I. IDENTIFIKACE ÚDAJE

<table>
<thead>
<tr>
<th>Název práce:</th>
<th>Navržení postupu svařování při opravách síta alkalizačního lisu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jméno autora:</td>
<td>Bc. Jan Vezáč</td>
</tr>
<tr>
<td>Typ práce:</td>
<td>diplomová</td>
</tr>
<tr>
<td>Fakulta/ústav:</td>
<td>Fakulta strojní (FS)</td>
</tr>
<tr>
<td>Katedra/ústav:</td>
<td>12133</td>
</tr>
<tr>
<td>Pracoviště oponenta práce:</td>
<td>12133</td>
</tr>
</tbody>
</table>

II. HODNOCENÍ JEDNOTLIVÝCH KRITÉRIÍ

Zadání

Hodnocení náročnosti zadání závěrečné práce.

Zadání diplomové práce bylo dost náročné, protože zahrnuje několik různých témat. Na základě řešení důležitých problémů, které jsou nutné pro úspěšný závěrečný návrh řešení, bylo nutno se zabývat problematikou korozivzdorných ocelí ve vztahu ke korozii, svařování, technologickému procesu a zařízení na výrobu viskoz, rozboru mechnismu poškození a konečnému návrhu řešení. V předložené diplomové práci vysoko oceňují komplexní řešení od příčin poškození až pro výsledek použitelný ve výrobním závodu,

Splnění zadání

Posuďte, zda předložená závěrečná práce splňuje zadání. V komentáři případně uveďte body zadání, které nebyly zcela splněny, nebo zda je práce oproti zadání rozšířena. Nebylo-li zadání zcela splněno, pokuste se posoudit závažnost, dopady a případně i příčiny jednotlivých nedostatků.

Cíl diplomové práce podle zadání byl splněn jak v literární tak i v experimentální části.

Zvolený postup řešení

Posuďte, zda student zvolil správný postup nebo metody řešení.

Odborná úroveň

Posuďte úroveň odbornosti závěrečné práce, využití znalostí získaných studiem a z odborné literatury, využití podkladů a dat získaných z praxe.

Odborná úroveň diplomové práce je na vysoké úrovni. Student se velmi dobře orientoval v zadané problematice, v podstatě ve velmi různých oborech (korozivzdorné oceli - koroze - svařování - chemické analýzy - návrh materiálu a technologie jeho zpracování - inspekce)
A - výborně

Formální a jazyková úroveň, rozsah práce

Posudete správnost používání formálních zápisů obsažených v práci. Posudete typografickou a jazykovou stránku.

Práce je přehledně zpracována. Oceňuji, že se podařilo jednoduše a správně napsat jednotlivé kapitoly včetně rozebírání a diskuze výsledků a nezajímat se o zbytečných detailů. Rovněž z hlediska odborné terminologie je práce v pořádku.

Výběr zdrojů, korektnost citací

Vyjádřete se k aktuálnosti studenta při získávání a využívání studijních materiálů k řešení závěrečné práce. Charakterizujte výběr pramenů. Posudete, zda student využil všechny relevantní zdroje. Ověřte, zda jsou všechny převzaté prvky řádně odkryty od vlastních výsledků a úvah, zda nedošlo k porušení citační etikety a zda jsou bibliografické citace úplné a v souladu s citacími zvyklostmi a normami.

Je zřejmé, že ke kvalitnímu zvládnutí zadání, diplomant prostudoval velké množství dostupné tuzemské i zahraniční literatury. Citace jsou v souladu s normami a zvyklostmi.

Další komentáře a hodnocení

Vyjádřete se k úrovni dosažených hlavních výsledků závěrečné práce, např. k úrovni teoretických výsledků, nebo k úrovni a funkčnosti technického nebo programového vytesaného řešení, publikáčním výstupům, experimentální zkušenosti apod.

Jak již bylo uvedeno, výsledky a závěry diplomové práce jsou využitelné v praxi, při optimální volbě korozivzdorných ocelí na síta v zařízeních na výrobu celulózy.

III. CELKOVÉ HODNOCENÍ, OTÁZKY K OBHAJOBĚ, NÁVRH KLASIFIKACE

Připomínky k diplomové práci

Str. 15 – elektrochemická ochrana nespočívá v přídívání chemických inhibitorů do prostředí, ale v ochraně zařízení vloženým kovu napětí (obvykle stejnosměrným) pro snížení korozních rychlostí kovu

Str.28 – je špatně určen typ ocelí sita podle dokumentace. Ocel není legována Mo, jedná se tedy o ocel typu CrNi 17-10 jakosti 1.4300 resp. 17240 resp. AISI 304.

Analýza korozních zplodín (tab. 10) – zde nebyly ani analyzovány korozní zplodiny, ale pravděpodobné úsady (usazeniny), které vznikly v technologickém procesu. Tomu odpovídá žádná nebo nízká koncentrace legujících kovů, které jsou u oceli (Fe, Cr, Ni, Mn). Naopak jsou výrazně přítomny prvky, které jsou v korozním prostředí (vodní roztok xantogenátu) jako je Cl, S, Ca a Si. Vysoký obsah Ti je záhadou.

Část 6.3 (str. 33) a kap.9 (Tepelné zpracování) popisuje měkké žíhání při teplotě 550°C nebo žíhání pro odstranění pnutí při teplotách 420 - 620°C. Tato TZ se u austenitických korozivzdorných ocelí neprovozdu a teploty v rozmezí 450 – 850°C při době výdrže několik hodin jsou v podstatě zakázaná, protože může dojít ke zcitlivění oceli a vyvolání náchylností k mezikryštálové korozí a koroznímu praskání za napětí (SCC). Je ovšem pravda, že v případě tak silně alkaličního prostředí jako je 17 % NaOH a teplotě 40°C nedochází k mezikryštálové korozii ani SCC, přesto jedině doporučené TZ pro austenitické korozivzdorné oceli je rozpouštěcí žíhání 1050°C/voda. Pokud jsou austenitické korozivzdorné oceli silně zpevněny tvářením za studena a je potřeba snížit napětí, provádí se žíhání při max. teplotě 400°, kdy se sníží tz. špičky napětí.
Tyto připomínky v žádném případě výrazně nesnížují výbornou kvalitu diplomové práce
Předloženou závěrečnou práci hodnotím klasifikačním stupněm A - výborně.

Datum: 21.1.2018