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Abstract

The thesis introduces a novel type of vi-
sual tracking problem, coin-tracking, in
which the objects being tracked are ap-
proximately flat, meaning that only one
of the object’s two sides can be visible
at any given time, as the other side is
fully self-occluded. It also holds, that the
boundary between the object’s two sides
is always visible, except for occlusions by
other objects. Because of the inherent
properties of the coin-tracking sequences,
the standard visual tracking algorithms
are not suitable.

We analyse the problem and propose
an coin-tracking algorithm that combines
appearance-based deep neural network
with a classical shape-based object classi-
fication approach and an estimator of the
object pose in order to provide a segmen-
tation mask and a visible side indicator for
each frame of the input video sequence.

The presented algorithm is evaluated
on a coin-tracking dataset, that we have
collected and annotated with bounding
boxes and visible side labels.

Keywords: tracking, segmentation,
deep neural network, coin-tracking

Supervisor: Prof. Ing. Jifi Matas,

Ph.D.
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Abstrakt

Diplomové préace prezentuje novy typ pro-
blému sledovani, nazvany coin-tracking,
ve kterém jsou sledované objekty priblizné
ploché, coz znamena, ze je v kazdém oka-
mziku vidét pouze jedna z jejich dvou
stran, jelikoz druhd strana je zcela zakryta
tou viditelnou. Pro takovéto objekty plati,
ze je hranice mezi jejich stranami vzdy
viditelnd, az na pripadné prekryvy jinymi
objekty. Pouziti standardnich algoritmu
pro sledovani objektu ve videu neni za
téchto podminek vhodné.

V préci analyzujeme coin-tracking pro-
blém a navrhujeme pro jeho reseni algo-
ritmus, ktery kombinuje hlubokou neu-
ronovou sit pro segmentaci a odhad vi-
ditelné strany podle vzhledu objektu s
klasickou metodou zalozenou na rozpoznéa-
vani objektt podle jeho tvaru a s algorit-
mem odhadujicim 3D pézu objektu. Tento
algoritmus poskytuje pro kazdy snimek
vstupniho videa na vystupu segmentacni
masku objektu spole¢né s identifikatorem
viditelné strany.

Kvalitu navrzeného algoritmu jsme otes-
tovali na datové sadé videi pro coin-
tracking, kterou jsme sestavili a oanotovali
bounding boxy a indikatorem viditelné
strany objektu.

Kli¢ova slova: tracking, segmentace,
hluboké neuronové sité, coin-tracking

Preklad nazvu: Coin-Tracking -
Oboustranné sledovani plochych objektu
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Chapter 1

Introduction

Visual tracking is a fundamental problem in the field of computer vision, with
various applications in autonomous driving, human-computer interaction,
surveillance, sport match analysis, video post-production and other. Given
a video sequence and some object marked on the first frame, the task of a
tracking algorithm is to output the pose of the object in all the subsequent
frames of the video. Both the annotation of the first frame and the nature of
the object pose representation may vary from a simple (z,y) coordinate of
the object center, an axis-aligned or arbitrarily rotated object bounding box,
up to a full pixel-dense object segmentation.

Depending on the available knowledge about the objects being tracked,
the problem can be divided into two classes. Commonly a model-free variant
is considered, which has the goal of tracking arbitrary objects, without any
prior knowledge of their type, 3D shape or other properties. Model-free
trackers usually operate directly on the image, without having an internal
representation that would capture the object 3D spatial properties. This
problem is extensively studied and standard benchmarks ([0, [6]) exist to
evaluate the trackers’ performance on challenging video sequences.

Alternatively, a tracking with model can be studied, where a 3D model
of the tracked object is either known in advance (e.g. a CAD model of a
manufactured part) , or reconstructed from the video. Such problem can be
formulated in terms of structure from motion - SIM ([I], which is another
classical computer vision problem.



1. Introduction

. 1.1 Thesis contributions

We propose a novel tracking problem called “coin-tracking”, which lies on
the boundary of the two mentioned classes of the visual tracking problem. In
coin-tracking, the objects of interest are known to be approximately flat and
two-sided. Many real-world objects have these two properties, including items
of everyday use like smartphones, credit cards, books, magazines, plates and
coins (hence the problem name), various sports equipment such as surfboards,
ice-hockey sticks and table tennis rackets, tools like knives, hand saws, scissors,
and pliers and other objects, including doors, window shutters, sails, wings,
propeller blades, playing cards, poker chips and more.

Coin-like objects have interesting properties. Their occluding contour is
always visible if not for occlusion by other object, and the object images are
related by homographies and thus no 3D model is necessary to represent
the object. often they undergo out-of-the-plane rotation, which the objects
present in the currently available tracking datasets do not. Consider a general
3D object rotating in a video, the profile views and the view of the back
side of the object are revealed continuously when it rotates, which is not
the case for a coin-like object, where only one side is visible at any single
moment. When a coin-like object rotates out-of-the-plane, only it’s front
face is visible for some time, then a flip happens at which moment only
the boundary between the sides is visible and then the second side appears
suddenly. The difference between these two cases is demonstrated in figure (1.2l
More detailed introduction into the problem and its properties is given in
chapter 2l

Based on the problem analysis, we propose a coin-tracking algorithm, which
consists of three components - segmentation and visible side classification
deep neural network, a classical moment-based shape classification method
and an a object pose estimator - all combined together in a meaningful way.
Example of the output of the proposed algorithm is shown in figure [1.1}

We have collected a coin-tracking dataset consisting of 22 video sequences
and corresponding ground truth annotations. The performance of the pro-
posed coin-tracking algorithm and its components was evaluated on the
dataset and the results are summarized in chapter 7. The dataset and the
outputs of our method are provided on the CD accompanying this thesis.



1.1. Thesis contributions

Figure 1.1: An example output of our algorithm. The algorithm was trained from
two annotated frames (images in the green, respectively red frame). It outputs
the object segmentation as well as the visible side identification (visualised by
the segmentation overlay color). Note that the object is originally yellow from
both sides.

.
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(a): 0° (b) : 45° (c) : 90° (d) : 135° (e) : 180°

Figure 1.2: Comparison of out-of-the-plane rotation of a general object (top)
and an ideal coin-type object (bottom). Notice the abrupt change of the object
appearance between |E| and @ as well as the coin disappearing completely in






Chapter 2

Coin-tracking

We define cointracking as tracking of rigid, approximately planar objects in
video sequences. This means that at any time only one of the two sides -
obverse (front) and reverse (back) - is visible. Moreover, the boundary
between these two sides is always visible, except for occlusions by another
object and position partially outside of the camera field of view. In this
settings, the currently invisible side is fully occluded by the visible side and
the visible side does not occlude itself at all.

The state of the tracked object is thus fully characterized by a visible
side indication and a homography transformation to a canonical frame as
discussed in section [2.1.1] However, because of possible object symmetries,
the transformation might not be unique and thus we characterize the object
state by a visible side indication and a segmentation mask instead.

Task definition. The inputs of a coin-tracking algorithm are the following:
a video sequence, a segmentation of the obverse side of the tracked object
on some frame and possibly a segmentation of the reverse side of the object
on some other frame. Given this information, the algorithm is to output a
segmentation mask (a binary image with the size of the frame, one indicates
the object, zero the background) on each frame of the sequence. Moreover,
the algorithm has to output a side indicator (obverse or reverse) for each
frame.



2. Coin-tracking

B 21 Problem analysis

The object side can be classified based on several complementary clues. First,
the two sides can be distinguished purely by the appearance as the color and
texture characteristics can be different on each one. The second source of
information is the object dynamics in the video sequence. If the side flips
can be detected, it is possible to predict the currently visible side solely by
counting the number of flips. Even if the flip detection is not reliable, the
history of the object motion is an important piece of information. Finally, the
object shape can be used, as the coin-like objects are rigid and the boundary
between the two sides is visible at all times, up to occlusion. The occluding
boundary undergoes a mirroring transformation between the obverse and
the reverse side view and the presence of such mirroring with respect to
the prototype obverse annotation can be detected, yielding a visible side
classifier.

With these possibilities in mind, we choose the tracking by segmentation
approach. In contrast to the bounding box output by the commonly used state-
of-the art tracking by detection algorithms, a per-pixel segmentation makes
it possible to exploit all of the three described feature types - appearance,
dynamics and shape.

Figure 2.1: Two views of a poker chip, in fact each one of a different side, the
obverse side on the left and the reverse side on the right.

The use of each of these features have limitations as discussed more in
detail in the next sections. For example, the appearance fails to provide
any usefull information if the object sides have nearly indistinguishable color
and texture, which is the case with e.g. poker chips as shown in figure [2.1.
Even if the reverse side is clearly distinguishable from the obverse by their

6



2.1. Problem analysis

appearances, the shape can fail to be a good side discriminator, because of the
object symmetries as shown in In particular, it is impossible to deduce
the currently visible object side solely from its shape if the shape is reflection
symmetric along any axis. That is because the shape of any coin-like object
reverse side is just a mirroring of the obverse side shape. It follows, that
in case of symmetric object, the reverse shape is exactly the obverse shape
and thus no decision can be made based on it.

A Bafles

Figure 2.2: The currently visible object side can be recognized from its occluding
contour for non-symmetric objects. Note that the only way to transform the
first hand into the second one is mirroring. It is impossible to tell if the second
star is a mirroring of the first one or its in-plane rotation.

Taking these failure modes into account, we can now analyse the possible
situations arising in coin-tracking. From the appearance point of view, the
object sides can range anywhere from being indistinguishable to being com-
pletely different, the object shape can be either symmetric or non-symmetric
and on top of that two different scenarios have to be considered based on
the available algorithm inputs - either both obverse and reverse training
examples are available, or only the obverse one.

As our algorithm rely on the tracked objects segmentation, the obverse-
only variant of the coin-tracking problem depends on the ability of the
segmentation method to segment the reverse side without being trained on
it. From this point of view, the objects with sides of nearly indistinguishable
appearance are optimal, because the segmentator has no issues segmenting
both sides.

B 2.1.1 Coin-tracking image formation

When the pin-hole camera image acquisition model is used, images of planes in
the scene are related by a particular kind of transformation — a homography.
More specifically, images of points on a plane can be transformed by a
homography, to get the images in the other view as described in [I], chapter
13 and visualized in figure [2.3



2. Coin-tracking

Figure 2.3: Homography between images of the plane 7. [I]

An ideal coin-like object is a subset of some plane in space and therefore its
images in a video sequence are related by homographies. With the prototype
shape of the object obverse side S, the object shape can be modeled as

S'~HS

in each frame of the sequence. The homography is not a linear transformation,
but it can be linearly approximated by affine transformation, yielding

S'~ AS

. The approximation is reasonable, if the object is small compared to its
distance from the camera. In coin-tracking, the transformation A is often
not close to a similarity transformation (translation, rotation and scale) and
performs strongly anisotropic scaling, caused by out-of-plane rotations. This
causes issues for current state-of-the art trackers, which are usually correlation
filter based, giving us another motivation for use of a segmentation based
approach.

The effect of out-of-the-plane rotation is particularly hard to deal with
when the tracked object is flat. While some parts of the tracked object might
be still visible when it is rotating out-of-the-plane by 90, it is not the case
with flat objects, specifically, a perfectly flat object can be rotated in such a
way, that none of it sides is visible as illustrated in figure [1.2]



Chapter 3

Segmentation

As discussed in we have chosen to approach the coin-tracking problem by
tracking by segmentation. Recently, convolutional neural networks (CNNs)
have scored a great success in computer vision, overperforming the previous
state-of-the art methods by large margin. Since the 2012 paper [7], deep neural
networks became the main choice for many computer vision tasks, including
image classification, object detection, semantic segmentation, human pose
estimation and others.

In this chapter we will briefly introduce convolution neural networks,
review the current state-of-the-art of tracking by segmentation and propose a
segmentation method for our coin-tracking algorithm.

. 3.1 Convolutional neural networks

Artificial neural networks are machine learning systems inspired by the
biological networks of neurons inside animal brains. They represent a mapping
f: X — Y between some input X C RY and output Y C RM real-numbered
spaces.

The mapping is performed by a series of L interconnected layers, each
performing a function [; : R™ — R™i. The output y of the whole neural
network applied on input x can then be written in terms of these layers as

Yy = lL(lL—l(- .. ll(:c)))

9



3. Segmentation

The layers functions are parametrized by parameters ;, which are learnt from
training data. The training is formulated as an optimization problem

Hbin Z L(fg(.%),y)

(z,y)€D

For this optimization a training set D = (x;, yi)ie{()’m T} has to be provided
as well as some appropriate loss function L : Y — R

This optimization problem can be solved by backpropagation method. The
method is based on gradient descent and works in a two-phase forward-
backward cycle. In the forward phase a network output y = f(x;) is computed
for a training sample, followed by the computation of the loss L(y,y). In
the backward pass, the gradient t% of the loss is computed with respect to
parameters 6 of each layer. Thanks to the chain-rule, these derivatives can
be computed as

oL 0L 0lg al;
80; Al 9

(3.1)

The parameters are then updated by stochastic gradient descent (SGD)
algorithm or its variant.

B 3.1.1 Layer types

Several types of layer functions are commonly combined inside a neural
network. A fully-connected layer of input dimension m and output dimension
n is a function lpc : R™ +— R™, which has a form of

lpc(z) = Wz + b

where W is a n X m weight matrix and b is a R™ bias vector.

A non-linear activation function is usually placed behind such layer, because
a network composed only of the linear fully-connected layers would not be
able to represent any non-linear functions. Several activation functions are
commonly used, such as logistic function |3.3, or a Rectified Linear Unit -
ReLU 3.4l

1
llogistic(x) = 1_'_7 (3.3)
IReru(z) = max(0, z) (3.4)

10



3.1. Convolutional neural networks

In the past, simple neural networks composed from fully-connected layers
and nonlinearities were successfully used to solve relatively simple tasks.
However, such networks are not usable for modern computer vision tasks.
With image sizes of millions pixels, the number of parameters of a fully-
connected layer, (n + 1)m, would be too big to be practically usable. Instead,
a convolution layer can be used, which reduces the number of necessary
parameters significantly, enabling use of very deep (i.e. having large number
of layers) so-called convolutional neural networks (CNNs).

When dealing with images, the inputs of the convolution layer are repre-
senting H x W x Dy, array, which can be also viewed as a H x W image with
D, channels. The layer outputs are computed by convoluting the inputs
with Dyt convolution kernels of size K x K x Dy, and stacking all of the
Diegtout H X W outputs along the third dimension (Note that the output
spacial dimension may be slightly different depending on the convolution
method). The filter coefficients are the learnable parameters of the layer.

As we have stated previously, the fully-connected layers need large number
of parameters, moreover, as opposed to the convolution layers, they do not
directly utilize the fact, that low-level information in images is highly local.
The convolution layers, on the other hand, were designed to capture the local
relations as inspired by human vision. When many of these layers are stacked
on top of each other, the resulting field-of-view (input image area having
effect on the layers output) of the deeper layer is large enough to capture less
localized image information.

In order to further increase the field-of-view of the deeper layers and to get
robust to translations, the pooling layers, which downsample the signal, are
commonly put after a block of convolution layers. As with the other layer
types, there are many options of a pooling layer design, the most popular
being maz-pooling. It works by reducing the size of the input feature map
by a strided pass of K x K filter, outputting the maximal value in each
sampled K x K region. With a commonly used stride choice of 2, the output
feature map has dimensions % X % x D, greatly reducing the computation
complexity of the layers following the pooling layer. The localization accuracy
of the consequent layers is reduced as well, but that is in agreement with the
goals of image classification, where the network output should be invariant
to shifts (e.g. an image of a cat should be classified as a cat regardless of the
cat’s position in the photo).

A simple CNN “LeNet” designed by Lecun et al.[2] in 1998 achieved an
error rate under one percent on handwritten digit recognition task, with
input images of 32 x 32 pixels. However, the convolutional neural networks
gained on popularity for other more complicated computer vision tasks 14

11



3. Segmentation

C3: f. maps 16@10x10
S4: f. maps 16@5x5

S2: f. maps
6@14x14 r

INPUT

C1: feature maps
32x32 6@28x28

|
| Full conAection | Gaussian connections
Subsampling Convolutions  Subsampling Full connection

Convolutions

Figure 3.1: LeNet, an example of a CNN for handwritten digit recognition [2]

years later, with the success of AlexNet [7] on ImageNet Large-Scale Visual
Recognition Challenge (ILSVRC) [§]. Since then, the neural networks could
be made much deeper thanks to the available hardware computational power
and thanks to clever design decisions. The main principles, however are very
similar to LeNet. LeNet architecture is shown on figure [3.1..

B 32 DNN Segmentation literature review

In the previous section, we have provided an overview of the convolutional
neural networks. In recent years, most of the state-of-the-art methods in
computer vision were based on them. However, the success of supervised
deep learning is conditioned on availability of large annotated datasets, which
are difficult to obtain. Datasets related to the topic of this thesis can be split
into three main categories, increasing in difficulty of annotation: those for
image classification, object detection and semantic segmentation.

Image classification. The task of image classification is to assign one (or
several) of K known classes to an input image, meaning that a dataset for
training an image classification neural network must contain images paired
with their annotated classes. The introduction of the ImageNet dataset|[§]
in 2009 enabled the first significant advances of deep learning in image
classification][7].

Object detection. Unlike the image classification task, in object detection
there might be multiple objects present in the image, each of them from
different class. For each image all of the objects of each known class have
to be annotated by a bounding box. Such annotation is much more time
consuming and expensive. Su et al.[9] has measured the average time needed
for annotating a single bounding box on ImageNet images to be 50.8 seconds.
Moreover this does not include the time needed for quality verification. Since
then efforts were made to speed the annotation process up, such as recently

12



3.2. DNN Segmentation literature review

proposed method[I0], which achieves 7 seconds per bounding box, while
keeping the annotation quality.

Segmentation. Annotating a pixel level ground-truth is even more difficult
than bounding boxes, causing much smaller datasets to be available. Although
there are big datasets like COCOJLI] with 91 categories in 328000 images
and ADE20K [I2] with 20000 images and 2693 object classes, the number
of annotated classes is still small and it is very expensive to obtain ground
truth for task specific type of images.

Recently, Perazzi et al.[13] have published DAVIS - a benchmark dataset
and evaluation methodology for video object segmentation containing fifty
high quality video sequences and per-frame ground truth segmentations.
This enabled new boom in tracking by segmentation based on convolutional
networks. The performance achieved by the state-of-the-art methods has
enabled us to use them for our cointracking problem.

Long et al. [14] introduced fully convolutional neural networks (FCN) for
semantic segmentation. They proposed to modify the pretrained convolutional
classification network by replacing the fully connected layers by convolutions
with kernel size 1 x 1. This allows the FCN to output dense predictions
as opposed to the single global class predicted by the original classification
neural network.

The network architectures used in current state-of-the-art methods on video
object segmentation [3, (15, 4, [16] are based on this idea and similarly use
pretrained image classification networks such as VGG16 [I7] or ResNet[18]
and modify them for the segmentation task. They differ in several key design
choices as discussed in the following sections.

B 3.2.1 Segmentation resolution

The resolution of the deep layers in image classification networks is small
(7 x 7in VGG16). As a consequence, the network has to be further modified
in order to be useful for per-pixel segmentation task. The segmentation
network architectures can be grouped by the mechanisms used for achieving
full resolution outputs.
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B Skip connections

The methods used by[4, [16], [14] rely on “skip connections”, which combine
the outputs of high-resolution shallow layers providing the details with the
outputs of the deep layers that have bigger receptive field, but low resolution.
In particular, [4] implements the skip connections by upscaling the outputs
of the last convolutional layer before each pooling layer to the input image
resolution by means of bilinear interpolation. All of these skip connections
are later concatenated together and passed through a 1 x 1 convolution linear
classifier to get the output per-pixel class predictions.

B Dilated convolutions

Another way of achieving higher output resolution is dilated convolution
(also called atrous convolution from the french “a trous” [a tru] meaning
“with holes”) proposed by [19]. They replace the standard convolutions in
deeper CNN layers by a new type of convolution, which has larger kernel
size, but keeps the number of learned parameters intact. More specifically,
the atrous convolution introduces zeros between the consecutive values of
the convolution filter, increasing the kernel size from k x k to ke X k., where
ke =k + (k — 1)(r), with r being the number of additional zeros in between
the filter coefficients. Varying the r allows to control the field-of-view of the
layer.

The higher output resolution is then achieved by combining atrous con-
volution with not downsampling via pooling in the deeper layers (4 and 5
in VGG). However, the output resolution of the network proposed in [19]
is still only 1/8 of the input image resolution. To get to the full resolution,
they further upscale the output segmentation by bilinear interpolation and
employ a fully connected conditional random field (CRF) [20] to improve
the segmentation accuracy. CRF uses a logarithm of the network outputs as
unary potentials, while the pairwise potentials are combination of two terms.
The first one penalizes the pixels with similar color and position but different
labels and the second one penalizes pixels with different labels based only on
their spatial distance.
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B 3.2.2 Loss function

In classification, the cross-entropy loss function is commonly used. The out-
puts of the last network layer are first converted to represent class probabilities
by a non-linear activation sigmoid function, usually the logistic function:

q(x) =
With known probability labels p(x), the cross-entropy

H(p,q) = =) _ plx)log(q(z)) (3.5)

el‘

et +1

characterizes the difference between the distributions p and ¢. As the seg-
mentation task is in fact a per-pixel classification, the cross-entropy loss and
its modifications are commonly used as well.

Xie and Tu [21] proposed an edge detection method, formulated as per-
pixel edge/background classification. They argue that the cross-entropy loss
function needs to be modified for that task, because of the high inbalance in the
data. In the case of edge detection as much as 90% of the pixels are non-edge,
leading to a strong bias towards the background class. Consequently, they
have proposed to use a balanced cross-entropy loss - a simple modification of
the cross-entropy loss which fights the imbalance of the classes by reweighting
the terms corresponding to each of them.

Lba(W,X) ==Y logPr(y; = 1| X; W)
JEYY

—(1-5) Z log Pr (y; = 0|X; W)
JEY_

(3.6)

where 5 = |Y_|/|Y| denotes the fraction of pixels in the background class.
This loss function or its variation has then been adopted by other segmentation
methods, including OSVOS [4] and several of the top-scoring entries [22], 23], 24]
in the DAVIS 2017 challenge[25].

OnAVOS [I6] addresses the class inbalance by using the online bootstrap-
ping method proposed in [26]. The cross-entropy is computed per-pixel
according to equation (3.5), but only the worst k of the pixels are then
considered when computing the mean loss of the segmentation. This leads
to class-balancing, because as the network learns to classify the pixels in the
dominant class correctly, the pixels from this class are more often skipped
in the loss computation, leading to bigger importance of the pixels from the
weaker class. The number k of pixels is updated dynamically based on the
performance on the current image.
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(a) : The segmentation drifted to the  (b) : The segmentation did not react

hand holding the tracked object be-  to the object rotation because of incor-

cause of the use of optical flow rectly big influence of the propagated
mask

Figure 3.2: Examples of LucidTrack [3] failures on our data.

B 3.2.3 Input modality

Apart from the RGB image of the current frame, other inputs may be used.
Two such input types most relevant to our problem are discussed in this
section.

B Optical flow

The optical flow captures an important information about the motion in the
video. It is probable, that a big discrepancy in optical flow corresponds to
some object boundary. It is thus reasonable to use optical flow as an input,
however it does not provide any help when the tracked object is not moving
or when it is moving in a similar way to another object in the scene. In
cointracking, this happens often, because the tracked object is likely to be
held by a hand that moves in the same way. In such case, the flow can cause
the segmentation to drift as shown in figure |3.2a

B Mask

MaskTrack [15] and LucidTrack [3] both use the computed segmentation mask
from the previous frame as an additional input channel. The network’s task
is then to refine a segmentation mask - given an imperfect mask, compute the
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Base Network
Pre-trained on ImageNet

Parent Network Test Network

ined on DAVIS training set Fine-tuned on frame 1of test sequence

Resultson frameN

Figure 3.3: Three stage training proposed in [4]

correct one. Under the assumption of slow camera/object motion the network
output on the previous frame is a good estimate of the correct segmentation
of the current one. The previous frame mask is morphologically dilated in
[15] and then added as additional channel to the current frame’s RGB. In [3]
instead of dilating the mask, they warp it with the optical flow between the
two frames.

Using the segmentation mask from the previous frame adds some temporal
information, but there are situations where it cannot be used, such as the
tracked object being fully occluded (or going out of the camera view) for.
Furthermore it is not obvious how the network balances between the informa-
tion coming from the image and the mask. Figure shows an incorrect
segmentation computed by LucidTrack caused by the network putting more
importance to the previous mask than to the current image.

B 3.2.4 Fine-tuning augmentation

As we have discussed in the beginning of this chapter, deep learning relies
on large datasets. In [4], they have proposed a three stage training strategy
visualized in figure After pretraining on ImageNet and transfer learning
of the object segmentation task on DAVIS dataset, the network is fine-tuned
to segment the particular object of interest. The motivation for the individual
training phases is the following. The first ImageNet training stage provides
a reasonable weight initialization. It is a de facto standard to transfer the
semantic representations learned on the image classification to other tasks.
In the second phase, the fully connected layers are dropped and the network
is trained to a video object segmentation task. Both the first two training
steps should teach the network how a general object looks.

While the first two training stages provide a good initialization, it is still
not enough to fine-tune using only the frame 1 and the ground truth. To get
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additional training data, different data augmentation strategies have been
used. OSVOS [4] augments the training data by adding mirror reflection and
scaling. Although this helps preventing overfitting, this particular choice of
augmentations has little real-world justification.

In contrast to the simple augmentation, LucidTracker[3] employs much
more complex procedure in order to expand the available training dataset.
First, the object is separated from the background, then the resulting hole in
the background is filled with an image inpainting algorithm [27]. Both object
and background are then augmented separately by applying small affine
transformation and a thin-plate-spline transform on top of that. The object
is then composed on top of the background by means of Poisson matting [28]
and the corresponding ground truth segmentation is generated. Furthermore,
the image is modified by randomly altering it’s saturation and value in HSV
space in a non-linear way. The procedure is meant to simulate both object
and camera motion and various global illumination changes. Although this is
a very rough approximation of the situations that may arise during the video,
the performance achieved on the DAVIS challenge is impressive.

B 33 Proposed segmentation DNN

Taking into account all of the previously discussed variants of segmentation
networks, we propose a coin-tracking segmentation algorithm of a construction
similar to to [4] - the backbone of our network is an ImageNet pretrained
VGG16 with the fully connected layers cut off. Before pool2, pool3, poold
and after the last convolutional layer (conv5_3), skip connections are made.
On each of these skip connection branches, a 3 x 3 convolution with 16 output
channels is applied and the results are upscaled to the input image size using
bilinear interpolation. These branches are then concatenated, resulting in
H x W x (16 x 4) feature map. Three linear classifiers in form of a single
1 x 1 kernel convolution with 3 output channels are appended. Finally a
sigmoid activation is used to get the soft segmentation output, corresponding
to background, obverse and reverse side respectively.

In order to get the final segmentation a post-processing procedure is pro-
posed. First, the object region is extracted by selecting the largest 4-connected
component of the binary image formed by computing (1 —background) > 6,
then any holes inside this mask are filled.

In addition to the object segmentation, the outputs of this network represent
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Background

Obverse

Reverse

Figure 3.4: Proposed segmentation network architecture

the appearance part of our coin-tracking algorithm. In order to get the
predicted obverse side probability, the later two outputs of the segmentation
network corresponding to the obverse and the reverse side are summed
over the area corresponding to the object, producing two quantities Nogv
and Ngrgy respectively. The obverse side probability given the observed
image I is then estimated as:

N,

B 3.3.1 Training

Similarly to [4], backbone VGG network is pretrained on ImageNet classifi-
cation. After changing the architecture as described in the previous section,
the parent network is fine-tuned for segmentation on the DAVIS16 dataset.
However, our network has three output channels corresponding to background
and the two coin-like object sides as opposed to the single output channel
representing the object probability in [4], thus a different loss function has
to be applied. As discussed in [3.2.2] many other methods use some kind of
class balancing in the loss function. Our data is similar to the DAVIS data,
in the sense of the typical object sizes as compared to the image size. The
background class usually occupies most of the image and the object class
is now divided into two classes corresponding to each of the object sides,
leading to further increase of the background class dominance. In contrast
to the previous methods, we argue that the class inbalance on the training
data represents the inbalance on the test data reasonably well and thus using
a class-balancing loss function is counterproductive. The balancing alters
the class (object/background) prior probability, i.e. the size of the object
compared to the size of the image and consequently should be avoided.
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With this in mind, we choose to use a simple cross-entropy loss as defined
in equation [3.5. When training the parent network the objects from DAVIS
dataset are not coin-like and there is no notion of obverse and reverse side,
thus we simply label the objects as both obverse and reverse.

B Augmentation

At test time, the pretrained parent network is further fine-tuned on augmented
images of the input annotated frames. The properties of the coin-like objects
discussed in section |2.1.1| permit to augment the images in a matter similar
to [3], but better-founded, because in contrast to their augmentation applied
on general 3D objects, our augmentations are direct simulations of possible
future object poses.

Following [3], we first augment the Saturation and Value channels of
the HSV image representation by computing I’ = al’ + ¢, where a is
drawn uniformly from [1 — 0.05,1 + 0.05], b from [1 — 0.3,1 + 0.3] and ¢ from
[-0.07,40.07]. Next, we split the training image into the object and the
background using the provided segmentation mask.

The object image is then randomly resized with scaling factor drawn
uniformly from [0.6, 2] and transformed by a homography, which is constructed
to represent a realistic 3D rotation of the object, giving us almost a perfect
simulation of the possible appearances of the object during the video sequence.
The 3D rotation is composed from three random rotations, first one being
in-plane rotation around the z-axis, second one out-of-plane rotation around
the x-axis and the third one again around the z-axis with the object image
centered in origin and lying in the z = 0 plane. The angle of each of the
rotations around z-axis are uniformly drawn from the full interval [0°, 360°].
The out-of-plane rotation (around the x-axis) has angle drawn from [0°, 85°].
The process is illustrated in figure [3.5|  After the rotation, the brightness
of the object image is modified by multiplying the Value channel of its HSV
representation by a number drawn randomly from normal distribution with
p=0.2 and o = 1, in order to simulate the brightness changes caused by the
object rotation with respect to light source.

In order to compose the augmented object with a meaningful background,
we fill the hole in the background image using the open-source OpenCV!
implementation of the image inpainting method by Telea [29]. The resulting
image is then distorted by a thin-plate spline deformation [30] with five

"https://opencv.org/
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(a) : Input image (b) : After in-plane z-axis ro-
tation of 40°

(c) : After out-of-plane x-axis  (d) : After z-axis rotation of
rotation of -45° -60°

Figure 3.5: The process of generating the 3D rotation augmentation.

control points each shifted uniformly by 25px in each coordinate. See the
figure for an example of such transformation. Finally, the augmented
object is placed randomly on the augmented background and a corresponding
segmentation mask is created to form the augmented training example.

When training the segmentation network with both sides known in advance,
we observed that the network sometimes learned to differentiate the obverse
and the reverse side only from the background similarity to the training
examples. Therefore, we changed the augmentation procedure to uniformly
sample the background from all the ground truth image-segmentation pairs.

We generate 300 such augmentations for each of the provided image-
segmentation pair.

B Single side fine-tuning

In the case of only the obverse side of the object known in advance, it is not
clear, how to perform the fine-tuning. We propose three different methods.
First, the fine-tuning is the same as in case of two-sided fine-tuning, setting
all the fine-tuning reverse side labels to zero. However, this zero reverse
strategy should not be used when both of the object sides look similar to
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—

-

Figure 3.6: An example of a thin-plate spline deformation of an inpainted
background. The TPS control points are shown in red.

each other, because in that case we would incorrectly teach the network that
the reverse side does not look like the obverse one. To address this issue,
we propose an ignore reverse strategy, where the reverse side is labeled zero
on the background and special ignore label on the object. The third strategy
(fake reverse) is again inspired by the Lucid dreaming [3]. Instead of not
providing any training samples of the reverse side, we propose to use a random
crop from the DAVIS dataset shaped as the mirrored obverse side of the
object in order to hallucinate some possible reverse side appearances. While
this does not result in real-looking objects, the goal is mostly to provide an
object with realistic shape and texture different from background.
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(a) : Original image (b) : Augmented image

Figure 3.7: Examples of the augmentations. Notice the fake reverse side on
the last row.
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Chapter 4

Shape

As introduced in section [2.1, shape is one of the features useful for ob-
verse/reverse side discrimination. In this chapter, we will describe a simple
method of side classification from shape, based on Afinne Moment Invariants.

For non-symmetric objects, the visible side can be distinguished just by
looking at the shape of the object occluding contour. A simple flip detector can
be designed based on Affine Moment Invariants (AMIs), which are functions
of image moments invariant with respect to affine transformations. Flusser et
al. [31I] show, that it is impossible to construct a projective invariant from
finite number of moments, leaving AMIs as necessary approximation.

A mirror reflection is element of affine transformation, so true affine invari-
ants would not help us to discriminate the two sides of the tracked object.
Fortunately, affine moment pseudoinvariants can be constructed, which are
invariant with respect to affine transformations up to the sign, which repre-
sents the presence of mirroring in the transformation, yielding a simple way
of of flip detection. We use two independent affine moment pseudoinvariants
I5 and I, listed in [31].

In order to get the pseudoinvariants, first the segmentation mask central
moments /;; have to be computed up to fourth order (i + j < 4).

pij =y (x—2)'(y -7 (4.1)
x?y
with z and y being the mask centroid coordinates defined as:

F= 0 5 _ Mot (4.2)
moo moo

25



4. Shape

mij =Y @'y’ (4.3)
I?y

The x and y are coordinates at which the segmentation mask is non-zero.

The two used independent pseudoinvariants are defined as follows:

I =(p3o30tios — 3p30k21 2/t + 2H50H 2403 — Bptdo 11 H30i12/453
+ 6304011 131 Hos + Ot a1 Hiatios — i1 1
+ 330 102H30 4T 03 — B30 02451 P12 103 + B30 0221 15o
+ 120190417 130 112403 — 244120471 115y 124103 + 1209017 pi21 1135
— 12900011 R02 130 432 + 121120 /011 021431 103 — BH204G2130K51 Ho3
+ Bpua0pattz0a1 s — Bpiaooaiay iz — Sy 130143 + 81 13 03
— 1207, po2 /30431 103 + 244012002 030121 39 — 12T po2 43 f112
+ 6111 o i30H21 03 — Bt e 30Nt — Bpinl o ks0 1 2

+ 611 Uil — Hialaokos + Bliaioka1 2 — 2o tts0 a1 ) / Koo
(4.4)

Tio =(opai iy — Biidopaziination + 2pdopi®s — 1o praotily
— 2030011 131 113104 + D011 e llod — Bt 1 2o ltts
+ 1301021140 1131404 — 3130021431 ha2 o + 23002131 135
+ Apoopd aopiiztion — 12004031 131 fhaa fos + Spi0ftay 31 a5
— Gpuz0i11 ptofa0fiTy + Bptaopian fonfusy Hoa — H20Hiaftao /st Hos
+ BHa0p iaok22 ity — 2pa0 ok a3 — Ay aokts + AuT Sy poa
— 43 poa a0 s fos + 1203 pozptaopioz iz — Spay oz iz 13
+ pu1 o tos — 241 12 a0k31 13 — L g2 a0 s

G o i3 o — iattGons + Sptgatiao izt fioe — 2Hatisy )/ 1bh
(4.5)

Experimental evaluation of the affine moment invariant method can be
found in chapter [7.
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Chapter 5

Dynamics

As discussed in section [2.1], tracked object dynamics contain lot of information
about the currently visible side. In this section, we propose two ways of
measuring the object out-of-the-plane rotation. The changes of the measured
quantity can then be used to predict a possible side flip occurence or, equally
importantly, to detect parts of the video sequence, during which only one of
the object sides is visible as illustrated in figure [5.11

B 51 Segmentation area

The first method is a very simple baseline. Instead of measuring the angle
itself, we propose to measure the area of the object image. This measurement
is trivial to obtain from the segmentation algorithm output mask for each
frame of the input video sequence. The apparent object area is a sensible
quantity to track, because it is closely related to the out-of-plane rotation of
the object. More specificaly, let us assume the following.

Assumption 5.1. The object distance to the camera is far larger than the
object size.

Assumption 5.2. The object distance to the camera does not change signifi-
cantly.

Then the assumption |5.1|ensures, that the perspective effects on the rotating
object are negligible and the object image transformation is well approximated
by an affine transform. When the object is rotated directly out-of-the-plane
from a frontoparallel position by an angle «, the object image area shrinks as
A’ = Acosa. With the assumption 5.2 ensuring that the object image area
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Figure 5.1: Example of dynamics-based flip prediction. Parts of sequence not
suspected to contain any flips are shown in green, parts with possible flips in
red.

does not change significantly due to the 3D translations, the area can be used
instead of the out-of-the-plane rotation angle.

B 5.2 Out-of-the-plane rotation angle regression

The second method we propose is direct regression of the out-of-the-plane
rotation angle using a deep neural network designed specially for the coin-
tracking task. The network consists of two identical feature extractors with
shared parameters, the first one is fed with a prototype frontoparallel image
of the tracked object, while the second one uses the rotated object from
the current frame of the video sequence as segmented by the segmentation
network. The outputs of the last convolutional layer from both branches are
then concatenated and fed through three fully-connected layers. The output
of the resulting network represents the out-of-the-plane angle.
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B Architecture

As the feature extractor, we use MobileNet 1.0 [32], which is an adaptation of
the VGG16 [17] network with much smaller number of parameters, that was
designed to be used in mobile devices with limited computational resources.
The parameter reduction is accomplished by using depth-separable convolu-
tional layers instead of the standard ones. Instead of having a convolution
filter with K x K x D, parameters per each output channel as discussed
in section 3.1.1}, [32] have proposed to have only one K x K x 1 depthwise
convolution filter for each layer input channel. A linear combination in form
of 1 x 1 x Dyt point-wise convolution is then applied on the resulting D;,
channel feature map. This depth-wise separation of the convolution filters
have been shown to achieve performance only slightly worse than the same
model using the standard convolutions, while having over 7 times less param-
eters. Please refer to [32] for details of the MobileNet network architecture.
While we have chosen to use MobileNet as our backbone model, our proposed
architecture does not rely on the exact feature extractor architecture and
thus a more heavy-weight network, like [I8, B3] can be plugged in instead.

The last three fully connected layers are inspired by [34], with output
dimensions 1024, 1024 and 1 respectively. Note, that because of the fully
connected layers, the input image size have to be fixed, in this case to 224 x 224
pixels. The object image, cropped by the segmentation mask bounding box, is
thus first rescaled to this size, while keeping the aspect ratio intact by padding
with zeros when necessary. Note that it is essential to do the rescaling this
way, otherwise the information about the object 3D orientation would be lost.

B Training

Similarly to the segmentation network, our angle regression CNN feature
extractor is pre-trained on ImageNet and the whole network is then finetuned
on augmentations of the known object sides. The object is cut out of the
image and randomly rotated as described in section |3.3.1L This time, though,
the object does not have to be composed on top of an augmented background,
because the network operates on the cropped object images only.

Thanks to the chosen sequence of augmentation 3D rotations, the out-of-
the-plane angle of the augmented image is uniquely defined by the angle of
the second rotation (around the x-axis), thus it is simple to generate training
pairs in form of a prototype image, rotated image, angle triplets. To make
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Figure 5.2: Example augmentations of the obverse (top) and the reverse
(bottom) sides from the beermat sequence.

the system more robust to the quality of the segmentation, we additionally
augment the rotated image by making a random circular “hole” it. After the
augmented dataset is generated, the network is trained by Adam optimizer
with the loss function chosen as the mean squared difference between the
ground-truth and the predicted angle.

B Testing

At test time, the object is cropped from the ground-truth side image to form
the prototype (for each side if both obverse and reverse sides are provided).
Then, the network is finetuned on the augmentations of the prototypes and
evaluated on each frame, once for each available side prototype.

B 53 Sequence partitioning

As discussed in the introduction of this chapter, the estimated object out-
of-the-plane angle can be used to identify the flip moments in the sequence.
In reality, however, the flip may not be represented by a single frame and
the object can stay rotated almost perpendicular to the image plane for
prolonged periods of time. As the reliability of all the proposed methods
depends heavily on the quality of the segmentation, which drops significantly
with big out-of-the-plane rotation angles, we propose to partition the video
sequence into “calm” parts without any side flips, where the side classification
is more likely to be correct and “flippy” parts, where an unknown number of
flips is suspected to happen.
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In order to split the sequence into the two mentioned types of subsequences,
we threshold the out-of-the-plane angle (or the object image area) signal.
When the CNN estimated angle is used, the parts with the out-of-the-plane
angle smaller than 45° are considered calm. In the case of area based partition-
ing, the procedure is different, because the object distance from the camera
is not fixed exactly and consequently the object area does not have a fixed
range, disabling use of a single threshold. Instead, we do the thresholding
adaptively, taking into account the maximal observed area in the previous
calm part.

In particular, the sequence is traversed from the first frame, keeping track
of the maximum object area Aq;. As the first frame is known to be the
annotated frame of the obverse side, thus most likely to be close to a
frontoparallel view, the first part is considered to be a calm one. It’s end
is reached, when the currently measured area falls bellow 64 - Apaz, at
which moment a new flippy part is started. The thresholding algorithm
then continues traversing the sequence, until the observed area rises above
h-04-Apmaz, where h > 1 is a hysteresis coefficient. Our choice of two thresholds
04 and h - 04 is motivated by possible segmentation area instabilities around
the flip moments. We empirically set 84 = 0.25 and h = 2.

After the end of the flippy part is found, the whole process is repeated
until the end of the video sequence, while resetting A, before the start of
each calm part.
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Chapter 6

The coin-tracking algorithm

In this chapter, we propose a coin-tracking algorithm built from the blocks
described in the previous chapters. All the three types of information available
(appearance, dynamics and shape) will be combined together in one algorithm.
As discussed before, we have chosen the tracking by segmentation approach
to the coin-tracking problem and introduced a segmentation DNN, which
classifies each pixel into belonging to background, obverse or reverse side
of the object. The background output channel of the network is thresholded
to get the segmentation mask of the object, which is then post-processed as
described in section 3.3 Then, the affine moment invariants are computed,
together with the estimated out-of-the-plane angle or segmentation mask
areas.

In order to marge all the information together, we propose to formulate the
task of visible side classification in terms of classification of the calm parts of
the sequence followed by propagation of the side labels into the flippy parts.
We model this part-wise classification in a probabilistic way.

For a given calm part k € {1,..., K} identified by its starting frame number
s and its ending frame number e, the outputs of the three measurements
— segmentation DNN, the first and the second affine moment invariant are
realizations of random variables X}, Y3 and Zj, respectively. All three random
variables share a common mean u, which is the probability, that the obverse
side of the object is visible in the part k. The random variable X}, is continuous
in [0, 1] interval, while the variables Y}, and Zj; have Bernoulli distribution.

(t)

The realizations x,~ are directly the outputs of the per-frame obverse side
probabilities of the segmentation DNN.
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The realizations y,(:) are computed from the first invariant I ft) by comparing

its sign to the sign of the invariant of the obverse side prototype Iopy.

(6.1)

(t) 1, if Il(t) -Iogpv >0
Y =

0, otherwise.

The second invariants are processed in the same way to get z,(:) and the mean

1 of the random variables is then estimated by computing

3 € — Sk t=sp, k € — Sk t=sp k €L — Sk P— k

er ek eL
s (B S £ )

3 Ck o Sk i:Sk i:Sk i:Sk
(6.2)
The part k classification is then
Cp = obverse, if pg >.0.5 (6.3)
reverse, otherwise.

After all of the calm are classified as either the obverse, or the reverse side,
the labels are propagated to get final per-frame side classification. In the
case of calm parts, the frames simply inherit the side label from the part
classification. The flippy parts are split into two sub-parts by finding the frame
fmin With the largest out-of-the-plane angle or the smallest segmentation area,
respectively. The frames before fnin) get the side label of the previous calm
part, while the frames after it are assigned the label of the next calm part.
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Chapter 7

Evaluation

In this chapter, we show a qualitative and quantitative comparison of the
different design choices we have made.

. 7.1 Data

We have collected a dataset of 22 video sequences, containing various coin-like
objects, including several videos of hands and books, which do not exactly fit
in to the coin-like object definition, but are close to it and were included to
test the robustness of the proposed algorithms. The sequences vary in image
quality, the size, motion speed, and appearance of the tracked objects as well
as camera movement and complexity of the background. Example frames
from the dataset are shown in figures |7.1| and |7.2l

Due to the difficulty of video object segmentation annotation, we have
annotated the sequences only with sparse bounding boxes. A tight axes-
aligned bounding rectangle ground truth was manually annotated for every
30th frame. The visible side annotation is provided in form of a list of frames
containing a flip, although it was often not possible to identify a single frame
when the flip occurred, in which case the closest one was chosen. The visible
side can then be computed simply by computing number of ground truth
flips up to the current frame.

The sequences, together with the bounding box and flip annotations and
the ground truth segmentation for each side prototype, are published on the
CD accompanying this thesis.
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7. Evaluation

Figure 7.1: Example frames from the coin-tracking dataset.
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7.1. Data

Figure 7.2: Example frames from the coin-tracking dataset - continued.
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7. Evaluation

Sequence # of frames
beermat 1000
cardl 630
card2 432
coinl 55
coin2 94
coind 246
coin4 242
husa 741
iccv__bg handheld 985
iccv_handheld 379
iccv__simple_static 583
iccv__static 561
pingpongl 436
pingpong2 39
plain 1000
ruka 318
ruka handheld 600
ruka_ static 662
statnice 600
tatra 540
tea  diff 2 300
tea_ same 505

Table 7.1: Coin-tracking dataset

. 7.2 Performance evaluation

We propose two evaluation criterions, one for assesing the quality of the
segmentation and one for the side classification accuracy.

A classical performance metric for image segmentation is the Jaccard index,
also known as Intersection over Union (IoU), computed from the ground truth
segmentation Sgr and the algorithm output segmentation Syyt as

Sout N SGT

J(SoutysGT) - S U SGT

(7.1)

Because of unavailability of per-frame ground truth segmentation for our
data, we choose to employ a relaxation of this measure and we only compute
the Intersection over Union of the axis-aligned bounding boxes of the respective
segmentation masks. To get the score of a sequence, we average the IoU over
all annotated frames, resulting in the Average Overlap (AO) metrics.

38



7.2. Performance evaluation

In order to measure the side classification performance, we use the standard
classification accuracy, computed as the percentage of correctly classified
frames in a video sequence. This metrics will be called Side Accuracy (SA).

In the following sections, we will first show an experimental evaluation of
the three main components of our coin-tracking algorithm, the segmentation
network, side classification from shape and the dynamics based sequence
partitioning. Finally the method will be evaluated as a whole with the help
of the Average Overlap and the Side Accuracy metrics.

Bl 7.2.1 Segmentation network

The segmentation network is an essential component of our proposed method,
with all of the other parts relying heavily on the segmentation quality.

B Lucid dreaming data augmentation

We have qualitatively tested the impact of performing the complicated aug-
mentations described in [3.3.1| as opposed to the simple augmentations used
in [4]. Figure |7.3 shows an illustrative comparison of the effect of the tuning
strategy choice.

The positive effect of the “Lucid” augmentation is most notable on sequences
with complex backgrounds and especially on sequences, where background
dissimilar to the background on the ground truth frame appears later during
the video because of the camera motion (e.g. pingpongl sequence). On such
sequences, the simple fine-tuning tends to overfit. As we have discussed
previously, our augmentation strategy captures the properties of the tracked
object and the synthesized images are much closer to the expected frames in
the sequence, than the ones which are simply mirrorings and scalings of the
ground truth frame.

B Network pretraining

The ImageNet pretrained segmentation network was further finetuned on the
DAVIS ([13]) dataset as described in [4]. In contrast to our cross-entropy
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7. Evaluation

Figure 7.3: Finetuning strategy results comparison. Left: basic, Right: ours.
The segmentation masks before post-processing are visualized by a green over-
lay.

loss, the loss function from [4] was not normalized by the input image size in
the author’s reference implementatiorﬂ, thus a better suiting base learning
rate had to be found for the training to converge. As shown in figure [7.4
the learning rate of 10~* converged the best and was also used for the final
fine-tuning.

As a consequence of the tuning on the DAVIS dataset, in which the tracked
object is usually a human, an animal or a vehicle, the network outputs false
positive segmentations, if some of these types of objects are visible in the
video sequence, but not on the side prototype frames. This is the case of
the cardl sequence, in which the card being tracked lies on a table without
being held in hand on both the obverse and the reverse side annotated
frame. Since the network was taught to segment hands during the DAVIS
pre-training and no negative training examples were provided during the
fine-tuning phase, the output segmentation includes the tracked card, as well
as the hand holding it as shown in figure

B Obverse-only finetuning

We have proposed three fine-tuning strategies in the case when the reverse
side ground truth example is not provided. The performance of all three
strategies are compared to the fine-tuning with both sides known in advance
in figure [7.6. Surprisingly, it turned out, that the ignore reverse and the zero
reverse tuning strategies perform equivalently. Recall that the zero strategy
sets all the training labels for the reverse side to zeros, while the ignore one
only does this for the pixels belonging to background, while setting the label
of the pixels belonging to the obverse side to a special ignore label, for which
the value of the loss function is always zero. We argue that the equivalence
of these two approaches stems from the fact, that the SGD-based network

"https://github.com/kmaninis/OSVOS-caffe
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Figure 7.4: Parent network pretraining on the DAVIS dataset ([I3]) with varying
learning rates. For better visualization of the trends, the loss value smoothed by
exponential forgetting is shown in darker color. Notice that the network didn’t
learn well with the learning rate used in [4]

training tries to find the simplest possible function, that would output the
wanted labels on the training data. In case of the reverse side classifier,
either all of the training labels are zero, or most of them are zero with the rest
being ignored. From this point of view it becomes reasonable that both of the
training strategies are equivalent as the reverse side classifier is essentially
just trained to output zeros everywhere.

We hoped that the reverse side could be identified by looking for pixels
where neither the background, nor the obverse side classifier produced
significant response, however, we did not observe such behavior and it remains
an open question, how to finetune the network without training examples for
one of the sides.

The last strategy - fake reverse, based on generating fake reverse side
training data, performs significantly worse than the first two. We think there
are two reasons causing that, first one being that the random crops of the
DAVIS datasets are very far from the real appearance of the objects in our
dataset, commonly being parts of sky or grass or containing people faces.
The second reason this strategy does not work as well as expected is the fact,

41
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Figure 7.5: Segmentation failure mode originating in the three-phase training
procedure. Left: the obverse side training frame, Right: incorrect segmentation
of parts of the hand.

that the DAVIS crops frequently directly contradicts the DAVIS-pretraining,
i.e. the image patch previously trained to be classified as background is now
labeled as object reverse side.

B 7.2.2 Shape-based side classification

Given that the affine moment invariants are a global descriptor, it is predicable,
that their robustness to the segmentation mask quality will not be great.
However, our experiments indicate, that the AMIs’ robustness is much smaller,
than what we would expect. We have noticed that the side probabilities
computed from the invariants are very often around 0.5, meaning maximum
uncertainty, which would not be surprising for the symmetric objects, but
it also holds for non-symmetric ones, where we have expected much more
discriminative power. In order to rule out the influence of the segmentation
network output quality, we have tried to compute the invariants on the ground
truth annotation segmentations. Surprisingly, it was often not possible to
distinguish the sides with the invariants, even though the view of the sides
is very close to frontoparallel and the segmentation quality is high. One of
the examples of such failure is shown in figure [7.7. In order to eliminate
the possibility of error in the invariants computation, we have also tried
artificially flipping the segmentation masks along each axis, which confirmed,
that the invariants are computed correctly, because the absolute values did
not change and the signs flipped exactly as expected.
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Figure 7.6: Comparison of obverse-only fine-tuning with fine-tuning on both
sides. The plot shows the fraction of all ground truth annotated frames on which
the overlap was greater or equal to the value on the vertical axis. (Better values
to the right and to the top.)

B 7.2.3 Dynamics

We have proposed two different ways to measure the tracked object out-of-
the-plane angle used for the sequence partitioning into calm and flippy parts.
In order to visually compare the two approaches, we have converted the area
measurements into the same range as the angle output of the out-of-the-plane
regression CNN.

AL =90 (1 _ A/ max Ai) (7.2)

As we do not have any ground truth out-of-the-plane annotation, we have
compared the two methods only qualitatively. Although the outputs of both
methods are clearly strongly correlated, the baseline area-based out-of-the-
plane angle estimator seems to provide more stable results, especially around
the flips, so we use it for the sequence partitioning.

In order to further asses the performance of the out-of-the-plane rotation
regression CNN, we have performed a synthetic experiment, where an object
was rotated the full 0° to 90° out-of-the-plane angle range, while keeping
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7. Evaluation

(a) : Obverse: - + (b) : Reverse: - +

Figure 7.7: Affine invariant failure example. The signs of the first and the second
invariant used are shown under each image. Notice that they are the same on
both sides, even though the object is not symmetric and clearly mirrored.

the other two angles (3D rotation performed as discussed in section 3.3.1))
at a randomly generated values. Figure |7.9 shows the relation between the
ground truth angle and the angle regressed by the network. The network
outputs are slightly biased near the 0° and 90° extremes, and the precision is
not perfect either, but the task of estimating the out-of-the-plane angle was
learned successfully.

B Sequence partitioning

As the final visible side classification is performed on the partitioned sequence,
we have to evaluate the quality of this partitioning as well. It is particularly
important, that all of the object flips are covered by a flippy part, otherwise
the final side classification cannot be possibly correct. One example of such
fatal partitioning failure is shown in figure [7.10l This particular example is
from a sequence ruka, where the tracked object is a hand, which does not fit
the coin-like object definition well enough.

On the other hand, classifying a part of the video sequence as flippy even
if no real flip occurs in it is not as big of an issue. An example of successful
partitioning is shown in figure |7.11}

All of the sequences in our coin-tracking dataset were partitioned correctly
(in the sense of all flips being covered by a flippy part), except for the ruka,
ruka__static, ruka__handheld sequences, in which a hand is tracked an the
iccv__bg__handheld sequence, which fails because of poor segmentation quality.
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Figure 7.8: Comparison of the estimated out-of-the-plane angle and the segmen-
tation area, modified by formula Notice the strong correlation between the
two methods output.

B 7.2.4 Overall performance

In the previous sections, we have examined some of the design choices quali-
tatively. In order to get a quantitative insight into the performance of the
whole proposed method, the per-sequence results will be discussed in this
section.

B Average overlap

We have tested the segmentation thresholds 6y, in range from 0.1 to 0.9.
The results shown in figure indicate, that the segmentation algorithm
is very robust with respect to choice of the threshold. By comparing the
area under curve (AUC) between the different settings, we have selected the
best performing one: 6y, = 0.7. The per-sequence average overlap is shown
together with the side accuracy in table
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Figure 7.9: Out-of-the-plane CNN synthetic experiment

B Side accuracy

Because of the low observed robustness of the affine moment invariants,
discussed in section 77, we have evaluated two variants of the combination
algorithm, first one taking the shape into account as defined in chapter |6
and a second one working with the side probabilities from the segmentation
network only. The side accuracy averaged over the whole dataset was 66.94%
in case of the variant with invariants and 67.42% in the segmentation-only
variant. Although the shape component of our algorithm did not provide
satisfactory results, it did not affect the results much, thanks to the algorithm
combining the appearance, shape and dynamics together. See table for
the complete table of per-sequence results and the qualitative results on the
CD accompanying this thesis.
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Figure 7.10: Example of a sequence partitioning failure caused by the low
coin-likeness of the object.
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Figure 7.11: Example of a successful sequence partitioning on the beermat
sequence. Notice the flippy part without a ground truth flip present (around
frame 500), which originates from the object almost flipping, but stopping just
before the side flip would occur.
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Figure 7.12: Average overlap sensitivity to segmentation threshold

Sequence Side accuracy | Average overlap
card2 0.99 0.87
beermat 0.98 0.81
statnice 0.97 0.90
coin2 0.87 0.40
coin3 0.80 0.37
husa 0.80 0.80
plain 0.69 0.77
coinl 0.67 0.93
iccv__static 0.66 0.59
cardl 0.60 0.71
tatra 0.59 0.92
ruka_handheld 0.56 0.85
iccv__bg handheld 0.52 0.41
iccv_handheld 0.52 0.49
pingpongl 0.52 0.31
iccv__simple_static 0.59 0.56
ruka static 0.49 0.66
ruka 0.43 0.96
pingpong?2 0.41 0.20
coin4 0.39 0.30

Table 7.2: Per-sequence evaluation results. The side accuracy on the sequences
below the red line is worse than random.
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Chapter 8

Conclusions and future work

In the first part of this thesis, we have introduced a novel visual tracking
problem, called “coin-tracking”. The properties of the problem were discussed
and three possible approaches to solving it - appearance, shape and dynamics
- were proposed. In order to utilize all of them, we have designed a tracking
by segmentation type of algorithm.

After reviewing the state-of-the-art literature on video object segmentation,
we have adapted OSVOS [4] - a state-of-the-art video object segmentation
DNN published recently at CVPR17 - to our task. In order to train the
network, we have designed a data augmentation strategy suitable for coin-
tracking inspired by [3]. Apart from the segmentation mask of the tracked
object, our network also outputs a visible side probability estimation. Atop
of the appearance-based side classification a method based on affine moment
invariants was proposed.

In the following chapters, we have described two ways of detecting possible
side flips in the sequences, based on dynamics of the object out-of-the-plane
rotation angle. Finally the visible side classification was then formulated in
terms of a probability framework, combining all of the proposed methods
into one algorithm.

We have acquired and annotated a coin-tracking dataset, which was then
used for performance evaluation of our proposed algorithm. Although we
have discovered that the affine moment invariants are not robust enough in
our settings, the method as a whole worked reasonably well on some of the
sequences, setting a baseline for the coin-tracking problem. Even with the
help of state-of-the-art deep-learning methods, the coin-tracking problem
proved to be challenging and the dataset contains several sequences, on which
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8. Conclusions and future work

our method fails because of the reasons discussed in the previous chapter.

In future work, a better shape-based side classifier should be designed as an
alternative for the affine invariant moments. As the occluding boundaries are
known to be homography related to the occluding boundary of the obverse
side prototype a robust point-wise matching could provide better results.
Moreover, because our method relies heavily on the segmentation quality,
causing it to fail on some of the more challenging sequences, different recently
published segmentation DNN architectures should be tested.

50



Appendix A

Content of the CD

The directories on the CD are structured in the following way:
thesis.pdf
| dataset/
images/
segmentations/
sides/
flips/
bboxes/
| results/

The images directory contains one subdirectory for each of the collected
sequences, containing numbered video frames as jpg files. The segmentations
directory is structured in the same way, with the segmentation masks in png
files. The sides directory contains two files - front.txt and back.txt -
each containing the number of the GT annotated frame for each object’s side
respectively.

The £f1lips and bboxes contain the ground truth for performance evaluation.
The flips are represented by a JSON file for each sequence, containing a list of
frame numbers, where a flip has occurred. The bounding boxes are represented
by a tuple zy, Y#1, Tor, Ypr, containing the coordinates of the top-left and the
bottom-right corner of the bounding box. In the case that none of the object’s
sides is visible at the frame a null value is stored instead of the coordinates.
These bounding box representations are then stored in a map structure, with
frame number as a key and the bounding representation as value.

Finally, the results directory contains videos visualizing the outputs of
our coin-tracking method.
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