
Czech technical university in Prague

Faculty of Civil engineering

Master's thesis

Prague 2018 Bc. Adam Laºa

Czech technical university in Prague

Faculty of Civil engineering

Study programme Geodesy and cartography

Branch Geomatics

Master's thesis

Process isolation in PyWPS framework

Izolace proces· ve frameworku PyWPS

Supervisor: Ing. Martin Landa, Ph.D.

Department of Geomatics

Prague 2018 Bc. Adam Laºa

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE
Fakulta stavební
Thákurova 7, 166 29 Praha 6

ZADÁNÍ DIPLOMOVÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

 Příjmení: Laža Jméno: Adam Osobní číslo: 396924

 Zadávající katedra: Katedra geomatiky

 Studijní program: Geodézie a kartografie

 Studijní obor: Geomatika

II. ÚDAJE K DIPLOMOVÉ PRÁCI

 Název diplomové práce: Izolace procesů ve frameworku PyWPS

 Název diplomové práce anglicky: Process isolation in PyWPS framework

 Pokyny pro vypracování:
Diplomová práce se věnuje možnostem izolace procesů v rámci frameworku PyWPS jako jedné z open source
implementací standardu OGC WPS (Web Processing Service). Na základě rešerše budou specifikována možná
řešení izolace či kontejnerizace WPS procesů pro předem definované scénáře. V rámci práce se počítá taktéž
s návrhem implementace vybraného scénáře v programovacím jazyku Python.

 Seznam doporučené literatury:
Scott Gallagher: Mastering Docker, ISBN: 978-1787280243
Sébastien Goasguen: Docker Cookbook, ISBN: 978-1491919712
Deepak Vohra: Pro Docker, ISBN: 978-1484218297
OGC® WPS 2.0 Interface Standard

 Jméno vedoucího diplomové práce: Ing. Martin Landa, PhD.

 Datum zadání diplomové práce: 11.10.2017 Termín odevzdání diplomové práce: 7.1.2018
Údaj uveďte v souladu s datem v časovém plánu příslušného ak. roku

Podpis vedoucího práce Podpis vedoucího katedry

III. PŘEVZETÍ ZADÁNÍ

Beru na vědomí, že jsem povinen vypracovat diplomovou práci samostatně, bez cizí pomoci, s výjimkou
poskytnutých konzultací. Seznam použité literatury, jiných pramenů a jmen konzultantů je nutné uvést
v diplomové práci a při citování postupovat v souladu s metodickou příručkou ČVUT „Jak psát vysokoškolské
závěrečné práce“ a metodickým pokynem ČVUT „O dodržování etických principů při přípravě vysokoškolských
závěrečných prací“.

Datum převzetí zadání Podpis studenta(ky)

Abstract

This master thesis is dedicated to a process isolation in PyWPS framework

as one of the OGC WPS implementations. OGC WPS is Web Processing

Service Standard de�ned by Open Geospatial Consortium.

The �rst part describes the standard itself including all three mandatory

operations GetCapabilities, DescribeProcess and Execute. At the end of the

�rst part some implementations of the standard are mentioned.

The second part concentrates on PyWPS, one of the WPS implementations

written in Python. Readers are introduced to the current state of PyWPS as

well as to PyWPS-demo project, a demo server instance, which the imple-

mentation part is based on. A research about possible solutions of process

isolation follows and then Docker technology is described as �nal choice for

implementaion.

The third part covers the implementation of Docker containers for process

isolation. The work�ow of Execute operation is described in detail and brand

new Container class with all its methods is introduced.

Keywords: OGC WPS, PyWPS, Docker container, Python, process isola-

tion, Web Processing Service, geoprocessing.

Abstrakt

Tato diplomová práce se v¥nuje moºnostem izolace proces· v rámci fra-

meworku PyWPS jako jedné z implementací OGC WPS. Web Processing Ser-

vice je standard vydaný a dále roz²i°ovaný Open Geospatial Consorciem.

První £ást popisuje samotný standard v£etn¥ v²ech základních poºadavk·

GetCapabilities, DescribeProcess a Execute. V záv¥ru první £ásti jsou zmín¥ny

n¥které z implementací WPS standardu.

Druhá £ást se zam¥°uje na PyWPS, coº je implementace WPS standardu

napsaná v programovacím jazyce Python. �tená°i jsou seznámeni jak se sou-

£asným stavem PyWPS, tak s projektem PyWPS-demo, ukázkovou instancí

PyWPS serveru, na kterém je postavena praktická £ást. Následuje re²er²e,

která mapuje moºné °e²ení izolace proces·, a nakonec je popsána Docker tech-

nologie, která slouºí pro kontejnerizaci. Tato technologie byla vybrána pro

samotnou implementaci izolace.

Poslední £ást se zabývá pouºitím Docker kontejner· pro izolaci proces·.

Detailn¥ je vysv¥tleno, jak funguje Execute operace a následn¥ je popsána

nov¥ vytvo°ená t°ída Container se v²emi svými metodami.

Klí£ová slova: OGC WPS, PyWPS, Docker kontejner, Python, izolace pro-

cesu, geoprocesing, zpracování dat.

Declaration of authorship I declare that the work presented here is, to the best

of my knowledge and belief, original and the result of my own investigations, except

as acknowledged. Formulations and ideas taken from other sources are cited as such.

In Prague

(author sign)

Acknowledgement Foremost, I would like to thank my parents for their long-

time support during my studies. My thanks also belong to Jáchym �epický for his

provided insight into PyWPS. Then I want to thank Martin Landa, my supervisor,

not only for his guidance during the work on the thesis, but also that he revealed

me the way to programming.

Contents

Introduction 12

I Web Processing Service 14

1 Web Processing Service 15

1.1 History . 15

1.2 Open Geospatial Consortium . 15

1.3 Web Processing Service . 16

1.3.1 GetCapabilities . 18

1.3.2 DescribeProcess . 21

1.3.3 Execute . 23

2 WPS implementations 26

2.1 deegree . 26

2.2 52◦North WPS . 26

2.3 GeoServer . 27

2.4 ZOO-Project . 28

2.5 ArcGIS Server . 29

2.6 PyWPS . 30

II PyWPS 31

3 PyWPS 32

3.1 History . 32

3.2 PyWPS 4.0 . 32

3.3 PyWPS-demo . 33

4 Process isolation in PyWPS 35

4.1 Asynchonous requests . 35

4.2 Current state . 35

4.3 Possible solutions for process isolation 40

4.3.1 Celery . 41

4.3.2 Docker . 41

4.3.3 psutil . 41

4.3.4 Sandboxed Python . 42

4.3.5 Virtual Machine/Vagrant . 43

5 Docker 45

5.1 Virtual machine vs. Docker container 46

5.1.1 Virtual machine . 46

5.1.2 Docker container . 47

5.2 Docker�le . 48

III Implementation 51

6 Implementation introduction 52

6.1 pywps-demo . 52

6.1.1 pywps-demo Docker�le . 52

6.2 OWSLib . 52

6.3 PyWPS . 53

7 Operations overview 54

8 Execute operation 55

8.1 Service.execute() . 55

8.2 Process.execute() . 55

8.3 Processing module . 57

9 Container class 59

9.1 Container class constructor . 60

9.1.1 Container._assign_port() . 60

9.1.2 docker.from_env() . 60

9.1.3 Container._create() . 60

9.2 Container.start() method . 62

9.2.1 docker.container.start() . 63

9.2.2 Container._execute() . 63

9.2.3 Container._parse_status() . 65

9.2.4 Container._dirty_clean() . 65

Conclusion 67

List of abbreviation 69

IV Appendix 72

A Execute request example 73

B Execute response example (async mode) 74

C Status XML example with referenced output 75

D Status XML example with inline output 76

E Docker�le 78

F OWSLib di� �le 80

G PyWPS-demo di� �le (shortened) 81

H PyWPS di� �le (shortened) 82

I Docker extension documentation (shortened) 85

J List of tables and �gures 87

K ZIP �le content 89

CTU in Prague INTRODUCTION

Introduction

With the huge progress of technologies, our society is becoming more and more dig-

italized and the amount of various data is getting bigger and bigger. There are data

all around us and demand for applications or services based on the data is growing.

However, the data in its raw form may not be su�cient to make a conclusion. More

often the data need to be processed and used as inputs data for some kind of ana-

lyses. With increasing number of gathered data such as satellite images or remotely

sensed data, any manual processing is almost inconceivable. The data processing

needs to be done in a systematic and fully-automized way.

Therefore, in order to be able to process data independently of the type of

acquisition, format or platform, international standard interfaces and standardized

frameworks are necessary. The Open Geospatial Consortium, Inc. (OGC) - an

organization oriented toward open geospatial standards - researches and establishes

technical standards for data compatibility and interoperability technical standards.

Besides quite famous and used standards as WMS and WFS, there exists the WPS

standard. The WPS standard de�nes an interface that facilitates the publishing of

geospatial processes. It provides rules how inputs and outputs are handled. There

are several implementations of WPS standard. This work is primarily focused on

the PyWPS - a WPS implementation written in Python.

The main topic of this thesis is process isolation in PyWPS framework. A process

is just some geospatial operation which has its de�ned inputs and outputs and which

is deployed on a server. The server is able to execute multiple processes at the same

time. This thesis deals with the isolation of individual processes, especially for

security and performance reasons. With every process fully isolated, so they cannot

interact with each other, the higher security level is ensured.

The thesis is composed of several parts. The �rst part describes the WPS stan-

dard, its operations GetCapabilities, DescribeProcess and Execute and inputs and

outputs structures. A quick overview of some implementations of WPS standard

follows and brings a basic information about them.

Nevertheless, this work is dedicated to PyWPS, an implementation in Python.

In the second part, its current state is described as well as pywps-demo - a side

12

CTU in Prague INTRODUCTION

project providing demo server instance - which the practical part is based on. Fol-

lowing research covers various projects and technologies which were considered as a

solution for process isolation. Eventually, the Docker technology is chosen for the

implementation part. Docker has been selected as one of the most used technology

for containerization. It puts every process into a separate container so the isola-

tion is ensured. Moreover, Docker provides a mechanism to pause, stop and start

a container so it looks like a possible solution for the future WPS 2.0.0 standard

implementation which requires this functionality. Using Docker, it also opens new

possibilities, e.g. being able to deploy running job to cloud.

The third part describes the implementation. It explains the Execute operation

work�ow, a process execution and how the Docker containers are used for the Py-

WPS process isolation. New Container class, which was developed during the work

on this thesis, is introduced as well as its methods.

13

CTU in Prague

Part I

Web Processing Service

14

CTU in Prague 1 WEB PROCESSING SERVICE

1 Web Processing Service

1.1 History

The �rst mention of the Web Processing Service was in October 2004. Back then

it was named Geoprocessing Service [1]. The speci�cation was �rst implemented as

a prototype in 2004 by Agriculture and Agri-Food Canada (AAFC). In its further

development during a Geoprocessing Services Interoperability Experiment [2] the

name was changed to "Web Processing Service" to avoid the acronym GPS, since this

would have caused confusion with the conventional use of this acronym for Global

Positioning System [6]. The �rst version of WPS was released in September 2005

[3]. The experiment demonstrated that various clients could easily access and bind

to services which were set up according to the WPS Implementation speci�cation.

Currently two major versions of WPS Standard exist. The WPS version 1.0.0

is currently most used. If not explicitly said this thesis is dedicated to the version

1.0.0. The WPS version 2.0.0 was released in 2015 [7].

1.2 Open Geospatial Consortium

The OGC Open Geospatial Consortium is an international non-pro�t organization

committed to making quality open standards for the global geospatial community.

These standards are made through a consensus process and are freely available for

anyone to use. The OGC members come from government, commercial organiza-

tions, NGOs, academic and research organizations.[4]

A predecessor organization, OGF, the Open GRASS Foundation, started in 1992.

From 1994 the organization used the name Open GIS Consortium, in 2004 the Board

changed the name to Open Geospatial Consortium.[5]

Some of the widely-use OGC standards are:

• WCS, WMS, WFS, WMTS or WPS - standards for web services

• GML, KML - standards for XML-based languages

15

CTU in Prague 1 WEB PROCESSING SERVICE

1.3 Web Processing Service

The OGC Web Processing Service (WPS) Interface Standard de�nes a standardized

interface that facilitates the publishing of geospatial processes. Also provides rules

how to standardize requests and responses for geospatial processing services.

Process means any operation on spatial data from simple ones like maps overlay

or bu�ering to highly complex as complicated global models. Any kind of GIS

functionality can be o�ered to clients across a network with correctly con�gured

WPS.

Publishing means creating human-readable metadata that allow users to discover

and use service as well as making available machine-readable binding information.

Data can be both vector or raster data and can be delivered across the network

or be available at the server.

The interface does not specify any speci�c processes that can be implemented

by a WPS nor any speci�c data inputs or outputs. Instead it speci�es generic

mechanisms to describe any geospatial process and data required and produced by

the process. The interface does not only provide mechanisms for calculation but also

mechanisms that identify required data, initiate the calculation and manage output

data so clients can access it.

Web Processing Service as one of the OGC web services speci�es three types of

requests which can be requested by a client and performed by a WPS server. The

implementation of these three requests is mandatory by all servers:

GetCapabilities - The request returns to the client a Capabilities document

that describes the abilities of the speci�c server implementation. It also returns the

name and abstract of each of the processes that can be run on a WPS instance.

DescribeProcess - The request returns details about the processes o�ered by a

WPS instance. It describes required inputs and produced outputs and their allow-

able formats.

Execute - The request allows the client to run a speci�ed process with provided

parameters and returns produced outputs.

16

CTU in Prague 1 WEB PROCESSING SERVICE

These operations are very similar to other OGC Web Services such as WMS,

WFS, and WCS. Common interface aspects are de�ned in the OGC Web Services

Common Implementation Speci�cation [8]. As seen in the class diagram at Fig. 1

theWPS interface class inherits the GetCapabilities operation from OGCWebService

interface class. The operations Execute and DescribeProcess are speci�c for the

WPS. The WPS operations are based on HTTP GET1 and POST2 requests.

Figure 1: WPS interface UML description, source: [6]

The GetCapabilities and DescribeProcess shall use HTTP GET with KVP en-

coding and Execute operation shall use HTTP POST with XML encoding. Sum-

marized in Tab. 1.

Operation
Request encoding

Mandatory Optional

GetCapabilities KVP XML

DescribeProcess KVP XML

Execute XML KVP

Table 1: Operations request encoding

1HTTP GET requests data from a speci�ed resource. Data are sent in the URL of a GET

request.
2HTTP POST submits data to be processed to a speci�ed resource. Data are sent inside the

HTTP message body of POST request.

17

CTU in Prague 1 WEB PROCESSING SERVICE

KVP encoding are key-value pairs usually sent via HTTP GET request method

encoded directly in the URL. The keys and values are separated with = sign and

each pair is separated with & sign or with ? sign at the beginning of the request.

Example could be the get capabilities request:

Listing 1: GetCapabilities with KVP encoding.

http :// s e r v e r . domain/wps? s e r v i c e=WPS&reques t=GetCapab i l i t i e s&

ve r s i on =1.0.0

In this example, there are 3 pairs of input parameter: service, request and version

with values WPS, GetCapabilities and 1.0.0 respectively.[17]

XML payload is XML data sent via HTTP POST request method. The XML

document can be more rich, having more parameters, better to be parsed in complex

structures. The Client can also encode entire datasets to the request, including raster

(encoded using base64) or vector data (usually as GML �le).[17]

Listing 2: GetCapabilities XML payload example

<?xml ve r s i on ="1.0" encoding="UTF−8"?>
<wps : Ge tCapab i l i t i e s language="cz " s e r v i c e="WPS" xmlns : ows="http

://www. openg i s . net /ows /1 .1" xmlns : wps="http ://www. openg i s . net /

wps /1 . 0 . 0 " xmlns : x s i="http ://www.w3 . org /2001/XMLSchema−
i n s t anc e " x s i : schemaLocation="http ://www. openg i s . net /wps / 1 . 0 . 0

http :// schemas . openg i s . net /wps /1 . 0 . 0 /

wpsGetCapabi l i t i e s_request . xsd">

<wps : AcceptVersions>

<ows : Version >1.0.0</ows : Version>

</wps : AcceptVersions>

</wps : GetCapab i l i t i e s>

1.3.1 GetCapabilities

The GetCapabilities operation is mandatory. The operation allows a client to re-

trieve capabilities document (metadata) from a server. The response XML doc-

ument contains service metadata about the server and all implemented processes

description.

18

CTU in Prague 1 WEB PROCESSING SERVICE

Name Optionality and use De�nition and format

service=WPS Mandatory Service type identi�er text

request=GetCapabilities Mandatory Operation name text

AcceptVersion=1.0.0 Optional Speci�cation version

Sections=All Optional
Comma-separated

unordered list of sections

updateSequence=XXX Optional
Service metadata

document version

AcceptFormats=text/xml Optional
Comma-separated prioritized

sequence of response formats

Table 2: GetCapabilities operation request URL parameters, source: [8]

GetCapabilities request

• service - A mandatory parameter, WPS is only possible value.

• request - A mandatory parameter, GetCapabilities is only possible value.

• version - An optional parameter, version number. Three non-negative integers

separated by a decimal point. Servers and their clients should support at least

one de�ned version.

• sections - An optional parameter that contains a list of section names. Pos-

sible values are: ServiceIdenti�cation, ServiceProvider, OperationsMetadata,

Contents, All.

• updateSequence - An optional parameter for maintaining the consistency of

a client cache of the contents of a service metadata document. The parameter

value can be an integer, a timestamp, or any other number or string.

• format - An optional parameter that de�nes response format.

A client can request the GetCapabilities operation with parameters from the

Tab. 2. A corresponding request URL looks like:

http://localhost:5000/wps?service=WPS&request=GetCapabilities&AcceptVe

rsion=1.0.0&Section=ServiceIdentification,OperationsMetadata&updateSeq

uence=XXX&AcceptFormats=text/xml

19

http://localhost:5000/wps?service=WPS&request=GetCapabilities&AcceptVe
rsion=1.0.0&Section=ServiceIdentification,OperationsMetadata&updateSeq
uence=XXX&AcceptFormats=text/xml

CTU in Prague 1 WEB PROCESSING SERVICE

GetCapabilities response When GetCapabilities operation is requested a client

retrieve service metadata document that contains sections speci�ed in sections pa-

rameter. If the parameter value is All or not speci�ed than all sections are retrieved.

• ServiceIdenti�cation - Server metadata.

• ServiceProvider - Server operating organization metadata.

• OperationsMetadata - Metadata about operations implemented by the WPS

server, including URLs to request them.

• ProcessO�erings - List of processes with name and brief description imple-

mented by the WPS server.

In addition to sections each GetCapabilities response should contain:

• version - Speci�cation version for GetCapabilities operation.

• updateSequence - Server metadata document version, value is increased when-

ever any change is made in complete service metadata document.

GetCapabilities exceptions In case that WPS server encounters an error

a client retrieves an exception report message with one of the exception code:

• MissingParameterValue - GetCapabilities request does not contain a required

parameter value.

• InvalidParameterValue - GetCapabilities request contains an invalid parame-

ter value.

• VersionNegotiation - Any version from AcceptVersions parameter list does not

match any version supported by the WPS server.

• InvalidUpdateSequence - Value of updateSequence parameter is greater than

current value of service metadata updateSequence number.

• NoApplicableCode - Other exceptions.

20

CTU in Prague 1 WEB PROCESSING SERVICE

1.3.2 DescribeProcess

The DescribeProcess operation is mandatory. The operation allows clients to re-

trieve a detailed description of one or more processes implemented by a WPS server.

The detailed information describes both required inputs and produced outputs and

allowed formats.

Name Optionality De�nition and format

service=WPS Mandatory Service type identi�er text

request=DescribeProcess Mandatory Operation name text

version=1.0.0 Mandatory WPS speci�cation version

Identi�er=bu�er Optional
List of one or more process

identi�ers, separated by commas

Table 3: DescribeProcess operation request URL parameters, source: [8]

DescribeProcess request

• service - Mandatory parameter, WPS is only possible value.

• request - Mandatory parameter, DescribeProcess is only possible value.

• version - Mandatory parameter, version number. Three non-negative integers

separated by decimal point. Servers and their clients should support at least

one de�ned version.

• Identi�er - Optional parameter, list of process names separated by comma.

Another possible value is all.

The DescribeProcess operation can be requested with parameters from Tab. 3.

A corresponding request URL looks like: http://localhost:5000/wps?request=

DescribeProcess&service=WPS&identifier=all&version=1.0.0

DescribeProcess response A response to DescribeProcess request contains one

or more process descriptions for requested process identi�ers. Each process de-

scription contains detailed information about process in ProcessDescription XML

21

http://localhost:5000/wps?request=DescribeProcess&service=WPS&identifier=all&version=1.0.0
http://localhost:5000/wps?request=DescribeProcess&service=WPS&identifier=all&version=1.0.0

CTU in Prague 1 WEB PROCESSING SERVICE

element (see Tab. 4) including process inputs and outputs description. The number

of inputs or outputs is not limited.

Name Optionality De�nition and format

Identi�er Mandatory Process identi�er

Title Mandatory Process title

Abstract Optional Brief description

Metadata Optional Reference to more metadata about this process

Pro�le Optional Pro�le to which the WPS process complies

processVersion Mandatory Release version of process

WSDL Optional
Location of a WSDL document that

describes this process

DataInputs Optional List of the required and optional inputs

ProcessOutputs Mandatory List of the required and optional outputs

storeSupported Optional
Complex data outputs can be

stored by WPS server

statusSupported Optional
Execute response can be returned

quickly with status information

Table 4: Parts of ProcessDescription data structure, source: [6]

Three data types of input or outputs exist:

• LiteralData - any string. It is used for passing single parameters like numbers

or text parameters. There can be set allowedValues restriction. It can be a list

of allowed values or input data type. Additional attributes such as units or

encoding can be set as well.

• ComplexData - Complex data can be raster, vector or any �le-based data,

which are usually processed. ComplexData are often result of the process.

The input can be speci�ed more using mimeType3, XML schema or encoding.

• BoundingBoxData - BoundingBox data are speci�ed in OGC OWS Common

speci�cation as two pairs of coordinates (for 2D and 3D space). They can
3mimeType - is a standardized way to indicate the nature and format of a document. Browsers

often use the MIME type (and not the �le extension) to determine how it will process a document.

22

CTU in Prague 1 WEB PROCESSING SERVICE

either be encoded in WGS84 or EPSG code can be passed too. They are

intended to be used as de�nition of the target region.

DescribeProcess exceptions In case that WPS server encounters an error

a client retrieves an exception report message with one of the exception code:

• MissingParameterValue - GetCapabilities request does not contain a required

parameter value.

• InvalidParameterValue - GetCapabilities request contains an invalid parame-

ter value.

• NoApplicableCode - Other exceptions.

1.3.3 Execute

The Execute operation is mandatory. The operation allows clients to run a speci�ed

process implemented by a server. Inputs can be included directly in the request

body or be referenced as a web-accessible resource. The outputs are returned in

XML response document, either directly embedded within the response document

or stored as a resource accessible by returned URL.

Name Optionality De�nition and format

service Mandatory Service type identi�er text

request Mandatory Operation name text

version Mandatory WPS speci�cation version

Identi�er Mandatory Process identi�er

DataInputs Optional
List of inputs provided

to this process execution

ResponseForm Optional Response type de�nition

language Optional Language identi�er

Table 5: Parts of Execute operation request, source: [6]

23

CTU in Prague 1 WEB PROCESSING SERVICE

Execute request Execute request is usually sent via HTTP POST request. It

triggers an execution of a speci�ed process if no exceptions raised (for instance

ServerBusy). Execute request contains parameters from Tab. 5. Example of Execute

XML response document sent within the POST request can be found at App. A.

Execute response Usually the Execute operation response document is an XML

document. The only exception is in case when a response form of RawDataOutput

is requested, execution is successful and only one complex output is created, then

directly the produced complex output is returned. The result can be inserted directly

inline the response document or be referenced as web-accessible resource, it depends

on ResponseForm request elements.

Figure 2: Sequence diagram: a client requests storage of results, source: [6]

In synchronous mode the response document is returned when the process exe-

cution is completed. However in asynchronous mode it is possible to get response

document right after sending a request. In this case, returned response document

contains a URL link from which the �nal response document can be retrieved after

completed process execution. A client can request execution status update to �nd

out the amount of processing remaining if the execution is not completed. Shown

in Fig. 2.

24

CTU in Prague 1 WEB PROCESSING SERVICE

Name Optionality De�nition and format

service Mandatory Service type identi�er text

version Mandatory WPS speci�cation version

language Mandatory Language identi�er

statusLocation Optional
Reference to location where current

ExecuteResponse document is stored

serviceInstance Mandatory
Reference to location where current

ExecuteResponse document is stored

Process Mandatory Process description

Status Mandatory Execution status of the process

DataInputs Optional
List of inputs provided

to this process execution

OutputDe�nitions Optional
List of de�nitions of outputs

desired from executing this process

ProcessOutputs Optional
List of values of outputs

from process execution

Table 6: Parts of ExecuteResponse data structure, source: [6]

25

CTU in Prague 2 WPS IMPLEMENTATIONS

2 WPS implementations

The OGC WPS is just an interface standard that provides rules for standardizing

requests and responses. It also de�nes how clients can request the execution of

de�ned processes and how the outputs are handled. There are several projects that

implement this standard across the platforms or programming languages.

2.1 deegree

deegree is open-source community-driven project for spatial data infrastructure writ-

ten in Java. Besides from the other OGC Web Services it implements also WPS

standard 1.0.0. The implementation o�ers sending request with KVP, XML or

SOAP encoding, asynchronous/synchronous execution and API for implementing

processes in Java. On their website there is a WPS demo 4 where all operations

GetCapabilities, DescribeProcess and Execute with various processes can be tested.

Figure 3: deegree project logo

2.2 52◦North WPS

The 52◦North is the open-source software initiative. It is an international network

of skilled specialists from research, public administration or industry. The initiative

works on several projects and develop new technologies. One of them is the 52◦North

WPS project.

Figure 4: 52◦North project logo
4http://demo.deegree.org/wps-workspace/

26

http://demo.deegree.org/wps-workspace/

CTU in Prague 2 WPS IMPLEMENTATIONS

The WPS project is full Java-based open-source implementation of the WPS

1.0.0. The back-end side implements only version 1.0.0 and it does not seem there is

any progress in implementation of version 2.0.0. On the other hand on the 52◦North

GitHub there is a repository wps-js-client5 that is standalone Javascript WPS Client.

The client enables building and sending requests against both WPS 1.0.0 and WPS

2.0.0 instances as well as reading the responses.

52◦North o�ers synchronous/asynchronous invocation with both HTTP-GET

and HTTP-POST request. All results can be stored as a web-accessible resource,

WMS, WFS or WCS layer. Raw data inputs/outputs are also supported. Various

extensions for di�erent computional backends exist: WPS4R (R Backend), GRASS

extension, Sextante or ArcGIS Server Connector.

2.3 GeoServer

GeoServer is Java-based server to store, view or edit geospatial data. Designed

for interoperability, GeoServer conforms all OGC standards. More famous WMS,

WFS and WCS services are part of GeoServer core, however WPS implementation

is available as extension.

Figure 5: GeoServer logo

The WPS extension is capable of direct reading and writing data from and to

GeoServer. Therefore it is possible to create processes based on inputs served from

GeoServer as well as storing the outputs in the catalog.

Since GeoServer implements WPS standard 1.0.0, it supports the GetCapabil-

ities, DescribeProcess and Execute operations. Apart of these, it also implements

GetExecutionStatus and Dismiss operations. The Dismiss operation serves for asyn-

chronous requests to get progress report and eventually retrieve the result data. A
5https://github.com/52North/wps-js-client

27

https://github.com/52North/wps-js-client

CTU in Prague 2 WPS IMPLEMENTATIONS

client sends in the GetExecutionStatus request a mandatory executionId parameter

to specify the process. The executionId is also mandatory parameter for Dismiss

operation. The Dismiss operation cancels an execution of the process of given exe-

cutionId. As seen in Fig. 7, GeoServer o�ers Progress status page where progress of

all executions can be reviewed as well as dismissing of each execution can be done.

Figure 6: Process status page, source [10]

2.4 ZOO-Project

ZOO-Project is a WPS implementation writen in C, Python and Javascript. It is

an open-source project released under MIT licence. The platform is composed of

several components:

• WPS Server - ZOO-kernel is a server-side implementation written in C.

• WPS Services - ZOO-services is a set of ready-to-use web services based on

libraries such as GDAL, GRASS GIS or CGAL.

• WPS API - ZOO-API is a server-side Javascript API for creating and chaining

WPS web services.

• WPS Client - ZOO-client is a client-side Javascript library for interacting with

WPS Services.

ZOO-Project is the �rst and in this time probably the only one full implementa-

tion of the WPS 2.0.0 standard. Apart from GetCapabilities, DescribeProcess and

28

CTU in Prague 2 WPS IMPLEMENTATIONS

Execute operations from WPS 1.0.0 standard it also implements GetStatus, GetRe-

sult and Dismiss operations from WPS 2.0.0.

To comply WPS 2.0.0 ZOO-Project must support synchronous/asynchronous

invocation with both HTTP-GET and HTTP-POST request. There is optional

MapServer support so an output can be stored in MapServer catalog. It is convenient

to publish results directly as WMS, WFS or WCS resources.

2.5 ArcGIS Server

ArcGIS Server is server-side GIS software developed by Esri. It is capable of creating

and managing GIS Web services, applications and data. It allows exposing the

analytic capability of ArcGIS to web as a Geoprocessing service. A geoprocessing

service consists of one or more geoprocessing tasks. A geoprocessing task can be

any ArcGIS tool. It is possible to publish Geoprocessing service with the WPS

capabilities enabled, however only WPS 1.0.0 standard is supported.

Figure 7: Esri logo

All published services have speci�ed the minimum and maximum number of

available instances. These instances run on the container machines within processes.

The isolation level determines whether these instances run in separate processes or

shared processes.

• High isolation- Fig. 2.5 - each instance runs in its own process. If something

causes the process to fail, it will only a�ect the single instance running in it.

• Low isolation - Fig. 2.5 allows multiple instances of a service con�guration to

share a single process, thus allowing one process to handle multiple concurrent,

independent requests. This is often referred to as multithreading.

29

CTU in Prague 2 WPS IMPLEMENTATIONS

Figure 8: Low isolation, source [12] Figure 9: High isolation, source [12]

The advantage of low isolation is that it increases the number of concurrent

instances supported by a single process. Using low isolation can use slightly less

memory on your server. However, this improvement comes with some risk. If a pro-

cess experiences a shutdown or crash, all instances sharing the process are destroyed.

It is strongly recommended that you use high isolation.[12]

2.6 PyWPS

PyWPS is a server-side implementation of the WPS standard written in Python.

This project will be described in depth in the Sec. 3.

30

CTU in Prague

Part II

PyWPS

31

CTU in Prague 3 PYWPS

3 PyWPS

3.1 History

The origin of PyWPS started in 2006 as a student project. The �rst presentation

was held at the FOSS4G 2006 conference in Lausanne titled `GRASS goes to web:

PyWPS'. During November 2006 the version 1.0.0 was released together with WUIW

and Embrio projects that brought the funcionality of GRASS GIS and general web

interface able to handle any WPS server.[15][16]

In 2007 PyWPS 2.0.0 was released supporting WPS standard 0.4.0. New version

improved stability and approached on the standard implementation. It came with

new WPS client and WPS plugin for OpenLayers 6.

Next year in 2008 PyWPS 3.0.0 was released with support for WPS 1.0.0. It was

possible to run multiple WPS instances with one PyWPS installation. This version

had simple code structure and contained examples of processes.

The newest version is PyWPS 4.0.0 from 2016 when PyWPS-4 branch was

merged to o�cial PyWPS repository as its master branch. New version is described

in following Sec. 3.2.

Figure 10: PyWPS project logo

3.2 PyWPS 4.0

PyWPS-4 is the most current version of PyWPS. Rewriting from scratch involved

these major changes:

• It is written in Python 3 with backward support for Python 2.7.
6http://openlayers.org/

32

http://openlayers.org/

CTU in Prague 3 PYWPS

• It utilizes native Python bindings to existing projects (GRASS GIS).

• New popular formats like GeoJSON, KML or TopoJSON are re�ected and

their support is provided.

• PyWPS project has changed the license from GNU/GPL to MIT.

• PyWPS 4.0 is implemented using the Flask framework.

• A C-based XML parser Lxml is used to handle XML �les.

• OWSLib structures are used for some data types.

3.3 PyWPS-demo

PyWPS-demo is a small side project distributed with PyWPS. It is a simple demo

instance of PyWPS server running on Flask 7. Flask is a microframework for web

applications in Python. Flask provides built-in development server and debugger

and RESTful request dispatching. Starting PyWPS-demo server with Flask is very

simple and can be done with command in Lst. 3. After starting the PyWPS-demo

server the PyWPS homepage can be visited at: http://localhost:5000.

Listing 3: Starting PyWPS-demo server

python3 demo . py

PyWPS-demo comes with several demo processes:

• area.py - Process calculates area of given polygon.

• bboxinout.py - Process transforms bounding box to another EPSG.

• bu�er.py - Process returns bu�ers around the input features, using the GDAL

library.

• centroids.py - Process returns a GeoJSON with centroids of features from an

uploaded GML.
7http://flask.pocoo.org/

33

http://localhost:5000
http://flask.pocoo.org/

CTU in Prague 3 PYWPS

• feature_count.py - Process counts the number of features in an uploaded GML.

• grassbu�er.py - Process uses the GRASS GIS v.bu�er module to generate

bu�ers around inputs.

• sayhello.py - Process returns a literal string output with Hello plus the inputed

name.

• sleep.py - Process will sleep for a given delay or 10 seconds if not a valid value.

• ultimate_question.py - The process gives the answer to the ultimate question

of "What is the meaning of life?"

Except these example processes the demo o�ers also example con�guration �le.

Con�guration �le contains several parameters in these four sections:

• metadata - parameters containing information for metadata creation.

• server - de�nition of path to workdir and output directories, maximum number

of parallel running or stored processes.

• logging - logging level setting, path to log �le and log database.

• grass - GRASS settings.

34

CTU in Prague 4 PROCESS ISOLATION IN PYWPS

4 Process isolation in PyWPS

4.1 Asynchonous requests

Right now in PyWPS 4.0 version a PyWPS server instance is able to run multiple

concurrent processes in parallel. The server is con�gured for maximal amounts

of concurrently running processes at the same time and for maximum of waiting

processes in a queue, to later start their execution once new slots are available.

If the new Execute request is received and the maximal amount is exceeded, the

request is rejected and user is informed in response (see Lst. 4).

Listing 4: Resource exceeded exception

<?xml ve r s i on ="1.0" encoding="UTF−8"?>
<ows : ExceptionReport xmlns : ows="http ://www. openg i s . net /ows /1 .1"

ve r s i on ="1.0.0">

<ows : Exception exceptionCode="ServerBusy">

<ows : ExceptionText>

Maximum number o f p a r a l l e l running p r o c e s s e s reached .

P lease t ry l a t e r .

</ows : ExceptionText>

</ows : Exception>

</ows : ExceptionReport>

To facilitate the management of concurrent processes, process metadata are

stored into a local database. This database is used for logging and saving wait-

ing Execute requests in the queue and invoking them later on. The database will

also enable the implementation of pausing, releasing and deleting running process.

These features will allow PyWPS to comply with WPS version 2.0.0.

4.2 Current state

At the beginning of every process execution its own temporary directory workdir

is created. During the execution temporary �les and continuous outputs are stored

in this directory. After successful execution �nal outputs are moved to outputs

35

CTU in Prague 4 PROCESS ISOLATION IN PYWPS

directory. Both directories outputs and workdir are con�gurable and user can change

path to them.

Listing 5: pywps.cfg - mode parameter

[p r o c e s s i ng]

mode=mu l t i p r o c e s s i ng

Current version of PyWPS o�ers two solutions for running parallel processes:

• Multiprocessing

• Job Scheduler Extension8

If the execute request is sent asynchronously the type of process constructor is

chosen depending on con�guration parameter mode in section processing which is

by default multiprocessing or can be changed to scheduler.

Multiprocessing By default for processes running in the background, the Python

multiprocessing module is used � this makes it possible to use PyWPS on the Win-

dows operating system too.

The number of processes running in parallel is con�girable by parameter par-

allelprocesses of section server in con�guration �le. In the Fig. 11 two running

processes are shown. A client sends an Execute request to a server. Server sends

back to the client an ExecuteResponse that Process1 (green in the �gure) was ac-

cepted and starts its execution. During the execution the process updates its status.

The interval of status updates depends on the code of the Process1. Process1 must

support status update otherwise it cannot be run in asynchronous mode.

During the execution of Process1 server receives another Execution request. It

sends back the Execution response and starts the execution of Process2 (blue in

the �gure). Separated Python Process9 is created. Both of the processes run on

the host machine, however both have own memory space. Their executions run

concurently and client can request their status. In the �gure, the Process2 ended
8Job Scheduler Extension is currently only in develop branch of PyWPS.
9Explanation of term Python Process and its di�erences to Thread is in next paragraph.

36

CTU in Prague 4 PROCESS ISOLATION IN PYWPS

Figure 11: Sequence diagram: Multiprocessing

�rst and client can retrieve the result from the server. Once the Process1 ends, the

client can retrieve its result from the server as well.

It is important to say that in case of multiprocessing, processes run concurently

with its own memory space, nevertheless they are not isolated. They run on the

same host machine and share the resources. There are even methods like Pipe()

that enable communication between processes.

37

CTU in Prague 4 PROCESS ISOLATION IN PYWPS

Process vs Thread In Python there are two ways to achieve pararellism. It is

multiprocessing 10 with using processes and threading11 with threads. The main

di�erence is that threads run in the same memory space, while processes have sep-

arate memory. Multiprocessing takes advantages of multiple CPUs and cores while

threads are more lightweighted and have low memory footprint. In case of PyWPS

asynchronous requests, for every execution its own process with its own memory

space is created.

Job Scheduler Extension PyWPS scheduler extension o�ers possibilities to exe-

cute asynchronous processes out of the WPS server machine. This extension enables

to delegate execution of processes to a scheduler system like Slurm, Grid Engine and

TORQUE from Adaptive Computing. These schedular systems are usually located

at High Performance Compute (HPC) centers.

Figure 12: Grid Engine Figure 13: Slurm

Figure 14: TORQUE

The PyWPS scheduler extension uses the Python dill library to dump and load

the processing job to/from �lesystem. The batch script executed on the scheduler

system calls the PyWPS joblauncher script with the dumped job status and executes

the job (no WPS service running on scheduler). The job status is updated on the

�lesystem. Both the PyWPS service and the joblauncher script use the same PyWPS

con�guration. The scheduler assumes that the PyWPS server has a shared �lesystem

with the scheduler system so that XML status documents and WPS outputs can be

found at the same �le location. The interaction diagram how the communication

between PyWPS and the scheduler works is displayed in Fig. 16.

10https://docs.python.org/3/library/multiprocessing.html
11https://docs.python.org/3/library/threading.html

38

https://docs.python.org/3/library/multiprocessing.html
https://docs.python.org/3/library/threading.html

CTU in Prague 4 PROCESS ISOLATION IN PYWPS

Figure 15: Example of PyWPS scheduler extension usage with Slurm, source: [17]

Figure 16: Communication between PyWPS and scheduler, source: [17]

39

CTU in Prague 4 PROCESS ISOLATION IN PYWPS

4.3 Possible solutions for process isolation

In previous section there were described two mechanisms for running parallel pro-

cesses. Nevertheless in case of Python module Multiprocessing the processes are not

really isolated. They run concurrently but they can share resources and there are

even methods like Pipe() that enables communication between processes.

On the other hand Job Scheduler Extension depends on dill library as well as on

some external scheduler systems like Slurm, Grid Engine or TORQUE.

In this section there are described some other solutions. Some were suggested

by PyPWS developers with encouragement to make a feasible study. Others were

discovered during research on the internet forums like StackOver�ow and few of

them were referenced in the documentation of other projects. During the research

two requirements were considered.

• The solution provides a mechanism for full isolation. This is a must-have

requirement.

• The solution provides a mechanism for start/pause/stop process execution.

This is a nice-to-have requirement as this functionality will be required to

comply WPS 2.0.0 standard.

Finnaly these solutions were considered:

• Celery

• Docker

• psutil

• SandboxedPython

• VM

40

CTU in Prague 4 PROCESS ISOLATION IN PYWPS

4.3.1 Celery

Celery is a task queue system written in Python. It helps to distribute work across

threads and even machines. Basic term is a task. A task is a unit of work and it is

an input into the task queue. The task queue is constantly monitored for new work

to perform.

To communicate between client and workers Celery uses a broker. The commu-

nication is via messages. To initiate a task the client adds a message to the queue

and the broker then delivers the message to a worker. Multiple workers and brokers

can be added so there is assured high availability and horizontal scaling.

Celery provides worker remote control client in class celery.app.control.Control.

The class o�ers following functions:

• revoke - Tell all (or speci�c) workers to revoke a task by id. If a task is

revoked, the workers will ignore the task and not execute it after all.

• shutdown - Shutdown worker(s).

• terminate - Tell all (or speci�c) workers to terminate a task by id.

4.3.2 Docker

Docker is one of the most used technology regarding containerization. This technol-

ogy is described in depth in Sec. ??

4.3.3 psutil

psutil is Python library for process and system management. It handles system

monitoring, limiting process resources and the management of running processes.

Its implementation is based on UNIX command line tools. psutil o�ers functions

applied to these sections:

• CPU - functions for CPU statistics such as CPU utilization percentage, fre-

quency and others.

• Memory - functions for system memory usage and swap memory statistics.

41

CTU in Prague 4 PROCESS ISOLATION IN PYWPS

• Disks - functions for disk statistics such as disk usage or disk IO operations

counter.

• Network - functions for network IO operations or network connection statistics.

• Sensors - functions for statistics about fans, battery or hardware temperature.

• Others - functions for boot time and users statistics.

• Processes - functions will be described in detail later.

Processes - Class psutil.Process represents an OS process with given pid. The

class is bound with a process via its PID12. The Process class o�ers these methods

for starting/pausing:

• suspend() - The method suspends a process using SIGSTOP signal.

• resume() - The method resumes a process using SIGCONT signal.

• terminate() - The method terminates a process using SIGTERM signal.

• kill() - The method kills a process using SIGKILL signal.

4.3.4 Sandboxed Python

The general goal of a sandbox is to run applications securely inside isolated environ-

ment they cannot escape from and a�ect other parts of the system. Developers use

them to run untrusted code inside. It is quite di�cult to develop fully sandboxed

solution due to Python complexity. The basic problem is that Python introspection

allows several ways to escape out of the sandbox. True security requires an overall

design with many security considerations included. Some of the projects that can

run Python code in a sandbox are:

• PyPy

• Jython
12PID is a process identi�er. It is a number used by operating system to uniquely identify an

active process.

42

CTU in Prague 4 PROCESS ISOLATION IN PYWPS

PyPy PyPy is Python interpreter written in RPython that implements full Python

language and very closely emulates the behavior of CPython. PyPy o�ers fully

portable sandboxing feature similar to OS-level sandboxing (e.g. SECCOMP). It is

not sandboxing at the Python language level so it does not put any restriction on

any Python functionality.

Untrusted Python code that is intended to be sandboxed is launched in a sub-

process, that is a special sandboxed version of PyPy. All its inputs/outputs are not

directly performed but are serialized to a stdin/stdout pipe. The outer process reads

the pipe and afterward decides which commands are allowed.

Jython Jython is Python language interpreter for Java. Java o�ers strong sand-

boxing mechanisms. The security facility in Java that supports sandboxing is the

java.lang.SecurityManager. By default, Java runs without a SecurityManager.

pysandbox A prove, that it is very di�cult to develop some kind of sandbox with

all security holes considered, could be a project pysandbox 13. After working on it for

3 years, during which the project was used on various production servers by other

developers, its author declared that the project is broken by design. In his post to

the python-dev mailing list [18] the author explained that with every vulnerability

founded it became more di�cult to actually write a real code:

"To protect the untrusted namespace, pysandbox installs a lot of di�erent protec-

tions. Because of all these protections, it becomes hard to write Python code. Basic

features like "del dict[key]" are denied. Passing an object to a sandbox is not possible

to sandbox, pysandbox is unable to proxify arbitary objects.

For something more complex than evaluating "1+(2*3)", pysandbox cannot be

used in practice, because of all these protections. Individual protections cannot be

disabled, all protections are required to get a secure sandbox."

4.3.5 Virtual Machine/Vagrant

Using full virtualization for process isolation is mentioned here but in fact it is hard

to imagine this solution could work in practice. Vagrant is a tool for managing
13https://github.com/vstinner/pysandbox

43

https://github.com/vstinner/pysandbox

CTU in Prague 4 PROCESS ISOLATION IN PYWPS

and building virtual machines. It provides a way how to manage various virtual

machines in an automatized way e.g. using scripts. There also exists a Python

package python-vagrant that o�ers Python bindings for interacting with Vagrant.

However in our use-case using Vagrant would mean that for every process ex-

ecution a separate virtual machine would be created. Depending on the process

algorithm complexity the process execution can last from milliseconds to hours or

days. On the other hand building a virtual machine and booting into it last at least

few seconds. That is why it is hard to imagine using virtual machine, which takes

few seconds to boot up, to isolate process, which execution lasts less than a second.

44

CTU in Prague 5 DOCKER

5 Docker

sec:Docker Containerization is a lightweight alternative to full machine virtualiza-

tion. It involves encapsulating an application into a container with its own operating

environment. It helps to run a containerized application on any physical machine

without any worries about dependencies. The origin of containerization lies in the

LinuX Containers LXC format. Containerization works only in Linux environments

and can run only Linux applications.

Figure 17: Docker logo

Docker is not the only technology for containerization. Other alternatives exist,

it is Kubernets, CoreOS rkt, Open Container Initiative (OCI), Canonical's LXD,

Apache Mesos and Mesosphere and many others. However Docker is a leader on

the �eld of containerization and with most public traction is de facto considered as

a container standard. That's why the Docker was chosen for this thesis as a container

technology. So from this point on any term container refers to Docker container.

Figure 18: Kubernetes Figure 19: CoreOS rkt

Figure 20: Canonical's LXD Figure 21: Apache mesos

45

CTU in Prague 5 DOCKER

Docker is a Linux container technology that allows package and ship applications

and everything it needs to execute into a standard format, and run them on any

infrastructure.

5.1 Virtual machine vs. Docker container

Both virtual machines and Docker containers are two ways how to deploy multiple,

isolated applications on a single platform. They both o�er a way to isolate an

application and its dependencies into a self-contained unit that can run anywhere.

They both o�er some kind of virtualization. They di�er in architecture, see Fig. 22,

23.

Figure 22: Virtual machine architecture,

source [13]

Figure 23: Containers architecture,

source [13]

5.1.1 Virtual machine

Let's start with a virtual machine (Fig. 22) and its layers description from the

bottom up:

• Infrastructure - It can be a PC, developer's laptop, a physical server in data-

center but as well a virtual private server in the cloud as Microsoft Azure or

Amazon Web Services.

46

CTU in Prague 5 DOCKER

• Host OS - Host operating system. In case of native hypervisor this layer is

missing. In case of hosted hypervisor it is probably some distribution of Linux,

Windows or MacOS.

• Hypervisor - Also called virtual machine monitor (VMM). It allows hosting

several di�erent virtual machines on a single hardware. There are two types

of hypervisors:

� Type 1 - Also called bare metal or native. This type is run on the host's

hardware to control it as well as manage the virtual machines on it. It is

much faster and more e�cient. This type hypervisors are KVM, Hyper-V

or HyperKit.

� Type 2 - So called embedded or hosted hypervisors. These hypervisors

are run on a host OS as a software. They are slower and less e�cient on

the other hand they are much easier to set up. It includes VirtualBox or

VMWare Workstation.

• Guest OS - Guest operating system. Each VM requires own guest operating

system which is controlled by the hypervisor. Each guest OS needs its own

CPU and memory resources and starts on hundreds of megabytes in size.

• Bins/Libs - Each guest OS needs various binaries and libraries for running the

application. It can be python-dev or default-jdk packages as well as personal

packages to run the application.

• Application - The application source code that is desired to be run isolated.

Therefore each application or each version of the application has to be run

inside of its own guest OS with own copy of bins and libs.

5.1.2 Docker container

Now, what is di�erent regarding containers (Fig. 23):

• Infrastructure - PC, laptop, physical or virtual server.

• Host OS with container support - Any OS capable of run Docker. All major

distributions of Linux are supported and there are ways to run Docker even

on MacOs and Windows too.

47

CTU in Prague 5 DOCKER

• Docker engine - Also called Docker daemon. It is a service that runs in the

background on host operating system. It manages all interaction with con-

tainers.

• Bins/Libs - Binaries and libraries required by the application. They get built

into special packages called Docker images. The Docker daemon runs those

images.

• Application - Each application and its library dependencies get packed into

the same Docker image. It is managed independently by the Docker daemon.

But the architecture is not the only one di�erence:

• Docker uses Docker daemon to manage containers, hypervisor manages virtual

machines.

• The Docker daemon communicates directly with host OS and manage re-

sources for each container.

• VMs usually boot up in a minute and more, containers start in seconds.

• Docker virtualizes operating systems, using VMs is hardware virtualization.

• VM and container vary in size. VMs start at hundreds of megabytes. A

container can be smaller than one megabyte.

• Containers share the kernel although they are isolated. VMs are monolithic

and stand-alone.

5.2 Docker�le

Docker�le is a core �le that contains the instruction to be performed when an image

is built. It usually consists of commands to install packages, calls to other scripts,

setting environmental variables, adding �les or setting permissions. In Docker�le

there is also de�ned what image is to be used as a base image for the build.

48

CTU in Prague 5 DOCKER

Docker�le instructions

• FROM - The FROM instruction de�nes the base image for next instructions

and initializes a new build stage. Every Docker�le has to start with FROM

command. The only exception is ARG command which can be before FROM

command.

• ARG - The ARG instruction de�nes a variable that users can pass at build-

time to the builder.

• ENV <key>=<value> - The ENV instruction sets the environment variables.

It is key-pair value.

• LABEL - The LABEL instruction adds metadata to an image. A LABEL is

a key-value pair. It can be anything from version number to a description.

• ADD <src> <dest> - The ADD instruction copies �les or directories from

source and adds them at the destination path. It also unzips or untars �les

when added.

• COPY <src> <dest> - Similar to the ADD instruction it copies �les or di-

rectories from source and adds them to the destination path. This command

doesn't provide any kind of decompression.

• RUN <command> - The RUN instruction will execute any de�ned command

and commit the results.

• CMD ["executable","param1","param2"] - The CMD instruction provides de-

faults for an executing container. It can include an executable. In case the

executable is omitted the CMD instruction must be used together with the

ENTRYPOINT instruction. There can be only one CMD instruction in Dock-

er�le. In case there is more CMD the last one will be used.

• ENTRYPOINT - The ENTRYPOINT de�nes a container con�guration that

will run as executable.

• WORKDIR /path/to/dir - The WORKDIR instruction sets the working direc-

tory for any RUN, CMD, COPY and ADD instruction that follows in Dock-

er�le.

49

CTU in Prague 5 DOCKER

• EXPOSE - The EXPOSE instruction informs Docker that the container listens

on the speci�ed network ports at runtime.

• VOLUME - The VOLUME instruction creates a mount point with the speci-

�ed name and marks it as holding externally mounted volumes from the native

host or other containers.

Except for the FROM instruction, all the instructions can be de�ned from the

command line when starting docker container. There are more Docker�le instruc-

tions however they are not relevant to this thesis as there are never used in practical

part. A Docker�le, which was created during the work on the thesis, is available at

App. E.

50

CTU in Prague

Part III

Implementation

51

CTU in Prague 6 IMPLEMENTATION INTRODUCTION

6 Implementation introduction

6.1 pywps-demo

During the implementation the pywps-demo (Sec. 3.3) running on Flask framework

was used. This demo server instance runs on host machine server at port 5000 as

well as the image built from its Docker�le is used for every container creation. For

developing purpose some sections were added to con�guration �le as well some minor

changes for instance in server routing were made. The di� �le to pywps-demo is in

App. G.

6.1.1 pywps-demo Docker�le

pywps-demo is also available as a Docker�le and as mentioned the image built from

this Docker�le is used for container creation. Before the work on this thesis started,

the pywps-demo project had o�ered two docker�les, both based on alpine Linux

distribution. The �rst one pywps-�ask was the default implementation using only

Flask while the second one nginx implements pywps using Nginx and Green unicorn

as WSGI server. During the implementation only the pywps-�ask Docker�le was

used. However it was necessary to modify the Docker�le because it did not contain

GDAL library which is required for most of the demo processes that pywps-demo

o�ers.

During implementaion a new version of Docker�le with support of GDAL was

created in collaboration with PyWPS developers. There were some issues with

Xerces libraries whose packages are not available for alpine distribution and its

manual instalation was necessary. The newly-created Docker�le is available in App.

E. At the time of �nishing this thesis pywps-demo o�ers docker�les based on alpine

and ubuntu Linux distribution.

6.2 OWSLib

A Python package OWSLib was used for forwarding requests from PyWPS server

instance running on host machine to PyWPS server instance running inside a Docker

52

CTU in Prague 6 IMPLEMENTATION INTRODUCTION

container. Some bug �xing which is mentioned in Sec.9.2.2 was necessary14. Com-

plete di� is available in App. F.

6.3 PyWPS

Most changes have been done in core PyWPS project. Almost all changes were

made in processing module. To this module new �le container.py containing the

Container class was added. Complete di� is available at App. H.

14Pull request at: https://github.com/geopython/OWSLib/pull/410

53

https://github.com/geopython/OWSLib/pull/410

CTU in Prague 7 OPERATIONS OVERVIEW

7 Operations overview

PyWPS in current version 4.0.0 implements all mandatory operations: Execute,

GetCapabilities, DescribeProcess. Operations are handled by corresponding methods

execute(), get_capabilities() and describe() in Service class.

However bothGetCapabilities andDescribeProcess operations run in synchronous

mode only. After sending a request, a client receives back GetCapabilities or De-

scribeProcess response (both detaily described in 1.3.1 and 1.3.2). Both operations

return only information or description about process but do not trigger the execution

of the process. It is supposed the response to GetCapabilities and DescribeProcess

is returned almost immediately. During the GetCapabilities and the DescribePro-

cess operations a process execution is not started and therefore there is no starting

process to be isolated. That is why whole contribution of this thesis only applies to

Execute operation.

Figure 24: PyWPS operations activity diagram, source: author

54

CTU in Prague 8 EXECUTE OPERATION

8 Execute operation

8.1 Service.execute()

As mentioned in previous section Sect. 7, Execute operation is handled by execute()

method. Inputs for the method are:

• identi�er (string) - a name of the process which execution is requested and

which is supported by WPS server.

• wps_request (WPSRequest object) - an object containing original HTTP re-

quest.

• uuid (integer) - unique identi�er of process execution.

The �owchart of the process execution is displayed in Fig. 25. At �rst a deepcopy

of the process instance is created so that processes cannot override each other. Then

a temporary working directory workdir is created and set as a current workdir for the

process execution. To the workdir all input �les are copied as well as all temporary

�les and outputs are stored here. Then the method _parse_and_execute() is called

(see Fig. 26). Here the inputs are parsed, in case of a web-referenced input the data

are downloaded to workdir, in case of data sent within a request the data are saved

into a �le in workdir. The process execution afterward runs in Process.execute()

method. This method returns a wps_response - an instance of WPSReponse object.

8.2 Process.execute()

The method execute() of class Process contains crucial if-statement where is decided

whether the process will be run in asynchronous or synchronous mode. Running in

asynchronous mode can be enforced by setting both attributes status and storeEx-

ecuteResponse of the ResponseDocument element in the ExecuteRequest XML to

True.

55

CTU in Prague 8 EXECUTE OPERATION

Figure 25: Activity diagram: method

Service.execute(), source: author

Figure 26: Activity diagram: method

Service._parse_and_execute(), source:

author

Listing 6: ReponseForm element of ExecuteRequest XML

<wps:ResponseForm>

<wps:ResponseDocument s t a tu s=" true " storeExecuteResponse=" true ">

<wps:Output asRe fe rence=" true ">

<ow s : I d e n t i f i e r>buff_out</ ow s : I d e n t i f i e r>

</wps:Output>

</wps:ResponseDocument>

</wps:ResponseForm>

No matter whether the process runs synchronously or asynchronously there is

always a control how many parallel processes are currently running. The number of

the maximum of concurrently running processes can be con�gured. If the process is

56

CTU in Prague 8 EXECUTE OPERATION

asynchronous and the number of currently running processes exceeds the maximal

number, the process is stored and its execution is started lately. In case of the

synchronous process the ServerBusy exception is raised. If the number of processes

is smaller than the maximal number of concurrent processes, the process can be

executed. In synchronous mode the _run_process() is called, in asynchronous mode

the method _run_async() is called. The activity diagram of the Process.execute()

is displayed in Fig.27.

Figure 27: Activity diagram: Process.execute(), source: author

8.3 Processing module

Until now the operations described in this thesis was not modi�ed. Requirements

which have been considered during the implementation of Docker technology were

that the source code will be modi�ed slightly, the process isolation will be easily

inserted and the project structure will be kept the same. Keeping this in mind

changes in source code were made only in processing module.

57

CTU in Prague 8 EXECUTE OPERATION

As mentioned in Sec. 4.2, PyWPS uses solely the Python packageMultiprocessing

in production version. In develop branch there is also Scheduler extension as one of

the option for multiprocessing. In this thesis another option Docker for processing

was added. The desired option for processing can be con�gured in con�guration �le

via parameter mode in section processing (see Lst. 7), possible values are:

• docker - new option

• scheduler

• multiprocessing - default option

Listing 7: Processing mode con�guration

[p r o c e s s i ng]

mode=docker / s chedu l e r /mu l t i p ro c e s s i ng

Figure 28: Activity diagram: Method

Process._run_async(), source: author

Figure 29: Class diagram: Processing

class, source: author

The whole Docker implementation is in Container.py module. The class Con-

tainer handles containers creation, interaction with server, �le-system mounting and

all container management.

58

CTU in Prague 9 CONTAINER CLASS

9 Container class

The main idea of process isolation using Docker is quite simple. For every process

execution one separate Docker container is created. Instead of starting process

execution on the host PyWPS server after receiving ExecuteRequest from the client,

the ExecuteRequest is forwarded to PyWPS server running inside Docker container.

The process execution runs inside the container. After successful process execution

the outputs are available at the host server. The host server and the container share

the same process workdir at �lesystem.

Figure 30: Sequence diagram: Process execution using Docker, source: author

59

CTU in Prague 9 CONTAINER CLASS

9.1 Container class constructor

Container class is initialized with standard Python method __init__(). As an

inheritor of Processing class, at �rst the parent constructor super().__init__()

is called. Follows description of methods which are called inside the constructor

method.

Listing 8: Container class constructor

de f __init__(s e l f , process , wps_request , wps_response) :

super () . __init__(process , wps_request , wps_response)

s e l f . port = s e l f . _assign_port ()

s e l f . c l i e n t = docker . from_env ()

s e l f . cntnr = s e l f . _create ()

9.1.1 Container._assign_port()

The method returns the number of available port. The port is chosen from range

<port_min, port_max> which are both con�gurable values. If no port from the

range is available, the method returns NoAvailablePortException. Schema of ports

assignment to each container is in Fig. 31.

9.1.2 docker.from_env()

The docker is a Python library for the Docker Engine API. from_env method returns

an instance of DockerClient class which is a client to communicate with the Docker

daemon. The returned client is con�gured from the same variables as the Docker

command-line client.

9.1.3 Container._create()

The _create method reads following values at the beginning:

• cntnr_img - Name of the image the container will be created from. The name

of the image must be the same as the tag set by the -t parameter in docker

build command when the image is built from Docker�le.

60

CTU in Prague 9 CONTAINER CLASS

Listing 9: Docker build command

docker bu i ld −t image_name /path/ to / d o c k e r f i l e

• prcs_inp_dir - Path to process workdir from self.job.wps_response.process.workdir.

It is a directory where the inputs for the process are stored.

• prcs_out_dir - Path to server output directory where all outputs are stored.

The path is taken from outputpath parameter of section server in the con�g-

uration �le.

• dckr_inp_dir - Path to input data directory of WPS instance running inside

Docker container. It is taken from dckr_inp_dir of processing section.

• dckr_out_dir - Path to output directory of WPS instance running inside the

container. It is taken from dckr_out_dir of processing section.

The method returns an instance of Container class from docker module. The

container is created by self.client.containers.create() method.

The method takes optional parameter ports. It is a dictionary that de�nes ports

to bind inside the container. The keys of the dictionary are the ports to bind inside

the container (port 5000 inside Container 1 and Container 2 at Fig. 31). The

values of the dictionary are the corresponding ports to open on the host (port 5050

for Job1, port 5051 for Job2 at Fig. 31).

Another optional parameter is volumes. It is a dictionary to con�gure volumes

mounted inside the container. The key is the host path and the value is a dictionary

with the keys: bind - the path to mount the volume inside the container, and mode

- either rw to mount the volume read/write, or ro to mount it read-only.

Listing 10: create() method

s e l f . c l i e n t . c on ta i n e r s . c r e a t e (cntnr_img , detach=True ,

por t s ={"5000/ tcp " : s e l f . port } ,

volumes={prcs_out_dir : { ' bind ' : dckr_out_dir , 'mode ' : ' rw ' } ,

prcs_inp_dir : { ' bind ' : dckr_inp_dir , 'mode ' : ' ro ' } })

61

CTU in Prague 9 CONTAINER CLASS

Figure 31: Ports assignment schema, source: author

Every container created with de�ned parameters volumes and ports will have out-

put directory on the host mounted into the container output directory as well as the

process workdir at host machine mounted into container directory with data. There-

fore, all inputs downloaded to process workdir will be available for the container and

all outputs produced after process execution will be stored at host machine output

directory. Displayed in Fig. 32.

9.2 Container.start() method

When a container is created the start() method is called and the container is started.

In the time of �nishing this thesis the method looks like at Lst.11. In the current

state is used the method _dirty_clean(). It assures that the container is removed

after the successful execution, temporary workdir is cleaned and it also updates

the process status in the database. Unfortunately, it causes that the process runs

synchronously. To solve this problem is one of the future goals. The schema of

Container.start() method is in Fig. 33

62

CTU in Prague 9 CONTAINER CLASS

Figure 32: Schema of mounting directories, source: author

Listing 11: Container.create() method

de f s t a r t (s e l f) :

s e l f . cntnr . s t a r t ()

time . s l e e p (0 . 5)

s e l f . _execute ()

s e l f . _parse_status ()

s e l f . _dirty_clean ()

9.2.1 docker.container.start()

start() method of Container class from Python module docker. The method is

similar to docker start command. It starts the Docker container. Then the method

time.sleep() is called to wait half a second after which the container is ready to use.

9.2.2 Container._execute()

_execute() method handles forwarding execution from server to container. For send-

ing request to container OWSLib library (Sec. 6.2) is used.

63

CTU in Prague 9 CONTAINER CLASS

OWSLib is a Python package for client programming with OGC web services

interface standards. However before it was possible to use this package it was nec-

essary to �x a bug in the wps module. The bug caused outputs in the Execute

response, which were referenced as web-accesible resource, not to be parsed because

of wrong handling with xlink namespace. The bug-�x di� �le is available in App.

F.

Listing 12: Container._execute() method

de f _execute (s e l f) :

ur l_execute = "http :// l o c a l h o s t :{}/wps " . format (s e l f . port)

inputs = get_inputs (s e l f . job . wps_request . inputs)

output = get_output (s e l f . job . wps_request . outputs)

wps = WPS(u r l=url_execute , skip_caps=True)

s e l f . execut ion = wps . execute (s e l f . job . wps_request . i d e n t i f i e r ,

inputs=inputs , output=output)

The method calls get_inputs() that returns all inputs transformed into a list

of tuples in form (input_name, input_value). In case of ComplexData input, the

input value is replaced with path to �le. It is necessary to transform the inputs into

the list of tuples because it is the required form for WebProcessingService.execute()

method. Example for demo process bu�er at Lst. 14.

Listing 13: get_inputs return value

the_inputs = [(' poly_in ' , ' f i l e : /// pywps−f l a s k /data/ po int . gml ') ,

(' bu f f e r ' , ' 1 . 0 ')]

the_outputs = [(' buff_out ' , ' true ')]

Then the method calls get_outputs() that returns list of tuples in form (out-

put_name, asReference_attr_value). It is necessary to transform the outputs into

the list of tuples because it is the required form for WebProcessingService.execute()

method.

WebProcessingService object from OWSLib package is responsible for sending

request to container. Its constructor takes URL of the WPS server running in-

side container. Container URL varies depending on the port assigned to the con-

tainer. Then the WPSExecution object is assigned to the Container instance. The

64

CTU in Prague 9 CONTAINER CLASS

WPSExecution object is returned fromWebProcessingService.execute() method that

takes as inputs process identi�er, list of inputs from get_inputs() and outputs from

get_outputs().

9.2.3 Container._parse_status()

The method takes path to status location from WPSExecution.statusLocation and

copies it to Job.process.status_url. Then the WPSReponse object is updated by

Job.wps_response.update_status() with WPSExecution.statusMessage. It means

the WPSResponse object at host machine WPS server adopts statusMessage and

path to statusLocation from WPSExecution object that handles the process execu-

tion inside the container. The process execution inside the container updates its

status into the �le that is located in container output directory. This directory is

shared with WPS server at host machine so it is available even for the client.

9.2.4 Container._dirty_clean()

The method cares about stopping and removing Docker container, removing job

workdir and original status XML. This method prevents from accumulation of run-

ning Docker containers and temporary �les in workdir directory. On the other hand

there is missing functionality for the process managment in database. In the current

state when using Docker, the processes on the server are not ended even though the

result is already returned from the container. These pseudo-running processes ac-

cumulate on the server and some other processes can be rejected because the limit

of maximal running processes is reached. This must be solved in the future.

Listing 14: get_inputs return value

de f _dirty_clean (s e l f) :

time . s l e e p (1)

s e l f . cntnr . stop ()

s e l f . cntnr . remove ()

s e l f . job . p roce s s . c l ean ()

os . remove (s e l f . job . p roce s s . s t a tu s_ loca t i on)

65

CTU in Prague 9 CONTAINER CLASS

time.sleep(1) is called to wait one second so the running process execution inside

the container can be �nished. The parameter 1 second is hardcoded and serves just

now when the development is not done. stop() and remove() methods of class Con-

tainer from docker module are similar to docker commands docker stop container_id

and docker rm container_id.

Job.process.clean() remove the job workdir so the temporary �les do not cumulate

at the server. os.remove() deletes the original status XML since the status XML

from the container was sent back to the client.

Figure 33: Schema of WPSExecution, source: author

66

CTU in Prague CONCLUSION

Conclusion

The goal of the thesis was to �nd and implement a solution for process isolation

in PyWPS. This functionality was demanded by PyWPS developers who would

appreciate the possibility to isolate each process execution. With every process fully

isolated, a higher level of security is ensured. Moreover, without the isolation the

processes have access to a �le-system of a hosting OS.

But there are other reasons considered. One of them is a performance. Non-

isolated processes share the resources of a host machine. In case that a client requests

an execution of a process that is poorly designed, its execution can consume a lot of

resources and thus it may slow down other process executions running in parallel.

In the worst-case scenario a process execution can bring down the server.

In the �rst part, the thesis sets a theoretical background and theWPS standard is

explained. Various projects which implement the standard are mentioned. Second

part is dedicated to PyWPS as a Python implementation of the WPS. There is

described the currentstate of the project followed by a research.

The reseach covers various solutions for the process isolation. The functionality

for the isolation was the main criterion, however beside that the selected solution

should provide some mechanisms to control the execution of the process. These

mechanisms will be necessary for implementation of the WPS 2.0.0 standard.

The Docker Container Extension has been on the developers wishlist for a long

time. The container encapsulates the process execution and also o�ers methods

to start, pause, stop or kill the container and thus the execution. Moreover using

Docker opens possibilities of Web Processing Service in a cloud computing infras-

tructure.

The architecture is based on pywps-demo project. It o�ers a demo server in-

stance of PyWPS. When a process execution is requested, a server creates a Docker

container with the demo server instance running inside. The request is forwarded

into the container. The process execution runs inside the container but the container

output directory is mounted into the server �le-system so the results are available

on the server.

67

CTU in Prague CONCLUSION

At the time of submitting, the implementation is not �nished. It provides work-

ing solution but there are several issues to be considered. First of all, the solution

does not provide an asynchronous execution. A client receives an execute response

that the process was accepted, after the execution is already �nished.

Another problem is a management of containers. In the current state, a container

is stopped and removed after a successful process execution, however it is achieved

with the _dirty_clean() method which is inappropriate for production environment.

Another problem is cumulation of processes on a server. These pseudo-running

processes remain on the server and block other processes even though a client has

already received the results. There is missing connection between a container and a

server when a process execution inside the container is done.

All these issues prevents from integration the Docker container extension into the

o�cial PyWPS repository. Nevertheless, I would like to continue on the development

and solve all problems so I can make a pull request at least into PyWPS develop

branch. During the implementation I have contributed into pywps, pywps-demo and

OWSLib projects. Pull requests into pywps and pywps-demo wait for the PyWPS

developers feedback and problems solution mentioned above. The pull request15 into

OWSLib is already waiting for approval. All di� �les, as well the text of the thesis

and its source code, are available at GitHub repository of this thesis.16

15https://github.com/geopython/OWSLib/pull/410
16https://github.com/ctu-geoforall-lab-projects/dp-laza-2018/

68

https://github.com/geopython/OWSLib/pull/410
https://github.com/ctu-geoforall-lab-projects/dp-laza-2018/

CTU in Prague LIST OF ABBREVIATION

List of abbreviation

API Application Programming Interface

CGAL Computational Geometry Algorithms Library

GDAL Geospatial Data Abstraction Library

GIS Geographic Information System

HPC High Performance Compute

KVP Key Value Pair

MIME Multipurpose Internet Mail Extension

OGC Open Geospatial Consortium

PID Process identi�er

SOAP Simple Object Access Protocol

URL Uniform Resource Locator

VM Virtual Machine

VMM Virtual Machine Monitor

WPS Web Processing Service

WMS Web Map Service

WFS Web Feature Service

WCS Web Coverage Service

XML eXtensible Markup Language

69

CTU in Prague REFERENCES

References

[1] Mark Reichardt OGC Newsletter - October 2004, OGC document num-

ber 04-043 [online]. URL: <http://www.opengeospatial.org/pressroom/

newsletters/200410>

[2] Sam Bacharach OGC announces Web Processing Services Interoperability

Experiment [online]. URL: <http://www.opengeospatial.org/pressroom/

pressreleases/414>

[3] Open Geospatial Consortium Inc. OpenGIS R© Web Processing Ser-

vice, OGC document number 05-007r4, ver. 0.4.0 [online]. URL:

<https://portal.opengeospatial.org/files/?artifact_id=13149&

version=1&format=doc>

[4] Open Geospatil Consorcium OGC websites [online]. URL: <http://www.

opengeospatial.org/>

[5] Open Geospatil Consorcium OGC History (detailed) [online]. URL: <http:

//www.opengeospatial.org/ogc/historylong>

[6] http://www.opengeospatial.org/pressroom/newsletters/200410

[7] Open Geospatial Consortium OGC R© WPS 2.0 Interface Standard

Corrigendum 1, OGC document number 06-121r3 [online]. URL:

<https://portal.opengeospatial.org/files/?artifact_id=13149&

version=1&format=doc>

[8] Open Geospatial Consortium Inc. OGC Web Services Common Speci�ca-

tion, OGC document number 14-065 [online]. URL: <https://portal.

opengeospatial.org/files/?artifact_id=20040>

[9] deegree devs deegree documentation [online]. URL: <http://download.

deegree.org/documentation/3.3.20/html/>

[10] GeoServer devs GeoServer documentation [online]. URL: <http://docs.

geoserver.org/>

70

http://www.opengeospatial.org/pressroom/newsletters/200410
http://www.opengeospatial.org/pressroom/newsletters/200410
http://www.opengeospatial.org/pressroom/pressreleases/414
http://www.opengeospatial.org/pressroom/pressreleases/414
https://portal.opengeospatial.org/files/?artifact_id=13149&version=1&format=doc
https://portal.opengeospatial.org/files/?artifact_id=13149&version=1&format=doc
http://www.opengeospatial.org/
http://www.opengeospatial.org/
http://www.opengeospatial.org/ogc/historylong
http://www.opengeospatial.org/ogc/historylong
https://portal.opengeospatial.org/files/?artifact_id=13149&version=1&format=doc
https://portal.opengeospatial.org/files/?artifact_id=13149&version=1&format=doc
https://portal.opengeospatial.org/files/?artifact_id=20040
https://portal.opengeospatial.org/files/?artifact_id=20040
http://download.deegree.org/documentation/3.3.20/html/
http://download.deegree.org/documentation/3.3.20/html/
http://docs.geoserver.org/
http://docs.geoserver.org/

CTU in Prague REFERENCES

[11] ZOO-Project devs ZOO-Project documentation [online]. URL: <http://

zoo-project.org/docs>

[12] Esri Tuning and con�guring services [online]. URL: <http://

server.arcgis.com/en/server/latest/publish-services/linux/

tuning-and-configuring-services.htm>

[13] Docker Docker documentation [online]. URL: <https://docs.docker.com/>

[14] Jáchym �epický, Luís Moreira de Sousa New implementation of OGC

Web Processing Service in Python programming language. [online]. URL:

<https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.

net/XLI-B7/927/2016/isprs-archives-XLI-B7-927-2016.pdf>

[15] Jorge de Jesus, Luca Casagrande, Jáchym �epický Py-

WPS a tutorial for beginners and developers [online].

URL: <https://www.slideshare.net/JorgeMendesdeJesus/

pywps-a-tutorial-for-beginners-and-developers>

[16] PyWPS developers PyWPS History [online]. URL: <http://pywps.org/

history/>

[17] PyWPS developers PyWPS documentation [online]. URL: <http://pywps.

readthedocs.io/>

[18] Victor Stinner The pysandbox project is broken [online]. URL: <https://lwn.

net/Articles/574323/>

[19] Victor Stinner Linkage of OGC WPS 2.0 to the e-Government Standard Frame-

work in Korea: An Implementation Case for Geo-Spatial Image Processing [on-

line]. URL: <http://www.mdpi.com/2220-9964/6/1/25/pdf>

71

http://zoo-project.org/docs
http://zoo-project.org/docs
http://server.arcgis.com/en/server/latest/publish-services/linux/tuning-and-configuring-services.htm
http://server.arcgis.com/en/server/latest/publish-services/linux/tuning-and-configuring-services.htm
http://server.arcgis.com/en/server/latest/publish-services/linux/tuning-and-configuring-services.htm
https://docs.docker.com/
https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLI-B7/927/2016/isprs-archives-XLI-B7-927-2016.pdf
https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLI-B7/927/2016/isprs-archives-XLI-B7-927-2016.pdf
https://www.slideshare.net/JorgeMendesdeJesus/pywps-a-tutorial-for-beginners-and-developers
https://www.slideshare.net/JorgeMendesdeJesus/pywps-a-tutorial-for-beginners-and-developers
http://pywps.org/history/
http://pywps.org/history/
http://pywps.readthedocs.io/
http://pywps.readthedocs.io/
https://lwn.net/Articles/574323/
https://lwn.net/Articles/574323/
http://www.mdpi.com/2220-9964/6/1/25/pdf

CTU in Prague

Part IV

Appendix

72

CTU in Prague A EXECUTE REQUEST EXAMPLE

A Execute request example

Listing 15: Execute request example

<?xml ve r s i on ="1.0" encoding="UTF−8" standa lone="yes"?>

<wps : Execute s e r v i c e="WPS" ve r s i on ="1.0.0" xmlns : wps="http ://www.

openg i s . net /wps /1 . 0 . 0 " xmlns : ows="http ://www. openg i s . net /ows

/1 .1" xmlns : x l i nk="http ://www.w3 . org /1999/ x l i nk " xmlns : x s i="

http ://www.w3 . org /2001/XMLSchema−i n s t anc e " x s i : schemaLocation

="http ://www. openg i s . net /wps / 1 . 0 . 0 . . / wpsExecute_request . xsd">

<ows : I d e n t i f i e r >bu f f e r </ows : I d e n t i f i e r >

<wps : DataInputs>

<wps : Input>

<ows : I d e n t i f i e r >poly_in</ows : I d e n t i f i e r >

<wps : Reference x l i nk : h r e f="http :// l o c a l h o s t :5000/ s t a t i c /data/

po int . gml" />

</wps : Input>

<wps : Input>

<ows : I d e n t i f i e r >bu f f e r </ows : I d e n t i f i e r >

<wps : Data>

<wps : L i tera lData >1</wps : L i tera lData>

</wps : Data>

</wps : Input>

</wps : DataInputs>

<wps : ResponseForm>

<wps : ResponseDocument s t a tu s="true " storeExecuteRsponse="true">

<wps : Output asRe fe rence="true">

<ows : I d e n t i f i e r >buff_out</ows : I d e n t i f i e r >

</wps : Output>

</wps : ResponseDocument>

</wps : ResponseForm>

</wps : Execute>

73

CTU in Prague B EXECUTE RESPONSE EXAMPLE (ASYNC MODE)

B Execute response example (async mode)

Listing 16: Execute response example (async mode)

<!−− PyWPS 4 . 0 . 0 −−>
<wps : ExecuteResponse xmlns : gml="http ://www. openg i s . net /gml"

xmlns : ows="http ://www. openg i s . net /ows /1 .1"

xmlns : wps="http ://www. openg i s . net /wps /1 . 0 . 0 "

xmlns : x l i nk="http ://www.w3 . org /1999/ x l i nk "

xmlns : x s i="http ://www.w3 . org /2001/XMLSchema−i n s t anc e "

x s i : schemaLocation="http ://www. openg i s . net /wps / 1 . 0 . 0

http :// schemas . openg i s . net /wps /1 . 0 . 0 / wpsExecute_response . xsd"

s e r v i c e="WPS" ve r s i on ="1.0.0" xml : lang="en−US"
s e r v i c e I n s t a n c e="http :// l o c a l h o s t :5000/wps? s e r v i c e=WPS&reques t=

GetCapab i l i t i e s "

s ta tusLocat i on="http :// l o c a l h o s t :5000/ outputs / ce57acbe−f 1 f 3 −11
e7−ad2a−0242ac110003 . xml">

<wps : Process wps : p roce s sVer s i on="0.1">

<ows : I d e n t i f i e r >bu f f e r </ows : I d e n t i f i e r >

<ows : T i t l e>GDAL Buf f e r process </ows : T i t l e>

<ows : Abstract>

The proce s s r e tu rn s bu f f e r s around the input f e a tu r e s ,

us ing the GDAL l i b r a r y

</ows : Abstract>

</wps : Process>

<wps : Status creat ionTime="2018−01−05T09 : 3 8 : 4 1Z">
<wps : ProcessAccepted>

PyWPS Process bu f f e r accepted

</wps : ProcessAccepted>

</wps : Status>

</wps : ExecuteResponse

74

CTU in Prague C STATUS XML EXAMPLE WITH REFERENCED OUTPUT

C Status XML example with referenced output

Listing 17: Status XML example

<wps : ExecuteResponse

x s i : schemaLocation="http ://www. openg i s . net /wps / 1 . 0 . 0

http :// schemas . openg i s . net /wps /1 . 0 . 0 / wpsExecute_response . xsd"

s e r v i c e="WPS" ve r s i on ="1.0.0" xml : lang="en−US"
s e r v i c e I n s t a n c e="http :// l o c a l h o s t :5000/wps? s e r v i c e=WPS&reques t=

GetCapab i l i t i e s "

s ta tusLocat i on="http :// l o c a l h o s t :5000/ outputs / ce57acbe−f 1 f 3 −11
e7−ad2a−0242ac110003 . xml">

<wps : Process wps : p roce s sVer s i on="0.1">

<ows : I d e n t i f i e r >bu f f e r </ows : I d e n t i f i e r >

<ows : T i t l e>GDAL Buf f e r process </ows : T i t l e>

<ows : Abstract>

The proce s s r e tu rn s bu f f e r s around the input f e a tu r e s ,

us ing the GDAL l i b r a r y

</ows : Abstract>

</wps : Process>

<wps : Status creat ionTime="2018−01−05T08 : 3 8 : 3 0Z">
<wps : ProcessSucceeded>

PyWPS Process GDAL Buf f e r p roce s s f i n i s h e d

</wps : ProcessSucceeded>

</wps : Status>

<wps : ProcessOutputs>

<wps : Output>

<ows : I d e n t i f i e r >buff_out</ows : I d e n t i f i e r >

<ows : T i t l e>Buf fe red f i l e </ows : T i t l e>

<wps : Reference x l i nk : h r e f="http :// l o c a l h o s t :5000/ outputs /

ce57acbe−f 1 f 3 −11e7−ad2a−0242ac110003/point_buffer_42rkmvt1 .

gml" mimeType="app l i c a t i on /gml+xml"/>

</wps : Output>

</wps : ProcessOutputs>

</wps : ExecuteResponse>

75

CTU in Prague D STATUS XML EXAMPLE WITH INLINE OUTPUT

D Status XML example with inline output

Listing 18: Status XML example

<wps : ExecuteResponse

x s i : schemaLocation="http ://www. openg i s . net /wps / 1 . 0 . 0

http :// schemas . openg i s . net /wps /1 . 0 . 0 / wpsExecute_response . xsd"

s e r v i c e="WPS" ve r s i on ="1.0.0" xml : lang="en−US"
s e r v i c e I n s t a n c e="http :// l o c a l h o s t :5000/wps? s e r v i c e=WPS&reques t=

GetCapab i l i t i e s "

s ta tusLocat i on="http :// l o c a l h o s t :5000/ outputs /1 cd3e506−f 1 f 7 −11
e7−8546−0242ac110003 . xml">

<wps : Process wps : p roce s sVer s i on="0.1">

<ows : I d e n t i f i e r >bu f f e r </ows : I d e n t i f i e r >

<ows : T i t l e>GDAL Buf f e r process </ows : T i t l e>

<ows : Abstract>

The proce s s r e tu rn s bu f f e r s around the input f e a tu r e s ,

us ing the GDAL l i b r a r y

</ows : Abstract>

</wps : Process>

<wps : Status creat ionTime="2018−01−05T09 : 0 2 : 1 0Z">
<wps : ProcessSucceeded>

PyWPS Process GDAL Buf f e r p roce s s f i n i s h e d

</wps : ProcessSucceeded>

</wps : Status>

<wps : ProcessOutputs>

<wps : Output>

<ows : I d e n t i f i e r >buff_out</ows : I d e n t i f i e r >

<ows : T i t l e>Buf fe red f i l e </ows : T i t l e>

<wps : Data>

<wps : ComplexData mimeType="app l i c a t i on /gml+xml">

<ogr : Fea tu r eCo l l e c t i on xmlns : ogr="http :// ogr . maptools . org /"

x s i : schemaLocation="http :// schemas . openg i s . net /gml /2 . 1 . 2 /

f e a t u r e . xsd">

<gml : boundedBy>

<gml : Box>

76

CTU in Prague D STATUS XML EXAMPLE WITH INLINE OUTPUT

<gml : coord>

<gml :X>−0.9514645979959721</gml :X>

<gml :Y>−0.986306232731747</gml :Y>

</gml : coord>

<gml : coord>

<gml :X>1.048535402004028</gml :X>

<gml :Y>1.013693767268253</gml :Y>

</gml : coord>

</gml : Box>

</gml : boundedBy>

<gml : featureMember>

<ogr : po int_buf f e r f i d="po int_buf f e r .0">

<ogr : geometryProperty>

<gml : Polygon>

<gml : outerBoundaryIs>

<gml : LinearRing>

<gml : coord inate s >1.04853540200403 ,0.013693767268253

1.0471649367586 ,−0.038642188974691 0.857552396378976 ,

−0.57409148502422 0.825681363460999 ,−0.615626623781584

0.791680227481423 ,−0.655436839090605 0.75564218319056 ,

−0.852331636516187 −0.496103633010996 ,−0.8249768006773

−0.539249850288442 ,−0.795323227106697 −0.580784989006 ,

−0.763452194188721 −0.620595204354827 ,−0.7294510582044

</gml : LinearRing>

</gml : outerBoundaryIs>

</gml : Polygon>

</ogr : geometryProperty>

</ogr : point_buf fer>

</gml : featureMember>

</ogr : FeatureCo l l e c t i on>

</wps : ComplexData>

</wps : Data>

</wps : Output>

</wps : ProcessOutputs>

</wps : ExecuteResponse>

77

CTU in Prague E DOCKERFILE

E Docker�le

Listing 19: Docker�le example

FROM alp in e : l a t e s t

MAINTAINER Jorge S . Mendes de Jesus <jo r g e . de jesus@geocat . net>

ENV GDAL_VERSION 2 . 2 . 0

ENV XERCES_VERSION 3 . 2 . 0

RUN apk add −−no−cache \

g i t \

gcc \

bash \

openssh \

musl−dev \

python3 \

python3−dev \

l ibxml2−dev \

l i b x s l t −dev \

l inux−headers \

expat \

expat−dev

RUN apk −−update −−no−cache add g++ l i b s t d c++ make swig

Xerces

RUN wget http ://www. apache . org / d i s t / xe r c e s /c /3/ sour c e s / xerces−c−$
{XERCES_VERSION} . ta r . gz −O /tmp/ xerces−c−${XERCES_VERSION} . ta r
. gz && \

tar xvf /tmp/ xerces−c−${XERCES_VERSION} . ta r . gz −C /tmp && \

cd /tmp/ xerces−c−${XERCES_VERSION} && \

./ con f i gu r e −−p r e f i x=/opt/ xe r c e s && \

make −j 4 && \

make i n s t a l l

78

CTU in Prague E DOCKERFILE

Geos

RUN apk add −−no−cache \

−−r e p o s i t o r y http :// dl−cdn . a l p i n e l i n ux . org / a lp i n e / edge/

t e s t i n g \

geos \

geos−dev

I n s t a l l GDAL

RUN wget http :// download . osgeo . org / gdal /${GDAL_VERSION}/ gdal−${
GDAL_VERSION} . ta r . gz −O /tmp/ gdal . t a r . gz && \

tar xz f /tmp/ gdal . t a r . gz −C /tmp && \

cd /tmp/gdal−${GDAL_VERSION} && \

CFLAGS="−g −Wall" LDFLAGS="−s " . / c on f i gu r e −−with−expat=
yes −−with−xe r c e s=/opt/ xe r c e s −−with−geos=yes \

&& make −j 4 && make i n s t a l l

RUN cd /tmp/gdal−${GDAL_VERSION}/ swig /python \

&& python3 setup . py bu i ld \

&& python3 setup . py i n s t a l l

RUN g i t c l one https : // github . com/ lazaa32 /pywps−f l a s k . g i t

WORKDIR /pywps−f l a s k

RUN pip3 i n s t a l l −r requ i rements . txt

EXPOSE 5000

ENTRYPOINT ["/ usr /bin /python3 " , "demo . py","−a "]

#docker bu i ld −t pywps−f l a s k .

#docker run −p 5000:5000 pywps−f l a s k

#http :// l o c a l h o s t :5000/wps? reque s t=GetCapab i l i t i e s&s e r v i c e=WPS

#http :// l o c a l h o s t :5000/wps? reque s t=Descr ibeProce s s&s e r v i c e=WPS&

i d e n t i f i e r=a l l&ve r s i on =1.0.0

79

CTU in Prague F OWSLIB DIFF FILE

F OWSLib di� �le

Listing 20: OWSLib di� �le

d i f f −−g i t a/ ows l ib /wps . py b/ ows l ib /wps . py

index c16e288 . . c e86 f93 100644

−−− a/ ows l ib /wps . py

+++ b/ ows l ib /wps . py

@@ −1117 ,13 +1117 ,15 @@ c l a s s Output (InputOutput) :

ex t r a c t wps namespace from outputElement i t s e l f

wpsns = getNamespace (outputElement)

+ # ext ra c t x l i nk namespace

+ x l i n s =outputElement . nsmap [' x l ink ']

<ns : Reference encoding="UTF−8" mimeType="text / csv "

hr e f="http :// c ida . usgs . gov/ c l imate /gdp/ proce s s /

Re t r i e v eRe su l tS e rv l e t ? id =1318528582026OUTPUT.601 bb3d0−547 f
−4eab−8642−7c7d2834459e"

/>

re fe renceElement = outputElement . f i nd (nspath (' Reference ' , ns=

wpsns))

i f r e f e renceElement i s not None :

− s e l f . r e f e r e n c e = re fe renceElement . get (' hre f ')

+ s e l f . r e f e r e n c e = re fe renceElement . get ('{{{}}} hre f ' . format (

x l i n s))

s e l f . mimeType = re fe renceElement . get ('mimeType ')

<Litera lOutput>

80

CTU in Prague G PYWPS-DEMO DIFF FILE (SHORTENED)

G PyWPS-demo di� �le (shortened)

Listing 21: pywps-demo di� �le

d i f f −−g i t a/pywps . c f g b/pywps . c f g

index a1ed125 . . f6e3981 100644

−−− a/pywps . c f g

+++ b/pywps . c f g

@@ −28 ,14 +28 ,25 @@ maxrequest s i ze=3mb

ur l=http :// l o c a l h o s t :5000/wps

outputur l=http :// l o c a l h o s t :5000/ outputs /

outputpath=outputs

−workdir=/tmp

+workdir=workdir

+wd_inp_subdir=inputs

+wd_out_subdir=outputs

maxprocesses=10

−p a r a l l e l p r o c e s s e s=2

+p a r a l l e l p r o c e s s e s=6

+

+[p ro c e s s i ng]

+mode=mu l t i p ro c e s s i ng

+port_min=5050

+port_max=5070

+docker_img=pywps_container

+dckr_inp_dir=/pywps−f l a s k /data

+dckr_out_dir=/pywps−f l a s k / outputs

[l ogg ing]

l e v e l=INFO

f i l e=l o g s /pywps . l og

database=s q l i t e :/// l o g s /pywps−l o g s . s q l i t e 3

+format=%(asct ime) s] [%(levelname) s] f i l e=%(pathname) s l i n e=%(

l i n eno) s module=%(module) s func t i on=%(funcName) s %(message) s

81

CTU in Prague H PYWPS DIFF FILE (SHORTENED)

H PyWPS di� �le (shortened)

Listing 22: pywps di� �le

d i f f −−g i t a/pywps/ except i on s . py b/pywps/ except i ons . py

index 8483911 . . e0e1c57 100644

−−− a/pywps/ except i ons . py

+++ b/pywps/ except i ons . py

@@ −150 ,3 +150 ,10 @@ c l a s s SchedulerNotAvai lab le (NoApplicableCode

) :

"""Job schedu l e r not a v a i l a b l e except ion implementation

"""

code = 400

+

+

+c l a s s NoAvai lablePortException (NoApplicableCode) :

+ """

+ No port a v a i l a b l e f o r new docker .

+ """

+ code = 400

d i f f −−g i t a/pywps/ p ro c e s s i ng /__init__ . py b/pywps/ p ro c e s s i ng /

__init__ . py

index 03 b f 0a f . . 6 3 816 e1 100644

−−− a/pywps/ p ro c e s s i ng /__init__ . py

+++ b/pywps/ p ro c e s s i ng /__init__ . py

@@ −7,6 +7,7 @@

import pywps . c on f i g u r a t i on as c on f i g

from pywps . p r o c e s s i ng . ba s i c import Mul t iProces s ing

from pywps . p r o c e s s i ng . s chedu l e r import Scheduler

+from pywps . p r o c e s s i ng . conta ine r import Container

api only

from pywps . p r o c e s s i ng . ba s i c import Proce s s ing # noqa : F401

from pywps . p r o c e s s i ng . job import Job # noqa : F401

@@ −16,6 +17 ,7 @@ LOGGER = logg ing . getLogger ("PYWPS")

MULTIPROCESSING = ' mul t ip roce s s ing '

82

CTU in Prague H PYWPS DIFF FILE (SHORTENED)

SCHEDULER = ' scheduler '

+DOCKER = ' docker '

DEFAULT = MULTIPROCESSING

@@ −30,6 +32 ,8 @@ def Process (process , wps_request , wps_response)

:

LOGGER. i n f o (" Proce s s ing mode : %s " , mode)

i f mode == SCHEDULER:

proce s s = Scheduler (process , wps_request , wps_response)

+ e l i f mode == DOCKER:

+ proce s s = Container (process , wps_request , wps_response)

e l s e :

p roc e s s = Mult iProces s ing (process , wps_request ,

wps_response)

re turn proce s s

d i f f −−g i t a/pywps/ p ro c e s s i ng / conta ine r . py b/pywps/ p ro c e s s i ng /

conta ine r . py

new f i l e mode 100644

index 0000000 . . 8 f5151e

−−− /dev/ nu l l

+++ b/pywps/ p ro c e s s i ng / conta ine r . py

@@ −0,0 +1 ,155 @@

+c l a s s C l i en tEr ro r :

+ pass

+

+c l a s s Container (Proce s s ing) :

+ de f __init__(s e l f , process , wps_request , wps_response) :

+ de f _create (s e l f) :

+ de f _assign_port (s e l f) :

+ de f s t a r t (s e l f) :

+ de f stop (s e l f) :

+ de f cance l (s e l f) :

+ de f pause (s e l f) :

+ de f unpause (s e l f) :

+ de f _execute (s e l f) :

83

CTU in Prague H PYWPS DIFF FILE (SHORTENED)

+ def _parse_outputs (s e l f) :

+ de f _parse_status (s e l f) :

+ de f _dirty_clean (s e l f) :

+de f get_inputs (job_inputs) :

+de f get_output (job_output) :

d i f f −−g i t a/pywps/ response / execute . py b/pywps/ response / execute .

py

index f 78c fb0 . . e994de3 100644

−−− a/pywps/ response / execute . py

+++ b/pywps/ response / execute . py

@@ −15,7 +15 ,7 @@ from pywps import WPS, OWS

−import pywps . dblog

+from pywps . dblog import update_response

@@ −38,6 +38 ,33 @@ c l a s s ExecuteResponse (WPSResponse) :

s e l f . p roc e s s = kwargs [" p roce s s "]

s e l f . outputs = {o . i d e n t i f i e r : o f o r o in s e l f . p roc e s s .

outputs }

+ de f update_status (s e l f , message=None , s tatus_percentage=None

, s t a tu s=None ,

+ c l ean=True) :

84

CTU in Prague I DOCKER EXTENSION DOCUMENTATION (SHORTENED)

I Docker extension documentation (shortened)

Listing 23: Docker extension documentation

Docker Container Extension

==========================

To i s o l a t e each proce s s execut ion i t i s p o s s i b l e to enable docker

ex tens i on .

. . note : : The PyWPS proce s s implementat ions are not changed by

us ing the

s chedu l e r ex tens i on .

F i r s t o f a l l i n s t a l l Docker from ` webs i te <https : // docs . docker .

com/ engine / i n s t a l l a t i o n / l i nux /docker−ce /ubuntu/>`_.

Clone ` ` pywps−demo ` ` : :

$ g i t c l one https : // github . com/ lazaa32 /pywps−f l a s k . g i t

I n s t a l l demo requi rements from ` ` requirement . txt ` ` . I t w i l l

download a l l r equ i r ed packages i n c l ud ing ` ` pywps ` ` core

package : :

$ cd pywps−f l a s k

$ pip i n s t a l l −r requ i rements . txt

` ` pywps ` ` package was downloaded to ` ` s rc ` ` d i r e c t o r y . Let ' s s e t

the ` `PYTHONPATH` ` so ` ` pywps−demo ` ` knows where to f i nd : :

$ EXPORT PYTHONPATH=$PYTHONPATH:$PWD/ s r c /pywps−develop
I f everyth ing went OK, i t should be now po s s i b l e to run : :

$ python3 demo . py

However the demo s t i l l runs without Docker extens i on . F i r s t o f

a l l i t i s nece s sa ry to bu i ld an image from Dock e r f i l e .

From the image a l l c on ta i n e r s w i l l be c r ea ted : :

$ cd docker / i s o l a t i o n

$ docker bu i ld −t con ta ine r .

. . note : : The ∗∗−t ∗∗ f l a g s e t s a name and op t i o na l l y a tag in the

∗∗name : tag ∗∗ format . The name o f the image

w i l l be one o f the parameter va lue in c on f i g u r a t i on f i l e .

. . warning : : The image bu i ld can take up to s e v e r a l t ens o f

minutes s i n c e some manual i n s t a l l a t i o n run on the

85

CTU in Prague I DOCKER EXTENSION DOCUMENTATION (SHORTENED)

background .

You can check the image was bu i l t by : :

$ docker images

To a c t i v a t e t h i s ex tens i on you need to ed i t the ` ` pywps . c fg ` `

c on f i gu r a t i on f i l e and make the f o l l ow i ng changes : :

[p r o c e s s i ng]

mode=docker

port_min=5050

port_max=5070

docker_img=conta ine r

dckr_inp_dir=/pywps−f l a s k /data

dckr_out_dir=/pywps−f l a s k / outputs

` `mode ` ` must be s e t to ` ` docker ` ` . ` ` port_min ` ` and ` ` port_max ` `

d e f i n e the range o f por t s which can be

as s i gned to con ta i n e r s . ` ` docker_img ` ` must match to name o f the

image g iven by −t f l a g during the image bu i ld .

The docker extens i on i s now enabled and every asynchronous

r eque s t w i l l be executed s epa r a t e l y in a Docker

conta ine r .

86

CTU in Prague LIST OF FIGURES

J List of tables and �gures

List of Tables

1 Operations request encoding . 17

2 GetCapabilities operation request URL parameters, source: [8] 19

3 DescribeProcess operation request URL parameters, source: [8] 21

4 Parts of ProcessDescription data structure, source: [6] 22

5 Parts of Execute operation request, source: [6] 23

6 Parts of ExecuteResponse data structure, source: [6] 25

List of Figures

1 WPS interface UML description, source: [6] 17

2 Sequence diagram: a client requests storage of results, source: [6] . . 24

3 deegree project logo . 26

4 52◦North project logo . 26

5 GeoServer logo . 27

6 Process status page, source [10] . 28

7 Esri logo . 29

8 Low isolation, source [12] . 30

9 High isolation, source [12] . 30

10 PyWPS project logo . 32

11 Sequence diagram: Multiprocessing 37

12 Grid Engine . 38

13 Slurm . 38

14 TORQUE . 38

15 Example of PyWPS scheduler extension usage with Slurm, source: [17] 39

87

CTU in Prague LIST OF FIGURES

16 Communication between PyWPS and scheduler, source: [17] 39

17 Docker logo . 45

18 Kubernetes . 45

19 CoreOS rkt . 45

20 Canonical's LXD . 45

21 Apache mesos . 45

22 Virtual machine architecture, source [13] 46

23 Containers architecture, source [13] 46

24 PyWPS operations activity diagram, source: author 54

25 Activity diagram: method Service.execute(), source: author 56

26 Activity diagram: method Service._parse_and_execute(), source: au-

thor . 56

27 Activity diagram: Process.execute(), source: author 57

28 Activity diagram: Method Process._run_async(), source: author . . 58

29 Class diagram: Processing class, source: author 58

30 Sequence diagram: Process execution using Docker, source: author . . 59

31 Ports assignment schema, source: author 62

32 Schema of mounting directories, source: author 63

33 Schema of WPSExecution, source: author 66

88

CTU in Prague K ZIP FILE CONTENT

K ZIP �le content

.

src
di�s

owslib.di� owslib di� �le
pywps.di� pywps di� �le
pywps-demo.di� pywps-demo di� �le

text
LaTeX LaTeX source code
adam-laza-bp-2015.pdf text of the thesis

zadani
zadanidp.pdf assignment of the thesis

89

	Introduction
	I Web Processing Service
	Web Processing Service
	History
	Open Geospatial Consortium
	Web Processing Service
	GetCapabilities
	DescribeProcess
	Execute

	WPS implementations
	deegree
	52North WPS
	GeoServer
	ZOO-Project
	ArcGIS Server
	PyWPS

	II PyWPS
	PyWPS
	History
	PyWPS 4.0
	PyWPS-demo

	Process isolation in PyWPS
	Asynchonous requests
	Current state
	Possible solutions for process isolation
	Celery
	Docker
	psutil
	Sandboxed Python
	Virtual Machine/Vagrant

	Docker
	Virtual machine vs. Docker container
	Virtual machine
	Docker container

	Dockerfile

	III Implementation
	Implementation introduction
	pywps-demo
	pywps-demo Dockerfile

	OWSLib
	PyWPS

	Operations overview
	Execute operation
	Service.execute()
	Process.execute()
	Processing module

	Container class
	Container class constructor
	Container._assign_port()
	docker.from_env()
	Container._create()

	Container.start() method
	docker.container.start()
	Container._execute()
	Container._parse_status()
	Container._dirty_clean()

	Conclusion
	List of abbreviation

	IV Appendix
	Execute request example
	Execute response example (async mode)
	Status XML example with referenced output
	Status XML example with inline output
	Dockerfile
	OWSLib diff file
	PyWPS-demo diff file (shortened)
	PyWPS diff file (shortened)
	Docker extension documentation (shortened)
	List of tables and figures
	ZIP file content

