
Ing. Michal Valenta, Ph.D.
Head of Department

prof. Ing. Pavel Tvrdík, CSc.
Dean

Prague December 23, 2016

CZECH TECHNICAL UNIVERSITY IN PRAGUE

FACULTY OF INFORMATION TECHNOLOGY

ASSIGNMENT OF MASTER’S THESIS

 Title: Migration Tool for Data Stewardship Knowledge Model

 Student: Bc. Vojtěch Knaisl

 Supervisor: Ing. Robert Pergl, Ph.D.

 Study Programme: Informatics

 Study Branch: Web and Software Engineering

 Department: Department of Software Engineering

 Validity: Until the end of summer semester 2017/18

Instructions

- Acquaint yourself with the Data Stewardship Planning Portal project and its Knowledge Model (DS-KM).
- Acquaint yourself with the Haskell programming language.
- Analyse the requirements for the Migration Tool for DS-KM (MT).
- Design a solution of the MT.
- Implement the solution in Haskell.
- Test and document your solution.

References

https://github.com/DataStewardshipPortal

Master’s thesis

Migration Tool for Data Stewardship
Knowledge Model

Bc. Vojtěch Knaisl

Department of Software Engineering
Supervisor: Ing. Robert Pergl, Ph.D.

January 8, 2018

Acknowledgements

I would like to thank my supervisor Ing. Robert Pergl, Ph.D. for great feed-
back during my work on the thesis and for leading my thesis. Further I would
like to thank my family for a priceless support during my studies.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In
accordance with Article 46(6) of the Act, I hereby grant a nonexclusive au-
thorization (license) to utilize this thesis, including any and all computer pro-
grams incorporated therein or attached thereto and all corresponding docu-
mentation (hereinafter collectively referred to as the “Work”), to any and all
persons that wish to utilize the Work. Such persons are entitled to use the
Work in any way (including for-profit purposes) that does not detract from its
value. This authorization is not limited in terms of time, location and quan-
tity. However, all persons that makes use of the above license shall be obliged
to grant a license at least in the same scope as defined above with respect to
each and every work that is created (wholly or in part) based on the Work, by
modifying the Work, by combining the Work with another work, by including
the Work in a collection of works or by adapting the Work (including trans-
lation), and at the same time make available the source code of such work at
least in a way and scope that are comparable to the way and scope in which
the source code of the Work is made available.

In Prague on January 8, 2018 .

Czech Technical University in Prague
Faculty of Information Technology
© 2018 Vojtěch Knaisl. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Knaisl, Vojtěch. Migration Tool for Data Stewardship Knowledge Model. Mas-
ter’s thesis. Czech Technical University in Prague, Faculty of Information
Technology, 2018.

Abstrakt

Tato práce navazuje na již existují projekt portálu pro správu dat, který je
vyvíjen ve spolupráci s organizací ELIXIR-CZ. Práce stručně shrnuje, co bylo
na projektu již vytvořeno. Dále popisuje, proč byla nutnost vytvořit migrační
nástroj pro aktuální znalostní model (rozšiřitelná datová struktura, která je
nositelem znalostí a vyvíjí se spolu s časem) a proč bylo nakonec rozhodnuto,
že spolu s tímto nástrojem bude realizován i základ portálové aplikace. Mi-
grační nástroj a portál je následně zanalyzován. Součástí práce je i návrh
migračního nástroje s možnostmi variant jeho realizace. Tyto možnosti jsou
diskutovány a jedna z variant je posléze implementována. Výsledkem práce je
tedy požadovaný plně funkční migrační nástroj a základ portálové aplikace.

Klíčová slova Migrační nástroj, ELIXIR, Správa dat, Haskell, Funkcionální
programování, Git

Abstract

This thesis continues on an already running project of Data Stewardship
Planning Portal which is developed together with ELIXIR-CZ organization.

vii

The thesis shortly summarizes a current state of the project. Further it de-
scribes why there was a need to create a migration tool for the current knowl-
edge model (an extensible data structure carrying the knowledge that natu-
rally evolves over the time), and why it was decided to implement also bases
of the portal application. The migration tool and portal application are then
analyzed. A part of the thesis is also a design of the migration tool together
with possible approaches of its implementation. These approaches are dis-
cussed and finally one is choosen and implemented. The result of this thesis
is the requested fully-working migration tool together with bases of the portal
application.

Keywords Migration Tool, ELIXIR, Data Stewardship, Haskell, Functional
Programming, Git

viii

Contents

Introduction 1
Goals of the Thesis . 1
Methodology and Thesis Structure 2

1 Analysis 3
1.1 Introduction . 3
1.2 Current Project State . 3
1.3 Solution Requirements . 6
1.4 Selected Tools . 20
1.5 Applied Concepts of functional programming 24

2 Design of The Migration Tool 33
2.1 Introduction . 33
2.2 Current Approach . 33
2.3 Git . 35
2.4 My Proposal . 39

3 Implementation 59
3.1 Introduction . 59
3.2 Project Structure . 59
3.3 Build Tools Setup . 60
3.4 Application structure . 60
3.5 API . 64
3.6 Database . 66
3.7 Error Handling . 67
3.8 Migration Tool . 68

4 Configuration, Testing and Deployment 71
4.1 Introduction . 71
4.2 Configuration . 71

ix

4.3 Testing . 73
4.4 Production Deployment . 76

Conclusion 81
Goals Assessment . 81
Project Future . 81

Bibliography 83

A API Specification 87

B Acronyms 97

C Contents of enclosed CD 99

x

List of Figures

1.1 Current project state . 4
1.2 Desired project state . 5
1.3 Use Cases: Organization . 7
1.4 Use Cases: User Management . 8
1.5 Use Cases : Editor And Migration Tool 9
1.6 Use Cases : Package Management 10
1.7 Domain Model . 12
1.8 Activity Diagram: Migration . 18
1.9 High-Level Deployment Diagram 20

2.1 Precompiler . 34
2.2 Git: State before merge . 37
2.3 Git: State after merge . 37
2.4 Git: State before rebase . 38
2.5 Git: Rebase in progress . 38
2.6 Git: State after rebase . 39
2.7 Migration: A package dependency structure 43
2.8 Structure of package . 44
2.9 Migration: 1. Approach . 45
2.10 Migration: 2. Approach . 53

3.1 Application layers . 61

4.1 Test pyramid . 73
4.2 Docker images . 76
4.3 Low-Level Deployment Diagram 78

xi

List of Tables

1.1 Check accomplishment of all functional requirements 11

2.1 Migration strategy: First approach 47
2.2 Migration strategy: Second approach 54

4.1 Code coverage by layers . 76

xiii

Introduction

ELIXIR[1] is an organization which coordinates activities around a life science
across Europe. It consists of 21 nodes which represent countries. A purpose of
ELIXIR is to help researchers to share and exchange their data and expertises.

ELIXIR CZ[2] is one of 21 nodes which cover the activities in the Czech
Republic. Its structure is divided into 4 areas called platforms – Data, Tools,
Interoperability, Compute and Training. This thesis belongs to an Interoper-
ability platform, whose aim is to help in discovery, integration and analysis of
biological data.

I was temporarily a part of the team of Interoperability platform in ELIXIR
CZ which engages mainly in a data stewardship and a data management, in
foundational ontologies and supports F.A.I.R.[3] data principle in ELIXIR
community.

Goals of the Thesis

The main goal of this thesis is to create a migration tool for a knowledge model
from Data Stewardship Planning Portal. A purpose of the migration tool
should be to offer an option how to update existed compiled knowledge models
with new information coming from core knowledge model or its localizations.

First it is needed to acquaint myself with the Data Stewardship Plan-
ning Portal project and its Knowledge Model. Project will be written in
the Haskell[4] programming language so it is necessary to acquaint also with
Haskell. In initial part, it should be analysed requirements for the migration
tool. Based on that, the analysis should be conducted.The main part of the
thesis is then dedicated to a design of the migration tool and its implementa-
tion. And finally, the solution should be properly tested and documented.

1

Introduction

Methodology and Thesis Structure
Thesis is structured according to a standard software development process
– it consists of an analysis, a design, an implementation, a testing and a
deployment.

In the first chapter (1) which belongs to analysis I recapitulate a state
of the project (see section 1.2). Further I sum up solution requirements (see
section 1.3). For diagrams I use a notation of UML in version 2.x[5]. Then
I talk about tools (a programming language, a framework, etc.) which I
selected based on the requirements (see section 1.4). And the last section in
this chapter is dedicated to a few concepts of a functional programming which
I used frequently in an implementation (see section 1.5).

In the second chapter (2) I discuss a design of the migration tool. I mention
an idea how a solution was intended to look like (see section 2.2) and describe
an example of migration from the real world which inspires me – Git (see
section 2.3). Further I write about my proposal (see section 2.4). I explain
my suggested approaches and discuss what led me to choose a final solution.

The third chapter (3) is focused on an implementation. It consists of a
description of a project structure (see section 3.2) and a documentation how
the application was implemented (see section 3.4). I mention here how I
designed API (see section 3.5), how I worked with a database (see section 3.6)
and how I handled errors (see section 3.7).

The last chapter (4) is dedicated to a configuration, a testing and a pro-
duction deployment. I mention here how the application can be configured
(see section 4.2), how I tested the application (see section 4.3), how the ap-
plication should be rightly deployed (see section 4.4). I also describe here a
deployment to a server provided by my faculty.

2

Chapter 1
Analysis

1.1 Introduction
In this chapter I would like to recapitulate a state of the project (1.2). I
describe here what has been already done and what are the plans for the
future. Further I specify solution requirements and do an analytic work with
a goal of to sum up what will be a final product of this thesis (1.3).

Next I discuss here a list of tools which I used and describe them a little
bit (1.4). So the reader can more understand the reasons why I chose them.

And finally as I used concepts and patterns which are not very common,
I created a quick overview over them (1.5).

1.2 Current Project State
Project is currently at its beginning but we can already see some results.

1.2.1 Completed parts

1.2.1.1 Project website

The project has its own website where we can find some basic information
about the project. And it is also possible to find there a quick overview what
a data stewardship means, how a process of managing data works and what
are roles which participate in it. Next, the website contains a managerial
questionnaire whose goal is to collect an information about current processes
of managing data in research institutions. The website was done by Robert
Pergl from FIT CTU and it is written in Haskell[4].

1.2.1.2 Knowledge Model

The core of the project is a knowledge model which was previously stored in
mind maps. For a better machine usage it had to be rewritten to a JSON

3

1. Analysis

Figure 1.1: Current project state

format. This work was done by Rob Hooft from DTL Netherlands.

1.2.1.3 Precompiler

A base knowledge model is currently named as a core. It can be extended by
localizations. A final knowledge model is then created by composing core and
their localizations. The result is one JSON file with one knowledge model.
The precompiler which composes these parts together was done by Marek
Suchánek from FIT CTU and currently it is written in Python[6].

1.2.1.4 Wizard

The compiled knowledge model is used inWizard application where researchers
answer the questions from a knowledge model. These produced data is planned

4

1.2. Current Project State

to be used for a generating of data management plans in the future. The ap-
plication was done by Robert Pergl and currently it is written in Haskell.

1.2.2 Prepared applications

Figure 1.2: Desired project state

1.2.2.1 New portal application

As a next step it was decided to centralize UI for users. In the future there
should be one central point (an application) for users. It should server to
administrators, data stewards and researchers for managing all things related
to a data management.

An implementation of this new portal application was divided into 6 steps:

5

1. Analysis

1. Create a basic application setup (user management module, authentica-
tion and authorization module, etc.)

2. Create an administration for managing packages (a package is a reim-
bursement for the core and localization files)

3. Create an editor for knowledge models

4. Create a process for upgrading knowledge models

5. Convert currently already implemented wizard application to the portal

6. Create a generator for data management plans

First 4 steps are covered on a server side in this diploma thesis and on a
client side by Jan Slifka from FIT CTU in his diploma thesis.

1.3 Solution Requirements

1.3.1 Introduction

In the previous section (1.2) I defined 4 parts which I would like to cover
in this diploma thesis. The main and the most crucial was to implement
a migration tool. But in the beginning this diploma thesis should be just
about this migration tool. But there appeared problems how to handle a
user interaction during migrations, how to handle conflicts which can appear
there, etc. Still it could be done through command line but because the tool
was intended to be used by data stewards I rejected this idea. Finally it was
decided to create a portal and integrate the migration tool inside it. My work
was to provided an API which was consumed by a new web client made by Jan
Slifka. To have some presentable demo we also had to cover other modules like
a management of users, a management of packages or an editor of knowledge
models as I mentioned in the end of the previous section (1.2).

1.3.2 Functional and Nonfunctional Requirements

First I would like to analyze functional and nonfunctional requirements.

Functional requirements:

• F1: Support of an editing of base information about an organization

• F1: Support of a management of users in the system

• F2: Support of an editing of knowledge models

• F3: Support of an upgrading of knowledge models

• F4: Support of a management of packages

6

1.3. Solution Requirements

Nonfuctional requirements:

• NF1: Application is written in Haskell[4]

• NF2: Application provides a REST API[7]

• NF3: Application is deployed using Docker[8]

• NF4: Application is deployed on Linux server

• NF5: API is publicly accessible

• NF6: Multiple organizations in one deployed instance of an application
are not allowed (one instance of an application can covers just needs of
one organization)

1.3.3 Use Cases

For clarity I divided use cases to 4 groups – Organization, User Management,
Editor together with Migration Tool and Package Management.

1.3.3.1 Roles

I identified 3 roles – Administrator, Data Steward and Researcher. In gen-
eral Administrator is allowed to perform all actions. Its primary role is to
set up the application and managed users. In case of some problem he can
intervene and try to fix the problem. Data Steward should primary take care
of knowledge models and packages. Researcher is here just for the future
usage. Researcher will be the person who will fill the knowledge models and
who will manage data management plans.

1.3.3.2 Group: Organization

This group is very simple. It belongs here just one use case for Administrator
– Edit organization which means to edit information about organization.

Figure 1.3: Use Cases: Organization

7

1. Analysis

1.3.3.3 Group: User Management

User management is primary just for Administrator, too. One exception here
is just Edit profile which can perform anyone and means to edit your own
profile. Rest of use cases covers CRUD operations over a user entity.

Figure 1.4: Use Cases: User Management

1.3.3.4 Group: Editor and migration tool

Use cases in this package contain mainly CRUD operations over a knowledge
model. Then it contains Publish knowledge model which means to take
current knowledge model with all changes which were made and create a
package from it. This package can be used as a template for other knowledge
models and it can be also distributed to outside world. And finally it contains
Upgrade knowledge model which takes a knowledge model and apply new
changes to it. All actions can be perform either by Data Steward or by
Administrator.

8

1.3. Solution Requirements

Figure 1.5: Use Cases : Editor And Migration Tool

1.3.3.5 Group: Package Management

Last analyzed domain is a package management. Package represents a unit
which can be distributed to others. It contains information about itself and
data from which a knowledge model can be built or upgraded. Briefly this
group contains cases like List packages, Import/Export packages or Delete
packages. All actions can be perform either by Data Steward or by Administrator.

9

1. Analysis

Figure 1.6: Use Cases : Package Management

1.3.3.6 Summary

For the summarization there is a table which map the use cases to the func-
tional requirements. We can check that all of the functional requirements are
covered by use cases.

10

1.3. Solution Requirements

Table 1.1: Check accomplishment of all functional requirements

Functional requirement
Use case F1 F2 F3 F4 F5
Edit organization X
List users X
Create user X
Edit user X
Delete user X
Edit profile X
List knowledge models X
Create knowledge model X
Edit knowledge model X
Delete knowledge model X
Publish knowledge model X
Upgrade knowledge model X
List packages X
Import package X
Export package X
Delete package X

1.3.4 Domain Model

I divided the diagram into 4 parts according to a domain which they relate to
– red, green, purple and orange.

For the entity identification I mostly used UUID (Universally unique iden-
tifier). It was necessary to use this approach for entities which can be shared
by different institutions. This approach is able to not have a conflict when for
example I export a package in my institution and in some other institution
they will import this package to their system. In case we would use some
sequence we would have to guarantee that this sequence is unique over all
instances of the application. When we use UUID this situation is very unlikely.

11

1. Analysis

Figure 1.7: Domain Model

12

1.3. Solution Requirements

1.3.4.1 Green part

A green part describes entity related to Knowledge Model. All of the entities
have an already mentioned unique identification through UUID.

1.3.4.1.1 Knowledge Model
Knowledge Model is a root of the knowledge model tree and it should represent
a whole knowledge model to outside world. Except from unique identification
(uuid) and it has a human-readable name and list of chapters.

1.3.4.1.2 Chapter
Chapter should pack related questions together. Therefore it includes a list
of questions. Except from that it has a unique identification (uuid), a title
and a little description about the chapter which is placed in text property.

1.3.4.1.3 Question
Question is a way through which it is planned to get a knowledge from re-
searchers. Except from unique identification (uuid) it has also short UUID –
shortUuid which connects the question with a book from Barend Mons – Data
Stewardship for Open Science: Implementing Fair Principles [9] (the book is
planned to be released in February 2018). In this book user can find more
information about things related to this question.

Further Question has a title and a text for more detailed description.
Question also has a type. Users can choose one from these following types:

• Option – User selects one from the predefined answers. In wizard it
will be displayed as radio buttons

• List – User fills one or more inputs with his answers. It will be displayed
as a list of inputs with an ability to add or remove inputs based on the
count of user’s answers.

• String – User answers the question in his own words. It will be displayed
as a classic input.

• Text – User’s answers will be probably a longer text. It will be displayed
as a text area.

As you can see, a question can have answers (or not) based on the question
type. Question can additionally has a list of experts (see 1.3.4.1.5) and a list
of references (see 1.3.4.1.6)

1.3.4.1.4 Answer
Answer is presented just for the question type Option. It includes of course
unique identification uuid, a title and a text for a description. It can also

13

1. Analysis

have a list of following questions which can more clarify the answer. We can
see that this ability enables us to have an infinite depth of knowledge model
tree.

1.3.4.1.5 Expert
Expert is here to be helpful for users which are not sure which answer they
should choose or what they should fill in. Expert is identified by a unique
identification (uuid) and it contains a name of the expert and his email.

1.3.4.1.6 Reference
Same as shortUuid, Reference connects a question with a book from Barend
Mons – Data Stewardship for Open Science: Implementing Fair Principles [9]
(the book is planned to be released in February 2018). Reference contains a
unique identification (uuid) and a chapter property which refers to a chapter
in this book.

1.3.4.2 Purple part

A purple part includes Branch and Package.

1.3.4.2.1 Package
Package is a wrapper which includes basic information about itself and about
data which is needed for a building or an upgrading a knowledge model.

Package identification
Package is identified in the same way as maven dependencies in Java world[10].
Package has an packageId which consists of groupId, artifactId and version.
These 3 coordinates should together create a unique identification of package
in the whole world.

The groupId here represents an organization, e.g. cz.ctu.fit (FIT CTU).
The groupId should include just letters, numbers (not in the begging of the
groupId). Words/abbreviations are separated by dots. The idea is to start
groupId with a more general identification, e.g. country, and ends with the
most concrete one, e.g. faculty in my example.

The artifactId should be a name of the package which should be unique
across organization (across groupId). The format is same as for groupId
except of the separator. Here it is used dash instead of dot to separate word-
s/abbreviations.

The last part of packageId is version. We should not create lower versions
if higher version is already present. The format is simple here. Version is
composed from 3 numbers which are separated by dots.

Together these 3 coordinates are joined by colon (:).

14

1.3. Solution Requirements

Package data
As it was already said main purpose of package is to provide data for a
building or an upgrading a knowledge model. The data is represented in a
form of events.

Package can extend some other already defined package. For this purposes
it exists here an optional property parentPackage.

1.3.4.2.2 Branch
Branch is something like working directory, where we can perform changes on
a knowledge model. Branch is identified by a unique identification (uuid). It is
assumed that a user will have more open branches. Therefore it exists a name
property which should be a human-readable naming of the branch. Branch
includes of course a knowledge model (knowledgeModel property) which can
be published as a package. Therefore Branch also has an artifactId property
which is used for creating a right package identification (packageId – see
1.3.4.2.1).

Further it contains events which represent changes in a knowledge model
which happened in the branch.

Finally package contains relationships to three packages. All three are
optional. ParentPackage denotes the same thing as parentPackage in Package.
Branch can be based on some package which extends. If Branch was created
from some package it can be upgraded to a newer version of this package. For
the migration process there exist 2 properties – lastAppliedParentPackageId
and lastMergeCheckpointPackageId which are clearly technical and they are
filled automatically. Property lastAppliedParentPackageId denotes what was
the last version of parent which was applied to a knowledge model. And
property lastMergeCheckpointPackageId references to a point in a branch
history where the last changes from parent package was applied.

1.3.4.3 Orange part

An orange part belongs just to Migration.

1.3.4.3.1 Migration
Migration represents an entity which holds information which is used during
a migration process.

Migration can be in 4 states:

• Running State – indicates a running migration without conflict and
errors,

• Conflict State – indicates a migration with a conflict which needs to be
solved by a user (information about the conflict is stored in the state),

15

1. Analysis

• Error State – indicates a migration which ended with an error (the
error is stored in the state),

• Completed State – indicates a finished migration.

Migration has a reference to a branch on which is the migration running.
Further Migration has 2 properties which points to a target package to which
we migrate (targetPackage property) and which points to a parent package
of the branch (branchParent property).

Migration entity holds also 3 lists of events. The first list contains events
which will be applied to a knowledge model (targetEvents property), the
second list contains events which has been applied to a knowledge model since
last migration (branchEvents). If no migration has been applied yet it takes
all events from the time when the branch was created. And the last list
contains events which were successfully applied to a knowledge model during
the migration (resultEvents).

1.3.4.4 Red part

Last part is a little bit away from the others. It consists of 2 entities –
Organization and User. They are not connected with others.

1.3.4.4.1 Organization
Organization is a very simple entity. It contains just a unique identification
(uuid), a human-readable name of the organization and a groupId property.
GroupId is used in package identification when we want to create a package
from a knowledge model (see 1.3.4.2.1). It has to be in a format which I
already described when I talked about Package.

Currently it is presumed that an organization will be just one over the
instance of an application.

1.3.4.4.2 User
User entity contains what we would expect to contain. It has a unique iden-
tification (uuid), user’s name, surname and email. Password is stored as a
hash.

User permission
I introduced 3 roles in use cases – Administrator, Data Steward and Re-
searcher. These roles represent most common types of users. But for a better
flexibility in the future I created a set of permissions. So the actions are not
validated against the roles but against the permissions. Even though the roles
stay. When a user is created it is created with a role. Role has a set of per-
missions inside itself which are copied to a user entity during creation of the
user. So the role serves here as a template for permissions. In the future there

16

1.3. Solution Requirements

is a plan that the Administrator could add/remove a permission to specific
user. This means that the user could do more/less actions that his colleagues.
Then the role type would changed to type Custom.

Here is the list of all current permission in system:

• UM_PERM (User Management permission) – User can manipulate
with other users – create/edit/delete them.

• ORG_PERM (Organization permission) – User can change informa-
tion of the organization

• KM_PERM (Knowledge Model permission) – User can create/ed-
it/delete a branch and edit a knowledge model

• KM_UPGRADE_PERM (Knowledge Model Upgrade permission)
– User can upgrade a knowledge model to a new version

• KM_PUBLISH_PERM (Knowledge Model Publish permission) –
User can publish a knowledge model as a package

• PM_PERM (Package Management permission) – User can manipu-
late with packages – create/import/export/delete them.

• WIZ_PERM (Wizard permission) – This permission is here for a fu-
ture usage. It will allow to fill the Wizard.

• DMP_PERM (Data Management Plan permission) – This permis-
sion is here for a future usage. It will allow to manage generated Data
Management Plans.

1.3.5 Activity Diagrams

There are no processes which are difficult to understand except one – a process
of a migration. Therefore I prepared an activity diagram to clarify this process.
A view on the migration process is very high-level here. More technical details
will be provided in the following chapter (2).

17

1. Analysis

Figure 1.8: Activity Diagram: Migration

18

1.3. Solution Requirements

1.3.6 High-Level Deployment Diagram

I have already mentioned a few words about the related applications in project.
The current project has 2 main parts – a portal part and a wizard part. These
parts are connected through REST API.

1.3.6.1 Portal part

From the picture we can see (1.9) that the portal has a classic client-server
architecture. The server is written in Haskel and the client is written in
Elm[11]. The client communicates with the server through REST API. Further
the server is connected to a MongoDB[12] database.

1.3.6.2 Wizard part

From the picture we can see (1.9) that the wizard has same architecture like
the portal – a client-server architecture. Both the client and the server are
written in Haskel. They use a technology Haste which has its own protocol
that wraps the communication between the client and the server. Further the
server is connected to a PostgreSQL[13] database.

19

1. Analysis

Figure 1.9: High-Level Deployment Diagram

1.4 Selected Tools

In this section I want to present my decision on which tools I chose and why.

1.4.1 General Requirements

The project has already been running so I had to keep the line with already
selected tools. But still there were some blank spaces where I had to decide
which technology or approach I will use.

20

1.4. Selected Tools

A quick summary of the general requirements:

• select tools based on a current tools stack,

• try to keep world-proven standards and best practices,

• use appropriate tools with a respect to the problem domain.

1.4.2 Programming Language

I decided to keep the same programming language (Haskel[4]) as it is in other
applications of the project. It should help current developers to easily maintain
code and future developers to easily adopt to the project. Other advantage is
also in sharing some common libraries and utilities across applications.

And the explanation why Haskel was chosen as a main programming lan-
guage is its great type system which is very handy when you work with com-
plex data structures (which is the case of this project). I really appreciated
this advantage during my work at the project.

1.4.3 API

I have chosen REST[7] as the main application interface because currently it’s
an unwritten standard in today’s web applications. Many tools and frame-
works are ready to work with this kind of architecture. The application end-
points provide mostly just data with no additional logic so REST data-oriented
approach perfectly fits to our case.

1.4.4 Web Framework

Haskel provides a few web frameworks which are worth to use. Here is quick
comparison of them

Scotty [14]

+ it’s currently used in 2 previous projects,

+ simple usage and project setup,

+ simple and satisfactory documentation,

+ favorite in Haskell community,

− not a full stack web framework,

− fewer plugins and extensions,

− needs additional libraries for managing a connection to a database.

21

1. Analysis

Yesod [15]

+ most advanced Haskell Web Framework,

+ full stack web framework,

+ a lot of libraries,

+ the best documentation,

+ favorite in Haskell community,

− complicated usage and setup,

− not very straightforward,

− problems with connection to a NoSQL database.

Snap [16]

+ simple usage and project setup,

+ nice framework architecture which uses advance concepts of a functional
programming,

− comparing to Scotty and Yesod – less favorite in Haskell community,

− not a full stack web framework,

− fewer plugins and extensions,

− needs additional libraries for managing a connection to a database.

During the first attempt I gave a chance to Yesod. After very nice start
I had a problem with creating connection to MongoDB database. During the
second attemp I tried Scotty and everything, including a database connection,
worked well. So I kept the line with project and chose Scotty.

1.4.5 Build Tool

There are 2 options in Haskell with which we can build Haskell projects. First
is Cabal[17] (Common Architecture for Building Applications and Libraries).
This build tool is older and is used mainly in older projects. It has some disad-
vantages which complicates development (e.g. problem with non-deterministic
installation of dependencies).

On top of Cabal it was built Stack[18] which fixes main problems of Cabal.
Stack provides full backwards compatibility with Cabal. It uses the same con-
figuration file for a package description and one extra file for its configuration
(stack.yaml). On top of that Stack adds a multi-package project structure
or it adds an automatic installation of a correct GHC version.

22

1.4. Selected Tools

1.4.6 Mongo

As I mentioned in previous section I used MongoDB[12] as a primary database.
Most of the data is tree structured so document-oriented style of storing data
should be more suitable then a model for storing data in a relational database.
And because nobody knows what data exactly the researchers will want to
store it is better to be less strict and be more open to potential changes of a
data model.

1.4.7 JWT

JSON Web Tokens[19] (JWT) are becoming more and more popular as a
standard how the token should look like. The JWT is a classic token which
is used in an authorization process but its unique structure offers to store
user-defined data inside the token. Normally it is used for storing information
about user, his permissions, etc. This payload is encoded by base64 and
signed by a unique secret key on server. So if a signature is valid, the client
can be sure that the data was not modified. And of course server can use this
information as well when user sends a request with this token. It can save
some calls to a database for retrieving user information.

1.4.8 Continuous Integration

I did not want to spend much time with a deployment but I wanted to con-
tinuously present my results of work. That brought me to set up a continuous
integration process (CI). The goal was to build a target which can be easily
and independently deployed to a server every time I do a change in code.

In talking about CI I have to start where the code is stored. The project
code is kept in a Git repository. Further it is published under Apache License
2.0 so it is an open source. These reasons led us to choose GitHub[20] where
the most open sources projects live. Regarding to the usage of GitHub we
chose Travis CI which has a great integration with GitHub and for open
source projects, it is free.

Because Haskell needs to be compiled for each platform separately (Win-
dows, Linux, macOS), it could cause platform specific problems. And even
the build would be much more complicated because for compiling a Windows
version we have to compile it on Windows, for a macOS version we have to
compile on macOS, etc. The problem in future could also bring some specific
libraries which program needs from system. I tried to avoid this problem by
using Docker. So the output of CI process is not runnable binary but Docker
image.

Because there were no free servers where I could run my application I had
to set up a new server. The server was chosen with an idea that all projects
will be deployed here in the future. I prepared the server together with Jan
Slifka. He worked on a client portal application and he needed a server, too.

23

1. Analysis

Together we set up a Docker Registry[21] on the server so we could easily store
our build images. We also set up a general server proxy (we used Nginx[22])
which holds certificates for our applications and proxy requests to them. All
components are wrapped in Docker.

The usage of docker greatly simplifies a deployment process to a new server.
Now it is possible to deployed to any platform we want (Linux, Windows,
macOS). There is just one requirement – server has to have installed Docker
tools. Then we can just download Docker images from the Docker Registry
and run them. I hope this approach will help with an expansion of the project.

Workflow summary:

1. Do a change in an application and commit/merge the change to a master
branch.

2. After a successful push, Travis will detect a change and run a build.

3. The result of the successful build is a Docker image which is pushed to
our Docker registry.

4. For a deployment of the image to our server it is needed to connect to a
server, pull a new image and restart the application.

As we can see the process is not fully automatic. But even so it very helped
me during development and it surely saved a lot of my time.

1.5 Applied Concepts of functional programming

Each of us probably knows concepts and common patterns in an imperative
programming. But if we switch to a pure functional paradigm we have to
change our mind and start thinking about the problem and the way, how to
solve the problem, differently. Because nowadays the functional programming
is not very spread (for example I did not have any subject about it during
my studies) I will describe a few concepts which I used and found very use-
ful. We can see that some features from functional programming are already
implemented in originally object programming languages. I can name, e.g. a
pattern matching, a Maybe type, an idea of transformation functions for a
manipulation with a list.

1.5.1 Few words about Haskell

Haskell[4] is a pure functional language with a great strong typed system which
is built on an extended version of the Damas-Hindley-Milner type system [23].

Here are the most important language features:

24

1.5. Applied Concepts of functional programming

• lazy evaluation (a result is not computed unless we want to show the
result),

• pattern matching (deconstruction of data according to a pattern),

• list comprehension (a way how to filter, transform and combine lists),

• type classes (interfaces which define some behavior).

I will not describe these features in details. Instead of that I would like to
focus on concepts which I used most and found very useful for everyday work.

1.5.2 Working with list

Functional languages use as a main enumeration type a list (compares to an
array or a collection). Working with enumeration types in a way, that the
code is effective and readable, has been a problem since the programming
began. No approach is the best for all cases. The way how Haskell works is to
compose data transform functions, use lazy evaluation and compute the final
list as late as possible.

Here we can see quick comparison of method written in Java[24] and code
written in Haskell. To be fair to Java I chose one of the examples which fits
more to Haskell. Of course we can find cases where Java would win in clarity
and effectiveness of code.

The purpose of the function (method) below is to take just even numbers
from incoming list and return a list of the second powers of the numbers.

Listing 1.1 : List transformation in Java 7

public List <Integer > squareEven(List <Integer > inArray) {
List <Integer > outArray = new ArrayList <>();
for (int i = 0; i < inArray.size(); i++) {

Integer elem = inArray.get(i);
if (elem % 2 == 0) {

outArray.add(elem * elem);
}

}
return outArray;

}

25

1. Analysis

Listing 1.2 : List transformation in Haskell

isEven :: Int -> Bool
isEven x = x `mod ` 2 == 0

square :: Int -> Int
square x = x * x

squareEven :: [Int] -> [Int]
squareEven = fmap square . filter isEven

As we can see the code written in Java can easily start to be very unclear
in this case. On the other hand Haskell composing functions is very clear,
intuitive and together with list transformation functions like fmap, filter or
fold code can be very expressive. And if we write a test for each simple
function, we can be pretty sure that the whole transformation will work.

1.5.3 Error Handling (Maybe, Either)

Many programs are getting to a state where each place in a complicated pro-
gram can throw an exception and it is unable to think in a context of all these
error states which can happen.

Another common problem is calling a method on an object which is actu-
ally null. This situation can simply happen when a function does not return
results for all inputs, e.g. finds an object in a database, parses an integer from
a string, etc.

In functional world there exists a concept of Maybe and Either which tries
to face these problems [25].

1.5.3.1 Maybe

First is Maybe. Maybe is a structure which wraps a value with a context. Most
common usage of a Maybe is in a function which can either produce a value or
not. Normally you would return a value or null. But this can easily lead to
a bad state. Therefore it is better to use a Maybe and returns a value with a
context. So instead of a value we return a value wrapped in Just and instead
of null we return Nothing.

Listing 1.3 : Definition of Maybe from standard library

data Maybe a = Nothing | Just a

But this improvement causes a more difficult usage when we work with a
value (because it is wrapped in Maybe). Of course, we can ask if a value is

26

1.5. Applied Concepts of functional programming

inside and then unwrap the value. But we can imagine that it would lead to
a code which would be totally unreadable.

Fortunately Haskell provides a support which simplifies the usage. As we
have already seen in this chapter Haskell has a function call fmap. This func-
tion is a typeclass method of a class Functor and Maybe of course implements
an instance of this typeclass.

Listing 1.4 : Definition of Functor from standard library

class Functor f where
fmap :: Functor f => (a -> b) -> f a -> f b

A usage with Maybe is simple. The function fmap (or the symbol <$>) can
be used instead of a classic function application. A benefit, which this special
application adds, is that if a value exists inside the Maybe, it unwraps the value
and applies the function to the value. If not, it immediately returns Nothing
so nothing bad happens.

Here is a quick example of usage:

Listing 1.5 : Example of usage of Functor

-- 1. Define function without usage of Maybe
multiplyByTwo :: Int -> Int
multiplyByTwo a = a * 2

-- 2. Apply function to the maybe through fmap
multipliedValue :: Maybe Int
multipliedValue = multiplyByTwo <$> readMaybe "2"

nothing :: Maybe Int
nothing = multiplyByTwo <$> readMaybe "2a"

1.5.3.2 Either

Using Maybe is very useful but sometimes you want to inform user what hap-
pened wrong. For this purpose there is Either which can hold a value or an
error.

Listing 1.6 : Definition of Either from standard library

data Either a b = Left a | Right b

27

1. Analysis

Otherwise working with Either is very similar to working with Maybe. You
can use fmap for simpler function application, use Left and Right constructor
in pattern matching, etc.

I mentioned these 2 patterns because when I learned them I started to use
them very often. It helped me to avoid an exception like NullPointerException
and to think about the code differently – count with errors if there is a pos-
sibility that they can occur. So most of my function returns a value which is
wrapped in Either.

Listing 1.7 : Example of a usage of Either

runApplicator :: Maybe KnowledgeModel -> [Event] ->
Either AppError KnowledgeModel

runApplicator mKm events = ...

1.5.4 IO Handling (Monad)

When an application wants to communicate with outside world it has to use
IO actions in Haskell. Typical IO actions are a reading files, a writing to files,
a communication with a database or a modifying a global state.

So IO enables us to perform impure computation in purely functional
world. If we are talking about IO we have to mention Monad. Monad is very
strong tool but it is not easy to learn it. With Monad we can do a stateful
computation, compute a calculation with side effects, etc. [26] So it is not
a surprise that IO is Monad. Therefore it can use all of its functions and
properties which Monad has.

Here is an example from a usage of IO (Monad) in my application where I
want to demonstrate a usage of this concept.

Listing 1.8 : Example of usage of IO

findUserById :: DBPool -> String -> IO (Either AppError
User)

findUserById dbPool uUuid = do
let query = select ["uuid" =: uUuid] collection
let action = findOne query
maybeUserS <- runMongoDBPoolDef action dbPool
return . deserializeMaybeEntity $ maybeUserS

We can see that the function uses a special construct do which composes
actions inner the block into one. Then we see an action which communicates
with outside world – runMongoDBPoolDef. If something bad happens (a con-
nection to database failed), our function (findUserById) returns a failure. If

28

1.5. Applied Concepts of functional programming

not, function returns a result which is binded (unwrapped) to maybeUserS .
Then we can processed an unwrapped value maybeUserS (in the example I
deserialized the result). And finally we have to wrap back the value into the
IO which is done by calling a return function.

1.5.5 Working with complex structures (Lens)

The last concept which I want to mention and which I used a lot is Lens[27].
Lens helps you with a changing or a traversing over parts of complex tree
structures. But on the other hand, learning Lens is not very easy. For under-
standing Lens you need to learn Foldable and Traversable at first. The Lens
is built on top of them and provides an abstraction which simplifies the work
with these complex tree structures.

But for a basic usage of Lens you do not have to understand a whole
concept. It is a same as with Monad. Even if you know basics, it still helps
you a lot.

But finally I got used to usage of Lens during a development as much that
I used Lens rules even for normal simple structures like Organization, User,
etc.

The Usage of Lens

If we want to use Lens, it is good to use an language extension Template
Haskell. Otherwise we will have to write a lot of code by ourself. Than we
have to name properties of a structure with prefix _.

29

1. Analysis

Here is an example of Lens-ready structures from my code:

Listing 1.9 : Define Lens-ready structure

data KnowledgeModel = KnowledgeModel
{ _kmUuid :: UUID
, _kmName :: String
, _kmChapters :: [Chapter]
}

data Chapter = Chapter
{ _chUuid :: UUID
, _chTitle :: String
, _chText :: String
, _chQuestions :: [Question]
}

makeLenses ''KnowledgeModel

makeLenses ''Chapter

Because one name of a function in Haskell can have just one definition
(it is forbidden to overload functions) it is common to add to properties of a
structure some unique prefix (like I add km and ch prefix to properties in my
example).

Using Lens we do not miss the classic property read and set approach.
Here is a comparison of classic way with the Lens way on example of reading
and setting properties:

30

1.5. Applied Concepts of functional programming

Listing 1.10 : Comparision of a standard approach with a Lens approach
on a basic usage of getter and setter

let myKm = KnowledgeModel
{ _kmUuid = myKmUuid
, _kmName = "My Knowledge Model"
, _kmChapters = [chapter1 , chapter2]
}

-- 1. Getter
-- Classic approach
let name = _kmName myKm

-- Lens approach
let name = myKm ^. kmName

-- 2. Setter
-- Classic approach
let editedKm = myKm { _kmName = "EDITED: My Knowledge

Model" }

-- Lens approach
let name = myKm & kmName .~ "EDITED: My Knowledge Model"

These notations are almost the same – Lens library in this example does
not add anything special but what happens if we want to get all chapter
UUIDs? Here is the comparison:

Listing 1.11 : Comparision of a standard approach with a Lens approach
on a more difficult example

-- Classic approach
fmap _chUuid (_kmChapters myKm)

-- Lens approach
myKm ^.. kmChapters . traverse . chUuid

Here we see that the Lens approach starts to be more readable. And as
we go deeper in a structure than Lens shows its benefit more and more.

Of course we can define our own getters and setters for Lens. It can be
useful when we do not want to miss Lens composition and keep clear Lens
interface. Here is one of my own setter for Lens:

31

1. Analysis

Listing 1.12 : My own defined Lens setter

kmChangeChapterIdsOrder :: ([Chapter] -> Identity
[UUID]) -> KnowledgeModel -> Identity KnowledgeModel

kmChangeChapterIdsOrder convert km
= Identity $ km & kmChapters .~ orderedChapters
where

ids :: Identity [UUID]
ids = convert (km ^. kmChapters)
orderedChapters :: [Chapter]
orderedChapters = concatMap getChapterByUuid

(runIdentity ids)
getChapterByUuid :: UUID -> [Chapter]
getChapterByUuid uuid = filter (\x -> x ^. chUuid

== uuid) (km ^. kmChapters)

As we can see – it is not that trivial and obvious as we would expect after
the nice examples in this section. The purpose of the function
kmChangeChapterIdsOrder is to change order of chapters which are stored in
_kmChapters property. But the usage is simple. We can use this setter as a
normal Lens setter.

Listing 1.13 : Example of usage my Lens setter

let uuids =
["291ab0e7 -8100 -403c-9d01 -9 d6528d347dc"
, "6c16165e -6db7 -4bf3 -8da4 -4 d527df33eaa"
]

let editedKM = myKm & kmChangeChapterIdsOrder .~ uuids

It is really hard to fully understand Lens library but when you did it
helps you a lot. It brings the dot notation from object world which is very
natural. But compare to the object world Lens functions can be composed
together which we appreciate in a situation when we work with really complex
structures.

32

Chapter 2
Design of The Migration Tool

2.1 Introduction

In the beginning of this chapter I talk about an idea how the migration tool
was intended to be implemented (2.2 and I discuss here advantages and dis-
advantages of this approach and why the idea had to be rethought.

Further I quickly introduce Git which is a tool that also had to solve a
problem of merging things together (2.3).

Next section My Proposal (2.4) is more about my ideas. I describe here
my 2 suggested approaches, compare them to Git and discuss their benefits.
Finally I chose one approach and recapitulate the whole proposed solution.

2.2 Current Approach

2.2.1 Core and Localizations

First idea was to keep a knowledge model in a core and its changes and
modifications in localizations. Core looked just like the knowledge model
now. Localization was a special entity which has the same base structure as
knowledge model. Its main purpose was to add specifics for a field of research,
or to add specifics for an institute. For creating a localization there existed
rules which describes what should have been filled. Here they are:

• Rule 1 – When I wanted to edit something from a core I had to mention
a namespace core. When I wanted to add something new I had to add
a namespace property with some other value than core.

• Rule 2 – When I had a chapter in localization I checked if the chapter
with given number already exists. If not, I added it to its right place
(according to a number). If it existed I tried to apply all fields from the
chapter to the existed chapter.

33

2. Design of The Migration Tool

• Rule 3 – A localization could hide a question in a chapter if there was
a property hidden on the question and the namespace core.

• Rule 4 – A localization could replace a whole question if properties
questionId from the core and from the localization matched and the
namespace was core.

• Rule 5 – A localization could extend a core question if the namespace
was not set to core and properties quesitonId from the core and from
the localization matched. For a purpose of adding an answer, an expert
or a reference, there existed properties with prefix add in the localization
– addAnswers, addExperts and addReferences

2.2.2 Precompiler

A precompiler was an application written in Python which had a command-
line interface and should do a transformation from a core and localizations
into one final knowledge model. This model should have been deployed and
used in wizard. If we did not have any localizations, we could take a core and
use it as final knowledge model. If not, the precompiler did its job and merged
localizations to core.

Figure 2.1: Precompiler

But the precompiler was not able to merge for example an upgraded core
into a current compiled knowledge model (see picture 2.1). For this case it
was decided to create a migration tool which should handle the cases when we
upgrade core or localization and we want to apply these changes to a current
compiled knowledge model.

34

2.3. Git

The tool should have command-line interface same as the precompiler. But
it should have been written in Haskell. This was the state when I joined to
project. And the migration tool should have been the content of this diploma
thesis.

2.2.3 Problems in current solutions

The big problem in this solution was that changes in a knowledge model could
have been done just by person with technical knowledge because knowledge
models (represents by core and localizations) were stored in JSON. So the
person had to have a knowledge of this format. The person should also have
to have a knowledge about the rules how to create a localization. This was
planned to be solved by some editor in future.

Further problem was in a management of core and localization files. It was
done manually. For the core and some example localizations there existed a
Git repository. But for other localizations the files had to be stored on a disk
and someone had to be an authority who has a right versions of these files
and distribute these files to others.

And because the core and localization were not homogeneous we have
2 cases in merging (see picture 2.1). And as we can imagine a merging of
2 different files without any additional logic was not very straightforward
process.

Because of all of these pitfalls I decided to change the concept from core
and localization to more simple one.

2.3 Git

Here I would like to describe a Git which is currently so far the world most
popular version control tool[28]. The reason, why I mention here, is that it
includes a very advanced merging tool which inspired me in designing my
migration tool.

I inspired myself in Git with 2 things. First I checked how Git handles a
process of branching and a process of merging/rebasing. Second I took over
the naming from Git. The reason was a quicker adoption to the project and
a faster understanding how it works for new developers.

2.3.1 Common properties

The migration tool and Git has some common properties. Here they are:

• Git is a distributed system, same as instances of the project will be
decentralized spread around the world.

35

2. Design of The Migration Tool

• Git has a commit which bundles changes into one package. In my ap-
plication I defined an event which is equivalent to a change in Git and I
bundled these events to a package.

• Git uses a lightweight branches so the Git branch is just a pointer to
some commit. I use branches in my application in the same way. They
are also very lightweight and have just pointers to their parent package.

• Git can have multiple branches which can be merged one into another.
In my application we can create more branches, too. And the merge
process is called upgrade.

• In Git we can perform changes and then commit them or revert them.
I provide these abilities, too.

We can see many common properties between the Git and the migration
tool. But there are some differences which I will discuss later. Further my
approach of merging (upgrading) is more sophisticated and can be used just
for this case which is a big restriction compares to Git which has more wider
usage.

2.3.2 Branching, Merging and Rebasing

One of the big benefit, which Git brings, is that it allows users to work in
parallel. A user, which wants to start working on a new feature, creates a
new branch from the master branch. After finishing his work, he merges its
branch into a master branch (and possibly fix conflicts). This simple worklow
is called feature branching [29] and it is currently very spread across developer
teams. For an integrating changes from one branch to another, Git provides
2 approaches – merging and rebasing.

2.3.2.1 Merging

If we want to merge some branch (e.g. our feature branch – iss53) to another
branch (e.g. a master branch), first we need to checkout (switch) to the master
branch. Then we can start merging. Git does a simple three way merge which
uses the common ancestor of the two branches and their last commits (pointed
to by the branch tips).

36

2.3. Git

Figure 2.2: Git: State before merge (according to [30])

To join 2 branches together Git uses many of its strategies. But sometimes
it may arise a situation where Git does not know what to do. Mostly it happens
when more people edit same thing. This ends in conflict which needs to be
solved by us.

But if not, Git creates a new commit (a merge commit) that includes
changes results from this three way merge. Otherwise we have to resolve the
conflict first and then perform the merge commit by ourselves.

Figure 2.3: Git: State after merge (according to [30])

2.3.2.2 Rebasing

The second main approach how to integrate changes from one branch to an-
other is rebase. We have more kind of rebases but for our needs the simple
version is enough. Imagine we have the same situation as previous. We have 2
branches – one our branch (I will call it experimental branch in this case) and

37

2. Design of The Migration Tool

one master branch. And we want to integrate changes from our experimental
branch to the master branch.

So first we need to checkout (switch) to the experimental branch and per-
form rebase against the master branch.

Figure 2.4: Git: State before rebase (according to [30])

Simply put, Git rearranges commits in our branch in order to put first
commits from the branch against which we are rebasing (master branch in
our case – commit C3), and then it tries to apply our commits (commit C4) on
top of it. If some conflict appears, we solve this conflict within the problematic
commit. After a successful run of rebase command we should end in this state
(see image 2.5).

We can see that the new commit has a different designation (C4’ instead
of C4). It is because Git marks a commit by a hash. This hash is computed
from the actual state. And we can see from the picture (2.5) that the state
changed (our parent commit is C3 instead of C2 and we may differ in some
files if we had to solve a conflict).

Figure 2.5: Git: Rebase in progress (according to [30])

And for finalization we need to checkout to the branch against which we

38

2.4. My Proposal

performed rebase (in our case to the master branch) and we perform a merge.
But in this case this merge will not be a three way merge but the fast-forward
merge. This merge just change the pointer of the master branch to the new
commit (C4’).

Figure 2.6: Git: State after rebase (according to [30])

2.3.2.3 Comparison of merging and rebasing strategy

An advantage of this approach is a cleaner history which seems to look like
more linear (comparing to a history where we combine branches by three way
merge). But otherwise there is no difference between these 2 approaches.

2.4 My Proposal

Now I would like to talk more about the solution which I created.

2.4.1 Event-based Approach

2.4.1.1 Introduce Event sourcing

I decided to leave the current proposal because of the pitfalls which it has and
because the migration process would be very hard and difficult. Instead of
that I proposed another approach.

My idea was inspired by an event sourcing pattern [31]. I decided to trans-
fer the source of truth from a knowledge model to a serious of events from
which we can build a knowledge model. So by an application of these events
one after another we will get a knowledge model. And because the knowl-
edge model is used widely in application I decided to compile the knowledge
model after each creation of a new event and I cached the knowledge model
in database. This pattern is known as a read model[32].

This approach brings a huge simplification to a process of a merging (an
upgrading). Until now we had to compare 2 knowledge models or knowledge
model to localization, find changes and make some relevant application of
these changes to a final knowledge model. On top of that we had to detect

39

2. Design of The Migration Tool

conflicts which could lead to unwanted changes of the knowledge model and
let the user to choose a solution.

Currently I transform this complicated process to just merging 2 series of
events. The final knowledge model will be then compiled from merged series
of events.

2.4.1.2 Events

I designed events as something which can not be modified. Event is identified
by a unique identifier (uuid), the same as most of other entities. If we want to
change event, we have to produce a new event with new uuid. This mechanism
leads to the fact that one event should be unique over all instances of the
project. Every event should be also fully independent to other events. So the
event can not be embedded in other event. So it has to have all information
for a successful application to a knowledge model. Of course it can happened
that the event could not be applied to a current knowledge model because it
expects some state which is not currently present. Then an application of this
event ends in an error state.

Here you can find a list of all available events:

• Knowledge Model

– AddKnowledgeModelEvent

– EditKnowledgeModelEvent

• Chapter

– AddChapterEvent

– EditChapterEvent

– DeleteChapterEvent

• Question

– AddQuestionEvent

– EditQuestionEvent

– DeleteQuestionEvent

• Answer

– AddAnswerEvent

– EditAnswerEvent

– DeleteAnswerEvent

• Expert

40

2.4. My Proposal

– AddExpertEvent

– EditExpertEvent

– DeleteExpertEvent

• Reference

– AddReferenceEvent

– EditReferenceEvent

– DeleteReferenceEvent

• Follow Up Question

– AddFollowUpQuestionEvent

– EditFollowUpQuestionEvent

– DeleteFollowUpQuestionEvent

We can see that except from a knowledge model, events cover operations
add, edit and delete over the each entity.

As I have already said the event should be fully independent. For that
reason I had to distinguish 2 cases for manipulation with questions. First – I
manipulate with a question which is directly under some chapter. Second –
I manipulate with a question which is directly under some answer (follow up
question). Therefore I created two separated groups of events – Question and
FollowUpQuestion. Their only difference is that events in a FollowUpQuestion
group contain also answerUuid to identify under which answer they belong to.

2.4.1.3 Disadvantages of event-based approach

Every solution has also some disadvantages. I found a few here compares to
a previous solution.

Readability of model
When we had a core and localizations we could easily check without any tool
what we actually have. With increasing number of localization it was getting
harder and harder but still the format was far away more readable then a list
with hundreds of events.

Slower response time
When we do a change in knowledge model we have to recompile a whole list
of events. With increasing amount of events this process will last more and
more time. In the future this problem will have to be solved. I propose
2 improvements. First – compile events in different thread so this job will
not extend the response time. Second – in some cases it is possible to cache
knowledge model and use it as a snapshot. Adding a new event would mean
to just take a snapshot and apply one more event to it.

41

2. Design of The Migration Tool

2.4.2 Applicator

First component which needed to be done is Applicator. Purpose of Applicator
is simple – it should take events and optionally a knowledge model and produce
a new knowledge model with applied event. Or if the application failed, it
should produce an error.

Now I want to look more deeper on what we can change in the knowledge
model and how these changes are represented in events.

In following paragraphs I use a term – node. By node I mean one of the
type from a knowledge model tree – either knowledge mode, chapter, question,
answer, expert or reference.

2.4.2.1 Add node

The add type of event specifies where the new node should be placed in knowl-
edge model and what should be placed there. Of course, there are some lim-
itations as we could not add a chapter under an answer. Next this event
contains properties specific to the type of the node, e.g. text, title, name,
etc. It does not contain any information about children. So if we want to add
a new chapter with a question, we have to add the chapter at first and then
add the question.

2.4.2.2 Edit property on node

When we want to edit a property on some node we use one of the edit events.
Edit event contains where the node is placed in the knowledge model and what
we want to change in the node.

2.4.2.3 Edit order of children in node

Edit event does not include children because the event could quickly become
very large. Instead of that it contains a list of uuids of its children. If we
want to make a change of an order of the children, we change the order of
uuids.

2.4.2.4 Remove node

For deleting of some node we just have to include information where the node
is placed in knowledge model tree. That is all.

2.4.3 Migrator

During the design and the implementation of Migrator I changed the idea
about how the migration should work. Here I would like to describe these 2
approaches, compare them and explain why the final solution is better than
the other one.

42

2.4. My Proposal

2.4.3.1 First Approach

First I had an idea which was similar to a rebase in Git terminology. I wanted
to rearrange events in versions. The plan was first apply all events which came
from a parent and then apply events which were done by myself. In Git we
would checkout to our branch and run rebase against parent branch.

Description of how to merge events

The big benefit was that conflicts which appeared in the parent was already
solved in the parent. This was very useful in the case when my parent is not
core but it is a package which has its own parent package and this parent
package has its own parent package, etc. (see picture 2.7). All conflicts which
appeared during migration processes in parents were solved there and we just
have to solve conflicts which appeared during the application of our events.

Figure 2.7: A package dependency structure. Red arrows means the package
on which we want to upgrade.

The opposite approach would bring conflicts from all parents whose events
had not been applied yet. In example from picture (2.7) it would mean to
solve conflicts which would come from Core 2.0, Czech Republic 2.0 and
from Prague 2.0.

But in our case conflicts could appear just in applying our changes. These
changes were applying in the end so we could manipulate with them as much
as we wanted because we could not caused a conflict to anyone. But the price
for unlimited interventions was that a new version of package had to include
all previous events, not just a diff of events to previous version (see picture
2.8). We can see that the events in new core 2.0.0 are not a concatenation
of package core 1.0.0 and core 2.0.0. They differ in event number 5 which
is missing and instead of it there is a new event number 7. I wanted to show
there a state when due to the need of resolving a conflict we had to modify
the event. And because there is forbidden to edit events it meant to create a
new event.

43

2. Design of The Migration Tool

Figure 2.8: Structure of package

Now I prepare an image (2.9) where I would like to summary how the
events were put into a branch during upgrading of the knowledge model. On
the left we can see a core branch which offers itself in 2 versions. The middle
branch is our branch which is based on a core 1.0.0. We can see yellow line
which marks the events from the core and the light green line which marks
our events. And the right branch is based on a core 2.0.0 and shows how the
events were rearranged. First they are events marked with blue line. These
events are copies of events from core. After them there are our events with
the light green label. We can see that one event is missing and one is new.
This is the situation which I described above – a conflict appeared and it had
to be solved by replacing a problematic event with a new one.

44

2.4. My Proposal

Figure 2.9: Upgrade localization branch from core 1.0.0 to core 2.0.0

Conflict solving strategies

I prepared 5 strategies how to behave when a conflict appears. The mi-
gration process is started by using Applicator which applies all events from
a parent and build a knowledge model. Then the migration tool takes each
event which was created by us in our branch and tries to apply these events
to the current knowledge model. To reveal a conflict I made a table where are
described all situations which can happen. So we know if we are in a situation
where a conflict can appear or not.

Here is the table (2.1) where I assign migration strategies to the situations.
The situations are distinguished by comparing a current solving event with
new events which came from a new version of parent package. Originally the
table was much more longer because there was a row for each combination
of events. But finally I found that we can reduce the combinations just to
combinations of types of events (by types I mean – add, edit or delete types
of event).

For comparing types of events I defined a binary relation between the types
of events. Here is its definition:

• "=" – means that both events are at the same level (depth) of the knowl-
edge model.

45

2. Design of The Migration Tool

• "<" – means that an event on the left side of the operator is placed
deeper than an event from the right side.

• ">" – means that an event on the right side of the operator is placed
deeper than an event from the left side.

To be sure it is understandable I will describe the first row. In parent
events there exists some event which belongs to a subtree of some node which
we edited in our localization. We can see that this situation does not cause
any conflict. So we use No Conflict strategy. The symbol "-" in column
Strategy means that this situation can not happen.

From table (2.1 we can see that there existed 4 strategies. For Diff Tree
and Pool I had to create auxiliary precomputed structures for speed up the
migration process.

• Diff Table – It is a hash map where key is a node uuid and values
are events. By node uuid I mean chapterUuid for AddChapterEvent,
questionUuid for EditQuestionEvent, etc.

• Diff Tree – It is a tree which has the same structure as the knowledge
model. But the node is a flag which marks if the node was edited or not

• Pool – It is a list where the unused events are stored. It is used when
we want to remove some node and we do not want to loose all the events
which build these node and its children. So we save these events into a
pool for later usage.

And here are descriptions of the concrete methods.

1. No Conflict

• Precondition:
– Matched if any other precondition did not match

• View:
– Nothing to show.

• User Actions:
– No user actions.

• Solution:
– Server will apply event without interrupting the user.

2. Choice

• Precondition:

46

2.4. My Proposal

Table 2.1: Migration strategy: First approach

Parent Branch Relation Current Branch Strategy
add < edit No Conflict
edit > add No Conflict
edit > edit No Conflict
edit > delete No Conflict
edit < edit No Conflict
delete > delete No Conflict
delete = delete No Conflict
delete < edit No Conflict
delete < delete No Conflict
add = add No Conflict
edit = edit Choice
edit = delete Choice
delete = edit Choice
add < delete Diff Tree
edit < delete Diff Tree
delete > add Pool
delete > edit Pool
add > add -
add > edit -
add > delete -
add = edit -
add = delete -
add < add -
edit = add -
edit < add -
delete = add -
delete < add -

47

2. Design of The Migration Tool

– We have an edit action in our branch and there is a record with
the same node UUID which refers to edit or delete action in Diff
Table.

– We have a delete action in our branch and there is a record
with the same node UUID which refers to edit action in Diff
Table.

• View:
– User can see a preview of change from parent on the left and

a preview of change from our branch on the right.
– User chooses which variant he wants to use by clicking on but-

tons below the previews.
– If user selects a variant which contains Edit action, Editor will

show form with prefilled values from this event. User can edit
values in the form or he can let the prefilled values in form as
they are.

– If the selected variant contains delete event, no editor will be
displayed.

• User Actions:
– User chooses one of the variants and if variant contains edit

action he can edit the values
• Solution:

– If user chooses a variant from parent branch and does not do
any change in the form, the event from his branch is removed.

– When user chooses a variant with the event from his branch
and does not do any change in the form, the event from his
branch is kept in and applied.

– When user uses the editor, the new event (with new UUID) is
created and this event replaces the event from the branch.

3. Diff Tree

• Precondition:
– We have a delete event of some node in our branch which is

marked as edited in the Diff Tree.
• View:

– User can see a diff comparing the old and the new node.
• User Actions:

– User can choose to keep the new version of entity or delete the
entity.

• Solution:

48

2.4. My Proposal

– If the user decides to keep the new version of entity, the original
delete event is removed.

– Otherwise the delete event is kept in the localization.

4. Pool

• Precondition:
– Parent node could not be found in the knowledge model.
– Event is either of type Add or Edit.

• View:
– User is informed that the node could not be added or edited

because there is no longer the parent.
• User Actions:

– User can save the entity to a pool of entities and then move it
to a new parent (entity will not be lost).

– Or user can throw the entity away.
• Solution:

– If the user decided to delete the entity, the server will delete
all the following events connected to this entity.

– Otherwise:
∗ Server checks if the entity is in the pool, if not it picks the
entity from the old knowledge model and puts it into the
pool.

∗ All related events will be also moved to the pool.

Summary

As I said in the beginning this process can be compared to a rebase in
Git. The migration process tries to apply events from our branch on top of
the events from parent (even though our events can be older then some from
parent). Advantages are that conflicts from parent are solved in parent and
we can manipulate with our history.

But there is one strong disadvantage which I have not mentioned yet. If we
have packages as they are here (package with version 2.0.0 contains also events
from version 1.0.0 – see picture 2.8), there is a problem how to distinguish
new events in the newer version of the package. This can cause problems in
the migration process where we want to build a list of events which are new
in the version. This could be solved with some mark or by separating events
in the package to groups by versions. But because we can change a history,
some events do not have to be here. So the built list of events does not have
to be relevant.

49

2. Design of The Migration Tool

2.4.3.2 Second Approach

In second approach I tried to avoid a manipulation with a history at all,
because as we saw it caused big problems. This approach can be compared to
a classic merge process in Git.

Imagine situation: we have a branch and we want to apply new changes
from some other branch (let’s say from a parent branch). So we will perform
a classic Git merge which takes new changes from parent branch and apply
them to the head of our current branch. Finally we do a merge commit (in
our terminology we publish a new version) to save these changes.

Change package structure

First thing which I changed was the package structure. One package now
contains just events from its version (no events from previous versions). So
the problem from the first approach will not happen again. The thing, why it
is possible to do it like that here, is that the history will not be edited so we
can let old versions of packages as they are.

Description of how to merge events

Because I decided to add events from new versions on top of the branch,
the conflicts can appear only on top of the branch where they can be solved.

Now I would like to describe the workflow of this approach and demonstrate
it on an example. For better understanding I prepared an image where we
can see the situation graphically inscribed (2.10).

1. Create branch – If we want to start editing knowledge model, we have
to create a branch at first. The branch can refer to some parent package
or not. In example we can see 3 branches. One without parent (orange
Core) and two with parents (green Localization and purple My Branch).
We can of course add events and then create versions on our branches.

2. Deduction of branch properties For better understanding I put three
light green marks in circle into a picture (2.10) – A, B and C which refers
to three states of branches. Here is the quick description of each state.

• Mark A:
Unversioned events:
– No unversioned events

Parent package:
– localization:2.0.0

Merge properties:

50

2.4. My Proposal

– lastAppliedParentPackageId: core:1.0.0
– lastMergeCheckpointPackageId: core:1.0.0

List of parent packages:
– localization:2.0.0 -> localization:1.0.0 -> core:1.0.0

List of events for application:
– 9, 8, 7, 3, 2, 1

• Mark B:
Unversioned events:
– No unversioned events

Parent package:
– localization:4.0.0

Merge properties:
– lastAppliedParentPackageId: core:2.0.0
– lastMergeCheckpointPackageId: localization:3.0.0

List of parent packages:
– localization:4.0.0 -> localization:3.0.0 ->

localization:2.0.0 -> localization:1.0.0 -> core:1.0.0

List of events for application:
– 6, 12, 4, 12, 11, 10, 9, 8, 7, 3, 2, 1

• Mark C:
Unversioned events:
– 16, 15, 14

Parent package:
– localization:4.0.0

Merge properties:
– lastAppliedParentPackageId: core:2.0.0
– lastMergeCheckpointPackageId: localization:3.0.0

List of parent packages:
– localization:2.0.0 -> localization:1.0.0 -> core:1.0.0

List of events for application:
– 16, 15, 14, 6, 12, 4, 12, 11, 10, 9, 8, 7, 3, 2, 1

3. Merge branch – We can upgrade our branch just if we have no unver-
sioned events in our branch. Upgrade technically means to merge a new
version of the parent branch into the current branch. Here I would like
to describe an upgrade process on branch localization.
What we will migrate:

51

2. Design of The Migration Tool

• Branch localization in version 3.0.0 (In picture (2.10) I marked
the state as blue M in square)

Migration Info:

• From version: core:1.0.0
• To version: core:2.0.0

Merge properties before merge:

• lastAppliedParentPackageId: core:1.0.0
• lastMergeCheckpointPackageId: core:1.0.0

List of events from core which needs to be applied (in picture (2.10) they
are displayed with blue label):

• 4,5,6

Result:

• We can see that 2 events were applied as they came from core (4
and 6). And one was applied but changed (5). We can see a new
event unique identificator (uuid) for this event (13) in localization
branch.

Merge properties after merge:

• lastAppliedParentPackageId: core:2.0.0
• lastMergeCheckpointPackageId: localization:4.0.0

Conflict solving strategies
Solving conflicts in this approach is less difficult than in the first approach. I
identified 2 conflict solving strategies for situations when a conflict can appear.

I also prepared the same table as in the first approach (2.2). Comparing
to the first approach where a solving event was from the current branch, here
is the solving event from the parent branch. The rest remains same. For a
definition of a relation and for more information about the table (how to read
it), please look at the first approach section (2.4.3.1).

52

2.4. My Proposal

Figure 2.10: Merge process

53

2. Design of The Migration Tool

Table 2.2: Migration strategy: Second approach

Parent Branch Relation Current Branch Strategy
add < edit Corrector
edit < edit Corrector
delete < edit Corrector
edit = edit Corrector
delete = edit Corrector
add = add Corrector
edit > add Corrector
edit > edit Corrector
edit > delete Corrector
delete > delete Corrector
delete > add Corrector
delete > edit Corrector
delete < delete Cleaner
add < delete Cleaner
edit < delete Cleaner
delete = delete Cleaner
edit = delete Cleaner
add > add -
add > edit -
add > delete -
add = edit -
add = delete -
add < add -
edit = add -
edit < add -
delete = add -
delete < add -

54

2.4. My Proposal

Unlike previous case strategies Corrector and Cleaner do not require any
additional special precomputed structures like DiffTree, DiffTable or Pool.

Here are descriptions of the concrete methods.

1. Cleaner

• Precondition:

– Matched if the situation corresponds to one of the five from
table (2.2). Basically it checks for each event if the current
node or one of the parent nodes were not deleted.

• View:

– Nothing to show.

• User Actions:

– No user actions.

• Solution:

– Server will remove the event.

2. Corrector

• Precondition:

– Matched if the cleaner method did not match.

• View:

– User can accept or refuse the event. If he decides to accept the
event, the client will show a form where user can edit properties
of the event.

• User Actions:

– User can refuse the event.
– User can accept the event as it is.
– User can accept and edit the event.

• Solution:

– If user refused the event, the event is deleted and nothing will
be applied.

– If user accepted the event without any change, the event is
normally applied.

– If user edited the event, new uuid is generated for the event
and then the event is applied to a knowledge model.

55

2. Design of The Migration Tool

Summary

As I said in the beginning, this process can be compared to a merge in
Git. Migration process tries to apply events from the parent branch on top of
the events from our branch. An advantage is that the conflicts are solved on
top of the branch which means that when we have to edit the event, because
a conflict appears, we do not have to manipulate with the history.

The disadvantage is that the history of the branch is not as clear as in the
first approach. If we want to upgrade our branch we need to physically add
the events from the parent branch. And in the end of the migration process
we need to publish these new added events in a new version. So when we look
into a history, it is harder to recognize if the event comes from the parent
branch or if it was originally created in our branch.

2.4.3.3 Comparison of the approaches

Both approaches are relevant and can be realized. But if we compare a com-
plexity of solutions, a difficulty of an implementation and their advantages
and disadvantages, at least for me, the second approach seems to me better
than the first one. I find the second approach more elegant and because the
strategies are simpler there will be less space where bugs can appear.

2.4.4 Sanitizator

Because I decided to choose the second apporach in previous section (2.4.3.3)
all further ideas and suggestions will refer to this approach.

Next to Applicator and Migrator component I also created Sanitizator
component. This component should cope with minor discrepancies which
could appear in events application in migration process.

It is likely to grow in the future as improvements and smart things will
be added. Currently there is just one. It corrects discrepancies in the list of
children in edit events.

2.4.4.1 Correction of discrepancies in the list of children nodes

Imagine that some knowledge model looks like this:

Knowledge Model (km1)
\- Chapter (chapter1)

\- Question (question1)
|- Answer (answer1)
|- Answer (answer2)
\- Answer (answer3)

And we have this list of events to apply:

56

2.4. My Proposal

-- 1. Delete some child of a node
DeleteAnswerEvent (..., qUuid=question1.uuid , ...,

qAnswerUuid=answer2.uuid)

-- 2. Change order of children in the node where we
previously deleted a child

EditQuestionEvent (..., qUuid=question1.uuid , ...,
qAnswers= [answer3.uuid , answer2.uuid , answer1.uuid])

If we would just let these events as they are, it would display to user that
we would like to change an order of answers to this order – answer3, answer2
and answer1. But answer2 does not exist anymore. So it does not make sense
to display to user deleted answer on the second place.

We may think how this answer could even appear in the event. Simply,
because during the creation of event, the knowledge model could look like
different so the answer could exist there. Therefore a work of Sanitizator
is to go though all events, inspect them and if there is an event like this,
Sanitizator will correct it.

The correction process is applied to all edit events and it consists of these
steps:

1. Append all children uuids from the current knowledge model to the end
of a list of children uuids in an event

2. Go though the list of children and if some uuid appears for second time,
remove it (remove duplicities in the list)

3. Remove all children’s uuids which are not currently presented in the
knowledge model

4. Change uuid of the event

We can see that the process can be applied to all edit events even if there
is nothing wrong. Only side-effect of this process is that the uuid of an edit
event will be changed in every migration (even if it does not have to). But
the big advantage is that the process is simple and deterministic.

2.4.5 Summary

The final migration tool consists of three parts – Applicator, Migrator and
Sanitizator.

• Applicator is used for an event application on a knowledge model and
is used even outside the migration tool.

57

2. Design of The Migration Tool

• Migrator applies new events from a parent branch to a knowledge model
in the current branch. I chose finally the second approach instead of the
first one (for more information see: 2.4.3.3)

• Sanitizator is used to correct events which will be applied to a knowl-
edge model in the migration process

58

Chapter 3
Implementation

3.1 Introduction

In previous chapters I analyzed requirements, designed a solution and now
I would like to devote my attention to an implementation. I start with an
introduction of how the project is structured (3.2). Then I talk about build
tools which I used and their configurations (3.3).

Further I describe an architecture of the application and its individual
layers (section 3.4, 3.5 and 3.6). Separate sections I devoted to an error
handling (3.7) same as for a more detailed description of the migration tool
(3.8).

3.2 Project Structure

Mostly I kept a recommendation of Stack build tool and I divided the project
into these base folders:

<root >
|- app
|- config
|- lib
|- scripts
\- test

• In the root directory (<root>) we can find a license and configurations
for build tools.

• The subdirectory app contains just one file which is a main entry-point
to the application.

59

3. Implementation

• The subdirectory config contains a configuration and a build informa-
tion for the application.

• The subdirectory lib contains a whole application logic

• The subdirectory test includes expected tests.

3.3 Build Tools Setup

3.3.1 Stack

As I described in the Selected Tools section (1.4.5) I used Stack[18] as a main
build tool. When we use Stack we have to decide which LTS (Long Term
Support) we want to use. LTS is a set of packages (the packages are fixed to
concrete versions) which guarantees a build consistency, passing tests and a
good package inter-cooperation.

During the development I used more LTSs and I finally ended with version
9.11[33] (published in October 30, 2017).

3.3.2 Hpack

Information about our package is written in Cabal file (<project-name>.cabal).
It includes base information about the package like a name, an author, which
GHC the package was tested with, a license, etc. It also includes a list of
project dependencies, a description of modules, an information about used
Haskell language extensions, etc.

We can see there is a plenty of information. But actually the Cabal file
has its own format and many things are duplicated there. This problem is
solved by Hpack[34] which is a tool for generating Cabal file from a template.
Hpack has much more shorter notation (in my project Cabal file has about
300 lines compares to 130 lines of Hpack file) which is caused by a reduction
of duplicities.

3.4 Application structure
I divided the application into 3 layers[35]:

1. Presentation layer – REST API (Api package)

2. Domain layer – Services, Business logic (Service package)

3. Data access layer – Persistence to MongoDB database (Database pack-
age)

60

3.4. Application structure

Figure 3.1: Application layers (according to Martin Fowler[35])

3.4.1 Presentation Layer

Presentation layer is represented here by REST API which provides applica-
tion functionalities and presents data to the outside world. Code is stored in-
side Api package. This package contains 3 additional subpackages – Handler,
Middleware and Resource. Further there is a file Routes.hs which defined
routes mapping, a usage of a middleware and a base security setup (a defini-
tion of secured and unsecured routes).

In Handler package we can find functions which process incoming requests
and pass the requests into the service layer. These functions are packed into
files according to their domains, e.g. Organization, User or KnowledgeModel
modules.

In Middlerware package we can find 2 Haskell modules – Auth and CORS
modules. CORS (Cross-origin resource sharing) module has a definition of mid-
dleware which takes care about adding CORS headers to every outcoming re-
sponse. And a purpose of Auth module is to take care about the security. It
checks a presence and a validity of JWT token for the secured routes.

In Resource package there are placed structures on which is mapped in-
coming requests and outcoming reponses. In modules we can find next to a
definition of structures also mappings of structures from and to JSON format.
Structures and their mappings are packed to files according to their domains
(same as with Handler functions).

3.4.2 Domain Layer

Domain layer includes most of the business logic of the application. Code is
stored inside the Service package and then it is again divided into packages
according to a domain (Organization, User or KnowledgeModel). Most of the

61

3. Implementation

domain package has one module for business functions and one module for
mapping functions between business structures and structures which are used
in API.

Business structures are used widely across a whole application so they are
stored in a root package Model. They encapsulate objects which have been
identified in domain model. In some modules there are additional functions to
make a work with these structures simpler. For example in KnowledgeModel
module we can find a utility function which takes a chapter and returns uuids
of children’s questions. Or we can find here a function which takes a knowledge
model with question’s uuid and returns a question with given uuid from the
knowledge model (if exists).

Service functions are mostly functions which call functions from data access
layer and put the result together. Between service functions there are also
functions for validation structures. And because domain layer should contains
business logic, I put there also the migration tool.

3.4.3 Data Access Layer

Last layer is a data access layer. This layer is divided into 3 main packages –
BSON, DAO and Migration. Together with these 3 packages there is a module
Connection. This module is responsible for creating a connection pool to
MongoDB database.

BSON package contains mappings of business structures to and from BSON
database format. Structures and their mappings are packed to files according
to their domains (same as with JSON mappings in Resource package).

DAO package contains functions which translate our requests to database
queries or manipulate with data in the database.

And the last package Migration contains some base initial migrations to
load some dummy data into the database (currently it is used for testing and
demo purposes).

3.4.4 Module naming convention

3.4.4.1 Choosing convention

To make an application more readable for new people on the project I decided
to keep some naming conventions from widely well-known object program-
ming. I did it because current naming conventions in functional programming
are not well develop in this particular area so I mostly create my conventions
which are inspired in object-oriented world. So it is a nonsense to think about
the fact what the suffix of acronym or just the suffix means because they do
not make sense in functional programming.

62

3.4. Application structure

3.4.4.2 Haskell Modules

I decided to distinguish modules by adding suffix to the end of the name. So
to all modules which include service functions I added a suffix Service or to
all modules which include handler functions I added a suffix Handler.

Here is a complete list of these suffixes:

• Handler – a module containing handler functions

• DTO – a module containing structures which represents request/re-
sponse in API

• Middleware – a module containing middleware functions

• Service – a module containing service functions

• Mapper – a module containing mapper functions

• DAO – a module containing functions for a manipulation with data in
database

• Migration – a module containing functions for running initial database
migrations

3.4.4.3 Structure properties

Because Haskell does not allow function overloading by default, it is necessary
to prefix properties of structures. Otherwise we may get a conflict if two
different structures would have a property with the same name.

Listing 3.1 : Example of prefixed properties

data Organization = Organization
{ _orgUuid :: UUID
, _orgName :: String
, _orgGroupId :: String
}

data OrganizationDTO = OrganizationDTO
{ _orgdtoUuid :: UUID
, _orgdtoName :: String
, _orgdtoGroupId :: String
}

63

3. Implementation

3.5 API

In this section I would like to describe how I designed the API and how a
security and an error handling issues are solved.

3.5.1 Authentication and Authorization

Most of the endpoints are secured (see API specification – attachment A). For
accessing these secured routes the application requires a usage of a valid token.
This token can be obtained in /tokens endpoint against valid credentials.
Public endpoints can be used without token. As I mentioned in Selected Tools
section (1.4), I used JSON Web Tokens (JWT) format for tokens. Because
a payload in tokens can change, the tokens are not stored in a database or
cached somewhere. They are generated after every successful login.

Token payload currently contains an identification of a user (userUuid)
and a list of permissions which belongs to the user.

Application requires to include the token in Authorization header. Here
is an example of the token (with used secret: secret-key).

Listing 3.2 : Example of authorization header

Authorization: Bearer eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVC
J9.eyJ1c2VyVXVpZCI6ImVjNmY4ZTkwLTJhOTEtNDllYy1hYTNmLTllY
WIyMjY3ZmM2NiIsInBlcm1pc3Npb25zIjpbIlVNX1BFUk0iLCJPUkdfU
EVSTSIsIktNX1BFUk0iLCJLTV9VUEdSQURFX1BFUk0iLCJLTV9QVUJMS
VNIX1BFUk0iLCJQTV9QRVJNIiwiV0laX1BFUk0iLCJETVBfUEVSTSJdf
Q.BFBXG8gjJeqt3i -hKzsp10_ePM5st34vuJqiYeNwyu4

3.5.2 Error Handling

When an error occurs I serialized it to a JSON format and set a right status
code to a response which at most corresponds to REST architecture.

Here is a list of error responses which can be returned:

• 400 Bad Request – It is returned when:

– Request body was not correctly parsed to a Haskell structure (a
response body includes just status, error and message properties),

– Some validation failed (a response body includes status, error, mes-
sage, formErrors and fieldErrors properties),

– Problem in an event application in Applicator (a response body
includes just status, error and message properties).

64

3.5. API

Listing 3.3 : Example response body

{
"status": 400,
"error": "Bad Request",
"message": "",
"formErrors": [],
"fieldErrors": {

"parentPackageId": "Parent package doesn't
exist"

}
}

• 401 Unauthorized – it is returned when a login failed or we try to
access secured routes without a proper authorization

Listing 3.4 : Example response body

{
"status": 401,
"error": "Unauthorized"

}

• 403 Forbidden – It is returned when we try to access resources which
we do not have rights (permissions) to

Listing 3.5 : Example response body

{
"status": 403,
"error": "Forbidden"

}

• 404 Not Found – It is returned when a resource does not exist

Listing 3.6 : Example response body

{
"status": 404,
"error": "Not Found"

}

65

3. Implementation

• 500 Internal Server Error – It is returned when some server side
error occurs, e.g. a problem with a connection to a database, a problem
with a deserialization of an entity from a database, etc.

3.5.3 API Specification

A complete API specification is described in an attachment A).

3.6 Database

For persisting data I decided to use a document database MongoDB which I
chose as the most suitable for the application. A connection to the database
is created during a start of the application. Configurations are stored in the
application configuration file (app-config.cfg).

I do no create a new connection for each request but I hold a pool of
connections. The requests then take connections from this pool.

3.6.1 Advanced usage

I do not think that it is necessary to describe all queries which I did but I
would like to mention a few concepts and advanced features which I used.

Embedded documents
I frequently use a principle of embedded documents. That was also one of
the reason why I chose MongoDB. We can see this principle for example in
storing of a knowledge model. The knowledge model contains chapters which
contains questions, etc. And all these data is stored in one document. So we
do not have to join more tables when we want to retrieve a knowledge model.

Partial update
Next thing which I used is a partial update. That allows us to update just
one property of a document without loading the whole document into a mem-
ory. This is done by using $set construct. An example of usage from the
application is when I update a knowledge model in a branch document.

Listing 3.7 : Example of usage from the application

let sQuery = (select ["uuid" =: bUuid] branchCollection)
let aQuery = ["$set" =: ["knowledgeModel" =: (km)]]
let action = modify sQuery aQuery
runMongoDBPoolDef action dbPool

66

3.7. Error Handling

Append to a list in a document
When we want to just add a new item into some list in a document we do
not have to retrieve a whole list or even a document. We can just append
our items into the current list. MongoDB has also special construct for that
– $push. An example of usage from the application is when I add new events
which came from a client into a branch.

Listing 3.8 : Example of usage from the application

let sQuery = (select ["uuid" =: bUuid] branchCollection)
let aQuery = ["$push" =: ["events" =: ["$each" =:

events]]]
let action = modify sQuery aQuery
runMongoDBPoolDef action dbPool

3.7 Error Handling
As I mentioned in a section Error Handling in Analysis chapter (see 1.5.3) I
tried to avoid unhandled error states by using Maybe and Either wrappers.

For a purpose of the application I created my own structure which should
cover all errors – AppError. This structure has more data constructors which
should cover all types of errors which can occur in the application.

Listing 3.9 : My custom error structure

type ErrorMessage = String

type FormError = String

type FieldError = (String , String)

data AppError
= ValidationError ErrorMessage [FormError]

[FieldError]
| NotExistsError ErrorMessage
| DatabaseError ErrorMessage
| MigratorError ErrorMessage

Because almost every part of the application can fail, almost every re-
turned type is either Maybe AppError or Either AppError <Returned_Value>.
Advantage of this concept is that it allows us to handle errors by default.

I used Maybe for cases when I did not expect any result. Nothing means
everything is okay and Just contains error if it occurs.

67

3. Implementation

And I used Either if I expected a value. The value (wrapped in Right)
indicates a successful returned value and a value (wrapped in Left) means
that an error was returned.

3.7.0.1 Types of Errors

I distinguish 4 types of errors. First is ValidationError which can occur dur-
ing the validation of incoming data. Depending on a situation it can contain
some base error message, errors related to a form and also errors related to a
concrete form field. A message, form errors and fields errors are then used in
a client application to display what went wrong in the form.

NotExistsError is used when requested data was not found in a database.
I separate this error from DatabaseError so I could easily translate this ex-
ception to 404 Not Found error on API.

DatabaseError means that something bad happened during our communi-
cation with database, e.g. a document could not be well decoded from BSON.

And the last error – MigratorError encapsulates all errors from a migra-
tion process and errors from a bad event application.

3.8 Migration Tool

A principle on which is the migration tool based I have already described in
a chapter Design of The Migration Tool (see chapter 2). Same as I have al-
ready mentioned 3 components from which the migration tool is consisted of –
Applicator, Migrator and Sanitizator. These components hold all migration
logic. An orchestration of these components is then managed by functions in
MigrationService module.

3.8.1 Applicator

3.8.1.1 Interface

Applicator has an interface which contains just one function – runApplicator
function. This function takes a knowledge model if it exists and a list of
events to apply. If the application ends with a success it returns a new knowl-
edge model, otherwise it returns an error. Here is a type specification of this
function:

Listing 3.10 : Type specification

runApplicator :: Maybe KnowledgeModel -> [Event] ->
Either AppError KnowledgeModel

runApplicator km events = ...

68

3.8. Migration Tool

3.8.1.2 Implementation

Function runApplicator goes though incoming events and each of them ap-
plies to a knowledge model (call applyEventToKM on the knowledge model and
the event). A method applyEventToKM is a member of typeclass ApplyEventToKM
and all events implement this method in their instances. So the behavior, how
the event should apply to knowledge model, is defined in instances of the type-
class ApplyEventToKM. Here is a definition of the typeclass:

Listing 3.11 : Definition of ApplyEventToKM

class ApplyEventToKM e where
applyEventToKM

:: e
-> Either AppError (Maybe KnowledgeModel)
-> Either AppError (Maybe KnowledgeModel)

Due to implementations of this method we can change just knowledge
model. So if an event wants to edit for example a chapter, the implementation
of this method contains just a delegation to knowledge model chapters. The
delegation is done by calling applyEventToChapter on all chapters which is a
method of a typeclass ApplyEventToChapter. So all events also implement
this typeclass.

Implementation of applyEventToChapter are done in the same way as
implementations of applyEventToKM were. Every event has an instance of this
typeclass.

For every type of node (a knowledge model, a chapter, a question, an
answer, etc.) I created a typeclass with a method how to apply an event to
this specific type of node. Their instances then know how the event should be
applied to this type of node.

3.8.2 Migrator

An interface of Migrator component consists of 2 functions – migrate and
solveConflict.

3.8.2.1 Function migrate

The first function migrate takes a migration state and produces a new mi-
gration state which is wrapped in IO. It does not have to have additional
parameters because the migration state contains all necessary things which
are needed for a migration (see the domain model for more information –
1.3.4.3).

Function migrate takes an event from the migration state and tries to ap-
ply this event with one of the methods (Cleaner or Corrector) to the knowl-

69

3. Implementation

edge model. Then it calls recursively itself until it ends in some other state
than in RunningState.

The function needs to return a result wrapped in IO because sometimes
the logic may need to generate a new uuid which is an impure action because
it communicates with the outside world.

3.8.2.2 Function solveConflict

Function solveConflict takes a migration state and an action how to resolve
the conflict. And it produces a new migration state where the conflict is
solved.

3.8.3 Sanitizator

Sanitizator edits event properties (if necessary) to be in an actual state
against the current knowledge model. For more information, what Sanitizator
does, see section Sanitizator in Design chapter (2.4.4).

Interface of Sanitizator component is very simple and it includes one
typeclass Sanitizator. Sanitizator has currently instances just for editing
events because there is no need for a sanitization of add or delete events.

Listing 3.12 : Definition of Sanitizator

class Sanitizator a where
sanitize :: MigratorState -> a -> IO a

3.8.4 Migration Service

Functions in MigrationService module encapsulate a logic of Applicator,
Migrator and Sanitizator. It also prepares a migration state, validates inputs
and persists the current migration state to a database.

70

Chapter 4
Configuration, Testing and

Deployment

4.1 Introduction

In the last chapter I would like to talk about 3 last things. First I would like
to mention how the application can be configured (4.2). Then I would like to
sum up how I tested the application (4.3). In this section I describe types of
tests and also I slightly touch a code coverage theme. In the last section I talk
about a production deployment (4.4), how I set up a server provided by my
faculty and how I deployed the application into it.

4.2 Configuration

Especially for a future development I prepare a configuration through a con-
figuration file. Because Haskell/Scotty does not provided any prepared mech-
anism for it I had to implement it by my own. Currently there are 2 files –
app-config.cfg and build-info.cfg which contain all information needed by
a running application. For tests there exist special versions suffixed by -test.
A format of configuration files is an old-style Windows .INI format.

An advantage of an external configuration is that the configuration does
not have to be present during a compilation process and it can be attached
later (during a start of the application).

4.2.1 Build Configuration

A build configuration (build-info.cfg file) contains information about the
last build of the application. This configuration can be created simply by
running a prepared script build-info.sh. Normally this script is started by
a CI Tool (Travis CI) during build process.

71

4. Configuration, Testing and Deployment

Listing 4.1 : Example of build-info.cfg

name = Data Stewardship Portal Server
version = 1.0.0
builtat = 2017/10/25 19:50:20Z

4.2.2 Application Configuration

Application Configuration (app-config.cfg file) contains 4 sections – Web,
Database, JWT and Role. Currently there are not many things which can be
configured but it is assumed that it will grow in the future.

In Web section we can configure on which port the server will be running.
In Database section we can set up connection properties to our database.
JWT section contains property which holds a value of secret which is needed
in a process of signing JWT payload. And in Role section we can assign
permissions to roles. These sets of permissions will be used as templates for
new users in a way that when a new user is created with some role he will get
assigned a list of permissions based on this template from the configuration
file.

Listing 4.2 : Example of app-config.cfg

[Web]
port = 3000

[Database]
host = mongo
dbname = dsp -server
port = 27017

[JWT]
secret = secret -key

[Role]
admin = UM_PERM , ORG_PERM , KM_PERM , KM_UPGRADE_PERM ,

KM_PUBLISH_PERM , PM_PERM , WIZ_PERM , DMP_PERM
datasteward = KM_PERM , KM_UPGRADE_PERM ,

KM_PUBLISH_PERM , WIZ_PERM , DMP_PERM
researcher = WIZ_PERM , DMP_PERM

72

4.3. Testing

4.3 Testing
The application contains about 240 tests. My goal was to test as much as it
was possible by automatic tests. One thing which had to be tested manually
was an integration with a client application. But all other parts could be
tested automatically.

Martin Fowler says that we should have more low-level tests (unit tests)
than high-level tests [36]. Because a price of creation and maintenance of unit
tests is much more lower than a price of more high-level tests. And of course
a simple unit test can be written much more faster.

Figure 4.1: Test pyramid (according to Martin Fowler[36])

But I finally decided not to follow this recommendation so strictly. I
ended with a ratio 92 unit tests (27 percent) against 148 integration tests (73
percent). Here are reasons why I ended in such a state.

• My only integration is with MongoDB database. So I do not have to set
up additional systems to be able to run integration tests. So a creation
of an integration test is almost as simple as a creation of an unit test.

• Service layer mostly does just a delegation to database layer which does
a selection, an insertion, an update or a delete to or from a database.
So it is a nonsense to mock these database operations and tests just the
service logic because we would test nothing (just the delegation).

4.3.1 Unit tests

I used unit tests mainly for a testing of these things:

• A functionality of Applicator,

• A functionality of Migrator,

• A functionality of Sanitizator,

73

4. Configuration, Testing and Deployment

• Query methods for knowledge model,

• A validation logic,

• Utility functions.

Functions in these parts do not require a communication with outside
world so they are perfectly suited for unit tests. They also include a complex
logic, they could end in many states with different results and they can have
various inputs. So it made sense to deeply test these functions and be sure
that they behave as I wanted them to behave.

4.3.2 Integration tests

In integration tests I mainly tested if a HTTP request is correctly translated
to a database query. Without one exception, integration tests contain just
API tests.

I tested all API endpoints except IO endpoints (/import and /export).
Each test on endpoint includes several sub-tests which covers all possible cases
which could appear during a call of this endpoint.

Here is an example of cases which are tested on POST /users endpoint
(this endpoint serves for a creation of a user).

• Case 1: HTTP 201 CREATED – I can successfully create a user.

• Case 2: HTTP 400 BAD REQUEST when JSON is not valid – When I
provide invalid JSON I will get a response with a status code 400 Bad
Request.

• Case 3: HTTP 400 BAD REQUEST if email is already registered –
When an email is already registered I will get a response with a status
code 400 Bad Request .

• Case 4: HTTP 401 UNAUTHORIZED – When I do not provide a valid token
I will get a response with a status code 401 Unauthorized.

• Case 5: HTTP 403 FORBIDDEN – When I do not have a requested per-
mission I will get a response with a status code 403 Forbidden.

We can see that the cases 2, 4 and 5 are more general and also other
endpoints will need to test them as well. Therefore I created a template from
which I can generate these test cases. So I do not have to duplicate code.

74

4.3. Testing

Test scenario

A normal scenario of one integration API test is:

1. Prepare a request

2. Optionally prepare a database

3. Call a server with the prepared request

4. Check a response if it has an expected body and headers

5. Optionally check a state of the database

4.3.3 Code Coverage

In the end I want to show a code coverage of my code. But because an
integration of Stack tool with hpc tool (code coverage library for Haskell) is
not as far as I expected, I was able to just generate code coverage results from
all codebase. So the result includes for example structures from API and code
which should not be included in.

Listing 4.3 : Code coverage results

52% expressions used (11165/21153)
80% boolean coverage (42/52)
50% guards (1/2), 1 always True
82% 'if' conditions (41/50) , 5 always True , 2 always

False , 2 unevaluated
100% qualifiers (0/0)
50% alternatives used (476/941)
88% local declarations used (321/362)
41% top -level declarations used (824/1966)

The most important things according to me are percentages of tested ex-
pressions and alternatives. We can see 52% of expressions are tested with 50%
of alternatives.

But these numbers are not really relevant. So I manually extracted an in-
formation about each module (hpc[37] tool can generate this data) and counted
more relevant data. Fo the result I create a table (4.1). In my option the code
coverage is satisfactory.

75

4. Configuration, Testing and Deployment

Table 4.1: Code coverage by layers

Layer Expressions Alternatives
Presentation Layer 84% 76%

Domain Layer 76% 66%
Data Access Layer 92% 33%

4.4 Production Deployment
The application is distributed in a form of a Docker image. So everyone with
installed Docker can run the application.

4.4.1 Building Image

I create my own Docker image which encapsulate the application (dsp-server).
As a template I used my another image (stack-hpack). This image contains
preinstalled Stack and Hpack. My application image (dsp-server) then con-
tains source codes and compiled application. An advantage of having one
application image is that we do not have to have 2 images – one for building
and one for running a compiled application. A disadvantage is a size of Docker
image (it has to include source codes and build tools).

Figure 4.2: Docker images

As I mentioned in Continuous Integration section (1.4.8) I build a Docker
image automatically after a detected change in a master branch. A produced
image is then uploaded to Docker Registry.

4.4.2 Running Containers

On server I set up with Jan Slifka Docker Compose[38] which is a tool to
simplify a deployment process of more Docker Containers. A principle of
Docker Compose is to write one file where you describe which containers you
want to start, how they are connected, which files you want to mount in, etc.

76

4.4. Production Deployment

Here is an example of a configuration for Docker Compose.

Listing 4.4 : Code coverage results

version: '3'
services:

mongo:
image: mongo
ports:
- 27017:27017

dsp_server:
image: ccmi -elixir.cesnet.cz :5000/ elixir/dsp -server
ports:

- 3000:443
links:

- mongo

dsp_client:
image: ccmi -elixir.cesnet.cz :5000/ elixir/dsp -client
environment:

- API_URL=https://api.dsp.fairdata.solutions

dsp_nginx:
image: nginx
ports:

- 80:80
- 443:443

volumes:
-

links:
- dsp_client
- dsp_server

We can see from the example that I have to deploy also Nginx. Its role here
is to serve as a reverse proxy and holds certificate for a client and a server
so they do not have to manage certificates by themselves and offer secure
connection.

For better understanding how the containers are connected now, I created
a more low-level deployment diagram (4.3). Compares to one from Analysis
chapter (1.9) which is more high-level and where I wanted to show a whole
platform, here, the main focus is on how client and server are deployed using
Docker.

77

4. Configuration, Testing and Deployment

Figure 4.3: Low-Level Deplyment Diagram (Production Server)

The application is currently (during writing a diploma thesis) deployed
on a server provided by my university. Here are the addresses of running
applications:

• Server: https://api.dsp.fairdata.solutions

78

4.4. Production Deployment

• Client: https://dsp.fairdata.solutions

79

Conclusion

Goals Assessment

The result of the thesis is a fully-working migration tool which fulfills all
specified requirements. The tool was implemented in Haskell programming
language as it was requested.

During the development it was revealed that for a proper implementation
it is necessary to extend the goal of the diploma thesis (the migration tool).
Together with the migration tool, there were implemented bases of the fu-
ture Data Stewardship Planning Portal. Currently the portal contains a user
management module, a package management module, an editor of knowledge
models and the migration tool. The application was implemented purely as
a server side and it offers a REST API to outside world. Simultaneously
Jan Slifka from FIT CTU developed in his diploma thesis a client application
which used the newly offered API. So the result is a nice web application
which is ready to use and which contains base modules for the future portal
application.

The application is well tested by many automatic unit and integrations
tests. The documentation includes a README which consists of informa-
tion about how to run, how to configure and how to deploy the application.
API and functionalities of the application are documented in extensive tests
where developers can find an expressive scenarios. Further API Specification
is attached to this diploma thesis.

To summarize all specified goals were successfully fulfilled.

Project Future

The project is currently in a very good state and it is assumed that it will be
further developed in the future.

81

Conclusion

New Features

To make a portal application complete, there are 2 things which need to be
done:

1. An integration of Wizard application into the portal – Currently
the Wizard application is not connected to the portal application so it
can not use generated knowledge models. So there is a need to integrate
the Wizard application through the offered REST API to the portal.

2. An implementation of a module for generating Data Manage-
ment Plans – One of the future goals of the portal application is to
offer an ability to automatically generate data management plans. This
feature should help researchers to save some time because they will not
have to write the plan manually.

First thing on the list is The feature will enable to researchers fill the
generated knowledge model with their answers.

So the researchers will be able to work with a generated knowledge model
in the wizard.

Application Improvements

1. Fully Automatic Deployment – Currently there is one last step which
is not fully automatic in the deployment process. The application is not
redeployed after a successful build. It is needed to manually sign into the
server and start a deployment process of a new version of the application.

2. Tests in CI pipeline – There are 2 types of automatic tests in the
application - unit and integration. For the integration tests there is a
need to run the MongoDB database. That is the reason why tests are
not running during the build process on CI server.

3. Consider API Documentation – Currently the API of the server
application is sufficiently documented in the attachment of this thesis.
For all positive and negative scenarios there also exist automatic inte-
gration tests which show what should we send to API and what we will
retrieve. The API is not currently public accessible but because in the
future it could be, it should be considered to create a full-fledged API
documentation.

82

Bibliography

[1] ELIXIR. Elixir - What we do. [online], [cit. 2018-01-06]. Available from:
https://www.elixir-europe.org/about-us/what-we-do

[2] ELIXIR CZ. About ELIXIR CZ [online], [cit. 2018-01-06]. Available from:
https://www.elixir-czech.cz/about-elixir-cz

[3] WILKINSON, Mark, DUMONTIER, Michel et al. The FAIR Guiding
Principles for scientific data management and stewardship. March 2016,
[online], [cit. 2018-01-06]. Available from: http://dx.doi.org/10.1038/
sdata.2016.18

[4] MARLOW, Simon et al. Haskell 2010 - Language Report. 2010,
[online], [cit. 2017-12-08]. Available from: https://www.haskell.org/
onlinereport/haskell2010/

[5] OBJECT MANAGEMENT GROUP. UML Specification. May 2015, [on-
line], [cit. 2017-12-06]. Available from: http://www.omg.org/spec/UML/
2.5/PDF

[6] PYTHON SOFTWARE FOUNDATION. Python - Official Docu-
mentation. [software], [cit. 2017-12-08]. Available from: https://
docs.python.org/3.6/contents.html

[7] FIELDING, R. T. Architectural Styles and the Design of Network-
based Software Architectures. Dissertation thesis, University of California,
Irvine, 2000.

[8] DOCKER INC. Docker. [software], [cit. 2017-12-11]. Available from:
https://docs.docker.com

[9] MONS, B. Data Stewardship for Open Science: Implementing Fair Prin-
ciples. London, United Kingdom: Chapman and Hall/CRC, 2018, ISBN
978-1498753173.

83

https://www.elixir-europe.org/about-us/what-we-do
https://www.elixir-czech.cz/about-elixir-cz
http://dx.doi.org/10.1038/sdata.2016.18
http://dx.doi.org/10.1038/sdata.2016.18
https://www.haskell.org/onlinereport/haskell2010/
https://www.haskell.org/onlinereport/haskell2010/
http://www.omg.org/spec/UML/2.5/PDF
http://www.omg.org/spec/UML/2.5/PDF
https://docs.python.org/3.6/contents.html
https://docs.python.org/3.6/contents.html
https://docs.docker.com

Bibliography

[10] THE APACHE SOFTWARE FOUNDATION. Maven - Official Doc-
umentation. [software], [cit. 2017-12-18]. Available from: https://
maven.apache.org/pom.html

[11] CZAPLICKI, Evan. Elm. [software], [cit. 2017-12-18]. Available from:
http://elm-lang.org/docs

[12] MONGODB, INC. MongoDB. [software], [cit. 2017-12-18]. Available
from: https://docs.mongodb.com

[13] THE POSTGRESQL GLOBAL DEVELOPMENT GROUP. Post-
greSQL. [software], [cit. 2017-12-18]. Available from: http://elm-
lang.org/docs

[14] FARMER, Andrew. Scotty. [software], [cit. 2017-12-19]. Available from:
http://hackage.haskell.org/package/scotty

[15] SNOYMAN, M. Developing Web Applications with Haskell and Yesod. Se-
bastopol, California, USA: O’Reilly Media, 2018, ISBN 978-1449316976.

[16] SNAP CONTRIBUTORS. Snap. [software], [cit. 2017-12-19]. Available
from: http://hackage.haskell.org/package/snap

[17] JONES, Isaac. The Haskell Cabal, a common architecture for
building applications and libraries. 2004, [online], [cit. 2017-12-22].
Available from: http://citeseerx.ist.psu.edu/viewdoc/download?doi=
10.1.1.127.9361&rep=rep1&type=pdf

[18] STACK CONTRIBUTORS. Stack. [software], [cit. 2017-12-19]. Available
from: http://haskellstack.org

[19] JONES, Mike, BRADLEY, John and SAKIMURA, Nanae. JSON Web
Token (JWT). May 2015, [online], [cit. 2017-12-22]. Available from:
https://www.rfc-editor.org/rfc/rfc7519.txt

[20] GITHUB, INC. GitHub. [software], [cit. 2017-12-19]. Available from:
http://github.com

[21] DOCKER INC. Docker Registry. [software], [cit. 2017-12-22]. Available
from: https://docs.docker.com/registry/

[22] NGINX, INC. Nginx. [software], [cit. 2017-12-19]. Available from: https:
//www.nginx.com

[23] LIPOVACA, M. Learn You a Haskell for Great Good! San Francisco,
California, USA: No Starch Press, 2011, ISBN 978-1593272838.

[24] ORACLE CORPORATION. Java. [software], [cit. 2017-12-19]. Available
from: https://docs.oracle.com/javase/8/docs/index.html

84

https://maven.apache.org/pom.html
https://maven.apache.org/pom.html
http://elm-lang.org/docs
https://docs.mongodb.com
http://elm-lang.org/docs
http://elm-lang.org/docs
http://hackage.haskell.org/package/scotty
http://hackage.haskell.org/package/snap
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.127.9361&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.127.9361&rep=rep1&type=pdf
http://haskellstack.org
https://www.rfc-editor.org/rfc/rfc7519.txt
http://github.com
https://docs.docker.com/registry/
https://www.nginx.com
https://www.nginx.com
https://docs.oracle.com/javase/8/docs/index.html

Bibliography

[25] O’SULLIVA, B. Real World Haskell. Sebastopol, California, USA:
O’Reilly, 2008, ISBN 978-0596514983.

[26] ALLEN, C.; MORONUKI, J. Haskell Programming from First Principles.
USA: Allen and Moronuki Publishing, 2016, ISBN 978-1945388033.

[27] ABRAHAMSON, Joseph. A Little Lens Starter Tutorial. 2014, [online],
[cit. 2017-12-28]. Available from: https://www.schoolofhaskell.com/
school/to-infinity-and-beyond/pick-of-the-week/a-little-lens-
starter-tutorial

[28] RHODECODE. TestPyramid. 2017, [online], [cit. 2018-01-05]. Available
from: https://rhodecode.com/insights/version-control-systems-
2016

[29] FOWLER, Martin. FeatureBranch. 2009, [online], [cit. 2018-01-05]. Avail-
able from: https://martinfowler.com/bliki/FeatureBranch.html

[30] CHACON, S.; STRAUB, B. Pro Git. New York, New York, USA: Apress,
2014, ISBN 978-1484200773.

[31] FOWLER, Martin. Event Sourcing. 2005, [online], [cit. 2017-12-30]. Avail-
able from: https://martinfowler.com/eaaDev/EventSourcing.html

[32] FOWLER, Martin. CQRS. 2011, [online], [cit. 2018-01-05]. Available
from: https://martinfowler.com/bliki/CQRS.html

[33] STACK CONTRIBUTORS. Stack LTS 9.11. [software], [cit. 2017-12-19].
Available from: https://www.stackage.org/lts-9.11

[34] HENGEL, Simon. Hpack. [software], [cit. 2017-12-19]. Available from:
https://github.com/sol/hpack

[35] FOWLER, Martin. PresentationDomainDataLayering. 2015, [online],
[cit. 2017-12-31]. Available from: https://martinfowler.com/bliki/
PresentationDomainDataLayering.html

[36] FOWLER, Martin. TestPyramid. 2012, [online], [cit. 2018-01-05]. Avail-
able from: https://martinfowler.com/bliki/TestPyramid.html

[37] GILL, Andy. Hpc. [software], [cit. 2017-12-22]. Available from: https:
//wiki.haskell.org/Haskell_program_coverage

[38] DOCKER INC. Docker Compose. [software], [cit. 2017-12-22]. Available
from: https://docs.docker.com/compose/

85

https://www.schoolofhaskell.com/school/to-infinity-and-beyond/pick-of-the-week/a-little-lens-starter-tutorial
https://www.schoolofhaskell.com/school/to-infinity-and-beyond/pick-of-the-week/a-little-lens-starter-tutorial
https://www.schoolofhaskell.com/school/to-infinity-and-beyond/pick-of-the-week/a-little-lens-starter-tutorial
https://rhodecode.com/insights/version-control-systems-2016
https://rhodecode.com/insights/version-control-systems-2016
https://martinfowler.com/bliki/FeatureBranch.html
https://martinfowler.com/eaaDev/EventSourcing.html
https://martinfowler.com/bliki/CQRS.html
https://www.stackage.org/lts-9.11
https://github.com/sol/hpack
https://martinfowler.com/bliki/PresentationDomainDataLayering.html
https://martinfowler.com/bliki/PresentationDomainDataLayering.html
https://martinfowler.com/bliki/TestPyramid.html
https://wiki.haskell.org/Haskell_program_coverage
https://wiki.haskell.org/Haskell_program_coverage
https://docs.docker.com/compose/

Appendix A
API Specification

Info
Structures

• InfoDTO

– name (String) – application name
– version (String) – application version (from Git) – if a version is

not available it is used SHA-1 hash of last commit
– builtAt (String) – build time

Operations

• GET /info – Get information about the application

– Security: Public endpoint
– Request: -
– Response: InfoDTO

Token
Structures

• TokenDTO

– token (String) – JSON Web Token

• TokenCreateDTO

– email (String)
– password (String)

87

A. API Specification

Operations

• POST /tokens – Get token

– Security: Public endpoint
– Request: TokenCreateDTO
– Response: TokenDTO

Organization
Structures

• OrganizationDTO

– uuid (UUID) – unique identification
– name (String) – human-readable name for package
– groupId (String) – identification of organization

Operations

• GET /organization/current – Get information about current used
organization

– Security: Secured endpoint (no special permission needed)
– Request: -
– Response: OrganizationDTO

• PUT /organization/current – Modify current used organization

– Security: Secured endpoint (need: ORG_PERM)
– Request: OrganizationDTO
– Response: OrganizationDTO

Users
Structures

• User

– uuid (UUID) – unique identificator
– name (String)
– surname (String)
– email (String)

88

– role (Role) – one of the admin, datasteward, researcher or custom
– permissions ([Permission]) – list of permissions (available per-

missions are UM_PERM, ORG_PERM, KM_PERM, KM_UPGRADE_PERM,
KM_PUBLISH_PERM, PM_PERM, WIZ_PERM and DMP_PERM)

• UserCreateDTO

– uuid (UUID) – unique identificator
– name (String)
– surname (String)
– email (String)
– role – one of the admin, datasteward or researcher
– password (String)

• UserPasswordDTO

– password (String)

Operations

• GET /users – List all users

– Security: Secured endpoint (need: UM_PERM)
– Request: -
– Response: UserDTO

• POST /users – Create user

– Security: Secured endpoint (need: UM_PERM)
– Request: UserCreateDTO
– Response: UserDTO

• GET /users/:userId – Get user detail

– Security: Secured endpoint (need: UM_PERM)
– Request: -
– Response: UserDTO

• GET /users/current – Get my profile

– Security: Secured endpoint (no special permission needed)
– Request: -
– Response: UserDTO

89

A. API Specification

• PUT /users/:userId – Modify user

– Security: Secured endpoint (need: UM_PERM)
– Request: UserDTO
– Response: UserDTO

• PUT /users/:userId/password – Change password to user

– Security: Secured endpoint (need: UM_PERM)
– Request: UserPasswordDTO
– Response: -

• PUT /users/current – Modify my profile

– Type: Secured endpoint (no special permission needed)
– Request: UserDTO
– Response: UserDTO

• PUT /users/current/password – Change my password

– Security: Secured endpoint (no special permission needed)
– Request: UserPasswordDTO
– Response: -

• DELETE /users/:userId – Delete user

– Security: Secured endpoint (need: UM_PERM)
– Request: -
– Response: -

Branch
Structures

• BranchDTO

– uuid (String) – unique identification
– name (String) – human-readable name for package
– groupId (String) – identification of organization
– artifactId (String) – identification of concrete knowledge model

in organization
– parentPackageId (Maybe String) – unique identification of parent

package (if exists)

90

– lastAppliedParentPackageId (Maybe String) – merge properties

• BranchWithStateDTO

– uuid (String) – unique identification
– name (String) – human-readable name for package
– groupId (String) – identification of organization
– artifactId (String) – identification of concrete knowledge model

in organization
– parentPackageId (Maybe String) – unique identification of parent

package (if exists)
– lastAppliedParentPackageId (Maybe String) – merge properties
– state (BranchState) – one of the five state – Default, Edited,

Outdated, Migrating or Migrated

Operations

• GET /branches – List all branches

– Security: Secured endpoint (need: KM_PERM)
– Request: -
– Response: BranchWithStateDTO

• POST /branches – Create branch

– Security: Secured endpoint (need: KM_PERM)
– Request: BranchDTO
– Response: BranchDTO

• GET /branches/:branchId – Get branch detail

– Security: Secured endpoint (need: KM_PERM)
– Request: -
– Response: BranchWithStateDTO

• PUT /branches/:branchId – Modify branch

– Security: Secured endpoint (need: KM_PERM)
– Request: BranchDTO
– Response: BranchDTO

• DELETE /branches/:branchId – Delete branch

– Security: Secured endpoint (need: KM_PERM)
– Request: -
– Response: -

91

A. API Specification

Knowledge Model
Structures

• KnowledgeModelDTO

– includes a knowledge model

Operations

• GET /branches/:branchId/km – Get current version of knowledge
model

– Security: Secured endpoint (need: KM_PERM)
– Request: -
– Response: KnowledgeModelDTO

Event
Structures

• EventsDTO

– list of events

Operations

• GET /branches/:branchId/events – List all events which were cre-
ated in this branch

– Security: Secured endpoint (need: KM_PERM)
– Request: -
– Response: EventsDTO

• POST /branches/:branchId/events/_bulk – Add events from re-
quest to branch events

– Security: Secured endpoint (need: KM_PERM)
– Request: EventsDTO
– Response: EventsDTO

• DELETE /branches/:branchId/events – Delete all events which
were created in this branch

– Security: Secured endpoint (need: KM_PERM)
– Request: -
– Response: -

92

Version

Structures

• VersionDTO

– description (String) – short description about changes which this
version brings

Operations

• PUT /branches/:branchId/versions/:version – Create package from
branch

– Security: Secured endpoint (need: KM_PUBLISH_PERM)
– Request: -
– Response: PackageDTO (defined in Package API Specification (A))

Migration

Structures

• MigratorStateDTO

– branchUuid (UUID) – unique identifier
– migrationState (MigrationState) – one of the four migration state

– RunningState, ConflictState, ErrorState or CompletedState
– branchParentId (String) – uuid of parent package of the branch
– targetPackageId (String) – uuid of target package on which we

migrate
– currentKnowledgeModel (Maybe KnowledgeModel) – current build

knowledge model

• MigratorStateCreateDTO

– targetPackageId (String)

• MigratorConflictDTO

– originalEventUuid (UUID) – uuid of solving event
– action (MigrationConflictAction) – one of the three action –

Apply, Edited or Reject
– event (Maybe Event)

93

A. API Specification

Operations

• GET /branches/:branchId/migrations/current – Get current mi-
gration

– Security: Secured endpoint (need: KM_UPGRADE_PERM)
– Request: -
– Response: MigratorStateDTO

• POST /branches/:branchId/migrations/current – Create migra-
tion

– Security: Secured endpoint (need: KM_UPGRADE_PERM)
– Request: MigratorStateCreateDTO
– Response: MigratorStateDTO

• DELETE /branches/:branchId/migrations/current – Cancel mi-
gration

– Security: Secured endpoint (need: KM_UPGRADE_PERM)
– Request: -
– Response: -

• POST /branches/:branchId/migrations/current/conflict – Solve
conflict

– Security: Secured endpoint (need: KM_UPGRADE_PERM)
– Request: MigratorConflictDTO
– Response: -

Packages
Structures

• PackageDTO

– id (String) – unique identification
– name (String) – human-readable name for package
– groupId (String) – identification of organization
– artifactId (String) – identification of concrete knowledge model

in organization
– version (String) – package version

94

– description (String) – short description of changes which package
brings to knowledge model

– parentPackageId (Maybe String) – unique identification of parent
package (if exists)

• PackageSimpleDTO

– name (String) – human-readable name for package
– groupId (String) – identification of organization
– artifactId (String) – identification of concrete knowledge model

in organization

Operations

• GET /packages – List all packages

– Security: Secured endpoint (need: PKG_PERM)
– Request: -
– Response: PackageDTO

• GET /packages/unique – List all packages (more versions of the same
package are displayed as one record)

– Security: Secured endpoint (need: PKG_PERM)
– Request: -
– Response: PackageSimpleDTO

• GET /packages/:pkgId – Get concrete package detail

– Security: Secured endpoint (need: PKG_PERM)
– Request: -
– Response: PackageDTO

• DELETE /packages – Delete all packages

– Security: Secured endpoint (need: PKG_PERM)
– Request: -
– Response: -

• DELETE /packages/:pkgId – Delete concrete package

– Security: Secured endpoint (need: PKG_PERM)
– Request: -
– Response: -

95

A. API Specification

IO
Structures

• IOPackageDTO

– id (String) – unique identification
– name (String) – human-readable name for package
– groupId (String) – identification of organization
– artifactId (String) – identification of concrete knowledge model

in organization
– version (String) – package version
– description (String) – short description of changes which package

brings to knowledge model
– parentPackageId (Maybe String) – unique identification of parent

package (if exists)
– events – list of events (changes)

Operations

• GET /export/:pkgId – Export package

– Security: Public endpoint
– Request: -
– Response: File including IOPackageDTO

• POST /import – Import package)

– Security: Secured endpoint (need: PKG_PERM)
– Request: File including IOPackageDTO

– Response: PackageDTO (defined in Package API Specification (A))

96

Appendix B
Acronyms

API Application Programming Interface. 2, 6, 7, 21, 65, 66, 68, 70, 76, 77,
83, 84

BSON Binary JSON. 64, 70

CI Continuous Integration. 23, 73, 84

CORS Cross-origin resource sharing. 63

CRUD Create, Read, Update, Delete. 8

DAO Data Access Object. 64

DTL Dutch Techcentre for Life Sciences. 4

FIT CTU Faculty of Information Technology Czech Technical University in
Prague. 3, 4, 6, 14, 83

GHC Glasgow Haskell Compiler. 22

HTTP Hypertext Transfer Protocol. 76

JSON JavaScript Object Notation. 3, 4, 23, 35, 63, 66

JWT JSON Web Tokens. 23, 63, 66

LTS Long Term Support. 62

REST Representational State Transfer. 21, 66

REST API Representational State Transfer Application Programming In-
terface. 7, 19, 62, 63, 83, 84

97

B. Acronyms

UI User interface. 5

UML Unified Modeling Language. 2

UUID Universally unique identifier. 11, 13

98

Appendix C
Contents of enclosed CD

readme.txt......................... the file with CD contents description
src...the directory of source codes

impl..implementation sources
thesis...............the directory of LATEX source codes of the thesis

text .. the thesis text directory
thesis.pdf.............................the thesis text in PDF format
assignment.pdf.........................assignment of master’s thesis

99

	Introduction
	Goals of the Thesis
	Methodology and Thesis Structure

	Analysis
	Introduction
	Current Project State
	Solution Requirements
	Selected Tools
	Applied Concepts of functional programming

	Design of The Migration Tool
	Introduction
	Current Approach
	Git
	My Proposal

	Implementation
	Introduction
	Project Structure
	Build Tools Setup
	Application structure
	API
	Database
	Error Handling
	Migration Tool

	Configuration, Testing and Deployment
	Introduction
	Configuration
	Testing
	Production Deployment

	Conclusion
	Goals Assessment
	Project Future

	Bibliography
	API Specification
	Acronyms
	Contents of enclosed CD

