
prof. Ing. Róbert Lórencz, CSc.
Head of Department

prof. Ing. Pavel Tvrdík, CSc.
Dean

Prague September 8, 2016

CZECH TECHNICAL UNIVERSITY IN PRAGUE

FACULTY OF INFORMATION TECHNOLOGY

ASSIGNMENT OF MASTER’S THESIS

 Title: Application Security Analysis

 Student: Bc. Tomáš Kvasnička

 Supervisor: Ing. Tomáš Zahradnický, Ph.D.

 Study Programme: Informatics

 Study Branch: Computer Security

 Department: Department of Computer Systems

 Validity: Until the end of winter semester 2017/18

Instructions

Get acquainted with methods and software used in reverse engineering of computer software. Use studied
methods and software to perform vulnerability assessment of an application provided by the supervisor.
Focus primarily on connections of the assessed application to the Internet. Document and assess all found
vulnerabilities and give measures leading to their mitigation.

References

Will be provided by the supervisor.

Czech Technical University in Prague

Faculty of Information Technology

Department of Computer Systems

Master’s thesis

Application Security Analysis

Bc. Tomáš Kvasnička

Supervisor: Ing. Tomáš Zahradnický, Ph.D

8th January 2018

Acknowledgements

I would like to thank everyone helping me with this thesis. You people know
who you are.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on 8th January 2018 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2018 Tomáš Kvasnička. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Kvasnička, Tomáš. Application Security Analysis. Master’s thesis. Czech
Technical University in Prague, Faculty of Information Technology, 2018.

Abstrakt

Hlavńım ćılem této práce je výzkum metod a sofware použ́ıvaných v oblasti
poč́ıtačové bezpečnosti, následovaný nezávislým posouzeńım zadané aplikace.
Tato analýza se soustřed́ı na potenciálńı bezpečnostńı nedostatky. Oprav-
dovým př́ınosem této práce je analyzovaná a ohodnocená reálně použ́ıvaná
aplikace, spolu s doporučeńımi snižuj́ıćı efekt nalezených problemu̇.

Kĺıčová slova poč́ıtačová bezpečnost, zranitelnost

Abstract

The aim of this work is research of methods & software used in computer se-
curity followed by an independent security review of a given application. This
study focuses on potential security weaknesses. The real benefit of this thesis
is analyzed and assessed real-world application along with recommendations
leading to mitigation of found defects.

Keywords computer security, vulnerability

vii

Contents

Introduction 1

1 About this thesis 3
1.1 Exact problem formulation . 3
1.2 Expected results . 8
1.3 Thesis structure . 8

2 Research 11
2.1 Possible attack vectors . 11
2.2 Known methods and attacks . 19
2.3 Specialized software . 27

3 Analysis 31
3.1 Application structure . 31
3.2 Executables and libraries . 36
3.3 In-depth inspection of selected parts 39

4 Assessment 45
4.1 Defects . 45
4.2 Practical assessment . 47

5 Mitigation & Recommendations 55
5.1 Unsecured network communication 55
5.2 Buffer overflow . 56

Conclusion 61

Bibliography 63

A Acronyms 69

ix

B Contents of enclosed CD 73

x

List of Figures

2.1 Stack frame structure in memory 13

3.1 procmon captured creation of uninstall.exe 33
3.2 Network communication after filtering out Microsoft servers 34
3.3 Network communication captured using procmon 35
3.4 flawfinder partial example output 41
3.5 Out-of-bound read found by Coverity 41
3.6 strcpy implementation by jennifer.dll 43

4.1 Downloading installer from srv under normal circumstances 47
4.2 Intercepted connection . 48
4.3 Tampered binary downloaded after poisoning ARP cache 49
4.4 Tampered binary stored locally . 49

xi

List of Tables

3.1 Security attributes of binaries . 37

xiii

Introduction

First of all, thank you all for being interested in this topic and for choosing
my master’s thesis as a source of information. I will try to provide you with
the most relevant, accurate and up-to-date data.

This master thesis focuses on a security analysis of a selected, real-world ap-
plication used worldwide by hundreds of millions people every day. The aim
of the thesis is to get acquainted with methods and software used by security
professionals, use this gained knowledge to perform a vulnerability assessment
of this application and document all found issues while giving measures leading
to their mitigation. This particularly means extensively researching multiple
areas of computer security, performing various security tests against the given
application and documenting the results.

What we want to achieve here is a correctly performed detailed security re-
view of a foreign software project. This means we want to focus on download
of the application, its installation procedure, its network communication and
finally its inputs. We will examine each of these parts trying to detect weak-
nesses. Application’s inappropriate behaviour leading to information disclos-
ure, network breach or other similar issues is our objective. The thesis will be
considered as a standalone security review performed by a 3rd party.

The main reason for performing this analysis is researching and summariz-
ing existing information while gaining experience in security analysis field of
computer science. Also, if real security threats get found during the process
of creating this thesis, we will inform appropriate institutions & developers,
make sure they understand the risks and try to cooperate with them on fixing
all found bugs as soon as possible. Therefore every person in this world might
benefit from this thesis by having a more secure application installed on their
computers.

1

Chapter 1
About this thesis

General phrases used in this thesis are inspired by [1]. The first chapter of
this thesis introduces the thesis itself. We are going to explain the nature
of the problem, remind what should a proper security analysis consist of,
describe used environment along with possible attack scenarios and also in-
troduce the structure of the thesis. This is an extension to the introduction
to make sure we all understand the situation and what will be happening in
the following chapters.

1.1 Exact problem formulation

In this thesis, we will focus on analyzing, testing and documenting given
application from a security point of view. The reason for being interested
in such a topic is that computers became something very essential in our
everyday lives and a major part of the human population cannot imagine
living without them anymore. In addition to that, we are nowadays using
computers for tasks related to, e.g. national security, financing, emergency
situations and most importantly our health. Therefore it is only reasonable
to make sure computer applications get designed, developed and used in the
most secure way they can be.

The application selected for analysis is a world-wide popular piece of software
that has repeatedly been included in various online and paper magazines as
a “must have” app for every single computer 1. Due to this fact, we will
unfortunately not be able to reveal the application’s actual name as in case
any real deficiencies get found our thesis could put a significant amount of
people in danger. On the other hand, it would not look appropriate to have a

1We are not citing mentioned magazines on purpose, to minimize the risk of identifying
inspected application.

3

1. About this thesis

major part of the thesis blackened out, so we decided to give our application
a new name - Mary, statistically the most used female name in the USA.

Mary aims to provide a complete solution for a complicated problem, which
can be divided into two separate sub-problems. Each sub-problem gets solved
by Mary’s separate part, and each of these parts accepts many different in-
put/output file types while offering various algorithms to work with. This
should provide us with a right feeling that Mary is a truly large software
project.

Security analysis is rather a complex process, so a more detailed description of
what to expect follows in next subsections. We will first focus on a description
of the analysis itself, then we are going to take a look at the environment we
will be working in and last, but not least, are going to be brief comments on
expected space for some problems.

1.1.1 Security analysis

A proper security review consists of researching every possible aspect in which
targeted system can have weaknesses.[2][3][4] This process can be separated
into multiple smaller parts to make it more easy to understand. We will now
take a closer look at some of these parts.

• Acquire Although frequently overlooked, this is the part every sophist-
icated attacker will want to abuse the most. As long as the attacker can
exploit the process of acquiring the application, he is also very likely able
to inject his code into every computer that installs such an application.
In the worst case scenario, this can mean unlimited and undetected
control of the victim’s station. Especially nowadays when software is
usually downloaded from the Internet instead of being distributed over
some physical medium (DVD, USB stick,) this process becomes one
of the essentials that must be well protected. Since we will try to behave
like a sophisticated attacker during our analysis, we will get familiar with
obtaining Mary very well.

• Install Installation is highly dependent on given environment, but in
any case, it represents the first place where foreign code may get executed
on a user’s machine. Because installation usually needs write access
to system folders, changes important settings and generally modifies
the way a computer is going to behave it requires administrator/root
privileges - and anything running with these privileges must get checked
with extreme caution. Therefore we will look at this process in great
detail.

4

1.1. Exact problem formulation

• Network inputs As long as targeted application communicates over
the network, it has to accept at least some network input. Moreover,
as long as an application accepts any input, it can be attacked. In case
of network input, the situation is far more critical given the fact that
the attack can be handled remotely - the victim does not even have to
execute a single program. Also, under certain conditions, the application
might be running with administrator privileges. These facts make the
possibility of network input itself sound promising. Therefore, we will
focus on Mary from this point of view as well.

• Local inputs Local inputs present a typically attacked part of an ap-
plication. Although they require a little bit more interaction with the vic-
tim than network inputs (e.g. opening a malicious file) they are a more
frequent way an application talks to its user. Mary is a great example
for this part of the analysis, as it accepts a wide range of different file
types - extensive research on this topic will be done in chapter 3.

• Access rights The last example of what must be included in every
security analysis are access rights. They include for example filesystem
access rights or user privileges. The default installation of Mary creates
numerous objects, runs multiple processes and accesses various system
entities. This is also going to be examined in a comprehensive way.

1.1.2 Chosen environment

First things that influenced our work environment were operating systems
supported by Mary. Mary consists of multiple parts and libraries, each of
them coming with their license, terms and conditions. Several parts of Mary
can be compiled on Windows, Linux, macOS, FreeBSD and even Android
builds exist. However, we wanted to test the application in its full version -
to do so, this forces several conditions for the environment. We can now take
a look at the overall setup scheme.

• Operating system Due to several facts, the chosen OS will be Win-
dows 10. Windows is the only system where all parts of Mary can run,
and its version 10 is very current at the time of writing this text. It
is also well supported by Microsoft, offers various security mechanisms
and is among the most popular operating systems used by the general
public.[5][6] We will run this operating system using the Virtual Box
virtualization software.

• System settings We will keep all the settings to their defaults, update
the system periodically and let Windows handle all the maintenance as
in the case of a typical user. The only difference, when compared to
a real installation, is going to be the Virtual Box Guest Additions which

5

1. About this thesis

is a software package of Windows drivers especially suitable for a virtu-
alized OS. Without these drivers, the system does not provide a good
reaction time nor is it able to use all available hardware in an optimal
way. The network will be configured using DHCP, and the addresses are
going to be provided by the Virtual Box software.

• Other installed software As we try to keep the system as default
as it can be, we want to keep 3rd party software at its minimum. On
the other hand, we can not perform a security analysis without installing
appropriate specialized tools that we will get to in section 2.3. Apart
from these necessary utilities and Mary, we install only a few handy
applications - Total Commander, Mozilla Firefox, Microsoft Visual Stu-
dio 2015, Google Drive, git, Python and Sublime Text. We especially
want to avoid anti-virus programs, firewalls and other kinds of security
software as those might interfere with the analysis.

1.1.3 Space for weaknesses

At the end of this section, we will briefly take a look at another important topic
- Mary’s weaknesses. Software development is a non-trivial process involving
numerous activities - designing, implementation, documentation, testing, up-
dates releasing and many others. All these activities must be done in a secure
way to produce an all-around secured product.[7] As we will see later, this is
unfortunately not always the case. Now, we can take a quick look at where
we are going to expect security flaws in the case of Mary.

1.1.3.1 Download

As mentioned before in subsection 1.1.1, the first contact with the software
vendor and the software itself might provide us with an opportunity of find-
ing an unseen problem. A usual way for Mary to get to its users is to be
downloaded from the Internet. This means that Mary’s vendor should try
to guarantee that the server we are downloading from is actually owned by
the software vendor and is not just an identical copy of it created by some
attackers. Also, we should have a way to check the integrity of the downloaded
file to minimize the chance that the file is just a forged binary pretending to
be Mary. If these two aspects are not safely covered, there might be an op-
portunity for an attacker.

1.1.3.2 Install

The next thing to focus on when looking for potential problems is the install-
ation. In the middle between the download and the installation is the di-
gital signature - the installer theoretically downloaded in the previous section
should also be digitally signed. On recent Windows systems, this makes sure

6

1.1. Exact problem formulation

that the User Account Control (UAC) is able to verify the signature and thus
the software vendor. This guarantees that the file has not been tampered
with. Next fact is that the installation may need administrative rights. If
other binaries get executed from the installation process, and their content
can get changed, the attacker could be able to force running custom code
with the highest possible access rights. Also, nowadays installation proced-
ures usually offer us various software products in addition to the one we are
actually installing. When left with their default settings on they install these
additional software products, so the whole principle of securing the applica-
tion now applies to them as well. These and many others present a set of
scenarios which can get abused.

1.1.3.3 Inputs

After the application’s download and installation phase are considered to be
reviewed, its inputs are to be examined. Generally, we can say that every
application that accepts user input has to allocate memory to copy that input
into. Attackers may try to test whether the size of the buffer is constant
and try to provide more data than fits into such a buffer, trying to subvert
the application into an unexpected state. When unexpected behaviuor is not
just well expected but even controlled by the attacker, he/she might be able
to take control of the execution flow by injecting his/her instructions.[8] For
this reason, we must pay great attention to what Mary accepts as input file
formats.

• Local input We will understand local input as any data that may
be submitted to the program and do not originate from a network. It
may include files, command line arguments, settings from registry keys,
GUI interaction with the user and others. We will be most interested in
Mary’s file-based input.

• Network input On the other hand, all data processed by the applica-
tion directly from the network will be considered a network input. For
example communication with the update server, or targeted commer-
cials. We will examine Mary’s network inputs thoroughly as well.

1.1.3.4 Access rights

Access rights are one of the main security mechanisms present in modern
operating systems. On our target platform access rights are not associated
just with files, but many other system objects have them as well.[7] We will
be most interested in access rights of registry keys and files themselves. These
get created & set during the installation so they will be closely connected
to the installation process. Another thing to look at can be an execution of

7

1. About this thesis

privileged actions by unprivileged users, manifests and UAC’s role in these
scenarios.

1.2 Expected results

The big picture end of this thesis is represented by analyzed application from
a security professional’s point of view. This means that we are in the first place
interested in an overall research of this complex topic and if this research brings
up something positive we also want to try to dive deeper into the practical
side of things.

In greater detail, this means that we want to gain as much knowledge as we
can about several topics - where to look for possible attack vectors, what
are generally known attack scenarios and how to apply these scenarios to
our situation. Also, we want to focus on methods that security professionals
use when they are trying to test a given piece of software - what methods
are suitable for what attack vectors, what can we do when we have target’s
source code and what on the other hand we can not or what extra methods
can we use if the application communicates over the network. At the end of
the research, we will want to take a look at software utilities that use discovered
attack methods for suitable attack vectors. These and many others represent
required knowledge to at least know where to start with our analysis.

After getting familiar with the necessary background, we want to focus on
the review itself. We want to use the acquired knowledge, find out applica-
tion weaknesses and see where they can lead to. This will be represented by
utilization of appropriate software tools and proper application of discovered
methods.

In the very end of the thesis we want to do a summary of everything we have
found out, give recommendations to software vendors and draw an appropriate
conclusion.

1.3 Thesis structure

Here we will briefly describe the structure of this thesis - it is divided into four
main parts: Research, Analysis, Assessment and Recommendations.

1.3.1 Research

This will be the first part of this thesis coming right after this introduction. At
the beginning of this chapter, we are going to do a short reminder of known
common attack vectors applicable to applications. Next, we will focus on

8

1.3. Thesis structure

methods that use these attack vectors to abuse a given weakness of a particular
software project. Following these theoretical schemes, we have to take a closer
look at specialized software utilities that use given methods to perform actual
computer attacks. After finishing this chapter, we are going to be able to
understand what attack vectors can security specialists use when analyzing
an application, we will have a detailed idea of how methods attacking some
kind of an application work, and we will know which software tools to use.

1.3.2 Analysis

At the beginning of this section, we will briefly introduce the application by
taking a look at the process of acquiring & installing while also analyzing
possible inputs. Next, we will focus on network communication performed by
the application and on its installed executables & libraries, based on the results
of the previous part. In the end, we will take an in-depth look at those pieces
of the application that will seem to be most likely susceptible to any kind of
an attack. After finishing this chapter, we will have a detailed knowledge of
the internals of the application, understand its installation process, common
usage scenarios and possible security deficiencies.

1.3.3 Assessment

Generally, we will want to assess all discovered problems (if any), document
them and describe them in greater detail. Then comes the practical part of
our thesis where we will try to assess whether it is possible to abuse each
discovered problem and possibly create a proof of concept code. Here we
will take a closer look at how to achieve this and elaborate on used methods,
required skills and appropriate software.

1.3.4 Recommendations

In the last chapter of this thesis, we are going to examine measures leading
to the mitigation of found weaknesses. Here we will specifically focus on each
found problem, discuss possible ways to minimize the risk and give recom-
mendations regarding next steps required for securing the application.

9

Chapter 2
Research

In the second chapter of this thesis, we are going to focus on the knowledge
required to perform a security review.

First, we will examine known attack vectors. Next, we will take a look at
known methods and attacks that use these vectors and may result in possible
security breaches. Finally, we will discuss specialized software used by security
professionals.

2.1 Possible attack vectors

Attack vectors are in our context defined as opportunities for an attacker to
cause harm to our system. A certain level of risk caused by some of these
vectors is always present in any computer system and can not be avoided. In
other cases, the level can be reduced to a reasonable minimum or the risk can
be even eliminated completely.[2][9] Please keep in mind that this should not
be considered a comprehensive list of all possible attack vectors that currently
exist in the computer world, as no such thing is possible due to several facts.

2.1.1 Local attack vectors

Here we will focus on attack vectors that do not necessarily require network
access. This means we will try to elaborate some of the vectors that may also
work over the network, but will be applicable locally with physical access to
the system/application as well.

2.1.1.1 Buffer overflow

• Description Buffer overflow (bo) is a common bug that gives an at-
tacker a way to force a running process to either crash or to perform an
unintended operation. Such unintended operation may be for example

11

2. Research

running code provided by the attacker. Abusing a buffer overflow bug is
usually heavily dependent on the architecture of the CPU, OS and the
program design. As it will be a major part of the analysis in chapter 3,
we will take a closer look at it now.[10][11][8]

• Principle Abuse of multiple computer design essentials, leading to
unintended behaviour. It is a product of several design patterns com-
bination that we will look at below.[10][11][8]

– Execution flow First, there is a hardware principle of the exe-
cution flow. CPU reads instructions from an address given by the
value of the PC (Program Counter) register. This register is known
as EIP/RIP on Intel-based processor architectures. If a program
bug allows an attacker to set this value, the CPU will try to execute
instructions from an address supplied by the attacker. And if this
address is within a page/segment with appropriate access rights,
attacker’s code will be executed.[12][13]

– Bounds checking Next, programming languages like C or C++
are not, under certain conditions, performing bounds checking.
When a programmer allocates 50 bytes of memory and then copies
1500 bytes of data into the allocated memory, the compiler may
not detect such a situation.
Though avoiding bounds checking improves the speed of the pro-
grams, it gives an attacker a possibility to write bytes into the
program’s memory. When combined with the execution flow from
the previous point, the contents of the buffer can be executed by
the CPU as instructions.[14]

– Stacks and heaps Lastly, operating system data structures defin-
ing the layout of a running program in memory. A buffer overflow
may be stack or heap-based. Each running program has typically
one stack per thread and may have multiple heaps.[15][16][17]

∗ Stack overflow A stack frame is a structure in memory cre-
ated by the compiler. One of its purposes is to define the
address of next instruction after a function returns. The stack
overflow represents a situation, where an attacker overwrites
a buffer allocated on the stack. Consider the following C and
assembly code:
#i n c l u d e <s t d i o . h>

i n t main (void) {
char b u f f e r [8] ;
g e t s (b u f f e r) ;
r e t u r n 0 ;

}

0 x00001f70 <+0>: push ebp
0 x00001f71 <+1>: mov ebp , esp

12

2.1. Possible attack vectors

0 x00001f73 <+3>: sub esp , 0 x18
0 x00001f76 <+6>: l e a eax , [ebp−0xc]
0 x00001f79 <+9>: mov DWORD PTR [ebp−0x4] , 0 x0
0 x00001f80 <+16>: mov DWORD PTR [esp] , eax
0 x00001f83 <+19>: c a l l 0 x1f94 ; g e t s
0 x00001f88 <+24>: xor ecx , ecx
0 x00001f8a <+26>: mov DWORD PTR [ebp−0x10] , eax
0 x00001f8d <+29>: mov eax , ecx
0 x 0 0 0 0 1 f 8 f <+31>: add esp , 0 x18
0 x00001f92 <+34>: pop ebp
0 x00001f93 <+35>: r e t

Listing 2.1: Stack overflow vulnerable code

Figure 2.1: Stack frame structure in memory

Before the call instruction gets executed, the stack looks like
in figure 2.1. Data written to the buffer now depend entirely
on user input, and its length does not get checked. An attacker
may insert enough bytes to overwrite saved return address and
change the execution flow.[11][8]

∗ Heap overflow Heaps are data structures created by the
memory manager, and therefore, their structure is highly de-
pendent on used OS and the memory manager implementation.

13

2. Research

In general, attackers attempt to corrupt memory manager’s in-
ternal structures by writing past end of the buffer in such a way
that custom code gets inadvertently executed. Such an action
is only possible if the memory manager stores at least some
management data together with the allocated memory. Due
to its complexity and specific requirements, heap overflows are
way beyond the scope of this thesis. Also, after discussion with
the supervisor, we will not be developing a proof of concept
code if such a problem gets found.[11][18]

• Examples Buffer overflows got found in numerous applications. When
functions that do not check the number of bytes written/read (for ex-
ample strcat(), strcpy(), or gets()) process user input directly, a
possibility of buffer overflow exists. Also, buffer overflows are typical for
native-language code, such as C, C++ or assembly.[11][19]

• Impacts Injecting custom instructions into a running process and ex-
ecuting these instructions or crashing the process.

• Protection As buffer overflows are a real problem from the security
point of view, there are numerous advanced techniques which try to
minimize their impact. Address Space Layout Randomization (ASLR)
or Data Execution Prevention (DEP) are mechanisms provided by the
OS while stack canaries or SafeSEH get handled by the compiler. Note
that SafeSEH is available for Windows applications only and DEP might
have different names on a different platform. Of course, all these will
not prevent the programmer from bad programming habits and usage
of known vulnerable library functions.[7][10]

2.1.1.2 Security misconfiguration

• Description The operating system has many security features. Since
security features do not mean secure features, security misconfiguration
often allows access to or tampering with data. Therefore, these have
to be configured appropriately otherwise they can be useless or even
harmful.[2][9]

• Principle Insufficient administrator knowledge and/or human mistake.

• Examples Too low/strict access rights, usage of sudo with no password,
root login over password protected ssh, unsecured Intelligent Platform
Management Interface (IPMI), too many open files/connections for ap-
plication, too high/low stack/heap size.

14

2.1. Possible attack vectors

• Impacts Here we will list the impacts based on a specific security
system implemented by the OS.2

– Access rights Read/write access to unwanted files/devices, ex-
ecuting commands as their owner using SUID/SGID bits, replacing
content in privileged directories

– Firewall Open ports for privileged or private services, communic-
ation of unwanted software, information leakage

– Authentication Privilege escalation, password cracking
– System limits Exhausting system resources, application crash,

password cracking

• Protection General protection against any misconfiguration is a never-
ending process of learning. Therefore except for professional training,
courses and self-studying we can recommend tools like salt or puppet to
automatize configuration across multiple servers and minimize the pos-
sibility of human mistake. However, nothing will prevent an uneducated
administrator from deploying bad but valid configuration.

2.1.1.3 Physical access

• Description Physical access to the computer itself usually means we
can bypass almost every security feature in the operating system. We
might not be able to access the data on the targeted system, but unless
we are in an extremely secured environment, we will be able to use the
computer in any way we want.[2][9]

• Principle Physical access allows the attacker to restart the computer,
boot from another medium than the predefined device and start a differ-
ent operating system. The boot process can be secured from BIOS/UEFI,
but with the physical access, we are always able to reset BIOS/UEFI
to its default settings which in most scenarios effectively removes these
passwords.

• Examples N/A

• Impacts Possible access to all data stored on the system, installation
of a possibly different operating system, rootkits and backdoors.2

• Protection Full drive encryption offers protection to the data stored
on the system even when an attacker has physical access to the disk
itself. Also, placing the system into an environment where no physical
access is possible (e.g. data centres with certification) provide enough
safety for most real-life scenarios.2[2][9]

2Examples and tips only, many others usually exist

15

2. Research

2.1.2 Remote attack vectors

We understand remote attack vectors as opportunities coming from the net-
work. This means we will not focus here on possibly vulnerable applications
but rather on network design patterns that allow abusing by its very definition.

2.1.2.1 Information disclosure

• Description Revealing too much information is a common threat found
in software applications. Sensitive information can be anything that will
give the attacker an insight about what hardware are we using, what
software are we running in which version, what are the physical locations
of our equipment and so forth. The attacker can use this information to
better aim at the target system, e.g. by looking for known vulnerabilities
of identified components.[2][20][21]

• Principle Generally, it abuses the principle of misconfiguration and
default unsecured settings. It uses for example default unsecured con-
figurations left out by administrators, wrong settings, forgotten settings
or exposed debug information.

• Examples Service banners of all kinds (SMTP, POP, SSH, etc.), HTTP
header Server, SMTP commands vrfy/expr, DNS zone transfers, MS-
RPC dumps, NetBIOS names and relations including empty relations,
Google look-ups based on documentation/default web pages (inurl:
"/phpinfo.php", inurl:"/moodle/login/index.php", etc.).[2][9]

• Impacts Impact can range from negligible to critical - what devices
and OS are we running, which usernames are valid, what software in
which version are we using, what is the logical map of our network,
what are the domain names we are using and where do they resolve to,
what IDS/IPS appliances are present.2

• Protection Detailed examination of current settings and defaults,
changing the configuration to expose minimum information, updating
the source code, ideally performing a 3rd party code review.2

2.1.2.2 Network sniffing

• Description Network sniffing can be separated into passive and Man-
in-the-Middle (MitM) techniques. Passive attacks do not require active
modification of network traffic, while MitM sniffing attacks consist of
redirecting targeted traffic through attacker’s computer and then ex-
amining passing traffic. Information transmitted over the network may
contain technical information, passwords, personal information, credit
card numbers and much more.[2][9][22]

16

2.1. Possible attack vectors

• Principle All unencrypted information transmitted over the network is
readable not only by the recipient of the information but also by everyone
else with access to it. Access to this information can be, especially in
local networks, easily achieved as we will see later in 2.2.3.

• Examples Rogue WiFi AP, ARP/DNS poisoning attacks, rogue DHCP
server, ICMP/BGP traffic re-routing.2[23]

• Impacts Revealing user names and passwords for all commonly un-
encrypted network protocols (FTP, SMB, HTTP, SMTP, IMAP, POP3
and many others), reading other people’s emails, acquiring private doc-
uments and conversations.2

• Protection Using encrypted versions of network protocols (if they
exist), tunnelling specific network traffic, using VPN even at the local
network.2 Generally, most of network sniffing can be prevented using
encrypted traffic as much as possible.

2.1.2.3 Bad network protocol design

• Description Network protocols define the way processes talk to each
other and form the core of network communication overall. Their design
is typically very mature and therefore does not meet current security re-
quirements. To retain backward compatibility, however, these protocols
are still used.[24][25]

• Principle Protocol design did not consider security as important enough
or did not consider it as a factor at all. Such protocols often lack any
kind of security mechanisms, whether it is by its very nature or just by
mistake.[24][9]

• Examples Cache poisoning in ARP/DNS/ICMP protocols, TCP con-
nection hijacking, ICMP live hosts identification, unsecured FTP/Tel-
net/HTTP/... [26]

• Impacts Highly dependent on a type of an attack - it can lead to
information disclosure due to network sniffing, transmitted data being
tampered with, network application crash, denial of network access and
so on.2

• Protection Very difficult because the protocols are hard to update and
these flaws are built into them. Recent network devices from enterprise-
class manufacturers like Arista or Cisco try to detect some common
attacks and prevent them. Also, one can minimize the usage of these
protocols or completely disable them, although that will inevitably lead
to loss of functionality. Another option is to replace some of them with

17

2. Research

a most recent protocol with similar functionality - HTTP with HTTPS,
or FTP with SFTP, for example.[26][9]

2.1.2.4 Denial of Service

• Description An Internet service that is not responding, is slow or has
high latency is the same as a non-existent service. In case a service is the
primary source of generated funds, it should be kept alive and working
at all costs. Unfortunately, the possibility of exhausting resources of the
system providing such a service can never be avoided entirely.

• Principle Exhausting selected resources on a targeted system. DoS
is often represented by using all available system memory, opening a
maximum number of file descriptors or crashing the application by a
specially crafted input.[2][27]

• Examples TCP SYN flood, UDP flood, ping of death, reflection at-
tacks, slowloris, fork/XML bomb.[2][27]

• Impacts The response time of attacked service is indefinite, leading
to timeouts on the client side. The impact may range from crucial (for
example financial or trust loss) to negligible, based on the type of the
service.

• Protection Custom NIC drivers passing packets directly to user-space
application, DDoS protection services like Cloudflare.2

2.1.2.5 Wireless networks

• Description Wireless networks remove the need to be physically con-
nected to the adjacent network. This allows the attacker to for example
sit in his car outside a company while sniffing their network traffic.

• Principle Current Wi-Fi attacks benefit from bad design principles in
encryption schemes used. It is not the network protocol as a whole but
just its encryption part. Two main encryption schemes exist today -
WEP and WPA/WPA2 and they both have their security flaws. Also,
another defect can be found in several WPS implementations which
effectively breaks the level of security provided by WPA/WPA2.[23][28]

• Examples WEP IV re-initialization & ARP packet injection, WPA2
KRACK, WPS pixie-dust, WPA/WPA2 handshake bruteforcing.[29][30][23]

• Impacts Same as gaining unauthorized access to the physical network
- network sniffing, data tampering, connection hijacking, service denials
and much more.2

18

2.2. Known methods and attacks

• Protection Separate guest SSIDs, separate VLAN and network range
for wireless traffic, correct firewall rules, WPA2-CCMP only usage, client
devices updates after the KRACK attack.2[23][30][28]

2.2 Known methods and attacks

Now when we know about common attack vectors, we can take a closer look at
known methods and particular attacks that researchers use when examining
applications.

First, we want to take a look at methods that are used for getting more
information about a targeted system. This is going to include up-to-date
and sophisticated network methods that help us find out what is required to
continue with a review any further. Then we will focus on methods used for
finding buffer overflows. At the end of this section, other advanced techniques
mostly regarding network protocols will get examined.

2.2.1 Reconnaissance

Detailed information about the targeted system is the first step of every se-
curity analysis. These information help security professionals to for example
search for known exploits or reverse engineer detected software.

• Publicly available information sources Publicly available inform-
ation sources include many different databases - specific web services
collecting leaked passwords, Google indexes or whois data containing
administrative info for almost every online entity.[21][2]

• Network map Creating a network map usually involves identifying
live hosts, mapping DNS names to IP addresses and determining used
network paths leading to those IP addresses. Identifying live hosts is
mostly done by sending icmp echo request messages to targeted IP
address and waiting for an answer. The ping utility present in modern
operating systems does this. Mapping DNS names to IP addresses is
a complicated task due to several reasons. At first, there is no way to
obtain all sub-domains of a domain from a public point of view. And
second, DNS mappings change in time and become invalid based on the
TTL of every DNS record. A technique called DNS zone transfer might
be in certain situations used to obtain them. Determining network paths
is done by sending out a packet with IP TTL equal to 1 and waiting for
the first icmp time exceeded message. Then the TTL gets increased,
and this procedure gets repeated. A tool called traceroute handles this
process.[2][9]

19

2. Research

• Software detection Software detection distinguishes operating sys-
tems and applications running on analyzed machines, preferably with
their versions. OS fingerprinting is a method that relies on several pat-
terns produced differently by every OS. For example default IP TTL,
default TCP window size, filled fields in DHCP requests, TCP options
set for a connection and others. Detecting running network applications
is done by port scanning - sending an opening packet to a predefined
set of ports on an analyzed host and waiting for a response. Version de-
tection usually occurs in application layer protocol by examining HTTP
Server header, SSH login banner, or SMTP server EHLO response, for
example.[31]

2.2.2 Buffer overflow

Next, we will take a look at methods and procedures that help find buffer
overflows.

2.2.2.1 Reverse engineering

Phrases and definitions in this subsection are inspired by lectures from [32].
Software reverse engineering (re) is a process of analyzing an application to
create a representation of the system at a higher level of abstraction. This, in
our case, means we will have a compiled executable binary and we will want
to know how exactly does it work, what algorithms and data structures does
it contain and where it might have possible weaknesses.[33]

• General info re tries to recover the source code of an application
that is available only as an executable binary. It is impossible to obtain
the source code fully as information gets lost during compilation and
linking. Also, re has ethical and legal aspects - we are permitted to
use re to understand how the software works. We should not use it to
bypass copy protections or create copies of some particular software.[33]

• Types of RE We can make a difference between dead code analysis
and live code analysis. Dead code analysis is performed against a non-
running executable typically by a tool called disassembler. Live code
analysis is on the other hand performed by a tool called debugger on a
running application.

In dead code analysis, the application has no idea that it is being ana-
lyzed and therefore can not defend itself in any way. However, when
analyzing a complex binary (e.g. a packed one), it might be complic-
ated to imagine what the application does without actually running it.
Live code analysis, on the other hand, executes application’s code so we

20

2.2. Known methods and attacks

can clearly see what is happening and when. But as an opposite, the
application has now the chance to detect it is being debugged and react
appropriately.

• Required knowledge To re an application a security researcher must
possess a vast amount of knowledge. One of it is detailed knowledge of
the target platform ABI. This includes data alignment in the memory,
how are parameters passed to functions, how are CPU registers used,
symbol names mangling and others. Also, the researcher must be fa-
miliar with the API of system calls and also with the API of standard
libraries for given OS. This information allows separating parts of the
binary that are actually kernel/library code. Advanced knowledge of the
assembly language and basic programming paradigms in it is so essential
we do not think it has to be explained any deeper.

• Commonly examined parts of a binary Here we want to take a
look at the parts of a binary executable containing information helpful
for determining what algorithms and data structures in the binary do.
This does not represent examining the algorithms themselves but control
structures created by the language runtime to execute the application
correctly. We will also focus on Windows binaries only, as that is the
case of our analyzed application.

– PE header This is the header that every executable for MS Win-
dows has. It contains the first level of elementary information that
a security research wants to take a look at. Except for information
required for running the code various hints and flags can be seen
here - if the application supports ASLR/DEP/SafeSEH, what DLLs
does it import from, when was it compiled, by which vendor is it
supplied, its version and many others. Also, application’s resources
can be found here.[34]

– IAT Import Address Table is directly connected with the PE
header as it is part of it. It contains names and ordinary num-
bers of functions from imported DLLs which are used by the loader
when executing the application. Based on the content of this table
the loader fills in the addresses of required functions. These ad-
dresses can be in several scenarios replaced in foreign processess,
actively changing imported functions.[34][35]

– RTTI This information gets typically used for operators like typeid
or dynamic cast of the C++ language. In re we use private struc-
tures like RTTITypeDescriptor, RTTIBaseClassDescriptor or the
main one RTTIClassHierarchyDescriptor to find out used class
names and class hierarchy.[36]

21

2. Research

• Debugging and disassembling These are the two main techniques
used in re. Each of them uses specialized software (disassemblers and
debuggers) to achieve its goals. Here we will take a look at basic prin-
ciples and in section 2.3 we will focus on particular tools.

– Disassembling Translation of particular binary code into code
in a human-readable assembly language of the targeted CPU. Two
traditional approaches on how to achieve this exist - linear sweep
and recursive traversal.

Linear sweep is fast and straightforward as it performs disassembly
in a linear fashion byte by byte from the start of the .text sec-
tion. This approach gets easily confused by mixing data with code
and ambiguous code flows (i.e. obfuscation). Recursive traversal,
on the other hand, starts at the entry point of the program and
disassembles instruction after instruction following every possible
jump/call, therefore examining all the parts of the reachable code.
Unreachable parts of the binary are considered to be data, and
thus this technique does not get confused when data gets mixed
with code. Both these approaches are far more sophisticated in
real usage and nowadays tools used in re combine them to provide
the best results.[37][38]

– Debugging It is a process of finding bugs in an application while
it is running. In re, this is typically used to watch the execution
flow, to bypass obfuscation and generally to understand internal
algorithms and API calls.

Debugger works by either creating a process we want to debug or by
attaching to an already running one. The debugger then obtains
all debugging events for the process and reacts appropriately to
them. Debugging events represent situations like starting a new
thread, loading a library or handling an exception. Besides these
events the debugger has full control over the targeted process -
it can change its data in registers, alter execution code flow or
instructions directly, dump contents of memory and many more.
Most importantly, the debugger can set breakpoints (software and
hardware ones) and trace executed instructions. These features
allow it to stop the execution flow on a predefined place and also
to record the progress of a running application.[10][39]

• Application protection Many commercial applications are reverse en-
gineered to bypass the application’s license. Also, many applications are
reverse engineered to find undiscovered vulnerabilities. For this reason

22

2.2. Known methods and attacks

the CPU architecture, OS and programmers use various techniques that
help them to protect applications. Generally, we can split these tech-
niques based on their purpose.

– Security protection These are mechanisms that are supposed
to protect the application from attacks like buffer overflows. Of
course, no protection mechanism will prevent the programmer from
using insecure programming functions and paradigms. Here we will
only state a few examples, and since these will get examined as
buffer overflow protections, we will take a closer look at them in
5.2.

ASLR - a function offered by the OS which must be supported
by the application causes the binary file to be always loaded at
random address in the memory, thus making exploits based on
buffer overflow much harder to develop. Next is DEP, realized by
NX/XD bit in CPU. This bit causes marked memory pages to be
not executable. Others are canaries, unique values at the end of the
stack frame that detect stack-based buffer overflows and SafeSEH, a
mechanism which prevents custom Structured Exception Handlers
(SEH) to be installed by an attacker.[10][40]

– Know-how protection Know-how protection, on the other hand,
secures the algorithms inside the application. Such a protection
gets typically used in commercial software and games as their de-
velopers want to prevent the existence of illegal copies. Also, many
malware authors use these methods to hide what their software is
actually doing from an anti-virus. Most commonly used techniques
are obfuscation and encryption.

• Obfuscation Obfuscation generally stands for making a code of a pro-
gram less understandable. Its primary purpose is to fatigue analyst-
s/attackers by obscuring program’s code. Though obfuscation does not
increase the security of the program, it is often used as a supplemental
protection mechanism. It is a must for applications running on byte-
code oriented platforms such as Dalvik VM, JVM or .NET. Otherwise,
their code could be quickly recovered by means of re. This particularly
means, for example, renaming variables and functions, opaque predic-
ates, or string encryption. Code parallelization, splitting into multiple
processes, table interpretation, dead and irrelevant code insertion or re-
moval of library calls are techniques which make the life of a security
professional genuinely challenging.[41]

23

2. Research

2.2.2.2 Fuzzing

Fuzzing is a process of finding bugs in software by supplying pseudo-random
data as application input. The main purpose of fuzzing is usually crashing
the application being fuzzed. A correctly written application shall always
withstand this process. If a crash or any other exceptional condition occurs,
then there is a bug. We are going to focus on black-box fuzzing, where the
fuzzer does not know the internal structure of the program being fuzzed.
Another type is white-box fuzzing, where the fuzzer is able to check whether
all code paths got hit. Such fuzzing requires access to the source code of
the product. Grey-box fuzzing uses AI techniques and is currently considered
state-of-the-art in vulnerability detection.[42][43][44]

• General info Testing programs by random inputs is an old technique
used even with punched cards.[45] However, fuzzing these days differs
a lot, and state-of-the-art fuzzing software uses advanced AI techniques
to cover as much code as possible. It has several advantages - it is
able to test a given application without any prior knowledge about its
structure/inputs, once configured it can run for months without human
interaction, and it usually reveals bugs that were missed by other sorts
of testing techniques. On the other hand, fuzzing from its very nature
carries a few drawbacks - indefinitely long runtime (based on scheduled
tests), configuring for a complex application input can be very time
consuming and code covered by fuzzing differs a lot based on the quality
of fuzzer and its settings.[43][46]

• Types of fuzzers Fuzzers can be categorized as dumb and smart.
Dumb fuzzers do not know anything about the input structure and thus
supply random data to the application. This has an advantage of a very
easy configuration and setup but requires a significant amount of time
to pass integrity or file format checks typically found in programs. On
the opposite, smart fuzzers are aware of the file/protocol format and can
keep certain values fixed or calculated correctly to provide valid inputs.
The latter approach provides greater code coverage but requires much
more time to prepare and configure.[43][42]

Another way to look at fuzzer categorization is based on the way used
to generate new inputs. Three different classes can be distinguished:
mutation, generation and evolutionary. Mutation-based fuzzers take an
already existing input and mutate it - shift bits, swap bytes, repeat parts
of data and so forth. Generation-based fuzzers have a specification of
the data they are generating and create new data from scratch - this
requires more intelligence from the fuzzer but provides a more robust
way of testing. Advanced fuzzers combining these two methods exist as

24

2.2. Known methods and attacks

well. Evolutionary-based fuzzers are state-of-the-art pieces of software
in fuzzing as of now. These use techniques like genetic programming
to improve submitted inputs over the time and cover as much code as
possible.[43][46][44][47]

• Fuzzing process The fuzzing process greatly differs based on the used
fuzzer, environment, debugging capabilities and tested application. For
dumb fuzzers on Linux platform, testing programs with simple and easy
to use interface can be as simple as piping the output of /dev/urandom
into the program while checking its behaviour with tools like gdb or
valgrind. For smart, mutation and generation-based fuzzers with com-
plex configuration, this process complicates slightly.[43][48]

To keep the information level at a reasonable amount, we can say that
the process of fuzzing consists of several parts. First is specifying the
format of the input we want to get fuzzed - this can be a file format,
network protocol structure or anything else that targeted application ac-
cepts. After being done with the format, we have to define an interface
for passing generated inputs to the tested application. Typically this can
be done using a network socket or command line arguments. Next, we
must establish a connection between debugger/memory-checker-tool and
our application to detect anomalies. To achieve this, the fuzzer usually
starts a debugger/memory-checker-tool and instructs it to run our ap-
plication within itself. Finally, the fuzzer repeats generating inputs and
supplying them to the tested application until a predefined condition is
reached (a bug is found, a timeout is reached and so on).[43][48]

2.2.2.3 Static analysis

Static code analysis is a method used for discovering bugs by examining the
source code of the application. It is a process similar to the compilation itself
but with focus on buffer overflows, separate branches handling and many other
security-related issues. Current compilers (for example clang) contain such a
static analyzer and provide additional warnings during the compilation. We
are going to focus on C/C++ static analysis, although it is principally not
limited to these programming languages.[49][50]

• General info “Static” represents the fact that the analysis is non-
runtime and should be a part of the build process. It finds all syntactic
and lexical issues, and it also tries to understand the semantics of the
program. In its most simple form, it could be done by a very strictly con-
figured compiler. A more advanced version of a static analyzer searches
for known dangerous functions (for example gets(), sprintf(), or
strcpy()[11]), static arrays allocated at the stack, easily abused system

25

2. Research

calls and much more.[51] However, current professional tools for static
analysis go far beyond these abilities and try to simulate the execution
using many possible scenarios - taking particular jumps, supplying cer-
tain inputs, looping for a specified number of times and so on. This has
the target of finding particular execution flow and its matching input
that in combination can lead to some anomaly (memory overflow, use-
after-free, ...). The output from the analysis points to lines in a code
where a given anomaly might happen.[52]

Although the static analysis is a very powerful technique when looking
for bugs, it has several drawbacks. Most notably it requires the source
code of the product. Next is a large number of false positives - static ana-
lysis usually gives a significant amount of output which does not really
present a security vulnerability. This leads to missing real threats once
they actually appear. Also, the analysis can be very time-consuming
which makes it hard to integrate into the build process.[53]

• Examples Here we want to present few examples of dangerous state-
ments found usually in C/C++ programs.

– Non-bounds-checking functions strcpy(), sprintf(), ...
– System calls executing programs execve(), system(), ...

2.2.3 Network protocol cache poison

As an example of methods that attack the principles and design patterns of
network protocols, we will take a look at cache poisoning. This technique
allows us to fake data in protocol caches thus forcing the protocol logic to
communicate with rogue machines instead of the correct ones. This can have
various effects based on the used network protocol - for example traffic sniffing,
denial of service or traffic redirection.

• DNS An attacker tries to insert malformed records into the cache of
selected recursive caching DNS server. Such a server is usually operated
by the ISP as they want to provide its users with fast DNS answers.
The attacker first issues a DNS query for a particular domain forcing
the recursive DNS server to forward such a query to configured author-
itative DNS server. Before the authoritative server manages to respond
the attacker sends a forged answer back to the caching DNS server. This
way the DNS recursive server stores the response from the attacker and
ignores the real one from the authoritative server. Such an attack can
lead to a situation where all future queries for a whole domain get for-
warded to attackers computer who therefore gains full control over what
gets returned in answers to those queries.[54][55]

26

2.3. Specialized software

• ARP Where DNS cache poison can work regardless of network to-
pology and attacker’s location, ARP cache poison only works on local
networks. Its usage is on the other hand much more straightforward,
and it attacks victims computer directly. ARP gets typically used for
translation between MAC and IP addresses with the protocol being a
part of every common OS. The OS keeps a cache of MAC - IP mappings.
Records can get easily inserted into this cache from any computer on the
local network. After inserting custom records, the attacker can force the
victim to send all its traffic to attacker’s computer by supplying his MAC
address.[26][56]

2.3 Specialized software

In this last section, we will try to give some practical examples of software
tools used by professionals when doing security reviews. We will categorize
these utilities based on their purpose and provide a short comment with a
link to visit for more details. We will try to minimize used space and keep
this section as a straightforward list. Also, these descriptions will be directly
citing the official documentation of specified software.

• Information gathering dnsenum, dnswalk, fierce, fping, nmap,
maltego, dmitry, p0f, recon-ng, ettercap, dsniff, nfspy, sslstrip

– dnsenum Perl script to enumerate DNS information of a domain.
https://github.com/fwaeytens/dnsenum

– dnswalk DNS debugger performing zone transfers and database
checks. https://github.com/davebarr/dnswalk

– fierce DNS reconnaissance tool for locating non-contiguous IP
space. https://github.com/mschwager/fierce

– fping Program to send ICMP echo probes to network hosts, similar
to ping, but much better performing when pinging multiple hosts.
https://fping.org/

– nmap Utility for network discovery and auditing.
https://nmap.org/

– maltego Tool for analyzing real-world relationships between in-
formation that is publically accessible on the Internet.
https://www.paterva.com/

– dmitry Program with the ability to gather as much information as
possible about a host. https://github.com/jaygreig86/dmitry/

– p0f Tool that utilizes an array of sophisticated, purely passive
traffic fingerprinting mechanisms to identify the players behind any

27

2. Research

incidental TCP/IP communications (often as little as a single nor-
mal SYN) without interfering in any way.
http://lcamtuf.coredump.cx/p0f3/

– recon-ng Full-featured Web Reconnaissance framework.
https://bitbucket.org/LaNMaSteR53/recon-ng

– ettercap Comprehensive suite for man in the middle attacks.
http://ettercap.github.io/ettercap/

– dsniff Collection of tools for network auditing and penetration
testing. https://www.monkey.org/˜dugsong/dsniff/

– nfspy Library for automating the falsification of NFS credentials
when mounting an NFS share.
https://github.com/bonsaiviking/NfSpy

– sslstrip Tool to provide a demonstration of the HTTPS stripping
attacks. https://moxie.org/software/sslstrip/

• Vulnerability detection golismero, sparta, lynis, burpsuite, zap,
sqlmap, bbqsql

– golismero Easily expandable framework for web security testing.
https://github.com/golismero/golismero

– sparta Application which simplifies network infrastructure penet-
ration testing by aiding the penetration tester in the scanning and
enumeration phase. https://github.com/SECFORCE/sparta

– lynis Security auditing tool for UNIX derivatives like Linux, ma-
cOS, BSD, and others. https://github.com/CISOfy/lynis

– burpsuite Web vulnerability scanner.
https://portswigger.net/burp

– zap Automatically finds security vulnerabilities in web applica-
tions. http://www.zaproxy.org/

– sqlmap Penetration testing tool that automates the process of
detecting and exploiting SQL injection flaws and taking over of
database servers. http://sqlmap.org/

– bbqsql Blind SQL injection framework, semi-automatic and fast.
https://github.com/Neohapsis/bbqsql/

• Exploitation and attacks pyrit, john the ripper, hydra, aircrack-ng,
reaver, metasploit, beef

– pyrit Pyrit allows to create massive databases, pre-computing part
of the IEEE 802.11 WPA/WPA2-PSK authentication phase in a
space-time-tradeoff. https://code.google.com/archive/p/pyrit/

28

2.3. Specialized software

– john the ripper Password cracker.
http://www.openwall.com/john/

– hydra Multi-protocol, parallel, network password cracker.
https://github.com/vanhauser-thc/thc-hydra

– aircrack-ng Complete suite of tools to assess WiFi network se-
curity. https://www.aircrack-ng.org/

– reaver Reaver implements a brute force attack against Wifi Pro-
tected Setup (WPS) registrar PINs in order to recover WPA/WPA2
passphrases. https://code.google.com/archive/p/reaver-wps/

– metasploit Penetration testing framework.
https://www.metasploit.com/

– beef Penetration testing tool that focuses on the web browser.
http://beefproject.com/

• Reversing and fuzzing IDA, ollydbg, nasm, apktool, peach, afl,
choronzon, vuzzer

– IDA IDA is a multi-processor disassembler and debugger.
https://www.hex-rays.com/products/ida/

– ollydbg Assembler level analysing debugger for Windows.
http://www.ollydbg.de/

– nasm Assembler designed for portability and modularity.
http://www.nasm.us/

– apktool Tool for reverse engineering Android APK files.
https://ibotpeaches.github.io/Apktool/

– peach Automated, scalable and seamless fuzzer.
https://www.peach.tech/

– afl Security-oriented fuzzer that employs a novel type of compile-
time instrumentation and genetic algorithms to automatically dis-
cover clean, interesting test cases that trigger new internal states
in the targeted binary. http://lcamtuf.coredump.cx/afl/

– choronzon Evolutionary knowledge-based fuzzer.
https://github.com/CENSUS/choronzon

– vuzzer Application-aware evolutionary fuzzer.
https://github.com/vusec/vuzzer

• OS tools and others windbg, gdb, wireshark, CFF explorer, sysinternals,
hxd

– windbg Kernel/User mode code debugger for Windows.
https://developer.microsoft.com/en-us/windows/hardware/download-windbg

29

2. Research

– gdb GNU Project debugger.
https://www.gnu.org/software/gdb/

– wireshark Widely-used network protocol analyzer.
https://www.wireshark.org/

– CFF explorer PE header inspection.
http://ntcore.com/exsuite.php

– sysinternals Utilities to help manage, troubleshoot and diagnose
Windows systems and applications.
https://docs.microsoft.com/en-us/sysinternals/

– hxd Hex Editor and Disk Editor.
https://mh-nexus.de/en/hxd/

30

Chapter 3
Analysis

This chapter brings us closer to our application, Mary. This is where the more
practical part of our thesis begins as we will analyze the application here.

First, we will take a look at the overall structure of our application - how to
acquire it, installation procedure, application inputs and others. Next, we will
examine binaries and libraries and try to determine their purpose, developer
and security features. Finally, based on the facts found in the first two sections
we will take a detailed look at the theoretically problematic parts.

3.1 Application structure

The first section will introduce us to the application structure with a focus on
any theoretical security deficiencies. Let us first take a look at the possible
ways of obtaining the application and its installation procedure. We will be
interested especially in the distribution source for our application, created files
or registry keys and the default access rights of these objects. Also, network
communication will get in our interest as well as local inputs. In this section,
we will try to briefly introduce all possible places where a security issue might
be hidden, and in the upcoming sections, we will dive deeper into these parts.

3.1.1 Acquire and install

The only way to obtain Mary is to download it. Mary exists in numerous
language versions and has been mirrored to many popular software-download
servers, but we will silently ignore all of these. The only download source we
will focus on is the official web page of Mary’s vendor which provides versions
localized in English. Also, we will focus on the most up-to-date version, 5.40,
as it is of now.

31

3. Analysis

The installation will be done under an account that was created during the
installation of our OS. This account is by default in the Administrators group,
and it is also by default protected by the UAC. Also, we will leave all installa-
tion options to their defaults and use the most user-friendly next-next-next
way to install Mary.

3.1.1.1 Download

Two official websites from which Mary can be downloaded exist, each of them
leading to a different location, but the same file. As it was confirmed by
the vendor, one of the pages serves as a developer version, and the other one
is for business purposes. They use Apache as their web server and support
only older HTTP/1.1. Both these pages do not use the secured version of
the HTTP protocol and therefore transfer all the data unencrypted. Also,
both these pages do not offer checksums of available files. The downloaded
document is a self-extracting binary file with exe extension, digitally signed
by the vendor.

As Mary has more than 500 million users worldwide, there is a significant
probability that in a vast number of local area networks happens the download
happens within a reasonable period. Using the method of ARP poisoning
mentioned in 2.2.3, an attacker might be able to redirect these download
requests to a computer under his/her control. Also, data exchanged using the
HTTP protocol without encryption can be easily manipulated using a MitM
attack at the TCP level.[57][58] This is definitively an interesting opportunity
requiring more in-depth research. We will focus on it in a greater detail in
subsection 3.3.1.

3.1.1.2 Install

The installation starts with UAC privilege elevation where the dialogue shows
that the application is digitally signed by the vendor. Only one window is
shown during the installation, offering nothing but the path where to install
Mary. We keep everything at its defaults which leads to the creation of files
under the C:/Program Files/Mary directory. The installer uses the ReadFile
call to read itself from the disk and then the WriteFile call to create files in
given path. Based on the offset it has read from itself, it knows which file to
create. Apart from creating most of the necessary files it also reads and writes
numerous registry keys. In its very end, it uses the ProcessCreate call to
launch uninstall.exe which is a file it has previously created. This process
finishes the installation - most importantly, it sets appropriate file types to be
opened by Mary, icon paths, shellex registry keys and so on.

This whole process has been monitored by three useful tools - procmon, regshot

32

3.1. Application structure

Figure 3.1: procmon captured creation of uninstall.exe

and wireshark. Thanks to that we can be sure that, for example, no net-
work communication happens during the install as no packets related to the
installation were captured by wireshark. This is also confirmed by the out-
put from procmon, which recorded exactly zero network related system calls.
In addition to using wireshark we have obtained a full list of registry keys
created and changed by the installation - the tool regshot helped us with
that by doing a snapshot of the keys before and immediately after the install-
ation. Information acquired using procmon assures we know what system calls
did the installer use. Therefore we have a good big-picture idea about what
happened.

Overall the installer behaves properly, does not offer any third party bloat-
ware, nor does it connect to any servers to either send some information or to
download unnecessary plugins and so on. The installation process does not,
therefore, seem like a valid place to investigate.

33

3. Analysis

Figure 3.2: Network communication after filtering out Microsoft servers

3.1.1.3 Access rights

We were checking the access rights of two object types - registry keys and files.
Both these object types got created by the installation. Using regshot, we
acquired a list of all of the newly created registry keys. The list of files was
acquired using procmon by following file-system related calls. Finally, using
accesschk, we acquired the access rights.

Registry keys are generally well protected. The Users group always has just
read rights, the user installing the application can only rewrite several less
interesting keys (e.g. file type associations). More critical keys (e.g. shellex)
are writable only by the Administrators group and SYSTEM user account.
The same goes for files - no typical mistakes like files writable by the Everyone
account appear here, and all important files (e.g. *.exe, *.dll) are also
writable only by the Administrators and SYSTEM.

Overall the application works with minimal possible access rights, does not
leave any unprotected files in the system and tries to follow best security
principles.[7] This forces us to do the decision of excluding access rights as a
possible attack vector and focus on other parts of the application.

3.1.2 Network communication

We have already checked network communication during the installation pro-
cess - there is none. Also, Mary is not a network application. Therefore it
does not open a listening port nor does it accept incoming connections. Other
most common examples of network communication include updates, banners
with commercials, database updates, online help and so on. Unfortunately,
none of these happen in Mary during typical usage.

After trying every single button that is provided by the GUI and even after
supplying many different types of input files not a single packet is transmitted,
nor a single network-related system function is called. This has been extens-
ively tested using both wireshark and procmon. The only two scenarios under
which something related to network happens are the following:

34

3.1. Application structure

• Unlicensed usage Mary has a trial version for 40 days, after which
the user must uninstall it or buy a full version. However, it continues
to function with a commercial pop-up window coming up every fifth
launch. This pop-up connects to several domains in a secured man-
ner (using HTTPS with certificate validation) and also to several other
domains using HTTP only. The data transmitted using the HTTP pro-
tocol can contain JavaScript which gets executed by Mary’s JS engine.
Although this may sound interesting, we will not focus on this network
communication. It has the same prerequisites as the unsecured down-
load of the installer (ARP/DNS poison, connection hijack and so forth)
while providing fewer possibilities when compared to supplying a cus-
tomized binary (running custom JS code inside of Mary’s sandbox vs
running completely custom code with theoretical privilege escalation).
Mitigation and recommendations will therefore be the same as stated
in 5.1. Nevertheless, the vendor has of course been informed about this
situation along with a few recommendations. Also, it should be stressed
out that such weakness is only present when using the product in con-
tradiction with its license terms.

• Home page redirect This is even less interesting than the previous
option. When Mary is asked to open its homepage, it passes the link to
a default browser as an argument. All the network communication itself
is then done by the browser, which therefore means, none of the code
from Mary actually works with it.

Figure 3.3: Network communication captured using procmon

3.1.3 Other program inputs

Based on the results from previous subsections, we now know we have to focus
on some other than network inputs. We choose to focus on files, as they are the
main type of accepted data and therefore their processing should cover a large

35

3. Analysis

part of the code base. Mary can open 15 different file types when executing
algorithm A (alg-a) and any file type when running algorithm B (alg-b).
From the analysis point-of-view, we will focus on alg-a. Although accepting
all file types as an input might create more attack opportunities than in case
of alg-a, it is in practice more complicated to force a victim to execute alg-b
than alg-a. As some libraries share names with compatible file types, it is
highly likely that code processing these file types will be in these DLLs. Some
of them are directly from authors of Mary, and some are third-party libraries,
developed and compiled elsewhere. Mixing code of multiple authors always
increases space for a mistake.

Because of the fact that no interesting network inputs exist, we will focus on
file inputs in the rest of the review. These inputs are processed by various
libraries, and therefore we will take a closer look at them in the next section.

3.2 Executables and libraries

All Mary’s executables and libraries will be introduced in this section. We
will first focus on a brief overview of them and therefore create a list with a
short description for each. Here, we are also going to examine PE headers
and respective security flags of these binary files. Based on these headers, we
will then take a closer look at two interesting libraries which happen to lack
all basic security features and therefore provide theoretical space for issues.
To maintain application’s anonymity, all its files will be renamed in the same
way the application is.

3.2.1 Overview

This is a list of all libraries bundled with Mary. Each of these libraries provides
algorithms to work with one particular file type that Mary can handle. The
original names of these libraries are well known enough to reveal the file types
they work with. However, this was also experimentally proven merely by
opening a given file type and making sure Mary loads the appropriate library
using the LoadLibrary call.

• elizabeth.dll Opens and works with .eli files. This library will get
thoroughly examined in 3.2.2 and 3.3.2.

• mary.dll and mary64.dll Both handle the native format, .mar, with
mary64.dll being the 64-bit version of the library.

• jennifer.dll Opens and works with .jen files. This library will get
thoroughly examined in 3.2.3 and 3.3.3.

36

3.2. Executables and libraries

Other binary files installed follow. This includes binary files that are actually
used when running Mary as well as files used during the install/uninstall.

• algA.exe Run alg-a from the command line

• algB.exe Run alg-b from the command line

• uninstall.exe Finish installation or start uninstallation

• mary.exe Run GUI application offering the possibility to execute both
alg-a and alg-b as well as other minor features. Also, handle the rest
of possible file types.

Therefore we have four binaries and four dynamic libraries. Given the in-
formation we have introduced in 2.1.1.1 and 2.2.2, the fact that no network
communication exists and the fact that Mary is quite a broad application con-
sisting of libraries developed by different vendors, we have decided to focus on
buffer overflows. We will be interested only in stack-based buffer overflows.

Security properties of an application when considering buffer overflow attacks
are mostly given by the used programming techniques and compilation op-
tions. Using compilation options appropriately presents a powerful way to
protect the application. Therefore we will not consider such binary files as
problematic. The determination of the compilation options before the used
programming techniques narrows down the amount of code to be analyzed by
some other means. Security attributes will be examined using the PESecurity
- for their detailed description, please see sections 5.2 and 5.1.

File name ASLR DEP Authenticode SafeSEH
elizabeth.dll False False False False

algA.exe True True True True
mary.dll True True True True

mary64.dll True True True True
jennifer.dll False False False False

uninstall.exe True True True True
algB.exe True True True True
mary.exe True True True True

Table 3.1: Security attributes of binaries

The output of PESecurity tells us one important thing. Two libraries have
ASLR & DEP & Authenticode & SafeSEH turned off - this puts the whole
application in danger.[59] As long as we have at least one library with ASLR
turned off, then this library is always going to be loaded at the same address
(unless relocated because the address is already occupied). Moreover, as long
as we know the address of one library, we can use the ROP technique with

37

3. Analysis

instructions from this library to take control of the execution flow.[10][11] On
the other side, when elizabeth.dll nor jennifer.dll is loaded, the application
uses all compilation security features it can. This is a sign that the authors of
Mary are aware of security threats and these problematic libraries might be
coming from a third party. Given the results of the PE headers analysis, we
will now focus on the two libraries in greater detail.

3.2.2 elizabeth.dll

At first, we will take a look at elizabeth.dll. We will use CFFexplorer to get
as much public information about the library as we can. elizabeth.dll is a part
of a large, open-source software project with a known author, it is developed
for all standard operating systems, and in our case, it is used to provide the
functionality of alg-a for one particular file type, .eli. We can, therefore,
find its source code available online and we can also find an already compiled
version of elizabeth.dll bundled with the source code. This allows us to check
hashes of the two versions and make sure that these files are the same. Now,
we can see that this library is being developed & compiled by a third party.

From the source code documentation, it is apparent why there is no ASLR
switched on - it is being compiled in an ancient MSVC6, where simply no
ASLR option exists. Also, this MSVC6 uses quite an old format of its project
files. Therefore we are forced to convert it to present type of MSVC solution.
Thanks to such a conversion, we can now study the source code of this library
with the possibility of compiling, debugging and everything else like a regular
developer. This offers much more information than reverse engineering the
compiled version of the library.

Mary uses a library compiled with no security features, publicly available
source code and an easy way of loading. These facts make it reasonable to
select elizabeth.dll as a candidate for further investigation. We are able to
put the code through static analysis followed by smart fuzzing based on the
file format specification. This will be examined in 3.3.2 and next chapter.

3.2.3 jennifer.dll

Here, we follow the procedure already used with the previous library. We first
determine the author of the library and use this information to find out more
details. This is a closed source software project of a German company which
does not exist anymore. Moreover, we reveal that .jen is an old file format
which has been used before Mary developed its own and better format, .mar.
Same as with elizabeth.dll this library is also used to provide the functionality
of alg-a only.

38

3.3. In-depth inspection of selected parts

ASLR is missing here because of the simple fact that the library was compiled
in 2005 which was the first year when ASLR was introduced on Linux, two
years before it was available on Microsoft systems. The “age” of the library
also suggests that nobody fixed any security deficiencies that were discovered
in the library in the last decade.

As we do not have the source code here, we will not be able to do the static
analysis, but we can, on the other hand, try to find existing exploits, or reverse
engineer the library to find the out file format structure and run smart fuzzing
with this file format. This is again definitively an opportunity which deserves
more time. Same as with the previous library, we will take a look at this in
subsection 3.3.3 and next chapter.

3.3 In-depth inspection of selected parts

In the previous section, we have chosen three parts of the application that de-
serve more time and detailed analysis - HTTP installer download, elizabeth.dll
and jennifer.dll. Here, we will focus on these parts.

First, we are going to take a look at the download by making a short summary
of requirements for our fake web and tampered binary. Next, elizabeth.dll is
about to be put through a static analysis which is going to be thoroughly
examined, leading to partial conclusions. Finally, we are going to reverse
engineer jennifer.dll to find out more information about it, and we are also
going to try to use the existing exploits against the library.

3.3.1 Unsecured download

Now, we know that there are two domains which can be used for Mary’s
download, both using HTTP/1.1 without encryption. We choose one of these
domains and focus solely on it, but the vulnerability is so general, it is not
a problem to use it for the second domain as well. There are many ways
to abuse unencrypted network communication - downloading the full original
web page, creating a customized binary replacing the original installer and
redirecting requests to our server instead of the vendor’s one is the chosen
method for us.

We have decided to use HTTrack to confirm that we can download the whole
web locally, store it and that the downloaded version looks just the same as
the original. Next, nginx is the selected web server which gets configured to
serve these files under the same host-names as the vendor’s web server. This
way we have a locally available web looking precisely the same as the vendor’s
web with the possibility of supplying our files whenever we decide to do so.

39

3. Analysis

Now we have to create the file to be supplied and redirect network traffic to
our nginx web server. Such an application should behave like the original
installer while providing functionality for anything an attacker wants. Un-
less privilege escalation is required for the additional functionality, the user
should not be notified by the UAC that anything unexpected is happening
and the digital signature of the original installer should be correctly verified
and valid. Through this method with the combination of non-existent control
checksums, the user will have no easy way to determine that the installer has
been manipulated with.

The description of the application itself along with the chosen way of traffic
redirection will be the primary topic of section 4.2.1.

3.3.2 elizabeth.dll

Static analysis has been done using multiple tools - rats, flawfinder and
Coverity. Their output is not part of the thesis to maintain application’s
anonymity, but it is, of course available, to eligible entities per request.

The situation is straightforward in case of rats and flawfinder. These ap-
plications accept source code files directly as an input, process it line by line,
do not compile the program and work by matching well-known expressions.
This approach has the advantage of a quick setup and easy usage but also
brings some drawbacks - it might be unable to recognize specific types, logic-
ally unreachable parts of the code or parse pre-processor directives, therefore
leading to a lot of false positives. Coverity, on the other hand, works in a
more sophisticated way with a more complicated setup. We found out that it
is costly for commercial usage and after having a short talk with the company
representatives, it has been cleared out that for a trial, educational and all
other purposes they provide a one-hour web session with a dedicated specialist.
This has not been accepted as an optimal solution because much more time
needs to be spent on a proper static analysis. Fortunately, Coverity works
free as an online service for open source projects. Doing some minor changes
to elizabeth.dll along with uploading it to github under proper license, was
therefore sufficient to get it connected with the online version of Coverity.
This way we have finally managed to get the static analysis done also using a
more advanced tool used by real professionals.

rats and flawfinder have pointed out many potentially dangerous lines in
the code. Most noticeably the usage of functions such as MultiByteToWideChar
or memcpy, usage of stack-allocated fixed size buffers or possible lines where
an exception might be thrown. None of these places has been evaluated as
actually vulnerable, mostly because of following reasons.

40

3.3. In-depth inspection of selected parts

• Correct bounds checking

• Memory allocation just for the size that has to be written

• Working with memory allocated on heap

• Static limits for parts of code working with static sized buffers

Figure 3.4: flawfinder partial example output

Coverity provides a more complex algorithm for threat detection and there-
fore eliminates most of these false positives. Therefore, it was able to find only
one defect from the high-impact category - out-of-bounds read. However, this
defect is currently also understood as not interesting for the following reasons.

• Hardware limits It might, even in theory, only work at systems where
access to addresses in the form of [base-address + offset] with offset being
from the range 0 - 4294967295 does not cause an exception. On 32-bit
systems, this will cause an integer overflow followed by access to address
0 which will be followed by an exception. Such an exception will be
handled by Mary and a warning dialogue window will be shown to the
user.

• Unpredictable values Values at addresses mentioned above would
have to be dereferenceable as valid addresses without causing an excep-
tion as well. Without the possibility to affect these values in advance.

• Uncertain writes The possibility to write custom values into the
memory is still uncertain even if we somehow manage to bypass previ-
ously mentioned conditions.

Figure 3.5: Out-of-bound read found by Coverity

Although we know that the application is not protected by ASLR, DEP and
SafeSEH while elizabeht.dll is loaded, we were not able to find a stack-based

41

3. Analysis

buffer overflow using the static analysis of the library’s source code. Never-
theless, in sub-section 4.2.2, we will take a look at the file format .eli and
try to create simple examples of fuzzing templates.

3.3.3 jennifer.dll

As we do not have the source code available here, we will have to do re. The
chosen software to do so is IDAPro in its free version. IDAPro is a state-of-
the-art disassembler and in its full paid version even a decompiler. This will
allow us to take a look at the internals of the library as well as the file format.

First, we want to take a look at the moment of loading the library - IDAPro
allows us to set breakpoints into the code of the DLL library while executing
the main application. This way we can stop the execution flow at each expor-
ted function to find parts of Mary that take care of calling LoadLibrary. We
could also do this from the other side - search all strings for “jennifer.dll” and
use hardware breakpoints to stop execution whenever the application reads
from the string’s address. Both ways lead to a state after which the library is
loaded. Parts of the code running before the load and after freeing the library
are not interesting for us. Here we are able to find out that Mary tries to
simulate ASLR for jennifer.dll by relocation. Before calling any function from
the DLL, it loads and unloads the library a few times, and it also tries to load
various system-related libraries. At least one of these libraries is often placed
in a collision with the address 0x400000 where jennifer.dll has its ImageBase.

By continuing with re we will find out, that the library enables its client
applications to set a few callbacks. This presumption is later confirmed by
finding unofficial header files specifying the API for working with the library.
We have four callbacks in total - Info, Error, Request and State, while
each of them is used in a completely different situation, has different input
structure and different return values. These callbacks are able to alter the
behaviour of the library in a significant way, as they can force the library
to stop, continue where it last left or quit immediately. Also, each client
application may have an entirely custom algorithm in these callbacks, and
it should be noted that they are called a lot more often than expected - for
example for each character in a particular string. Next, before any file is
processed by the library two initialization and testing functions are called -
JenInitDll and JenTest. Then there is one function which processes the
whole input file, JenProcessFile.3 All these functions have, as parameters,
pointers to custom structures that define many properties of the library - for
example how deep to look for file type signature, temporary files directory and
so on.

3Names of functions changed appropriately to avoid application disclosure.

42

3.3. In-depth inspection of selected parts

During the analysis of the library, we have tried to use the only existing
available exploit found online. This exploit leads to the creation of a specially
crafted .jen file which when processed by the library, causes a stack-based
buffer overflow. The library implements its own strcpy function which copies
bytes from the source address to the destination address until it reaches a null
byte. This implementation is therefore equally dangerous as the standard one
from libc because it does not check the number of bytes already written. The
bo found by the authors of the exploit is rather an educational example - a
locally allocated fixed size buffer which gets filled by using the aforementioned
strcpy function and the input string is directly supplied by the user in the
input file. There is not a single check for the size of the data and the size
of available memory. As jennifer.dll is not being maintained for many years
and the company that developed it does not exist anymore, the success of the
exploit was expected. However, the authors of Mary found a way to protect
it from the given buffer overflow. By implementing a checking logic in one
of the callbacks, they are able to count the number of bytes that should be
copied to the given fixed size local buffer, before passing this user input to
JenProcessFile, where the vulnerability gets exploited. This way they are
able to detect such malicious inputs and raise an exception which gets caught
by Mary itself. Mary then reacts appropriately as if the input file is invalid -
simply by showing a warning dialogue window informing the user that it was
unable to process the input.

Figure 3.6: strcpy implementation by jennifer.dll

43

3. Analysis

During reverse engineering of the library, we have confirmed that jennifer.dll
is truly not under further development nor has it been fixed for many years
and that the bugs in it stay there. However, we can also say that the authors
of Mary are well aware of the security vulnerabilities that were found in the
library and they try to mitigate their effects by any possible means - either
by simulating ASLR or by checking against known exploits. Also, during our
re procedure, we have gained knowledge about the internal structure of the
.jen file format. This structure was later confirmed by finding an unofficial
documentation for the format. For this reason, we have decided to create a
fuzzing template based on the file created by the exploit. This way we can try
to search for similar mistakes automatically - this process will be described in
4.2.2.

44

Chapter 4
Assessment

This is the last chapter of this thesis where we analyze the given application.
Here we will try to assess all of the defects we have found. This chapter
represents the end of the practical part of the thesis.

First, we want to briefly summarize found problems. This is intended for
impatient readers that skipped the previous sections and jumped straight here.
After that, we will utilize the knowledge gained in previous sections and assess
discovered problems.

4.1 Defects

The first weakness found in the application is the unsecured download of the
installer and lack of control checksums. Under certain conditions, this leads
to the possibility of replacing the installer with a customized binary. Next is
the absence of ASLR, DEP and SafeSEH for certain libraries. These security
features mitigate the effects of buffer overflow attacks, which may lead to the
change of the execution flow, instructions injection and complete change of
actions in the affected application.

4.1.1 Unsecured download

An unsecured download is caused mostly by the way that some network pro-
tocols are designed. Because of the possibility of injecting routing information
into routing tables of routers we do not own using the BGP protocol, or due
to the possibility of poisoning ARP caches of other devices in local networks,
we are able to manipulate and alter the path that each packet travels.[26][60]
This is not always possible because of several reasons, but the design of such
protocols fundamentally allows this. Next, because of the possibility of pack-
ing an existing application into another one, unpacking it later and executing
the unpacked application, we can create a fake installer, which in addition to

45

4. Assessment

actually installing the original application, does whatever its creator wants it
to do.

We will try to examine the found problem in a local area network situation
using ARP cache poisoning and a customized binary file which will include
the original installer. We need access to the victim’s local network - this
access can be, for example in the case of local wireless networks, achieved by
one of the methods mentioned in the subsection 2.1.2.5. In our example, we
will suppose we already have this access, whether it is a wireless or a wired
network. Next, we want to discover the IP address of the default gateway
and inform all other devices in the network that the MAC address associated
with this IP address is our own MAC address. This way we will be able
to redirect all outbound traffic to our computer. Such a redirect will allow
us to process the traffic, manipulate it and also re-route it. On the computer
receiving all the traffic, we will start a configured nginx web server, which will
serve the previously downloaded vendor’s web copy, but with our customized
binary as the installer. Finally, we will just change the destination IP address
for packets heading to the vendor’s web to our IP address and handle all
incoming download requests.

4.1.2 Buffer Overflow

We are searching for a stack-based buffer overflow. This bo might be present
when elizabeth.dll or jennifer.dll is loaded as these libraries are compiled with
old and nowadays obsolete options, and therefore lack essential security fea-
tures. In all other cases, the application is protected by the combination of
ASLR, DEP and SafeSEH which represent a solution we will not try to bypass.

These libraries are loaded into the memory in case of working with .eli or
.jen files. When processing .jen files, ASLR is simulated using high-likely-
relocation, but this does not protect the application entirely. Therefore in the
case of an application used by 500 million people, it still makes sense to look
for an existing bo. These libraries get freed when the application is done with
the input file.

A sophisticated and advanced analysis of these libraries has been done, which
in the case of jennifer.dll led to reverse engineering and testing of existing
exploits. In the case of elizabeth.dll, this led to an in-depth static analysis,
source level debugging and the analysis of the source code itself. In subsection
4.2.2, we are focusing on fuzzing these libraries. This means choosing an
appropriate fuzzer, creating its configuration and running it.

46

4.2. Practical assessment

4.2 Practical assessment

We will test the unsecured download by redirecting the installer download
request from a local network to our web server. This web server will be
returning a customized binary containing the original installer as a resource.
Buffer overflow will be tested by running a configured fuzzer trying to find an
input leading the application to a crash. In case we detect such a crash, we
will try to abuse it to change the execution flow.

4.2.1 Unsecured download

This will take place in a simulated network using VirtualBox. We will emulate
three machines connected together - vendor’s server (srv), victim user (usr)
and an attacker (atk). usr will be downloading the installer binary from
srv, while atk will be poisoning its ARP cache. In a real world we do not, of
course, have srv in our local network, but attacking default gateway instead
of srv would have the same effect. srv and usr will be running Ubuntu
16.04 while atk will be running Kali 2017.2 - a Linux distribution designed
specifically for security researchers. Omitting DNS or default gateways in the
network configuration below has no effect on the final functionality.

• SRV 192.168.1.1/24, no default gateway, no DNS server

• USR 192.168.1.2/24, no default gateway, no DNS server

• ATK 192.168.1.3/24, no default gateway, no DNS server

4.2.1.1 Traffic interception

Under normal circumstances (i.e. no ongoing MitM attack) the installer file
mary540.exe will be downloaded from srv.

Figure 4.1: Downloading installer from srv under normal circumstances

Ettercap was chosen for the ARP poisoning attack. Ettercap is a multipurpose
tool allowing us to perform various MitM attacks, hijack TCP connections,
sniff passwords and much more. First, we let Ettercap scan the network which
will give us a list of active devices. Then srv gets selected as target 1 (ti)
and usr as target 2 (tii) - in case we want to poison the whole network and
not just a particular device, we leave tii unassigned. This instructs Ettercap
to poison all other devices except for ti. Now it is enough to start a MitM

47

4. Assessment

ARP poisoning attack and let Ettercap send appropriate packets. In the
Connections tab, we can now see all the connections between usr and srv.

Figure 4.2: Intercepted connection

Next, we use two iptables commands taking care of web traffic redirection
at the atk station. The first command changes the destination IP addresses
before the routing decision is made by the kernel so that HTTP packets from
usr can reach local nginx at atk. The latter command changes the source
IP of outbound packets after the routing decision has been made so that usr
still thinks it is communicating with srv.

• iptables -t nat -A PREROUTING --src 192.168.1.2 --dport 80 -p
tcp --dst 192.168.1.1 -j DNAT --to-destination 192.168.1.3

• iptables -t nat -A POSTROUTING --src 192.168.1.3 --sport 80 -p
tcp --dst 192.168.1.2 -j SNAT --to 192.168.1.1

Finally, we start nginx in its default configuration and place the local copy
of vendor’s web into /var/www/html. Here we replace the original installer
with our crafted binary. If required by the situation we could use the more-
set-headers nginx module to manipulate outgoing HTTP headers to exactly
match headers from srv. Also, in case the vendor’s web would be updated very
frequently, and it would be complicated to keep our local version up-to-date,
we could use the nginx-lua-module to patch nginx to serve only the installer
from the local file and pass everything else to the vendor’s web, effectively
acting as a reverse proxy. In our case, none of the above is required. Now we

48

4.2. Practical assessment

can download the file at usr again and receive a completely different file from
atk instead of srv.

Figure 4.3: Tampered binary downloaded after poisoning ARP cache

Figure 4.4: Tampered binary stored locally

4.2.1.2 Binary tampering

The fake installer will carry the original installer as a resource which will
get unpacked into a temporary file and executed.[61] The original installer is
digitally signed, so direct tampering with this binary is not an option. Before
the execution of the original installer, the attacker has space to do whatever
needs to be done. If desired actions require Administrator privileges, the user
might be notified about it based on the UAC settings. The fake installer will
not have a digital signature, and therefore such a UAC notification will warn
the user that the software comes from an unknown developer. This might
cause some suspicion in the user and lead to cancellation of the installation.
In case that the privileges of the user running the installer will be sufficient,
we can handle this situation without the user being notified about anything
strange. A UAC pop-up will show after our custom code is finished, just
because of the original installer itself, thus showing the original vendor as the
software developer. In our example, we are not executing any custom code as
we do not really want to harm the user, but just point out possible options.

First, we make the resource available using the combination of FindResource,
LoadResource and LockResource calls. Next, we ask the system for an avail-
able name of a temporary file and write the contents of the resource into it.
We also rename this file to have an .exe extension to make it executable for
other system functions. Finally, we call ShellExecute to launch the newly
created file. Here, we use the runas option, which even though that it is
undocumented, enables us to elevate privileges of a binary we are unable to
change. This simple demonstration shows that unsecured download of the

49

4. Assessment

installer may easily lead to the execution of attacker’s code, without the user
noticing anything.

4.2.2 Buffer overflow

We have created numerous fuzzing templates for both libraries, and our fuzzing
tests are still running as of today. Fuzzing is a very time-consuming technique,
as a vast number of generated inputs is evaluated as invalid by the application
and therefore the tested part of the code is not very large. For this reason,
we have decided to use smart-fuzzing. Here the fuzzer has some hints about
the internal structure of the generated data, or even knows it entirely, which
is the optimal case. This way the fuzzer can generate much more valid inputs
and cover much larger part of the code base.

As a fuzzing software, we have decided to use Peach fuzzer. Peach is old,
mature, proven, offers many configuration options, is both mutation and gen-
eration based and if our thesis should continue in a commercial environment
Peach offers a paid pro version which includes many templates for common
input types, advanced support and even more configuration options. Sample
fuzzing templates for Peach were created during our thesis. These templates
should serve as an example of working with the fuzzer, rather than a compre-
hensive and thorough description of examined file types.

4.2.2.1 Peach

Peach is configured using the so-called PIT files.[62] These are XML files which
describe the structure of generated data, way of interaction with the tested
application, methods of memory access checking and failure detection, log
mechanism and other properties that can be configured for a fuzzing task. In
our case, the generated data are going to be written to a file and Mary is going
to be launched from a command line. Here, it will be given such parameters
to process the given file using alg-a without requiring any further interaction
with the user. Crashes are detected using the windbg debugger and Peach
takes care of replicating the crash along with logging everything important.

Most complicated part of the configuration is, therefore, the Data Model which
describes the structure of the generated data. Peach is missing quite a few
parameters in its free version however despite this fact it still offers an im-
pressive range of options to try. Here follows a list of some of them to get an
idea of what should a sophisticated fuzzer offer.

• Data types Numbers, strings, flags, blobs, ...

• Relations Marking e.g. specific number as a size-of/count-of/offset-
of/... some other part of generated data

50

4.2. Practical assessment

• Fix-ups Calculation of CRC-32/SHA1/MD5/... of some other part of
generated data

• Transformations Compression/Decompression of data block using
bz2/gzip, encryption/decryption of data block using AES/3DES/....

Unfortunately, the configuration is not very straightforward due to several
facts. Whether it is missing/misleading/unpublished documentation, huge
differences between versions 2.x and 3.x (Peach has been completely rewritten
from Python to C#, has different parameters, options, etc.) or lack of proper
community and support from the authors, it complicates any advanced usage.
It should be however noted, that all these issues are resolved when using
the paid version of Peach which logically gets much more attention from the
authors. Therefore despite these facts, Peach is still the most appropriate tool
to use as it offers much more configuration possibilities than other fuzzing
software.

After creating the PIT files, executing the fuzzing task is a question of one
simple command. For speeding up the process, we can use tools like ImDisk
to create a RAM disk in the memory and write created files into it without
waiting for often slow hard drives.

4.2.2.2 Fuzzing elizabeth.dll

First, we will take a look at fuzzing elizabeth.dll. As .eli is a highly op-
timized format, it turned out to have custom integer encoding. This is by
definition a significant issue for any fuzzing software which is not aware of
the encoding and does not support it. Peach can generate specific numbers
using the relations, fix-ups or transformers as stated above, but it has abso-
lutely no clue that integers written to a generated file must be encoded in a
specific way. Therefore, the library is going to decode different numbers than
Peach intended to write and the file might end up invalid. Unfortunately, this
does not currently have a solution within our reach. After contacting the au-
thors of Peach, it has been confirmed that no easy way how to achieve custom
number encoding exists in the free version. An option for partially bypassing
the encoding was the eval transformer applying given Python expression on
selected numbers, allowing the user to modify the data on-the-fly. However,
this transformer has either been marked as obsolete or has some new undoc-
umented usage, but in any case, it currently does not work. Peach just does
not start when trying to include this transformer in the PIT file. As so, to
minimize the effect of the encoding algorithm, only 8-bit numbers are used in
places where encoded numbers should be. This way the probability of gener-
ating correctly encoded number is the highest. It should be noted that the
paid version of Peach has a variable-width-number type which makes things
a little bit easier, and also that the authors are able to create a customized

51

4. Assessment

version of Peach including this encoding. Thus, in a commercial environment,
this issue can be resolved by using the paid version and purchasing a patch.

Next, besides being highly optimized, the file format is also very complicated.
Also, the documentation does not entirely match the generated and valid
files, therefore creating the templates is not very straightforward. Besides,
several created templates crashed Peach itself (reported to the authors with
no answer), so a wrapper script detecting the crash and starting Peach again
had to be created.

Fuzzing with created templates is still running and was able to find multiple
input files that crash a bundled client application. However, no input crashing
Mary has been found yet. Also, none of the inputs that crash the client
application can lead to the change of the execution flow. During the analysis
of elizabeth.dll, we were able to find one issue, theoretical buffer overflow that
can be caused thanks to the lack of ASLR, DEP and SafeSEH. However, no
such buffer overflow has been found yet, and no proof of concept code has been
developed. As more than a year has been spent on this analysis, it might seem
that elizabeth.dll is safe to use. However, since it is a large, hard to maintain
software project it is probably only a matter of time until future code edits
lead to such a buffer overflow and it gets discovered - recommendations in 5.2
minimize the chances that it will be worth even looking for.

4.2.2.3 Fuzzing jennifer.dll

Here the situation is better, opposed to the previous case. Apart from a few
tiny details, we can describe the internal structure of an example .jen file by
our PIT file. The internal structure is not so complicated and no special integer
encoding is required. Our PIT file is based on the previously mentioned file
generated by the exploit - this exploit is only prevented thanks to the internal
logic in Mary, while jennifer.dll still remains vulnerable to it. Its fuzzing might
therefore create a file which will not get detected by Mary.

One problem we were facing here is the fact that .jen uses only the lowest
16-bit of the otherwise 32-bit CRC-32 value. As Peach is only able to generate
32-bit long CRC-32, we had to fix this using an expression fix-up at the price
of some additional data generated into the file. This could have been also fixed
by a particular transformer designed for shortening numbers, but although it
is documented, it does not work. This has been also reported without any
answer.

Same as with the previous library the fuzzing is still running as of today.
And same as with the library earlier, it has not been able to find a valid
buffer overflow leading to an application crash yet. Although we know that

52

4.2. Practical assessment

the library is vulnerable, it is protected by the additional checks in its client
application, which make it secure for now. But here, the risk of existing buffer
overflow is even higher than in case of the former library - as jennifer.dll is not
maintained anymore, it is possible that the callback logic in Mary will not be
able to prevent the next bo found (if any). Thus, we will take a more detailed
look at protection methods and recommendations in 5.2.

53

Chapter 5
Mitigation & Recommendations

In this last chapter, we will focus on recommendations and advice for Mary’s
vendor who has been informed about the results of the thesis. We are going
to examine possible protections and suggest the best one for a given situation.
These protections should influence the users of Mary as less as possible, and
they should also include minimal expenses connected with them.

5.1 Unsecured network communication

In the life cycle of our reviewed application are two situations which require
some network communication. The first one is the download of the installer
and the second one is displaying a commercial when using the product without
a license. Both of these situations use some kind of unencrypted communic-
ation. Unencrypted communication leads to the possibility of hijacking the
connections and inserting data delivered to the JS engine of our application, or
even worse, delivering a tampered installer of our application. As mentioned
before we have focused on a forged installer as it provides the attacker with
more theoretical options and possibilities.

5.1.1 Protection methods

• Checksums The vendor might provide users with control checksums
of downloaded files. Thanks to checksums, users would be able to check
that the data they have downloaded is the file that was originally pub-
lished by the vendor. Currently, they do not have such a possibility, even
though this brings no additional costs for the vendor. This protection
method only applies to the fake installer defect, as it requires the user
to manually check that the published checksum matches the checksum
of the downloaded file.

• HTTPS All the unencrypted network communication could be easily

55

5. Mitigation & Recommendations

secured by using HTTPS instead of plain HTTP. HTTPS, when cor-
rectly implemented, also ensures that no traffic hijacking is possible,
thus eliminates all the attacks like ARP poisoning, BGP re-routing and
so on. On the other hand, it might create additional fees connected with
obtaining a trusted certificate, but thanks to services like Let’s Encrypt
these fees can be reduced to a very reasonable amount. Also, these
expenses can be minimized using several CDN providers who provide
SSL free of charge. Both of these should be negligible for a company
producing software as famous as Mary is.

5.1.2 Recommendations

No network communication can be made 100% secure by its very definition.
However, currently, it is believed that today’s encryption standards should be
strong enough for a regular user to keep his secrets private. Checksums are a
nice-to-have feature but should be provided as an additional check and always
in combination with HTTPS. Otherwise, the attacker might simply change the
checksum value delivered to the user and fake it appropriately. Also, these
checks require the user to participate in the process which is always bad by
its design. For these reasons, we would recommend a full switch to HTTPS
and its usage for all required communication.

Several emails have been exchanged with the vendor regarding this topic.
During the time of working on this thesis, the vendor has already switched its
public web to HTTPS. Every request now delivered to the standard HTTP
port TCP 80 is replied with a 302 HTTP redirect to its secured version. Al-
though this might seem like a solution, it only means that the attacker has
to use a tool like sslstrip in addition to ettercap. The redirect maintains
backward compatibility, but it is definitely not enough to stop a sophisticated
attacker. Disabling HTTP solely would help this situation well. Also, the
vendor is aware of the unencrypted communication happening in the com-
mercial pop-up, but currently has private reasons to stick to their current
technology. They are, however, working with several third parties on an up-
date which will allow a full switch to HTTPS for this communication as well.

5.2 Buffer overflow

Although we have not found a valid buffer overflow vulnerability, the applic-
ation is, in its current form, still providing space for any bo to appear due to
future changes. This is caused by the lack of ASLR, DEP and SafeSEH for
two libraries.

56

5.2. Buffer overflow

5.2.1 Protection methods

• ASLR ASLR makes buffer overflows much more complicated due to
the fact, that it loads libraries and executables at different addresses
everytime they are loaded/started. This ensures that supplying our ex-
ploit with a valid return address cannot be done as easily as without it.
Getting the return address for an ASLR disabled application is usually
(unless for example, relocation occurs) as simple as executing the applic-
ation at a target platform, printing the addresses around the buffer with
shellcode and using one of them. To minimize segmentation fault errors
and illegal instructions, attackers usually use a simple NOP-sled tech-
nique which leads the CPU directly to the prepared instructions. With
ASLR, this is not possible, as the address at which the application is
loaded changes every time the application is started. Thus determining
the address at the attacker’s computer makes no sense. Bypassing ASLR
usually requires some other vulnerability to be present in the applica-
tion. This vulnerability (e.g. formatting string vulnerability[11]) then
reveals a valid return address which is used by the rest of the exploit.
Also, system libraries are usually loaded during the boot of the system
and therefore their address stays the same until the reboot. But gener-
ally bypassing ASLR is a non-trivial action complicating the exploitation
process.[63][10][59]

• DEP DEP is a Microsoft Windows name for the NX/XD bit in CPU
architectures. This technology provides a way to mark specific parts of
the program (stack, heap, selected pages, etc.) as not executable. This is
checked by the CPU itself and causes a CPU exception in case an address
from non-executable space is loaded into the PC. DEP is usually used to
mark the stack pages as non-executable, which means the attacker is not
able to launch shellcode from there. This method is very effective, but
it has to be combined with ASLR. Otherwise, ROP techniques might be
used to bypass it. Even when the stack is non-executable, but we have
the knowledge of a valid return address, we might be able to use existing
sequences of instructions to deactivate DEP. However, DEP makes the
exploitation of ASLR supported applications harder.[63][10][59]

• SafeSEH SEH works on a principle of building a list of special func-
tions which are called when an exception occurs. Each of these func-
tions has the ability to determine if it wants to handle the risen excep-
tion or not. SEH based exploits rewrite the address of such handlers
and cause an exception - the SEH mechanism then redirects the execu-
tion flow to inserted shellcode instead of a regular exception handler.
SafeSEH protects against loading a custom exception handler by check-
ing that the address of the handler was registered as a valid exception

57

5. Mitigation & Recommendations

handler before. This way it is much harder for exploits overwriting the
EXCEPTION REGISTRATION block to succeed.[32][40][59]

5.2.2 Recommendations

Here we have to stress out one already mentioned fact. In the case that at
least one loaded library does not support ASLR then the whole application is
still not protected by it.[59] This library will get loaded at the same address
every time (unless relocation happens) and therefore instructions from this
library might be used for ROP technique and controlling the execution flow.
In case of Mary, the libraries without ASLR are elizabeth.dll and jennifer.dll.

• elizabeth.dll This library is compiled using old and obsolete MSVC
which simply does not support ASLR. The author is well aware of this for
more than five years, has been notified about possible security impacts
and nothing has changed. There is, therefore, no reason to think that
this situation will solve itself somehow. On the other hand, elizabeth.dll
has available source codes, and everybody is able to recompile it. This
might bring up some compatibility issues, but it should be possible to
resolve them, which is not the case of a missing ASLR. Also, when the
rest of the compilation parameters stays the same, these issues should
be minimal. Therefore, the ideal solution seems to be the recompilation
of the library with ASLR, DEP and SafeSEH switched on along with
fixing arising issues.

• jennifer.dll In case of jennifer.dll, the situation is much worse. Recom-
pilation is not an option here as the source code is not public and there
is no way of contacting the authors as the company no longer exists.
Also, the library contains known unfixed security vulnerabilities that
are patched using callback handler logic in Mary. On the other hand,
the file format .jen is nowadays very rarely used. Performing a quick
search on Google brings only one valid result throughout the first five
pages. Also, its performance parameters are long outdated, and it has
generally been replaced by newer and better formats. For these reasons,
it makes sense to drop support for it and abandon this library entirely.
The user impact should be minimal based on the infrequent usage of the
.jen format.

We have contacted the authors of Mary mainly because of the unsecured com-
munication, which presents an actual threat. From their quick reaction and
perfect communication, it comes out that security is a priority taken very
seriously by them. Also, because no buffer overflow has been found in these
libraries and that our fuzzing tests are still running, we are saving the inform-
ation regarding the compilation parameters for a later time. Particularly for

58

5.2. Buffer overflow

a moment when a valid bo is found by the fuzzing if such a moment hap-
pens. Now it is legitimate to presume that the authors are well aware of these
compilation parameters. Still, they have reasons that make them keep the
libraries included in their current form.

59

Conclusion

This thesis had several objectives. First, it was getting familiar with methods
and software used in reverse engineering of computer software. Next, we
were supposed to use these techniques and software to perform a vulnerability
assessment of the provided application, with focus on network communication.
Finally, we had to document all found weaknesses and give measures leading
to their mitigation.

In the first chapter, we have just extended the introduction to make sure
everybody understands what will be this thesis’s aim. We have outlined the
structure of the thesis, expected results and formulated the purpose of it in a
detailed way.

The second chapter has been dedicated to the research. We have studied
chosen attack vectors, suitable methods and up-to-date software. Here we
focused on reverse engineering. To be able to perform a sophisticated review
we have also examined other areas of computer security. Most notably net-
working, black-box fuzzing and static analysis. All this knowledge has been
supported by finding and working with professional software tools designed
for such purposes.

The beginning of the assessment has been performed in the third chapter.
Following the research, we have used previously acquired skills to find out
detailed information about the studied application, reverse engineer it and
put it through an in-depth static analysis. Given actions directed us to the
detection of missing protection features of several libraries, and unsecured
download of the application’s installer.

Next chapter has been dedicated to continuing with the assessment. We have
created example fuzzing templates for file formats processed by the defective
libraries and fuzzed these libraries using the Peach fuzzer. Also, we have

61

Conclusion

simulated a scenario in which a new user downloads the application from
the vendor’s webpage. Using HTTrack, nginx and Ettercap we were able
to perform an ARP poisoning attack, leading to a download of a tampered
installer.

In the last chapter, we have provided information about possible protection
methods and suggested the optimal way for fixing found weaknesses.

During the creation of this thesis, we gained significant knowledge, improved
our computer security skills and assessed the given application using appro-
priate methods. The vendor of the reviewed application has been notified of
all discovered issues, and some of them got already fixed.

62

Bibliography

[1] Kvasnicka, T. Improving Web Server Content Caching Performance.
Bachelor’s thesis, Czech Technical University in Prague, Faculty of In-
formation Technology, 2015.

[2] McClure, S.; Scambray, J.; et al. Hacking bez tajemstv́ı. Computer Press,
third edition, 2003, ISBN 80-7226-948-8.

[3] Jirkal, M. Bezpečnostńı studie aplikace. Master’s thesis, Czech Technical
University in Prague, Faculty of Information Technology, 2013.

[4] Žentek, J. Bezpečnostńı studie aplikace. Master’s thesis, Czech Technical
University in Prague, Faculty of Information Technology, 2014.

[5] Operating System Market Share Worldwide [online]. [cit. 2017-12-21].
Available from: http://gs.statcounter.com/os-market-share

[6] Russinovich, M. E.; Ionescu, A.; et al. Microsoft Windows Secur-
ity. The Microsoft Press Store [online], March 2012, [cit. 2017-12-21].
Available from: https://www.microsoftpressstore.com/articles/
article.aspx?p=2228450

[7] Howard, M.; LeBlanc, D. Bezpečný kód. Computer Press, first edition,
2008, ISBN 978-80-251-2050-7.

[8] Aleph One. Smashing The Stack For Fun And Profit. Phrack [online],
November 1996, [cit. 2017-12-21]. Available from: http://phrack.org/
issues/49/14.html

[9] Hatch, B.; Lee, J.; et al. Hacking bez tajemstv́ı - Linux. Computer Press,
first edition, 2003, ISBN 80-7226-869-4.

[10] Erickson, J. Hacking: The Art of Exploitation. No Starch Press, second
edition, 2008, ISBN 978-1-59327-144-2.

63

http://gs.statcounter.com/os-market-share
https://www.microsoftpressstore.com/articles/article.aspx?p=2228450
https://www.microsoftpressstore.com/articles/article.aspx?p=2228450
http://phrack.org/issues/49/14.html
http://phrack.org/issues/49/14.html

Bibliography

[11] Foster, J. C.; Osipov, V.; et al. Hacking - Buffer Overflow. Grada Pub-
lishing, first edition, 2007, ISBN 978-80-247-1480-6.

[12] Lin, C. C. Understanding the PC and the IR. 2003, [cit. 2017-12-
26]. Available from: https://www.cs.umd.edu/class/sum2003/cmsc311/
Notes/Overall/pc_ir.html

[13] Intel. Intel 64 and IA-32 Architectures Software Developer Manuals [on-
line]. [cit. 2017-12-26]. Available from: https://software.intel.com/
en-us/articles/intel-sdm

[14] Kernighan, B. W.; Ritchie, D. M. The C Programming Language. Prentice
Hall PTR, second edition, 1988, ISBN 978-0131103627.

[15] ALEX. The stack and the heap. Learn CPP [online], August 2007, [cit.
2017-12-26]. Available from: http://www.learncpp.com/cpp-tutorial/
79-the-stack-and-the-heap/

[16] Krishnan, M. R. Heap: Pleasures and Pains. MSDN [online], February
1999, [cit. 2017-12-26]. Available from: https://msdn.microsoft.com/
en-us/library/ms810466.aspx

[17] Managing Memory with Multiple Heaps [online]. [cit. 2017-12-26]. Avail-
able from: https://caligari.dartmouth.edu/doc/ibmcxx/en_US/doc/
libref/concepts/cumemmng.htm

[18] Vanhoef, M. Understanding the Heap and Exploiting Heap Overflows.
2013, [cit. 2017-12-26]. Available from: http://www.mathyvanhoef.com/
2013/02/understanding-heap-exploiting-heap.html

[19] Buffer Overflow CVE [online]. [cit. 2017-12-26]. Available from: https:
//cve.mitre.org/cgi-bin/cvekey.cgi?keyword=buffer+overflow

[20] Bhamidipati, S. The Art of Reconnaissance - Simple Techniques. Tech-
nical report, SANS Institute, August 2001, [cit. 2017-12-23]. Available
from: https://www.sans.org/reading-room/whitepapers/auditing/
art-reconnaissance-simple-techniques-60

[21] Long, J. Google hacking. Zoner Press, first edition, 2005, ISBN 80-86815-
31-5.

[22] Ettercap and middle-attacks tutorial [online]. [cit. 2017-12-23]. Available
from: https://pentestmag.com/ettercap-tutorial-for-windows/

[23] Aircrack-ng [online]. [cit. 2017-12-26]. Available from: https://
www.aircrack-ng.org/doku.php?id=Main

[24] Dostálek, L.; Kabelová, A. Velký pru̇vodce protokoly TCP/IP a systémem
DNS. Computer Press, fifth edition, 2008, ISBN 978-80-251-2236-5.

64

https://www.cs.umd.edu/class/sum2003/cmsc311/Notes/Overall/pc_ir.html
https://www.cs.umd.edu/class/sum2003/cmsc311/Notes/Overall/pc_ir.html
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm
http://www.learncpp.com/cpp-tutorial/79-the-stack-and-the-heap/
http://www.learncpp.com/cpp-tutorial/79-the-stack-and-the-heap/
https://msdn.microsoft.com/en-us/library/ms810466.aspx
https://msdn.microsoft.com/en-us/library/ms810466.aspx
https://caligari.dartmouth.edu/doc/ibmcxx/en_US/doc/libref/concepts/cumemmng.htm
https://caligari.dartmouth.edu/doc/ibmcxx/en_US/doc/libref/concepts/cumemmng.htm
http://www.mathyvanhoef.com/2013/02/understanding-heap-exploiting-heap.html
http://www.mathyvanhoef.com/2013/02/understanding-heap-exploiting-heap.html
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=buffer+overflow
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=buffer+overflow
https://www.sans.org/reading-room/whitepapers/auditing/art-reconnaissance-simple-techniques-60
https://www.sans.org/reading-room/whitepapers/auditing/art-reconnaissance-simple-techniques-60
https://pentestmag.com/ettercap-tutorial-for-windows/
https://www.aircrack-ng.org/doku.php?id=Main
https://www.aircrack-ng.org/doku.php?id=Main

Bibliography

[25] Bigelow, S. J. Mistrovstv́ı v poč́ıtačových śıt́ıch. Computer Press, first
edition, 2004, ISBN 80-251-0178-9.

[26] King, J.; Lauerman, K. ARP Poisoning Attack and Mitigation Tech-
niques. Technical report, Cisco, January 2016, [cit. 2017-12-26]. Available
from: https://www.cisco.com/c/en/us/products/collateral/
switches/catalyst-6500-series-switches/white_paper_c11_
603839.html

[27] Handley, M.; Rescorla, E. Internet Denial-of-Service Considerations.
RFC 4732, RFC Editor, December 2006. Available from: https://
tools.ietf.org/html/rfc4732

[28] Junaid, M.; Mufti, D. M.; et al. Vulnerabilities of IEEE 802.11i
Wireless LAN CCMP Protocol. Technical report, University of En-
gineering and Technology, Taxila, Pakistan, February 2006. Avail-
able from: http://citeseerx.ist.psu.edu/viewdoc/download?doi=
10.1.1.188.704&rep=rep1&type=pdf

[29] An offline Wi-Fi Protected Setup brute-force utility [online]. [cit. 2017-
12-26]. Available from: https://github.com/wiire-a/pixiewps

[30] Vanhoef, M.; Piessens, F. Key Reinstallation Attacks: Forcing Nonce
Reuse in WPA2. Technical report, imec-DistriNet, KU Leuven, November
2017. Available from: http://papers.mathyvanhoef.com/ccs2017.pdf

[31] Lyon, G. F. Nmap Network Scanning: Official Nmap Project Guide to
Network Discovery and Security Scanning. Insecure.Com LLC, first edi-
tion, 2008, ISBN 978-0-9799587-1-7.

[32] Reverse Engineering course at FIT CTU. [cit. 2017-12-26]. Available
from: http://bk.fit.cvut.cz/en/predmety/00/00/00/00/00/00/04/
70/36/p4703606.html

[33] Chikofsky, E. J.; Cross, J. H. Reverse Engineering and Design Recov-
ery: A Taxonomy. IEEE Software, January 1990, [cit. 2017-12-26]. Avail-
able from: http://win.ua.ac.be/˜lore/Research/Chikofsky1990-
Taxonomy.pdf

[34] Pietrek, M. Peering Inside the PE: A Tour of the Win32 Portable Execut-
able File Format. MSDN [online], March 1994, [cit. 2017-12-26]. Available
from: https://msdn.microsoft.com/en-us/library/ms809762.aspx

[35] Danehkar, A. Injective Code inside Import Table. [cit. 2017-12-26]. Avail-
able from: http://www.ntcore.com/files/inject2it.htm

65

https://www.cisco.com/c/en/us/products/collateral/switches/catalyst-6500-series-switches/white_paper_c11_603839.html
https://www.cisco.com/c/en/us/products/collateral/switches/catalyst-6500-series-switches/white_paper_c11_603839.html
https://www.cisco.com/c/en/us/products/collateral/switches/catalyst-6500-series-switches/white_paper_c11_603839.html
https://tools.ietf.org/html/rfc4732
https://tools.ietf.org/html/rfc4732
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.188.704&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.188.704&rep=rep1&type=pdf
https://github.com/wiire-a/pixiewps
http://papers.mathyvanhoef.com/ccs2017.pdf
http://bk.fit.cvut.cz/en/predmety/00/00/00/00/00/00/04/70/36/p4703606.html
http://bk.fit.cvut.cz/en/predmety/00/00/00/00/00/00/04/70/36/p4703606.html
http://win.ua.ac.be/~lore/Research/Chikofsky1990-Taxonomy.pdf
http://win.ua.ac.be/~lore/Research/Chikofsky1990-Taxonomy.pdf
https://msdn.microsoft.com/en-us/library/ms809762.aspx
http://www.ntcore.com/files/inject2it.htm

Bibliography

[36] igorsk. Reversing Microsoft Visual C++ Part II: Classes, Methods
and RTTI. September 2006, [cit. 2017-12-26]. Available from: http:
//www.openrce.org/articles/full_view/23

[37] Eagle, C. The IDA PRO BOOK. No Starch Press, second edition, 2011,
ISBN 978-1-59327-289-0.

[38] Schwarz, B.; Debray, S.; et al. Disassembly of Executable Code Re-
visited. Technical report, University of Arizona, Tucson, USA, Oc-
tober 2002. Available from: https://www2.cs.arizona.edu/˜debray/
Publications/disasm.pdf

[39] Vijayvargiya, A. Writing a basic Windows debugger. Code Project [on-
line], [cit. 2017-12-27]. Available from: https://www.codeproject.com/
Articles/43682/Writing-a-basic-Windows-debugger

[40] Pietrek, M. A Crash Course on the Depths of Win32 Structured Excep-
tion Handling. Microsoft Systems Journal [online], January 1997, [cit.
2017-12-27]. Available from: https://www.codeproject.com/Articles/
43682/Writing-a-basic-Windows-debugger

[41] Collberg, C.; Thomborson, C.; et al. A Taxonomy of Obfus-
cating Transformations. Technical report, The University of
Auckland, Auckland, New Zeland, 1997/2009. Available from:
https://researchspace.auckland.ac.nz/bitstream/handle/2292/
3491/TR148.pdf

[42] Neystadt, J. Automated Penetration Testing with White-Box Fuzzing.
MSDN [online], February 2008, [cit. 2017-12-27]. Available from: https:
//msdn.microsoft.com/en-us/library/cc162782.aspx

[43] Hillman, M. 15 minute guide to fuzzing. MWR InfoSecur-
ity [online], August 2013, [cit. 2017-12-27]. Available from:
https://www.mwrinfosecurity.com/our-thinking/15-minute-
guide-to-fuzzing/

[44] Böhme, M.; Pham, V.-T.; et al. Directed Greybox Fuzzing. Technical
report, National University of Singapore, November 2017. Available from:
https://acmccs.github.io/papers/p2329-bohmeAemb.pdf

[45] Weinberg, G. M. Fuzz Testing and Fuzz History. February 2017, [cit. 2017-
12-27]. Available from: http://secretsofconsulting.blogspot.cz/
2017/02/fuzz-testing-and-fuzz-history.html

[46] Rawat, S.; Jain, V.; et al. VUzzer: Application-aware Evolutionary
Fuzzing. Technical report, Vrije Universiteit Amsterdam, March 2017.
Available from: http://sharcs-project.eu/m/filer_public/48/8c/
488c5fb7-9aad-4c87-ab9c-5ff251ebc73d/vuzzer_ndss17.pdf

66

http://www.openrce.org/articles/full_view/23
http://www.openrce.org/articles/full_view/23
https://www2.cs.arizona.edu/~debray/Publications/disasm.pdf
https://www2.cs.arizona.edu/~debray/Publications/disasm.pdf
https://www.codeproject.com/Articles/43682/Writing-a-basic-Windows-debugger
https://www.codeproject.com/Articles/43682/Writing-a-basic-Windows-debugger
https://www.codeproject.com/Articles/43682/Writing-a-basic-Windows-debugger
https://www.codeproject.com/Articles/43682/Writing-a-basic-Windows-debugger
https://researchspace.auckland.ac.nz/bitstream/handle/2292/3491/TR148.pdf
https://researchspace.auckland.ac.nz/bitstream/handle/2292/3491/TR148.pdf
https://msdn.microsoft.com/en-us/library/cc162782.aspx
https://msdn.microsoft.com/en-us/library/cc162782.aspx
https://www.mwrinfosecurity.com/our-thinking/15-minute-guide-to-fuzzing/
https://www.mwrinfosecurity.com/our-thinking/15-minute-guide-to-fuzzing/
https://acmccs.github.io/papers/p2329-bohmeAemb.pdf
http://secretsofconsulting.blogspot.cz/2017/02/fuzz-testing-and-fuzz-history.html
http://secretsofconsulting.blogspot.cz/2017/02/fuzz-testing-and-fuzz-history.html
http://sharcs-project.eu/m/filer_public/48/8c/488c5fb7-9aad-4c87-ab9c-5ff251ebc73d/vuzzer_ndss17.pdf
http://sharcs-project.eu/m/filer_public/48/8c/488c5fb7-9aad-4c87-ab9c-5ff251ebc73d/vuzzer_ndss17.pdf

Bibliography

[47] Chronozon - An evolutionary knowledge-based fuzzer. [cit. 2017-12-27].
Available from: https://github.com/CENSUS/choronzon

[48] Garg, P. Fuzzing: Application and File Fuzzing. InfoSec Institute
[online], January 2012, [cit. 2017-12-27]. Available from: http://
resources.infosecinstitute.com/application-and-file-fuzzing/

[49] Clang 6 documentation. [cit. 2017-12-27]. Available from: https://
clang.llvm.org/docs/

[50] Static Code Analysis. [cit. 2017-12-27]. Available from: https://
www.owasp.org/index.php/Static_Code_Analysis

[51] Wheeler, D. A. Flawfinder. [cit. 2017-12-27]. Available from: https://
www.dwheeler.com/flawfinder/

[52] A curated list of static analysis tools, linters and code quality checkers for
various programming languages. [cit. 2017-12-27]. Available from: https:
//github.com/mre/awesome-static-analysis

[53] Hicken, A. False Positives in Static Code Analysis. Parasoft blog
[online], February 2013, [cit. 2017-12-27]. Available from: https://
blog.parasoft.com/false-positives-in-static-code-analysis

[54] Friedl, S. An Illustrated Guide to the Kaminsky DNS Vulnerability.
Steve Friedl’s Unixwiz.net Tech Tips [online], July 2008, [cit. 2018-1-
2]. Available from: http://unixwiz.net/techtips/iguide-kaminsky-
dns-vuln.html

[55] Son, S.; Shmatikov, V. The Hitchhiker’s Guide to DNS Cache Pois-
oning. Technical report, The University of Texas at Austin, Septem-
ber 2010. Available from: https://www.cs.cornell.edu/˜shmat/shmat_
securecomm10.pdf

[56] Wagner, R.; Bryner, J. Address Resolution Protocol Spoofing and Man-
in-the-Middle Attacks. Technical report, SANS Institute, June 2006.
Available from: https://www.sans.org/reading-room/whitepapers/
threats/address-resolution-protocol-spoofing-man-in-the-
middle-attacks-474

[57] Cheese. TCP Session Hijacking. Technical report, Packetstorm, Janu-
ary 2010. Available from: https://packetstormsecurity.com/files/
85017/TCP-Session-Hijacking.html

[58] Lin, M. An Overview of Session Hijacking at the Network and Application
Levels. Technical report, SANS Institute, January 2005. Available from:
https://www.sans.org/reading-room/whitepapers/ecommerce/
overview-session-hijacking-network-application-levels-1565

67

https://github.com/CENSUS/choronzon
http://resources.infosecinstitute.com/application-and-file-fuzzing/
http://resources.infosecinstitute.com/application-and-file-fuzzing/
https://clang.llvm.org/docs/
https://clang.llvm.org/docs/
https://www.owasp.org/index.php/Static_Code_Analysis
https://www.owasp.org/index.php/Static_Code_Analysis
https://www.dwheeler.com/flawfinder/
https://www.dwheeler.com/flawfinder/
https://github.com/mre/awesome-static-analysis
https://github.com/mre/awesome-static-analysis
https://blog.parasoft.com/false-positives-in-static-code-analysis
https://blog.parasoft.com/false-positives-in-static-code-analysis
http://unixwiz.net/techtips/iguide-kaminsky-dns-vuln.html
http://unixwiz.net/techtips/iguide-kaminsky-dns-vuln.html
https://www.cs.cornell.edu/~shmat/shmat_securecomm10.pdf
https://www.cs.cornell.edu/~shmat/shmat_securecomm10.pdf
https://www.sans.org/reading-room/whitepapers/threats/address-resolution-protocol-spoofing-man-in-the-middle-attacks-474
https://www.sans.org/reading-room/whitepapers/threats/address-resolution-protocol-spoofing-man-in-the-middle-attacks-474
https://www.sans.org/reading-room/whitepapers/threats/address-resolution-protocol-spoofing-man-in-the-middle-attacks-474
https://packetstormsecurity.com/files/85017/TCP-Session-Hijacking.html
https://packetstormsecurity.com/files/85017/TCP-Session-Hijacking.html
https://www.sans.org/reading-room/whitepapers/ecommerce/overview-session-hijacking-network-application-levels-1565
https://www.sans.org/reading-room/whitepapers/ecommerce/overview-session-hijacking-network-application-levels-1565

Bibliography

[59] Corelan Team. Exploit writing tutorial part 6: Bypassing Stack Cookies,
SafeSeh, SEHOP, HW DEP and ASLR. Corelan [online], September 2009,
[cit. 2018-1-3]. Available from: https://www.corelan.be/index.php/
2009/09/21/exploit-writing-tutorial-part-6-bypassing-stack-
cookies-safeseh-hw-dep-and-aslr/

[60] Gavrichenkov, A. Breaking HTTPS with BGP hijacking. Technical
report, Qrator Labs, 2015. Available from: http://www.blackhat.com/
docs/us-15/materials/us-15-Gavrichenkov-Breaking-HTTPS-
With-BGP-Hijacking-wp.pdf

[61] Kumar, P. How to embed an exe inside another exe as a resource and then
launch it. Geeks with Blogs [online], October 2009, [cit. 2018-1-3]. Avail-
able from: http://geekswithblogs.net/TechTwaddle/archive/2009/
10/16/how-to-embed-an-exe-inside-another-exe-as-a.aspx

[62] Deja vu Security. Peach PIT. [cit. 2018-1-3]. Available from: http://
community.peachfuzzer.com/v3/PeachPit.html

[63] Sutherland, G. How does ASLR and DEP work? [cit. 2018-1-3]. Avail-
able from: https://security.stackexchange.com/questions/18556/
how-do-aslr-and-dep-work

68

https://www.corelan.be/index.php/2009/09/21/exploit-writing-tutorial-part-6-bypassing-stack-cookies-safeseh-hw-dep-and-aslr/
https://www.corelan.be/index.php/2009/09/21/exploit-writing-tutorial-part-6-bypassing-stack-cookies-safeseh-hw-dep-and-aslr/
https://www.corelan.be/index.php/2009/09/21/exploit-writing-tutorial-part-6-bypassing-stack-cookies-safeseh-hw-dep-and-aslr/
http://www.blackhat.com/docs/us-15/materials/us-15-Gavrichenkov-Breaking-HTTPS-With-BGP-Hijacking-wp.pdf
http://www.blackhat.com/docs/us-15/materials/us-15-Gavrichenkov-Breaking-HTTPS-With-BGP-Hijacking-wp.pdf
http://www.blackhat.com/docs/us-15/materials/us-15-Gavrichenkov-Breaking-HTTPS-With-BGP-Hijacking-wp.pdf
http://geekswithblogs.net/TechTwaddle/archive/2009/10/16/how-to-embed-an-exe-inside-another-exe-as-a.aspx
http://geekswithblogs.net/TechTwaddle/archive/2009/10/16/how-to-embed-an-exe-inside-another-exe-as-a.aspx
http://community.peachfuzzer.com/v3/PeachPit.html
http://community.peachfuzzer.com/v3/PeachPit.html
https://security.stackexchange.com/questions/18556/how-do-aslr-and-dep-work
https://security.stackexchange.com/questions/18556/how-do-aslr-and-dep-work

Appendix A
Acronyms

DVD Digital Versatile Disc

USB Universal Serial Bus

OS Operating System

DHCP Dynamic Host Configuration Protocol

UAC User Account Control

GUI Graphical User Interface

CPU Central Processing Unit

PC Program Counter

ASLR Address Space Layout Randomization

DEP Data Execution Prevention

SEH Structured Exception Handling

IPMI Intelligent Platform Management Interface

SUID set user ID upon execution

SGID set group ID upon execution

BIOS Basic Input-Output System

UEFI Unified Extensible Firmware Interface

SMTP Simple Mail Transfer Protocol

POP Post Office Protocol

SSH Secure Shell

69

A. Acronyms

HTTP Hypertext Transfer Protocol

DNS Domain Name System

MS-RPC Microsoft Remote Procedure Call

IDS Intrusion Detection System

IPS Intrusion Prevention System

MitM Man-in-the-Middle

AP Access Point

ARP Address Resolution Protocol

ICMP Internet Control Message Protocol

BGP Border Gateway Protocol

FTP File Transfer Protocol

SMB Server Message Block

VPN Virtual Private Network

TCP Transmission Control Protocol

HTTPS HTTP Secure

SFTP SSH File Transfer Protocol

DoS Denial-of-Service attack

UDP User Datagram Protocol

XML Extensible Markup Language

NIC Network Interface Controller

DDoS Distributed Denial-of-Service

WEP Wired Equivalent Privacy

WPA Wi-Fi Protected Access

WPS Wi-Fi Protected Setup

SSID Service Set Identifier

VLAN Virtual LAN

IP Internet Protocol

70

TTL Time-to-Live

ABI Application Binary Interface

API Application Programming Interface

MS Microsoft

PE Portable Executable

DLL Dynamic-link Library

IAT Import Address Table

RTTI Run-Time Type Information

NX/XD Non eXecute / eXecute Disable

VM Virtual Machine

AI Artificial Intelligence

ISP Internet Service Provider

MAC Media Access Control

NFS Network File System

SQL Structured Query Language

IEEE Institute of Electrical and Electronics Engineers

GNU GNU’s Not Unix!

ROP Return oriented programming

MSVC Microsoft Visual C++

CRC Cyclic Redundancy Check

SHA Secure Hash Algorithm

MD Message-Digest Algorithm

AES Advanced Encryption Standard

DES Data Encryption Standard

RAM Random Access Memory

JS JavaScript

CDN Content Delivery Network

SSL Secure Sockets Layer

71

Appendix B
Contents of enclosed CD

src the thesis LATEX source codes directory
DP kvasnicka tomas 2017.tex........ the thesis text in TEX format
mybibliographyfile.bib.....the thesis bibliography in TEX format
FITthesis.cls...................the thesis template in TEX format
iso690.bst the thesis bibliography template in TEX format
images directory with images used in this thesis

text..the thesis text directory
DP kvasnicka tomas 2017.pdf the thesis text in PDF format

73

	Introduction
	About this thesis
	Exact problem formulation
	Expected results
	Thesis structure

	Research
	Possible attack vectors
	Known methods and attacks
	Specialized software

	Analysis
	Application structure
	Executables and libraries
	In-depth inspection of selected parts

	Assessment
	Defects
	Practical assessment

	Mitigation & Recommendations
	Unsecured network communication
	Buffer overflow

	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed CD

