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Abstract

The goal of this thesis is to design and implement a  framework to detect similarities
in classified  malicious  network  traffic,  using  and  combining  at  least  two  similarity
metrics.  The results will be further used to reduce the data necessary for presenting
individual security incidents without losing the information value.

Keywords:  network  traffic,  web  flow,  similarity,  malware,  malicious  software,
security incident, cyber attack

Abstrakt

Cílem této práce je návrh a implementace frameworku pro identifikaci podobností
v rozpoznaném  škodlivém  síťovém  provozu,  s použitím  minimálně  dvou  metrik
podobnosti.  Výsledky  budou  dále  využity  pro snížení  množství  dat  potřebných
při prezentaci jednotlivých bezpečnostních incidentů bez ztráty informační hodnoty.

Klíčová slova: síťový provoz, webový tok, podobnost, malware, škodlivý software,
bezpečnostní incident, kybernetický útok
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1 Introduction

1 Introduction

The internet is growing every day. We tend to use internet and cloud services not just
for browsing the web and consuming content,  but also for creating new content and
experience,  communication with people on the other side of our planet,  but even as
assistant  in  our  households  and everyday  life.  It’s  highly  convenient  and thanks  to
mobile devices also easily portable.

There are also new internet markets emerging in underdeveloped countries, which
includes the biggest countries in the world like Brazil, China or India, whose users want
to enjoy the same experience as others very soon after they get the internet connection.

The overall internet traffic has grown over 3 times in the last five years, and between
years 2015 and 2016 it was by 30%. The growth was even higher for traffic generated
by mobile devices, which almost doubled between these two years. [1]

But the popularity of the internet brings not just growth in the number of users and
amount of data transferred, but also the variety and diversity of data is rapidly growing.
Thanks to the omnipresent mobile devices, we collect data not just knowingly, but there
are new types of data temporary or permanently recorded and stored in our devices.
Mobile devices are getting smarter with many sensors for tracking our precise position,
take pictures or record sounds and video. Thanks to them we are connecting our real
lives to the internet.

The amount, diversity and sensitivity of data on the internet, and our connection to
it,  raises  the  cost  of  the  data  and  creates  new  opportunities  when  these  are  lost,
exfiltrated or just blocked from being accessed until ransom is payed. [2] The protection
against these online threats is becoming highly important.

Because of our everyday connection to internet, many threats are distributed online
too. Their identification is hard to achieve on itself, but even after the threats are found,
we need to understand them – both those we have seen before and know the steps to
mitigate their impact, and the new ones we need to analyze first.

This thesis aims to ease the analysis of detected threats by finding similarities in the
detected malicious behavior in the network to better understand the threat behavior in
time.

1.1 Motivation

The number and magnitude of online threats is growing with the internet traffic. [3] And
so  does  the  importance  of  their  in-time  identification,  correct  analysis  and  proper
mitigation. The statistic from over 12,000 respondents in June 2015 showed that 1/3 of
them paid for repairs. The percentage of respondents stating they have paid to mitigate
some malware infection consequences is actually higher than people purchasing some
antivirus software or tools to clean their computers. [4]
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1 Introduction

Figure 1: Financial costs incurred by malware incidents [4]

According to Honeywell, the cost of an industry cyber attack resolution goes over 20
000 USD per day, while the average time to resolve malicious attack is almost two
months. Deploying a security solution system can save a company up to 3 millions USD
every year. [5] The median financial costs of cyber crime for U. S. companies in 2014
and 2015 is estimated around 10 million USD, with the maximum over 60 million USD.
[6]

According to the annual business report on csoonline.com, by 2021 the damage of
cyber crime fight exceed 6 trillion USD. Global spending on the cyber security services
and products is predicted to exceed 1 trillion USD for the years 2017 – 2021. [7]

These numbers only document how severe the problem of cyber crime is and what
danger it means for both individuals personal data and business secrets.

On the field of cyber security,  it’s  important both to correctly identify malicious
activities in the network, but also to allow analysts to analysis them and decide about
the appropriate countermeasures. Having the most accurate detection without any false
positives can be useless when the time to action is too long because of missing threat
context and understanding, what is actually happening and how the threat evolves in
time.

1.2 Assignment

The assignment of this thesis is to identify similarities in malicious network behavior to
ease their further analysis and mitigation. The assignment will be now further analyzed
to define  what  to  include  in  this  thesis,  develop necessary  software  and gather  and
interpret data from designed experiments.
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1.2 Assignment

The assignment is divided into several tasks. From these tasks the structure of the
thesis and its chapter will be deigned.

1.2.1 Study and analyze existing algorithms for identifying 

string and behaviour similarities.

This  introduction  part  is  to  research  the  current  approaches  and  algorithms  for
identification of similarities in network behaviour.  It is important  to briefly describe
several solutions and identify present trends in this area.

1.2.2 In “real-world” data related to detected incidents, 

identify similarities between diferent types of malicious 

behaviour. Focus on Command and Control, adware and click 

fraud.

Based on the knowledge gained in the previous tasks, next step is to use some of the
algorithms and apply them to find similarities in malicious behaviour. It’s important
these algorithms need to work for malicious  behaviour  in general,  not  only specific
types.

1.2.3 Implement at least two algorithms and in the automated

detection framework.

In the next stage use multiple algorithms implemented in the previous step and combine
them in an automated detection framework. Using multiple algorithms should greatly
improve discovery of similarities across all types of malicious behaviour and allow to
group data into relevant partitions based on the similarities.

1.2.4 Determine and measure in % if and how much can be 

the data describing incidents reduced using the automated 

algorithms with preserving the information value.

The final framework implementation should be benchmarked, how much the behaviour
data can be reduced into partitions based on the uncovered similarities, without loosing
too much information by putting unrelated behaviour into same partitions.

1.3 Important terms

1.3.1 Cyber threat

A cyber threat or cyber attack is an offensive and illegal activity by either individual or
a group (e.g. company or nation) targeting a computer system or device. The usual goal
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is to profit from stealing or altering data, hijacking data for ransom or device to use for
further cyber attacks, or to cause loss or damage. [8]

There are many know kinds of attacks, ranging from installing various less or more
sophisticated malware (malicious software) for different usage to techniques targeting
users with social engineering.

1.3.2 Malicious software

Malicious software, shortly malware, is a general term denoting many form of malicious
and intrusive software. It can refer to computer viruses and worms, trojans, spyware,
adware or ransomware.

In the present times, most of the malware is designed to monitor and spy users or
gain control over the infected devices. [3] Later it can be used to execute some specific
code  or  perform other  actions.  The  ability,  when  the  attacker  has  control  over  the
infected devices remotely is called “command and control”. [9]

Another  widespread  type  of  malicious  software  is  adware.  Adware  is  used  by
attackers to generate revenue by showing online advertisements to the users. It can open
new windows containing ads, inject the ads into the operating system, internet browser
or  visited  websites.  The  term  adware  is  sometimes  used  to  describe  ad-supported
software, which is free of charge and the authors gets revenue from showing ads in the
application.

Closely related to adware is click fraud. A lot of advertisement systems use PPC1

model.  Click  fraud  is  designed  to  click  ads  while  imitating  real  users  to  generate
revenue for the ad space holder.

1.3.3 Malicious behaviour

When a cyber attack is in progress we can observe various indications. The malware
needs to be distributed, executed on the targeted machine or device and most likely it
will send some data back. These activities  can be observed from outside as unusual
network traffic (volume, types of communication, connection destinations or other), and
directly on the machine as unknown processes or unexpected memory or data changes.

This thesis focuses on the behaviour observed in the network from outside, without
need of any knowledge from the device or user.

1 Pay per click
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1.3 Important terms

1.3.4 Behaviour similarity

The regular network traffic have its specifics. It can be time, when the particular user is
active,  the  traffic  volume  he  or  she  transfers  to  and  from  the  internet,  server  the
connections are established to etc. Malicious behaviour is likely to differ from the user
activity, for example it can be distributed or communicate with unknown or previously
unseen origins. Also the same threats will report similar characteristics. The assumption
is that discovering similarities in malicious behaviour can ease their analysis.
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2 Analysis

2 Analysis

In this chapter I analyze in more details topics related to this thesis. In the first part, the
current situation on the internet is introduced, how it evolves and changes in the recent
years. This will be followed by how the “black hats”2 do react on the internet trends,
how the  threats  are  evolving and changing to  match  the internet  users.  Then I  will
briefly mention some solutions for preventing and fighting against the cyber attacks.
The  last  section  is  a  deeper  analysis  of  current  trends  in  discovery  of  malicious
behaviour and how the information can be used by threat analysts.

2.1 Growth of the internet

The vision of internet, a world wide network, first appeared in 1950s. Until 1980s there
were several separated networks like ARPANET or BITNET, but none of them was
global.  Very important  technologies  and standards for the internet  development  as a
global and decentralize communication resource were TCP/IP3, specifying whole end-
to-end communication  across  the internet  network,  DNS4,  translating  domain names
people understand (example.com) to IP addresses machines understand to identify and
locate other computers in the network (127.0.0.1), or SMTP protocol for email transfer.
[10]

Today the most known service of the internet is the WWW5 invented in CERN in
1989 and opened to public in 1991. WWW is decentralized, similarly to the internet. It
uses hyperlinks to navigate between web pages hosted on either the same or different
servers. The pages are identified by URLs (uniform resource locators) and transferred
via HTTP6. [10]

Since 1991 to present, WWW has become the most used service of the internet. The
growth of the internet and WWW users population is enormous. In the 2001 it  was
estimated to be 500 million users on the planet, and the 1 billion milestone was reached
only  4 years  later  in  2005.  Between the years  2005 and 2010 the  number  of  users
doubled again to 2 billion.  Today the number of internet users is estimated about 4
billion users, which in “only” half of the population of our planet. [11] That means there
are still many people waiting to become internet users. The average from the last years
is 600 000 new users connecting to the internet every day, mostly in underdeveloped
countries like Brazil, China, India or Indonesia. But even in the Czech Republic there
are still over 20% of population did not connected to the internet in the last year. [12]

2 Illegal hackers breaking computer security for gain
3 Transmission Control Protocol and Internet Protocol

4 Domain Name System
5 World Wide Web

6 Hypertext Transfer Protocol
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Africa Asia Europe
Latin

America

Middle

East

North

America
Australia

Population 1 246 4 148 822 647 250 363 40

% of world 16.6 55.2 10.9 8.6 3.3 4.8 0.5

Internet

Users
388 1 938 659 404 146 320 28

% of pop. 31.2 46.7 80.2 62.4 58.7 88.1 69.6

Growth

(2000-17)
8 503 % 1 595 % 527 % 2 137 % 4 374 % 196 % 269 %

Figure 2: Number of internet users worldwide in millions [11]

Every year,  there are  not  only new users accessing internet.  There are also new
services  available  and also  new types  of  devices.  Wi-Fi  (wireless  connection  IEEE
802.11 standard) and next-generation cellular networks allowed the emerge of laptops
and smaller  devices  to  access  the internet  everywhere.  Despite  the first  smartphone
being sold around 2000, and the current platforms Android and iOS being first released
in 2008 and 2007 respectively, smartphones had already reached over 10% of the global
internet traffic. It’s estimated it will surpass traffic of PCs7 not later than 2021. [1]

Figure 3: Number of smartphone users worldwide [13]

Another important technology worth mentioning is Bluetooth (wireless technology
standardized as IEEE 802.15.1). Compared to Wi-Fi it has much shorter range and it is
not suitable for connection to the internet, but it allows to inter-connect other devices to

7 Personal computers
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2.1 Growth of the internet

smartphones or laptop and access the internet through them. Such devices can be so
called wearables – smart watches, health and sport trackers, or any personal accessories
or  clothes  which  can  be  enhanced  with  electronics  providing  us  with  data  about
ourselves.

Figure 4: Apple Watch [14]

The internet now heads beyond what we know as WWW. With the expansion of
small single-purpose electronic devices, the internet becomes internet of things8 rather
then  internet  of  humans.  [15] The  ability  of  the  new  devices  to  produce  massive
amounts of data and upload them to cloud services establishes high requirements for
data privacy and security. Data are becoming highly valuable asset for both users and
companies.

2.2 Cyber threats

After the rise of the internet as a global and accessible resource, a wave of new threats
has followed. New types of attacks and malware has emerged in the last year, most of
them focused on users and companies data. [3]

After a malware gets into the victims device,  it  usually gains control over it,  or
allows  the  remote  attacker  to  gain  control  over  network,  when  it’s  needed,  using
command  and  control.  These  infected  devices  are  called  “zombie”  and  the  whole
collection controlled by the attacker are called “botnet”9. For some activities it’s not
even necessary the devices to be regular computers or laptops. Botnets can consist also
from smartphones or small IoT devices too. The use of botnets differs. Some of the
owners offer them for rent to provide specific action the customer wants, or can be used
for own malicious activities. Usually botnets can be used to send e-mail spam, distribute

8 IoT

9 Combination of words “robot” and “network”
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other malware or attack of DDoS10 to either take some service down or as cover for
some other activity, like stealing data. Examples of notable botnets in the last 10 years
are Mariposa, Conficker, Zeus (or Zbot) or Mirai. The last one is especially interesting
because it consistent of IoT devices like printers or IP cameras, which were used in
2016 for DDoS attack on web host company OVH and DNS provider Dyn, causing
major internet services to be unavailable in North America and Europe. [16]

Figure 5: Dyn DDoS attack map [17]

Probably the best known and recently spreading type of threat is ransomware. This
type of malicious software blocks access to data and asks the victim to pay ransom to
allow the access again. The ways ransomware restricts access to files can differ, but the
most effective one is to encrypt them and offer the decryption key to user in exchange
for  the payment.  Thanks to  the  rise  of  cryptocurrencies,  such as  bitcoin,  which  are
impossible to block and very hard to track down to real person, it’s very hard to find the
attackers unless they make some mistake. There is also no guarantee the victim will
actually be able to recover the data back.

10 Distributed Denial of Service
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2.2 Cyber threats

Figure 6: WannaCry ransomware screenshot [18]

In 2013 CryptoLocker ransomware has been distributed via e-mail attachments and
the existing Zeus botnet mentioned above. It encrypted specific types of data files on
infected computers and asked victims for ransom in bitcoins in exchange for the private
key to decrypt the files again. According to ZDNet who tracked Bitcoin payments to
several of the bitcoin addresses between October 15 and December 18, the attackers
could  make  over  25  millions  USD  in  this  timespan  of  two  months.  [19] After
CryptoLocker more similar ransomware appeared. The notable ones are CryptoWall,
Petya, Locky or WannaCry.

The  family  and  versions  of  Petya  (or  NotPetya)  were  targeted  mostly  against
Ukraine with one of the versions only pretending to  be ransomware,  but it  actually
destroyed all data stored on hard drives. [20]

Not just ransomware, but also individual data breaches document our dependence on
electronic data. According to haveibeenpwned.com, a service collecting data from know
breaches, the top 10 breaches contained data of over 3 billion of user accounts. The
information usually contain username,  email  addresses and passwords.  [21] And the
number of data breaches in United States in the last 10 years is growing every year. [22]

2.3 Security solution systems

Computer security software and systems are used to prevent and react on unauthorized
access, cyber treats and attacks. Malware or intrusion detection systems can be divided
from different points of views.
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2.3.1 Host based detection

Host based detection systems are using agent applications installed on the host devices,
monitoring  the  activities  like  running processes,  opened or  accessed  files.  The  host
based detection systems were designed and in use in time when the interaction with
other  computers  in  the  network  were  not  frequent,  like  on  mainframe  computers.
Examples  of  this  approach  are  still  seen  in  the  design  of  the  traditional  end  user
antivirus solutions, which are installed on the user computer and monitor the running
processes and watch for potentially malicious files stored on hard drives. The power of
the host based deployment is the ability to see everything happening inside the system.

2.3.2 Network based detection

Network based malware  and  intrusion  detection  is  an  alternative  in  addition  to  the
traditional  host based detection.  Instead of knowledge about activities  and processes
running on the endpoint  devices,  it  detects  malware based on the characteristics  the
malware exhibits via the network, when it’s being distributed or communicates via its
command and control channels. Because it does not have any applications installed on
the users devices, it requires a standalone machine, usually on the network perimeter, at
least to collect the network data. That makes it less suitable for personal use. However
the  centralization  to  a  single  place  makes  it  ideal  for  enterprise  use  in  company
networks, as it scales well with the number of devices being connected to the network
and protects the network rather then individual devices. This approach cover also any
devices not secured by any other anti malware protection, like employees smartphones
connected to the office wireless network.

2.3.3 Personal

End user solutions for personal use or SOHO11 market are most frequently firewalls,
general antivirus software or specific anti-malware software and tools.  [23] There are
also security techniques widely used, like sandboxing (isolation of the running program
from the rest of the system) or using restricted access rights for running the programs.

Firewalls are network security programs monitoring the network traffic to and from
the users computer based on defined security rules. The key for the traffic filtering is to
understand the common protocols to inspect their  traffic.  For most of the users, the
uncommon and unrecognized communication can be blocked, or enabled on demand.

Antivirus software, or anti-malware,  is a computer software to prevent malicious
software infection.  Originally  the first  antivirus  solutions were developed to remove
computer viruses, later to protect from various computer threats. Present anti-malware
can  protects  from  ransomware,  keyloggers,  trojans,  adware,  spyware,  or  malicious
JavaScript being executed by the browser. Anti-malware are often parts of complete

11 Small office or home office
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2.3 Security solution systems

security packages for personal use, accompanied by anti-spam and tools to protect from
phishing, DDoS or social engineering frauds. Some of the packages also contain tools
for private and secure web browsing, sandbox or ransomware detection based on the file
changes, or even document backup tools. As example of personal anti-malware we can
name products from McAfee, Symantec Norton, Kaspersky, Avast, Avira, AVG, ESET,
F-Secure anti-virus and many more.

Figure 7: Personal antivirus market share [24]

2.3.4 Enterprise

The enterprise environment brings new challenges for cyber security. Devices in the
company  often  contain  business  secrets  and  can  connect  into  the  company  internal
network with more confidential data available. Also the headcount of corporations or is
hundreds or thousands times higher than the count of family members you protect by
personal anti-virus. Also the threats  and attacks  are more sophisticated and frequent
with the potential loss, respectively gain for the attacker.

Anti-malware makers offer special editions of their software for business customers
with  features  specific  for  the  environment,  interoperable  with  enterprise  software
deployments  and  management.  However  larger  organizations  often  use  advanced
company-wide solutions and systems to protect themselves too.

Enterprise firewalls builds a barrier on the perimeter between the internal network
(LAN12),  with  access  limited  by  access  control,  and  the  public  internet  network
(WAN13), where the threats are expected to originate from. While personal firewalls are

12 Local area network

13 Wide area network
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2 Analysis

software, for enterprise firewall means dedicated hardware device or server monitoring
all the traffic going through the perimeter it is supposed to guard. These firewalls and
proxy servers have capabilities of packet inspection, looking at actual traffic content to
remove  malware  or  unwanted  content  from  the  communication,  or  block  the
communication entirely.

Figure 8: Firewall [25]

Slightly different from firewalls are network intrusion detection/prevention systems
(NIDS).  While  firewalls  look  for  intrusions  to  prevent  or  stop  them  at  the  very
beginning, and limits  access to the network, IDS aims to detect,  describe and report
suspected  intrusions  after  they happen,  e.g.  based on other  systems logs  or  reports.
Often IDS monitors not just outer threats, but also those inside the company network.
Open source examples of IDS can be Fail2Ban, Sagan, Snort or Suricata.

In  2014  Gartner  recommended  use  of  UBA14 to  detect  insider  threats,  targeted
attacks  and  financial  fraud.  [26] UBA  looks  for  patterns  of  employees  behaviour,
analyzing those with statistical algorithms to detect anomalies, which can be reported
and investigated. As the name suggests, the detection is not oriented on devices, but on
actual  users in the company systems.  To analyze  the big amounts  of data,  big data
platforms, like Apache Hadoop, Cloudera, or cloud services are used in the background.

The more companies are successful, the more they value security to protect against
competitors  shady  practices,  industry  espionage  and  sabotage.  Dedicated  security
departments  are  not  uncommon.  As  it’s  not  possible  to  prevent  all  cyber  threats
completely, it’s important to unfold them early and react quickly.  [27] The number of
various systems and solutions mentioned above brings the security analysts information,
but it also maker harder to analyze them all. Software products and services used to
combine, aggregate, analyze and prioritize are called SIEM15. As per Gartner definition,
SIEMs are used  for  automated  monitoring  and regular  vulnerability  discovery.  It  is
expected  to  provide  real-time event  management  and analysis  of security  data  from

14 User behavior analytics

15 Security information and event management
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wide set of heterogeneous sources, filter incident information and reporting. The whole
SIEM idea is driven by the need to support vulnerability and threats management and
ease their analysis and mitigation. [28]

Figure 9: SIEM dashboard screenshot

According to Honeywell, the cost of an industry cyber attack resolution goes over 20
000  USD  per  day  [5],  which  means  time  actually  is  money  here.  Any  additional
intelligence and knowledge during the incident analysis can help to react appropriately
and make a different between successful cyber attack and successful resolution.

2.4 Behaviour similarity

One way to  reduce  a  network  incident  analysis  work  is  to  identify  patterns  in  the
detected  malicious  network behaviour.  This section  introduces  several  algorithms to
identify similarities in network behaviour in particular in web traffic.

2.4.1 IP blacklist

IP blacklist  is a very simple instrument to protect the network against known “bad”
remote servers. The list contains known malicious IP addresses obtained from public
resources or historical data. However adding any IP address the malware communicates
to may block more than one wants, especially when the number of IPv4 addresses is low
and multiple services, both legitimate and malicious, can be provided from the same IP.

29



2 Analysis

Example can be shared web hosting or cloud hosting. Also the IP blacklist won’t protect
from advanced malware using previously undetected servers.

IP blacklists  are mostly used for spam protection and the IP addresses are being
enlisted or delisted based on the reputation of email being sent from the address. [29]

2.4.2 Connection success ratio

In a behaviour based mobile malware detection model proposed by Tri-Hai Nguyen and
Myungsik Yoo from the Soongsil University, connection rate and connection success
ratio is used to detect compromised mobile devices. [30] The assumption behind is that
the probability of unsuccessful connection for a normal well-functioning device is very
low.  Unsuccessful  connection  would  mean  a  bug  in  installed  application  or  the
requested service being down. On the other hand infected devices are more likely to
make unsuccessful connections or even connections to blacklisted IP addresses.

If  the  number  of  pending requests  without  response  exceed  some threshold,  the
device exhibiting the bahaviour is considered infected and its access into the network
can be restricted. For illustration, the thresholds is set to 30 requests in the proposal.

2.4.3 Connection rate

According to the same paper from the Soongsil University, the connection rate itself is
also likely to differ between normal  and infected devices.  [30] It  assumes a normal
device will make new connections less frequently and to a limited number of services in
a period of time, while infected devices will try to connect many times to many services
or other devices.

If the number of connections in a specified time exceeds some threshold, the device
is again considered infected and treated accordingly. For illustrations, the threshold is
set again to 30 requests and expected connection rate is 1 request per second.

2.4.4 N-gram URL similarity

N-gram is a sub-sequence of n items (e.g. words) in a given text. N-grams are usually
applied in probabilistic language processing and for predictions using Markov models.
The following figure shows an example how N-grams are constructed.
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2.4 Behaviour similarity

This is an example sentence.

N=1 (unigrams):

this, is, an, example, sentence

N=2 (bigrams):

this is, is an, an example, example sentence

N=3 (trigrams):

this is an, is an example, an example sentence

Figure 10: N-grams examples

Neetu Singh from the Central University of Himachal Pradesh, India, and Narendra
S. Chaudhari from the Indian Institute of Technology proposed to calculate similarity
between URL using N-grams, to classify the web page topic without the actual content
being known, only from the text contained in the URL. [31]

In the proposed similarity measure, the URLs addresses are converted to lowercase
and divided into words. A presence of a word is indicated as “1” or “0” in the feature
vector. The classification algorithm then runs in two phases.

The first step is to divide the training dataset is divided in two disjoint subsets  T
containing positive classifications and T’ negative.

The algorithm starts with forming distinct combinations of k features from the tested
URL  α.  Then the  algorithm computes  the  count  of  the  URLs in  T where  the  each
combination of the the k features occurs, and the same for the set T’. The tested URL α
is re-classified positive when the count is higher for the set  T, or negative when the
number is higher for T’.

ST (α ,T∪T ')= ∑
S⊆[n] ,|S|=k

∑
y∈T

|( y|S=α|S )|

ST ' (α ,T∪T ')= ∑
S⊆[n] ,|S|=k

∑
y∈T '

|( y|S=α|S)|

f (α)={1 if ST (α , T∪T ' )>ST '(α , T∪T ')
0 if ST '(α , T∪T ')<ST (α , T∪T ')}

The proposed algorithm has been compared to another one, which computed sum of
distances between  α and all URLs β from both T and T’. α is then classified based on
the sum of distances. If the sum of distances with all  β from T is less,  α is classified
positive, or negative when the sum of distances from T’ is less.
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ST=∑
β∈T

d (β , α )

ST '=∑
β∈T '

d (β ,α )

f (α)={
1 if ST<ST '

0 if ST '>ST}

The parameter  k has been tested with values  2,  3 and  4, where  2 showed the best
results.  When  k=4,  the  proposed  algorithm  brings  almost  no  improvement  in  the
classification accuracy, compared to the second one.

2.4.5 Query string similarity

Query string is an optional part of URL containing information sent from the client to
the server resource. It has a form of key-value pairs without any order or hierarchy.

http://example.com/some/resource/?foo=John&bar=Doe

{foo: John, bar: Doe}

Figure 11: Query string illustration

For discovering new servers connected into malware command and control botnets,
a  team of  researchers  at  Cisco  made  an  assumption  that  the  same application  will
receive the same parameters or keys in case of URL query strings. [32] The values of
particular keys are not considered, as they are likely to differ across different clients or
even requests.

The researchers have defined a similarity function between two query strings and the
contained key-value pairs using model called “bag of words”. Bag of words means we
create an unordered set from all the observed words, noting the number of every word
occurrence alongside. For the query string similarity, the vocabulary is the list of all
query string keys in the particular URL. The query string values are ignored.
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2.4 Behaviour similarity

http://example.com/some/resource/?foo=John&bar=Doe

http://example.com/another/?foo=Jane&baz=Roe

{foo: 2, bar: 1, baz: 1}

Figure 12: Sparse vector constructed from URLs query string

Every set of URLs s having a query string can be then represented as a sparse vector
qs, where each ki is equal to the number of occurrences of i-th key in all query strings.

qs=(k1 , k2 ,k 3, ... , kv )

To  avoid  address  the  potential  problem  of  very  common  key,  which  won’t
discriminate between two sets of URLs, TF-IDF scaling is used.

Finally to determine the similarity between two vectors containing at least one non-
zero value, cosine similarity is used.

2.4.6 Path similarity

Path in URL in HTTP requests define the location of resource being requested. Unlike
query  string,  path  elements  are  ordered.  In  the  example  URL
http://example.com/some/other/resource/ the path root is “some” with child “other” and
“resource” on the deeper level.

In  the  same paper  Cisco  researchers  made  a  similar  assumption  for  both  query
strings and paths, that the same application will provide same services and resource son
the same paths. [32]

For this similarity, every set of URLs is represented by a tree, where the root is “/”
and every path is decomposed into child nodes and the tree is build top down. The
deeper  the  directory  is  in  the  path,  the  deeper  is  in  the  node.  This  respects  the
importance of directory order in the path.

33



2 Analysis

http://example.com/foo/bar

http://example.com/foo/baz1

http://example.com/foo/baz2

Figure 13: Tree constructed from example URLs paths

The paper proposes its own tree similarity metric specifically designed to honor the
ordering of directories (depth of nodes).

K (m , n)=Im=n .
(
1+C . ∑

u∈child(m)

v ∈child(n)

K (u , v)
)

Where  n,  m are two nodes being compared,  I(n=m) becomes 1, when the nodes are
equal, 0 otherwise.  child(n) return all children of the node n. Parameter C determines
the speed of increase or decrease for deeper levels. The similarity itself it the defined as
follows with n and m being the root nodes of each tree:

s (n ,m)=
2K (m,n)

K (n ,n)+K (m,m)

Again the similarity is not defined for trees with no non-root node, which represent
set of URLs without any path known.

2.4.7 Similarity of transferred bytes and connection timing

Visited URLs are the most obvious and visible information about web requests, but for
the encrypted HTTPS connection the URLs are not available. According to the latest
latest  Let’s  Encrypt  report,  over  60% websites  are  visited  over  HTTPS today.  [33]
Luckily there are more information to be measured for HTTPS requests, which are the
size of request/response, the time the request and response loop takes and the interval
between two consecutive requests.

/

bar baz2

foo

baz1
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2.4 Behaviour similarity

In the paper [32], each request and the corresponding response can be then described
as a vector of for numbers:

r=( log(1+rbs) , log (1+rbr ) , log (1+rd) , log (1+r i))

where
• rbs is the number of bytes send
• rbr is the number of bytes received
• rd is duration of the request and response loop
• ri is the interval between the consecutive request
From the values of vectors r for the requests in a set, histogram is created to show

the distribution of the values and arranged in a vector form. Cosine similarity of two
vector forms is the similarity of two corresponding set of requests.

The only limitation of this metric is it requires some minimal number of requests to
build the histograms.

2.5 Partitioning

Identifying the similarity  itself  is not expected final result  to present to the security
analyst.  But  with  the  similarities  obtained,  the incident  data  can  be partitioned  into
groups of same or very similar flows which can be shown and available for detailed
inspection.

When  using  multiple  similarity  functions  in  parallel,  multiple  partitionings  are
created,  which need to  be later  combine to  a final  one.  This problem of finding an
optimal solution based on individual partitioning consensus is equivalent to ILP16 [34],
which  is  NP-hard  in  general.  For  this  reason  the  problem  of  combining  multiple
partitionings is solved by heuristics.

min∑
i=1

n

∑
j=i+1

n

M( i , j)d (i , j)

s.t.:

M (i , k )+M ( j , k )−M (i , j)≤1,∀ i , j , k

M (i , j)∈{0,1}

i , j , k∈ℕ; i , j ,k≤n

16 Integer linear programming
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2.5.1 K-means

K-means algorithm is  a method for cluster  analysis.  K-means clustering  is  used for
clustering  n observations  into  k clusters  such  that  the  sum  of  squares  between
observations distances in all clusters is minimal. The algorithm itself consists of two
steps.

First k cluster centroids μ1, …, μk are chosen randomly.
Then until convergence this is repeated.

∀ i : labeli :=argmin‖x i−μ j‖
2

∀ j : μ j :=
∑
i=1

|C|

1{c i= j}xi

∑
i=1

|C|

1 {c i= j}

A drawback of the k-means algorithm, which may not be intuitive for every use, is
the necessity  to  specify  k –  the number of  clusters  that  will  be created  in  the  final
partitioning.

2.5.2 Hierarchical clustering

Hierarchical clustering is a method for building a hierarchy of clusters from the data
using the (dis)similarity  between them.  [35] Generally  there are two approaches  for
hierarchical clustering:

• Agglomerative clustering, where each data is considered as a standalone cluster
at the beginning, and these clusters are pairwise merged based on their similarity
and build the nested hierarchy.

• Divise clustering is an exact opposite. At the beginning all observations form a
single cluster which is being divided.

The first formula the clustering need to use is a distance metric to computer pairwise
distances between each two observations. For the incident flows it can be a similarity
metric from the previous part 2.4.

d(a,b) = 1 d(b,c)= 2

d(a,c) = 3 d(b,d) = 2

d(a,d)= 3 d(c,d) = 4

Figure 14: Example hierarchical clustering - distances
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Let’s start  with four observations  forming four clusters  a,  b,  c and  d.  When the
similarity s between all pairs is computed, the agglomerative method finds the two most
similar clusters (step 1). In the example above it’s a and b. The two closest clusters are
merged, creating a single cluster ab (step 2). For the cluster ab, no similarities to c or d
are known. There are various strategies commonly used:

• Complete-linkage clustering takes the maximum distance (minimum similarity)
for the merged clusters.

 d (ab ,c )=max {d (a ,c ) ,d (b , c)}

• Single-linkage clustering takes the minimum distance (maximum similarity).

d (ab ,c )=min {d (a , c ), d (b ,c )}

• Average-linkage clustering takes the mean values of the distances  d(a,c) and
d(b,c).

d (ab ,c )=
d (a , c )+d (b , c )

2
• Weighted-linkage strategy takes the weighted mean of values of the distances

d(a,c) and d(b,c). The weight  w can be an importance of the observations in  a
and b, or their number.

d (ab ,c )=
d (a , c )∗w(a)+d (b , c)∗w(b)

w (a)₊w(b)

After the distances between the new cluster  ab and every other cluster  c and  d is
computed (step 3), the clustering can start a next iteration by finding the closes pair
from clusters ab, c and d.

The visualization of the final complete-linkage clustering of the observations in our
example would like like this.

a
                     ab
b
                                            abc
c
                                                                      abcd
d

Figure 15: Hierarchical clustering visualization

The final results of the hierarchical clustering is a hierarchy of possible clusters, but
without any bound where the process is stopped, it  will  eventually  end up with the
whole data set in a single cluster. The bound can be either a number of clusters, which is
not intuitive for all use cases, or a distance threshold. When there is not pair of clusters
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with a distance less than the threshold  T, the process of clustering is stopped and the
current partitioning is the final one.

The proposed solution to find a good threshold (but necessary not optimal) is by
semi-supervised learning. [36] First labeled data with target clusters C1, …, Cn are used
to computer the an F-measure for different threshold values and computed clusters HC1,
… Hcn.

P(i , j)=
|C i∩HC j|

|HC j|

R(i , j)=
|C i∩HC j|

|C i|

F(i , j)=
2.P(i , j). R(i , j)
P (i , j)+R(i , j)

F=∑
i=1

n |Ci|

N F (i)

At  the  end  the  threshold  values  with  the  highest  F-measure  value  is  chosen.
According to the experiments in the paper, a set of 50 labeled data examples is usually
enough to find a reasonable threshold value close to the optimum.

2.5.3 Consensus matrix

To  combine  multiple  clustering,  consensus  matrix  is  a  very  simple  measure.  In  a
consensus  matrix  M,  the  element  Mij is  defined  as  a  fraction  of  the  number  of
partitionings  P where  i and  j are  in  the  same  cluster  and  the  total  number  of
partitionings. [34]

M ij=∑
k=1

|N|

Pk(i , j)

The matrix M then represents a single similarity measure (s(i,j) = Mij), for which e.g.
hierarchical clustering can be applied to construct the final clusters.
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2.5.4 Iterative construction

The paper on discovering botnet command and control networks  [32] offers also an
algorithm for combining multiple partitionings. In the proposed multiagent system, the
opinion about relation between every pair of servers i and j from all agents is combined
and a matrix  M is constructed from the aggregated values, where the values  Mij is the
number of partitionings, where i and j are in the same cluster. This matrix is equivalent
to  the  consensus  matrix  2.5.3,  only  the  elements  are  not  divided by the number  of
partitionings.

The final partitions are built in iterations.  In each iteration a matrix  T is defined
using a threshold t, which is being decremented in every iteration. The elements of T are
defined as follows.

T ij={
0 if M ij<t
1if M ij≥t }

The matrix T is used as a graph adjacency matrix and every connected component is
added to the final partitioning as a new cluster and corresponding elements removed
from M. The threshold t is then decremented, new matrix T created and the process goes
over again until t=1 or there are no rows in M left. If there are any rows left at the end
of the process, they are added as singleton17 clusters into the final partitioning.

This algorithm is tailored to the requirement of a low number of false positives and
creates only clear clusters.

17 Containing only single element
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3 Proposed solution design

This chapter is dedicated to the description of the input data, framework design, and
detailed description of algorithms in use.

3.1 Requirements

The framework will take information about incident flows as input, and produce their
partitioning based on the extracted behaviour similarities. To achieve that in a reliable
way, it needs to fulfill the following requirements.

• Simple to use – the framework should be easy to set up and feed with input data.
• Stateless  –  the  execution  should  be  stateless  across  multiple  incidents.  The

incidents are disjunct and no information is meant to be carried between any two
of them.

• Deterministic – two runs with the same configuration and the same input data
have to produce the same results.

• The  input  has  to  be  machine  readable  for  further  processing  and  later
presentation to the user.

3.2 Input data

Input for the framework will be already identified malicious network behaviour in a
form  of  individual  incidents.  Every  incident  consists  of  flows  with  the  following
information:

• timestamp
• URL address (for HTTP flows)
• destination IP address
• bytes sent/received
• duration of the request and response loop

Besides these information,  there is  also information available  what classifier  has
identified the specific flow as malicious, which provides some insight if the flow was
part of the malware communication (and what type of malware) or some suspicious file
download or some other kind of activity.

These information also splits the flows into observed malicious events with the same
classification, destination and proximate time. However the events may not be complete
because the classification of some of the flows was not specific enough or because the
same activity was more spread in time. That can be caused for example by missing data
or because the device was disconnected during the night.
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The task is to group the flows into partitions based on their similarity to provide the
analyst with a complete overview of how was the malicious behaviour of each incident
changing in time.

3.3 General framework design

The input data will be preprocessed first from the input format to internal data object
representation, forming the collection of flows corresponding to the identified incidents
and events classified.

The data will be further processed to determine the similarity/distance between the
malicious events using the behaviour similarities from  2.4.5-2.4.7. The results of the
similarity functions need to be further aggregated to form the final partitioning, which is
the expected result.

                                          

                                

  

                                            

  

                                

Figure 16: Proposed framework structure

3.4 Algorithms

From the algorithms mentioned in 2.4 I have decided to choose 2.4.5-2.4.7 (which are
based on the research of Ing. Martin Rehák, Ph.D., the supervisor of this thesis). The
three similarity functions are consistent in their output and can be easily run along each
other and their results further combined into a single partitioning.
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3.4 Algorithms

For each function output I have decided to apply hierarchical grouping algorithm
described  in  2.5.2.  To  produce  the  final  groups  of  flows  from  their  hierarchical
groupings, consensus matrix is used as described in 2.5.3.

3.4.1 Query string similarity function

As noted above, I have chosen three similarity functions using the URL query string,
URL path and bytes and timing of the connection.

The query string similarity function operates with query keys. Two query key sets
are assumed to be similar based on the occurrence of the same keys in both of them. The
query strings are available for unencrypted HTTP communication only. When the query
string is not available, or none is used, the similarity is not defined. Otherwise it’s the
cosine similarity between two sparse vectors of the key values occurrences observed.

s (q1, q2)=
q1 .q2

|q1||q2|

The  similarity  needs  to  be  computed  for  every  2-combination  of  vectors  in  an
incident, that contain any non-zero value. Vectors with no non-zero elements represent
URLs without  query  string  being  known,  which  may  be  cause  just  by  missing  the
information for HTTPS traffic.

3.4.2 Path similarity function

The path similarity function operates with directories from each path. The availability of
the information is limited the same way as in the previous case of the query string, for
unecrypted  HTTP communication  only.  If  there  are  no  directories  in  the  path,  the
similarity is not defined. Otherwise the directories are organized into a tree hierarchy
similar to Unix file system with “/” as root. Two trees are compared using the following
similarity function.

s (n ,m)=
2K (m, n)

K (n ,n)+K (m, m)

where:

K (m , n)=Im=n.
(
1+C . ∑

u∈child(m)

v ∈child(n)

K (u , v)
)

The similarity needs to be computed for every 2-combination of the trees. The time
complexity to compute depends on the tree structure,  in the worst  case of all  nodes
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being the children of the root the complexity is a product of the numbers of children or
the root, plus one for the single comparison the roots.

s (T 1 , T 2)=O((|T 1|−1). (|T 2|−1)+1)

3.4.3 Transferred bytes and connection timing similarity 

function

This last function computes the similarity from histograms of transferred bytes number
and  the  timing  of  consecutive  requests.  This  information  is  available  for  both
unecrypted  and  encrypted  HTTP(S)  communication,  however  a  minimal  number  or
requests is necessary.

The more similar the number of bytes transferred both ways and the request timing
is, the more similar the two sets of flows are. If the requirement of minimal requests is
met,  the  similarity  is  computed  as  a  cosine  similarity  between  the  two  vector
representations of the histograms r = ( log(1 + rbs), log(1 + rbr), log(1 + rd), log(1 +
ri) ), where the rx are the number of bytes transferred and requests timing respectively.

3.4.4 Heuristic using classifcation information

As mentioned in 3.2, for some malicious events a specific classification is known too.
For two different highly specific classification we may assume the classified events are
different too and putting them together will result in a loss of information from one of
them. For a pair where only one or even none of the classifications is that specific, these
are allowed to be put  into the same cluster  unless  another  different  highly specific
classification would end up in the same cluster too.

3.4.5 Hierarchical clustering

For  creating  partitionings  based  on the  similarity  function  individually,  hierarchical
clustering will be used.

In the basic version, only a threshold value  t is used to stop merging the clusters
when there is no pair of clusters with a distance <t.

However in this stage we may use the further knowledge of event classifications. If
the merged pair of clusters would contain two different specific classifications, the pair
of clusters may not be merged and the whole clustering process should stop, even if the
threshold t has not been reached yet. The goal of this heuristic is to avoid any potential
loss  of  information,  that  would  happen  by  merging  two  clusters  with  different
classification, albeit they seems similar according to the metric.
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3.4.6 Final clustering

After  individual  partitionings  using  similarity  functions  3.4.1-3.4.3 and  3.4.5 are
produced, a final clustering need to be produced. In the chapter  2.5 I have introduced
several heuristics how to aggregate multiple partitionings into a single one, but I have
decided to use a modified combination of both.

Because none of the similarity functions is defined for any pair of flows, a consensus
matrix  M 2.5.3 is computed first, with the modification where for every pair  i and  j,
only  partitionings  for  defined  similarities  are  taken  into  account.  E.g.  for  events
consisting of HTTPS flows only (with both path and query missing from the URL), only
the  last  metric  using  transferred  bytes  and  requests  timing  is  considered,  and  the
denominator in the formula is 1. On the other hand for HTTP events, paths and query
strings both are known, but the number of flows may be too small to compute the last
metric, and the denominator in the formula is 2. For pair of events where for both all the
functions are defined, all of them are taken into account and the denominator is 3. If
there are no metrics available for the pair, the value Mij is 0, as we have no knowledge
for the particular pair.

Once this modified consensus matrix M is computed, a single iteration of the second
algorithm 2.5.4 is made, with the threshold set  t=1/2. The intuitive meaning is that at
least two of the applicable metrics need to agree on putting the two observations into the
same cluster. For a pair where all metrics are applicable, the majority of them need to
agree. Where only a single metric is defined, it’s fully trusted.
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4 Implementation

This  chapter  describes  implementation  details  and  shows  several  code  snippets  as
examples.

4.1 Overview

The general  implementation  of  the framework is  written  in  Kotlin18 and Java19,  and
using  Apache  Maven20 for  building.  Java  SE  (standard  edition)  is  a  widely  used
platform portable  language  used  for  both  desktop and server  applications,  even  for
developing mobile apps for Android. Kotlin is about 6 years old programming language
which runs on the Java virtual machine and offers great interoperability with Java code
and dependencies both ways. Java code can be used from Kotlin and vice versa.

As noted in chapter 3.4 this thesis is based on the previous research of Ing. Martin
Rehák, Ph.D., the supervisor of this thesis, and uses parts of the implementation of the
similarity functions written in Java.

For some simple data pre- and postprocessing,  that’s not an essential  part  of the
framework and was specific to my measurements and for verifying the implementation,
I have created several standolne bash scripts, most commonly to run the framework with
specific input data and arguments and semi-automatically verify the produced results
afterwards.

4.2 Input data

To reduce the requirements I have chosen CSV text files as the format for input data. It
is human readable (one can see by eye the actual content of the input data), however the
size of the text files and the time needed for parsing is not great.

For that reason I have encapsulated the mapping from input format to internal data
object representation into a single object behind an interface so it’s easy to replace for a
different format.

interface InputFileReaderInterface<FLOW> {

    fun getFlowsFromFile(file: String): List<FLOW>

}

18 https://kotlinlang.org/
19 https://www.java.com/

20 https://maven.apache.org/
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4.3 Features and similarity computation

Given  the  fact  there  are  more  algorithms  for  computing  URL and  network  traffic
similarity, there is a potential that some similarity functions will be added or replaced in
the  future.  To  make  this  potential  change  smooth  as  possible,  I  have  defined  two
function interfaces, one for the “feature” extraction from the set of flows and one for the
similarity function itself. The similarity function does not even have to be normalized.

fun <FLOW, M> computeFeature(flows: Array<List<FLOW>>, feat: 

(List<FLOW> -> M)): List<M>

To extract a feature from a list of flows the feat function takes the list and returns
some generic type M.

fun <M> computeSimilarity(values: List<M>, sim: (M,M) -> 

Double): Array<Array<Double>>

To later computer pairwise similarities, the list of values of the same generic type M
is  needed  and  a  function,  that  takes  two  arguments  of  type  M and  computes  their
similarity.

// The two function definition

fun exampleFeat(flows: List<FLOW>): Array<Int> { … }

fun exampleSim(a: Array<Int>, b: Array<Int>): Double { … }

// Usage somewhere else in the code

val values = computeFeature(flows, ::exampleFeat)

val similarity = computeSimilarity(values, ::exampleSim)

Using generics  and static  references,  the two functions can be put  together  very
easily, requiring no specification of generic types in the code using these functions. The
only requirement is that the actual type (Array<Int> in the example) returned by
exampleFeat and accepted by exampleSim matches.

48



4.4 Hierarchical clustering

4.4 Hierarchical clustering

For the hierarchical clustering I have reused the open source Java implementation of the
algorithm available under Apache License 2.0 [37] from the central Maven repository
with some small adjustments mentioned in 3.4.5.

4.5 Output format

For each incident the result of clustering is a set of clusters, each represented by a set of
flow sets identifiers of the type  String. I have again chosen CSV text files as the
format  for output,  but again the conversion and writing to output  files is behind an
interface and easy to replace with console output, logger or completely different output
serialization if required.

interface ResultsWriterInterface {

    fun writeResult(result: List<Set<String>>, inputFileName:

String)

}
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5 Evaluation

5 Evaluation

This chapter will describe the experiments used to verify the solution is applicable to
our case and to verify the hypotheses from the chapter 3.

5.1 Input datasets

To verify the framework meets the requirements and to see its accuracy, I have prepared
several experiments with real traffic data. I have created three datasets:

1. complete data from 100 different incidents, consisting of ~420,000 flows in total
2. manually labeled data from 15 incidents
3. complete data from 500 incidents, consisting of 2.3 million of flows in total

The first dataset I have used for creating input data with synthetic TP21 examples by
splitting already known groups of malicious events (3.2) in two. For one of them I have
also manipulated input for some similarity function result, with preserving the expected
output of the two splits being combined in the output, by shifting the flows in time,
changing the remote destination,  removing path or query string from the URL. This
synthetic data I have been using during development to see if the framework works as
expected.

The second dataset was first manually labeled and I have used this dataset for the F-
measure  (2.5.2),  later  to  verify  that  the  framework  setup  is  not  overfitted  for  the
synthetic examples in the first dataset and to control the results for potential too many
FP22.

The  last  and  largest  dataset  was  used  for  quantitative  measurements  of  the
framework accuracy and data reduction.

5.1.1 Data statistics

Incidents Events per incident Flows per event
total min max avg med min max avg med

1. 100 2 166 45.60 49 1 56660 92.19 2
2. 15 3 72 14.73 17 1 889 47.13 3
3. 500 2 1286 54.78 50 1 106810 83.67 2

Figure 17: Input data statistics

21 True positive

22 False positive
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5.2 Single similarity function experiments

To understand the expected results I have started with using each similarity function
alone first. For all the three similarity function, the range of values is <0;1>. The range
of values for cosine similarity itself, used for the query string similarity and bytes and
timing similarity,  is actually  <-1;1>. However the vectors always consist of zero or
positive values23, thus the cosine of their angle can never be a negative number.

I have run the metrics one by one alone on the data from the first dataset with ~4560
events in total. The following graphs are cumulative histograms of pairwise similarities
among all the events that were suitable for their computations.

Figure 18: Cumulative histogram of query similarity

1300 (28 %) of events had some query string in any of the corresponding flow URL
for the similarity function to be computed. The distribution has very smooth course over
the the interval with the exception of very beginning, where over 87% of pairs are not
similar to each other at all. 5% of the highest values are between 0.95 and 1.0.

23 The number of occurrences of a key in query string can never be a negative number, the same for the number of transferred

bytes or time duration
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5.2 Single similarity function experiments

Figure 19: Cumulative histogram of path similarity

2500 (54 %) of events had a path in any of the corresponding flow URL for the
similarity function to be computed. Around 80% of the pairwise similarity values are
below  0.3,  and  94.5  % is  below  0.5.  However  almost  4.5% of  all  applicable  pair
similarities  is  above  0.95.  The  course  of  the  values  shows  most  of  the  pairwise
similarities is very low, but only 0.9% of them is pure zero.

Figure 20: Cumulative histogram of bytes and request timing similarity

730 (16 %) of events had enough flows (at least 20) for the similarity function to be
computed.  At  first  the  low percentage  of  events  seemed  odd to  me,  but  it  actually
correspond to the low median of flows per event. To make sure most of the data are not
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ignored by this metric I have measure also the percentage of flows contained in the 16%
of events, which turned to be 95% of all flows.

21% of the pairwise bytes and timing similarities are 0. Approximately the same
percentage as for path similarity (81%) is below 0.3 and almost 89% is below 0.5. The
overall distribution in the range is smoother with only 1.5% of highest values between
0.95 an 1.0.

In total at least two similarity function were applicable to 31%, but all of them to
only 7.5%. For 40% of events, no metric could be used, but these contained only <2%
of flows.

If we compare the histograms of all three similarity functions, we see that for all of
them most of the values are below 0.3, in case of query strings similarity it’s actually
below 0.05 already. For path and query similarity there is roughly 5% between 0.95 and
1.0,  which  corresponds  to  the  assumption  that  the  same  resources  or  services  are
provided on the same paths and accept the same arguments in form of query string.

The complete tables with exact percentages of the histograms can be found in 8.1.

To determine  a  good value of hierarchical  clustering  thresholds  for all  the three
similarity  functions,  I  have  run  the  hierarchical  clustering  algorithm with  weighted
mean recalculation for the clustered events and with threshold step by  0.05.  For the
second data set consisting of 10415 flows in 221 events and 15 incidents the best values
determined by the F-measure method were the following:

• query similarity threshold: 0.5
• path similarity threshold: 0.45
• bytes and request timing similarity threshold: 0.5
However it’s necessary to note, that these values may differ based on the labeled

data. Also the F-measure formulas (2.5.2) can be made more complex to give different
weights for FP24 or FN25 results.

5.3 Combined similarity function experiments

In  the  previous  section  I  have  shown  the  behaviour  of  each  similarity  function
standalone, but in the final framework all of them are used to create the final clusters.
The final consensus matrix algorithm (3.4.6) does not have any parameters, only the
individual partitioning as input. Below you can see an overview table of measurement
with the third data set consisting of 500 security incidents with ~27,000 events and 2.3
millions of flows in total.

24 False positive

25 False negative
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5.3 Combined similarity function experiments

without classification
information used

with classification
information used

clusters
total 19 126 19 171

bigger than 1 3 193 3 188

events in clusters
bigger than 1

total 10 410 10 389

avg 3.26 3.26

med 2 2

flows in cluster
bigger than 1

total 1 604 297 1 603 994

avg 502.44 503.13

med 12 12

clusters with mixed
classifications

32 0

Figure 21: Combined similarity overview

For the first measurement I have ignored the event classification information. All the
~27,000 events were clustered into ~19,000 clusters, which is about 30% reduction in
the  total  number.  In  clusters  containing  multiple  events,  over  10,000  events  were
contained, with average number of 3.26 event per cluster. In terms of flows, 70% of
them were contained in those clustered events. Only 32 clusters contained events with
multiple different specific classifications, what we can consider as a loss of information.

In the second run I have enabled the mechanism mentioned in  3.4.4 and  3.4.5 to
avoid this type of false positive clusters by taking the classifications into account. As
the  clusters  with  different  classifications  got  split,  the  total  number  of  clusters  has
increased by 45, which seems like a reasonable trade off for eliminating all 32 false
positive clusters.
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6 Conclusion

In the last chapter of this thesis the assignments will be analyzed with references to
relevant  sections  and chapters.  After  the  analysis,  a  section  summarizes  the  general
work and results. The very last section of this chapter and thesis is dedicated to future
plans.

6.1 Assignment completion

6.1.1 Study and analyze existing algorithms for identifying 

string and behaviour similarities.

Some of the recently published algorithms and similarity function for strings, URL and
network  traffic  similarities  are  mentioned  in  2.4.  As  the  framework  uses  multiple
metrics in combination, in  2.5 I have included some options for combination of their
results.

6.1.2 In “real-world” data related to detected incidents, 

identify similarities between diferent types of malicious 

behaviour. Focus on Command and Control, adware and click 

fraud.

The common similarities for malicious HTTP and HTTPS traffic noted in  2.4 are the
connection  destination,  the  characteristics  of  the  data  transferred  and  connections
timing,  the requested resource of the remote  servers and the parameters  sent  in  the
requests.

6.1.3 Implement at least two algorithms and in the automated

detection framework.

In chapter 3 I have proposed design of a framework using multiple metrics. In chapter 4
I have described some patterns necessary for each logical component of the framework
to hold to ensure the framework is scalable in the number of similarity functions and
also in terms of input and output data formats.

6.1.4 Determine and measure in % if and how much can be 

the data describing incidents reduced using the automated 

algorithms with preserving the information value.

The chapter 5 contains statistics from the input data and measurements of data reduction
of malicious network behaviour into similar clusters, and their interpretation.
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6.2 Summary

6.2 Summary

The  goal  of  this  thesis  was  to  study  existing  algorithms  identifying  similarities  in
network traffic and behaviour, and implement multiple of them in a framework.

My first contact with this area was in my bachelor thesis, where I have tested and
compared different approaches for full-text search in URL addresses itself. Later during
my part time contract I worked under the supervisor of this thesis, Ing. Martin Rehák
Ph.D., on processing malicious traffic data, where I realized the problem of an effective
presentation of the identified security incidents.

Althought  the  measured  numbers  show  clear  reduction  in  the  data  in  terms  of
possible redundancy, the main benefit of the framework is it allowed to measure these
with the potential to add and benchmark more metrics in the future.

During the work on the thesis, I have learned some new skills. Fro the technical ones
most notable the Kotlin language I have used. Compared to Java, I was used on, Kotlin
had  broader  support  and use  of  the  functional  programming  paradigm and I  better
understand its strengths now. Secondly, I have better understood the security incidents
information value and the related network traffic  specifics,  despite maybe not in all
details.

To  sum  up  I  need  to  notice  it  was  a  great  experience  working  on  the  thesis,
broadening my knowledge and experience of the field.

6.3 Future work

After the three similarity functions have been implemented in the framework, there is
some work needed before an actual deployment. First the supported input data format is
limiting  for  high  volumes  and  only  files  are  supported  as  input  now.  To  use  the
framework as part of a bigger application, it needs to be integrated depending on the
specific data model and storage.

The framework itself does not allow any sort of pluggable modules, but is designed
to  allow  changes  or  additions  in  the  set  of  the  similarity  functions.  The  claimed
accuracy of N-gram similarity may be worth to compare with the existing framework
metrics with the option of replacing or supplementing the path similarity in the future.
The selection of metrics can be also affected by how many data from the input data set
it can actually process.
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8 Attachments

8.1 Cumulative histograms values

8.1.1 Query similarity

0.0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

% 87.71 89.68 90.72 91.55 92.01 92.37 92.57 92.73 92.90 93.07 93.17

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1.0

% 93.25 93.38 93.48 93.57 93.77 93.89 94.08 93.34 94.61 100

8.1.2 Path similarity

0.0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

% 0.90 45.06 56.04 64.85 74.57 79.66 80.17 86.41 86.60 86.96 94.46

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1.0

% 94.52 94.58 94.70 94.74 95.00 95.37 95.40 95.48 95.51 100

8.1.3 Bytes and request timing similarity

0.0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

% 20.81 53.50 62.61 68.76 73.72 77.81 80.98 83.46 85.44 87.21 88.68

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1.0

% 90.02 91.21 92.35 93.26 94.28 95.35 96.43 97.41 98.31 100
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