
-

1

CZECH TECHNICAL UNIVERSITY IN PRAGUE

Faculty of Electrical Engineering

MASTER’S THESIS

Daniel Slunečko

Scheduling of F-shaped Tasks with Replication
to Maximize Execution Probability

Department of Control Engineering

Thesis supervisor: Ing. Antonín Novák

Acknowledgements
My sincere thanks go to my supervisor who guided me throughout the entire work on

this thesis. For all the time he was willing to invest in reading new versions of the text
again and again and for providing useful insights.

I also want to thank to my family, for their support and prayers in moments of despair
during my studies.

Last, but not least, I want to thank to my friends who encouraged me when I felt down
and to Eduard Rindt, whose hard work always inspired me.

Abstract
In this work, we focus on a problem of scheduling F-shaped tasks with
replication to maximize probability of execution. We introduce repli-
cation to the domain of F-shape scheduling. We extend the existing
scheduling model so that it is useful for multiprocessor environment with
replicated F-shapes and time lags. We propose a way for computation
of execution probability in such systems. We also propose two heuris-
tic scheduling algorithms for this problem. The algorithms are evaluated
on instances with various setup and the influence of replication on the
quality of solutions is demonstrated.

Abstrakt
V rámci této práce jsme se zaměřili na problém rozvrhování F-tvarých
úloh s replikacemi pro navýšení pravděpodobnosti provedení těchto úloh.
Nově jsme zavedli koncept replikace v oboru rozvrhovaní F-tvarých úloh
a rozšířili jsme stávající model tak, aby byl použitelný i pro problémy
s replikovanými F-tvarými úlohami v prostředí s časovými hranami.
Navrhli jsme způsob výpočtu pravděpodobnosti provedení jednotlivých
úloh. Zároveň jsme navrhli a implementovali dva heuristické algoritmy
pro rozvrhování takovýchto problémů. Oba algoritmy jsme otestovali na
instancích s různými parametry a ukázali jsme vliv replikace na kvalitu
výsledných rozvrhů.

CONTENTS

Contents
1 Introduction 1

1.1 Related Work . 2
1.2 Contribution . 5
1.3 Outline . 5

2 Problem Statement 6
2.1 Job as F-shape . 10
2.2 Online Execution of the Schedule . 12
2.3 Replication . 13
2.4 Summary . 17
2.5 Problem Complexity . 17
2.6 Blanket Definition . 18
2.7 Example of Task Instance . 19

3 Time Lags 21
3.1 Interpretation of Time Lags . 21
3.2 Observations and Notes . 24

4 Probability of Job Execution 25
4.1 Without Job Replication . 25
4.2 With Job Replication . 25
4.3 Zero Time Lags and Job Replication . 27

5 Scheduling Algorithms 33
5.1 Mixed-Integer Linear Program . 33
5.2 Simulated Annealing . 35
5.3 Iterative Resource Scheduling Algorithm 38
5.4 Implementation . 41

6 Computational Experiments 43
6.1 Criterion Computation Given a Schedule 43
6.2 Instances of P |temp,mc = 3,mu|

∑
iwiPi 44

6.3 Success Rate . 45
6.4 Time Requirements . 45
6.5 Impact of Replication on Criterial Function 46

7 Conclusion 52

Appendix A CD Content 55

Appendix B List of abbreviations 57

i

CONTENTS

ii

LIST OF FIGURES

List of Figures
1 Example of a schedule with F-shapes on two processing units 2
2 Visualization of some job J1 in a form of an F-shape with three possible

processing times (p11, p21, p31) . 11
3 Example of a feasible schedule with 3 jobs on one processing unit. 11
4 Schedule consisting of F-shapes . 13
5 Possible scenarios in a schedule with five F-shapes on a single processing

unit. The dotted line represents the executing level function. 14
6 A "trap" example. In this schedule, job J2 has nonempty coverage, but is

replicated so that it is always executed. 16
7 Blanket example . 18
8 An instance solution and graph of time lags 20
9 An example with extended blanket of size equal to n. Dotted lines represent

zero time lags. 29
10 Time required for criterion computation over multiple instances by brute force 43
11 Time required for criterion computation over multiple instances using blankets 44

iii

LIST OF FIGURES

iv

1 INTRODUCTION

1 Introduction

Nowadays there is a wide spectrum of scheduling problems that are classified by their
specific features such as number of processing units, types of temporal and precedence
constraints used, optimization criteria and other. We focus on a specific case of non-
preemptive scheduling problem with multiple processing units and relative temporal con-
straints. Namely, this thesis focuses on scheduling of F-shaped tasks1 with replication. A
motivation for the problem at hand can be the following situation.

Let us imagine an example taken from autonomous driving. There, a heterogeneous
computational platform is processing a large number of visual data. Part of the problem is
to decide which CPU will process which task. Tasks represent a computational load, such
as road sign detection, pedestrian detection, collision avoidance etc. Furthermore, the exact
processing time of tasks is not known in advance due to the nature of detection algorithms
and their low-level implementation aspects. Therefore, it might happen that some task
needs more time to complete. However, if it is a safety-critical task (pedestrian detection),
we allow its prolongation, and as a trade-off, we will skip some less critical task (reading
out a proximity sensor).

Similarly, semi-autonomous drones and other systems that are supposed to guarantee
safety, yet requiring to process jobs with non-deterministic processing times, are good
motivation for the scheduling problem that we address. Typically in scheduling, tasks are
scheduled exactly once on a resource. However, to improve safety we assume that jobs can
be scheduled more than once. The replication of scheduled jobs is in our case supposed
to improve the safety of such systems even further. Since we allow the less critical jobs to
be rejected in favor of more critical ones, the replication should increase the probability of
execution even for the less critical tasks in the schedule, i.e. it should give us the opportunity
to execute some other replica in case we skip the first one in favor of some more critical
task.

The so-called F-shapes are well suited for environments such as autonomous driving,
communication on networks and other problems with high probability of unexpected dis-
turbing events, where the adaptation of the system has to be fast and schedules can’t be
recomputed during the online execution. This means that the F-shape scheduling is by
nature proactive rather than reactive approach, i.e. it aims at making the schedule ro-
bust in advance rather than react on events. Ideally, we would like to remove the need for
rescheduling altogether.

The focus of this work is on scheduling of F-shaped tasks onto a set of homogeneous
processing units with unit capacity. We aim at optimization of the schedule with respect
to safety. Thus the used criteria function is a weighted sum of probabilities of execution
for all the scheduled tasks. We will work with instances with general temporal constraints

1Where F-shape is a job with multiple processing times. See Section 2.1

1/58

1 INTRODUCTION

c
ri
ti
c
a
li
ty

le
v
e
l

time

1

2

3

c
ri
ti
c
a
li
ty

le
v
e
l

time

1

2

3

CPU 1

CPU 2

Figure 1: Example of a schedule with F-shapes on two processing units

specifying the mutual position of the tasks in the schedule.

We will extend the existing notation for the mixed-criticality match-up scheduling and
make it suited for multiple processing units and job replication. Also, we will propose an
interpretation of time lags with respect to replicated jobs and implement two heuristic
algorithms seeking and optimizing a feasible schedule for instances of this problem.

In this thesis we work with tasks having up to three possible criticality levels. We have
chosen this number, since it shows some problems (regarding the probability of execution)
that are not present when using only two levels and yet the complexity of the optimization
criterion is not prohibitively high. We will address this further in the Section 2. Also, the
use of three criticality levels should be in practice sufficient as the usual number of used
criticality levels in similar cases is two [3].

1.1 Related Work

In this work we are dealing with non-preemptive mixed-criticality match-up schedul-
ing, closely related to the one addressed by Hanzálek et al. in [10] and to the preemptive
scheduling with multiple possible processing times introduced by Vestal in [22]. The topic
is connected to the following scheduling problems and research areas.

Stochastic Scheduling
Stochastic scheduling works with uncertain processing times. We can say that in general

the stochastic scheduling is concerned with scheduling problems where the processing times
of the tasks are not known in advance. Nevertheless the processing times can be modeled as
random variables with some specific distribution. The distribution of the processing times
is, in stochastic scheduling, usually continuous.

2/58

1 INTRODUCTION

Kenli et al. [14] consider a stochastic scheduling that deals with the problem of schedul-
ing stochastic tasks on heterogeneous cluster system. Its optimization criterion is minimiza-
tion of makespan. The tasks are precedence constrained, non-preemptive and the processing
times have normal distributions. (Even though it seems to be a different problem, there is
an underlying similarity.) Have we not allowed the task duplication and task skipping, we
would be solving the same problem only with discrete distributions of processing times.

Another related work is how to create robust partial order schedules for RCPSP/max by
Fu et al in [8]. This article proposes an approach of Benders Accelerated Cut Creation for
Handling Uncertainty (BAC-CHUS). The proposed approach is proactive, non-preemptive
and works with temporal constraints.

Canon and Jeannot [4] focus on scheduling problem where stochastic graph (the dura-
tions of tasks are uncertain) and heterogeneous environment are given. Their goal is to find
a schedule where the average makespan and the standard deviation of the makespan are
both minimized. They discuss possible robustness metrics, design a bicriteria scheduling
strategy (with respect to makespan and robustness) and propose a MOEA (multiobjective
evolutionary algorithm).

Stochastic scheduling has various optimization criteria but it usually doesn’t allow to
skip any task. We, on the other hand, allow for the jobs to rejected during online execution.
We also, unlike in stochastic scheduling, assume that the distributions of processing times
are discrete. This means that the jobs have constant processing time for each criticality
level, instead of just interval boundaries for possible processing times.

Job Replication
Since we want to use replication as a tool for maximization of execution probability, we

survey works featuring similar ideas. In [18] it is shown how to use task replication for
scheduling tasks of DAG onto a heterogeneous system. We can find a different motivation
for task replication (task redundancy) in [9, 17] and other works related to fault-tolerant
systems. In these works the motivation for replication is a desire to make a fault tolerant
schedule and therefore they expect that entire processor can fail. Unlike these systems, we
do not aim at ensuring a resistance to some degree of failure, but we mean to replicate
some low-criticality tasks to compensate the for its rejection.

Temporal Constraints
In general, there are two main attitudes toward temporal constraints. The first one

requires the jobs to be scheduled in a given time interval. These constraints are usually
expressed by set of release dates and deadlines or due dates. The second possible attitude is
concerned with relative temporal constraints between the jobs rather than their position on
the time axis. Such constraints are usually expressed by time lags that impose constraints
on the relations between start times of jobs present in the schedule. The concept of time

3/58

1 INTRODUCTION

lags was introduced by Mitten in [16].

The time lags can be represented as a directed weighted graph, where the nodes repre-
sent jobs and the edges represent the time lags. What does the concept of time lags look
like in practice can be seen e.g. in [11].

Match-up Scheduling
The idea of the match-up scheduling is that after a disruption, the system reschedules,

but attempts to return to the original schedule later on instead of creating a completely
new schedule. Bean et al. introduce a match-up scheduling in [2].

In our case, the match-up is used after executing some job in a high criticality mode,
i.e. it can be viewed as a form of robustness. As any needed prolongation of execution time
for some critical task is a disturbance in the execution. When the prolonged job ends, we
return to the original schedule, instead of rescheduling.

Scheduling with Rejection
Scheduling with rejection is based on the idea that not all jobs have to be scheduled, but

some of them can be left unscheduled. The trade off for not scheduling a job is a penalty
added to the optimization criteria.

The main difference between our problem and scheduling problems with rejection is,
that we require all jobs to be scheduled, whereas the rejection scheduling problem formu-
lation doesn’t. Or else, we allow for some jobs to be rejected during online execution of
the schedule, but we expect that every job has at least one replica scheduled. On the other
hand, the scheduling with rejection expects that some jobs are rejected during the schedul-
ing phase, i.e. prior to the online execution. Thus the scheduling with rejection naturally
leads to bicriteria scheduling, but our scheduling has a single criterial function. For further
reading on the topic of rejection scheduling a survey on rejection scheduling was done by
Shabtay at al. in [20].

The scheduling with rejection, although it might resemble our problem, is a different
approach to scheduling and we mention it here primarily to make the distinction clear.

Mixed-Criticality Scheduling
Jan et al. [12] use a stretching factors to prevent a deadline miss of low-criticality tasks

inspired by an Elastic Mixed-Criticality task model from [21]. The authors try to avoid
dropping the low-criticality tasks. In order to achieve this the deadline of the tasks is
considered to be a flexible parameter that can be extended. We (unlike them) do not allow
for the change of temporal constraints. The maximization of the probability of execution
is to be done by a task replication within the boundaries of temporal constraints.

4/58

1 INTRODUCTION

Cincibus in [5] proposes three algorithms for non-preemptive mixed-criticality schedul-
ing. The tasks are bounded by temporal constraints in a form of positive and negative time
lags. The proposed algorithms are made for processing units with unit capacity and the
used criterion is makespan minimization.

A variant of our problem for single processing unit, but with release times and deadlines
instead of time lags, is addressed in the article on Match-up Scheduling of Mixed-Criticality
Jobs by Seddik and Hanzálek [19]. This article studies the mixed-criticality scheduling on
one processing unit, using the weighted sum of execution probabilities for scheduled jobs
as the optimization criterion. It proposes a dynamic programming algorithm for the case
of fixed sequence of jobs and two criticality levels as well as branch and bound algorithm
for general problem on one processing unit. It also studies the complexity of the problem
and states a MILP formulation of special case with fixed sequence of the jobs. A more
specific version of the problem, where the scheduled jobs have to have a triangular shape,
is addressed in [7] by Dürr et al.

The problem at hand is a generalization to problems in these works since we use job
replication and use more than one processing unit. On the other hand, we allow at most
three possible criticality levels and thus in this aspect our problem is less general.

1.2 Contribution

This work follows up on other works done in the field of F-shape scheduling. Our main
contribution is the introduction of replication and study of its impact on the probability
of execution. For this purpose we extend the existing notation. We also propose a way to
compute the criterial function defined as weighted sum of probabilities of execution in the
environment with multiple processing units and zero time lags. Furthermore, we propose
and implement two algorithms for solving this scheduling problem.

1.3 Outline

The outline of this thesis is the following. Section 2 introduces the problem statement,
where we define the problem formally and we introduce the used notation. We also ex-
plain the introduced concepts in that section. In Section 3, we further describe how we
interpret temporal constraints within the scope of this work. Section 4 introduces the con-
cepts, notations and definitions used for the criterial function definition and an algorithm
implementing the forementioned. In Section 5 we provide description of feasible schedule
by a mixed integer linear program as well as descriptions of heuristic algorithms we have
proposed and implemented for solving the scheduling problem that we address. The ex-
periments we did are to be found together with their results in Section 6. The work is
concluded in Section 7.

5/58

2 PROBLEM STATEMENT

2 Problem Statement

The problem we are addressing is a scheduling problem, i.e. a problem of finding a
schedule (an assignment of processing units and start times) for a set of jobs under specific
set of constraints. In accordance with [1, 10, 19] we can describe our problem using standard
α|β|γ notation as P |temp,mc = 3,mu|

∑
iwiPi. That is a subproblem of P |temp,mc =

L,mu|
∑

iwiPi, wheremc = L stands for mixed-criticality with L possible criticality levels,
mu stands for match-up, wi is a weight assigned to job with index i and the Pi is probability
of execution of at least one replica for given job. In our case we allow for at most 3 possible
criticality levels, hence we denote it as mc = 3. The scheduled jobs are non-preemptive.

For the sake of consistency we keep as much as possible from notation introduced by
Seddik and Hanzalek in [19] . Thus a portion of the notation conventions and definitions is
an extension of formulations used for less general case in the aforementioned publication.

As a part of an input for the problem we get the number m, which is a number of
non-dedicated homogeneous (identical) processing units with unit capacity. We denote the
set of these machines byM = {M1, . . . ,Mm}.

We expect a set {J1, . . . , Jn} of n replicable non-preemptive jobs, with up to three
possible processing times each, to be given as part of any instance input as well. For
each such job, the number of distinct processing times corresponds to its criticality. Also,
for every job Ji a value wi representing its weight is provided. The weight of a job is a
multiplicative constant influencing its contribution to the criterial function.

Notation 1. For job Ji we denote its criticality by χi ∈ {1, 2, 3}. (χi ∈ {1, . . . ,L} in
general case)

Every job Ji with criticality χi has a set of χi processing times.

Definition 1. For any job Ji we denote its possible processing times by vector
pi = (p

(1)
i , p

(2)
i , p

(3)
i) ∈ N3

+ (or pi = (p
(1)
i , . . . , p

(L)
i) ∈ NL+ in the generalized case). Since any

job Ji should have only χi processing times, we will require that ∀k, χi < k ≤ 3 : p
(k)
i = 0

(∀k, χi < k ≤ L : p
(k)
i = 0 in the generalized case).

As the processing times at higher criticality levels are meant to provide longer computa-
tional time to critical jobs, if these jobs need it, we assume it to hold that processing times
at higher criticality levels are longer. To write this formally we extend the first definition
by requirement:

Definition 1a. We require it to hold:

∀Ji, Ji ∈ {J1, . . . , Jn}, k, l ∈ {1, . . . , χi}, k < l =⇒ p
(k)
i < p

(l)
i

6/58

2 PROBLEM STATEMENT

Considering the job replication, we assume that all replicas of one job are assigned to
the same processing unit. This assumption seems to be reasonable with regards to possible
applications.

Notation 2. For any job Ji we define its assignment to some processing unit by function
µ(i) : {1, . . . , n} →M, and for convenience we denote the value µ(i) by µi .

The distinct replicas are denoted as follows:

Notation 3. If some job Ji is replicated in a schedule we denote its first, r-th and last
replica by Ji,1, Ji,r, Ji,max respectively.

Since we use replication only to increase the safety of the system, we request that only
one replica is executed during the execution of the schedule. It means, that whenever some
r-th replica of job Ji is executed all other replicas Ji,r1 , r1 > r will not be executed.

Furthermore, the jobs are bounded by the temporal constraints and the replication is
used only for execution probability maximization. Thus, it is reasonable to deem it true
without a loss of generality that for any instance of the problem, there is a fix upper bound
on number of possible replicas per task. Therefore we say that the number of replicas is
limited. Justification for this claim is very straightforward. Whenever a job is constrained
by some bounded time interval, it can be easily counted how many replicas can be scheduled
within given interval. If a job is not restricted by a bounded interval, it can be in theory
replicated without limits, and we can then make sure that at least one replica can be
scheduled so that it is always executed. In such a case, all the other replicas are not
necessary, since they can’t increase the execution probability. This means, that for any
given instance of the problem we can set max (a maximum number of replicas per task)
without a loss of generality of the problem.

Notation 4. For any job Ji we will denote its starting time in a schedule as si (or si,1 for
replicated jobs). Also, if the job is replicated, we will denote starting times of second, r-th
and last replica by si,2, si,r and si,max respectively.

An example of the notation we have just introduced can be seen in Figure 3.

It follows from the nature of the problem that we can’t know in advance with which
level of criticality a job will be executed during the online execution of the schedule we
create. But we expect that for any job the probabilities for distinct criticality levels are
known, given the job is executed.

Notation 5. We denote by Bi,r,k the probability that r-th replica of job Ji has execution
level k, given that it is not rejected.

Notation 6. We denote by Ai,r,k the probability that the execution level of Ji,r is greater
than k, given that Ji,r is not rejected.

7/58

2 PROBLEM STATEMENT

Theoretically the value of the Bi,r,k could vary for different replicas, but since we do not
view the replicas as different jobs, but rather as exact copies of the same job, we expect
that ∀r1, r2 : Bi,r1,k = Bi,r2,k holds. And we denote this value by Bi,k unless it is useful to
stress out the index of the replica. We assume that the value Bi,k is given as part of the
problem instance for every tuple (i, k) where i ∈ {1, . . . , n}, k ∈ {1, . . . , χi}.

It is obvious, that we can define the value Ai,r,k as:

Definition 2. For any i ∈ {1, . . . , n}, k ∈ {1, . . . ,L} it holds:

Ai,r,k =

χi∑
j=k+1

Bi,r,j.

Thus the value of Ai,r,k is also not dependent on the value of r, and we can substitute
it with just Ai,k.

We suppose some (any number) of these jobs to be linked by a general temporal con-
straints in a form of time lags. The set of all such constraints T is a set of all time lags
present in given instance of the problem. The time lag is value from Z that represents a
form of temporal constraint. Unlike releases and deadlines that pose direct constraint on
the domain of possible values of variable representing a start time of some job, a time lag
imposes a constraint only relatively to some other scheduled job. Namely:

Definition 3. For two jobs Ji, Jj (where Ji 6= Jj), a time lag li,j ∈ T is a value, such that
for their start times si, sj respectively, it has to hold:

∀li,j :

{
li,j 6= 0 =⇒ si + li,j ≤ sj

li,j = 0 =⇒ si = sj

.

Every time lag li,j from job Ji to job Jj creates a relative time-window, i.e. a time
interval relative to job Ji in which the job Jj can be scheduled. We will further divide the
time lags into three groups.

Notation 7. We say that time lag li,j is positive (minimal) if li,j > 0. We say that time
lag li,j is negative (maximal) if li,j < 0. We well call a time lag li,j = 0 a zero time lag.

One consequence of the interpretation of time lags we have introduced is, that any two
jobs bounded by a zero time lag have to have the same starting time. This means that they
can’t be scheduled onto the same processing unit.

We will propose how to interpret the time lags with respect to replicated jobs in Sec-
tion 3. For now we simply demand that, if a schedule is feasible, than all jobs are scheduled
within intersection of corresponding relative time windows implied by the time lags.

8/58

2 PROBLEM STATEMENT

The solution to the problem is an assignment of all jobs to the processing units and
scheduling them on such time slots that the temporal constraints are fulfilled. For a formal
definition of this goal, we have to introduce the concept of a schedule.

Definition 4. A schedule S is defined as a matrix of tuples (S ∈ (Z2)max×n)

S =


[s1,1, µ1] [s2,1, µ2] · · · [sn,1, µn]
[s1,2, µ1] [s2,2, µ2] · · · [sn,2, µn]

...
...

[s1,max, µ1] [s2,max, µ2] · · · [sn,max, µn]


where si,r, i ∈ {1, . . . , n}, r ∈ {1, . . . ,max} is the starting time of r-th replica of job Ji

(i.e. of Ji,r) and µi, i ∈ {1, . . . ,m} is index of the processing unit to which all the replicas
of given job are assigned.

As the problem is defined, every job has to be scheduled, but not all jobs have to have
the same number of replicas. Yet, for the scheduled replicas we will define the following:

Definition 5. Let rL be last scheduled replica of some job Ji, then

∀r ∈ {1, . . . , rL − 1} : si,r < si,r+1

.

For the sake of syntactic convenience we will also define, that:

Definition 6. Let rL be last scheduled replica of some job Ji, then

∀r ∈ {rL + 1, . . . ,max} : si,r = si,rL

.

Definition 6 is only a technical formality, allowing us to describe a schedule by matrix
with fix number of rows.

The definition of schedule is in fact only a generalization of the original vector used in
[19] for schedule description. Furthermore this definition could be easily modified to assign
each replica of one job to a different processing units if so needed (by introducing µi,r, an
index of processing unit to which Ji,r would be assigned). Nevertheless, it is reasonable
assumption that all replicas of the same job are scheduled on the same processing unit,
considering cache and other technical limitations in real-world applications.

It is worth noting that not every possible matrix in this form is feasible with respect
to the problem formulation, neither to specific instances. That is why we define a feasible
schedule.

9/58

2 PROBLEM STATEMENT

Definition 7. We define a feasible schedule as a schedule that satisfies the following con-
ditions:

1. Temporal constraints are fulfilled, i.e.:

∀li,j ∈ T :

{
li,j 6= 0 =⇒ si,max + li,j ≤ sj,1

li,j = 0 =⇒ si,q = sj,r ⇐⇒ q = r

.

2. At each level of criticality it holds that jobs do not overlap. Equivalently, jobs do not
overlap at their highest common level. We provide formal definition of this constraint
in subsection Section 2.1.

It is worth stressing out that the condition li,j 6= 0 =⇒ si,max + li,j ≤ sj,1 can be also
reformulated as,

li,j 6= 0 =⇒ ∀r, sj,r ∈ [si,max + li,j,∞)

This half-closed interval is the relative time-window we have talked about at the beginning
of this section. We reason about this time lag interpretation in Section 3

The optimization criteria for this scheduling problem is weighted sum of execution
probabilities. If a job is replicated, then by execution probability we denote the probability
that at least one replica is executed (computed over all possible execution scenarios). An
exact formulation of execution probability is provided in the Section 4. To describe the
problem even better we will now focus on other specific features it has.

2.1 Job as F-shape

We have assumed that the jobs we are scheduling can have up to three possible process-
ing times. That leads us to the problem of scheduling jobs with discrete distributions over
possible processing times of each job. We have also stated that the number of processing
times is the same as the criticality level of given job.

For visualization of jobs with multiple processing times we use so-called F-shape abstrac-
tion. An example of F-shape visualization is shown in Figure 2. In this form of visualization,
every level of the F-shape represents one possible processing time of given job. Thus the
classical visualization of a job as a rectangle is substituted by more general "F-shaped"
object as introduced in [10].

For such jobs, a constraint requiring every job to be scheduled after the end of the
previous one, would lead to very low utilization of the processing units. To avoid this, we
can "stack" some of the less critical jobs under the more critical ones as shown in Figure 4.

10/58

2 PROBLEM STATEMENT

J1

time

cr
it
ic
a
li
ty

le
v
el

1

2

3

p
(1)
1

p
(2)
1

p
(3)
1

Figure 2: Visualization of some job J1 in a form of an F-shape with three possible processing
times (p11, p21, p31)

s1 s2;1 s2;2

J1

J2;1 J2;2

J3

s3 time

cr
it
ic
a
li
ty

le
v
el

1

2

3

Figure 3: Example of a feasible schedule with 3 jobs on one processing unit.2

If, however, the more critical job is prolonged during the schedule execution, the less critical
one is rejected.

A formal notation for this proposal is:

Definition 8. For any two job replicas Ji,r, Jj,s of jobs Ji, Jj such that µi = µj and
si,r < sj,s it has to hold: si,r + p

(χmin)
i ≤ sj,s, where χmin = min(χi, χj).

In Figure 3, the job J3 and job replica J2,1 start before the worst case processing time
of J1 is finished. In such a case we say that job J3 covers the other two.

Definition 9. Given a feasible schedule S and two scheduled job replicas Ji,q, Jj,r in S,
we say that job replica Ji,q covers job replica Jj,r if and only if si,q < sj,r < si,q + pχi

i and
µi = µj.

We also use the following notation.

Notation 8. We denote by cov(Ji,r, S) (cov(Ji,r) when no ambiguity possible) the set of
all job replicas covering Ji,r in schedule S and we call this set a coverage of job replica Ji,r.

2An example with computation of execution probability is shown at the end of Section 2.3

11/58

2 PROBLEM STATEMENT

We will use this concept of coverage extensively, for formal definition of probability of
execution later on.

In general, such a set can have up to L − 1 elements. Since we allow only 3 possible
criticality levels, the cardinality of covering set for any job, has to be lower than 3. Never-
theless, a single job can be member of more than one coverage, i.e. it can cover more than
one job. For example, in Figure 3 the job J1 covers both job replicas J2,1 and J3. Thus in
that example cov(J2,1) = cov(J3) = {J1}.

We define a coverage level as follows:

Definition 10. In schedule S, given a job replicas Ji,q, Jj,r and i, j ∈ {1, . . . , n}, i 6= j and
r, q ∈ {1, . . . ,max} such that Jj,r ∈ cov(Ji,q). We define the coverage level of Ji,q by Jj,r as
ci,q,j,r(S) (or ci,q,j,r when no ambiguity is possible) so that it holds:

ci,q,j,r = l ⇐⇒ si,q ∈ [sj,r + p
(l)
j , sj,r + p

(l+1)
j].

for some l ∈ {1, . . . , χj}.

2.2 Online Execution of the Schedule

As we have previously stated it is not known in advance which processing time will
a scheduled job need for its completion. For any schedule S, composed of F-shapes, we
only know the probability distributions over the possible processing times of the F-shapes.
This means that there are multiple scenarios in which such a schedule can be executed.
Hanzalek et al. [10] proposed what the on-line execution with match-up should look like
for a single processing unit. They propose a function e : [t] → {1, 2, . . . ,L} (t represents
time) called execution level. The function is revealed only by execution of the scheduled
tasks and e(t) defines the criticality level on which the schedule was executed at time t.
This function can then be used to describe the possible execution scenarios.

The original definition of execution level is not sufficient for multiple processing units,
so we extend it for our needs.3 This being said, we define the execution level function as
fe : [t,M]→ {1, 2, . . . ,L}, whereM = {M1, . . . ,Mm} is set of all processing units and t
is time. For all jobs, we will denote a processing unit to which a job Ji is assigned by µi.
With respect to this notation, the function fe is described by the following rules:

1. At origin it holds that ∀Mi ∈M : fe(0,Mi) = 1

2. For i ∈ {1, . . . , n}, r ∈ {1, . . . ,max} let job replica Ji,r be scheduled on processing
unit µi and let ε > 0 be a small constant. While executing job replica Ji,r on execution
level fe at time instant (si,r + p

(l)
i − ε) for some l ∈ {1, . . . , χi} the value of

fe(si,r + p
(l)
i , µi) is:

3We also use a different name, because we want to keep the e reserved for notation of another concept.

12/58

2 PROBLEM STATEMENT

• set to 1 if the job replica Ji,r is completed.

• incremented (by one) if the job replica Ji,r is not completed and
fe(si,r + p

(l)
i − ε, µi) < χi.

• undefined if the job replica Ji,r is not completed and fe(si,r + p
(l)
i − ε, µi) = χi.

In such a case, it is not possible for the job to finish within its maximal possible
processing time, which we consider to be an ill defined problem instance.

3. Otherwise the execution level remains constant.

Furthermore it holds that if fe(si,r, µi) = 1 and no other previous replica of job Ji was
executed, then job replica Ji,r is started at si,r on processing unit µi, otherwise job replica
Ji,r is rejected.

The execution level function has different shapes for different executions of the schedule.
Possible execution scenarios for a simple schedule with one processing unit are shown in
Figure 5.

time

cr
it
ic
a
li
ty

le
v
el

1

2

3

Figure 4: Schedule consisting of F-shapes

2.3 Replication

In this section we introduce the concept of replication to the field of F-shape scheduling.
By replication we mean a repeated scheduling of the same job, as was previously mentioned.
A simple example of schedule with replication can be seen in Figure 3.

If a job is covered by some other, more critical job, it will inevitably be rejected in some
scenarios. The higher the probability of these scenarios, the lower the chance, that the less
critical job will be executed. It also holds, that with growing utilization of a processing
unit and higher ratio of high criticality jobs in the schedule, the possibilities for scheduling
less critical jobs, so that they are not covered by the more critical ones, shrink. However,

13/58

2 PROBLEM STATEMENT

it is possible to increase the number of execution scenarios in which some low criticality
job Ji is executed, by replicating it.4

(a) 1. scenario. (b) 2. scenario.

(c) 3. scenario. (d) 4. scenario. (e) 5. scenario.

Figure 5: Possible scenarios in a schedule with five F-shapes on a single processing unit.
The dotted line represents the executing level function.

As we have mentioned, we suppose that whenever a replica is executed during the online
execution, all consequent replicas are rejected. Thus the probability that at least one replica
of given job is executed (computed over all possible scenarios) equals the probability that
exactly one replica is executed. And we call this probability the probability of execution.

To introduce this concept formally, we will first define execution scenario as follows:

Definition 11. An execution scenario sc is a matrix of levels at which all job replicas are
executed during online execution of given schedule S. For each replica of each job there is
exactly one value.

sc =


e1,1 e2,1 · · · en,1
e1,2 e2,2 · · · en,2
...

...
e1,max e2,max · · · en,max


where ei,r ∈ 0, . . . , χi, i ∈ {1, . . . , n} and r ∈ {1, . . . ,max}. The value of ei,r = 0 if and

only if given replica is unscheduled or rejected.

A consequence of the fact that at most one replica is executed in one scenario is, that if
4We demonstrate this in an example at the end of this section.

14/58

2 PROBLEM STATEMENT

job replica Ji,q is executed in given scenario, then all replicas Ji,r, q < r ≤ max are rejected,
therefore if in given scenario ei,q > 0, it means that ∀r, q < r ≤ max : ei,r = 0.

Notation 9. We denote by

sc∗ =


e∗1,1 e∗2,1 · · · e∗n,1
e∗1,2 e∗2,2 · · · e∗n,2
...

...
e∗1,max e∗2,max · · · e∗n,max


the (initially unknown) scenario that occurs at runtime.

Similarly to the schedule, this definition of scenario is in fact a generalization of the
original sc∗ used in [19] (there it is a vector, not matrix, as the jobs are not replicated).
Furthermore, the relation between the concept of scenario we have just introduced and the
function fe is the following.

Definition 12. Let

S =


[s1,1, µ1] [s2,1, µ2] · · · [sn,1, µn]
[s1,2, µ1] [s2,2, µ2] · · · [sn,2, µn]

...
...

[s1,max, µ1] [s2,max, µ2] · · · [sn,max, µn]


be a feasible schedule for some instance of our problem. Let

sc∗ =


e∗1,1 e∗2,1 · · · e∗n,1
e∗1,2 e∗2,2 · · · e∗n,2
...

...
e∗1,max e∗2,max · · · e∗n,max


be an execution scenario revealed during online execution of schedule S
and let fe : [time,M] → {1, 2, . . . ,L} be an execution level function revealed during the
same execution of schedule S and ε > 0 be a small constant. Then for any scheduled job
replica it holds that:

∀Ji,r

{
fe(si,r, µi) = 1 ∧ ∀q < r, e∗i,q = 0 =⇒ e∗i,r = fe((si,r + pχi

i − ε), µi)
fe(si,r, µi) 6= 1 ∨ ∃q < r, e∗i,q 6= 0 =⇒ e∗i,r = 0

Now, when we have introduced the concept of scenario we can proceed to the definition
of execution probability.

Notation 10. We will denote the execution probability for any job replica Ji,r by Pi. If
the job is replicated, we will denote by Pi,r the probability of execution for r-th replica of

given job, and we will define Pi =
max∑
r=1

Pi,r.

15/58

2 PROBLEM STATEMENT

We can only say what the value of execution probability for given job is, with respect to
some specific schedule (i.e. it makes no sense to speak about execution probability before
the job is scheduled). Hence, whenever we speak about a probability of execution, we
suppose that a feasible schedule was already created.

Definition 13. Given a feasible schedule S, the execution probability Pi,r of some job
replica Ji,r can be defined as Pi,r = P (e∗i,r 6= 0).

We should stress out that since e∗i,r = 0 for all unscheduled replicas, the value of Pi,r of
unscheduled replicas is always equal to zero.

Computation of the execution probability according to the definition is, however, not
feasible for large instances. Therefore, we will introduce a better way for its computation
later.

Considering the replication, it doesn’t only provide us with more opportunities for job
execution, but it has its disadvantages as well. On one hand, the replication provides us
with the benefit of possible execution probability increase. On the other hand, it requires
new interpretation of the time lags and increases the computational complexity of criterial
function.

To provide an example of execution probability increase caused by job replication, we
show a simple schedule consisting of three jobs, and we evaluate the execution probability
with and without replication in Figure 6. In this example the job J2 is always executed,
although both its replicas have non empty coverage (cov(J2,1) = {J1} and cov(J2,2) = {J3}).
This statement is easy to prove, as job replica J2,1 is executed whenever, e∗1 < 3. If e∗1 = 3
then job replicas J2,1 and J3 are rejected and thus the job replica J2,2 is executed. This
means, that P2 = P2,1 + P2,2 = 1. If either of the replicas J2,1, J2,2 is omitted from the
schedule, the probability of execution for job J2 would decrease, as it would be executed
in only one of the possible cases (e∗1 = 3; e∗1 < 3).

Figure 6: A "trap" example. In this schedule, job J2 has nonempty coverage, but is repli-
cated so that it is always executed.

16/58

2 PROBLEM STATEMENT

2.4 Summary

We have introduced the problem and explained the concept of F-shape and replication.
The interpretation of time lags in an environment with replication as well as the compu-
tation of execution probability will be further discussed in Sections 3 and 4 as these two
topics require a more thorough explanation.

We have also introduced new notation, and extended a notation originally proposed for
a less general cases of a similar problem.

2.5 Problem Complexity

The problem we have specified is strongly NP-hard. Y. Seddik and Z. Hanzalek in
[19] show that 1|rj, d̃j,mc,mu|

∑
iwiPi is strongly NP-hard. This suggests that even our

problem could be strongly NP-hard, since its generalized version P |temp,mc,mu|
∑

iwiPi
contains 1|rj, d̃j,mc,mu|

∑
iwiPi as its subproblem.

Also, the decision problem 1|mc = 2,mu|Cmax ≤ ε is p-reducible to 1|temp,mc =
2,mu|feasibility scheduling problem. The transformation can be done by Algorithm 1.
It holds, that whenever we find a solution to the 1|mc = 2,mu|Cmax ≤ ε problem, a
feasible solution to 1|temp,mc = 2,mu|feasibility has to exist and it can be obtained
by simply adding the dummy task d0 to the beginning, shifting all original start times
by 1 and appending dn+1 to the end. Similarly, whenever there is a feasible solution to
1|temp,mc = 2,mu|feasibility, we can obtain a solution to 1|mc = 2,mu|Cmax ≤ ε by
omitting the dummy tasks d0, dn+1 from the schedule and shifting start times of all other
jobs by one to the left.

As the problem of 1|temp,mc = 2,mu|feasibility is obvious subproblem of P |temp,mc =
3,mu|

∑
iwiPi, we can claim that our problem is strongly NP-hard, since the problem

1|mc = 2,mu|Cmax is strongly NP-hard as was proved in [10] by Hanzalek at al.

Algorithm 1 1|mc = 2,mu|Cmax ≤ ε Cp 1|temp,mc = 2,mu|feasibility
Require: instance of 1|mc = 2,mu|Cmax ≤ ε with n jobs
1: add dummy tasks d0, dn+1

2: χ0 = 1 = χn+1 and p(1)0 = p
(1)
n+1 = 1

3: for each job ji add time lags l0,i = 1 and li,n+1 = 1
4: add time lag ln+1,0 = −(ε+ 2)
5: add time lag l0,n+1 = 1

17/58

2 PROBLEM STATEMENT

2.6 Blanket Definition

Finally, we introduce a few more important concepts that will become useful in the
section dedicated to computation of execution probability.

Therefore, in addition to the definitions we have introduced, we make a simple obser-
vation about coverage.

Observation 1. If for any two job replicas Ji,q, Ji,r it holds that (cov(Ji,q) ⊂ cov(Ji,r)) ∧
(∀Jj,s ∈ cov(Ji,q) : ci,q,j,s = ci,r,j,s) then by omitting the replica Ji,r from the schedule, the
probability of execution for job Ji doesn’t decrease.

Proof. The replica Ji,r will be rejected in all scenarios where replica Ji,q is rejected, unless
Ji,q is rejected by execution of Ji,r.

And we further extend the concept of coverage by introduction of blanket.

Definition 14. We define blanket for job replica Ji,r as a set of all job replicas Jj,q such
that:

1. ∀Jj,q ∈ cov(Ji,r) : Jj,q ∈ blanket(Ji,r)

2. ∀r1 < r : Ji,r1 ∈ blanket(Ji,r)

3. ∀Jj,q ∈ blanket(Ji,r),∀q1 ≤ q : Jj,q1 ∈ blanket(Ji,r)

4. ∀Jj,q,∀Jk,s ∈ cov(Jj,q) : Jj,q ∈ blanket(Ji,r) =⇒ Jk,s ∈ blanket(Ji,r)

5. the cardinality of the set is minimal.

We will denote this set as blanket(Ji,r).

Example of the blanket is shown in Figure 7.

cr
it
ic
a
li
ty

le
v
el

time

1

2

3
J1

J2;1

J3;1

J7;1

J4

J3;2

J2;2

J5

J2;3J7;2

J6

J2;4

Figure 7: Blanket example

In this example the blanket(J2,4) = {J1, J2,1, J3,1, J4, J3,2, J2,2, J5, J2,3, J6}.

18/58

2 PROBLEM STATEMENT

2.7 Example of Task Instance

An instance of the problem has to define:

• m ∈ N ∼ number of processing units

• n ∈ N ∼ number of jobs

• max ∈ N ∼ maximal number of replicas per task. If this limitation is not provided,
we can compute it as we have shown previously, but for simplicity we expect it to be
present in the instance description.

• χi ∈ {1, 2, 3},∀i ∈ {1, . . . , n} ∼ criticality level of each job

• pli ∈ N, ∀i ∈ {1, . . . , n},∀l ∈ {1, . . . , χi} ∼ processing times for each job

• wi ∈ N,∀i ∈ {1, . . . , n} ∼ weight for each of the jobs

• Bi,l ∈ [0, 1],∀i ∈ {1, . . . , n}, ∀l ∈ {1, . . . , χi} ∼ probabilities that a i-th job reaches
criticality level l during its execution.

• T ∼ set of all time lags present in the instance

Thus a small instance that consists of only five jobs, can be defined in the following
way:

• m = 2

• n = 5

• max = 3

• χ1 = 1, χ2 = 2, χ3 = 3, χ4 = 1, χ5 = 1

• p(1)1 = 1, p
(1)
2 = 1, p

(2)
2 = 3, p

(1)
3 = 2, p

(2)
3 = 3, p

(3)
3 = 5, p

(1)
4 = 1, p

(1)
5 = 2

• w1 = 1, w2 = 2, w3 = 3, w4 = 5, w5 = 1

• B1,1 = 1, B2,1 = 0.5, B2,2 = 0.5, B3,1 = 0.8, B3,2 = 0.1, B3,3 = 0.1, B4,1 = 1, B5,1 = 1

• l1,2 = 2, l1,5 = 2, l2,3 = 0, l2,4 = 2, l3,1 = −4, l3,2 = 0, l4,1 = −6, l5,1 = −5

A feasible solution, yet not an optimal one, is shown in Figure 8a and the graph repre-
senting the time lags can be seen in Figure 8b.

19/58

2 PROBLEM STATEMENT

J2

J3

J1 J4;1 J4;2

J5

0 1 2 3 4 5 6 7 8

time

time

1

2

1

2

3

c
ri
ti
c
a
li
ty

le
v
e
l

c
ri
ti
c
a
li
ty

le
v
e
l CPU 1

CPU 2

(a) A feasible solution of an instance example

+2

0

-4

+2

0

-5

-6

+2

J1

J2

J3 J4

J5

(b) Visualization of time lags
in a form of an oriented graph

Figure 8: An instance solution and graph of time lags

20/58

3 TIME LAGS

3 Time Lags

The concept of temporal constraints in a form of time lags is not new and its interpre-
tation is well defined for schedules without replication. This section is therefore focused
solely on the use of time lags with respect to replicated jobs.

3.1 Interpretation of Time Lags

The source of possible complications when interpreting the time lags is the fact, that
we don’t know in advance which replicas will be rejected during the online execution of a
schedule. This means that there are several possible interpretations. We could just decide
that we will take into account only the first replicas (or some other arbitrary index). This
would be a very simple solution, yet a wrong one, as this would mean that the time lags
provide no guarantee on the relation between the start times of the replicas that will
actually be executed. As we consider similar ideas to go against the original meaning of
time lags, we propose the following definition.

Definition 15. We considere any time lag li,j 6= 0 between replicas of jobs Ji and Jj
fulfilled if and only if ∀r ∈ {1, . . . ,max},∀q ∈ {1, . . . ,max} : si,r + li,j ≤ sj,q.

An obvious consequence of this definition is a fact, that we formulate in the next
observation.

Observation 2. Let rL be an index of the last scheduled replica of some job Ji. Then it
must hold:

(si,rL + li,j ≤ sj,1) =⇒ (∀r ∈ {1, . . . , rL},∀q ∈ {1, . . . ,max} : si,r + li,j ≤ sj,q).

Furthermore, since we have defined that we assign the value of start time of the last
scheduled replica to all the unscheduled replicas of the same job, we can now define the
meaning of the time lags as follows.

Definition 16. From Definitions 5 and 6 it follows that:

∀i ∈ {1, . . . , n},∀r ∈ {1, . . . ,max} : si,r ≤ si,r+1

therefore we considered any time lag li,j 6= 0 between replicas of jobs Ji and Jj fulfilled if
and only if

si,max + li,j ≤ sj,1

.

21/58

3 TIME LAGS

Such interpretation of positive and negative time lags is in accordance with the orig-
inal interpretation for schedules without replication. This can be easily shown by setting
the max = 1. In such a case we would get the same formulation we have introduced in
Definition 3. If max > 1 (i.e. replication is present), then this interpretation guarantees
the original time lag to be valid whenever at least one replica of both jobs bounded by the
time lag is executed.

To make the interpretation complete, we should address the zero time lags. The original
interpretation of zero time lags is that the two jobs have to start at the same time. This
interpretation seems to be very natural and we will try to preserve it. This means that if
some jobs Ji and Jj are constrained by time lag li,j = 0 we will replicate them together. It
means that for any feasible schedule we demand:

Definition 17. For any two jobs Ji and Jj bounded by time lag li,j = 0, it has to hold:

∀li,j = 0,∀q, r ∈ {1, . . . ,max} : si,r = sj,q ⇐⇒ q = r

.

By combining Definitions 16 and 17 we get the definition:

Definition 18. We say that a schedule fulfills all time lags if and only if:

∀i, j ∈ {1, . . . , n} :

{
∃li,j 6= 0 =⇒ si,max + li,j ≤ sj,1

∃li,j = 0 =⇒ ∀q, r ∈ {1, . . . ,max} : si,r = sj,q ⇐⇒ q = r

This interpretation is safe in the sense, that even if the constraints, implied by the time
lags, are active, the schedule remains feasible regardless of which replica will be executed.
On the other hand the weakness of this solution is, that job replication shrinks the relative
time windows, or even closes them completely and therefore the possibility of job replication
is limited.

Also, it is not enough to demand that the replicas are scheduled together. But we
should make sure that replicas of these tasks are executed (or dropped) together as well
and we expect the online executor of the schedule to abide this rule. A consequence of such
interpretation of this schedule is:

Observation 3. If two jobs Ji, Jj are bounded by zero time lag, then for any possible
scenario

sc =


e1,1 e2,1 · · · en,1
e1,2 e2,2 · · · en,2
...

...
e1,max e2,max · · · en,max


it has to hold:

∀r ∈ {1, . . . ,max} : ei,r 6= 0 ⇐⇒ ej,r 6= 0

22/58

3 TIME LAGS

For the sake of clarity we define two other terms.

Definition 19. We say, that jobs Ji, Jj are bounded by transitive zero time lag, denoted
by lT (Ji, Jj), if either:

∃Jk, li,k = 0 = lk,j

or
∃Jk, Jh, li,k = 0 = lk,h ∧ lT (Jh, Jj)

.

It makes sense to speak about sets of jobs bounded by transitive zero time lags as about
batches.

Definition 20. We define batch containing job replica Ji,r, denoted by Batch(Ji,r), as a
set of all job replicas Jj,q such that lT (Ji, Jj) and a job replica Ji,r.

One consequence of introducing zero time lags is that the execution function fe, from
Section 2.2, has to be modified to put up with the concept of batches. Namely, the rule for
job execution has to be reformulated as follows:

Proposition 1. For any scheduled job replica Ji,r it has to hold: If ∀Jj,q ∈Batch(Ji,r) the
value of fe(sj,q, µj) = 1 and no previous replica of job Jj was executed, then all job replicas
in Batch(Ji,r) are started at si,r, otherwise all job replicas in Batch(Ji,r) are rejected.

Similarly, from Observation 3 and Definition 19 we get:

Observation 4. If two jobs Jj,q, Ji,r are bounded by a transitive zero time lag lT (Ji, Jj),
then for any possible scenario

sc =


e1,1 e2,1 · · · en,1
e1,2 e2,2 · · · en,2
...

...
e1,max e2,max · · · en,max


it has to hold:

∀r ∈ {1, . . . ,max} : ei,r 6= 0 ⇐⇒ ej,r 6= 0

.

Specially, from Observation 3 and Definition 20 we get the rule that all replicas in a
batch are either executed or rejected together, i.e.

∀Jj,r ∈Batch(Ji,r): ei,r 6= 0 ⇐⇒ ej,r 6= 0

23/58

3 TIME LAGS

3.2 Observations and Notes

Furthermore, we can make some interesting observations about the schedules that are
worthy of being mentioned.

Observation 5. If some job is not included in any cycle (considering the graph of temporal
constraints), then it can be shifted or replicated so that probability of its execution is equal
to one. Specially, if the graph doesn’t contain any cycle (i.e. also no relative time windows
are present), it has a trivial optimal solution.

We do not prove this observation here, but the idea on which such a proof could be
based is simple. We do not require to minimize makespan of the schedule, but only to
maximize probability of execution. This means, that by enlarging the makespan, we can’t
violate any relative temporal constraints, and yet for any job Ji that is not present in any
cycle, it is possible to find such a time slot that cov(Ji) = ∅.

Observation 6. Any job replica Ji,r such that cov(Ji,r) = ∅ and Batch(Ji,r)= {Ji,r} is
always executed.

Observation 7. Any job replica Ji,r, χi = 3, Batch(Ji,r)= {Ji,r} is always executed, unless
bounded by a zero time lag to some covered job replica. In general, any job replica Ji,r
such that χi = L and Batch(Ji,r)= {Ji,r} is always executed.

24/58

4 PROBABILITY OF JOB EXECUTION

4 Probability of Job Execution

In this section we will focus on evaluation of the optimization criteria. That is, the
computation of probability of execution for all jobs in given schedule. At first, we will
address the easiest version when we ignore both the zero time lags and the possibility of
job replication.

4.1 Without Job Replication

The most straightforward solution to this problem is a brute force computation from
definition (i.e. computing probability for each job over every possible scenario). This, how-
ever, isn’t possible for large instances, because the number of scenarios grows exponentially
with respect to the number of scheduled jobs.

Much faster solution for computation of probability of execution is to compute the
probability of execution for any job Ji taking into account only its coverage cov(Ji) as is
shown in [19]. There, the following formula is used.

Proposition 2. Given a schedule S, we have for every job Ji in S:

Pi = 1−
∑

Jj∈cov(Ji)

(Pj × Aj, ci,j)

where the ci,j is coverage level of Ji by Jj.

We can adapt this method for our use if we do not take into account the job replication
and the zero time lags.

However, the replication and zero time lags do both complicate the computation. We
will first explain how to handle the complication caused by the possible job replication.

4.2 With Job Replication

When we allow the job replication to be present in the problem, the complexity of
computation of the criteria function grows. The brute force solution is still possible in
theory, yet intractable for larger instances. In fact, it fails even for relatively small instances
containing no more than 23 jobs (as is shown in Section 6.1).

Furthermore, it is no longer possible to compute the probability of execution for job Ji
using only the cov(Ji). To justify this claim we remind the reader of the fact that any replica
Ji,r is executed only if all the replicas Ji,r1 , r1 ≤ r are rejected. Another factor complicating

25/58

4 PROBABILITY OF JOB EXECUTION

the computation even further is that even jobs in the cov(Ji) might be replicated. Thus,
even previous replicas of a covering job are influencing the probability of execution.

This creates a need for generalization of coverage. Therefore, we would like to find a set
cov∗(Ji,r) that is a generalization of the coverage of job replica Ji,r used in the algorithm
for computation of probability of execution in the easier case. To find such a set we first
formulate what properties this set has to have and then we will define it formally.

Observation 8. Since we have said that we talk about generalization, we request that

cov(Ji,r) ⊆ cov∗(Ji,r)

is true statement. We need this, because if we set max = 1, the set cov∗(Ji,1) must be equal
to set cov(Ji,1) = cov(Ji).

Observation 9. The probability of execution for any job replica Ji,r is influenced by
execution or rejection of all previous replicas of the same job. From this we get:

∀r1 ≤ r : Ji,r1 ∈ cov∗(Ji,r)

This seems to give us at least some idea about what the cov∗(Ji,r) should look like, but
we need to specify it fully.

We want the set cov∗(Ji,r) to contain everything that influences the probability of
execution for job replica Ji,r in a schedule with replication but no zero time lags. Therefore,
we need this set to be recursive in a fashion described by the next observation.

Observation 10.
∀Jj,q ∈ cov∗(Ji,r) : cov∗(Jj,q) ⊆ cov∗(Ji,r).

By combining all these observations about the set cov∗(Ji,r) we get a set that contains
all the job replicas that can influence the probability of Ji,r. The last thing we would like
to be true about cov∗(Ji,r) is, that cov∗(Ji,r) should have the minimal possible cardinality
(i.e. it shouldn’t contain any other job replicas).

These requirements lead us to the simple fact, that:

Observation 11. By comparing the requirements for this generalized set and the Defini-
tion 14 (where the blanket is defined) we get:

cov∗(Ji,r) = blanket(Ji,r)

It is also obvious that for a fixed number of replicas max and fixed number of criticality
levels L it must hold:

|blanket(Ji,r)| ≤ (max1 +max2 + · · ·+maxL−2 +maxL−1 +maxL−1).

26/58

4 PROBABILITY OF JOB EXECUTION

This boundary is the worst-case scenario where every job replica Jj,q on criticality level l
is covered by distinct job replica Jk,max on the level l + 1, for all l < L. On the highest
criticality level it makes no sense to replicate the tasks, since they can be never dropped
as their coverage is always empty.

Since we focus only on the case where number of criticality levels is 3, we know that
|blanket(Ji,r)| ≤ (max + 2 ·max2). This means that for small number of replications it is
possible to compute the probability of execution of Ji,r by brute force over the blanket(Ji,r).
The results for this method are shown in Section 6.1.

4.3 Zero Time Lags and Job Replication

The zero time lags add an extra layer to the complexity. We have set no constraints
limiting which jobs can be bounded by zero time lags. This means that even the most critical
jobs can be in a Batch set of some job with the lowest criticality. From Proposition 1 we
get:

Observation 12. Let Ji,r, χi ≤ L be a replica of some job and let Jj,q, χj = L be some
other job replica, such that Jj,q ∈Batch(Ji,r). Then, whenever cov(Ji,r) 6= ∅, there exists a
scenario sc, in which both replicas Ji,r, Jj,q are rejected.

As a consequence, it sometimes makes sense to replicate even the most critical jobs, if
they are bounded by zero time lags to some less critical job. In a single processor instance,
the previously introduced concept of blanket is sufficient, as no zero time lag can be present.
However, the blanket is not sufficient for setup with multiple processing units, because
the blanket only takes into account the jobs scheduled on the same processing unit, but
execution of some job replicas can be influenced by execution of job replicas on other
processing units as well. This means that the generalization we have found is not general
enough and we will have to generalize it further. Thus, we will seek an extension of the
blanket. But first we will introduce an extended version of a coverage.

Definition 21. We define an extended coverage, denoted covex(J∗) where J∗ is a set of job
replicas, as a union of coverages for job replicas in J∗. That is:

∀Ji,r ∈ J∗,∀Jj,q : Jj,q ∈ cov(Ji,r) =⇒ Jj,q ∈ covex(J∗)

A special case of extended coverage is an extended coverage of some batch.

Notation 11. We define a batch coverage as an extended coverage of some batch. We will
denote a batch coverage covex(Batch(Ji,r)) by B-cov(Ji,r).

It is worth noting that a batch coverage, unlike the original coverage, contains job
replicas that are scheduled on more than one processing unit. This leads us to a simple
observation.

27/58

4 PROBABILITY OF JOB EXECUTION

Observation 13. As the original coverage can have up to L − 1 elements, the batch
coverage can have up to (L− 1) · bs elements, where bs is size of the batch (i.e. number of
distinct job replicas in given batch). That is (L − 1) ·m elements in the worst case.

Since we have observed that a batch is executed or rejected as a whole in Observation 4,
it is obvious that probability of execution for any batch can be very small, as any of the
job replicas in its batch coverage can cause a rejection of the entire batch.

Notation 12. Let us denote by blanketex(Ji,r) an extended blanket of job replica Ji,r.

The extended blanket is a set of all job replicas having an influence on execution
probability for given job replica in a schedule with replication and zero time lags. We will
again start by formulation the requirements for such a set.

Since in the environment with only one processing unit, the blanket would be what we
seek, it has to hold:

Observation 14. blanket(Ji,r) ⊆ blanketex(Ji,r)

The probability of execution for any job in a batch is also influenced by execution or
rejection of all previous batches containing replica of given job.

Observation 15. ∀i ∈ {1, . . . , n},∀r ∈ {1, . . . ,max} : covex(
r⋃
q=1

Batch(Ji,q)) ⊆ blanketex(Ji,r)

That is:
r⋃
q=1

B-cov(Ji,q) ⊆ blanketex(Ji,r)

We also have to mimic the recursion present in the original blanket.

Observation 16. ∀Jj,q ∈ blanketex(Ji,r), ∀Jk,s ∈ blanketex(Jj,q) : Jk,s ∈ blanketex(Ji,r)

Thus from Observations 14 to 16 we get:

Definition 22. We define extended blanket for job replica Ji,r as a set of all job replicas
Jj,q such that:

1. ∀Jj,q ∈ B-cov(Ji,r) : Jj,q ∈ blanketex(Ji,r)

2. ∀r1 < r :Batch(Ji,r1)∈ blanketex(Ji,r)

3. ∀Jj,q ∈ blanketex(Ji,r), ∀q1 ≤ q : Jj,q1 ∈ blanketex(Ji,r)

4. ∀Jj,q,∀Jk,s ∈ B-cov(Jj,q) : Jj,q ∈ blanketex(Ji,r) =⇒ Jk,s ∈ blanketex(Ji,r)

28/58

4 PROBABILITY OF JOB EXECUTION

5. the cardinality of the set is minimal.

The best upper bound (the tightest one) on the number of elements in an extended
blanket is the number of jobs present in the schedule.

We justify this claim by a counter example shown in Figure 9. In that schedule, the
blanketex(J8) contains all the other jobs.

This means that in the worst-case scenario, the computation of execution probability
over extended blanket has the same complexity as computing the execution probability by
brute force.

0 1 2 3 4 5 6 7 8 time

J1 J2 J3 J4

J5 J6 J7 J8

J9

J10

J11

J12

J13

J14

J15

time

1

2

1

2

c
r
it
ic

a
li
t
y

le
v
e
l

c
r
it
ic

a
li
t
y

le
v
e
l

CPU 1

CPU 2

Figure 9: An example with extended blanket of size equal to n. Dotted lines represent zero
time lags.

However, since the counter example we have used in Figure 9 was made just to show
the worst case, we expect that in practice such schedules are rare as it is a very artificial
instance of the problem.

We have defined the extended blanket of any job replica Ji,r, so that it consists of
all and only of all job replicas influencing the probability of execution for Ji,r. We have
not succeesded in finding any easier way to compute the execution probabilities, then to
compute it by brute force computation over the extended blankets. The brute force in
this case means that we evaluate the probability for every possible scenario over the jobs
in the extended blanket, while ignoring all job replicas that are not present in it. Such
a computation can be done by a recursive function. A pseudocode for this function is
provided as Algorithm 2.

We should highlight the fact that the number of such scenarios is at worst exponential

29/58

4 PROBABILITY OF JOB EXECUTION

to the number of job replicas in the extended blanket. This follows from the definition of
the scenario that was introduced previously.

The input of the function for computation of execution probability are the following
values:

• Ji,r - a job replica we compute execution probability for

• blanket - blanketex(Ji,r) as a list, sorted by start times of its members in such a way,
that the Ji,r is the last element of this list.

• cml - A boolean value indicating whether we want to accumulate the execution
probability or not. If true, we compute the sum of execution probabilities for all
replicas Ji,r1 , r1 ≤ r. If false we compute only the execution probability for the Ji,r.

• probSoFar - A probability of a scenario we are currently evaluating. This value is
used to accumulate value of execution probability and should be initialized with 1.

• Btchrej - A set of batches that are rejected in given scenario. Should be initialized
with an empty set.

• Repsrej - A set of replicas rejected in given scenario. It should be initialized with an
empty set as well.

This function goes through the given blanket and computes the execution probability
for the job replica Ji,r (or for all the replicas Ji at once, if in cumulative mode). To do this,
we traverse the extended blanket and at every job replica we recursively follow all possible
sub-scenarios for each level of this job and accumulate the probability of execution of Ji,r
in these recursive calls.

Once the computation is done, we can multiply the final probability by the weight
assigned to given job. This multiplication gives us the contribution of this job to the
criterial function. By computation of this value for every job replica in the schedule and
summing it up, we obtain the value of the criterial function.

In the Algorithm 2 a function isRejected is called. This function is a simple method
that verifies whether a job replica is or isn’t rejected within given scenario. To compute this
effectively we use the aforementioned sets Btchrej and Repsrej. In these variables we store
the information about the batches and single job replicas that must be rejected in given
scenario. Using these, we can easily make decision about a rejection of any job replica. The
pseudocode for the function isRejected is to be seen in Algorithm 3.

30/58

4 PROBABILITY OF JOB EXECUTION

Algorithm 2 Probability of Execution - Recursive Computation
1: function getProb(ji,r, cml, blanket, probSoFar,Btchrej, Repsrej)
2: if blanket.isEmpty then
3: return 0 . Ji,r isn’t executed in this scenario, so we backtrack
4: end if
5: if isRejected(ji,r, Btchrej, Repsrej) then
6: return 0 . Ji,r is rejected in this scenario, so we backtrack
7: end if
8: if isRejected(blanket.head,Btchrej, Repsrej) then
9: . current head of the extended blanket is rejected, skip it
10: return getProb(ji,r, cml, blanket.tail, probSoFar,Btchrej, Repsrej)
11: end if
12: if blanket.head = ji,r then
13: . Ji,r is last in blanket, thus cannot be rejected, once reached.
14: . So the probability of its execution is equal to probability of this scenario
15: return probSoFar
16: end if
17: if blanket.head = ji,r1 ∧ r1 < r then
18: if cml then
19: . If we want to include all the previous replicas, then whenever we reach

some, we return its probability of execution
20: return probSoFar
21: else
22: . Else, we backtrack, since the following replicas are rejected
23: return 0
24: end if
25: end if
26: sr ← ∅ . Set of newly rejected replicas
27: srb ← ∅ . Set of newly rejected batches
28: p← 0 . Sum of execution probability over possible scenarios
29: for all l ∈ {1, . . . , χi} do . For each criticality level
30: sr ← sr ∪ {jj,q, cj,q,i,r = l} . We reject all replicas covered at this level
31: srb ← srb ∪ {Batch(jj,q) : cj,q,i,r = l} . And we reject all coresponding batches
32: . We sum the probability of execution of Ji,r over all possible subscenarios, i.e.

over the rest of the blanket
33: p← p+ getProb(ji,r, cml, blanket.tail, Bi,r,l × probSoFar,

Btchrej ∪ srb, Repsrej ∪ sr)
34: end for
35: return p . We return the probability of execution over scenarios in this blanket
36: end function

31/58

4 PROBABILITY OF JOB EXECUTION

Algorithm 3 Function for decision about rejection of job replicas
1: function isRejected(ji,r, Btchrej, Repsrej)
2: if Repsrej contains ji,r then
3: return true . ji,r is rejected directly, by some member of its coverage
4: else if ∃ Batch(ji, r) ∈ Btchrej then
5: return true . ji,r is rejected, since it is a member of some rejected batch
6: else
7: return false . otherwise ji,r is not rejected
8: end if
9: end function

32/58

5 SCHEDULING ALGORITHMS

5 Scheduling Algorithms

So far, we have stated the problem, introduced some concepts for working with it
and described the criterial function. In this section we propose scheduling algorithms to
solve instances of such problem. We start by formulating Mixed-integer linear program
(MILP), for finding a feasible solution. Then we propose propose a baseline solution based
on Simulated Annealing. We also describe a faster algorithm, namely an algorithm called
Iterative Resource Scheduling Algorithm (or IRSA for short).

5.1 Mixed-Integer Linear Program

We formulate the model for finding a feasible schedule for an instance of our problem as
a MILP in Algorithm 4. It also serves as a straightforward way to summarize the constraints
that we require to hold for every feasible schedule.

First three constraints (Line 3 to Line 5) in Algorithm 4 ensure that no two F-shapes
overlap. The Line 6 and Line 7 formulate the constraints implied by the time lags. Line 8
is a constraint that ensures that every job is assigned to some processing unit.

Since the constraints at Line 4 and Line 5 have to hold only conditionally, for they
depend on job precedence and assignment to processing units, we have to use a supporting
variables that can relax these constraints when they are not required to hold. To keep the
formulation of the program linear, we had to use two linearizations of these supporting
variables and we describe their meaning in the next paragraph.

We use binary variable xi,j,r,q to indicate that job replica Ji,r is scheduled to start earlier
or at the same time as Jj,q. (If xi,j,r,q = 1 then it is true). Similarly we use variable vi,r to
indicate that the job replica Ji,r is scheduled. Variable yi,j = 1 if, and only if, the jobs Ji
and Jj are scheduled onto a common processing unit. Variable µ∗i (k) indicates whether the
job Ji is scheduled onto processing unitMk. This means that we require it to hold:

∀i ∈ I,∀k ∈ K : µ∗i (k) = 1 =⇒ µi =Mk

And finally, wi,j,r,q = 1 whenever job replicas Ji,r, Jj,q are both scheduled, and Ji,r starts
earlier or at the same moment as Jj,q. We also use a large constant M for conditional
relaxation of some constraints. For the program to work, we expect the value of M to be
larger than sum of all processing times and absolute values of time lags.

We do not provide the formulation of objective function as part of this MILP, instead
we leave it as an open problem.

33/58

5 SCHEDULING ALGORITHMS

Algorithm 4 MILP for Finding Feasible Schedule with F-shapes
Require: For scope of this MILP it holds:

I = {1, . . . , n};R = {1, . . . ,max};K = {1, . . . ,m}
1: min: ∅
2: s.t:
3: si,r ≥ 0 . ∀i ∈ I,∀r ∈ R
4: si,r + p(χi) ≤ si,q +M × zi,i,r,q . ∀i ∈ I,∀q ∈ R \ {1},∀r ∈ R \ {max}, r < q

5: si,r + p
(min(χi,χj))
i ≤ sj,q +M × (2− wi,j,r,q − yi,j) . ∀i, j ∈ I,∀r, q ∈ R

6: si,max + li,j ≤ sj,1 . ∀i, j ∈ I, li,j 6= 0
7: si,r = sj,r . ∀i, j ∈ I,∀r ∈ R, li,j = 0
8:

∑
k∈K µ

∗
i (k) = 1 . ∀i ∈ I

9: wi,j,r,q ∈ {0, 1} . ∀i, j ∈ I,∀r, q ∈ R
10: xi,j,r,q ∈ {0, 1} . ∀i, j ∈ I,∀r, q ∈ R
11: yi,j ∈ {0, 1} . ∀i, j ∈ I
12: µ∗i (k) ∈ {0, 1} . ∀i ∈ I,∀k ∈ K
13: zi,j,r,q ∈ {0, 1} . ∀i, j ∈ I,∀r, q ∈ R
14: vi,r ∈ {0, 1} . ∀i ∈ I,∀r ∈ R
15: wi,j,r,q + 1 ≥ zi,j,r,q + xi,j,r,q . ∀i, j ∈ I,∀r, q ∈ R
16: wi,j,r,q ≤ zi,j,r,q . ∀i, j ∈ I,∀r, q ∈ R
17: wi,j,r,q ≤ xi,j,r,q . ∀i, j ∈ I,∀r, q ∈ R
18: xi,j,r,q + xj,i,q,r = 1 . ∀i, j ∈ I, i 6= j,∀r, q ∈ R
19: xi,i,r,r = 1 . ∀i ∈ I,∀r ∈ R
20: zi,j,r,q + 1 ≥ vi,r + vj,q . ∀i, j ∈ I,∀r, q ∈ R
21: zi,j,r,q ≤ vi,r . ∀i, j ∈ I,∀r, q ∈ R
22: zi,j,r,q ≤ vj,q . ∀i, j ∈ I,∀r, q ∈ R
23: yi,j ≥ µ∗i (k) + µ∗j(k)− 1 . ∀k ∈ K
24: vi,r ≥ vi,r+1 . ∀i ∈ I,∀r ∈ R \ {max}
25: vi,1 = 1 . ∀i ∈ I

34/58

5 SCHEDULING ALGORITHMS

5.2 Simulated Annealing

The first heuristics we proposed and tested is based on Simulated annealing. We have
chosen the Simulated annealing for initial solution as it is a relatively simple algorithm, to
provide a baseline performance.

The Simulated Annealing algorithm is a local search algorithm introduced by Kirk-
patrick at al. in [13]. As the name of the algorithm hints, it is based on simulation of the
annealing process. The "annealed thing" is a solution to the problem it is applied on. A
pseudocode for this algorithm is well described by S. Luke [15] and we consider this algo-
rithm to be well known, so we do not mention the general form here. We only provide a
pseudocode for the specific adaptation of the algorithm that we have used, see Algorithm 5.
The Simulated Annealing usually works with the concept of genome, which is supposed
to represent a condensed form of a solution. To describe the proposed algorithm fully, we
specify how we implemented the methods called by the Simulated Annealing and some
other decisions we have made.

In our case, the genome is an array of integer values, with length of 2n. The genome
consists of ordered list of job indexes and assignment of the jobs to processing units. The
encoding is done so, that at positions genome(i0), where (i0 mod 2 ≡ 0), we store ordered
indexes of the jobs and on positions (i mod 2 ≡ 1) we store values of µgenome(i−1). For
every solution that we obtain from its genome, it has to hold that if we sort the start times
of jobs first replicas by the ordering of job indexes encoded in corresponding genome, we
get a non decreasing sequence.

A solution, either temporal or final, is a schedule, represented by data structure with
four maps. The first map represents an assignment of jobs to processing units, second map
holds information about how many replications were scheduled for each job, third map
assigns a starting time to every job replica and the last one maps every job replica on its
coverage. It is obvious that only the first and the third map are needed to reconstruct the
schedule, as the rest of the information can be computed from these two, but for sake of
speed and implementation convenience, we keep the other two maps in the memory as well.

The transformation of the genome to the schedule is done by a dedicated method. Ob-
taining the first map from the genome is very straightforward as the information is already
present in the genome. Once this extraction is done, we compute relative time windows.
That is, we combine the job ordering encoded in the genome with relative temporal con-
straints (i.e the time lags) and we get for each job a set of intervals. These intervals define
where replicas of given job can be scheduled, relative to other job replicas. How to compute
these relative windows by a Floyd–Warshall algorithm is shown in [6].

We create a distance graph for our instance of the problem. In [6] the authors define a
distance graph as a graph Gd = (V,Ed) where each edge i→ j has a weight aij representing
linear inequality Xj−Xi ≤ aij. There, the symbols Xj, Xi represent variables used for time

35/58

5 SCHEDULING ALGORITHMS

Algorithm 5 Simulated Annealing
1: t← 109 . initial temperature
2: τ ← 0 . time since last improvement
3: g ← random generated initial genome
4: S ← g transformed to initial solution
5: BestSoFar ← S
6: repeat
7: g1 ← Tweak(Copy(g))
8: R← g1 transformed to solution
9: . let r be a random number r ∈ [0, 1]

10: if Quality(R)>Quality(S) ∨r < e
Quality(R)−Quality(S)

t then
11: S ← R
12: g ← g1
13: end if
14: Decrease(t)
15: if Quality(S) > Quality(BestSoFar) then
16: BestSoFar ← S
17: τ ← 0
18: else
19: increment(τ)
20: end if
21: until (BestSoFar is an optimal solution

. an optimal solution is a solution where ∀Ji : Pi = 1
or τ >= 1000 . we are stuck in local optima
or t ≤ 0) . the temperature has dropped to zero

22: return BestSoFar

36/58

5 SCHEDULING ALGORITHMS

assigned to nodes. To apply this on our problem, we use the constraints defined at Line 6
and Line 7 of Algorithm 4. Thus we create a distance graph G∗ = (V ∗, E∗). A set of nodes
V ∗ will contain one node for each scheduled job replica Ji,r. We require that for every
two job replicas Ji,r, Jj,1 the edge from node v(i, r) to node v(j, q) has weight −li,j, i.e.
it satisfies the constraint si,r − sj,q ≤ −li,j for all li,j 6= 0 and constraint si,r − sj,q = 0
otherwise.

Whenever a genome represents an infeasible ordering, we detect it from the results of
the Floyd-Warshall’s algorithm, since the path from any node to itself has to have a zero
length for any feasible ordering.

We create an instance of a schedule using the relative time windows. At first, we schedule
one replica of each job, then, if some relative time windows are still large enough to allow
for job replication, we replicate. Scheduling of the first replica is done greedily, that is, we
find interval in which the replica can be scheduled, using the already scheduled replicas
and the relative time windows, and we make a rough estimate of execution probability
based solely on coverage the job would have, if we placed it on given spot present in the
intersections of all such relative time windows. This estimated value is computed by taking
into account only the jobs that are covering given spot and its value is computed using the
formula from Proposition 2. It is only an estimation of the real execution probability since
it completely ignores the time lags and replications.

Once this estimation is done for all possible spots, we choose the best spot and use it.
When all jobs have at least one replica scheduled, we have a valid solution, but to increase
the value of criterial function, we try to replicate the job for which the estimate of weighted
probability of execution is lowest.

The other choices we have done regarding the implementation of the simulated anneal-
ing are the following:

• We decrease the the temperature in each iteration of the simulated annealing by
multiplying it by value α = 0.9.

• Tweak is a method implemented so that it either changes assignment of some job to
a different processing unit with probability of 0.5 or it swaps two jobs in the ordering,
but the assignment to processing units remains the same for each job.

• A quality of any solution is defined as a value of the criterial function for the schedule.

• To achieve better results we decided to run the algorithm with 11 restarts. To save
time, we use 6 worker actors, and thus running 6 restarts in parallel.

The algorithm, as shown in experiments Sections 6.3 and 6.4 is able to solve simple
instances, but is neither fast nor powerful enough to solve instances with number of jobs

37/58

5 SCHEDULING ALGORITHMS

higher than 80 tasks within reasonable time limits. Especially, if the number of time lags
present in the instance is high.

5.3 Iterative Resource Scheduling Algorithm

The second algorithm we propose is Iterative Resource Scheduling Algorithm (or IRSA
for short) that was originally introduced in [11]. We have modified this algorithm to solve
our problem efficiently, implemented it and tested. We present the results of the experi-
ments in Section 6.

Originally, the algorithm was designed for finding schedules with minimal makespan.
Before we describe our modification we provide a brief description of the original version.

It starts with some loose upper and lower bound, an initial budget ratio and a priority of
the scheduled jobs. The budget ratio specify how big budget the algorithm has to solve an
instance with given number of jobs. During its run, the algorithm seeks a solution for given
combination of boundaries and priorities and improves these value depending on success
or failure. The solution is sought after by a method, that is allowed to do at only certain
number of steps, that is limited by the budget. The algorithm seeks for better solution,
until the boundaries converge to the same value or fails. The algorithm fails if all newly
generated priorities where already used.

The initial priority of each job is defined as a length of a path in distance graph from
given job to a dummy ending job, that has to be scheduled as the very last. Whenever a
feasible solution is found within a specific number of steps, the upper bound is decreased
and if no feasible schedule is found, the lower bound is increased. The full pseudocode for
the original algorithm is to be found in [11].

In summary, we proposed the following modifications. We have modified the parameters
of the algorithm since we do not need an upper bound on schedule makespan but instead
we need to know how many replicas of each job have been scheduled already. For this
purpose we have implemented a simple class that contains current priority and number of
scheduled replicas for each job.

The initial priority setup for each job is defined as the length of the shortest path from
given job replica to a dummy ending task and the initial number of replicas is one per job.

The IRSA loads an instance of the problem, and creates an initial setup. Then we
compute distance graph (in the same way as in Section 5.2), we increment the number of
enqueued tasks and call an enqueue method.

The enqueue method computes a hash for given setup. If we have already computed
solution for such setup, we dequeue this task. Else, we send a message to worker actor to

38/58

5 SCHEDULING ALGORITHMS

find solution for given combination of instance and setup and we also provide the distance
graph to it. If the number of enqueued tasks is zero, the run for this instance is finished.
Whenever the worker actor is done with its processing of the message, it sends asks the
master actor to dequeue.

The dequeue decreases the number of enqueued tasks and creates two new setups
stp1, stp2 as copies of the original setup. If the worker actor was successful and we ob-
tained a feasible schedule, we compute its fintess (i.e. the value of criterial function). If
the fitness is better then fitness of the best solution we know so far, we set this solution
to be a new best solution. And we modify stp2, by increasing number of replications for a
job with the lowest weighted execution probability that has less then max replicas. Then
we modify the stp1 by changing the priorities so that every job has a priority set to value
equal to difference between an end of the schedule and start time of its first replica. If the
worker actor was not successful in finding a feasible schedule, we decrease the number of
replicas in stp2 for one or two jobs that caused the highest number of collisions, depending
on how many unsuccessful tasks we have encountered. After we have solved this, we swap
priorities for the two most colliding jobs and call enqueue on this instance with both setups
stp1, stp2.

The pseudocode for enqueue and dequeue methods is provided in Algorithms 6 and 7.

Algorithm 6 IRSA Master Actor Enqueue Method
1: function enqueue(Instance, Setup,G∗)
2: if computed contains (Setup.hash) then
3: enqueued -= 1 . this setup was already used
4: else
5: ask some workerActor to computeschedule(Instance, Setup,G∗)
6: computed += hash of Setup . we add this hash to the set of already used
7: end if
8: if enqueued = 0 then
9: return BestSolution . in this case, we are done
10: end if
11: end function

The worker actor executes a complex algorithm for finding a schedule under given
setup. At first it determines a budget for finding the solution. The budget is set to be
equal to a sum of all job replicas required to be present in the schedule, multiplied by the
budgetRatio. Then we run a tail recursive function that attempts to build the schedule
from the specifications within given budget. This function does the following.

If the budget is exhausted, and some job has no replica scheduled, we return an infeasible
solution. Else, if the budget is over and every job has at least one scheduled replica, we
return the schedule we have build so far. If the budget is not over yet, we find a job
with lowest number of replicas and highest priority and we try to find first time slot at a

39/58

5 SCHEDULING ALGORITHMS

Algorithm 7 IRSA Master Actor Dequeue Method
1: function dequeue(Instance, Setup,G∗, Solution)
2: enqueued -= 1
3: stp1, stp2 ← copies of Setup
4: if Solution is feasible then
5: Fit← fitness of Solution
6: if Fit > fitness of BestSolution then
7: BestSolution← Solution
. we increase the number of replicas for a job with the lowest weighted execution
probability, that has number of replicas < max

8: stp2.increaseReplications(Setup,WeightedExecutionProbs)
9: end if
10: stp1.recomputePriorities(Solution) . use priorities corresponding to the

ordering of first replicas in the solution
11: else
12: FailureCounter += 1
13: if FailureCounter ≥ log(n ∗max) then
14: . we decrease replications for second most conflicting job
15: stp2.decreaseReplicationsForSecond(Solution.conflicts)
16: FailureCounter = 0
17: end if
18: . we decrease replications for the most conflicting job
19: stp2.decreaseReplicationsForF irst(Solution.conflicts)
20: end if
21: . swap priorities for two most conflicting jobs in stp1 and stp2
22: stp1.swapMostConflicting(Solution.conflicts)
23: stp2.swapMostConflicting(Solution.conflicts)
24: . and we enqueue these two setups
25: enqueued += 2
26: enqueue(Instance, stp1, G∗)
27: enqueue(Instance, stp2, G∗)
28: end function

40/58

5 SCHEDULING ALGORITHMS

processing unit to schedule the job replica to. If a job is in bounded by some zero time lags,
then entire batch is scheduled together. The processing unit is chosen when first replica of
the job is being scheduled. All other replicas of the same job are scheduled onto the same
processing unit. If a time slot is found, we schedule the job replica to it. If no such time
slot is found, we schedule the job replica to the first time slot that is not violating any
positive time lag, then we find the source of conflicts and remove the conflicting jobs from
the schedule. Finally, we do the recursion call. A pseudocode for this method is provided
in Algorithm 8

The method that is used for finding a time slot to schedule job replica to is greedy.
That is, it finds the first spot in time on a corresponding processing unit (or first time
slot at any processing unit for first replica) where we can schedule this F-shape without
overlapping some other.

5.4 Implementation

The proposed algorithms were implemented in Scala language, using the Akka frame-
work5 for parallelization. Regarding the IRSA algorithm, we have implemented parallel
version. The main loop of the IRSA algorithm is implemented as a master actor and the
method for finding schedules within given budget is run in parallel by worker actors. The
entire Scala project containing both algorithms is considered to be part of this thesis and
is provided on the attached CD. It can be builded and run using Scala Build Tool (SBT).

5https://akka.io/

41/58

5 SCHEDULING ALGORITHMS

Algorithm 8 IRSA Worker Actor Method for Finding a Schedule
1: function computeschedule(Instance, Setup,G∗)
2: Conflicts← an empty Map
3: AllReplicas← {Ji,r|∀i, r ∈ {1, . . . , Setup.numReplicas(i)}}
4: function findschedule((AlreadyScheduled,Budget, CurSchedule))
5: if Budget = 0 ∧ ∃Ji,1 /∈ AlreadyScheduled then
6: return Solution(EmptySchedule, Conflicts)
7: end if
8: if Budget = 0∨

∀Ji number of replicas in CurSchedule corresponds to Setup then
9: return Solution(CurSchedule, Conflicts)
10: end if
11: candidates← AllReplicas \ AlreadyScheduled
12: Jic,rc ← pick one from candidates with lowest rc and highest priority
13: LB ← getLowerBound(G∗, AlreadyScheduled, Jic,rc) . returns a lower

bound on where the replica can be scheduled. This lower bound is implied by positive
time lags from already scheduled replicas.

14: Slot← findT imeSlot(CurSchedule,G∗, LB, Jic,rc)
15: if Slot.isEmpty then
16: Slot← LB
17: end if
18: CurSchedule.addToSchedule(Jic,rc , Slot)
19: Conf ← findConflicting(CurSchedule, Jic,rc , Slot)
20: for all Ji,r ∈ Conf do . For each conflicting job
21: Conflicts(Ji).increase
22: CurSchedule.unschedule(Ji,r)
23: AlreadyScheduled \ {Ji,r}
24: end for
25: AlreadyScheduled.add(Jic,rc)
26: findschedule(AlreadyScheduled,Budget− 1, CurSchedule)
27: end function
28: return findschedule(emptySet, budget, emptyschedule)
29: end function

42/58

6 COMPUTATIONAL EXPERIMENTS

6 Computational Experiments

In this section, we provide description and results from experiments we have conducted.
We demonstrate that the proposed algorithms have the capacity to solve instances of the
problem at hand and we show their limitations.

6.1 Criterion Computation Given a Schedule

We start this section by a demonstration of the speedup in execution probability compu-
tation when we use the blanket instead of computing the value from definition. To compare
the times required for the computation, we have randomly generated 200 schedules for each
value of n ∈ {11, 12, 13, . . . , 23}. Then we have computed the value of criterial function
for each such schedule by brute force and we measured the time we needed. The results
are shown in Figure 10. The amount of time was prohibitively high even for instances
containing as little as 23 instances. For instances of this size we needed over 5 seconds in
more than a half of all the runs.

10 12 14 16 18 20 22

n ~ number of jobs in schedule

0

2000

4000

6000

8000

10000

12000

14000

16000

t
[m

s]

median value

5 - 95 percentiles

Figure 10: Time required for criterion computation over multiple instances by brute force

Similarly, we have generated 200 schedules for each value of n ∈ {10, 20, 30, . . . , 240}
and we have measured the time needed to compute criterial value for these schedules using
the computation over blankets. As can be seen in Figure 11, we were able to compute the
criterial value for instances containing as many as 210 jobs in less then 0.5 seconds for
more than 95% of all the cases.

Therefore, we claim that the speedup gained by the computation of the criterial value
over the blankets is significant.

These two tests were run on the same machine with an Intel Core i7-2640M @ 2.8GHz
CPU. The maximal number of replicas per job was limited to max = 5 in both cases.

43/58

6 COMPUTATIONAL EXPERIMENTS

0 50 100 150 200 250

n ~ number of jobs in schedule

0

100

200

300

400

500

600

t
[m

s]

median value

5 - 95 percentiles

Figure 11: Time required for criterion computation over multiple instances using blankets

6.2 Instances of P |temp,mc = 3,mu|
∑

iwiPi

For the following experiments we have generated a data set composed of randomly gen-
erated instances with various parameters. The first parameter is the number of processing
units m. A second parameter is number of jobs n. The last parameter is the number of
time lags present in the instance. Instead of using fix values for all the instance sizes, we
use number of time lags proportionate to the number of jobs. We therefore define time
lag ratio as a number of time lags present in in an instance with n jobs. This means that
time lag ratio is defined as a ratio between the number of time lags that are present in the
instance and the value of n.

For each combination of m ∈ {2, 3, 4}, n ∈ {10, 20, 30, . . . , 90} and the time lags ra-
tios {0.1 ·n, 0.2 ·n, 0.6 ·n} we have generated 20 random instances. The weights of the jobs
were set to 1, so that optimal value of criterial function is always equal to the number of
jobs. This makes evaluation of results easier.

Processing times for jobs are generated using the following rule. The processing time
for first criticality level is a random integer value taken from a uniform distribution over
interval from 1 to 5 inclusive. If the job has more than one criticality level, then every
higher level has processing time equal to the previous one plus a random value generated
in the same manner.

For any job Ji, we initialize the values of Bi,k as ∀k ∈ {1, . . . , χi} : Bi,k = βi,k/
χi∑
k=1

βi,k,

where βi,k is a random double value from interval [0.1, 1.1).

Regarding the budget ratio used by an IRSA algorithm, we set it to 8 as is proposed
in the original formulation of IRSA in [11].

For each such instance, we have then evaluated both algorithms with and without
replication and we have logged three measurements. We have measured the time required
by the algorithm, fitness of the solution (the value of criterial function) and whether or not
is the solution feasible.

44/58

6 COMPUTATIONAL EXPERIMENTS

The reason why we have used these values and why we haven’t tested it on other
parameter setups is the time required for the run of all the tests. Although the run times
per instance were not intractable, the time for running all these tests was relatively high
and for more complex instances it would grow further. Thus we have made the choice to
test the algorithm on a larger set of easier instances, than to show few results for complex
ones.

6.3 Success Rate

The first question, with regard to the proposed solution, is what size of instances are
these algorithms able to solve. To answer this question, we have run both algorithms on the
generated instances and we logged whether the algorithm succeeded or not. The aggregated
results are presented in Tables 1 and 2.

There, the success rate is computed as a percentage of successful runs per each combi-
nation of m,n and the time lag ratio to n. From these data, we see that the number of jobs
to be scheduled is problematic mainly in the situations where the the number of time lags
is high. This is a behaviour that is expected, as the higher number of time lags creates a
higher number of constraints on the positions of the jobs. In such cases the space of feasible
solutions shrinks and finding a feasible solution becomes harder.

We can also see that the IRSA algorithm is better at finding a feasible solution. Also, it
seems that a higher number of processing units makes it easier for the Simulated Annealing
to find a feasible solution. However, to prove this claim we would need to test it more
thoroughly.

6.4 Time Requirements

The second criterion for effectiveness of the proposed solution, is the amount of time
required by these algorithms. To see how fast the algorithms are in practice, we provide the
measured run times. Since this value is dependent on the machine on which the algorithm
is run, we first mention its specification. The algorithms were run on a server with two
Intel(R) Xeon(R) CPU E5-2690 v4 @ 2.60GHz processors and were allowed to use at most
12GB of ram. The server is equipped with DIMM DRAM Synchronous RAM, working at
2400 MHz. We allowed each run to use at most two cores of this processor.

We have aggregated the measured values into Tables 3 and 4 as follows. For every
combination of m,n and the time lag ratio we provide three values representing 5th, 50th
and 95th percentile. These percentiles are computed over the twenty instances that we have
generated for such combination. Both algorithms were run on the same instances to allow
for comparison of the required times.

45/58

6 COMPUTATIONAL EXPERIMENTS

The evaluation shows us that the time consumption of the Simulated Annealing is
relatively high, as it needs more than one hour to finish for the large instances with time
lag ratio of 0.6 ·n. And as we have seen in the previous section it still fails to find a feasible
solution. The IRSA algorithm also is relatively slow as it needs almost half an hour to
finish such instances, but unlike the Simulated Annealing it finds a feasible solution. We
can therefore claim that the IRSA algorithm offers a huge improvement compared to the
Simulated Annealing, as it is faster and manages to solve harder instances on which the
Simulated Annealing fails. Even the IRSA algorithm needs for a single run over an instance
for 4 processing units and 90 jobs with only 54 temporal constraints up to half an hour to
solve. However, since we haven’t intended this algorithm for real-time scheduling, but for
an offline proactive creation of schedules, the time demands are not a problem. Therefore
we claim that the proposed algorithms are tractable and working.

6.5 Impact of Replication on Criterial Function

Finally, we demonstrate that the idea of replication is meaningful (i.e. that it has a
positive impact on the probability of execution.)

To do this, we have compared average objective values of the solutions with and without
replication. We have aggregated the measured values into Tables 5 and 6 as follows. For
every combination of m,n and the time lag ratio we provide two values. The first one is
an average fitness over instances with these parameters with replication. Second value is
average fitness without when no replication is allowed.

The results show that the replication does make difference in general but not always.
Also it seems that the number of processing units has almost no influence on how big
improvement the replication provides. The number of time lags, on the other hand, seems to
have an impact as higher number of time lags tends to diminish the benefits of replication.
This does correspond to our prediction that the replication can shrink relative windows
for other jobs. It also is not surprising since the higher number of time lags means that
the there are more constraints on feasibility of the schedule. And thus the opportunity for
schedule optimization disappears.

For the time lag ratios of 0.1 ·n and 0.2 ·n the Simulated Annealing produces schedules
with better objective values, but the run times are significantly higher, sometimes even by
several orders of magnitude. Also, for higher time lag ratio the Simulated Annealing fails
to find feasible solutions at all. We ascribe this property to the fact, that Tweak method
based on job permutations samples the space of solutions well on these easier instances,
but on the more constrained ones it is not enough. Also, the advantage of IRSA on the
more complex instances is that it can detect infeasibility of a schedule and resolve during
its creation.

46/58

6 COMPUTATIONAL EXPERIMENTS

Success rates of IRSA algorithm
time lags: 0.1 · n 0.2 · n 0.6 · n

m=2

n=10 100% 100% 95%
n=20 100% 100% 100%
n=30 100% 100% 100%
n=40 100% 100% 100%
n=50 100% 100% 100%
n=60 100% 100% 100%
n=70 100% 100% 100%
n=80 100% 100% 100%
n=90 100% 100% 100%

m=3

n=10 100% 100% 95%
n=20 100% 100% 100%
n=30 100% 100% 100%
n=40 100% 100% 100%
n=50 100% 100% 100%
n=60 100% 100% 100%
n=70 100% 100% 100%
n=80 100% 100% 100%
n=90 100% 100% 100%

m=4

n=10 100% 100% 100%
n=20 100% 100% 100%
n=30 100% 100% 100%
n=40 100% 100% 100%
n=50 100% 100% 100%
n=60 100% 100% 100%
n=70 100% 100% 100%
n=80 100% 100% 100%
n=90 100% 100% 100%

Table 1:
Success rates for IRSA algorithm

Success rates of Simulated Annealing
time lags: 0.1 · n 0.2 · n 0.6 · n

m=2

n=10 100% 100% 95%
n=20 100% 100% 95%
n=30 100% 100% 95%
n=40 100% 100% 60%
n=50 100% 100% 25%
n=60 100% 100% 5%
n=70 100% 100% 5%
n=80 100% 100% 0%
n=90 100% 90% 0%

m=3

n=10 100% 100% 100%
n=20 100% 100% 100%
n=30 100% 100% 100%
n=40 100% 100% 95%
n=50 100% 100% 60%
n=60 100% 100% 15%
n=70 100% 100% 0%
n=80 100% 100% 0%
n=90 100% 100% 0%

m=4

n=10 100% 100% 100%
n=20 100% 100% 100%
n=30 100% 100% 95%
n=40 100% 100% 100%
n=50 100% 100% 85%
n=60 100% 100% 40%
n=70 100% 100% 20%
n=80 100% 100% 0%
n=90 100% 100% 0%

Table 2: Success rates for Simulated An-
nealing

47/58

6 COMPUTATIONAL EXPERIMENTS

Runtimes of IRSA algorithm in seconds
time lags: 0.1 · n 0.2 · n 0.6 · n
percentiles: 5th 50th 90th 5th 50th 90th 5th 50th 90th

m=2

n=10 0.02 0.05 0.41 0.02 0.06 0.31 0.01 0.06 0.44
n=20 0.02 0.31 0.88 0.05 0.31 0.94 0.04 0.23 1.27
n=30 0.09 0.47 2.06 0.12 0.81 1.77 0.13 0.86 10.41
n=40 0.2 1.08 4.09 0.1 0.78 7.93 0.35 2.78 12.96
n=50 0.2 1.59 11.09 0.19 1.06 17.52 0.76 3.13 1182.68
n=60 0.41 1.67 5.29 0.32 1.91 40.13 1.07 6.07 1082.15
n=70 0.63 3.86 13.55 0.65 6.75 31.72 1.52 56.89 1166.95
n=80 1.26 7.61 50.14 1.62 9.76 955.96 4.66 454.82 1342.71
n=90 2.37 6.43 28.89 2.11 14.82 173.13 15.74 625.07 1163.2

m=3

n=10 0.02 0.04 0.1 0.02 0.04 0.06 0.01 0.03 0.07
n=20 0.1 0.3 0.65 0.12 0.33 0.77 0.03 0.31 2.75
n=30 0.14 1.49 3.97 0.08 0.82 2.59 0.55 5.29 1083.05
n=40 0.45 3.69 13.23 0.2 1.85 10.63 0.39 20.73 1155.65
n=50 0.35 1.93 37.03 0.21 1.87 61.38 0.74 16.61 1121.07
n=60 0.35 2.85 49.66 1.09 6.27 1077.78 1.86 937.82 1441.45
n=70 1.36 4.87 932.66 0.7 5.14 154.01 3.96 1017.7 1491.33
n=80 0.86 8.02 63.27 3.09 17.22 1003.86 0.9 1173.01 1561.75
n=90 1.62 3.56 161.47 2.93 18.21 1171.54 11.13 975.94 1440.67

m=4

n=10 0.02 0.02 0.05 0.01 0.02 0.04 0.01 0.02 0.05
n=20 0.08 0.23 0.57 0.09 0.24 1.02 0.03 0.21 0.81
n=30 0.19 0.81 2.65 0.15 1.02 2.42 0.25 1.9 946.74
n=40 0.23 1.89 10.87 0.15 1.64 13.74 0.32 8.32 1170.54
n=50 0.7 3.97 11.19 0.9 2.03 20.78 0.43 69.93 1461.29
n=60 0.74 5.49 33.3 0.57 2.08 37.88 6.32 1039.72 1433.64
n=70 1.2 4.27 47.07 1.07 11.13 774.85 2.54 1080.86 1442.56
n=80 1.22 3.58 32.74 2.23 9.8 1107.76 37.44 1174.84 1481.15
n=90 1.98 10.04 107.27 2.87 37.93 1236.3 5.19 1010.72 1463.55

Table 3: Runtimes of IRSA algorithm with replication.
For each combination of m,n and time lag ratio, there are three values representing 5th,
50th and 95th percentile respectively.

48/58

6 COMPUTATIONAL EXPERIMENTS

Runtimes of Simulated Annealing in seconds
time lags: 0.1 · n 0.2 · n 0.6 · n
percentiles: 5th 50th 90th 5th 50th 90th 5th 50th 90th

m=2

n=10 0.07 0.19 2.34 0.07 0.33 1.72 0.4 1.92 10.34
n=20 0.45 1.79 7.8 0.36 2.17 4.52 29.89 43.98 56.64
n=30 2.21 11.09 26.92 7.96 19.49 35.29 162.21 178.33 198.11
n=40 1.72 36.02 149.85 30.55 68.42 124.05 311.45 433.77 511.7
n=50 53.67 175.15 317.48 141.42 175.0 270.53 549.18 570.64 608.93
n=60 237.1 348.44 709.37 243.5 406.97 464.33 922.27 943.68 1118.43
n=70 314.73 783.59 1253.82 477.27 620.01 721.86 1473.51 1533.04 1724.0
n=80 590.44 1430.01 1765.31 895.98 1004.73 1089.57 2242.82 2343.06 2567.99
n=90 1426.53 2413.12 3257.8 1459.99 1682.78 1844.18 3255.0 3436.63 3755.07

m=3

n=10 0.04 0.07 0.18 0.03 0.1 0.36 0.13 0.63 3.45
n=20 0.28 1.8 5.48 0.75 2.79 11.59 16.47 27.06 42.1
n=30 2.16 14.77 25.56 3.44 16.85 39.14 114.81 131.19 136.09
n=40 23.87 69.42 144.75 18.57 76.0 112.27 309.46 316.73 347.74
n=50 50.55 142.65 411.47 137.78 198.84 281.39 605.14 637.65 677.98
n=60 250.17 492.71 681.61 307.43 430.65 557.75 1036.08 1065.32 1140.26
n=70 319.11 1002.4 1301.44 593.57 784.63 921.06 1605.76 1718.09 1801.84
n=80 520.88 1732.69 2603.52 933.17 1188.79 1450.41 2379.86 2466.6 2531.12
n=90 1931.22 2764.64 3351.89 1653.24 1854.31 1984.31 3103.88 3575.54 3712.17

m=4

n=10 0.04 0.08 0.22 0.02 0.07 0.51 0.2 0.63 3.07
n=20 0.21 1.24 6.44 0.43 1.23 7.31 9.08 23.52 36.63
n=30 2.28 10.81 24.66 5.84 16.19 30.67 110.7 135.03 147.58
n=40 16.98 79.87 157.62 22.2 61.07 128.02 324.19 349.05 375.64
n=50 52.1 141.35 505.77 69.34 179.2 257.0 553.2 703.46 743.44
n=60 83.33 361.15 709.56 267.68 364.17 490.69 919.09 936.63 958.29
n=70 459.15 835.53 1344.62 442.86 728.6 901.04 1501.67 1519.99 1546.64
n=80 641.77 1728.2 2461.49 726.34 985.28 1140.98 2206.45 2369.56 2653.58
n=90 1922.18 2523.68 3419.96 1373.27 1536.5 1780.34 3828.48 4456.58 4564.08

Table 4: Runtimes of Simulated Annealing with replication.
For each combination of m,n and time lag ratio, there are three values representing 5th,
50th and 95th percentile respectively.

49/58

6 COMPUTATIONAL EXPERIMENTS

Solution quality for IRSA algorithm with and without replication
time lags: 0.1 · n 0.2 · n 0.6 · n

replication used: yes no yes no yes no

m=2

n=10 10.0 9.14 9.92 9.34 9.33 9.33
n=20 19.48 17.62 19.64 18.08 19.29 18.77
n=30 28.11 26.37 28.92 26.81 28.61 27.99
n=40 36.43 33.86 36.51 34.83 37.17 36.5
n=50 44.96 41.68 44.34 42.65 45.01 44.46
n=60 51.2 50.07 51.0 49.76 52.81 52.6
n=70 59.85 58.03 60.32 59.01 60.74 60.39
n=80 68.07 65.87 66.49 65.33 69.69 69.34
n=90 73.86 73.86 74.25 74.25 78.06 78.06

m=3

n=10 10.0 9.46 10.0 9.73 9.46 9.41
n=20 19.77 17.91 19.6 18.36 19.67 19.13
n=30 28.73 26.36 28.66 27.05 28.57 28.24
n=40 37.56 34.91 36.53 35.0 37.01 36.56
n=50 44.71 42.69 45.3 43.82 45.86 45.04
n=60 52.21 50.28 53.75 52.04 53.87 53.87
n=70 60.86 58.92 58.87 58.71 61.41 61.34
n=80 67.96 66.68 70.19 68.94 68.96 68.96
n=90 74.54 72.98 75.97 75.9 77.32 76.42

m=4

n=10 10.0 9.69 10.0 9.85 9.92 9.81
n=20 19.67 18.14 19.72 18.46 19.46 19.35
n=30 29.16 26.35 28.92 26.97 28.83 28.25
n=40 36.89 35.12 36.09 34.87 37.03 36.92
n=50 45.79 42.94 45.05 43.24 45.2 44.59
n=60 55.88 51.45 52.6 51.35 54.58 54.31
n=70 60.84 59.72 60.69 59.15 62.01 62.01
n=80 69.38 66.99 69.55 68.44 70.73 70.73
n=90 78.06 76.07 76.71 76.41 78.0 77.65

Table 5: Mean solution quality of IRSA with and without replication

50/58

6 COMPUTATIONAL EXPERIMENTS

Solution quality for Simulated Annealing with and without replication
time lags: 0.1 · n 0.2 · n 0.6 · n

replication used: yes no yes no yes no

m=2

n=10 10.0 10.0 10.0 10.0 9.5 9.5
n=20 20.0 20.0 20.0 20.0 19.85 19.85
n=30 30.0 30.0 30.0 29.98 28.41 24.79
n=40 40.0 39.81 40.0 39.62 31.74 31.74
n=50 50.0 49.4 50.0 49.06 12.33 9.13
n=60 60.0 58.85 60.0 58.25 2.83 0.0
n=70 70.0 67.79 69.98 66.81 3.49 3.15
n=80 80.0 77.31 79.92 75.06 0.0 0.0
n=90 90.0 86.41 80.85 74.79 0.0 0.0

m=3

n=10 10.0 10.0 10.0 10.0 10.0 10.0
n=20 20.0 20.0 20.0 20.0 20.0 20.0
n=30 30.0 29.95 30.0 30.0 29.96 28.34
n=40 40.0 39.68 40.0 39.6 37.8 36.11
n=50 50.0 48.94 50.0 48.95 29.46 22.7
n=60 60.0 58.43 60.0 57.99 8.72 4.98
n=70 70.0 67.35 70.0 66.81 0.0 0.0
n=80 80.0 76.35 79.97 74.45 0.0 0.0
n=90 90.0 84.58 89.87 83.15 0.0 0.0

m=4

n=10 10.0 10.0 10.0 10.0 10.0 10.0
n=20 20.0 20.0 20.0 20.0 20.0 20.0
n=30 30.0 30.0 30.0 29.98 28.5 28.38
n=40 40.0 39.69 40.0 39.59 39.92 38.68
n=50 50.0 49.03 50.0 49.01 44.23 44.23
n=60 60.0 58.1 60.0 57.86 23.67 16.41
n=70 70.0 67.33 70.0 66.89 24.46 24.46
n=80 80.0 75.84 79.98 75.64 3.7 3.7
n=90 90.0 84.89 89.93 84.33 0.0 0.0

Table 6: Mean solution quality of Simulated Annealing algorithm with and without repli-
cation

51/58

7 CONCLUSION

7 Conclusion

In this work, we introduced the problem of scheduling of F-shaped tasks with replica-
tion to maximize execution probability. We surveyed the related literature and highlighted
the similarities and dissimilarities with this problem. We have formulated the formal defi-
nition of this scheduling problem. This required a generalization of existing notation and
introduction of new concepts that allowed us to address this scheduling problem. We also
addressed the interpretation of relative temporal constraints in schedules with replicated
jobs.

Since the existing method for computation of execution probability was not applicable
on schedules with replicated jobs and computing the probability from definition is not
tractable even for relatively small instances, we have analyzed the problem and discovered
which subset o replicated jobs can influence execution probability of other jobs. We have
introduced the concept of blanket for such sets and defined a new way for evaluation of
execution probability.

Furthermore, we proved the problem to be stronglyNP-hard and we have proposed two
heuristic algorithms for its solution. These algorithms were implemented and described.
We have evaluated these algorithms on a dataset of randomly generated instances for
various parameters. Results of this evaluation were provided and discussed. It was shown
that Simulated Annealing fails on instances with dense time lag graphs. Therefore we
implemented IRSA to solve more complex instances and to provide a faster alternative to
Simulated Annealing. The measured results show that the implemented IRSA algorithm
can solve instances with up to 90 jobs within reasonable amount of time and demonstrated
that the replication has a positive impact on the probability of execution for less critical
jobs.

52/58

REFERENCES

References

[1] Sanjoy Baruah, Haohan Li, and Leen Stougie. Towards the design of certifiable mixed-
criticality systems. In Real-Time and Embedded Technology and Applications Sympo-
sium (RTAS), 2010 16th IEEE, pages 13–22. IEEE, 2010.

[2] James C Bean, John R Birge, John Mittenthal, and Charles E Noon. Matchup
scheduling with multiple resources, release dates and disruptions. Operations Re-
search, 39(3):470–483, 1991.

[3] Alan Burns and Robert Davis. Mixed criticality systems-a review. Department of
Computer Science, University of York, Tech. Rep, 2013.

[4] Louis-Claude Canon and Emmanuel Jeannot. Evaluation and optimization of the
robustness of dag schedules in heterogeneous environments. IEEE Transactions on
Parallel and Distributed Systems, 21(4):532–546, 2010.

[5] Petr Cincibus. Algoritmy pro rozvrhování úloh s různỳmi stupni kritičnosti a rela-
tivními časovỳmi omezeními. 2015.

[6] Rina Dechter, Itay Meiri, and Judea Pearl. Temporal constraint networks. Artificial
intelligence, 49(1-3):61–95, 1991.

[7] Christoph Dürr, Zdeněk Hanzálek, Christian Konrad, Yasmina Seddik, René Sitters,
Óscar C Vásquez, and Gerhard Woeginger. The triangle scheduling problem. Journal
of Scheduling, pages 1–8, 2017.

[8] Na Fu, Pradeep Varakantham, and Hoong Chuin Lau. Robust partial order schedules
for rcpsp/max with durational uncertainty. 2016.

[9] Alain Girault, Hamoudi Kalla, Mihaela Sighireanu, and Yves Sorel. An algorithm for
automatically obtaining distributed and fault-tolerant static schedules. In Proceeding
of International Conference on Dependable Systems and Networks, pages 165–190.
IEEE, 2003.

[10] Zdeněk Hanzálek, Tomáš Tunys, and Přemysl Šůcha. An analysis of the non-
preemptive mixed-criticality match-up scheduling problem. Journal of Scheduling,
19(5):601–607, 2016.

[11] Zdeněk Hanzálek and Premysl Sucha. Time symmetry of project scheduling with time
windows and take-give resources. 11 2017.

[12] Mathieu Jan, Lilia Zaourar, and Maurice Pitel. Maximizing the execution rate of
low-criticality tasks in mixed criticality system. Proc. WMC, RTSS, pages 43–48,
2013.

53/58

REFERENCES

[13] Scott Kirkpatrick, C Daniel Gelatt, Mario P Vecchi, et al. Optimization by simulated
annealing. science, 220(4598):671–680, 1983.

[14] Kenli Li, Xiaoyong Tang, Bharadwaj Veeravalli, and Keqin Li. Scheduling precedence
constrained stochastic tasks on heterogeneous cluster systems. IEEE Transactions on
Computers, 64(1):191–204, 2015.

[15] Sean Luke. Essentials of metaheuristics, volume 113. Lulu Raleigh, 2009.

[16] LG Mitten. Sequencing n jobs on two machines with arbitrary time lags. Management
science, 5(3):293–298, 1959.

[17] Yingfeng Oh and Sang H Son. Scheduling real-time tasks for dependability. Journal
of the Operational Research Society, 48(6):629–639, 1997.

[18] Samantha Ranaweera and Dharma P Agrawal. A task duplication based scheduling
algorithm for heterogeneous systems. In Parallel and Distributed Processing Sym-
posium, 2000. IPDPS 2000. Proceedings. 14th International, pages 445–450. IEEE,
2000.

[19] Yasmina Seddik and Zdenek Hanzálek. Match-up scheduling of mixed-criticality jobs:
Maximizing the probability of jobs execution. European Journal of Operational Re-
search, 262(1):46–59, 2017.

[20] Dvir Shabtay, Nufar Gaspar, and Moshe Kaspi. A survey on offline scheduling with
rejection. Journal of Scheduling, 16(1):3–28, 2013.

[21] Hang Su and Dakai Zhu. An elastic mixed-criticality task model and its scheduling al-
gorithm. In Proceedings of the Conference on Design, Automation and Test in Europe,
pages 147–152. EDA Consortium, 2013.

[22] Steve Vestal. Preemptive scheduling of multi-criticality systems with varying degrees
of execution time assurance. In Real-Time Systems Symposium, 2007. RTSS 2007.
28th IEEE International, pages 239–243. IEEE, 2007.

54/58

APPENDIX A CD CONTENT

Appendix A CD Content

In Table 7 are listed names of all root directories on CD.

Directory name Description
thesis Bachelor’s thesis in pdf format.
thesis_sources latex source codes
data generated instances and computed results in the raw for-

mat
code Scala project containing source codes

Table 7: CD Content

55/58

APPENDIX A CD CONTENT

56/58

APPENDIX B LIST OF ABBREVIATIONS

Appendix B List of abbreviations

In Table 8 are listed abbreviations used in this thesis.

Abbreviation Meaning
CPU Central Processing Unit
DAG Directed Acyclic Graph
IRSA Iterative Resource Scheduling Algorithm
MOEA Multi-Objective Evolutionary Algorithm
MILP Mixed-Integer Linear Program

Table 8: Lists of abbreviations

57/58

APPENDIX B LIST OF ABBREVIATIONS

58/58

	Introduction
	Related Work
	Contribution
	Outline

	Problem Statement
	Job as F-shape
	Online Execution of the Schedule
	Replication
	Summary
	Problem Complexity
	Blanket Definition
	Example of Task Instance

	Time Lags
	Interpretation of Time Lags
	Observations and Notes

	Probability of Job Execution
	Without Job Replication
	With Job Replication
	Zero Time Lags and Job Replication

	Scheduling Algorithms
	Mixed-Integer Linear Program
	Simulated Annealing
	Iterative Resource Scheduling Algorithm
	Implementation

	Computational Experiments
	Criterion Computation Given a Schedule
	Instances of P |temp,mc=3,mu |iwi Pi
	Success Rate
	Time Requirements
	Impact of Replication on Criterial Function

	Conclusion
	Appendix CD Content
	Appendix List of abbreviations

