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Bc. Vojtěch Hejl

Supervisor: doc. Ing. RNDr. Martin Holeňa, CSc.
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Abstrakt

Tato práce navazuje na výzkum L. Bajera, Z. Pitry, J. Repického a M. Holeňi
o náhradńım modelováńı v algoritmu CMA-ES. Ćılem této práce bylo ověřit
kvalitu současného návrhu a poté navrhnout varianty s testováńım v́ıce model̊u.
Hlavńım př́ınosem této práce je návrh evoluce náhradńıch model̊u v algoritmu
CMA-ES, který má velký potenciál pro vylepšeńı.
*. Kĺıčová slova black-box optimalizace, CMA-ES, zašumněné funkce, náhradńı
modely, Gaussovský proces, evoluce

Abstract

This diploma thesis draws on the research by L. Bajer, Z. Pitra, J. Repický
and M. Holeňa, which deals with the surrogate modeling in the CMA-ES
algorithm. The aim of this work was to verify the quality of the current
design and then to propose the variants with testing of multiple models. The
main contribution of this thesis is the proposal of the evolution of surrogate
models in the CMA-ES algorithm, which has a great improvement potential.
*. Keywords black-box optimization, CMA-ES, noisy environment, surrogate
models, Gaussian, process, evolution
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Nomenclature

I used notation, where bold letters, v, are vectors, capital bold letters, A, are
matrices, and a transpose is denoted by vT

E expectation value.

N (0, I) multivariate normal distribution with zero mean and unity covariance
matrix. A vector distributed according to N (0, I) has independent,
(0,1)-normally distributed components.

N (m,C) ∼m +N (0,C) multivariate normal distribution with mean m ∈
Rn and covariance matrix C ∈ Rn timesn. The matrix C is symmetric
and positive definite.

σ(g) ∈ R+ step-size.

B ∈ Rn an orthogonal matrix. Columns of B are eigenvectors of C.

C(g) ∈ Rn×n covariance matrix at generation g.

D ∈ Rn a diagonal matrix. The diagonal elements of D are square root of
eigenvalues of C and correspond to the respective columns of B.

I ∈ Rn×n identity matrix

p ∈ Rn , evolution path, a sequence of successive (normalized) steps.

g ∈ N0 generation counter, iteration number.

CMA-ES Covariance Matrix Adaptation Evolution Strategy

DTS-CMA-ES Double Trained CMA-ES

GP Gaussian process
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Introduction

“There is only one good, knowledge, and one evil, ignorance.”
(Socrates)

In past, knowledge was very important and hard to obtain. Only a few
people could read, books were expensive and rare. Ancient philosophers knew
the value of knowledge. Many people people seek them to learn from them.
Today we have knowledge (better data) more than enough. Today’s struggle
is how to process it or find desired information. Therefore, we need better
way to do so. The solution is optimization.

Optimization is process of finding an alternative with the most cost effect-
ive or highest achievable performance under the given constraints, by max-
imizing desired factors and minimizing undesired ones. In comparison, max-
imization means trying to attain the highest or maximum result or outcome
without regard to cost or expense. Practice of optimization is restricted by
the lack of full information, and the lack of time to evaluate what inform-
ation is available. In computer simulation (modeling) of business problems,
optimization is achieved usually by using linear programming techniques of
operations research[1].

Optimization is not only about processing of finding information or data.
On the contrary, it is just beginning. In each group of data we can observe
some pattern. This data corresponds to an unknown function. This function
can be estimated by using some approximation function that fits given data
points. Another important information is that even this unknown function
have global optimum, considering that function is continuous. This kind of
optimization is called black-box optimization (see 1.2).

The collected data is mostly inaccurate and contains noise, so used al-
gorithm should be robust and should handle noise with ease. Otherwise, it
may stuck in local optimum and return false results. Algorithm CMA-ES
used in this thesis is believed to handle even highly multi-modal functions
with severe noise. One subtask is validate it.
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Introduction

Even best optimization algorithm may be cost ineffective, if obtain data
points if expensive and time consuming. In this case, a surrogate model is used.
This approach consist of two steps. First step is approximate original function
with simpler function, using only a few original evaluated data points. After
that optimalization can be used. If error rate is higher than given treshold,
same points should be evaluated with original function and surrogate model
retrained.

According to the assignment, the following questions arise and will be
answered in conclusion:

• What suggest for the future ?

• Which alternative of CMA-ES is better ?

• Can CMA-ES handle noisy functions ?

4



Chapter 1
Preliminaries

The aim of this chapter is to explain a several important concepts needed to
understand this thesis.

1.1 Evolution Strategy

An evolution strategy in computer science, simulates biological evolution, I will
start with explaining some definitions.An individual (also called phenotype)
is one particular solution. The set of all considered solutions is known as
their population. The evolution is an iterative process, with the population in
each iteration called a generation. A chromozome (also called genotype) ) is
a set of parameters which define a proposed solution to the problem that the
evolution strategy is trying to solve (for example, binary array).

Evolution strategy is an optimalization technique based on evolution and
natural selection. Candidate solutions are evaluated and only the best ones
survives. New candidates are created by recombination from the previous gen-
eration. Evolution strategy has a potential to solve black-box optimalization
problems, because it needs only information about the quality of evaluated
solutions. Evolution strategies use natural problem-dependent representa-
tions, and primarily mutation and selection, as search operators. In common
with other kinds of evolutionary algorithms, the operators are applied in a
loop. An iteration of the loop is called a generation. The sequence of gen-
erations is continued until a termination criterion is met (e.g, the number of
generations, or some quality indicator of the solution)[2].

The simplest evolution strategy operates on a population of size two: the
current point (parent) and the result of its mutation. Only if the mutant’s
fitness is at least as good as the parent one, it replaces the parent of the next
generation. Otherwise the mutant is disregarded. This is called a (1+1)−ES.
More generally, λ mutants can be generated and compete with the parent,
called (1+λ)−ES. In (1, λ)−ES the best mutant becomes the parent of the
next generation while the current parent is always disregarded. For some of
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1. Preliminaries

these variants, proofs of linear convergence (in a stochastic sense) have been
derived on unimodal objective functions. Contemporary kinds of evolution
strategy often use a population of µ parents and also recombination as an
additional operator, expressed with the notation (µ/ρ+, λ)−ES. This makes
them less prone to get stuck in local optima.

1.1.1 Selection

The selection in evolution strategies considered in this thesis is deterministic
and only based on the fitness rankings, not on the actual fitness values. The
resulting algorithm is, therefore, invariant with respect to monotonic trans-
formations of the objective function. Selection is used to choose individuals
with high fitness value and go straight to an optimal solution, while pre-
serving diversity to avoid stucking in local optima. There are several variants
of selection[3]:

• Elitism: choose the best λ individuals to the next generation. Sometimes
good candidates can be lost when the crossover or mutation results in off-
springs that are weaker than the parents. Often the EA will re-discover
these lost improvements in a subsequent generation, but there is no guar-
antee. To hinder this, we can use an approach known as elitism. Elitism
involves copying a small propotion of the fittest candidates, unchanged,
into the next generation. This can sometimes have a dramatic impact on
performance by ensuring that the EA does not waste time re-discovering
previously discarded partial solutions. Candidate solutions that are pre-
served unchanged through elitism remain eligible for selection as parents
when breeding the remainder of the next generation[4].

• Roulette: the probability of selecting an individual depends on its fit-
ness. The individuals are mapped to contiguous segments of a line,
such that each individual’s segment is equal in size to its fitness. A
random number valued in the union of all these segments is generated
and the individual whose segment spans the random number is selected.
The process is repeated until the desired number of individuals, called
mating population, is obtained. This technique can be illustrated as a
roulette wheel with each slice proportional in size to the fitness.
Table 1.1 shows the selection probability for eight individuals. The in-
dividual number one is the most fit individual and occupies the largest
interval, whereas the individual number eight as the least fit individual
has the smallest interval. For selecting the mating population, an appro-
priate number of uniformly distributed random numbers (between 0.0
and 1.0) is independently generated.

• Tournament: a tournament selection involves running several ”tourna-
ments” among a few individuals chosen at random from the population.

6



1.1. Evolution Strategy

individual 1 2 3 4 5 6 7 8
Fitness value 3.0 1.75 1.5 1.25 1.0 0.75 0.5 0.25
Select. prob. 0.3 0.175 0.15 0.125 0.01 0.075 0.05 0.025

Table 1.1: Roulette selection example

The winner of each tournament (the one with the best fitness) is selected
for crossover. Selection pressure is easily adjusted by changing the tour-
nament size. If the tournament size is larger, weak individuals have a
smaller chance to be selected. Each tournament has the following steps:

1) choose k (tournament size) individuals from the population at ran-
dom

2) choose the best individual from the participants of this tournament
with probability p

3) choose the second best individual with probability p ∗ (1− p)

4) choose the third best individual with probability p ∗ ((1− p)2)

k + 2) continue with step 1 until new population is selected.

1.1.2 Crossover

The crossover operator is analogous to reproduction and biological crossover.
In this approach, more than one parent is selected and one or more off-springs
are produced using the genetic material of the parents. In this section, we
will discuss some of the most popularly used crossover operators. It should be
noted that these crossover operators are very generic and the designer might
choose to implement a problem-specific crossover operator as well.

• In the one-point crossover, a random crossover point is selected and the
tails of the two parents are swapped to get new off-springs.

Figure 1.1: one-point crossover

• Multi point crossover is a generalization of the one-point crossover wherein
alternating segments are swapped to get new off-spring

7



1. Preliminaries

Figure 1.2: multi-point crossover

• In a uniform crossover, we don’t divide the chromosome into segments,
rather we treat each gene separately. In this kind of crossover, we es-
sentially flip a coin for each chromosome to decide whether or not it’ll
be included in the off-spring. We can also bias the coin to one parent,
to have more genetic material in the child from that parent.

Figure 1.3: uniform crossover

1.1.3 Mutation

As far as real-valued search spaces are concerned, mutation is usually per-
formed by adding a normally distributed random value to each vector compon-
ent. Both the step size and the mutation strength (i.e. the standard deviation
of the normal distribution) is often governed by self-adaptation. Individual
step sizes for each coordinate or correlations between coordinates are either
governed by self-adaptation or by covariance matrix adaptation. Mutation is
a genetic operator used to maintain genetic diversity from one generation of
a population of genetic algorithm chromosomes to the next. It is analogous
to biological mutation. A mutation alters one or more gene values in a chro-
mosome from its initial state. In a mutation, the new individals may differ
entirely from individuals in the previous generation. Hence the evolution can
come to a better solution by using mutation. Mutation occurs during the
evolution according to a user-definable mutation probability. This probabil-
ity should be set low, otherwise the search will turn into a primitive random
search. A classic example of a mutation operator involves a probability that
an arbitrary bit in a genetic sequence will be changed from its original state.
A common method of implementing a mutation operator involves generating
a random variable for each chromosome in a sequence. This random variable
determines whether or not a particular chromosome will be modified. This
mutation procedure, based on biological mutation, is called single point muta-
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1.2. Black-box optimalization

Figure 1.4: Schema of black-box optimalization

tion. Other types are inversion and floating point mutation. The purpose of
mutation in the evolution is preserving and introducing diversity. Mutation
should allow the algorithm to avoid local minima by preventing the population
of chromosomes from becoming too similar to each other, thus slowing down
or even stopping evolution. This reasoning also explains the fact that most
evolution strategies avoid taking only the fittest of the population, but they
use rather a random (or semi-random) selection with a bias toward those that
are fitter[5].

1.2 Black-box optimalization

Black-box optimization refers to a problem setup in which an optimization
algorithm is supposed to optimize (e.g., minimize) an objective function f
through a so-called black-box interface: the algorithm may query the value
f(x) for a point x, but it does not obtain gradient information, and in par-
ticular it cannot make any assumptions on the analytic form of f (e.g., being
linear or quadratic). We think of such an objective function as being wrapped
in a black-box. The goal of optimization is to find an as good as possible
value f(x) within a predefined time, often defined by the number of available
queries to the black box. Problems of this type regularly appear in practice,
e.g., when optimizing parameters of a model that is either in fact hidden in
a black box (e.g., a third party software library) or just too complex to be
modeled explicitly[6].

A large variety of optimization algorithms for continuous black box optim-
ization has been proposed. The power of these algorithm is usually assessed
on collections of benchmark problems. This is an important approach to com-
parability of scientific results. However, it means that the problem to be
optimized is known to the experimenter, and hence it is not truly a black box.

f : Rn → Rx→ f(x)

9
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1.2.1 Benchmarking

A platform for systematic and sound comparisons of real-parameter global
optimisers, COmparing Continuous Optimisers (COCO), is used in this work.
The COCO provides benchmark function testbeds, experimentation templates
which are easy to parallelize, and tools for processing and visualizing data
generated by one or several optimizers. The COCO platform has been used
for the Black-Box-Optimization-Benchmarking (BBOB) workshops that took
place during the GECCO conference in years 2009, 2010, 2012, 2013, 2015,
2016 and 2017. The COCO uses several noisy function in benchmarking, in
this work are considered the following[7]:

• functions with moderate noise

- f102 Sphere with moderate uniform noise
- f104 Rosenbrock with moderate Gaussian noise

• functions with severe noise

- f107 Sphere with Gaussian noise
- f111 Rosenbrock with uniform noise
- f117 Ellipsoid with uniform noise

• highly multi-modal functions with severe noise

- f122 Schaffer’s F7 with Gaussian noise
- f123 Schaffer’s F7 with uniform noise
- f129 Gallagher’s Gaussian Peaks 101-me with uniform noise (The

function consists of 101 optima with position and height being un-
related and randomly chosen.)

1.3 Surrogate models

Surrogate models, or metamodels, are compact scalable analytic models that
approximate the multivariate input/output behavior of complex systems, based
on a limited set of computationally expensive simulations or measurements.
Surrogate models mimic the complex behavior of the underlying simulation
model, and can be used for design automation, parametric studies, design
space exploration, optimization and sensitivity analysis. Surrogate modeling
is a supervised Machine Learning (ML) technique [8].

Parameterized surrogate models are increasingly important as a means of
exploring the behavior of complex systems, and for sensitivity analysis and
optimization. Application areas include bioinformatics, network simulation,
Electronic Design Automation (EDA), ecological modeling, and many others.

10



1.3. Surrogate models

Figure 1.5: Improvement of surrogate model with additional sample

For example, an engineer may explore the behavior of an airplane wing by
running a computational model of the air flow multiple times while varying
key design parameters such as length, angle, etc. The results of these mul-
tiple experiments yield a picture of how the wing behaves in different parts
of the design space. Thorough understanding of the relationship between
design parameters and performance over the entire design space is important
for optimal design, to reduce the number of design iterations, to lower the
costs, and to improve overall quality. Usually, for parametric computational
experiments, the user selects a huge amount of simulation experiments, cov-
ering the whole design space of interest, by defining all parameter ranges and
sample distributions (min, max, step size). Note that the cross product of the
parameter ranges does not guarantee an accurate and efficient coverage of the
design space, as certain regions might be under-sampled while others might
be over-sampled. The scientific challenge of surrogate modeling is the gener-
ation of a surrogate that is as accurate as possible, using as few simulation
evaluations as possible. The process comprises three major steps which may
be interleaved iteratively:

1) Sample selection (also known as sequential design, optimal experimental
design (OED) or active learning)

2) Construction of the surrogate model and optimizing the model paramet-
ers (bias–variance trade-off)

3) Appraisal of the accuracy of the surrogate.

The accuracy of the surrogate depends on the number and location of
samples (expensive experiments or simulations) in the design space. Various
design of experiments (DOE) techniques cater to different sources of errors,
in particular errors due to noise in the data or errors due to an improper
surrogate model.

11
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Figure 1.6: Samples of 2D normal distribution.

1.4 The Multivariate Normal Distribution

A multivariate normal distribution, N (m,C), has a unimodal, ”bell-shaped”
density, where the top of the bell (the modal value) corresponds to the dis-
tribution mean, m. The distribution N (m,C) is uniquely determined by
its mean m ∈ Rn and its symmetric and positive definite covariance matrix
C ∈ Rn×n. Covariance (positive definite) matrices have an appealing geomet-
rical interpretation: they can be uniquely identified with the (hyper-)ellipsoid
x ∈ Rn|xTC−1x = 1, as shown in fig. 1.6. The ellipsoid is a surface of equal
density of the distribution. The principal axes of the ellipsoid correspond to
the directions of eigenvectors of C, the squared axes lengths correspond to the
eigenvalues. The eigendecomposition of C is

C = B(D)2BT (1.1)

where

B2 is an orthogonal matrix, BTB = BBT = I. Both columns and rows
of B form an orthonormal basis of eigenvectors.

D2 = DD = diag(d1, . . . , dn)2 = diag(d2
1, . . . , d

2
n) is a diagonal matrix with

eigenvalues of C as diagonal elements.

D = diag(d1, . . . , dn) is a diagonal matrix with square roots of eigenvalues of
C as diagonal elements.

12



1.4. The Multivariate Normal Distribution

Figure 1.7: Ellipsoids depicting one-σ lines of equal density of six different
normal distributions, where σ ∈ R+, D is a diagonal matrix, and C is a
positive definite full covariance matrix. Thin lines depict possible objective
function contour lines.

If D = σI, where σ ∈ R+ and I denotes the identity matrix, C = σ2I
and the ellipsoid is isotropic 1.7, left). If B = I, then C = D2 is a diagonal
matrix and the ellipsoid is axis parallel oriented (middle). Therefore, in the
coordinate system given by the columns of B, the distribution , N (m,C) is
always uncorrelated. The normal distribution, N (m,C) can be written in
different ways [9].

N (m,C) = m +N (m,C)

= m + C
1
2N (0, I)

= m + BD BTN (0, I)︸ ︷︷ ︸
=N (0,I)

= m + B DN (0, I)︸ ︷︷ ︸
=N (0,D2)

where C
1
2 = BDBT . The last row can be well interpreted, from right to left

• N (0, I) produces an spherical (isotropic) distribution as in 1.7, left.

• D scales the spherical distribution within the coordinate axes as in 1.7,
middle. N (0, I) = N (0,D2) has n indepentent components. The matrix
D can be interpreted as (individual) step-size matrix and its diagonal
entries are the standard deviations of the compoments.

13
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• B defines a new orientation for the ellipsoin, where the new principal
axes of the ellipsoin correspond to the columns of B. Note that B has
n2−n

2 degrees of freedom [9].

The equation above is useful to compute N (m,C) distributed vectors,
because N (0, I) is a vector of independent (0,1)-normally distributed numbers
that can easily be sampled.

1.5 CMA-ES

The Covariance Matrix Adaptation Evolution Strategy (CMA-ES) is a popular
algorithm in continuous global optimization. The CMA-ES relies on an iter-
ative updating of covariance matrix, which determines relationships between
the search point (x1, x2 . . . xn) and the output value f(x) as described in 1.2.
Continuous atributes in the input vector are typicaly distributed acording to
normal density. The number of atributes determines the dimension of the
multivariate normal distribution. A new population of sampling points for
the generation number g = 0,1,2 . . . is distributed as

x(g+1)
k ∼m(g) + σ(g)N

(
0,C(g)

)
for k = 1, . . . , λ (1.2)

where

∼ denotes the same distribution on the left and right side.

N (0,C(g)) is a multivariate normal distribution with zero mean and covari-
ance matrix C(g).

x(g+1)
k ∈ Rn, k-th offspring (individual, search point) from generation g+1.

m(g) ∈ Rn, mean value of the search distribution at generation g.

σ(g) ∈ R+, step-size, at generation g.

C(g) ∈ Rn×m,up to the scalar factor σ(g)2 , C(g) is the covariance matrix
of the search distribution at generation g.

λ ≥ 2 , population size, sample size, number of offspring.

CMA-ES is sometimes interpreted as a robust local search method. Its
robustness is related to invariance properties with respect to objective func-
tion scaling and coordinate system rotations. This algorithm was consistently
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1.5. CMA-ES

Algorithm 1: CMA-ES (simplified pseudocode)[10]
Input : original fitness function f , step-size σ(0) ∈ R+, initial mean

m(0) ∈ RD
Output: x̂opt – point with the minimum achieved fitness

1 set the population size λ, µ, w1,...,µ and other parameters
(cσ, dσ, cc, µcov, ccov) to default values (for λ and µ, defaults
are λ = 4 + b3 lnDc, µ = bλ/2c)

2 initialize the evolution path p(0)
σ = 0, p(0)

c = 0, covariance matrix
C(0) = I

3 for generation g = 0, 1, 2, . . . until stopping conditions met do
4 xk ∼ N (m(g), (σ(g))2C(g)) for k = 1, . . . , λ /* sample a new

population */
5 sorted x1:λ ← f -evaluate all x1, . . . ,xλ /* fitness evaluation */
6 m(g+1) =

∑µ
i=1wixi:λ /* selection and recombination */

7 p(g+1)
σ ← aggregate the (σ(g))2C-normalized difference of means

(m(g+1)−m(g))/(σ(g)
√

C(g)) into the evolution path p(g)
σ

8 σ(g+1) ← update the step-size according to the length ‖p(g+1)
σ ‖

9 p(g+1)
c ← aggregate the σ(g)-normalized difference of means

(m(g+1) −m(g))/σ(g) into the evolution path p(g)
c

10 C(g+1) ← perform the rank-one update (based on p(g+1)
c ) and

rank-µ update (based on differences
(x(g+1)
i:λ −m(g)), i = 1, . . . , µ) of C(g)

11 end

found to be highly performing in the Black-Box Optimization Benchmark-
ing (BBOB) workshops for low, moderate and highly multimodal functions of
dimensions between 5 and 40 if it is coupled with a restart mechanism [9].

1.5.1 Moving the mean

Mean in next generation is weighted average of best µ points from candidate
solutions x(g+1)

1 ,. . . , x(g+1)
λ

m(g+1) =
µ∑
i=1

wix
(g+1)
i:λ (1.3)

µ∑
i=1

wi = 1, w1 ≥ w2 ≥ · · · ≥ wµ > 0 (1.4)
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where

µ ≤ λ is the parent population size, i.e. the number of selected points.

wi...µ ∈ R+ positive weight coefficients for recombination. For wi=i...µ = 1/µ
Equation 1.3 calculates the mean value of µ selected points.

x
(g+1)
i:λ , i-th best individual out of x(g+1)

1 ,. . . ,x(g+1)
λ . The index i : λ detones the

index of the i-th ranked individual ad f(x(g+1)
1:λ ) ≤ f(x(g+1)

2:λ ) ≤ · · · ≤ f(x(g+1)
λλ ),

where f is the objective function to be minimized.
Equation 1.3 implements truncation selection by choosing µ < λ out of

λ offspring points. Assigning different weights wi must also be interpreted
as a selection mechanism. Equation 1.3 implements weighted intermediate
recombination by taking µ > 1 individuals into account for a weighted average.

The measure

µeff =
(‖w‖1
‖w‖2

)2
= ‖w‖

2
1

‖w‖22
= 1
‖w‖22

=
( µ∑
i=1

w2
i

)−1
(1.5)

will be repeatedly used in the following and can be paraphrased as variance
effective selection mass. From the definition of wi in 1.4 we derive 1 ≤ µeff ≤ µ,
and µeff = µ for equal recombination weights, i.e. wi = 1/µ for all i = 1 . . . µ.
Usually, µeff ≈ λ/4 indicates a reasonable setting of wi. A typical setting
could be wi ∝ µ− i− 1, and µ ≈ λ/2.

1.5.2 Adapting the covariance matrix

In this section, the update of the covariance matrix, C, is derived. We will
start out estimating the covariance matrix from a single population of one
generation (Sect. 1.5.2.1). For small populations this estimation is unreli-
able and an adaptation procedure has to be invented (rank-µ-update, Sect.
1.5.2.2). In the limit case only a single point can be used to update (adapt) the
covariance matrix at each generation (rank-one-update, Sect. 1.5.2.3). The
adaptation can be enhanced by exploiting dependencies between successive
steps applying cumulation (Sect. 3.3.2). Finally we combine the rank-µ and
rank-one updating methods (Sect. 3.4).

1.5.2.1 Estimating the covariance matrix from scratch

For the moment we assume that the population contains enough informa-
tion to reliably estimate a covariance matrix from the population. We can
(re-)estimate the original covariance matrix C(g) using the sampled popula-
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1.5. CMA-ES

tion, x(g+1)
1 . . . x

(g+1)
λ . To ”estimate” a ”better” covariance matrix, weighted

selection mechanism is used.

C(g+1)
µ =

µ∑
i=1

wi

(
x(g+1)
i:λ −m(g)

)(
x(g+1)
i:λ −m(g)

)T
(1.6)

The matrix C(g+1)
µ is an estimator for the distribution of selected steps.

Sampling from C(g+1)
µ tends to reproduce selected, i.e. successful steps, giving

a justification for what a ”better” covariance matrix means. In order to ensure,
that C(g−1)

µ is a reliable estimator, the variance effective selection mass µeff
must be large enough.

1.5.2.2 Rank-µ-update

To achieve fast search (opposite to more robust or more global search), the
population size λ must be small. Because µeff ≈ λ/4 also µeff must be small
and we may assume, e.g., µeff ≤ 1 + ln n. Then, it is not possible to get
a reliable estimator for a good covariance matrix from scratch, as was in
previous section. As a remedy, information from previous generations is used
additionally. For example, after a sufficient number of generations, the mean
of the estimated covariance matrices from all generations,

C(g+1) = 1
g + 1

g∑
g+1

1
σ(i)2 C(i+1)

µ (1.7)

becomes a reliable estimator for the selected steps. To make C(g)
µ from dif-

ferent generations comparable, the different σ(i) are incorporated. In equation
above, all generation steps have the same weight. To assign recent generations
a higher weight, exponential smoothing is introduced. Choosing C(0) = I to
be the unity matrix and a learning rate 0 < cµ ≤ 1, then C(g+1) reads

C(g+1) = (1− cµ)C(g) + cµ
1

σ(g)2 C(g+1)
µ (1.8)

= (1− cµ)C(g) + cµ

µ∑
i=1

wiy(g+1)
i:λ y(g+1)T

i:λ (1.9)

= C(g)1/2
(

I + cµ

µ∑
i=1

wi

(
z(g+1)
i:λ z(g+1)T

i:λ − I
))

C(g)1/2 (1.10)

where

cµ ≤ 1 learning rate for updating the covariance matrix. For cµ = 1, no
prior information is retained and C(g+1) = 1

σ(g)2 C(g+1)
µ For cµ = 0, no learning

takes place and C(g+1) = C(0). Here, cµ ≈ min(1, µeff/n
2) is a reasonably
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choice.

y(g+1)
i:λ = (x(g+1)

i:λ −m(g))/σ(g).

z(g+1)
i:λ = C(g)−1/2y(g+1)

i:λ is the mutation vector expressed in the unique co-
ordinate system where the sampling is isotropic and the respective coordinate
system transformation does not rotate the original principal axes of the dis-
tribution.

This covariance matrix update is called rank-µ-update, because the sum
of outer products is of rank min(µ, n) The choice of cµ is crucial. Small values
lead to slow learning, too large values lead to a failure, because the covariance
matrix degenerates. Fortunately, a good setting seems to be largely independ-
ent of the function to be optimized. A first order approximation for a good
choice is cµ ≈ µeff/n

2. Therefore, the characteristic time horizon is roughly
n2/µeff . Even for the learning rate cmu = 1, adapting the covariance mat-
rix cannot be accomplished within one generation. The effect of the original
sample distribution does not vanish until a sufficient number of generations.
Assuming fixed search costs (number of function evaluations), a small popu-
lation size λ allows a larger number of generations and therefore usually leads
to a faster adaptation of the covariance matrix.

1.5.2.3 Rank-one-update

In Section 1.5.2.1 we estimated the complete covariance matrix from scratch,
using all selected steps from a single generation. We now take precisely the
opposite viewpoint. We will repeatedly update the covariance matrix in the
generation sequence using a single selected step only. First, this perspective
will give a justification of the adaptation rule in previous section. Second, we
will introduce the so-called evolution path that is finally used for a rank-one
update of the covariance matrix.

A Different Viewpoint
We consider a specific method to produce n-dimensional normal distribu-

tions with zero mean. Let the vectors y1, . . . yg0 ∈ Rn, g0 ≥ n, span Rn and
let N(0, 1) denote independent (0, 1)-normally distributed random numbers,
then

N (0, 1)y1 + · · ·+N (0, 1)yg0 ∼ N
(

0,
g0∑
i=1

yiyTi

)
(1.11)

is a normally distributed random vector with zero mean and covariance
matrix

∑g0
i=1 yiyTi The random vector is generated by adding ”line-distribution”

N (0, 1)yi . The singular distribution N (0, 1)yi ∼ N (0,yiyTi ) generates the
vector yi with maximum likelihood considering all normal distributions with
zero mean.
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1.5. CMA-ES

Figure 1.8: Change of the distribution according to the covariance matrix
update. Left: vectors e1 and e2, and C(0) = I = e1eT1 + e2eT2 . Middle:
vectors 0.91e1, 0.91e2, and 0.41y1 (the coefficients deduce from c1 = 0.17),
and C(1) = (1− c1)I + c1y1yT1 , where y1 = (−0.59

−2.2 ). The distribution ellipsoid
is elongated into the direction of y1, and therefore increases the likelihood of
y1. Right: C(2) = (1− c1)C(1) + c1y2yT2 , where y2 = ( 0.97

1.5 ).

Considering previous distribution and a slight simplification of rank-µ-
update, we try to gain insight into the adaptation rule for the covariance
matrix. Let the sum in rank-µ-update consist of a single summand only (e.g.
µ = 1), and let yg+1 = x(g+1)

1:λ −m(g)

σ(g) . Then, the rank-one update for the
covariance matrix reads

C(g+1) = (1− c1)C(g) + c1yg+1 + yTg+1 (1.12)

The right summand is of rank one and adds the maximum likelihood term
for yg+1 into the covariance matrix C(g). Therefore the probability to generate
yg+1 in the next generation increases.

An example of the first two iteration steps is shown in Figure 1.8. The
distribution N (0,C(1)) tends to reproduce y1 with a larger probability than
the initial distribution N (0, I), the distribution N (0,C(2)) tends to reproduce
y2 with a larger probability than N (0,C(1)), and so forth. When y1, . . . ,yg
denote the formerly selected, favorable steps, N (0,C(g)) tends to reproduce
these steps. The process leads to an alignment of the search distribution
N (0,C(g)) to the distribution of the selected steps. If both distributions
become alike, as under random selection, in expectation no further change of
the covariance matrix takes place.

Cumulation: Utilizing the Evolution Path
We have used the selected steps, y(g+1)

i:λ = (x(g+1)
i:λ −m(g))/σ(g), to update

the covariance matrix in rank-µ-update. We call a sequence of successive
steps, the strategy takes over a number of generations, an evolution path.
An evolution path can be expressed by a sum of consecutive steps. This
summation is referred to as cumulation. To construct an evolution path, the
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step-size σ is disregarded. For example, an evolution path of three steps of
the distribution mean m can be constructed by the sum

m(g+1) −m(g)

σ(g) + m(g) −m(g−1)

σ(g−1) + m(g−1) −m(g−2)

σ(g−2) (1.13)

In practice, to construct the evolution path, pc ∈ Rn, we use exponential
smoothing as in (14), and start with p(0)

c = 0.

p(g+1)
c = (1− cc)p(g)

c +
√
cc(2− cc)µeff

m(g+1) −m(g)

σ(g) (1.14)

where

p(g)
c ∈ Rn, evolution path at generation g.

cc ≤ 1. 1/cc is the backward time horizon of the evolution path pc that
contains roughly 63% of the overall weight. A time horizon between

√
n and

n is reasonable.
The factor

√
cc(2− cc)µeff is a normalization constant for pc. For cc = 1

and µeff = 1, the factor reduces to one, and pg+1
c = (x(g+1)

1:λ −m(g))/σ(g).

The (rank-one) update of the covariance matrix C(g) via the evolution
path p(g+1)

c reads

C(g+1) = (1− c1)C(g) + c1p(g+1)
c p(g+1)T

c . (1.15)

An empirically validated choice for the learning rate is c1 ≈ 2/n2.
Using the evolution path for the update of C is a significant improvement

of rank-µ-update for small µeff, because correlations between consecutive steps
are exploited. The leading signs of steps, and the dependencies between con-
secutive steps play a significant role for the resulting evolution path p(g+1)

c .

1.5.3 Combining rank-µ-Update and cumulation

The final CMA update of the covariance matrix combines rank-µ-update and
rank-one-update.

C(g+1) = (1−c1 − cµ)C(g)

+ c1 p(g+1)
c p(g+1)T

c︸ ︷︷ ︸
rank-one update

+cµ
µ∑
i=1

wiy(g+1)
i:λ

(
y(g+1)
i:λ

)T
︸ ︷︷ ︸

rank-µ update

(1.16)

where
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Figure 1.9: Three evolution paths of respectively six steps from different selec-
tion situations (idealized). The lengths of the single steps are all comparable.
The length of the evolution paths (sum of steps) is remarkably different and
is exploited for step-size control.

c1 ≈ 2/n2.

cµ ≈ min(µeff/n
2, 1− c1).

y(g+1)
i:λ = (x(g+1)

i:λ −m(g))/σ(g)

The equation combines the advantages of rank-µ-update and rank-one-
update. On the one hand, the information within the population of one gener-
ation is used efficiently by the rank-µ update. On the other hand, information
of correlations between generations is exploited by using the evolution path
for the rank-one update. The former is important in large populations, the
latter is in particular important in small populations.

1.5.4 Step-size control

The covariance matrix adaptation, introduced in the last section, does not
explicitly control the “overall scale” of the distribution, the step-size. The
covariance matrix adaptation increases the scale only in one direction for each
selected step, and it decreases the scale only implicitly by fading out old
information via the factor 1 − c1 − cµ. There are two specific reasons to
introduce a step-size control in addition to the adaptation rule for C(g).

1. The optimal overall step length cannot be well approximated by covari-
ance matrix adaptation, in particular if µeff is chosen larger than one.

2. The largest reliable learning rate for the covariance matrix update in is
too slow to achieve competitive change rates for the overall step length.

To control the step-size σ(g) an evolution path is utilized, i.e. a sum of
successive steps. The method can be applied independently of the covariance
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matrix update and is denoted as cumulative path length control, cumulative
step-size control, or cumulative step length adaptation (CSA). The length of
an evolution path is exploited, based on the following reasoning:

• Whenever the evolution path is short, single steps cancel each other out
(Fig. 1.9, left). Loosely speaking, they are anti-correlated. If steps
annihilate each other, the step-size should be decreased.

• Whenever the evolution path is long, the single steps are pointing to
similar directions (Fig. 1.9, right). Loosely speaking, they are correl-
ated. Because the steps are similar, the same distance can be covered by
fewer but longer steps into the same directions. In the limit case, where
consecutive steps have identical direction, they can be replaced by an
enlarged single step. Consequently, the step-size should be increased.

• Subsuming, in the desired situation the steps are (approximately) per-
pendicular in expectation and therefore uncorrelated (Fig. 1.9, middle).

To decide whether the evolution path is “long” or “short”, we compare the
length of the path with its expected length under random selection. Under
random selection consecutive steps are independent and therefore uncorrel-
ated. If selection biases the evolution path to be longer then expected, σ is
increased, and, vice versa, if selection biases the evolution path to be shorter
than expected, σ is decreased. In the ideal situation, selection does not bias
the length of the evolution path and the length equals its expected length
under random selection.

To construct the evolution path, pσ, a conjugate evolution path is con-
structed, because the expected length of the evolution path pc depends on its
direction. Initialized with p(0)

σ = 0, the conjugate evolution path reads

p(g+1)
σ = (1− cσ)p(g)

σ +
√
cσ(2− cσ)µeffC(g)− 1

2 m(g+1) −m(g)

σ(g) (1.17)

where

p(g)
σ ∈ Rn is the conjugate evolution path at generation g.

cσ < 1. Again 1/cσ is the backward time horizon of the evolution path.
For small µeff, a time horizon between

√
n and n is reasonable.√

cσ(2− cσ)µeff is a normalization constant.

C(g)− 1
2 def= B(g)D(g)−1B(g)T , where C(g) = B(g)(D(g))2B(g)T is an eigen-

decomposition of C(g), where B(g) is an orthonormal basis of eigenvectors,
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and the diagonal elements of the diagonal matrix D(g) are square roots of the
corresponding positive eigenvalues.

The transformation C(g)− 1
2 makes the expected length of p(g+1)

σ independ-
ent of its direction, and for any sequence of realized covariance matrices
C(g)
g=0,1,2,... we have under random selection p(g+1)

σ ∼ N (0, I), given p0
σ ∼

N (0, I). To update σ(g), we “compare” ‖p(g+1)
σ ‖ with its expected length

E‖N (0, I)‖, so final σ update is:

σ(g+1) = σ(g)exp
(
cσ
dσ

( ‖p(g+1)
σ ‖

E‖N (0, I)‖ − 1
))

(1.18)

where

dσ ≈ 1, damping parameter, scales the change magnitude of σ(g) .

E‖N (0, I)‖, expectation of the Euclidean norm of a N (0, I) distributed ran-
dom vector.

For ‖p(g+1)
σ ‖ = E‖N (0, I)‖ is σ(g) unchanged, while σ(g) is increased for

‖p(g+1)
σ ‖ > E‖N (0, I)‖, and σ(g) is decreased for ‖p(g+1)

σ ‖ < E‖N (0, I)‖.

The length of the evolution path is an intuitive and empirically well val-
idated goodness measure for the overall step length. For µeff > 1 it is the
best measure to our knowledge. Nevertheless, it fails to adapt nearly optimal
step-sizes on very noisy objective functions.
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Chapter 2
Current state

This work is a part of a larger project focusing on surrogate modeling in CMA-
ES. In this project, the CMA-ES is interconnected with Gaussian processes
(GP) or random forests. In each experiment, only one surrogate model is used,
which is retrained from scratch in every iteration of the CMA-ES. This work
used a surrogate model for CMA-ES called the DTS-CMA-ES (double trained
surrogate CMA-ES) (see alg. 2). This alternative to CMA-ES is developed
by L. Bajer, Z. Pitra, J. Repický, and M. Holeňa.[10].

In every generation of the DTS-CMA-ES, there are several operations:

1) Train a new GP model from scratch using archived original evaluated
points. (If enough points are available).

2) Sample minTrainSize points from the current CMA-ES distribution.

3) Evaluate new points with the trained GP model.

4) Evaluate some points with the original objective function.

5) Validate the GP model with those points.

6) Retrain the GP model with some of those points.

7) Save the points evaluated with the original objective function to the
archive for future model training.

2.1 Gaussian Processes

A Gaussian process on the considered set X ⊆ RD is a collection of random
variables (fGP (x))x∈X , indexed by the space X , such that any finite n-element
sub-collection has a joint n-dimensional normal distribution.

Each Gaussian process is specified by its mean µ : X → R and covari-
ance function K : X × X → R+

0 where µ(x) = E[fGP (x)] and K(x1,x2) =
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Algorithm 2: DTS-CMA-ES
Input : original fitness function f , step-size σ(0) ∈ R+, initial mean

m(0) ∈ Rd, ratio of original-evaluated points α(0),
criterion for the selection of original-evaluated points C,
maximum training set size Nmax,covariance function K

Output: x̂opt – point with the minimum achieved fitness
1 A ← ∅; λ, σ(0),m(0),C← CMA-ES initialize /* initialization */
2 for generation g = 0, 1, 2, . . . until stopping conditions met do
3 xk ∼ N (m(g), (σ(g))2C(g)) for k = 1, . . . , λ /* CMA-ES

sampling */
4 fM1 ← trainModel(A, Nmax,K, σ

(g),C(g)) /* 1st model training
*/

5 (ŷ, ŝ2)← fM1([x1, . . . ,xλ]) /* model-fitness evaluation */
6 Xorig ← select dα(g)λe best points according to the criterion C
7 yorig ← f(Xorig) /* original-fitness evaluation */
8 A = A ∪ {(Xorig,yorig)} /* archive update */
9 fM2 ← trainModel(A, Nmax,K, σ

(g),C(g)) /* model retrain */
10 y← fM2([x1, . . . ,xλ]) /* 2nd model prediction */
11 (y)k ← (yorig)i for all original-evaluated (yorig)i ∈ yorig /* fitness

replace */
12 sorted x1:λ ← sort x1, . . . ,xλ based on (y1, . . . ,yλ)> /* population

sort */
13 σ(g+1),m(g+1),C(g+1) ← CMA-ES update based on x1:λ
14 end
15 x̂opt ← xk from A corresponding to the minimal yk

cov(fGP (x1), fGP (x2)). Both functions are parametrized by a relatively small
number of parameters which are usually fitted by the maximum-likelihood
(ML) or leave-one-out cross-validation (LOO-CV) method. Since both func-
tions µ,K are themselves parameters of the GP, their parameters are usually
called hyperparameters of the GP.

Function values y are often accessible only as noisy observations y =
fGP (x) + ε where ε is a zero-mean Gaussian noise with the variance σ2

n. The
noise variance σ2

n determines how precisely the GP can fit to the training data.
Consequently, the covariance of noisy observations becomes

cov(yp, yq) = K(xp,xq) + σ2
nδp,q (2.1)

where δp,q = 1 for p = q and δp,q = 0 otherwise.
Prediction. Using a Gaussian process for prediction always starts with a
training set of N points XN = {xi | xi ∈ X , i = 1, . . . , N} for which the func-
tion values yN = {yi = f(xi), i = 1, . . . , N} are known. If the mean function
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µ of the GP is zero, then yN |XN ∼ N (0,CN ). We consider the prediction
in a new, (N + 1)-st point (x∗, y∗). Adding this point to the training set, the
conditional distribution of the extended vector yN+1 = (y1, . . . , yN , y

∗)> is

yN+1 |XN+1 ∼ N (0,CN+1). (2.2)

Let us look at the covariance matrices if the observations are considered
noisy:

CN = KN + σ2
nIN , where (2.3)

(KN )i,j = (K(XN ,XN ))i,j = K(xi,xj) (2.4)

and KN = K(XN ,XN ) is the matrix of the covariance-function values between
all the training points. The extended covariance matrix can be written as

CN+1 =
(
K(XN ,XN ) + σ2

nIN K(XN ,x∗)
K(x∗,XN ) K(x∗,x∗)

)
(2.5)

where
K(XN ,x∗) = K(x∗,XN )> is the vector of covariances between the new

point x∗ and the training data XN .
Finally, conditioning the prior distribution of yN+1 (2.2) on the observa-

tions yN , the one-dimensional Gaussian distribution of y∗ is

y∗ |XN+1,yN ∼ N (ŷ∗, (ŝ∗)2), where (2.6)
ŷ∗ = K(x∗,XN ) C−1

N yN (2.7)
(ŝ∗)2 = K(x∗,x∗)−K(x∗,XN ) C−1

N K(x∗,XN )>. (2.8)

Abandoning the assumption µ(x) = 0, equation (2.7) generalizes to

ŷ∗ = µ(x∗) +K(x∗,XN ) C−1
N (yN − µ(XN )) (2.9)

where the mean function is most commonly set to a constant µ(x) = mµ.
From the computational perspective, the calculation of the covariance mat-

rix CN takes O(DN2) time, and the complexity of the likelihood calculation
for hyperparameter estimation is O(N3) due to inversion of CN . Once the
C−1
N is calculated, the complexity of the prediction is only O(N2).

Criteria for the selection of original-evaluated points. While the non-
gaussian-process surrogate algorithms select points for the original evaluation
mostly according to the predicted fitness, the Gaussian process surrogates,
which for any point x predict the whole Gaussian distributionN (ŷ(x), (ŝ(x))2),
offer more options when used with the individual-based or doubly trained EC.
The following criteria are considered in the DTS-CMA-ES. Whereas the first
four are defined for any point of the input space and have been used in Bayesian
optimization for decades, the last one, Expected ranking difference error, is our
new contribution directly exploiting the DTS-CMA-ES’ Gaussian processes
prediction and is defined only for the points from the considered population.
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• GP predictive mean. The GP mean prediction ŷ(x) is the maximum-
likelihood estimate of the original fitness. This criterion is defined as its
negative value

CM(x) = − ŷ(x) .

• GP predictive standard deviation. Choosing the points with the highest
uncertainty leads to the criterion

CSTD(x) = ŝ(x) .

• Expected improvement (EI). If ymin stands for the minimum fitness in
the considered training set y1, . . . , yN , the EI criterion is

CEI(x) = E((ymin − f(x))I(f(x) < ymin) | y1, . . . , yN ) , where

I(f(x) < ymin) =
{

1 for f(x) < ymin
0 for f(x) ≥ ymin

.

• Probability of improvement (PoI). The PoI express the probability of
finding lower fitness than some threshold T

CPoI(x, T ) = P (f(x) ≤ T | y1, . . . , yN ) = φ

(
T − ŷ(x)
ŝ(x)

)
where φ is the distribution function of N (0, 1). As T , the value T = ymin
or a slightly higher value is usually chosen.

• Expected ranking difference error (ERDE). The goal of this criterion is
to select the points from the current population for which the expected
RDE would decrease most after adding them to the GP training set. It is
a ranking counterpart of the GP predictive standard deviation criterion
since it selects the points for which the model is least certain. In DTS-
CMA-ES, the RDEµ has been used as an error measure.

2.2 Random forests

Another type of surrogate models used in this project is a random forest. A
random forest is actually an ensemble of decision trees. Decision trees have
a wide spectrum of forms, utilizations, and properties. This project pays at-
tention only to binary regression trees with real inputs. In such regression
trees, each observation x = (x1, x2, . . . , xD) ∈ RD passes through a series of
binary decisions (xi

?
< c ∈ R) associated with internal nodes and arrives in

the leaf node containing a real-valued constant utilized for the prediction of
function values y. Each binary decision determines whether the observation
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proceeds to the left or right child of the respective internal node. The tree
growing starts with one node (root) and a set of all input data. As the first
step, real constants (left and right) for all allowable splits of the input set in
all variables of the input space are calculated by averaging function values
of training points in respective subsets. As the second step, a split into two
subsets according to the with the minimal mean-squared error (MSE) between
the resulting averages and the training points is chosen, and apropriate child
nodes are connected to the root. Those two steps are repeated recursively
with the children. The tree growing stops whenever any of the user-defined
constraints holds: the tree reaches the allowed maximum of splits, the value
of the MSE of the predictors decreases below a specified threshold, or if each
node contains at least the defined number of points and any additional split
would violate it. An important aspect of random forests are random differ-
ences between individual trees within the ensemble. This increases robustness
and improves predictive generalization. The forest gains randomness during
training by bagging (see 3). The overall forest prediction is provided by av-
eraging all tree predictions. This form of prediction means the larger the
ensemble the greater the robustness to noise.

2.3 Experimental setting

One goal of my work is to test surrogate models with the BBOB noisy bench-
mark. The project to which my work belongs is focused only on BBOB bench-
marks without noise so it isn’t optimalized for this task. However, the CMA-
ES algorithm is believed to handle noisy functions with ease. My task is to
validate this. The project has many settings concerning the BBOB, surrog-
ate management, model parameters and the CMA-ES itself. Experiments are
configured in a text file and performed on the Czech MetaCentrum[11], online
grid infrastructure. Here is an experiment configuration example[12]

% BBOB/COCO framework s e t t i n g s
bbobParams = {

’ dimensions ’ , {2} ,
’ f unc t i ons ’ , {102} ,
’ op t func t i on ’ , {@opt s cmaes } ,
’ i n s tance s ’ , { [ 1 : 5 , 4 1 : 5 0 ] } ,
’ maxfunevals ’ , { ’250 ∗ dim ’ } ,
} ;

• dimensions – list of dimensions of input space which should be tested
2,3,5,10,20 (integer, integer...)

• functions – list of BBOB function numbers to be tested cell2num(1:24)
(integer, integer...)
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• opt function – handle to a BBOB wrapper for the optimizer @opt s cmaes
(function handle)

• instances – vector of instances to be tested; for BBOB final results,
use the default value [1:5, 41:50] (integer vector)

• maxfunevals – maximal number of (original) function evaluations –
string to be eval-ed in surrogateManager(); particularly, the dim para-
meter can be used ’250 * dim’ (string)

% Surrogate manager parameters
surrogateParams = {

’ evoControl ’ , { ’ doublet ra ined ’ } ,
’ modelType ’ , { ’ gp ’ } ,
’ evoControlPreSampleSize ’ , { 0 } ,
’ evoControlTrainRange ’ , { 5 , 10 } ,
’ evoControlTrainNArchivePoints ’ , { ’15∗dim ’ , ’30∗dim ’ }
’ evoControlSampleRange ’ , { 1 } ,
’ evoControlRestr ictedParam ’ , { 0 . 1 , 0 . 2 , 0 . 6 , 0 . 9} ,
} ;

surrogateParams – structure array defining behaviour and settings of the
surrogate modelling, i.e. for the function surrogateManager() and functions
called from within there. The following settings is recommended to be set:

• evoControl – type of evolution control to be used ’none’ ( ’double-
trained’ — ’individual’ — ’generation’ — ’none’ )

• modelType – the type of a surrogate model to be used, Gaussian pro-
cesses and random forests are implemented so far. The special model
’bbob’ stands for a virtual model which in fact returns exact values from
the respective BBOB functions. The default value ” causes an error, so
it really should be set to any of the three valid models. ” ( ’gp’ — ’rf’
— ’bbob’ )

• evoControlPreSampleSize – 0.25, 0.5, 0.75, will be multiplied by pop-
ulation size. This number determine number of points evaluated by
original fitness function.

• evoControlTrainRange – will be multiplied by σ in CMA-ES covariace
matrix. It is maximum point distance from CMA-ES mean in current
generation. It is used to get subset of archived points.

• evoControlTrainNArchivePoints – selects points from subset given by
evoControlTrainRange to re-train model. if too many points are given,
clustering is performed (e.g. by k-means).
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• evoControlSampleRange – will multiply σ used in CMA-ES, therefore
increase probability of selecting more distant points.

• evoControlRestrictedParam – percentage of points in subset evaluated
by original fitness function.

% Model parameters
modelParams = { . . .

’ u s eSh i f t ’ , { f a l s e } ,
’ predict ionType ’ , { ’ sd2 ’ } ,
’ t ra inAlgor i thm ’ , { ’ fmincon ’ } ,
’ covFcn ’ , { ’{@covMaterniso , 5} ’ } ,
’ hyp ’ , { s t r u c t ( ’ l i k ’ , l og ( 0 . 0 1 ) , . . .

’ cov ’ , l og ( [ 0 . 5 ; 2 ] ) ) } ,
} ;

modelParams – structure array defining behaviour and settings of the model.

• useShift – whether use shift mean during generationUpdate().

• predictionType – type of prediction (f-values, PoI, EI).

• trainAlgorithm – type of learning algoritm (usualy fmincon).

• covFcn – type of covariation function.

• hyp – structure array of starting values of hyperparameters for likelihood
function and covariation function.

% CMA−ES parameters
cmaesParams = { . . .

’ PopSize ’ , { ’ ( 4 + f l o o r (3∗ l og (N) ) ) ’ } ,
’ Restarts ’ , { 100 } ,

} ;

cmaesParams

• PopSize – number of individuals in each generation.

• Restarts – number of CMA-ES restarts. After every restart, CMA-ES
population size is doubled and CMA-ES starting point is best point in
previous run.
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Figure 2.1: evoControlTrainRange comparison

Even though there are many parameters, some of them are rarely changed
or used. The most important are:

• dimensions

• functions

• evoControlTrainRange

• evoControlTrainNArchivePoints

• evoControlRestrictedParam

• PopSize

Figure 2.2: evoControlTrainNArchivePoints comparison
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The evaluation of individual parameters is discussed in the following sec-
tions. The most important quality measure is th number of function evalu-
ations divided by dimension (FE/D). This value says how many evaluation
of actual fitness function the DTS-CMA-ES needs to reach a given error
threshold, currently set to 10−8. Every algorithm performs differently in each
function and/or dimension. I choosed function F111 in 5D to parameters
tunning.

Figure 2.3: evoControlRestrictedParam comparison

Figure 2.4: GP model’s hyperparameters comparison

evoControlTrainRange.
Figure 2.1 compares several values of evoControlTrainRange. In par-

ticular (3,5,10,20). As described in experiment configuration example (see
2.3) . Figure shows that best value is 20, but 10 is very good too. I used
evoControlTrainRange = 10 in final experiment.
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Figure 2.5: PopSize comparison

evoControlTrainNArchivePoints. Figure 2.2 shows few different values
of evoControlTrainNArchivePoints. Similar to train range, higher values
are better. Once again, I will not use best value, but a second one, which
performs similarly to the best value.
evoControlRestrictedParam. evoControlRestrictedParam is a very
interesting parameter. It is similar to the learning rate in machine learning
algorithms. In the performed experiments, results for a low value close to 0.0
and results for a high value close to 1.0 were similar. In parameter tunning
for the function f111 in 5D, the best value was 0.8, according to figure 2.3, so
I used this value for the final experiments.
hyp. GP model’s hyperparameters are very important for good performance.
According to figure 2.4 struct(’lik’, log(0.01), ’cov’, log([1; 2]))
is far better, than struct(’lik’, log(0.5), ’cov’, log([2; 10])) . This
value will be used in final experiments.
PopSize. Last, but not least parameter is population size. Common sense
suggests that more is better, but the results in 2.5 shows otherwise. The
best is largest population, but second to that is the smallest one. I will use
PopSize =′ (8 + floor(6 ∗ log(N)))′ in final experiments, because it recom-
mended value in main project. Higher value will take much longer to evaluate
and smaller one may prevent diversity needed in evolution, which is part of
final experiments.
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Chapter 3
Novel contributions

In the project, only one surrogate model is currently used with hyperparamet-
ers likelihood and covariance function. This model has same starting config-
uration in each CMA-ES generation. According to the original idea, there is
no need to have more models, because Gaussian model will be retrained from
scratch to fit the needs. However, if more models were used, improvements
could be achieved. One possible solution is to use a model pool and every few
generatoions, choose the best model based on several previous generations. In
this case, it is important to solve how to choose the new model.

Second idea is improvement of previous one. Model pool requires some
archive for models and a function to compare models. With there precondi-
tions it is easy to implement a model evolution. This approach needs only
recombination on top of model pool. There will be higher requirements on
computing time, but it should be insignificant compared to model pool.

Another possibility is not to choose one model from model pool, but use
ensembling methods to predict function evaluations. This approach was con-
sulted with Lukáš Bajer, author of DTS-CMA-ES. He doesn’t approve this
idea, because it will take much CPU time and probably won’t be effective en-
ouqh to pay off, because ensembling in regresion is difficult and easily afected
by distant search points. For ensembling is important, to combine diffent mod-
els, otherwise, the improvement is insignificant. So I implement only model
pool with evolution. However, I believe these ensembling methods are worth
of mention[13]:

• bagging - [14] is machine learning ensemble meta-algorithm designed
to improve the stability and accuracy of machine learning algorithm.
Given a standard training set D of size n, bagging generates m new
training sets Di, each of size n′ by sampling from D uniformly and
with replacement.The m models are fitted sing the above m bootstrap
samples and combined by averaging the output (for regresion) or voting
(for classification).
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• boosting - is a two-step approach, where one first uses subsets of ori-
ginal data to produce a series of averagely performing models and then
”boosts” their performance by combining them together using a par-
ticular cost function (=majority vote). Unlike bagging, in the classical
boosting the subset creation is not random and depends upon the per-
formance of the previous models: every new subsets contains the ele-
ments that were (likely to be) misclassified by previous models.

• stacking - is a similar to boosting: you also apply several models to your
original data. The difference here is, however, that you don’t have just
empirical formula for your weight function, rather you introduce a meta-
level and use of another model/approach to estimate the input together
with outputs of every model to estimate the weights or, in other words,
to determine what models perform well and what badly given there input
data.

3.1 Proposed metamodel

The main goal of this work is to design and implement a meta-model that will
train several or a multitude of different GP models and automatically select
one that performs best in the current state of the optimization. Experimental
setting needs additional fields and parameters for a proper model pool config-
uration. The proposed are:

Fields:

• currentGeneration – CMA-ES iteration number g

• archive – archive A from the surrogateManager() Archive is a Matlab
handle class (and hence passed to functions effectively by reference)

• models – 2D cell array (of size NGP× historyLength + 1) of models
from generations g, (g - 1), (g - 2), . . . , (g - historyLength) - the
models from generations g, (g - 1), . . . are in models(:,1), models(:,2),
. . . respectively

• bestModel - 1D array (of size historyLength + 1) of the best found
models’ indices i(g) ∈ 1, ..., NGP for respective generations g, (g - 1),
(g - 2), . . . , (g - historyLength) measured according to the the point
(2.) from the trainModel(). The model (usually re-trained using the
current archive A) with the parameterSet corresponding to the best
model from the generation (g - historyLength) will be used in the calls
of modelPredict() until the next call of trainModel().

Parameters:
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3.1. Proposed metamodel

• retrainPeriod - how often should the ModelPool retrain the hyper-
parameters for the models. Default: 1 (i.e. every generation).

• parameterSets – structure array of parameter sets which define the
NGP different models being maintained within the ModelPool.

– trainsetType ∈ allPoints, clustering∗, nearest∗, nearestToPopulation∗
– how should be the points selected from the points in archive
A from the models’ train range (see next item); trainsetType’s
marked with ∗ calculate with the maximum number of points train-
setSizeMax. Default: clustering.

– trainRange ∈ 99%, 99.9% – χ2-percentile of the maximum squared
σ2C-distance from the current CMA-ES mean m(g) of the points
considered from the archive A for being used in the train set for
models. Default: 99%.

– trainsetSizeMax – the maximal number of points for selection into
the model’s train set (applicable for the trainsetType’s marked with
star). Default: 15*dim.

– covFcn ∈ ’@covSEiso’,’@covMaterniso,3’,’@covMaterniso,5’ – cov-
ariance function. Default: ’@covMaterniso,5’.

– ard ∈ true, false – whether use ARD (automatic relevance determ-
ination) or not. If yes, covariance functions in the previous point
should be transformed to their ARD counterparts. Default: false.

– meanFcn ∈ meanConst, meanLinear. Default: meanConst.

• historyLength how many generations old models should be tested against
unseen data. Default: 4.

Example of the ModelPool’s parameter setting in experiment defin-
ition (NGP = 3):

surrogateParams = { ...
... \% ...
’modelType’, { ’modelPool’ }, ...
... \% ...
};
modelParams = { ...
’predictionType’, { ’expectedRank’ }, ...
’retrainPeriod’, { 2 }, ...
’parameterSets’, { struct( ...
’trainsetType’, { ’allPoints’, ’clustering’, ’nearest’ }, ...
’trainRange’, { 0.99, 0.99, 0.999 }, ...
’trainsetSizeMax’, { ’10*dim’, ’10*dim’, ’5*dim’ }, ...
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’covFcn’, { ’{@covSEiso}’, ...
’{@covMaterniso,5}’, ...
’{@covMaterniso,5}’ }, ...
’ard’, { false, false, false }, ...
’hyperparamStartValues’, { ...
struct(’lik’, log(0.05), ’cov’, log([1; 2])), ...
struct(’lik’, log(0.01), ’cov’, log([0.5; 2])), ...
struct(’lik’, log(0.01), ’cov’, log([0.5; 2])) }, ...
’meanFcn’, { ’meanConst’, ’meanConst’, ’meanLinear’ } ...
) }, ...
’historyLength’, { 4 }, ...
};

trainModel().
(Usually) re-fitting of the hyperparameters of the models and (always)

selection of the best model for the future predictions.

1. if g — retrainPeriod (g modulo retrainPeriod == 0, g is the num-
ber of current CMA-ES generation), train NGP Gaussian process mod-
els M (g)

1 , . . . ,M
(g)
NGP

according to their definition in parameterSets –
struct array of NGP GP model parameter sets (which include, for ex-
ample, covariance function or hyperparameters’ starting values for the
model training). Save these models into models(:,1). These models are
trained based on the current state of the DTSCMA-ES in generation
g: particularly using the current CMA-ES mean m(g) , the step-size
σ(g), the square root of the CMA-ES covariance matrix B(g)D(g) where
B(g)(D(g))2(B(g))2 = C(g) and the archive of original-evaluated points
A(g) = xi, yi

|A|
i=1.

2. select the best model to be used in the current generation g according
to one of the following criteria:

– Ranking Difference Error (EDE, ErrµRD) measured on the original-
evaluated points from the models’ future generations: the previ-
ously saved models from the generation (g - historyLength) are
assessed on the points from the archive A from the generations (g
- historyLength + 1),. . . ,(g - 1) using the RDE without the para-
meter µ (technically, µ for the errRankMu() can be set to the num-
ber of these points from the archive A). If the original-evaluated
points from the current generation g are already saved into the
archive A, they are used for measuring error, too.
Ranking Difference Error (ErrµRD, RDE), impelemented in [er-
rNorm, errSum, maxErr] = errRankMu(y1,y2, µ), is a non-symetric
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Figure 3.1: RDE measured on points from next generations

measure of the difference between rankings of two vectors of popu-
lation’s f -values y∗1,y∗2

ErrµRD(y∗1,y∗2). (3.1)

It measures how much would the difference between ranking of y∗1
and y∗2 (possibly negatively) contribute for the CMA-ES µ -updates
where µ, 1 ≤ µ ≤ λ is the number of best-ranked individuals which
are solely used for the CMA-ES’ updates.
The measure takes rankings τ1,
tau2 of the values of the input vectors (e.g. τ1(1) is the rank of the
y∗1(1)- the first element of the vector y∗1), and calculates the rank-
ing distance as a normalized sum of the element-wise differences
between these two rankings while omitting the indices for which
the rank of y∗2 is larger than µ. The second f -values vector y∗2 is
considered as being more precisely measured.

ErrµRD(y∗1,y∗2) =
∑
i:τ2(i)≤µ |τ2(i)− τ1(i)|

maxπ∈Permutations of(1,...,λ)
∑

i:π(i)≤µ |i−π(i)|
∈ 〈0, 1〉

(3.2)

– Ranking Difference Error (RDE, ErrµRD) measured on the whole
populations from the models’ next generation: the respective previ-
ously saved models from the generation i= (g - historyLength),. . . ,
(g - 2) are assessed on the whole population from the generations (i
+ 1) using the RDE with the original parameter µ. If the original-
evaluated points from current generation g are already saved into
the archive A, this population is used for measuring error, too.
For the final error, the averaged ErrµRD from these generations is
taken.
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Figure 3.2: RDE measured on the whole populations.

• 3. The selected model will be used in the next calls of modelPredict().
Shift bestModel(1:(end-1)) by one position further and save the best
index into the just freed bestModel(1).

modelPredict().
Having trained the hyperparamters of the models and having selected the

best model for the current generation in bestModel(1), this method simply
predicts expected value and variance of the best Gaussian process model which
is saved in models{1, bestModel(1)}.

3.2 Enhanced metamodel

Metamodel ModelPool introduced in previous section was improved by model
evolution. GP models in ModelPool are static, defined by user on the very be-
ginning. Aim of the enhancement proposed in this section is make GP models
dynamic to fit the needs of CMA-ES in the current search area. Dynamics
of models is achieved by recombination of the fittest models. This version of
metamodel is similar to ModelPool, however, with few addition functions:

• Evolve() - main function to handle evolution. Prepare models, run other
funtions and return new models.

• Mutation () - alter each gene in chromosome with given probability.
Discrete values are randomly chosen 1:N, continuous values are changed
by 1%.

• Crossover() - unimodal crossover, parents are radomly choosen from
population.

• Selection() - by elitism, only the fittest half survive. The rest is re-
placed by new offsprings. Fitness value is calculated by RDE, same way
as in ModelPool.
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• geneCode() / geneDecode() - transformation from string to number
and back, for easier recombination.
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Chapter 4
Final experiments

This chapter is focused on interpreting final experiments performed on meta-
centrum. I compared these three algorithms: Original DTS-CMA-ES (red
line), DTS-CMA-ES with modelPool meta-model (called MP-CMA-ES, green
line) and DTS-CMA-ES with model evolution (called evo-CMA-ES, blue line).

Experimental setting for MP-CMA-ES and evo-CMA-ES:

% BBOB/COCO framework settings

bbobParams = { ...
’dimensions’, { 2, 3, 5, 10}, ...
’functions’, { 102, 104, 107, 111, 117, 122, 123, 129}, ...
’opt_function’, { @opt_s_cmaes }, ...
’instances’, num2cell( [1:5, 41:50] ), ...
’maxfunevals’, { ’250 * dim’ }, ...
’resume’, { true }, ...

};

% Surrogate manager parameters

surrogateParams = { ...
’evoControl’, { ’doubletrained’ }, ...
’observers’, { {’DTScreenStatistics’, ’DTFileStatistics’} },...
’modelType’, { ’modelPool’ }, ...
’updaterType’, { ’rankDiff’ }, ...
’evoControlMaxDoubleTrainIterations’, { 1 }, ...
’evoControlPreSampleSize’, { 0.75 }, ...
’evoControlOrigPointsRoundFcn’, { ’ceil’ }, ...
’evoControlTrainRange’, { 10 }, ...
’evoControlTrainNArchivePoints’, { ’20*dim’ },...
’evoControlSampleRange’, { 1 }, ...
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’evoControlRestrictedParam’, { 0.8 }, ...
};

% Model parameters

structure = struct();

structure(1).covFcn = ’{@covMaterniso, 5}’;
structure(1).trainsetType = ’allPoints’;
structure(1).trainRange = 1;
structure(1).trainsetSizeMax = ’10*dim’;
structure(1).meanFcn = ’meanConst’;
structure(1).trainAlgorithm = ’fmincon’;
structure(1).hyp.lik = -4.605170;
structure(1).hyp.cov = [-0.693147; 0.693147];

modelParams = { ...
’retrainPeriod’, { 1 }, ...
’bestModelSelection’, { ’rdeAll’ }, ...
’historyLength’, { 7 }, ...
’minTrainedModelsPercentileForModelChoice’, {0.5},...
’maxGenerationShiftForModelChoice’, {2},...
’predictionType’, { ’poi’ }, ...
’useShift’, { false }, ...
’normalizeY’, { true }, ...
’parameterSets’, { structure }};

% CMA-ES parameters

cmaesParams = { ...
’PopSize’, { ’(8+floor(6*log(N)))’ }, ...
’Restarts’, { 50 }, ...
’DispModulo’, { 0 }, ...

};

Setting for DTS-CMA-ES is similar, except model parameters, which are:

% Model parameters

modelParams = { ...
’covFcn’, { ’{@covMaterniso, 5}’ }, ...
’hyp’, { struct(’lik’, log(0.01), ’cov’, log([1; 2])) }, ...

44



’covBounds’, { [log(1) log(1); -2 25 ] }, ...
’meanFcn’, { ’meanConst’ }, ...
’trainAlgorithm’, { ’fmincon’ }, ...
’predictionType’, { ’poi’ }, ...
’useShift’, { false }, ...
’normalizeY’, { true }, ...
’trainsetType’ { ’nearest’ }, ...
’trainRange’, { 4 }, ...
’trainsetSizeMax’ { ’20*dim’ }, ...

};

All graphs in this chapter show decreasing error value in time, more pre-
cisely in original function evaluations divided by dimension. Every experiment
is 50-times restarted and values are averaged. This is very important not only
because noise in fuctions, but also for evo-CMA-ES algorithm where recom-
bination depends on random chance.

Figure 4.1: Function F111 in 5D

In a graph 4.1 we can see, that evo-CMA-ES (blue line) is the best in
this particular experiment. On the other hand, MP-CMA-ES is worst. This
may raise the question, how can be MP-CMA-ES worse than GP-CMA-ES,
if the GP model used in GP-CMA-ES is in a modelPool meta-model in MP-
CMA-ES. The answer is simple, MP-CMA-ES choose best model according
to performance in generation g − 1, so the chosen surrogate model is best for
previous generation, not the current one.

Graph 4.2 shows, that all three alternatives performs similar, with a little
worse DTS-CMA-ES. This is expected result, because DTS-CMA-ES has only
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Figure 4.2: Function F122 in 3D

one surrogate model, so it can’t adapt to match the environment. On the other
hand, DTS-CMA-ES advantage is speed performance. Other two algorithms
has to retrain several surrogate models in every generation, however, DTS-
CMA-ES retrain only once in every generation.

Figure 4.3: Function F123 in 5D

In a graph 4.3 MP-CMA-ES bested other two algorithms. My theory is
that one surrogate model in MP-CMA-ES perfectly matches needs of this
function. Evo-CMA-ES was unable to find better model that is better than a
surrogate model used in DTS-CMA-ES. This suggests that evolution process

46



in evo-CMA-ES needs to be improved.

Figure 4.4: Function F129 in 2D

Figure 4.5: Function F129 in 3D

Function F129 is one of the most difficult functions in this experiment,
and provides very interesting results. Graph 4.4 shows DTS-CMA-ES and
MP-CMA-ES as best algorithms, in 3-Dimensions 4.4 are best eco-CMA-ES
and MP-CMA-ES leaving DTS-CMA-ES far behind. Function F129 in 5D and
10D show similar performace for DTS-CMA-ES and evo-CMA-ES, however,
MP-CMA-ES performace is very different in 5D and 10D.
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Figure 4.6: Function F129 in 5D

Figure 4.7: Function F129 in 10D
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Conclusion

All graphs in the previous chapter shows only one function in given dimension,
thus although they may be interesting, to realy compare the algorithms, I
needed some more statistics. Statistics, in particular, aggregated functions
in 10D are shown in figure 4.11. Graphs for dimensions 2,3 and 5 shows
similar performance. These results are very important because they answer
the questions asked at the beginning this thesis.

Figure 4.8: All functions in 2D aggregated.

Q: Can CMA-ES handle noisy functions ?
A: Yes it can. According to figure 4.11, even several alternatives to CMA-

ES reach the given error treshhold 10−8. It should be recalled that these
alternatives use surrogate models to reduce the needs for the evaluations of
the original fitness function, which restricts the full CMA-ES potencial.

Q: Which alternative to the CMA-ES is better ?
A: It depends on the considered problem. If time is important, I suggest to

use the original DTS-CMA-ES. After years of experimenting and researching,
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Conclusion

Figure 4.9: All functions in 3D aggregated.

a very good surrogate GP model has been found, that should perform well
in many situations. The MP-CMA-ES may be helpful, if surrogate models
in modelPool meta-models happen to match evaluated function. Another
alternative is the evo-CMA-ES, which can be used to prepare models for the
MP-CMA-ES. The evo-CMA-ES is similar in functionality to the MP-CMA-
ES. The main difference is its potential to evolve new, better models to fit
current needs. Disadvantage of the evo-CMA-ES is a higher computional
time demand, due to the need to retrain and validate several models (unlike
in DTS-CMA-ES) and due to recombination. However, the time consumption
is balanced by far greater improvement potencial.

Figure 4.10: All functions in 5D aggregated.

Q: What does this thesis suggest for the future research ?
A: In my opinion, the DTS-CMA-ES almost depleted its improvement

potencial, and any further improvements will be very difficult. MP-CMA-ES
could be improved by a better algorithm for choosing surrogate models. On
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the other hand, evo-CMA-ES can be improved in many ways. I suggest to try
some sort of tabu-search to prevent cycling and modify the fitness function
by dividing fitness by number of the exact same models, to better maintain
diversity on population.

Figure 4.11: All functions in 10D aggregated.
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Dostupné z: https://www.ibcn.intec.ugent.be/content/surrogate-
modeling-and-optimization

[9] Hansen, N.: The CMA Evolution Strategy: A Tutorial. [online], Last
visited 8. 1. 2018. Dostupné z: https://arxiv.org/abs/1604.00772
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Appendix A
The contents of the enclosed

CD

readme.txt...........................................brief description
TeX..............................................source code for LATEX
DP-hejlvojt.....................................text of thesis in PDF
surrogate-cmaes-evolution ......... modification of L. Bajer’s project

doc..................................................documenation
exp..................experiments and scripts to process experiments

experiments ............................ folder with experiments
src....................................................source code
test............................................tests for debugging
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