wei must be paid. In order to accept the
payment, the Mortgage payment must be requested and the sent value must
be equal to the amount of one payment, otherwise the blockchain transaction
is reverted and ethers are not transfered. To pay the payment we send a
blockchain transaction with the desired value to the contract fig.

Once the full amount has been paid, the Mortgage Paying Off is stated and
automatically calls Mortgage Completion contract to accepted it. The Mort-
gage Lien Release is then requested tacitly. The Lien Releaser is considered
an authority, therefore when Mortgage Lien Release is stated the accept is
performed automatically, as well as the Mortgage Completion stating. As we
can see in fig. from the console detail of the blockchain two events were
logged. One for accepting (5) of the Property Lien Release and one for stat-
ing (4) the Mortgage Completion. On the right side we can see that the state
variable Property has been updated and the lien address was set to empty

o7

4. PROOF OF CONCEPT

I browser/transacion.sol * Compile Run Settings Debugger Analysis Sur

28} . browserltransacion sol:MortgagePair ¥

251
252~ tract Morty P jof f AL t
252~ contract MortgagePaingOff is Transaction { At Address 0x755014da2631c47d238078bb47d217

258 uint public amount:
B3 uint public snounts gg\gjwt- Create | address_mortgage, uin256 _amount, t
257 Hor tgageConpletion mortgageCompletion;
258 SubTransaction public mortgagePayment = SubTransaction(“Mortgege Payment”, €_facts.Initial);
59 address public sender;
260
261 address payOffAccount; 0 pending transactions
262 uint pendingwithdramal;
263
264
B 265 function MortgagePaing0ff(address _mortgage, uint _amount, uint _amount_of_paynent) Transaction("Mertgage paing off
266 amount = _amount; N "
= ot 4 = _anount_of paynent; . browser/transacion.sol:MortgageCompletion at 0x692..
268 nortgageCampletion = MortgageCompletion(mortgage);
4 269 payOfFAccount = Bx4b0B97b@513Fdc7c541b6d3d7e02acde5364d2db;
;;? 3 requestMortgagePayment(); v browser/transacion.sol:MortgagePaingOff at 0x755..5
212
273~ fun((\w\ rew:sthﬂﬂiﬂ:Pam:nt() isRequested internal { current_c_fact
274 equire(amour aid < amount);
;;g 3 r«]uestiuh(mrlgﬂgehmnt) sender
A
278+ function stateMortgagePayment() payable (P, & 0:sting: name Mortgage Payment
19 require(mortgagePayment. Current. ¢ fact == C_facts.Requested); - LT o gage Pay
20 . 1: uint: current c fact1
[} [2] only remix transactions, script Listen on network ¥ initator
vriu, e . i
"9": "uint256: 0"
) [anom 0. uini256: 2 |
call to browser/transacion.sol:MortgagePaing0ff.amount of payment ‘amount_paid 0: uint256: 0
[call] from: - , to:browser/transacion.sol:MortgagePaing0ff.amount of payment(), data:aee [peais! Deoug | amount_of payment 0: uin(256: 1 |
6...f68af, return:
{
"9": "uint2s6: 1° i
} acceptPropenyPaing
or
>
€ * prowser/transacion.sol * > * Compile Run Settings Debugger Analysis
70 requesthortgagePaynent(};
771) Environment Javascript VM -
m
5r fnceion reuestiortoagepoyment() dsheauested internal { Account Oxab0...4020l> 100 etner) ™
275 Feﬂuesﬂub(mrtqiﬂel’amnt)-
gg 1 Gas limit 3000000
oy function stateMortgagePayment() payable {
219 require(nortgagePaynent. current_c_fact == C_facts.fequested); Gas Price 0
280 nt_of_payment);
g:; i Value 1 wei
283 Dend\nq\l\(hdrawa\ = msg.value;
284
285 - if (amount_paid == amount) { - -
286 state(.
287 rortgageCompletion. acceptPropertyPaingOff(
288 - 3 else { > browser/transacion.ol MortgageCompletion 3t X755
289 requestMortgagePayment();
290
21 3 v browsets i Mor 07555
= owser/transacion sokMortgagePaingOF ..
A 293~ function accepwmpmypamgofm isStatad onlyInitiator {
13 require(anountpeid — - aunent ¢ foct
295
o ‘sender
o [2] only remix transactions, script = Listen on network ¥
mongsgepaymant 0 string: naime Payment
g7 Tstring: mane Mortgage Paysent”. . " o e o P
“1°: “uints: current c_ fact 1: uintB: current_c_fact 1
E initiator
transact to browser/transacion. sol:HortgagePaing0tt. statetortgagePaynent pending ...
exscaner
[vm] from:@x4b@...4d2db, to: brr»rser/(ransacion.sol:l l‘!n r\gig:PalnEfo stateMortgagePayment() 8x755...5b6a5, va\ - s
Uetl wei, data:@xcdf...e0dd7, 2 logs, hash:6xads. pm— o
sratus (021 Transaction mined snd execution succesd = T
fron 1 0300097005 137dcT oA 1060a7ed29ce5 36420
m B tgagePaingOf) 7 r7azes00as amount o paymert () in(256: 1
gas I 3006000 gas it
transaction cost B 79827 gas
e I 58555 gas e
hash B sisvorgagepaym
input B Bxc0fe0daT e

Figure 4.12: Mortgage Payment blockchain transaction

address.
Now the final step is for the client to accept the Mortgage Completion and
the transaction is finished.

o8

4.5. Simulation

e [2] only remix transactions, script ~ ~

transact to browser/tr:

Listen on network

1:MortgageConplet: roper pending ...

[vm]_from:8xl47...cl68c. to:browser/transacion.sol:MortgageConpletion.statePropertyleinRelease(string) 869
2.7 s e

3a, value:0 wei, data:0x675...06000, 2

logs, hash:0x484. . .5065:

Desals

61 Transaction mined and execution succeed

I 0x147233003¢ f1642360dc 7a34af 1308 Fdde 160

B browser, tr 1

7
63087703

propertyainRelease

© 306000 gas
0 45156 gax
© 23302 gas]

morgagepaingof

Figure 4.13: State of Lien Release

4.5.1 Summary

We have used the DEMO methodology to understand and reveal the essence
of a mortgage process. Using the proposed principles of creating contract
introduced in chapter [3] we were able to create working smart contracts based
on the DEMO models.

We created a trustless notarization of the process. The contract holds
immutably the agreed mortgage conditions such as amount of payment and
interest rate. Further it controls execution of some parts, such as automatic
mortgage payment control and automatic lien release request. This way the
Client can be sure that once the mortgage has been paid off the lien will be
released. It also defines a single point of access to the data and coordination
for all parties as well as simplifies some steps as automatic control can be
performed, allowing us to carry out some acts tacitly. Using smart contract
would not change the DEMO model or the essence of the process it could help
to simplify the current implementation. For example the Client would not
have to bring the confirmation about insurance to the Loaner, because this
is done by the smart contract, this reduces the overall process steps behind
mortgage and eliminates possible bureaucracy.

29

Conclusion

The main aim of this thesis was to review the capabilities of blockchain and
smart contracts, evaluate their compatibility with Enterprise Engineering,
form a method of using smart contracts in the DEMO methodology and pro-
pose a software architecture of an IT system based on Enterprise Engineering
integrating smart contracts.

Blockchain, decentralized, autonomous, secure and trustless database, with
its smart contracts is a promising technology, with many proposed applica-
tions. Therefore, there exists misconceptions developed regarding its poten-
tial. In order to avoid this in our solution, we reviewed its capabilities and
accounted for the common misconceptions. Consequently, we evaluated its
compatibility with EE. In order to benefit fully from blockchain, two ap-
proaches were distinguished. Firstly, we stated that we can use blockchain as
notarization system for information and documents related to transaction as
well as transaction progress and results. Secondly, we used it as a transaction
execution system for partial or full execution.

Secondly, we have shown how we can apply smart contracts to EE, a
method of creating smart contract from DEMO models was devised. The
method defines how to translate the models into contract code using the EE
principles, for both approaches, notarization and execution. Then we pro-
posed a software architecture of an Enterprise Information System integrating
blockchain and basic principles of their interaction.

In the end a proof of concept was developed based on mortgage process.
We have defined and analyzed the process, applied the DEMO methodology
and consequently developed an Ethereum Solidity contract using our method,
proving that our concept is feasible.

To summarize, we were able to devise a method of using smart contracts
in the DEMO methodology in the context of EIS. Such integration would
bring blockchain‘s benefits to process execution, namely secured and trustless
storage of data and immutable transaction execution. This might bring a new
way of looking at transactions with external actors, where the blockchain can

61

CONCLUSION

serve as a trustless coordination of the operation and notarized data source.
The formalization of contract creation from DEMO models can also support
their integrity and security, as the EVM in its turing-completeness or other
smart contract implementations are a powerful tool, but also error-prone,
as security incidents have been reported [27]. Further, it could serve as a
methodology for creating well designed Dapps and DAOs.

Future research

As for future work, deeper formalization of the method of translating the
models into contract code could be considered as well as automatic creation of
contracts by BPMS based on EE such as DEMO engine. Secondly, possibilities
of optimization of the contract code should be examined to reduce the costs
and effectiveness of blockchain execution.

Another topic to enhance is assets representation on blockchain. Consider
how would our proof of concept mortgage process change, if the property and
its ownership was represented digitally on blockchain instead of cadaster. That
way, further atomization could be introduced and the importance of smart
contract would gain new dimensions. DEMO methodology could also be used
for such assets digitalization and creation of their blockchain representations.

In general, the proposed concept of using smart contracts would have many
benefits, but there are some pre-requisites, such as digital identity or payments
in cryptocurrencies, that would need to be fulfilled for their broader applica-
tion. As the technology is still at its beginning, it is important to monitor its
future advance.

62

Bibliography

Dietz, J. L. MI-MEP DEMO Bachelor [lecture]. EDUX CVUT FIT, 2016,
[online], [cit. 2017-03-26].

Vejrazkova, 7. Business Process Modeling and Simulation: DEMO,
BORM and BPMN. Master’s thesis, Czech Technical University in
Prague, Faculty of Information Technologies, 2013.

Dietz, J. L. Enterprise Ontology: Theory and Methodology. Berlin Heidel-
berg New York: Springer, 2006, ISBN 3-540-29169-5.

bitcoin.org. Bitcoin Developer Guide [online]. [cit. 2017-05-1]. Available
from: https://bitcoin.org/en/developer-guide#block-chain

Smart Contracts Alliance. Smart Contracts: 12 Use Cases for Busi-
ness & Beyond. 2016, [online], [cit. 2017-10-08]. Available from:
http://www.the-blockchain.com/docs/Smart?20Contracts420-
%2012%20Use?,20Cases’,20f or,20Business’20and’%20Beyond’,20—
%20Chamber?’,200f%20Digital’20Commerce.pdf

Weber, I.; Xu, X.; et al. Untrusted Business Process Monitoring and Exe-
cution Using Blockchain. In Business Process Management: 14th Interna-
tional Conference, BPM 2016, Cham: Springer International Publishing,
2016, pp. 329-347.

Skotnica, M. Towards the Foundations of Fact and Rules Ontology for
Discrete Systems. Master’s thesis, Czech Technical University in Prague,
Faculty of Information Technologies, 2016.

Hintzen, J.; van Kervel, S. J. H.; et al. A professional Case Management
System in production, modeled and implemented using DEMO. In Pro-
ceedings of 16th IEEE Conference on Business Informatics (CBI), 2014.

63

https://bitcoin.org/en/developer-guide#block-chain
http://www.the-blockchain.com/docs/Smart%20Contracts%20-%2012%20Use%20Cases%20for%20Business%20and%20Beyond%20-%20Chamber%20of%20Digital%20Commerce.pdf
http://www.the-blockchain.com/docs/Smart%20Contracts%20-%2012%20Use%20Cases%20for%20Business%20and%20Beyond%20-%20Chamber%20of%20Digital%20Commerce.pdf
http://www.the-blockchain.com/docs/Smart%20Contracts%20-%2012%20Use%20Cases%20for%20Business%20and%20Beyond%20-%20Chamber%20of%20Digital%20Commerce.pdf

BIBLIOGRAPHY

[9]

[10]

[11]

[14]

[15]

64

Swan, M. Blockchain. Sebastopol: O‘Reilly Media, Inc, 2015, ISBN 978-
1-491-92049-7.

Dietz., J. L. Demo Basis - Glossary of Terms. Sapio bv, 2014.

Dietz, J. L. The PSI theory - understanding human collaboration. 2016,
[online], [cit. 2017-04-18].

Antonopoulos, A. M. Mastering Bitcoin. Sebastopol: O‘Reilly Media, Inc,
2014, ISBN 978-1-449-37404-4.

Nakamoto, S. Bitcoin: A Peer-to-Peer Electronic Cash System. [online],
[cit. 2017-04-28]. Available from: https://bitcoin.org/bitcoin.pdf

NEO. NEO Smart Contract Introduction. [online], [cit. 2018-1-2]. Avail-
able from: http://docs.neo.org/en-us/sc/introduction.html

Swanson, T. Consensus-as-a-service: a brief report on the emer-
gence of permissioned, distributed ledger systems. 2016, [online]. Avail-
able from: http://www.ofnumbers.com/wp-content/uploads/2015/04/
Permissioned-distributed-ledgers.pdf

Pilkington, M. Blockchain Technology: Principles and Applications. In
Research Handbook on Digital Transformations, edited by F. X. Olleros;
M. Zhegu, 2015. Available from: https://ssrn.com/abstract=2662660

Ethereum. Ethereum Project. [online], [cit. 2017-11-29]. Available from:
https://ethereum.org/

The Linux Foundation. Hyperledger. [online]. Available from: https:
//www.hyperledger.org/

Ubiq Technologies Inc. Ubiq. Available from: https://ubigsmart.com/
NEO. NEO White Paper. Available from: http://docs.neo.org/en-us/

Dannen, C. Introducing Ethereum and Solidity. Brooklyn, New York,
USA: O‘Reilly Media, Inc, 2017, ISBN 978-1-4842-2534-9.

Ethereum. Ethereum Homestead Documentation. [online]|, [online],
[cit. 2017-11-92]. Available from: http://www.ethdocs.org/en/latest/
index.html

Rikken, O. 3 Smart Contract Misconceptions. [online], [cit. 2017-
12-03]. Available from: https://www.coindesk.com/3-common-smart-
contract-misconceptions-explored/

https://bitcoin.org/bitcoin.pdf
http://docs.neo.org/en-us/sc/introduction.html
http://www.ofnumbers.com/wp-content/uploads/2015/04/Permissioned-distributed-ledgers.pdf
http://www.ofnumbers.com/wp-content/uploads/2015/04/Permissioned-distributed-ledgers.pdf
https://ssrn.com/abstract=2662660
https://ethereum.org/
https://www.hyperledger.org/
https://www.hyperledger.org/
https://ubiqsmart.com/
http://docs.neo.org/en-us/
http://www.ethdocs.org/en/latest/index.html
http://www.ethdocs.org/en/latest/index.html
https://www.coindesk.com/3-common-smart-contract-misconceptions-explored/
https://www.coindesk.com/3-common-smart-contract-misconceptions-explored/

Bibliography

[24]

[25]

[26]

[27]

33]

[34]

Bartoletti, M.; Pompianu, L. An Empirical Analysis of Smart Contracts:
Platforms, Applications, and Design Patterns. In Financial Cryptography
and Data Security: FC 2017 International Workshops, WAHC, BIT-
COIN, VOTING, WTSC, and TA, Sliema, Malta, Ap 7il 7, 2017, Revised
Selected Papers, Cham: Springer International Publishing, 2017, ISBN
978-3-319-70278-0, pp. 494-509.

ethernodes.org. The Ethereum Nodes Explorer. [online], [cit. 2017-12-03].
Available from: https://www.ethernodes.org

Clack, C. D.; Bakshi, V. A.; et al. Smart Contract Templates:
foundations, design landscape and research directions. CoRR, volume
abs/1608.00771, 2016, |1608.00771.

Norta, A. Designing a Smart-Contract Application Layer for Transact-
ing Decentralized Autonomous Organizations. In Advances in Comput-
ing and Data Sciences: First International Conference, ICACDS 2016,
Ghaziabad, India, November 11-12, 2016, Revised Selected Papers, Singa-
pore: Springer Singapore, 2017, ISBN 978-981-10-5427-3, pp. 595-604.

Weske, M. Business Process Management, 2nd Edition. Berlin, Heidel-
berg: Springer,, 2012, ISBN 978-3-642-28615-5.

White, S. A. Introduction to BPMN. [online], [cit. 2017-12-11]. Avail-
able from: http://www.bptrends.com/publicationfiles/07-04%20WPY
20Intro%20to0%20BPMNY,20-%20White.pdf

Garcia-Banuelos, L.; Ponomarev, A.; et al. Optimized execution of busi-
ness processes on blockchain. In International Conference on Business
Process Management, Springer, 2017, ISBN 978-3-319-64999-3, pp. 130-
146.

Ethereum Solidity. Solidity Documentation. [online], [cit. 2017-11-
22]. Available from: https://solidity.readthedocs.io/en/develop/
index.html

Drwiega, T. JSON RPC. [online|, [cit. 2017-11-22]. Available from:
https://github.com/ethereum/wiki/wiki/JSON-RPC

Remix. Remix - Solidity IDE. [online], [cit. 2017-11-22]. Available from:
https://remix.readthedocs.io/en/latest/

MGIC for Homebuyers. The mortgage process. [online], [cit. 2017-
11-21]. Available from: https://homebuyers.mgic.com/getting-your-
mortgage/mortgage-process.html

65

https://www.ethernodes.org
1608.00771
http://www.bptrends.com/publicationfiles/07-04%20WP%20Intro%20to%20BPMN%20-%20White.pdf
http://www.bptrends.com/publicationfiles/07-04%20WP%20Intro%20to%20BPMN%20-%20White.pdf
https://solidity.readthedocs.io/en/develop/index.html
https://solidity.readthedocs.io/en/develop/index.html
https://github.com/ethereum/wiki/wiki/JSON-RPC
https://remix.readthedocs.io/en/latest/
https://homebuyers.mgic.com/getting-your-mortgage/mortgage-process.html
https://homebuyers.mgic.com/getting-your-mortgage/mortgage-process.html

BIBLIOGRAPHY

[35] Hands on Banking. Steps in the lending process. [online], [cit. 2017-
11-21]. Available from: https://handsonbanking.org/adults/buying-
home/getting-mortgage/steps-in-the-lending-process/

[36] Ethereum Solidity. Common Patterns. [online], [cit. 2017-11-27]. Avail-
able from: http://solidity.readthedocs.io/en/develop/common-
patterns.html

66

https://handsonbanking.org/adults/buying-home/getting-mortgage/steps-in-the-lending-process/
https://handsonbanking.org/adults/buying-home/getting-mortgage/steps-in-the-lending-process/
http://solidity.readthedocs.io/en/develop/common-patterns.html
http://solidity.readthedocs.io/en/develop/common-patterns.html

APPENDIX A

Acronyms

ABD Actor Bank Diagram

AM Action model

ATD Actor Transaction Diagram

BCT Bank Contents Table

BPD Business Process Diagram

BPM Business Process Management

BPMN Business Process Model and Notation
BPMS Business Process Management Systems
CM Construction model

DACs Decentralized autonomous corporations
DAOs Decentralized autonomous organizations
Dapps Decentralized applications

DEMO Design and Engineering Methodology for Organizations
EE Enterprise Engineering

EIS Enterprise information system

EOA Externally Owned Account

EVM Ethereum Virtual Machine

FM Fact model

FTP File Transfer Protocol

67

A. ACRONYMS

HTTP Hypertext Transfer Protocol
IAM Interaction model

ISM Interstriction model

IT Information Technology

IUT Information Use Table

MDE Model Driven Engineering
OCD Organization Construction Diagram
OER Organization Essence Revealing
OFD Object Fact Diagram

OPL Object Property List

PM Process model

PSD Process Structure Diagram
SMTP Simple Mail Transfer Protocol
SC Smart Contract

TPT Transaction Product Table

68

APPENDIX B

Contents of enclosed CD

readme.tXt ...t the file with CD contents description
= o o P the directory of source codes
SOLidity «vvvviiiiiii solidity implementation sources
thesis........oo.... the directory of IXTEX source codes of the thesis

I 7 PP the thesis text directory
Lthesis.pdf the thesis text in PDF format

| MOAELS « ettt DEMO models images

	Introduction
	Theoretical Foundations
	DEMO Methodology
	Blockchain
	Blockchain 2.0
	Smart Contracts Platforms
	Ethereum

	Evaluation of BC and EE Compatibility
	Smart Contract Misconceptions
	EE and BC Compatibility

	IT System Based on EE and SC
	SC based on DEMO
	Software Architecture
	Comparison to Business Process Management Systems Based on BPMN

	Proof of Concept
	Technologies used
	Process description
	DEMO Model
	DEMO and Smart Contract
	Simulation

	Conclusion
	Future research

	Bibliography
	Acronyms
	Contents of enclosed CD

