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Abstract

The aim of this work is to analyze traffic accidents using machine learning methods.
Using accident records in the Czech Republic, machine learning methods are able to
find patterns and determine key factors which are specific to the traffic accident. The
focus is put on the identification of the severity of the accidents and identification of
potentially hazardous sites. Accidents records are enriched with map data to improve
the accuracy of identification. Obtaining information about factors responsible for

traffic accidents can lead to a decrease in the number of traffic accidents.

Keywords traffic accidents, machine learning, accident severity, site hazard

Abstrakt

Cielom tejto prace je analyzovat dopravné nehody metédami strojového udcenia.
Pomocou zéznamov o dopravnjch nehodach v Ceskej republike dokazu metédy
strojového wucenia najst vzory a urcovat klicové faktory, ktoré si Specifické pre
dopravné nehody. Pozornost je postavena na identifikaciu vaznosti dopravnych nehdd
a urcéovanie potencidlne nebezpeénych miest. Zaznamy o dopravnych nehodach si
doplnené informéaciami z map na zvySovanie presnosti identifikacii. Ziskavanie
informacii o faktoroch sposobujicich dopravné nehody méze viest k znizovaniu poctu

dopravnych nehod.

KTicové slova dopravné nehody, strojové udenie, vaznost nehod, nebezpedné

miesta
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1 Introduction

1 Introduction

In the past years, traffic accidents have been one of the most common causes
of injuries and deaths. Reducing the number of accidents has a huge value to the
society. Modification of traffic policies has potential to reduce the number of
accidents. Finding patterns that arise in event of the traffic accident can improve
our understanding of factors that are responsible for the accidents and flaws in
traffic policies. Previous studies started to analyze traffic accidents using machine
learning methods.

This work proposes two approaches in traffic accidents analysis using
machine learning methods. The goal of the first approach is to determine the
severity of the accidents. The severity of the accident is identified by a
combination of factors provided in accident record. Elevated factors are
calculated to determine possible reasons that cause severe accidents. The second
approach focuses on identification of sites with a higher frequency of accidents.
This approach has potential to have world-wide usage in the identification of
potentially dangerous places on traffic network. Identifying hazardous sites can
lead to significant reduction of the number of accidents. Information about yet
unknown factors can be helpful in designing new traffic networks or modification

of the existing traffic network resulting in increase safety on the roads.

Accidents records were obtained from Unified Transport Vector Map
(UTVM) from Ministry of Transport of the Czech Republic. Approximately
600 000 records contain various spatial, temporal and other specific information
about the accident such as vehicle characteristics, driver characteristics, weather
conditions, direction of impact, number of injured people and fatalities etc. Data
from OpenStreetMap provide additional information about surroundings of the
accidents. To preserve generality of hazardous sites identification, specific
information from UTVM was not taken into account.

Both approaches were analyzed using well-known Random Forest and
Gradient Boosting methods. Significant factors responsible for severe accidents or
high frequency of the accidents are calculated from models. Features that

frequently occur in trained decision trees have potential to be the key factors.

Next chapter of this thesis overviews some of the state of the art approaches
in identifying key factors responsible for severe accidents and key factors
responsible for the high frequency of accidents in certain locations. Chapter 3 is
divided into three parts. First part overviews two presented approaches in
analyzing traffic accidents (severity and site hazard) and their goals. The second
part describes datasets used, selecting and preprocessing of potentially interesting

features. Third part briefly defines machine learning methods and evaluation
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methods of the models. Chapter 4 describes a process of obtaining datasets and
its preparation for learning and implementation of ensembled models. Lastly, in
chapter 5 both approaches are experimentally evaluated. Performance of
particular models is compared with respect to the various dataset selections and
representations. Chapter 5 also contains discussion about achieved results and

possible improvements of the traffic accidents analysis.



2 Traffic accidents analysis

2 Traffic accidents analysis

In the past years, there is a huge growth in traffic in the world. Traffic
accidents are one of the most common causes of injuries and deaths. For this
reason, researchers began to analyze traffic behavior. Finding patterns in traffic
behavior can significantly increase safety in the traffic network. Analyzing
patterns in data of the traffic accidents can help to modify traffic policy to
decrease number of accidents and the severity of accidents. Identifying factors
that are responsible for injuries and fatalities can bring a huge value to the
society. Previous researches focused on using machine learning methods to
identify causes of accidents and provide valuable information for mitigating the
number of accidents and its severity.[1]

2.1 Accident severity

Collecting information related to the traffic accidents can be useful in
analysis the severities of the accidents and minimizing injuries and deaths caused
by traffic accidents.[1] Researchers used various methods from statistical analysis,
logistic regressions to machine learning to identify environmental, vehicle and
driver factors, predict accidents, reduce the number of accidents and reduce the
severity of the accidents.[1][2] The most popular machine learning methods used
for traffic accidents analysis are neural networks, decision trees, support vector
machines and ensemble methods. Studies show that neural networks, decision
tress and ensemble methods provide the best results in accident analysis. [1][3]
Severity analysis in [1] shows the Random Forest Classifier achieved better
results than other methods (Naive Bayes, J48, AdaBoostM1, PART).

According to [2][4][5], not using seatbelts, high speed, and driver-side
impacts are the main factors causing fatalities. Also, vehicle type, alcohol, age
and gender of the affected people play a significant role in the outcome of the
accidents. Accidents involving smaller vehicles tend to be more severe. Older
people and women tend to suffer more severe injuries in traffic accidents.
Accident severity correlates with the combination of factors rather than a single
factor.[2] On the other hand, the study [6] states that a single variable like
driving speed or light conditions can single-handedly have a huge impact to the
number of injuries in the traffic accident. Studies [2][3] found that weather
conditions and time of the accidents were not a significant factor in accidents

severity.

Studies [7] [8] outline correlation between injuries and types of regions.
According to [7], urban areas tend to be more hazardous than rural areas. Also,
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fatal injuries were more frequent in residential areas. This is apparent due to

different density of the population in urban and rural areas.

In a study [9] accidents records were separated according to their severity
into five categories: no injury, possible injury, non-incapacitating injury,
incapacitating injury and fatal injury. Four different models were used to classify
accidents: artificial neural network using hybrid learning, decision trees, support
vector machines and hybrid decision trees. For identification non-incapacitating
injuries, incapacitating injuries and fatal injuries hybrid decision trees
outperformed other three methods. The model performed better on representation
classes as fatal accidents class and non-fatal accidents class.

In a study [3], accidents had been labeled with two categories: injury and
property damage. In this case, road width, shape of the vehicle or speed appeared
to hold more information than weather conditions. Neural networks and decision
trees were used. Trained classifiers were subsequently ensembled to improve the
results of the classification. Also, the study proposes a method of pre-clustering
dataset. A k-means clustering algorithm was applied to a large dataset. Classifiers
were fed with information from clusters. In this case, this method outperformed

other classifiers and ensemble methods.

2.2 Site hazard analysis

Study [10] focused on analyzing the occurrence of traffic accidents at the
intersections. The correlation between accidents occurrence and geometric, traffic
and control characteristics of signalized intersections can lead to increasing safety
on the intersections. Data used in the study were overdispersed (variance is
greater than mean). For this reason, a Negative Binomial model with stochastic
component was used to describe the relationship between accident occurrence and
the geometric design of the intersections. Random Effect Negative Binomial
model can deal with spatial and temporal features of the accident. The most
significant variables were traffic volume, the number of phases per cycle and

uncontrolled left-turn lane.

Study [10] states that with increasing traffic volume, drivers have less
opportunities for uncontrolled left-turns and tend to take the risk, which can lead
to an accident. Increasing the section available for accelerating before
uncontrolled left-turn significantly increases the safety of the intersection. On the
other hand, bus stops near the intersection increase hazardousness of the site.

Study [11] used Classification and Regression Tree (CART) as a data mining
technique. CART does not need any relationship information between predictors
and targets. Study compared CART with the Negative Binomial Regression
model, similar to the one used in [10]. The dataset contained information about

accidents location, road information (number of lanes, horizontal curvature,
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slopes and shoulder width), traffic volume, injury levels and environmental
characteristics (weather conditions, peak hours and lane distribution). CART
model and Negative Binomial Regression model achieved similar results. This
research also noted that traffic accidents are mostly caused by the combination of
the factors rather than a single factor.

2.3 Imbalance and sparseness in datasets

In the past few years, researchers have begun to focus on application
machine learning to real-world problems. Real-world problems are often difficult
and are represented by sparse and complex datasets. These datasets are often
imbalanced. Mining from imbalanced datasets causes various errors and thus
decreases precision of the learning. Previous research stated that natural
distribution is often not the best distribution to use machine learning on.
Imbalanced datasets can be also characterized by sparseness in the feature space.
Imbalance can be defined as imbalance among classes, but also within classes.
Data within a single class can have imbalanced distribution which also produces
sparseness.[12]

2.3.1 Simple methods dealing with imbalance

To reduce imbalance and sparseness of the datasets various methods have
been developed. Popular methods are random and focused oversampling and
undersampling, generation of samples based on given information and
combination of these methods. Oversampling and undersampling and their
variants both present wuseful points but also some negatives. Random
undersampling can remove important samples with significant information.

Oversampling can conduce to overfitting.[12]

2.3.2 Advanced methods and synthetic samples

Advancement of undersampling, such as Condensed Nearest Neighbor or
Neighborhood Cleaning Rule is developed to shorten bigger classes by removing
samples located near the border of the classes or similar samples that are further
away from the decision border. On the other hand, focus resampling oversamples
smaller classes that are close to the bigger classes. Experiments showed that these
methods did not provide any significant improvement on the classifier’s accuracy.
Also, decision trees constructed from the oversampled datasets are usually

unnecessary large and complex.[12][13]

Oversampling by duplication samples from minor classes leads to overfitting
on multiple samples in the minor classes. This creates small and specific decision
regions. Oversampling by creating new samples in minor classes can make

decision region more general. The basic method is to create new samples by
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generating samples as average from N neighbors in the minor class with
possibility to subsequently modify new samples by a function. One of the tested
methods of creating new artificial samples is Synthetic Minority Oversampling
Technique (SMOTE). SMOTE provides better results than random or focused
oversampling/undersampling. Method generates more sophisticated samples. For
this reason, minority class tends to be more covered, especially near boarders
with the other classes. SMOTE was also used with ensemble-based methods.
Ensemble-based methods accuracy is improved if the class distribution is
balanced, in comparison to imbalanced datasets.[12]
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3 Data analysis and models

In this chapter, I overview two main approaches of this work: the severity
analysis and identification of hazardous sites. I describe two datasets, the Unified
Transport Vector Map which contains accidents records in the Czech Republic in
past years and OpenStreetMap elements and its features. I explain the selection
of relevant features from given datasets and its preprocessing. Next, two main
analyses, the severity analysis and identification of hazardous sites, are explained.
Finally, machine learning models and models’ evaluation and scoring techniques

are described.

3.1 Accidents analysis

In this section, I will explain the two main analyses conducted on obtained
datasets. The First analysis is called severity analysis. The Second analysis is

called identifying dangerous sites.

3.1.1 Severity analysis

Severity analysis is an analysis which focuses on determining whether the
accident is considered severe or not. In severity analysis, accidents are considered
severe whenever any injury is suffered. On the contrary, non-severe accidents are

accidents when no injury is suffered.

The aim of the severity analysis is to determine consequences of the accident
from given input data about the accident. As input data, I used Unified
Transport Vector Map [14] (data is described in section 3.2.1 Unified Transport
Vector Map). Also, analysis can provide information about factors that are

responsible for causing severe accidents.

3.1.2 Identifying dangerous sites

The aim of this approach is to identify hazardous sites on the traffic
network. Sites are locations with high frequency of traffic accidents. If the
number of accidents at defined site is higher than a reasonable threshold, the site
is considered hazardous. Otherwise, the site is considered non-hazardous (safe).
As input data, I use geographical locations of the recorded accidents and
environment features around the accidents obtained from OpenStreetMap.
OpenStreetMap is popular mapping tool in the world. Thus this approach can

have a worldwide usage to identify dangerous sites.
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3.2 Data analysis and preprocessing

This section analyze the two main datasets used (Unified Transport Vector
Map and OpenStreetMap) and its preparations for machine learning methods.

Afterwards, a method for defining sites as clusters of accidents is proposed.

3.2.1 Unified Transport Vector Map

Unified Transport Vector Map (UTVM) [14] is dataset from Ministry of
Transport of the Czech Republic which contains records of the traffic accidents in
the Czech Republic in past years. Records contain information about the crashes.
Records have spatial information (geographic location, city and region), temporal
information (time and date of the accident) and additional information specific to
the accident (number of vehicles involved, weather conditions etc.).

3.2.2 Context and context-free features

I separate features from UTVM into three groups: context, context-free and
unimportant features. Context features hold information which is specific to the
given accident, for example weather conditions, alcohol measured, cause of the
accident, type of vehicle etc. Context feature can hold very promising information
that can help analyze crash accidents. However, they are specific to the accident
record and specific to the UTVM dataset. It means the generality of this

approach is lowered.

Context-free features are features that are not specific to the single accident
but are specific to the crash site, thus they are more general than context
features. Context-free features are for example: number of lanes, type of road,
traffic control (traffic signals, right of way), a direction of driving etc.

Unimportant information is set of features that can have no or very little
information that can help analyze causes of traffic accidents such as property
damage cost, car’s brand and model etc. These features were ignored from the
UTVM dataset and were not used for analysis.

UTVM contains three attributes that define number of injured people:

a) Number of non-incapacitating injuries
b) Number of incapacitating injuries

¢) Number of casualties

Absolute and relative counts of attributes defining number of injuries are
depicted in Table 1. Incapacitating injuries and fatalities occurs very sparsely in
accidents records. Two different representations of classes are proposed. In first
representation, severe accidents are accidents with at least one incapacitating

injury or casualty. This representation might better describe the nature of
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severity. Cost of this representation of the classes is that size of the minor class is
very small compared to the major class. Second representation of classes defines
severe accidents with at least one non-incapacitating, incapacitating injury or
casualty. In other words, accidents are considered severe whenever any type of
injury (including fatalities) is suffered. On the other hand, the accidents are
considered not severe when no injuries are suffered in the event of the accident.

In this case, minor class represents roughly 20% of the available records (Table

1).

At least - Injury Description Absolute Count Relative Count [%]
a) Non-incapacitating 102243 16.80
b) Incapacitating 16429 2.70
c) Casualties 3989 0.66
a)+b)+c) Union 117314 19.28

Table 1: Injury distribution in crash accident recorded in the
Czech Republic (2007-2013). Counts represent number of
unique accident records where given injury occurred, not the

total number of injured people.

3.2.3 Preprocessing UTVM

Most of the selected features (context and context-free features) in UTVM
are categorical features. Categorical features have values from discrete domains.
For each categorical feature, I created a separate table with two attributes: value
from discrete domain and integer. Each table has N records, where N is the
cardinality of the domain for given feature. This allows me to unite different
values that have same or similar meaning for the crash site analysis, for example
grouping months to seasons (Table 2). Grouping semantically similar or same
values together drastically reduces search space. Also, grouping semantically
similar or same values balances the distribution of frequent and less frequent
values. Lastly, integer values are used directly as an input for classifiers so no

more significant value preprocessing was needed.

On the other hand, countable variables such as the number of affected

vehicles or number of injured people were not discretized.
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Original Representation Modified Representation
JAN 1 4 Winter
FEB 2 4 Winter
MAR 3 1 Spring
APR 4 1 Spring
MAY 5 1 Spring
JUN 6 2 Summer
JUL 7 2 Summer
AUG 8 2 Summer
SEP 9 3 Fall
OCT 10 3 Fall
NOV 11 3 Fall
DEC 12 4 Winter

Table 2: UTVM feature preprocessing. Values from discrete
domains that have same or similar semantical values are
grouped together. This approach also increases balance between

frequent and infrequent values of the particular features.

3.2.4 OpenStreetMap

OpenStreetMap (OSM) is community created free map data tool that allows
users to ingert, edit and receive data from the map. OSM has similar mapping
interface as well-known Google Maps. A fraction of the map data can be exported
in various formats for further operations.[15] OSM data consist of OSM elements

and features describing the elements.

3.2.5 OSM elements

OSM data consists of three types of elements: nodes, ways and relations.
Nodes are points that have defined location (geographic coordinates), ways are
sets of nodes that define routes or areas (closed ways) and relations define logical
or geographic relationships between other elements. Each of these three types of
data is further described with tags. Tags are key-value pairs which provide more

information about the element. [15][16]

Essential tag of OSM elements is a tag which is called primary. Primary tag
defines a type of the element. There exists many different primary tags on OSM
elements. Primary OSM features are represented as pre-defined key-value pairs.

10
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Commonly denoted as key=value. A full list and description of all commonly

used primary features can be found online.[16]

OSM node provides information about the geographical location. I only focus
on the location and primary tag (type) of the node, for example whether the
element is a school, traffic signal, restaurant etc. (Figure 1) Ways has a very
similar data structure with the exception that instead of latitude and longitude
way location is defined as a set of nodes. Regarding ways, I also only focus on the
primary tag of the way such as highway, parking, roundabout etc. I omit
analyzing relations because they provide no useful information for traffic
accidents analysis. Figure 1 depicts XML data representation of OSM element.
Information taken into account (geographical location and primary tag) is
highlighted in green.

Analyzing secondary tags like opening hours of the restaurant can remove
certain amount of noise when the time parameter is taken into account. However,
secondary tags are less frequent and this analysis would add a lot of complexity
to the task. Also, missing secondary tags in the map data could increase the error

of the classification.

<node 1d="3901835523" 1at="50.0508558" lon="14.3453894">
<tag k="addr:city" v="Praha"/>
<tag k="addr:housenumber" v="15"/>
<tag k="addr:postcode" v="15800"/>
<tag k="addr:street" v="Petrzilkova"/>
<tag k="amenity" v="restaurant"/>
<tag k="cuisine" v="regional"/>
<tag k="name" v="Gastronom restaurant"/:>
<tag k="opening hours" v="Mo-Su 11:00-24:00"/>
<tag k="phone" v="+4420 602 141 629"/>
<tag k="website" v="http://www.gastronomrestaurant.cz/"/>
</node>

Figure 1: OSM node XML representation. Location and the
primary tag is highlighted in green. Highlighted information is
obtained and used for analysis.

3.2.6 Clustering accidents

Raw location of recorded accident does not provide information whether the
site is actually a dangerous site or not. To determine dangerous sites I need to
find locations or areas where there are more accidents recorded in comparison to
the other sites. Accidents that happened reasonably near each other are defining
the dangerous site. On the other hand, the site cannot be vast because it will no
longer be a site but a large area. I define sites using a well-known method

Hierarchical clustering. Using Hierarchical clustering I set the spatial size of

11
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clusters and I construct clusters without prior knowledge about the number of

clusters constructed.

It is important that clusters are big enough to cover the dangerous site but
two different potentially hazardous or non-hazardous places are different clusters.
Complete-linkage clustering appears to be optimal for this purpose. Complete-
linkage does not allow creating a single linkage among more sites. That means
distant accident records belong to different clusters. The criterion to form clusters
is Fuclidean distance. The number of accidents in clusters defines hazardousness
of the site. Sites are considered hazardous when they contain more elements than

given threshold.

To divide sites into non-hazardous (negative) and hazardous (positive) I
define two values:

e Oy — non-hazardous (negative) threshold

e 0p — hazardous (positive) threshold

Each site includes a number of accidents. Let’s denote this number as |S|.
Negative sites (Sy) are sites with less or equal number accidents than 6y. Positive
sites (Sp) are sites with greater or equal number of accidents than 6p. Ignored

sites are sites that are defined as neither positive nor negative.
SESy<=>|5| <0y (1)

The perfect way to determine a non-hazardous site is to sample geographical
locations on roads and intersections where there is no or a minimal amount of the
accidents recorded. However, I determine non-hazardous sites as clusters with a
minimal amount of accidents only. Information loss about the places where zero
accidents occurred is obvious. This information loss is not significant. A
justification for this is that in urban areas accidents were recorded very densely
and accidents cover most segments of the roads.

3.2.7 Selecting OSM features

From commonly used primary tags I select 74 different primary tags
(features). Selected features have a possibility to carry some information that can
help defining hazardous sites. The more obvious features that can carry some
information are for example pedestrian crossings (highway=crossing) or bus
stops (highway=bus stop). Less obvious features that has possibility to carry
some information are for example bars (amenity=bar) or schools
(amenity=school) where there is a higher possibility of incautious people
causing accidents. I omit obviously unimportant features which cannot affect the
accidents or features that are very rare (e.g. windmill, defibrillator station etc.).
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For each site (cluster), I obtain the number of occurrences of all selected
OSM elements within the certain radius from the centroid of the cluster. These
data are used as input for machine learning models for detection potentially
dangerous sites. Although the relative spatial position of the OSM elements to
the accidents or among other features can provide more information than just
number of occurrences, it adds a lot of complexity to the task.

3.3 Models and evaluation

In this section, I briefly describe machine learning models used for the
severity analysis and identification of potentially hazardous sites. All selected
models achieved promising results in previous studies and are robust to different
representations of data and parameter selections. Evaluation methods are

described in the last part of this section.

3.3.1 Random Forests

Random forest is a well-known ensemble method that generates and
combines individual decision trees. Individual decision trees are learned using
different fractions of the training set called bootstrap samples, also called bagging
(bootstrap aggregating). Learning decision trees on bootstrap samples tends to
decrease variance. This is a huge advantage in comparison to the single decision
trees which are often deep and overfitted.[17] Random forest uses an out-of-bag
estimation. Out-of-bag estimation is using a selection of bootstrapped samples to

calculate prediction error on trees that do not contain said samples.[18]

Random forest results are also robust to parameter selection. In study [19]
default values for parameters of the random forest achieved similar result that
tuned parameters. The number of trees in the Random Forest increases
computational time linearly. However, a large amount of trees slightly increased

the stability of the model but the change of stability is negligible. [19]

Random forest uses sophisticated methods to calculate the feature
importances. Importance of features is calculated by taking each feature into
account individually and in combination with other features. The most popular

are Gini importance and permutation accuracy importance measure.[17]

3.3.2 Gradient Boosting

Similarly to the Random forest, Gradient boosting is an ensemble method
which constructs and combines multiple classification or regression models.
Gradient boosting, in general, allows a combination of boosting and
optimization.[20] Boosting is similar to the technique called Adaptive Resampling

and Combining (ARCing), which is presented in paper [21]. Gradient Boosting
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Machine was presented in paper [22]. Gradient boosting model generates
individual decision trees, from which the final tree is constructed using voting
methods and averaging. Boosting, in comparison to bagging, use a different
method to resample data. Bootstrap samples that were consistently misclassified
have a higher probability to be selected.[23]

Study [23] shows that Gradient boosting was not outperformed by
classification and regressions trees and Generalized additive models.

3.3.3 Model Stacking

Past studies develop classifiers or ensemble of classifiers with single learning
method. The most common models are decision trees and neural networks. A
more sophisticated way is combining different types of classifiers or ensembles of
classifiers (with heterogeneous model representation). This approach is called
stacking.[24]

Study [24] compares the performance of model stacking with individual
classifiers. Results show that stacked models performed similarly to the best

individual classifier used.

3.3.4 Models evaluation

In case of binary classification, we typically describe classes as positive class
and negative class. A number of samples correctly classified (predicted class is the
same as actual) as positive are called True Positives (TP). A number of samples
correctly classified as negative are called True Negatives (TN). A number of
samples incorrectly classified as positives are called False Positives (FP). And
finally, a number of samples incorrectly classified as negatives are called False
Negatives (FN). [12]

From these values, we can derive terms precision, recall (true positive rate),
fallout (false positive rate) and F value: [12][25]

precision = L (3)
TP + FP
TP
recall = TPR = TP FN (4)
FP
fallout = FPR = FP+—T]V
_ (1 + B2) * precision x recall (5)

Fo =
g B? * precision + recall

B represent relative importance between precision and recall, the usual value is 1,
thus F'1 Score:
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Fi=2+ precision * recall (6)

precision + recall

Receiver Operating Characteristics (ROC) describes a relation between true
positive rate and false positive rate. An area under the ROC curve (AUC) is
representing classifier performance. Higher values represent better performance.
In my case (binary classification) F1 score and AUC are both appropriate and
very popular ways to determine the performance of the classifier. Classification
results can also be depicted as a confusion matrix (Figure 2). In case of binary
classification, confusion matrix consists of four values creating a 2x2 matrix (TN,
FP, FN, TP). Numbers of correctly classified samples are located on the main

diagonal of the confusion matrix. [12][25]

Predicted Predicted
Negative Positive
Actu'al TN FP
Negative
Actual FN TP
Positive

Figure 2: Confusion matrix [12]
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4 Implementation

In this chapter, I describe implementation of processes defined in previous
chapter. Firstly, I preprocess accident records dataset from UTVM. Secondly,
clustering method to define sites is described. Third section describes a method of
obtaining map data from OSM and preparation of map data. Lastly, classification

methods are implemented using popular machine learning platforms and libraries.

4.1 Retrieving and preprocessing UTVM

UVTM accidents records can be gathered from the webpage of UTVM [14]
using web API scripts. The methodology used for acquiring the data is described
in the paper [26]. I use already downloaded and available dataset online [27].
Dataset is a csv file that consists of 608 557 records of traffic accidents in years
2007 — 2013. Damaged records (11328) that contain corrupted values or where
most values were missing were removed and not used for classification. Csv file is
imported to the PostgreSQL database.

Each record contains 50 features that needed to be preprocessed (more
information about features can be found in section 3.2.2 Context and context-free
features). Unimportant features were left out. Most important features (context
and context-free features) are categorical features. For better manipulation with
the dataset, I created for each categorical feature a separate definition table (for
more information see section 3.2.3 Preprocessing UTVM). This allows me to
easily change values for each particular categorical feature. Also, I construct
various database views to select different sets of features and create conditions for

selection only specific portions of the dataset.

4.2 Defining sites

To define hazardous and non-hazardous sites I wuse beforementioned
Hierarchical clustering. This method allows constructing geographical clusters
without prior knowledge about the number of clusters. Also, with complete-
linkage clustering, I am able to control the size of the clusters and separate

relatively close sites into different clusters.

Using Hierarchical clustering on large datasets such as all available accident
records in the Czech Republic from 2007 — 2013 is highly inefficient. To minimize
computational time and memory allocation I develop a simple recursive method
that allows construction of clusters in a small amount of time. The method
consists of recursively splitting map region into four quarters. Each quarter is
subsequently split into another four regions until region has less or equal to
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accidents recorded than given threshold (final region). I set the threshold to
10000 records. I construct clusters on each of the final regions separately. A
drawback of this method is that accidents that occurred on the boundary of the
final regions cannot belong to the same clusters even if they are reasonably close
to each other. Reason for this is that their clusters are constructed in separated

Hierarchical clustering runs.

To construct clusters I use scipy.cluster.hierarchy.fclusterdata
method within Python-based library SciPy. The input to the method is set of
geographical coordinates and the output is set of geographical locations of
centroids and sets of accident records bhelonging to the particular clusters. Figure
3 depicts constructed clusters from accident records in residential area in
Ostrava. Cluster positions are reasonably distributed on the roads. Clusters with
centroids that are not located on the roads can still hold valuable information.
OSM elements are obtained within given radius from cluster’s centroid. The area

around the site covers important environmental features in most cases.
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Figure 3: Clustering accidents to define sites. Accidents are
represented as red points. Sites (clusters’ centroids) are
represented as blue crosses. Sites with a high number of
accidents are considered hazardous.
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4.3 Acquiring and preprocessing OSM data

For each site (cluster), I need to gather information about the environment
and other objects that could affect hazardousness of the site. Information about
the surroundings is contained in nearby OSM elements. Reasonably selected
features, that could have some effect on the accidents, were selected (for more
information about selected features see section 3.2.7 Selecting OSM features).
Numbers of occurrences of selected features around the centroid of the cluster
(site) were gathered from OSM elements. Radius for acquiring OSM elements is
set to 50 meters. This radius can cover even bigger road segments, intersections

or roundabouts.

4.3.1 Overpass API Query Language

To gather data from OSM I use an APIT called Overpass.[28] Using Overpass
API T can run Overpass API queries to download and further analyze sections of
data from the OSM. Overpass API queries provide functionality to search
fragments of a map and filter OSM elements. To build Overpass API queries I
use Overpass Query Language. By running Overpass queries I can filter multiple
different elements and save them as sets. On these sets, Overpass API queries
allow using basic set operations like union, difference or intersection of the sets.
Sophisticated conditions can be constructed to filter OSM elements. It is possible
to filter elements that contain a given key-value pair. Also, it is possible to filter
elements that contain (or do not contain) a certain type of tag. Conditions can
also be defined using regular expressions and wildcards. Last but not least,
Overpass QL allows using recursion. Using recursion, elements that are directly

or indirectly linked with a certain set of elements can be selected.

To restrict the search to a specific section of the map a rectangle called
Bounding Box is used. Bounding Box is a rectangle defined by minimal and
maximal latitude and longitude. A different method to constrain specific section
of the map is using a set of geographic coordinates that define a polygon which
bounds the search area. Last but not least, method around selects the circular
area around a given geographic location and given radius. The area around the
geographical location is the most straightforward method to select appropriate
section of the map around the site.

4.3.2 Obtaining OSM data

For each cluster, I construct an Overpass query that use cluster centroid’s
geographic location as parameter and selects all OSM elements with primary tags
that have been selected within 50 meters around the centroid of the cluster. To
send requests to the server, I use a simple wrapper called overpass.[29] XML

format as response format of the request is chosen. Afterwards, I parse the XML
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response using XML Path Language (XPath). XPath allows navigation through
elements and attributes in XML documents. Using XPath I count occurrences of
all OSM elements containing selected features. This data was subsequently saved
to the database.

In the database, each cluster (site) record consists of centroid’s geographical
coordinates and counts of selected OSM elements near the site. Also, each
accident record was updated with a link to its respective cluster. This database
model allows obtaining UTVM context or context-free features for particular
clusters. In addition, it is possible to filter clusters based on UTVM features
which were used to select clusters in urban areas with help of UTVM records
which hold information about the city where the accident happened. Otherwise,
the information about the city can be found in OSM elements.

4.4 Classification

Classification models were constructed, trained and evaluated in Python
language using popular machine learning platforms and libraries [30][31][32].

Creation of training and test set is described in section 4.4.2 Training and
test datasets. Classifier performance is calculated on the test set. In severity
analysis, I use the F1 score as a criterion of performance. For identification
hazardous sites I used AUC as a criterion of performance.

4.4.1 Models implementation

Firstly, in severity analysis, I use RandomForestClassifier from free
software machine learning library scikit-learn.[30] To achieve the best
performance of classifier it is recommended to tune its parameters. Although, the
Random Forest is a robust method in consideration of parameters I perform a
parameter tuning process. Tuning process consists of an exhaustive search of the
combination of parameters and cross-validation learning on the dataset. The
exhaustive search for parameters is performed by GridSearchCv from the
scikit-learn library.[30]

From parameters of RandomForestClassifier, I tune n _estimators,
max_depth and max features. The first mentioned parameter is a number of
trees constructed. By increasing number of trees constructed, computational time
increases linearly. The second is the maximal depth of the constructed trees. This
value should be adjusted to control overfitting. The third is the maximal number
of features considered in splitting. A higher value should improve individual tree
performance for the cost of the computational time and less diversity of the trees.
It is recommended to find a profitable trade-off between the individual tree
performance and the diversity of the trees. The default value is a square root of

the number of features in samples.
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Secondly, in severity analysis I use Gradient boosting implementation called
Extreme Gradient Boosting or xgboost.[31] Specifically, I use XGBClassifier.
To improve the performance of classifier I find optimal parameters of the
classifier using exhaustive search xgboost.cv. The process of the searching is
same to the one mentioned above. I tune n estimators, max depth,
learning rate, min child weight, colsample bytree and
scale pos weight. The number of estimators and max depth of the tree has the
same characteristics as in the Random Forest. colsample bytree is equivalent
to max features mentioned above. min child weight is used to control
overfitting. learning rate is coefficient of weight minimization in each step.
scale pos weight adds weight to the positive class. It is used when training on
imbalanced datasets.

Thirdly, in identification hazardous sites analysis I use both Random Forest
and Extreme Gradient Boosting classifiers. Models are implemented using
machine learning platform H2O.ai [32] (H20RandomForestEstimator and
H20GradientBoostingEstimator). Reason for choosing H20.ai over scikit-
learn library is that H20.ai includes functionality to stack models. H20.ai
H20StackedEnsembleEstimator is used to stack models. The input to the
estimator consists of trained individual models and training set. The trained
stacked model should provide better results than individual models. It is possible
to specify metalearner algorithm type in training stacked ensembles: generalized

linear model, Gradient Boosting Machine, Random Forest or deep learning.

4.4.2 Training and test datasets

For each approaches (severity analysis and identifying hazardous sites
analysis), I need to use different datasets. Also, for each different type of
experiment, I use slightly modified datasets. For this reason, for each type of
experiment, I construct specific view on database tables. The view provides whole
dataset already prepared as an input to a model. Data is consequently split into
training and test set. Training set represents input data with the expected
output. It is used for model training. Test set represents samples from dataset
other than training set. On the test set model predicts value which is afterward
compared to the expected value. The number of correct and incorrect predictions
defines confusion matrix and performance score of the classifier is calculated.

Separation of training and test set varies throughout the experiments.

Both of the approaches are binary classifications. For this reason, we can call
samples positives and negatives. In severity analysis, I define positives as samples
where at least one person was injured or worse. Negatives samples represent
accidents where no injury was suffered. In identifying hazardous sites analysis,
positives are sites where the number of accidents recorded is greater than
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hazardous (positive) threshold 6p. Negatives are sites where the number of
accidents is less than non-hazardous (negative) threshold 8y. Hazardous and non-
hazardous thresholds vary throughout the experiments. Also, different

proportions of positive and negative samples in the training set is tested.

Retrieving datasets directly from views in the database did not require any
more significant preprocessing. However, time spent to retrieve all data from the
database appeared to be needlessly long. To improve time data retrieval I use
serialization. Retrieving data from the serialized object, instead of directly
retrieving data from database, significantly increased the computational time of

preprocessing phase.

To connect to the PostgreSQL database from Python code I use a popular
PostgreSQL  adapter psycopg.[33] For python-object serialization and

deserialization, I use a module called pickle.[34]

4.4.3 One-Hot Encoding

One-Hot Encoding (One-of-K scheme) is a process that transforms
categorical features into a table of binary values. This scheme minimizes relation
among categorical values that are not correlated. Table of binary values tends to
improve the performance of classification models in comparison to the standard
categorical variable input. To encode categorical features from UTVM 1 use
OneHotEncoder from free software machine learning library scikit-learn. One-
Hot Encoding greatly increases feature space which in larger datasets can lead to
a well-known curse of dimensionality when by increasing feature space the
predictive performance of model tends to decrease. On the other hand, One-Hot
Encoding mitigates incorrect correlation among categorical features which can
improve the performance of the model.
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o Experiments

This chapter provides results of conducted experiments of both severity and
site hazard approaches. Classifiers performance is compared, significant factors in
identification of the severity and hazardous sites are highlighted. Chapter
concludes with brief discussion of achieved results and offers ideas for the future
work in the traffic accidents analysis.

5.1 Accident severity analysis

The first part of my work was to analyze accident severity. Analysis mainly
consists of how well classifier can classify accident as severe and not severe solely
on recorded context and context-free data. In this analysis spatial location was
part of the data. The significance of particular features affecting the severity of
the accidents was calculated. Datasets consist of features from UTVM and were
later enriched with data of map features from OSM to analyze improvement of
classification.[14][16]

5.1.1 Severity prediction using context dataset

Context dataset includes all selected features (context and context-free) from
UTVM accidents records in the Czech Republic within years 2007 — 2013.
Context dataset holds 608557 records with 24 features. To simplify classification 1
chose binary output of accident severity: severe or not severe accident. A severe
accident is an accident where at least one person was injured or worse. Otherwise,
the accident is identified as not severe. Property damage was not taken into

account.

I struggle to find an optimal boundary between severe and not severe
accident. Due to small a number of incapacitating injuries and casualties recorded
(Table 1), T am marking accident as severe even if only one person suffers a non-
incapacitating injury. Reason for this is that this type of injury is the most
common injury among other injuries (71.68%). Identifying accidents where only a
few people suffer non-incapacitating injuries as not severe or ignoring them
completely will greatly decrease the size of the severe class. The proportion of
positive samples will decrease from 19.28% to approximately 5% (depending on
modification of the severity threshold).

Despite this fact, I conduct an experiment where the accident is considered
severe if at least one incapacitating injury is suffered. Feature distribution in
positive class this small is very sparse and contains little to none information due

to the randomness of severe accidents (Figure 4).
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Figure 4: Severity classification — confusion matrix. Severe

accidents are defined as at least incapacitating injury.
Prediction of severe accidents is poor due to a small number of

positive samples and high sparseness of the positive (severe)

class.
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Figure 5: Severity classification — confusion matrix. Context
dataset. Severe accidents are defined as at least one injury or
fatality. Prediction is more accurate and balanced than

experiment shown in Figure 4.
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Next, severe accidents were defined as a union of all injuries (Table 1). In
other words, even a single non-incapacitating injury is causing the accident to be
considered severe. Confusion matrix (Figure 5) shows that result of classification
on this class definition is more balanced. FP/TP ratio is significantly smaller.
Classification error is still high. Approximately 30% of samples are incorrectly
classified (Figure 5). Classification performance was slightly increased with
parameter turning and implementation One-Hot Encoding (Table 3). On the
other hand, One-Hot Encoding significantly increased computation time, which
might be ineffective in training on larger datasets. Gradient boosting method
slightly outperformed Random forest classifier (Table 3). Also, training on larger
dataset slightly improved performance (Table 3).

Model Parameters One—Hlot Training Runs AVG MAX
Tuned Encoding Samples (F1) (F1)
XGB no no 10000 51 0.764603 0.771096
XGB no yes 10000 117 0.766313 0.778148
RDF yes no 10000 45 0.755002 0.766283
XGB yes yes 10000 16 0.766207 0.776271
XGB yes no 10000 50 0.765439 0.774052
XGB yes no 100000 11 0.773901 0.778300
Table 3: Severity analysis - comparison of experiments.

Random Forest Classifier performed slightly worse than
Extreme Gradient Boosting model. One-Hot Encoding has a
small effect in improving the performance of the classifier.

The most important features used in classification can be seen in Figure 6.
Affected object is the most dominant feature. It holds a type of vehicle or other
object with which the car collides, for example non-track vehicle (car, bus),
stationary object (lamp, parked car), tram, train, pedestrian or others. Among
other strongly influenced feature is a direction of impact. The direction of impact
can be rear end, head on, sideward or none. Driving direction can bhe direct,
opposite or turn. All of these features are reasonable factors in determining
severity (injuries) of the accident.
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Figure 6: Feature importances in severity analysis — context
data.

5.1.2 Severity prediction using context-free dataset

The aim of restriction to context-free data is to generalize classifier on
environment variables and not to be coupled to the accident-specific features.
The context-free dataset is a portion of the dataset from UTVM that does not
consist of any specific information about the one given accident record. Context-
free dataset holds 608 557 records with 11 features. Features are mostly
environment features at the crash site such as the number of lanes, type of
intersection and others. To improve classifier performance I added, in addition to
environment features, temporal information to the context-free dataset
(discretized time and date). The generality of the classifier is not discarded.
However, real-data input for classifier needs to include discretized time and

season information.

Clagsifier performance on this data is considerably lower than classification
on context dataset (Table 4). Only three context-free features appear as relatively
important features in classification on the context dataset (Figure 6). I can state
that UTVM context-free data does not contain enough information needed to

determine the severity of accidents.
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Parameters One-Hot Training AVG MAX
Model K Runs
Tuned Encoding | Samples (F1) (F1)
XGB yes no 10000 50 0.668983 0.682830
XGB yes yes 10000 50 0.665612 0.677111
XGB yes no 100000 96 0.676324 0.684576

Table 4: Severity analysis on the context-free dataset —
comparison of experiments. Larger training set performed better
on average, but the best score is only slightly better than

classifier trained on a small training set.

Performance decrease is also evident on confusion matrix on Figure 7 in
comparison to classification on the context dataset (Figure 5). The classifier is
biased towards positives samples. Figure 8 depicts the importance of features in
severity classification on context-free dataset. From Figure 8, we can see various
anomalies. It is interesting how high classifier apportioned importances of some
features like time and day of the week. Time and day of the week can determine
traffic volume. However, the relation between traffic volume and severity of the
accidents is unknown and could be analyzed in the future works. Accidents on

different road types, like highways, can cause more serious injuries.
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Figure 7: Severity analysis on the context-free dataset —
confusion matrix. Prediction is less accurate in comparison to
the context dataset (Figure 5). Classification is biased towards
positive samples.
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Figure 8: Feature importances on context-free dataset.

5.1.3 Enriching datasets with OSM data

In this section, I describe experiments with enriching context and context-
free datasets with features from the OSM. The aim of these experiments was also
to determine the severity of the accidents. Input data was enriched with counts of
OSM elements. Firstly, enriching context data with counts of OSM elements
slightly improved classification performance (Figure 9, Table 5). Even though
score increase is not large OSM features do have an effect on classification on
context dataset. A justification for this is that four OSM features are in ten most
important features during classification (Figure 10). Important OSM features can
indicate the occurrence of pedestrians (footways, highway crossings and
residential streets). This result demonstrates that accidents, where cars are

hitting a pedestrian can be closely linked with severity of the accidents.

Dataset Model E;Z?lzsg Runs AVG (F1) MAX (F1)
Context XGB 100000 11 0.773001 0.778300
Context + OSM XGB 100000 8 0.786742 0.794713
Added value 10.012841 10.016413

Table 5: Context dataset: comparison of UTVM data and
enriched UTVM data with OSM features
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Figure 9: Severity analysis on context dataset enriched with
OSM features. Ratio FP/TP is lower in comparison to basic
context dataset (Figure 5).
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Secondly, an enriching context-free dataset with counts of OSM elements did
not improve classification performance (Figure 11, Table 6). Performance of
classification on the enriched context-free dataset is slightly worse than on basic
data. However, fall of the score is very small and can be caused by stochastic
nature of the model. Also, the relative number of true positives, true negatives,
false positives and false negatives is very similar to result from classifier trained
on the basic context-free dataset. Within the ten most important features in this
experiment, we can see only one OSM feature — highway=footway (Figure 12).
The existence of footway near the recorded accident is also the most important
OSM feature in classification on context dataset.

On the other hand, footway is very common element near most roads besides
highways, trunk roads or by-pass motorways.
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Figure 11: Severity analysis on context-free data enriched with
OSM data. The classifier is biased towards the positive samples.
The relative number of TP, TN,FP, TN is very similar to result

from classifier trained on the basic context-free dataset.

Dataset Model E;;EZS Runs AVG (F1) | MAX (F1)
Context-free XCB 10000 50 0.668083 | 0.682830
Context-free + OSM XGB 10000 52 0.664005 | 0.673396
Added value -0.004978 | -0.009434

Table 6: Context-free dataset: comparison of UTVM data and
enriched data with map features
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Figure 12: Feature importances on context-free data enhanced
with OSM data.

5.1.4 Severity analysis evaluation

Experiments conducted to analyze severity of the accidents provided
promising results. Classification on the context dataset achieved significantly
better result than on context-free dataset. This was anticipated. Important
features from context datasets, namely direction of impact, vehicle type and
alcohol support results of previous studies. Weather conditions appeared to not
have significant effect to the accidents severity. This fact was also recognized by

previous studies.

On the other hand, results of classification on the context-free dataset show
that context-free dataset does not hold enough information needed for accurate
identification of the severity of the accidents. Map features obtained from OSM
have marginal effect on classification. However, more complex data from OSM
like geometric design of the roads or position of the OSM elements related to the

location of the accidents can hold valuable information for the severity analysis.

5.2 Identifying hazardous sites

The aim of this approach is dedicated to identify hazardous locations on the
maps. Data needed to identify dangerous sites are only obtained from OSM. In
other words, a trained classifier can determine hazardousness of any location in

the world which is sufficiently mapped in OSM. Thus, this approach can
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theoretically have world-wide usage. Unfortunately, world-wide usage of the
classifier is practically impossible, due to uneven traffic behavior in different parts
of the world. Different parts of the world have different types of roads or traffic
volumes. I assume that a classifier trained on bigger cities in the Czech Republic
can be efficiently used only in similar cities in Europe, the US and other parts of
the world where traffic behavior is similar to the traffic in the Czech Republic.
The classifier trained on the Czech Republic will most probably fail in regions
with different behavior in traffic such as India where traffic is much more chaotic
(no lanes, no traffic lights etc.).

5.2.1 Clustering

Firstly, I defined sites. Using Hierarchical clustering on recorded accidents I
created clusters with their respective centroids. The site is a circular area with
the center as the centroid of the cluster and radius of approximately 50 meters.
Each site contains information how many accidents are recorded belonging to the
site. The number of accidents in the cluster is later used to define hazardous and

non-hazardous sites.

As accident records I used UTVM. To preserve generality of the classifier 1
only used geographic coordinates of the accidents. The total number of accidents
recorded is 608 557. Geographic location was not available in 11 328 records.
These records were ignored in process of constructing the clusters. From available
accidents records with valid geographic coordinates (597 227), I constructed the
total of 253 849 clusters in the Czech Republic. For the construction of the
clusters, T used complete-linkage clustering. The distance was chosen Euclidean
with a threshold of 0.0005 in the decimal format of geographic coordinate system.
This value represents approximately 50 meters radius and was calculated using

the haversine formula. [35] Constructed clusters can be seen on Figure 3.

5.2.2 Defining positive and negative samples

Each site contains the number of recorded accidents. In Figure 13, we can
see that majority of the clusters contains only one accident. This is caused by
accident records outside the big cities. Large-scale rural areas cover a major
portion of the Czech Republic. Accidents in rural areas are sparser, thus
probability that two or more accidents occurred within the same site is lower.
Outside the ten biggest cities in the Czech Republic, approximately 62% of the
recorded accidents happened. On the other hand, distribution of the number of
accidents in the clusters in Prague (Figure 14) and the ten biggest cities in the
Czech Republic (Figure 15) is much more balanced.
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Figure 13: Distribution of the number of accidents in clusters
in the Czech Republic. Red bars indicate non-hazardous sites.
Blue bars indicate hazardous sites. Note: threshold on

hazardous sites varies throughout the experiments.
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Figure 14: Distribution of the number of accidents in clusters
in Prague. Red bars indicate non-hazardous sites. Blue bars
indicate hazardous sites. Note: threshold on hazardous sites

varies throughout the experiments.
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Figure 15: Distribution of the number of accidents in clusters
in ten biggest cities in the Czech Republic. Red bars indicate
non-hazardous sites. Blue bars indicate hazardous sites. Note:

threshold on hazardous sites varies throughout the experiments.

Due to different distributions of accidents count per cluster I struggled to
identify the thresholds of the non-hazardous and hazardous sites. Thus I
conducted various types of experiments on urban/rural areas in the Czech
Republic with different thresholds of hazardousness. For all experiments, I used a
model of stacked ensembles mentioned in section 3.3.3 Model Stacking, as it
provides slightly better performance than individual models. Model stacking
consists of Extreme Gradient Boosting model and Random Forest Estimator
model. Experiments are denoted as following: <scope>-<representation>-
<Op>, where <scope> is either Czech Republic (CZE), ten biggest cities (URB)
or Prague (PRG), <representation> is either counts (C) or binary (B) and 6p

is hazardous threshold.

In the experiment CZE-C-4 I set the non-hazardous (negative) threshold
Oy = 2 and hazardous (positive) threshold 8p =4 on the sites in the whole
country. In other words, sites with 2 or fewer accidents were considered safe, sites
with 4 or more accidents were considered dangerous, sites with exactly 3
accidents were ignored (for more information see section 3.2.6 Clustering
accidents). Although a high number of samples (100 000) are available for
training, classifier did not perform as well as the other experiments conducted
later (Table 8). A possible reason for this is that traffic in urban and rural areas
has very different nature. Also, a difference between positive and negative
samples was not significant. Spreading gap between 8y and 8p better describes
the nature of the classes.
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In addition, samples that include very few distinct features cannot hold
relevant information about the hazardousness of the site. A justification for this
is that sample with one feature, e.g. highway crossing, cannot define the
hazardous site because all of the locations where there is a highway crossing
should be then considered hazardous. For this reason, I chose to ignore samples
with only zero, one or two different features. For future experiments, I only used
samples where there are present at least three or more different features.

In the experiment URB-C-5, the classifier was fed with data from ten biggest
cities in the Czech Republic. Also, I overspread difference between positive and
negative samples by increasing 0p to 5. Performance increase is significant
(Table 8). But the cost of this approach is that efficient spatial scope of the
classifier is decreased. This classifier is trained to determine site hazard only in

urban areas.

In the experiment URB-C-7, I spread the gap between negative and positive
samples by increasing 8p to 7. Results are slightly better than in experiment
URB-C-5 (Table 8). However, increasing 6p is causing that hazardous sites tend
to be mostly on the roads with high traffic volumes (bypasses, trunk roads etc.).
This phenomenon can be seen in Figure 16 where blue points are true positives
and red points are false positives (incorrectly classified as positives). In most
cases, false positives are also on the roads with high traffic volumes. This implies
that classifier found a correlation between dangerous sites and high-frequent
roads. This correlation is reasonable, but the aim of the classifier is to determine
that site is dangerous due to a combination of the aspects in the vicinity like
schools, bus stops, bars or others and not simply because the site has a high

traffic volume.

In addition, most negatives samples occur in residential areas (Figure 17).
Purple points are hazardous sites that classifier evaluated as non-hazardous (false
negatives). This supports correlation mentioned above.
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5.2.3 Mitigating effect of frequent roads

In previous experiments, input to classifiers was counts of all selected OSM
features. For example, the site has six traffic lights, four crossings and two bus
stops. The average sum of counts of all selected feature for positive samples is
21.08, for negative samples is 11.33 (Table 7). Sites with higher occurrences of
OSM elements tend to have higher traffic volumes.

To decrease the correlation between site hazard and traffic volume I used
binary a representation of the OSM features as input data. The binary
representation of the OSM features is a representation that for each feature there
can be only true-false value instead of the number of occurrences of given element
is on the site. Sites then have features whether the element is present or not. In
this data representation, positive samples have an average sum of all distinct
present features equal to 7.07, negative samples have 4.81 (Table 7). The gap

between the number of features in positive and negative samples has decreased.

Representation Oy Op Positives Negatives
Counts 2 5 19.02 11.33
Counts 2 7 21.08 11.33
Counts 2 9 22.64 11.33
Binary 2 5 6.71 4.81
Binary 2 7 7.07 4.81
Binary 2 9 7.3 4.81

Table 7: Average sums of features in the input dataset.
Difference between average sums of features in positive and
negative samples is increasing with increasing Op. Using binary

representation of OSM features significantly reduces the gap.

In the experiment URB-B-5, the binary representation is used. The positive
threshold is 8p = 5. Performance of classifier, in comparison to experiment URB-
C-5, has slightly lowered (Table 8). Performance decrease was expected due to
the removal of the information about the counts. Also, in experiment URB-B-7
the binary representation achieved slightly worse results than the experiment

URB-C-7, which have the same 6p=7 (Table 8).

Using binary representation, I expected a decrease in correlation between
hazardousness of the sites and traffic volume. Figure 18 depicts no significant

decrease in this correlation. False positives (red squares) are the non-hazardous
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Figure 18: Samples classified as positive in Olomouc — binary
representation. Blue squares represent true positives (hazardous
sites that are correctly classified as hazardous). Red squares are

false positives (samples that are negative but incorrectly
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sites that were incorrectly classified as hazardous. They are mostly on trunk
roads or other frequent roads. Also, purple squares in Figure 19 are hazardous
sites that were classified as non-hazardous. In most cases, they are located in

residential areas but classifier was unable to identify them as positives.

Finally, in the experiment PRG-B-5, the classifier was fed with data only
from Prague as the biggest and the densest city in the Czech Republic. The
binary representation with 8p =5 was used. Results are slightly better than
experiment URB-B-5 (Table 8). However, the classifier was trained and tested
only on the data from Prague. Thus, the classifier is less general.

5.2.4 Evaluation of results

In this section, I conclude results of the experiments in identifying dangerous
sites. Although, results of experiments in urban areas are promising the biggest
problem occurred was that I was unable to determine the precise boundary
between hazardous and non-hazardous sites. Spreading the gap between 6y and
Op better describe nature of non-hazardous and hazardous sites. However, with
increasing gap and by using only the number of accident records at the defined
sites a phenomenon appeared. Sites classified as hazardous were sites at the roads
with high traffic volumes such as trunk roads, bypasses and frequent roads. Sites
classified as non-hazardous were mostly in residential areas where the traffic
volume is not that high. Figure 20 depicts only positive samples from the dataset.
The classifier was able to correctly identify hazardous sites in frequent roads but
was unable to identify positive (hazardous) sites in the residential areas.

Experiment Representation | Oy Op Training P/ N Runs AVG MAX

Samples | Ratio (AUC) (AUC)
CZE-C-4 Counts 2 4 100000 0.3 7 0.738283 | 0.738714
URB-C-5 Counts 2 5 26800 0.36 9 0.830776 | 0.832507
URB-C-7 Counts 2 7 22000 0.2 10 0.833085 | 0.834840
URB-B-5 Binary 2 5 26800 0.36 15 0.816555 | 0.817070
URB-B-7 Binary 2 7 22000 0.2 6 0.820818 | 0.821172
PRG-B-5 Binary 2 5 13300 0.5 14 0.826125 | 0.826926

Table 8: Comparison of experiments and performance of
classifiers on various data setup. P/N ratio represents ratio of
positive and negative samples in training set. AVG (AUC) and
MAX (AUC) are average and maximum (best) of area under a

ROC curve throughout all runs.
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Figure 20: Positive samples in Olomouc. Blue points represent
sites correctly classified as positives (true positives). Purple
points represent sites that are hazardous but classified as non-

hazardous (false negatives).

Confusion matrices in Figure 21 and Figure 22 compares results of the
classifiers trained in urban areas with count and binary representations. Training
on binary representation increases false negative rate (Figure 22). Binary

classification slightly lowers performance in identification positive samples.

Importances of particular OSM elements calculated by classifiers fed by data
from urban areas are similar in both count and binary representation (Figure 23,
Figure 24). Highway crossings have more importance than other features in both
representations. However, crossings occur at intersections which are expected to

be more dangerous than other sections of the roads.
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Figure 21: Identifying hazardous sites in urban areas -
confusion matrix. Counts representation is used. The number of
false negatives is slightly higher than false positives. The
clagsifier is failing in identifying hazardous sites on non-frequent
roads and residential areas (Figure 17).
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Figure 22: Identifying hazardous sites in urban areas -
confusion matrix. The binary representation of OSM features is
used. The number of false negatives is higher than false
positives. The classifier is failing in identifying hazardous sites

on non-frequent roads and residential areas (Figure 19).
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5.3 Discussion

The approach was dedicated to identification the severity of the accidents
and key factors affecting severity of the accidents. Results of experiments showed
that context dataset hold information from which the severity of the accident can
be predicted. Key factors appeared to be affected object, direction of impact,
alcohol, type of vehicle and others. These factors were also recognized, by

previous studies, to have effect on the severity of the accidents.

The approach of identification hazardous sites can be examined deeper. The
concept has potential to have world-wide usage. Identifying dangerous sites can
reduce the number of accidents, thus save people’s lives, health and property.
Although results of conducted are promising, the main problem of analysis was
that classifiers, trained on designed specification of hazardous sites and selection
of OSM features, tend to identify roads with higher traffic volumes as hazardous.
Reason for this is that number of accidents has a correlation with frequency of
traffic.

To minimize correlation between the number of accident and traffic volume,
the information about the traffic volume can be used to normalize absolute
numbers of accidents. This information has potential to train the classifier for its
original purpose, which is identifying dangerous sites.

Also, more information about the surroundings of the site, like traffic signs
or speed limits, can significantly improve the performance of identification. Next,
I only used the number of OSM elements present near the site. The relative
position of the elements or trajectories of the roads at the site can hold promising
value for classification. Trajectories of the roads and intersections’ shape can be

primary factors affecting the safety on the roads.

This approach has potential to have various applications. Firstly, machine
learning methods can be used in designing new traffic network. A proposed
segment of the road or intersection can be furthermore analyzed using machine
learning methods to verify its safety or draw attention to potentially dangerous

factors.

Secondly, machine learning methods can be used on already existing traffic
network sections that are confirmed as hazardous. I assume that, by analyzing
the section, models can find factors responsible for site hazard and offer a
modification to reduce the hazard. For example, analysis on the modified
intersection, with an added stop sign or on-ramp, can deliver valuable
information to reduce the site hazard.

Thirdly, analysis regions where accidents are not recorded or do not contain
information about the location can be used to identify dangerous sites as well.
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Last but not least, models can be used for real-time notifications about
hazardous sites for drivers. In other words, application in smartphones or GPS
devices can request a remote server with current location or planned route. The
server can afterwards run an analysis to alert drivers to increase wariness near

potentially hazardous locations.
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6 Conclusion

This work studies two approaches to the traffic accident analysis. The first
approach focuses on determining the severity of the accidents and factors
responsible for severe accidents. The second approach focuses on identifying
hazardous sites in the traffic network. In both approaches, ensemble models
provide promising results. Research on learning on imbalanced datasets was
performed. Methods to improve learning on imbalanced datasets were not needed

due to a large amount of samples in datasets.

The main dataset used for severity analysis was obtained from Ministry of
Transport of the Czech Republic. The dataset contains records with spatial,
temporal and specific information about accidents such as alcohol measured,
weather conditions and others. Selection and preprocessing of appropriate
features which are responsible for the severe accident was a complex task.
Different sets of features were selected (specific and/or general). Accident records
were later enriched with numerous environmental elements (highway crossings,
bus stops, schools) from OpenStreetMap (OSM) to improve classification
performance. Results of experiments support findings of previous studies that
alcohol, direction of impact and type of vehicle are key factors in determining
accident severity and weather conditions do not have a significant effect on
severity. Map features have a marginal effect.

The dataset for identification hazardous sites consists of the geographical
location of recorded accidents in the Czech Republic. Sites were defined as
clusters of accidents based on distance. The number of accidents in cluster defines
hazardousness of the site. For each site, nearby environmental elements from
OSM were obtained. Although results of experiments are very promising, a
correlation between site hazard and traffic volume is present. More factors
invariant to the traffic volume can be examined to decrease the correlation. Key
factors in identifying hazardous sites are highway crossings, traffic lights,
presence of secondary road and tram rails. These factors indicate frequent
intersections. Also, classifiers performed better in the identification of hazardous
sites in urban areas. A possible reason for this is that accidents in rural areas are

sparser and rural areas have less environmental elements.

More information about the accidents could significantly improve classifiers
performance. A geometric design of the traffic network can hold essential
information needed for both analyses. Information about traffic volume can

remove correlation between site hazard and frequent roads.
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Appendix A
User Guide

This section provides a guide for running methods used in this work. Data
for classifiers are included as serialized Python objects. Also, full PostgreSQL
database of accident records, clusters and OSM features is included to allow
generation of new datasets. Python scripts allow operations over datasets and

classifiers training to visualize results and to replicate the experiments.
Requirements

e Python3 (version used Python 3.6)
e PostgreSQL (version used PostgreSQL 9.5)

Organization of appended CD

o data — directory contains serialized objects of preprocessed data for
training classifiers on various datasets

o database — contains SQL script to restore full PostgreSQL database

o tested sites — containg classified sites in experiments URB-C-7 and

URB-B-7. CSV consists of records of following structure: gps x,
gps_y, classification(TP,TN,FP, FN)

e src — contains Python scripts used for obtaining datasets (OSM),
preprocessing methods, learning classifiers and evaluating results
e This paper in digital form (PDF and Microsoft Word)

Implementation remarks

In file data preprocessing.py, methods for creating and preprocessing
datasets are implemented. data postprocessing.py contains methods for
saving experiment entries and calculating feature importances. OSM.py contains
methods for OSM data retrieval, preprocessing and persisting preprocessed data
to PostgreSQL database. clustering.py and map splitting.py is used to

generate clusters of accidents from accident records based on accidents location.

Results of experiments analyzing accidents severity can be replicated using
model run.py script. Script contains parameters for selection desired datasets
and classification parameters. Python library scikit-learn and xgboost is

used. Results of experiments analyzing hazardous sites can be replicated using
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H20.py script. Script contains parameters for selection desired datasets and
classification parameters. A machine learning framework H20 is used. Methods to

visualize various results of the experiments are located in script plotting.py.

Database

Included SQL scripts restore full database designed for the traffic analysis.
Database consist various definition and data tables. Remarks: table
crashdataset contains raw UTVM data (context and context-free features).
Table cds to clusters cr defines relation between accidents and clusters.
Table clusters cr contains defined sites locations created by clustering method
with occurrences of nearby OSM elements. Table out experiments2 represents
experiment runs, parameters and results. Also, database includes various views

used for creating datasets.

Analysis Dataset / Experiment Source code notation
Severity Context v1.2
Severity Context v1.21*
Severity Context-free v2.0
Severity Context enriched with OSM v3.0
Severity Context-free enriched with OSM v20.1
Hazardous Sites CZE-C-4 v5.0
Hazardous Sites PRG-B-5 v6.0
Hazardous Sites URB-B-5 v7.0
Hazardous Sites URB-C-5 v8.0
Hazardous Sites URB-C-7 v9.0
Hazardous Sites URB-B-7 v10.0

Table 9: Dataset notation is source codes. *v1.21 accidents are

considered severe if at least an incapacitating injury is suffered
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