

Master’s thesis

Web application collecting and evaluating
data from user experiments

Antonina Lebedeva

January 2018

Ing. Ladislav Čmolík, Ph.D.

Czech Technical University in Prague
Faculty of Electrical Engineering, Department of Computer Science

Acknowledgement
Let me thank Ing. Ladislav Čmolík, Ph.D. for the professional guidance, for his assis-
tance and advice during the work on this thesis. Also, I would like to thank my friends
and parents for their support.

Declaration
I declare that I worked out the presented thesis independently and I quoted all used
sources of information in accord with Methodical instructions about ethical principles
for writing academic thesis.

iii

Abstract
Hlavním účelem této práce je vytvoření platformy pro vývojáře a výzkumníky v oblasti
uživatelských testů. Tato platforma bude umožňovat správu experimentů s uživateli,
poskytovat přístup k nasbíraným datům a zobrazovat jejich přehledy. Mimo jiné bude
nabízet statistické vyhodnocení dat a jejich vizualizaci. V analytické části budou řešeny
hlavní podmínky a aspekty uživatelských experimentů a vyhodnoceny dvě metody:
intervaly konfidence a ANOVA. V části návrhu jsou důkladně analyzovány doménové
modely a sepsané funkční požadavky pro budoucí systém. V praktické části bude tento
systém naimplementován a následně otestován s reálnými uživateli.

Klíčová slova
uživatelské testy, intervaly konfidence, ANOVA, web aplikace;

v

Abstract
The main purpose of this thesis is to create a platform for developers and researchers
in the field of user testing. This platform will allow to manage their experiments with
users, to have access to the collected data, and to see its overview, besides that, it will be
a tool for the statistical analysis and the visualization of this data. Firstly, the research
will be done to understand domain objects and structurize the given requirements.
The analytical part will discuss major terms and aspects of user experiments and two
evaluation methods: Confidence Interval and ANOVA. After that, the system will be
designed and implemented, and finally, I will perform the testing with real participants.

Keywords
user experiments, research, Confidence interval, ANOVA, web application;

vii

Contents

1. Introduction 1
1.1. Goals of the Thesis . 1
1.2. Motivation . 1
1.3. Structure of the Thesis . 1

2. Analysis 3
2.1. User research . 3

2.1.1. The Qualitative and Quantitative dimension 3
2.1.2. Types of User research methods 4
2.1.3. Summary . 5

2.2. Experimental designs . 5
2.2.1. Variables . 5
2.2.2. Between-subject design . 6
2.2.3. Within-subject design . 7

2.3. Evaluating methods . 10
2.3.1. Confidence intervals . 10

Introduction . 10
Interpretation of confidence intervals 11
Discrete and Continuous Values 12
CI for Continuous Values . 13
CI for Discrete Values . 14
CI for Task Time . 14
CI for different designs . 15
Recapitulation . 17

2.3.2. Analysis of Variance . 17
One-way ANOVA . 18
Repeated measures ANOVA . 20

2.4. Summary . 20

3. Design 23
3.1. System overview . 23
3.2. Architecture comparison . 24
3.3. Web service structure . 26
3.4. Entity relationship diagram . 27

3.4.1. User . 27
3.4.2. Experiment . 28
3.4.3. Experiment::Part . 28
3.4.4. Experiment::Variable . 29
3.4.5. Experiment::Datum . 29
3.4.6. LongDatum, DoubleDatum, StringDatum 29
3.4.7. Participant . 29
3.4.8. Experiment::JsonDatum . 30
3.4.9. ChartQuery . 30

3.5. Transfer library design . 31
3.6. Requirements . 33

3.6.1. Functional requirement . 33
3.6.2. Non-Functional requirement . 34

ix

4. Implementation 35
4.1. Web service . 35

4.1.1. Selected technologies . 35
4.1.2. Project structure . 37
4.1.3. Prerequisites . 38
4.1.4. How to start the app . 39
4.1.5. Code samples . 39

Database . 39
Router . 40
Experiment FSM . 41
Chart.js modification . 42

4.2. Transfer library . 43
4.3. Results . 43

5. Testing 49
5.1. Target application prototype . 49
5.2. Check the accuracy . 51

6. Conclusion 53
6.1. Future work . 53

Bibliography 55

Appendices

A. T-distribution table example 57

B. F-distribution table example 59

C. CD content 61

x

Abbreviations
AJAX Asynchronous Javascript and XML
ANOVA Analysis of Variance
API Application Programming Interface
ASCII American Standard Code for Information Interchange
BSD Between Subject Design
CI Confidence Interval
CLI Command Line Interface
CORBA Common Object Request Broker Architecture
CRUD Create Read Update Delete
CSS Cascading Style Sheets
DCOM Distributed Component Object Model
DF Degrees of Freedom
DRY Don’t Repeat Yourself
ERB Embedded Ruby
FTP File Transfer Protocol
FSM Final State Machine
HTML HyperText Markup Language
HTTP HyperText Transfer Protocol
HTTPS HyperText Transfer Protocol Secure
IQ Intelligence Quotient
JSON JavaScript Object Notation
MIT Massachusetts Institute of Technology
MVC Model View Controller
PHP Personal Home Page
REST Representational State Transfer
RPC Remote Procedure Call
SD Standard Deviation
SMTP Simple Mail Transfer Protocol
SOAP Simple Object Access Protocol
UI User Interface
URL Uniform Resource Locator
UUID Universally Unique Identifier
WSD Within Subject Design
WSDL Web Services Description Language
XML eXtensible Markup Language

xi

1. Introduction

Nowadays testing takes more significant part in software development. It helps to ensure
product quality and develop a new way of improving existing solutions to match user
requirements.

An ordinary situation that arises in the software development involves choosing some
solution from several options. These options could be UI elements, the color palette
or different steps to accomplish a task. To solve this situation, user experiments are
conducted to obtain information directly from end users. But raw data serves no
purpose without careful analysis and evaluation.

For the sake of simplicity, the user and researcher are referred in a masculine form
(he, him, his) throughout this master’s thesis. Statistical data evaluating could pro-
vide valuable insight, also it approves or disapproves researcher expectations about his
product.

1.1. Goals of the Thesis
The purpose of this work is to create a convenient service for researchers, through
which they can easily collect and visualize the data obtained from these tests. The final
product will serve as a basis for the management of experiments and collected data,
which can easily be extended in the future.

1.2. Motivation
Currently, there are a lot of programs assisting in the usability testing. For instance,
many of them record video/audio of the participant and the device where the software
runs. Most support the functionality to take notes. Also, there are tools that could
collect all the input information from the user: mouse movement, clicks, and even the
eye tracking. Additionally, information about the satisfaction and impressions from
users can be obtained in the form of responses to surveys. Numerous calculators for
statistical processing methods are already created, but in the vast majority, they lack
flexibility and convenience. Unfortunately, all these useful tools are available separately.

Therefore, the idea of a new system was born. It would combine a data collection, a
statistical analysis, and customized visualizations, simultaneously providing means to
persist and access the original data.

My personal motivation is to advance in the field of web application development
using the latest technologies and, in doing so, to create a tool that will help people.
Both of these together create an unmissable opportunity for me.

1.3. Structure of the Thesis
To achieve this goal, I need to follow certain steps. At the beginning, it is essential
to carefully analyze methods of performing tests, possible variations in experiments,
and types of variables, to classify the collected data, to consider existing assessment

1

1. Introduction

methods and data visualization. After analysis the design of the future system emerges
based on the conclusions from the analytical part.

Assignment of this thesis requires the presence of certain components of the system.
The system as a whole will consist of 3 components.

For greater clarity, I name each component and will use these names further in the
text. Component “Web service” serves as the main point where the researcher defines
all the required experiment conditions, it is also the place of data collection from these
experiments and their subsequent processing and visualization.“Web service” includes
client and server parts.

The next component of the system is a “Target application” that will be tested.
This part belongs to the researcher, all decisions regarding implementation remain with
them. This component is the producer of data from experiments. These measured data
subsequently will be stored and evaluated in the “Web service”. And accordingly,
the researcher will have access to them through the client part of the “Web service”.

In order to connect “Web service” and “Target application”, it is necessary to
create a mediator that is represented as a “Transfer library”. That library simplifies
sending collected data to the “Web service” API. The library also serves to prepare
consistent data in a predefined format. Therefore, the researcher must include the
“Transfer library” in the code of its “Target application”.

The next step after the design is the implementation. In that part the structure of
the project will be discussed in a greater detail as well as several technical aspects.

As a logical conclusion, the entire system will be tested using the prototype of a
simple “Target application”.

2

2. Analysis

The following chapter presents theoretical fundamentals that are required to understand
our approach to the given task - a platform for researchers and developers that will
simplify the process of collecting and evaluating data from user tests. I would like to
clarify that by “user test” I mean the user research of web or desktop applications.

It describes what User Research is and how those experiments are performed. Then
it analyses existing experiment designs, their advantages, and disadvantages, and ways
to evaluate and visualize data collected during testing. In order to subsequently based
on these data, you could choose the most suitable method of evaluation and also take
into account all the needs of the researcher and implement the most convenient service
for the collection and analysis of user test data.

2.1. User research

User research is method that explores the behavior, motivation and needs of users
in order to obtain suggestions to improve the product or service. According to Mike
Kuniavsky [1], user research is the process of figuring out how people interpret and
use products and services.

2.1.1. The Qualitative and Quantitative dimension

The user researches branches into Qualitative and Quantitative methods. The fol-
lowing Figure 1 illustrates relations between “dimensions” and the types of questions.

Figure 1. Dimensions vs. Questions.

It is crucial to specify the research goal when choosing research method. Simply
speaking, quantitative methods are much better suited for answering the question
“how much”. Qualitative research answers the question “why?”. Currently, it is
common to use a combination of both approaches. This is known as a mixed method.

3

2. Analysis

The purpose of quantitative method is to obtain measurable data for the numerical
motives, opinions and attitudes towards certain behavior. It is important to get enough
data to achieve a statistically significant sample, and therefore we strive to work with
as many participants as possible.

We can divide the measurable data into two types: subjective and empirical (quan-
titative).

∙ Subjective data is gathered by means of questionnaires, such as the post-test
survey using a Likert scale, and audio record of participant’s way of thoughts and
actions. This data represent the self-reported participant subjective ratings for
satisfaction, ease of use, ease of finding information and subjective evaluation of
tested UI.

∙ Empirical data is objective data that can be counted and measured. During
user tests we are able to count the number of the following occurrences:

– Successful Task Rate
Typically, participants will perform a set of planned tasks. The task will
be considered complete if the participants report they have completed the
task goal and the results correspond to the expected. It is also important to
establish clear success criteria for each task and clarify where the participant
should begin the task.

– Critical Errors Rate
Critical errors may happen due to unforeseen consequences, so that target
of the scenario will become unreachable. Wrong data value could be one
of those errors. Essentially the participant will fail to finish the task. The
participant may not even realize that the task goal is incorrect or incomplete.

– Non-Critical Errors
Non-critical errors are errors that are recovered by the participant and do
not result in the participant’s ability to successfully complete the task. These
errors result in the task being completed less efficiently.

– Time On Task
The amount of time it takes the participant to complete the task.

2.1.2. Types of User research methods

1. Moderated in-person
This basic method is used to obtain feedback from live users interacting with
everything from paper prototypes to fully implemented applications in a specially
equipped laboratory.
Usually, the laboratory consists of 2 rooms. In the testing room, there is a com-
puter with a program being tested, a microphone and a camera. In this room
the participant performs tasks, commenting on them aloud, and everything that
happens is recorded including the computer screen and the participant’s voice and
facial expressions during testing. To guide the participant and his psychological
comfort a moderator is co-located with the participant.
The main disadvantage of this method that it requires a lot of time and finances.
Typically, the length of the session is from one hour to 90 minutes and breaks
between sessions up to 30 minutes. On this basis, the researcher will have time to
test from 3 to 6 participants for 1 day. In this case, we work with a small sample
size. Therefore, this method is often combined with others.

4

2.2. Experimental designs

One of the advantage is the ability to decide if participant’s poor performance was
an aberration (sometimes called an “outlier”) or if other end users might perform
the task similarly [2]. And in the case with “outliers” do not take into account
these results.

2. Moderated remote
Participants do not have to travel to the labs, they can deliver results from all
around the world. The disadvantage of that approach is poor ability to control the
environment and other conditions. Screen sharing software allows the moderator
to remotely watch the participant attempts to perform tasks with software or a
website and allows to reveal problems.

3. Unmoderated remote
Just like in the previous case, we can test the UI with participants all around the
world. The researcher can collect a lot of data quickly and for a fraction of the
cost of in-person testing. In many cases, a recording of the participant’s screen
and webcam is available, but there is no way to simultaneously interact with all
participants and there is no way to identify participants who had misunderstood
the task or those who had external problems that affected the results and total
time.

2.1.3. Summary
The resulting application will focus on collecting and evaluating data that can be cal-
culated and estimated, i.e. empirical data (for example, task time, error rates, rating
scales). Unfortunately, collecting empirical metrics require a larger sample size in order
to get tighter confidence intervals (See Section 2.3.1 for details). Consequently, they
are usually conducted using the unmoderated remote mode.

From the previous discussion about user research methods, (See Section 2.1.2 for
details) it is clear that it is not always possible to get rid of data that deviates from
the average. Therefore, it will be always necessary to remember about these cases and
carefully transform the collected values. For instance, log-transformation is used to
properly evaluate task time data.

A more detailed description of the existing methods of data transformation and eval-
uation is provided in the Section 2.3.

2.2. Experimental designs
2.2.1. Variables
At the beginning, it is good to clarify what a variable is and illustrate it on examples.
A variable is an object, event, idea, feeling, time period, or any other type of category
you are trying to measure. Let us focus on two types of variables:

∙ Independent variable - experimental effect/factor which is actively controlled
and manipulated by an experimenter. The independent variable causes some
changes in dependent variables.

∙ Dependent variable - variable being affected by the independent variable.
One the one hand, when testing an interface, the independent variable may be the

age of participants, their experience, as well as test conditions, and more specifically,
the method of interaction or variant of the interface. On the other hand, the measured
data from the experiment (the speed of the job, the number of errors, etc.) is the
dependent variable.

5

2. Analysis

Levels of an Independent Variable

In general, the number of levels of an independent variable is the number of experimen-
tal conditions. If an experiment were comparing 5 types of UI (buttons, menu etc.),
then the independent variable (a type of UI) would have 5 levels.

Let us take a look at an example. There is a product to which we have added few
new features and now we want to check whether it has improved the usability of our
product. Tests with users showed that a new version of the product is really better
compared to the previous one. Only here the problem is that we do not know exactly
why we got such results, what exactly influenced these improvements? And in order to
investigate the cause of the improvement, it is necessary to conduct tests with each new
feature (level) separately and also with all combinations of these features.

It should be mentioned, that in practice many levels are often avoided because with
the addition of the next level the number of tests will increase exponentially.

For instance, 3 new features will require 8 tests: 1 (test with old version) + 3 (each
feature separately) + 3 (combinations of 2) + 1 (combinations of 3). Consequently,
it is advisable to choose only 1 or 2 levels of the testing factor and try to avoid the
combination as far as it’s possible.

2.2.2. Between-subject design

In a between-subjects design, the various experimental treatments such as a part of the
website or a version of the product are tested by different groups of subjects (users).
This allows the subsequent comparison of the levels to be based on the comparison
of independent groups of subjects. The number of user groups (subjects) depends on
the level of the independent variable. For example, if we have 3 levels, then we need 3
disjunctive groups of participants. In case the tasks are longer and there is a probability
that the participants may become tired, this design type is a preferable choice [2].

The following Table 1 illustrates between-subjects design. The table shows the
distribution of participants needed to test 3 different testing criteria (A, B, C). These
criteria may mean tasks or it may be versions of the product, generaly speaking,
it is called level of the factor. The designation P#1 denotes the participant with its
serial number. From the table, it is clear that if we want to test 3 tasks (or product
versions) in groups of 3 people, then we will need 9 participants.

It is important to note that each participant tests only once.

A B C

P#1 P#4 P#7
P#2 P#5 P#8
P#3 P#6 P#9

Table 1. Distribution of participants in between-subject design.

Advantages

∙ Easy extensibility
If after some time the experimenter wants to test another condition, it will be suf-

6

2.2. Experimental designs

ficient to conduct an experiment with another equivalent group and then compare
the results with previous groups.

∙ No learning (carryover) effects
When Task A helps to accomplish Task B it is called a learning effect. We want
to avoid it because usability problems associated with Task B may be missing.
This design softens the learning effects caused by the execution of one set of tasks,
before performing other similar tasks [2].

Disadvantages

∙ Large sample size
The main disadvantage is that design requires a large number of participants to
create any useful and analyzed data. Since each participant is measured only once,
researchers need to add a new subject for each level.

∙ Individual differences
Problem is that it is impossible to maintain homogeneity across the groups and
this can skew data. To solve this problem, the researcher may use the random
distribution of participants into groups or previously prepare equivalent groups.

2.2.3. Within-subject design
A within-subjects design differs from a between-subjects design in such a way that
the same subjects perform tests at all levels of the independent variable and then their
performance for each experiment is compared. In other words, the within-subject design
uses the same participants with every condition of the research, including the control
group. The control group does not receive any new conditions or receives standard
conditions that can be understood as baseline and it is used to compare groups and
assess the effect of researching subject.

The Table 2 also, shows the distribution of participants for testing 3 tasks or designs.
Unlike the previous design, only one group is required.

A B C

P#1 P#1 P#1
P#2 P#2 P#2
P#3 P#3 P#3

Table 2. Distribution of participants in within-subject design.

Advantages

∙ Small sample size
The main benefit is that it requires a fewer number of participants. It also leads
to the use of fewer resources.

∙ Individual differences are controlled
Within-subject design can reduce the probability of errors associated with indi-
vidual differences between participants. In the context of between-subject design,
participants are randomized in the experiment, so that significant differences be-
tween the groups can be observed. With within-subject design, participants are

7

2. Analysis

in the same conditions, so the results will be weaker depending on the individual
differences between them.

Disadvantages

∙ Order effects
There are several reasons for the occurrence of order effects. The most popular
cause is the practice. This means that the participant warms up at the first task
and performs it longer than the subsequent ones, which feel more familiar to him
[3].
Another reason is simple - fatigue. This is demonstrated by a decrease in the
participant’s performance by the end of the experiment.
Also, any other environmental condition can affect the performance of the partic-
ipant.
The researcher can reduce the order effects by alternating the order of tasks with
the condition that each possible sequence must be represented in approximately
equal numbers of subjects. This is called counterbalancing.
Its essence lies in the fact that the order of treatment varies from participant to
participant.
The simplest example contains only two possible conditions: A and B. Then
the researchers may want to test all the sequences of those conditions. So that
one group is tested with condition A, followed by condition B, and the other is
tested with condition B followed by condition A. What if we have 3 conditions?
The process is exactly the same, so for all sequences the researcher will need 6
groups. For 4 conditions - 24 groups, for 5 - 120 and so on. As you can see,
counterbalancing becomes rather complicated with each new condition (level of
an independent variable). To be more precise, the number of groups is always
equal to the factorial of the number of conditions.
Fortunately there are incomplete versions of that technique, the so-called com-
promise, designed to balance the strengths of counterbalancing with financial
and practical reality. One such incomplete counterbalancing is the Latin Square
method. Latin square is an 𝑛 x 𝑛 array filled with 𝑛 different symbols, each occur-
ring exactly once in each row and exactly once in each column.

Group 1 A → B → C → D → E
Group 2 B → C → D → E → A
Group 3 C → D → E → A → B
Group 4 D → E → A → B → C
Group 5 E → A → B → C → D

Table 3. Example of Latin Square for 5 conditions.

The Table 3 illustrates the Latin Square for 5 conditions. And as you can see,
each sequence (A → B, B → C, C → D etc.) repeats exactly 4 times in this case.

∙ Carryover effects
Carryover effect or learning effect was described in the previous design. It can lead
to results distortion because the certain order of tested conditions can actually
affect the behavior of the participany or cause a false response.
The Carryover effect is also solved using counterbalancing. Latin square method
copes well with the order effect, however, there is still weakness in the carryover

8

2.2. Experimental designs

effect.
The preceding paragraph describes the Latin square method, and if we look at the
Table 3, we can notice that A always precedes B, and this means that anything
in condition A that potentially affects B will affect all but one of the sequences.
The same situation with A and E.
To prevent this effect, it is recommended to use a balanced Latin Square method,
which guarantees a reduction of carryover effect risks. The approach for an even
number of conditions is slightly different from the odd ones. For experiments
with an even number of conditions, the first row of the Latin Square will follow
the formula 1, 2, 𝑛, 3, 𝑛 − 1, 4, 𝑛 − 2..., where 𝑛 is the number of conditions. For
subsequent rows, you add 1 to the previous value. If the addition of 1 leads to a
number greater than the number of conditions, then this number will turn into 1.
It would be better to consider this with an example.

Group A 1 → 2 → 6 → 3 → 5 → 4
Group B 2 → 3 → 1 → 4 → 6 → 5
Group C 3 → 4 → 2 → 5 → 1 → 6
Group D 4 → 5 → 3 → 6 → 2 → 1
Group E 5 → 6 → 4 → 1 → 3 → 2
Group F 6 → 1 → 5 → 2 → 4 → 3

Table 4. Example of balanced Latin Square for 6 conditions.

In this example [Table 4], it is clear that 2 follows 1 just once, as well as pairs
2 → 3, 3 → 4 and so on. This allows the researcher to exclude any sequence that
may affect the carryover effect.
In the case of an odd number of conditions, two tables are required, the first is
composed using the previous algorithm, and the second is its mirror image.

1 2 5 3 4
2 3 1 4 5
3 4 2 5 1
4 5 3 1 2
5 1 4 2 3

4 3 5 2 1
5 4 1 3 2
1 5 2 4 3
2 1 3 5 4
3 2 4 1 5

Table 5. Example of balanced Latin Square for 5 conditions.

With this design, every single condition follows another two times, and statistical
tests allow researchers to analyse the data [4].

∙ More difficult extensibility
Suppose that an experimenter will want to test a new version of the product in a
year. Then, in the case of within-subject design, he will need to either find a new
group of participants and test previous versions of the product, including a new
one or to find an old test group and test only the new version.

9

2. Analysis

2.3. Evaluating methods
Futher, two evaluation methods: the confidence intervals and ANOVA will be analyzed.
Both methods are used to test statistical hypotheses. That is, the answer to the ques-
tion: is there a significant difference between two (or more) approaches to the solution
of some problem.

ANOVA works only with data which has normal distribution and returns just one
value that indicates that one group is not equal to the other group [5]. It does not
provide more detailed information.

However, it is always appropriate to add the visibility in addition to the available
calculations; for this purpose, the confidence intervals are more suitable. They are
easily visualized using a box-and-whiskers or error bars plots.

2.3.1. Confidence intervals
Introduction

Estimating the results of experiments, we only have data from a certain sample, but we
want to generalize them to the whole population (specific target audience), to which
unfortunately we do not have access. Also, we need to know how accurate our values
are because the sample size directly affects the accuracy of the results. For this, we
will find a range of values in which an unknown population parameter will be with a
specified probability. These ranges are named confidence intervals.

The confidence interval can be regarded as an indicator of the measurement accuracy.
Also, the interval is a measure of the stability of measurements, that is, if you repeat
the measurements (experiment), an indication of how close the obtained value will be
in comparison with the original value.

Figure 2. Confidence interval components. Source:[1]

The confidence interval is equal to 2 Margins of errors, and a margin of error is
equal to about 2 Standard errors (for 95% confidence) [6]. This is shown in Figure 2.
Formulas and a detailed explanation of all these terms will be presented later.

Let us look at the properties that can affect the width (accuracy) of the confidence
intervals.

10

2.3. Evaluating methods

1. Confidence level
The confidence level indicates the probability that an unknown population value
will be covered by a confidence interval. The typically used values are 90% 95%
and 99%. That is, if we perform the test (measurement) on the same user popu-
lation 100 times, it was only 90, 95, 99 (depending on the confidence level) times,
when the mean value will be within the given confidence interval. The higher the
confidence level, the wider the interval we get.

2. Variability
This is the difference in the values of a characteristic for different units for the
whole population. High variability generate wider confidence intervals. In order
to measure variability, the standard deviation is used.

3. Sample Size
The sample size is one of the few things on which the researcher can affect. There
is an inverse square root relationship between confidence intervals and sample
sizes. If you want to cut your margin of error in half, you need to approximately
quadruple your sample size. As the sample size decreases, the confidence intervals
get wider.

Interpretation of confidence intervals

For rapid verification of statistical significance, the overlap of confidence intervals is
used. Statistical significance is used to determine whether the null hypothesis should
be rejected or retained.

The null hypothesis is a hypothesis that is tested for consistency with available
sample (empirical) data. Often, as a null hypothesis, there are hypotheses about the
absence of relationships or correlation between the investigated variables in two or
more samples. If the null hypothesis is rejected, then an alternative hypothesis is
confirmed, which is a logical negation of the null hypothesis. The null hypothesis is
rejected if the 𝑝-value is less than a predetermined level (alpha 𝛼). Alpha is called the
significance level, and is the probability of rejecting the null hypothesis given that it is
true. It is usually set at or below 5%.

Next we will look at 3 possible options for the location of the confidence intervals.

1. No overlap

This variant is considered to be the best
possible case scenario, because if the in-
tervals do not overlap then you can be
at least 95% confident that difference is
statistically significant.

11

2. Analysis

2. Large overlap

If there is a large overlap, then the dif-
ference is not significant (at the p <.05
level).

3. Some overlap

In case of a small overlap, it can not be
said for sure that the difference is sta-
tistically significant. It is also wrong to
draw the opposite conclusion. Usually,
this indicates problems with the con-
figuration of the test and with the re-
ceived data. It’s recomended to repeat
the user experiment or it is also possible
to calculate the confidence intervals for
the difference and make a comparison.

Discrete and Continuous Values

To calculate the confidence interval, the first thing we need is to determine the type of
data: continuous or discrete.

∙ Continuous
Continuous data are metrics like rating scales, task-time, revenue, weight, height
or temperature. For instance, time could be 23.45 seconds. We consider the rating
scales (Likert scale as well) as continuous values.

∙ Discrete
Variables such as number of people are called discrete variables since the possible
scores are discrete points on the scale (could be 6 people, but not 4.53 people).
Completion rate (or Successful Task rate) and Error rate are discrete values as
well.

Then to compute a confidence interval, we need to know:

∙ The mean (for continuous data) or proportion (for discrete data)
The mean describes the middle or most typical value. To get this average value,
you simply divide the sum of all values by their number.

𝑥 =
∑︀

𝑥

𝑛
or 𝑝 = 𝑝

𝑛
(1)

12

2.3. Evaluating methods

where

𝑥 - the mean
𝑥 - data values
𝑛 - the sample size
𝑝 - the proportion
𝑝 - the number of participants who successfully completed the task (or respond

with "yes" or another positive answer)

∙ The sample standard deviation
The standard deviation describes how far each value is from the mean. You can
think of the standard deviation as the average difference between each value and
the mean.

𝑆𝐷 =

√︃∑︀
(𝑥 − 𝑥)2

𝑛 − 1 (2)

where

𝑆𝐷 - the standard deviation
𝑥 - data values
𝑥 - the mean
𝑛 - the sample size

∙ Confidence level
You can choose from the most common options: 90%, 95% or 99%. But it is
important to bear in mind that the confidence level can affect the width of the
interval.

CI for Continuous Values

The best approach for constructing a confidence interval for continuous data is to use
the t-distribution. We could look at rating scales as continuous values, in case of using
scales from 0 to 100 points.

The t-distribution is like a normal distribution (also called a z-distribution) except
that it takes the sample size into account. The t-distribution will provide the best
interval regardless of the sample size.

The formula for the t-confidence interval takes the following form:

𝑥 ± (𝑡(1− 𝛼
2)⏟ ⏞

Critical value

× 𝑆𝐷√
𝑛⏟ ⏞

Standard error

)

⏟ ⏞
Margin of error

(3)

where

𝑥 - the mean
𝑡(1− 𝛼

2) - t-critical value from the t-distribution for 𝑛 − 1 degrees of freedom and the
specified level of confidence

𝑆𝐷 - the standard deviation
𝑛 - the sample size

13

2. Analysis

To find the t-critical value, we need to know 𝛼 (alpha) and the degrees of freedom.
Alpha is the level of significance used in the study, typically 0.05. It is also 1 - confidence
level, which is typically 95% (1 - 0.95 = 0.05). The degrees of freedom (df) equals to
𝑛 − 1.

An abbreviated t-table [Appendix A] is used to find the critical value. We should
find column df and move to the right in the table until we reach our desired significance
level.

CI for Discrete Values

Use the adjusted-Wald binomial confidence interval for completion/error rates. The
adjusted-Wald interval (also called the modified Wald interval), provides the best cov-
erage for the specified interval when samples are less than 150.

𝑝𝑎𝑑𝑗 ± 𝑧(1− 𝛼
2) ×

√︃
𝑝𝑎𝑑𝑗(1 − 𝑝𝑎𝑑𝑗)

𝑛𝑎𝑑𝑗
(4)

where

𝑝𝑎𝑑𝑗 - the adjusted proportion,

𝑝𝑎𝑑𝑗 =
𝑥 + 𝑧2

2
𝑛 + 𝑧2 =

𝑥 + 1.962

2
𝑛 + 1.962 ≈ 𝑥 + 2

𝑛 + 4

𝑥 - the number of participants who successfully completed the assignment
𝑛 - the sample size
𝑧(1− 𝛼

2) or 𝑧 - the critical value of the normal distribution (1.96 for 95%)
𝑛𝑎𝑑𝑗 - the adjusted sample size 𝑛 + 𝑧2

CI for Task Time

Task-time data can be divided into 2 main cases, which in their own way affect the
calculation of confidence intervals. Each case will be considered separately below.

∙ Positively skewed data
Task time data has a tendency to be positively skewed (see Figure 3). Due to
the fact that the task-time data is positively skewed it should be log-transformed
prior to using the t-confidence interval (see Section 2.3.1 for details). For confi-
dence intervals using task times you should perform a log transformation on the
raw values, and then compute the t-interval method, this means calculating the
average mean and standard deviation of the logarithmic times. Finally, we get a
logarithmic confidence interval so we need to transform it back by exponentiating
the values. This method corrects the skew in task time data to generate accurate
intervals.
The log transformation, a widely used method to address skewed data, is one of
the most popular transformations used in biomedical and psychosocial research.
For transformation simply take a logarithm of every task-time value 𝑦 = ln(𝑥).
Another popular use of the log transformation is reducing the variability of data,
especially in data sets that include “outlyin” observations.

14

2.3. Evaluating methods

a) A continuous distribution with a pos-
itive skew.

b) A distribution with a very large pos-
itive skew.

Figure 3. Examples of positive skew. Source: [7]

∙ Large Sample size (> 25)
For large sample task-time data the median is the best point estimate of the
middle task time, so it is recommended to compute a confidence interval around
the median using the binomial distribution method.

𝑛𝑝 ± 𝑧(1− 𝛼
2) ×

√︁
𝑛𝑝(1 − 𝑝) (5)

where

𝑛 - the sample size
𝑝 - the propotion (in our case the median = 0.5)
𝑧(1− 𝛼

2) - the critical value from the normal distribution (1.96 for 95% confedence
level)

The results of the equation are rounded up to the next integer and the boundary
of the confidence interval is between the two values in the ordered data set.

CI for different designs

To make a better comparison of data from experiments and to determine if there is
a significant difference between the mean values, the confidence interval around the
difference can be calculated.

This interval not only confirms (or rejects) the presence of a significant difference,
but also shows the size of this difference (the effect size). It should be noticed that
different approaches are used for different designs (BSD and WSD) [6]. If we are
talking about Within-subject design (i.e., the same group of participants goes through
all the compared methods), then calculations are made for the difference of values from
each participant. In case of a Between-subject design (i.e., different groups for each
compared method), the difference of confidence intervals for each independent group is
calculated.

We also divide the data into continuous (such as questionnaire data or task times)
and discrete (such as a task completion rate or conversion rate).

15

2. Analysis

Formulas of confidence interval around the Difference
∙ Between-subject design

∘ Continuous data

(𝑥1 − 𝑥2) ± 𝑡𝑎 ×

√︃
𝑠2

1
𝑛1

+ 𝑠2
2

𝑛2
(6)

where

𝑥1 and 𝑥2 - the means from group 1 and 2
𝑠1 and 𝑠2 - the standard deviations from groupes
𝑛1 and 𝑛2 - the sample sizes of groupes
𝑡𝑎 - the critical value from the t-distribution for n-1 degrees of freedom

∘ Discrete data

(𝑝𝑎𝑑𝑗1 − 𝑝𝑎𝑑𝑗2) ± 𝑧𝛼

√︃
𝑝𝑎𝑑𝑗1(1 − 𝑝𝑎𝑑𝑗1)

𝑛𝑎𝑑𝑗1
+ 𝑝𝑎𝑑𝑗2(1 − 𝑝𝑎𝑑𝑗2)

𝑛𝑎𝑑𝑗2
(7)

where

𝑝𝑎𝑑𝑗1 and 𝑝𝑎𝑑𝑗2 - the adjusted proportion for sample 1 and 2
𝑛𝑎𝑑𝑗1 and 𝑛𝑎𝑑𝑗2 - the adjusted sample sizes of samples
𝑧𝛼 - the critical value from the normal or z-distribution

∙ For within-subjects

∘ Continuous data

𝐷 ± 𝑡𝑎 × 𝑆𝐷𝐷√
𝑛

(8)

where

𝐷 - the mean of the results difference
𝑆𝐷𝐷 - the standard deviation of the difference
𝑛 - the sample size
𝑡𝑎 - the critical value from the t-distribution for n-1 degrees of freedom

∘ Discrete data

(𝑝2𝑎𝑑𝑗 − 𝑝1𝑎𝑑𝑗) ± 𝑧𝛼

√︃
(𝑝12𝑎𝑑𝑗 + 𝑝21𝑎𝑑𝑗) − (𝑝21𝑎𝑑𝑗 − 𝑝12𝑎𝑑𝑗)2

𝑁𝑎𝑑𝑗
(9)

where

𝑝1𝑎𝑑𝑗 - 𝑚𝑎𝑑𝑗

𝑁𝑎𝑑𝑗

𝑝2𝑎𝑑𝑗 - 𝑟𝑎𝑑𝑗

𝑁𝑎𝑑𝑗

𝑝12𝑎𝑑𝑗 - 𝑏𝑎𝑑𝑗

𝑁𝑎𝑑𝑗

𝑝21𝑎𝑑𝑗 - 𝑐𝑎𝑑𝑗

𝑁𝑎𝑑𝑗

𝑧𝑎 - the z critical value for the level of confidence (95%)

The variables m, r, b and c are explained in the Table 6.

16

2.3. Evaluating methods

Desing B pass Design B fail Total

Design A pass 𝑎𝑎𝑑𝑗 𝑏𝑎𝑑𝑗 𝑚𝑎𝑑𝑗

Design A fail 𝑐𝑎𝑑𝑗 𝑑𝑎𝑑𝑗 𝑛𝑎𝑑𝑗

Total 𝑟𝑎𝑑𝑗 𝑠𝑎𝑑𝑗 𝑁𝑎𝑑𝑗

Table 6. Results of experiment.

Recapitulation

In this subsection I would like to repeat the most important points from the previous
parts.

∙ The design of the experiment can be Between-subject and Within-subject (see
Section 2.2.2 and 2.2.3);

∙ The data is divided into continuous, discrete and the other (string);
∙ When calculating the confidence interval for continuous data, the mean is used

and for discrete data proportion is used (see equation (1));
∙ Task time is continuous data and typically is positively skewed, so it is recom-

mended to apply a log transformation to data and only then to calculate the
confidence intervals using the equation (3);

∙ In case if the sample size of the task time is more than 25, it is recommended to
calculate the CI around the median using the equation (5);

∙ For discrete data is used the Adjusted-Wald confidence interval (see equation (4));
∙ The confidence intervals are easily visualized on boxplots;
∙ The confidence interval around the difference helps us to distinguish between trivial

differences and significant differences that users would probably notice;
∙ Also, the CI around the difference is used in order to calculate the effect size;
∙ In case of experiment with the Between-subject design CI around the Difference

is generated using values (mean, standard deviation) for each independent group
(see equation (6) for continuous data and equation (7) for discrete);

∙ In case of experiment with the Within-subject design CI around the Difference
is calculated using values of difference (see equation (8) for continuous data and
equation (9) for discrete);

2.3.2. Analysis of Variance

There is another method for studying the dependencies in data from experiments, or
more specifically, for analyzing the statistical significance of the differences between
means of independent groups. This method is called Analysis of Variance or can also
be found the abbreviation ANOVA. It determines if an independent variable (the test
conditions or factors) has a significant effect on a dependent variable (the measured
data) [8]. ANOVA has several types of settings depending on the test conditions (num-
ber of independent variables, design of the experiment):

∙ One-way
Used in tests with only one independent variable (factor) and several levels of this
factor.

17

2. Analysis

∙ Two-way
There are explore two independent variables in the experiment. Each of the factors
has 2 or more levels.

∙ Repeated Measures ANOVA
Essentialy, it’s one-way ANOVA, but for experiments with within-subject design.

We will focus on two types: one-way ANOVA and repeated measures ANOVA.
Specifically, ANOVA is used for null hypothesis testing. The null hypothesis, in this

case, has approximately the following formulation:

𝐻0 : 𝜇1 = 𝜇2 = 𝜇3 = · · · = 𝜇𝑘

Which is equivalent to the following assertion: “There is no difference between means
of independent groups”. Then we use ANOVA to decide whether to accept the null
hypothesis or reject it, thereby accepting an alternative hypothesis.

The ANOVA produces an 𝑝-value and 𝐹 -statistic, on the basis of which the re-
jection or acceptance of the hypotheses is resolved. Before the experiment, the null
hypothesis is first determined and the threshold value, the significance level, is se-
lected. The most frequently used value is 5% (0.05) and denoted as 𝛼. This value
could be considered as the inverse of the confidence level, so if significance level is 10%
(0.1), the corresponding confidence level is 90%. The significance level represents the
probability of an error. It means, there is always a 5% (depending on the significance
level) risk of erroneous interpretation of the results.

Once we get the value we can make a decision about the null hypothesis in two possible
scenarios:

∙ The 𝑝-value is less or equal than selected significance level
Then the hypothesis test is statistically significant. The null hypothesis is re-
jected.

∙ The 𝑝-value is more than selected significance level
Then the null hypothesis is accepted. There are no significant differences.

It is very important to keep in mind that the results of interpreting the confidence
intervals as well as the results of the 𝑝-value comparison should agree. For instance,
if the difference is significant, then the mean of the null hypothesis (specifically, the
mean of one independent group) is contained in a particular confidence interval. And
accordingly, the 𝑝-value will be less than the significance level, but only in case that
the confidence level and the significance level correspond.

One-way ANOVA

In order to obtain more accurate results, it is highly recommended to comply with all
or most of the following data requirements for one-way ANOVA test:

1. The dependent variable (or the collected data) should be continuous. It may
be the execution time, the IQ level, weight and so on.

2. Participants of the experiment should be in different independent groups.
They can be separated by personal characteristics (age, profession, practice) or
by conditions of the test (factors). It corresponds to the previously described
Between-subject design (subsection 2.2.2). If the data does not satisfy this crite-
rion, then it’s needed to perform another statistical test, for example, Repeated
measures ANOVA.

18

2.3. Evaluating methods

3. Also, gathered data should not contain significant outliers. The term “outlier”
was mentioned earlier. Their presence in the data may reduce the reliability of
results. It is extremely important to determine possibly very different values.

4. ANOVA only expects input data (the dependent variable) to be approximately
normally distributed. This applies to each category (group) of the independent
variable. This criterion is less strict, unlike the previous ones. Even if it’s slightly
violated, it is still possible to receive valid results.

Below is a Table 7 containing all the formulas and concepts needed to calculate
one-way ANOVA test.

SS DF MS F

Between
∑︀𝐺

𝑔 𝑛𝑔 × (𝑥𝑔 − 𝑥𝐺)2 𝑘 − 1 𝑆𝑆𝐵
𝑘−1

𝑀𝑆𝐵
𝑀𝑆𝑊

Within
∑︀𝐺

𝑔 𝑛𝑔 × (𝑥 − 𝑥𝑔)2 𝑁 − 𝑘 𝑆𝑆𝑊
𝑘−1 -

Total 𝑆𝑆𝐵 + 𝑆𝑆𝑊 𝑁 − 1 - -

Table 7. One-way ANOVA calculations.

where

𝑆𝑆𝐵 - the Sum of Squares Between groups
𝑆𝑆𝑊 - the Sum of Squares Within groups
𝑀𝑆 - the Mean Square
𝐷𝐹 - the degrees of freedom
𝐹 - the 𝐹 -statistic
𝑁 - the total sample size, total number of participants
𝑘 - the number of independent groups
𝑛𝑔 - the number of participants in each group, 𝑔 ∈ 1, 2..𝑘
𝑥 - the individual value in group 𝑔, 𝑔 ∈ 1, 2..𝑘
𝑥𝑔 - the mean of the each group, 𝑔 ∈ 1, 2..𝑘
𝑥𝐺 - the mean of all values

After the F-statistic calculation, we can figure out the 𝑝-value. In order to do this,
we need to use the 𝑓 -distribution table that can be found in Appendix B. In that
table, the rows represent denominator degrees of freedom (𝐷𝐹𝑊 𝑖𝑡ℎ𝑖𝑛) and the columns
represent numerator degrees of freedom (𝐷𝐹𝐵𝑒𝑡𝑤𝑒𝑒𝑛). Also, the table values depend
on the level of significance (alpha). Example of notation the critical F-ratio at the
significance level (alpha) = 0.05, with 3 independent groups and 12 total participant’s
number is 𝐹 (0.05, 2, 9) = 4.2565.

To calculate the 𝑝-value, there is large number of calculators and functions which
just need to specify several parameters: the significance level, the obtained F-statistic
value, the DF numerator and DF denominator. It is also possible to make a decision
based on comparison of the F-statistic values rather than 𝑝-values.

19

2. Analysis

Then we simply compare the critical F-ration and calculated F-statistic. If F-statistic
is equal to or larger than this critical F-value, then there is the significant difference at
that level of probability (alpha), therefore, 𝑝 < 𝛼.

Repeated measures ANOVA

The repeated measures ANOVA is almost identical to the one-way ANOVA, except one
additional calculation must be performed to account for shared variability. The shared
variability arises as a result of within-subject design when the same participant takes
part in several testing groups.

The following Table 8 is very similar to the one-way ANOVA calculations table. Many
of the values described in the previous table are also found in this table, so the descrip-
tion will be provided only for the new ones.

SS DF MS F

Between
∑︀

(
∑︀

𝑥𝑖)
2

𝑠 − 𝑇 2

𝑁 𝑘 − 1 𝑆𝑆𝐵
𝑘−1

𝑀𝑆𝐵
𝑀𝑆𝐸𝑟𝑟𝑜𝑟

Within
∑︀

𝑥2 −
∑︀

(
∑︀

𝑥)2

𝑠 𝑁 − 𝑘 - -

Subjects
∑︀

(𝑅𝑗)2

𝑘 − 𝑇 2

𝑁 𝑠 − 1 - -

Error 𝑆𝑆𝑊 − 𝑆𝑆𝑆𝑢𝑏𝑗𝑒𝑐𝑡𝑠 𝐷𝐹𝑊 − 𝐷𝐹𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠
𝑆𝑆𝐸𝑟𝑟𝑜𝑟
𝐷𝐹𝐸𝑟𝑟𝑜𝑟

-

Total 𝑆𝑆𝐵 + 𝑆𝑆𝑊 𝑁 − 1 - -

Table 8. Repeated measures ANOVA calculations.

where
𝑠 - the number of participants in group (the same number in each group is

assumed)
𝑇 - the sum of all values,

∑︀
𝑥𝑖, 𝑖 ∈ 1, 2, ..𝑁

𝑥 - the individual value in group 𝑔, 𝑔 ∈ 1, 2, ..𝑘
𝑅𝑗 - the sum of values for each subject, =

∑︀
𝑟𝑖, 𝑖 ∈ 1, 2, ..𝑘, 𝑗 ∈ 1, 2, ..𝑠

The principle remains the same: calculate the F-statistic, then compare it with the
critical value from the 𝑓 -distribution table [Appendix B] and make a conclusion,
accept or disprove the null hypothesis. In this case the value of 𝐷𝐹𝐵𝑒𝑡𝑤𝑒𝑒𝑛 is used as
the denominator for degrees of freedom and the 𝐷𝐹𝐸𝑟𝑟𝑜𝑟 value - as the numerator
for degrees of freedom.

2.4. Summary
In this chapter, two basic statistical methods for evaluating the collected data from
user tests were analyzed. One of the methods involves confidence intervals, the other

20

2.4. Summary

is the ANOVA test. In essence, these two methods are equivalent to the problem of
determining a significant difference.

The confidence interval produces an information about a range of values that can be
graphically represented. This range can contain the mean value of the null hypothesis
with a certain degree of probability (the confidence level) defined in advance. This
information allows us to draw conclusions about the statistical significance.

𝑃 -values, however, do not provide such important information as the size of the
difference or direction of the effect. Confidence intervals are able to cope better with
this problem, since they contain more useful information. Another key property of the
confidence interval is that it takes into account the information at the measurement
stage. For example, an interval contains values in the original data units without any
transformations. In addition, there are several factors affecting the accuracy (width)
of confidence intervals (such as sample size, standard deviation in groups, etc.) Thus,
the representation of the confidence interval tells us a lot, more than just the statistical
significance. In contrast to 𝑝-values, confidence intervals denote the direction of the
impact being investigated. All the work with confidence intervals is to control whether
they include a certain value (typically, the mean of the compared group) or not. Another
detail to consider is that there is a possibility that the result may be significant with a
larger sample.

In conclusion, it should be emphasized that 𝑝-values and confidence intervals are not
contradictory statistical concepts. Confidence intervals can be calculated from 𝑝-values
and vice versa. These two concepts complement each other.

Summing up the foregoing, we come to the conclusion that with all the advantages and
disadvantages, the best approach to evaluate and visualize results of user experiments
involves using confidence intervals.

21

3. Design

This section describes the concept of the future system, its main parts, the set of
functions, the methods of communication between components, and discusses the ar-
chitecture of the web service.

3.1. System overview

In the introduction of this thesis, the structure of the future system was mentioned.
Let us assume a hypothetical researcher or a developer that wants to compare the

efficiency of solutions of his software product. It might be an arrangement of UI ele-
ments, different shapes or colors, or any other solution which can affect the performance
efficiency of tasks performed by participants. This software product is essentially a
“Target application”.

So if the researcher decides to conduct a research with the real users (participants),
he can use the “Web service” in order to make a comparison or to simply keep a
record of the experiments and their data. On this site the researcher will register and
create a new experiment where he can describe all the necessary data, for example, the
variables that he is going to study. If we talk about efficiency, it is logical to assume
that the researcher will be interested in the time spent on the task and the number of
errors made while performing it.

But this is not enough for a functioning system, for its completion there is a lack of
a bridge between participants and the “Web service”. A “Transfer library” will
solve this issue when the researcher includes it in the code of his product. This library
knows how, in which form, and where to send data samples from the participants of
the experiment. After the researcher sets up both points for successful communication
with each other, he can conduct user tests and then access this data through the “Web
service” interface.

Figure 4 illustrates all the components and their interconnections. Please note that
this is just an abstract view of the system, many components are simplified for better
perception.

Web service

The “Web service” component includes both client and server parts. And all the
business logic as well as access to the database is performed on the server side. In the
Figure 4, I semantically divided the controllers into an HTML controller and an API
controller. The HTML controller receives requests from the browser and as a response
sends a corresponding page containing data from the database, if any is available. The
API controller is primarily designed to communicate with the “Transfer library”,
that is, for receiving and further saving the collected data into the database. So that
after the experiments, the researcher has the opportunity to work with the collected
data through the client part of the web service.

23

3. Design

Figure 4. System components diagram.

Target application

This is a completely different web or desktop application with its own web server and
hosting on which the code of the target application is located. The target application is
a subject of testing, the participant interacts with it, thereby producing data for later
analysis. This application measures the execution time, the number of errors, and all
sorts of other variables that the researcher wants to work with.

Transfer library

This is a single JavaScript or Java file that is included in the code of the “Target
application” and is used to transfer data to the “Web service” server. Basically, it
is a small library that provides an API to communicate with the server.

3.2. Architecture comparison

Before designing a web service it is very important to choose a right architecture that
would fit project’s requirements. I will discuss 2 technologies: REST and SOAP. Each
protocol has certain advantages and equally problematic disadvantages. The choice
between REST and SOAP should be based on the individual characteristics of the
application. Exactly these requirements of the system in connection with the pros and
cons of the two solutions will be considered below.

Before I go any further, it is important to clarify that it is not correct to compare
REST and SOAP directly, although they both have some similarities in the use of the
HTTP protocol, SOAP itself is a protocol while REST is an architectural style. Both
technologies rely on well-defined communication rules that must be followed in order
to successfully transmit information.

Simple Object Access Protocol (SOAP)

SOAP actively uses exclusively XML to encode requests and responses, as well as strict
data typing, which ensures their integrity during the transfer between the client and

24

3.2. Architecture comparison

the server.
In 1998, Microsoft released SOAP as a replacement for older technologies such as

the Distributed Component Object Model (DCOM) and the Common Object Request
Broker Architecture (CORBA). These technologies were based on a binary message
and therefore were not successful on the Internet, in contrast to the XML that is used
by the SOAP [9]. Another benefit is that SOAP passes through the firewall without
problems, while other distribution systems (for example, DCOM) are often filtered by
firewalls.

SOAP can be used with any application layer protocol: SMTP, FTP, HTTP, HTTPS,
etc. However, its interaction with each of these protocols has its own characteristics,
which must be defined separately. The message transmission is often used over the
HTTP protocol.

The main characteristic of SOAP is that it is highly extensible using WS-* speci-
fications when it really makes sense, for example WS-Security, WS-Addressing, WS-
Transfer, WS-Trust and others [9].

SOAP is always used in conjunction with WSDL file, which provides a definition of
how the web service works.

Representational State Transfer (REST)

The term REST was introduced in 2000 by Roy Fielding, one of the authors of the
HTTP protocol. REST provides a lighter weight RPC (Remote Procedure Call) al-
ternative. Systems supporting REST are called RESTful-systems. Unlike web services
based on SOAP, there is no official standard for the RESTful web API.

However, there are six mandatory restrictions for building distributed RESTful ap-
plications, such as client-server architecture, statelessness, cacheability, layered system
and so on [10].

If the service application violates any of these restrictive conditions, this system
cannot be considered RESTful.

To obtain information and also modify the resources, REST uses the URL approach.
The REST architecture is installed on the HTTP protocol and uses existing methods
(GET, POST, PUT, DELETE etc.) for resource management, which perfectly match
CRUD (Create-Read-Update-Delete) operations.

Comparison

∙ SOAP is an XML-based protocol, which means that all requests and responses
will only be transmitted to XML, REST does not have a strictly defined message
format, it supports ASCII, XML, JSON, and any other formats recognized by
both the client and the server. In addition, there are no built-in data typing
requirements in the REST model. As a result, packets of requests and responses
in REST are much smaller than the corresponding SOAP packets and, due to this,
they are processed faster and easier.

∙ SOAP uses HTTP as a transport protocol, while REST is based on it. This means
that all existing HTTP-based workflows, such as server-side caching, scaling, etc.
continue to work in the REST architecture but for SOAP external tools is needed.
Instead of this SOAP services have the additional ability to work with any other
transport layer protocol instead of HTTP. Also from a developer perspective,
REST requests are generally easier to formulate and understand, since they use
existing and well-understood HTTP interfaces.

25

3. Design

∙ Basic concept of REST is based on the resources, while SOAP uses interfaces
based on objects and methods. The SOAP interface could contain an almost
unlimited number of methods. The REST interface, on the other hand, is limited
to four possible operations that correspond to the four HTTP methods. The SOAP
request is always POST and often only at one endpoint, so all the information
about the desired response of the server is contained in the request body. On the
other hand, to achieve the same goal, REST uses the HTTP method, the URL,
and the body of the request.

∙ SOAP architecture is language, platform, and transport independent, different
from REST, which requires use of HTTP.

∙ SOAP provides significant pre-build extensibility in the form of the WS-* stan-
dards while REST does not. It is possible to provide similar functionality using
third-party solutions.

∙ One of the most important SOAP features is built-in error handling. If there is a
problem with your request, the response will contain error information that can
be used to fix the problem. On the other hand REST uses standard HTTP code
statuses to define error types.

Based on the above arguments, I will implement the “Web service” and the “Trans-
fer library” using REST architecture. Since the API communication in this project
is quite simple and its calls will come from the JavaScript language, it will be appro-
priate to use the JSON data format as well as the HTTP protocol which has a lot of
convenient features for this particular case.

3.3. Web service structure

In this section functionality of the biggest component (“Web service”) will be discussed.
The application is intended to conveniently set up the experiment definition. Each user
of the system will have the possibility to register in the system, login to the system,
and create a new experiment. All aspects discussed in the analysis chapter will be used
in the experiment definition as well as in calculations. These include the experimental
design type, the data type, and their distribution.

Of course, if there is a research group instead of one researcher, then the system can
be used by several users through one account. Therefore, the experiment definition
contains some additional fields for description. It helps in the future to quickly recall
details and goals of certain parts of the experiment definition.

Usually, the experiment consists of two or more logically separated parts: the intro-
ductory part which is designed to collect general information about the participant, the
main part of the experiment itself, and the final part of the post-test questionnaire.
Each part will have its own unique variables. The age, the gender, the experience in
the particular area could be present in the intro part, whereas the main part may have
the task time. It is important to note that all values of the variables of one part will
be created, sent and stored together, if we are talking about age and gender variables,
then they will be a pair of values.

It is required to collect data after determining the experiment. When all tests with
participants are conducted, the researcher may want to stop gathering new data which
usually happens during the remote testing. To make this possible it is necessary to
have at least three states: new, open and closed, where new is the initial state. It is not

26

3.4. Entity relationship diagram

difficult to imagine a situation in which the researcher notes an error in the experiment
definition only after obtaining the first samples of data. In this situation it would be
suitable to change the state from open to edit, thereby prohibiting the experiment from
receiving new data and allowing to edit its definition. Therefore experiment’s initial
state can be edit state instead of new. And what if, after the changes in the definition
of the experiment, all data obtained up to this point will lose its meaning. There are
at least 3 ways out of this situation: erase the old data, try to keep samples that still
make sense (for example, if the researcher has changed only the name of the variable
or made another minor change) and allow the user to choose to erase the data or leave
it. In fact, the transitions between edit and open states have the character of testing,
in other words, debugging. So, to make it easier to distinguish between these states, I
decided to introduce an additional state for exactly this purpose - debug. Now debug
and open states symbolize development and production environments.

The Figure 5 shows all the experimental states and their possible transitions. The
initial state is indicated in blue, the end state is gray, the rest - yellow.

Figure 5. Experiment final state machine.

In the moment when all the data is already collected, it is possible to visualize it.
Generally, the collected data is best represented as a histogram - a kind of bar chart,
where the x-axis shows the values, and the y-axis shows their quantity. The next chart
that interests researchers is a boxplot - the visual representation of confidence intervals.

For a better overview of the processed data, it would be better to add the desired
charts and see them all together on one page.

Remaining components and properties of the experiment will be thoroughly described
in the next section.

3.4. Entity relationship diagram

This domain model illustrated in Figure 6 was generated based on the (prototype)
code and tables in the database using the rails erd library [11]. This diagram contains
all tables and corresponding entities of the “Web service”.

The description of entities is provided below. Next to names of the properties their
data types are placed. Each entity has properties created_at and updated_at of data
type "Date", which were not written out for the sake of brevity. These properties hold
timestamps for corresponding actions.

3.4.1. User

The User entity represents the end user of the system. In this case, it is the researcher
or a group of researchers. This model contains the properties needed to register and
login into the system: email and encrypted_password. The password will not be
stored in an open form, otherwise it would be too insecure. Besides, the properties as
current_sign_in_at or current_sign_in_ip provide information about connections,
and other information for manipulating the user account.

27

3. Design

Figure 6. Entity relationship diagram.

3.4.2. Experiment
This entity represents the user experiment. It contains name and description prop-
erties, which are needed to simply identify the test by the researcher. Attribute state
serves to store the current state of the experiment (see Figure 5). This attribute could
hold one of the following values: edit, debug, open, and closed. The last attribute
copy_parent_id is intended to store a reference to the experiment from which this
copy was made. The Experiment entity belongs to the User entity. They have a many-
to-one relationship.

3.4.3. Experiment::Part
The Experiment::Part symbolizes the division of the experiment into logical sections,
each of which is aimed at collecting certain data. Just like in the Experiment entity,
properties name and description are used for the researcher’s notes. The Experi-
ment::Part entity belongs to the Experiment entity. They also have a many-to-one
relationship. The property access_token is the connecting key in the communication
between the “Web service” and “Target application”. Of course, this token must
be unique, because it will identify the experiment and its specific part. Therefore, the
original idea was to generate a unique hash string but in practical use it would not be
convenient for the researcher, since there could be more than one part and it’s neces-
sary to precisely control which token belongs to which part and the human factor may
interfere in a given situation. With this in mind, it was decided to replace the hash

28

3.4. Entity relationship diagram

string with a combination of the experiment’s name in conjunction with the name of
the appropriate part separated by a hyphen. The received token is much more readable
by a human and also it still has its uniqueness in the combination "experiment name -
part name".

The design_type property is responsible for the type of experimental design: between
subject or within subject, it was already explained in the analysis chapter. Property
repetition_count describes the number of tuples that will come from one participant
within one part.

3.4.4. Experiment::Variable

For each part of the test, you need to define the variables that will be measured (in
the “Target application”), sent (by the “Transfer library”) and processed (on
the “Web service”). This variable corresponds to both the independent variable in
the experiment and the dependent one. For example, the participant’s age or other
indicators are independent variables. This also applies to the identifier of the group
within which the participant performed assignments or may be the identifier of the task.
The task time or error rate could serve as an example of the dependent variable.

A variable is defined by name and data_type properties, which should be one of
three types: Long, Double, or String. In order to perform correct calculations, property
calculation_method is added to this table. It is an enum with several possible values:
log transformation, normal distribution, and binomial distribution. Each value deter-
mines which formula will be used to calculate the confidence intervals. For example, if
the log transformation value is selected, this indicates the necessity to transform values
before calculating the confidence intervals.

Property positive_value is used to determine the value that the researcher considers
to be a positive response, it is essential for the calculation of the discrete values.

3.4.5. Experiment::Datum

The incoming data needs to be stored somewhere. For this purpose there is the Exper-
iment::Datum entity, which represents a unit of measured data. The data is associated
with a participant through the participant_id property.

The following properties target_id (entry id) and target_type (name of the model
class) are designations for the polymorphic association. The polymorphic association
allows the entity to belong to more than one model with a single association. A helper
entity Target can be perceived as an interface for LongDatum, DoubleDatum, String-
Datum tables. This approach was taken because of the need to keep the collected data
in three different tables due to the inconsistency of data types.

3.4.6. LongDatum, DoubleDatum, StringDatum

In diagram 6, these entities are drawn without attributes for compactness. These
entities represent cells for different data types. They contain only the property value
and belong to entity Experiment::Datum.

3.4.7. Participant

This entity represents the participant of the experiment. It has neither the name nor any
other personal information. To identify participants the internal_id or external_id
is used. Both values take an alphanumeric value. internal_id is a server-side generated

29

3. Design

UUID (Universally Unique Identifier) string. The UUID is a 16-byte number. In
hexadecimal notation, the UUID looks like:

7df4b211-135d-4210-af3d-982c9e045efc

If the researcher has his own user management and wants to use their unique identifiers,
then the presence of the attribute external_id makes it possible. That is why the
property external_id is not produced on the “Web service” server, but only stored
there. Along with experimental data, an internal_id or an external_id is sent in
order to link the data to the participant.

3.4.8. Experiment::JsonDatum

This table is also intended to store data in the JSON format. It belongs to several
other entities: Experiment, Experiment::Part, and Participant. The entity has only one
attribute - data with the json data type. The json data type is not a standard, however
many databases such as MySQL, PostgreSQL, MariaDB support it. Such data can also
be stored as a text, but for JSON data types, the advantage is to observe the validity
of the stored data as well as the existence of specific functions and operators available
for data stored in these data types.

The data from the experiment always comes in a connection with each other, for
example, if the participant in the intro part submits his age and gender, then these two
values are related and this connection must be maintained. Current data storage does
not provide a way to restore this connection. One of the solutions to that might be the
addition of some indicator for each data bundle, i.e., adding one more column. And
then in order to filter the data of one variable by another it will be necessary to create
fairly complex queries to the database using 3 tables: Experiment::Variable, Experi-
ment::Datum and one of StringDatum, LongDatum, DoubleDatum. The introduction
of the new JSON table makes it possible to produce much simpler and more effective
queries, like these:

SELECT data -> "age" FROM "experiment_json_data"
WHERE "experiment_json_data"."part_id" = 123
AND (data ->> "gender" = "male")

This query returns all values of the variable named age filtered by a variable named
gender and its value "male" in the context of the part with id equal to 123.

3.4.9. ChartQuery

This entity is used to store the parameters of the boxplot definition. It has a property
name that describes the graph, thereby helping the researcher to navigate among them.
In addition, it is unique in the experiment’s context.

Property params also has the data type JSON and contains the settings for the box-
plot, namely the target_variable whose values will be calculated, the filter_variable,
the variable which will serve as a filter for target_variable, and filter_variable_values
will store the values of the selcted filters for each boxplot section. The JSON data type
is extremely flexible and easily extensible, in this case it is very convenient because if
there is a need to add a new parameter to define the chart during the development, you
will not need to change the database and add or remove columns.

It belongs to the entity Experiment with many-to-one relationship.

30

3.5. Transfer library design

3.5. Transfer library design
From the Figure 4 it is clear that the “Web service” includes a separate API con-
troller for communicating with the “Transfer library”. Every sample of data must
be associated with an individual participant. Therefore, before sending the data, it is
necessary to register the participant and then send the data with his personal identifier
(intertnal_id).

Since one of the libraries will be written in JavaScript and will be used on the client
(web browser), then all transmitted data including the tokens will be visible using the
browser built-in developer tools. However, without the participant’s internal_id, the
data is not valid. So if a participant wants to change his results, it will be complicated
because the server is checking the number of data repetitions from one participant,
then he will have to go through a new registration and send the data again, which is
equivalent to a situation if he tries to conduct the experiment again.

Besides that, the library must be implemented according to REST guidelines. REST
implies that every URL endpoint should have a specific format. There are several
distinct rules for this. For example, it is highly recommended, when designing URL
addresses for endpoints, to use the resource names in the plural form (ex.: books, users).
Another common rule is that the GET method is used for Read operation from CRUD.

Further, I will give examples of endpoints for standard CRUD operations:

GET /books - request for a list of all books

GET /books/1 - request for certain book with id = 1

POST /books + body - create new resource

PUT /books/1 + body - update resource

DELETE /books/1 - delete resource

It implies that the API controller must provide 2 endpoints in the following form:

∙ Participant registration
Endpoint:

POST /api/v1/participants

Request example (optional):
body: {
"external_id": "my-own-unique-id"

}

Response example:
200 OK

body: {
"internal_id": "1ee21a7d-d5ff-4c92-a723-5fa9239cddd4"

}

31

3. Design

∙ Send data
Endpoint:

POST /api/v1/experiments/parts/:part_id/data

(part_id = "test-info-part")

Request example:

body: {
"internal_id": "1ee21a7d-d5ff-4c92-a723-5fa9239cddd4",
"variable_values": [

{
"name": "age",
"value": "25"

},
{
"name": "gender",
"value": "male"

}
]

}

Response example:
422 Unprocessable entity

{
"status": 422,
"message": "internal_id or external_id are missing"

}

Below I will list all the errors returned by the “Web service” grouped by HTTP
status:

403 Forbidden
– Experiment is currently unavailable

404 Not Found
– Experiment’s part not found

– Variable with name <name> not found

– Participant not found

422 Unprocessable entity
– internal_id or external_id are missing

– variable_values are missing

– variable_values must be an array

– Size of variable_values is not correct

– Variable’s repetition count is exceeded

32

3.6. Requirements

3.6. Requirements

3.6.1. Functional requirement

Based on all of the above and also taking researchers’ needs into consideration it is
possible to make a more specific list of desired requirements for the future Web service:

F1: Register to the web application
The user will be able to sign up to application with his own email and password.

F2: Login to the application
The user will be able to login with an email and a password.

F3: Logout the application
The user will be able to log out from the application.

F4: Edit personal account information
The user will be able to edit its email, password and add its name.

F5: Delete account
The user will be able to permanently remove its account.

F6: Create new experiment
The user can define and then save a new experiment. The definition of the exper-
iment also includes the definition of a part and its variables.

F7: Edit the experiment
The user will be able to edit the experiment but only if the current state of the
experiment allows this (edit state).

F8: Delete the experiment
The user will be able to permanently delete the experiment with its associated
entities, i.e. parts, variables and its values.

F9: Duplicate the experiment
The experiment could be copied. The whole definition will be copied excluding the
collected data, also due to the preservation of the uniqueness of the part’s access
tokens, the ordinal number will be added to the name of the copied experiment.

F10: Export experiment as JSON file
The user could export any of his experiments in the form of a JSON file. This file
will contain a description of the experiment, its parts and variables as well as the
values of the collected data in the nested tree form.

F11: Change experiment’s state
The user will be able to change the state of the experiment according to the
transition rules. See [Figure 5].

33

3. Design

F12: Show histogram for collected data of selected variable
The user could select a variable within the experiment’s part and display a his-
togram for it.

F13: Show variable’s raw data
Also, the user can view raw data (= the values) of the selected variable.

F14: Add new boxplot definition for the experiment
The user will be able to define boxplot parameters, that is, select the target vari-
able, the filter variable, and the filter variable values from the available values.

F15: Show all boxplots associated with the experiment
On the experiment detail page, the user can see all previously defined charts
(boxplots).

F16: Show detail table with CI values
Under the boxplot the user can see the same values but in the form of an overview
table.

F17: Delete the boxplot definition
The user will be able to permanently remove a boxplot definition.

F18: Download the selected chart image
The user could save the image of the selected boxplot or histogram.

F19: Change settings of the selected chart:
Each graph will have its own settings, which include the following parameters:

1. Show/hide legend
2. Change legend position
3. Show/hide X axes
4. Show/hide Y axes
5. Set step size for Y axe

F20: Register participant
The participant will be able to register, i.e. server will generate a new unique
UUID and save it.

F21: Save collected data
The server will accept, validate, and save data from the participants.

3.6.2. Non-Functional requirement
N1: REST architecture

The whole project is built according to the REST architecture constraints.

N2: Data type for API messaging is JSON
All data communication between the components is using JSON format.

N3: PostgreSQL database
The underlying database of the server will be PostgreSQL.

34

4. Implementation

This chapter contains details of the implementation, a small introduction to the used
technologies, the structure of the “Web service” project, and code snippets with
their description. Moreover, I will discuss some problems encountered during the de-
velopment and possible solutions to them. The “Web service” is a major part of
the system, but the system requires the “Transfer library” in order to function as
intended. That is why the library will be also described in this chapter. Finally, the
finished application will be presented using screenshots and additional comments.

4.1. Web service

4.1.1. Selected technologies

In this section I will briefly describe the most significant technologies and tools that were
used to implement the project. Each tool is explained in the following subsections, and
it is also important to mention Git1 as a versioning system which was used to maintain
code changes, to capture the progress, and to store sources on the remote server. It was
used throughout the project because it is a standard recommended by many developers.

Ruby on Rails

In my work I used the Ruby programming language and the web framework Ruby
on Rails also known under the names Rails or RoR. This framework implements the
MVC (Model-View-Controller) architectural template for web applications, and it also
includes all the necessary tools for the basic needs of the web developer, such as the
default web server, scaffolding2 and other useful packages for testing, deployment or
debug. It is an open source software, and it is distributed under the MIT license [12].

To store the model objects in the relational database, the ActiveRecord library is
used. Using this design pattern the "rows" in the database are converted to instances
of objects and "columns" to their attributes. Besides the MVC architecture, Rails also
use other principles and paradigms of the web development among which are:

DRY (Do not repeat yourself) - it has mechanisms for the reuse, which make
it possible to minimize duplication of code in the application.
Convention over configuration - an explicit configuration specification is re-
quired only in non-standard cases.

In Ruby on Rails, by default the view is described using ERB (Embedded Ruby)
templating system. It is a HTML file with additional inclusions of Ruby code fragments.
Many other templating languages can be used instead of ERB. For this particular
project I chose Slim template language. Slim is a template language whose goal is to
reduce the view syntax to the essential parts without becoming cryptic [13]. Slim offers
a minimalistic look at HTML templates. With such templates it is more convenient to

1https://git-scm.com/
2automatic code generation for models, view, controllers, etc.

35

4. Implementation

work, and they are simple to maintain. The resulting HTML code is always valid and
not a single closing tag will be missed by mistake.

Rails have their own package and dependency manager - Bundler3. Libraries or
packages for Ruby language are called gems. A file in which all the required libraries
for the application are listed is called Gemfile.

PostgreSQL

In the previous chapter, I described the models in which I use the JSON data type.
In this section I would like to take a closer look at the implementation of this data
type in a specific database. PostgreSQL has 2 JSON data types: json and jsonb. In
general, they look almost similar, the main difference is how they process the input
data. The json data type stores the data in its original form, in contrast with the jsonb
type which stores the data in a decomposed binary format, so it may take more time
due to additional conversion overhead, but as a result, working with this type will be
much faster, since no reparsing is needed. jsonb also supports indexing, which can be
a significant advantage [14]. Thus, I chose the jsonb data type.

Chart JS

For the graph visualization, I chose the library Chart.js. It is a simple, nice-looking,
Open Source JavaScript library that uses HTML5 Canvas for the chart rendering, sup-
ports 8 chart types and is fully responsive [15]. Chart.js animates charts out of the box,
but it is possible to customize animation styles and the duration. There are various
options to change tooltip’s style, location, and content, or it can be completely disabled.
All that is required to draw a graph is just one canvas tag and a js script in which a
new Chart instance is created with the settings: type, data, options, etc.

The default version of the library does not support the boxplot chart, but, fortunately,
there is the fork4 that adds the desired chart type under the name “Error bars chart”.
This version is fully compatible with Chart.js 2.x.x.

UI

For the visual side of the site the following libraries and frameworks were used: material
icons (set of icons), skeleton (lightweight, responsive css framework), toastrJS (a library
for non-blocking flash notifications), jQuery UI (set of UI interactions, effects, widgets,
and themes).

Heroku

This is a cloud-based PaaS (Platform as a Service) platform that supports a number
of programming languages. Heroku initially supported only the Ruby programming
language, but at the moment the list of supported languages also includes Java, Node.js,
Scala, Clojure, Python, Go and PHP [16].

Heroku allows developers to deploy, run, build and manage applications. It provides
CLI, Pipelines (Continuous integration), several environments for deploying and run-
ning applications, and a lot of other useful products. Heroku has an integration with
systems such as Git and GitHub, so a developer can connect the GitHub repository
with an application on Heroku or use the repository provided by the Heroku itself.

3http://bundler.io/
4https://github.com/CAYdenberg/Chart.js-ErrorBars

36

4.1. Web service

Heroku requires a minimum of effort for the deploy: it automatically detects the
language, the framework, and the specified platform, prepares the deploying script
depending on the platform, furthermore, it recognizes a database adapter which is used
in the application and sets up it accordingly and it provides an automatic deploy after
pushing the code to the repository.

Summing up I can say that Heroku creates an ideal sandbox environment for deploy-
ing small web apps for free, which was the reason behind my choice.

4.1.2. Project structure

This is the structure of the project. It should be noted that this list is not complete for
the sake of simplicity.

server
app

assets
images
javascripts
stylesheets

controllers
api

experiment_data_controller.rb
application_controller.rb
chart_queries_controller.rb
experiments_controller.rb
home_controller.rb

helpers
application_helper.rb
experiments_helper.rb

models
experiment

part.rb
variable.rb
...

experiment.rb
participant.rb
user.rb
...

views
chart_queries
experiments
home
devise
layouts

bin
config
db
lib

ci_calculator.rb
test

37

4. Implementation

It is important to mention that Rails rely on naming conventions throughout the
whole application, so there are several naming rules to follow regarding folders and
files. For example, there is a model with name "User”. So that the controller file will
be named "users_controller”. Then the controller will have a subfolder in "views”
folder with the name "users” and that subfolder will contain template files with names
corresponding to equivalent controller’s action names.

Following is a detailed description of the purpose and contents of some folders from
the file structure above.

app - Main project folder, contains major parts of the application.
assets - This folder holds static project assets such as images, all js files and css/scss
files.
controllers - This directory holds controller’s files. If the controller has a namespace,
it must be in the folder with the name of this space. Each new namespace creates a
new nested folder. In this particular case, the namespace and the corresponding folder
is api.
helpers - This folder is for view helper files. In the Rails context view helper class is
always associated with the controller and all of its methods are available in the corre-
sponding view files.
models - Folder for model files. Each model inherits from the ActiveRecord and has
such methods as where, select, order, etc. and its instance is an object representa-
tion of the database row. In this case, there is also a subfolder corresponding to the
namespace experiment.
views - This folder holds all view templates, divided into subfolders that related to
the controllers. In this case the principle of “Convention over configuration” is clearly
seen: each controller has a subfolder excepts api controller, also there is a subfolder
layouts designed for the application template files that define the layout and common
page blocks so the remaining files can only contain the page content without having to
repeat the same page blocks (for example meta tags or top navigation menu).
bin - Contains Rails script that starts your app and can contain other scripts you use
to setup, update, deploy, or run an application [17].
config - All configurations are available here: application’s routes, database, and more.
Also, there is a folder locales which contains language files (en.yml) to support dif-
ferent language mutations.
db - This folder is designed to hold a current database schema as well as database
migrations.
lib - Extended modules are stored here. For example, CiCalculator, it is a helping class
that holds Confidence Interval settings such as data, calculate_method, precision
(= 3 by default) and confidence_level (= 0.95 by default) and provides all the calcu-
lations (compute means, proportions, standard deviations, lower/upper CI bounds and
so on).
test - This folder contains unit tests, fixtures, and other test files [17].

4.1.3. Prerequisites

The following libraries and tools are required to run the “Web service” application:

∙ Ruby 2.4.0+
∙ Rails 5.1.0+
∙ NodeJS 8.3.0+
∙ npm 5.6.0+

38

4.1. Web service

∙ PostgreSQL 9.5+

4.1.4. How to start the app

It is important to remember that all subsequent commands are always executed inside
the project folder from the command line. To start working it is needed to install the
Ruby and NodeJS of the specified version. After that it is required to download the
dependency manager bundler with the following command:

gem install bundler

This dependency manager then downloads Rails framework and all the necessary
libraries specified in the Gemfile. In addition, you also need to download the libraries
for the NodeJS using the commands:

bundle install
npm install

During the initial configuration you need to download the dependencies and create
the database with the command:

rails db:create

And then you need to execute migrations. Remember, that every time you add a
new migration, you need to run this command again, since the Active Record keeps a
list of the performed migrations, only the new ones will be executed.

rails db:migrate

After that it is no longer required, you just need to start the web server with a simple
command:

rails s

This will start the application on a default port 3000, if you want to change the port
then simply use the following command:

rails s -p 8080

4.1.5. Code samples

In this part I will show code snippets from the project that were mentioned earlier in
the text.

Database

Database configuration in Rails looks as follows:

39

4. Implementation

default: &default
adapter: postgresql
pool: <%= ENV.fetch("RAILS_MAX_THREADS") { 5 } %>
timeout: 5000

development:
<<: *default
database: dev_db
username: root
password: ""

test:
<<: *default
database: test_db

production:
<<: *default
database: prod_db

Rails distinguish 3 main environments: development, test and production. For this
reason you need to define database configuration options for each environment. General
parameters can also be specified in the default block. It is highly recommended to
have different databases for these three environments.

Router

Rails router serves as an entry point for each incoming request. All routes are described
in the file config/routes.rb where by using different syntax structures URL address
and its HTTP method can be mapped to the appropriate controller and its action.
It can also generate paths and URLs, avoiding the need to hardcode strings in your
views [18]. Standard CRUD routes are being generated automatically by just one code
line resources :experiments (it will create 8 standard routes, see below), otherwise
custom routes with all the params such as URL, HTTP method, matched controller’s
action, and optionally path’s name needs to be defined separately.

The following routes (8 standard and 5 custom)

GET /experiments(.:format) experiments#index
POST /experiments(.:format) experiments#create
GET /experiments/new(.:format) experiments#new
GET /experiments/:id/edit(.:format) experiments#edit
GET /experiments/:id(.:format) experiments#show
PATCH /experiments/:id(.:format) experiments#update
PUT /experiments/:id(.:format) experiments#update
DELETE /experiments/:id(.:format) experiments#destroy

GET /experiments/:id/copy(.:format) experiments#copy
GET /experiments/:id/to_debug(.:format) experiments#to_debug
GET /experiments/:id/to_edit(.:format) experiments#to_edit
GET /experiments/:id/to_open(.:format) experiments#to_open
GET /experiments/:id/to_closed(.:format) experiments#to_closed

40

4.1. Web service

were generated using this code:

resources :experiments do
member do
get ’copy’
get ’to_debug’
get ’to_edit’
get ’to_open’
get ’to_closed’

end
end

Experiment FSM

Experiment states and their transitions were implemented using the gem library
state_machines-activerecord. It adds the experiment state machine to the model at-
tribute state by observing possible values and changes and has the following syntax:

state_machine :state, initial: :edit do
event :to_debug do
transition :edit => :debug

end

event :to_edit do
transition :debug => :edit

end

event :to_open do
transition :debug => :open

end

event :to_closed do
transition :open => :closed

end

after_transition on: :to_edit, do: :clear_data
end

This code is responsible for several things: the attribute which holds the experiment
state, the initial state, and transitions defined by the keyword event. The last line
stands for adding an extra action after a certain transition, in particular, the execution
of the method clear_data on the Experiment model instance.

The call of these transitions is performed in the ExperimentsController. Each event
of the status change has its own route and action in the controller, which essentially
performs the transition accordingly to the name of the action. Method change_state
generalizes all of these actions into one universal code. It calls the transition by its
name, sets the appropriate flash notification, and then redirects to the experiment
detail page.

41

4. Implementation

To make this possible without writing controller actions for each transition, I used
the standard action_missing and method_missing methods, which are automatically
called if a nonexistent method is called on a controller.

def change_state(transition)
if @experiment.send transition
flash[:notice] = ’Experiment␣state␣was␣successfully␣changed.’

else
flash[:alert] = ’Invalid␣experiment␣state␣transition.’

end
redirect_to @experiment

end

def action_missing(name)
begin

self.send name
rescue

super
end

end

def method_missing(name, *args, &block)
return change_state(name) if respond_to?(name, true)
super

end

Chart.js modification

As I wrote earlier Chart.js library was used for the data visualization and specifically
histograms, bar chart, and error bars (from the previously mentioned fork). This fork
adds a new kind of graphs - error bars, which are defined in the following way:

var myChart = new Chart(ctx, {
type: ’barError’,
data: {
labels: ["January", "February", "March", "April", "May"],
datasets: [

{
label: ’Dataset␣1’,
backgroundColor: "rgba(220,220,220,0.5)",
data: [1, 2, 3, 4, 5],
error: [0.1, 0.2, 0.3, 0.4, 0.5]

}
]

},
options: {
responsive: true,
...

}
});

42

4.2. Transfer library

This code snippet describes the creation of a new instance of Chart with the type
barError, then the data, as well as the settings options, are specified. Let us take
a closer look at how that data is set, namely the datasets parameter. It is an array
and can consist of an unlimited number of objects, each of which is a single dataset
with its own label, color, mean values (data), and the corresponding values of the
error margin (error). Note that only the size of the error is specified because the
confidence interval is symmetric towards to the mean value, the exception is when the
logarithmic transformation of data is used to correct the positively skewed time data,
and the resulting interval becomes asymmetric. In order to satisfy all possible cases, I
have slightly corrected this library, so now not only the size of errors is set but also the
upper and lower bounds of the interval. Next, I will give an example of the datasets
parameter:

datasets: [
{
label: ’Dataset␣1’,
backgroundColor: "rgba(220,220,220,0.5)",
data: [1, 2, 3, 4, 5],
uppers: [1.1, 2.2, 3.3, 4.4, 5.5],
lowers: [0.9, 1.8, 2.7, 3.6, 4.5]

}
]

4.2. Transfer library
The library consists of just one file that defines a class Transfer with 2 static methods:
registerParticipant and sendData. These functions are called in the following way:
Transfer.registerParticipant();
Transfer.sendData(partToken, data);

Both functions perform an AJAX call to the endpoint. Since AJAX is an asyn-
chronous call that returns a Promise5 because it needs time to process a request. Next, I
can add a callback function for the successful completion of the request promise.done(..)

and for the unsuccessful promise.fail(..) . Transfer library methods return a promise
object, so the developer has a possibility to add custom callbacks via done and fail
methods.

4.3. Results
In this part I would like to show few UI examples of the resulting application and
describe them.

List of experiments
The Figure 7 shows a list of experiments. They are written out in the form of a table.
Experiments can be viewed in a more detail, edited if they have the "EDIT" status, or
deleted.

5object represents the eventual completion (or failure) of an asynchronous operation, and its resulting
value [19].

43

4. Implementation

Figure 7. List of the experiments.

On the top side there is a user’s profile and an icon (settings) that leads to the form
where the user can change his personal information and also the icon (exit) to log out
from the system.

Detail of experiment
Figure 8 shows the detail of the experiment.

Figure 8. Experiment detail.

At the top there is its name and also a link to the list of all experiments in the
breadcrumb navigation; the actions that can be performed with this experiment are

44

4.3. Results

located to the right of the name: export the data as a JSON file, copy this experiment,
edit it, or delete (after this a standard dialog appears to confirm an action).

Then the description of the experiment and the block with experimental states is
shown where the current one is highlighted in blue, available for a transition in dark
gray, and inaccessible in light gray.

The next part of the page holds the description of the experiment’s parts; there is
the information specified by the user during an experiment creation and the generated
access token as well.

The rest of the page is dedicated to the analysis and the visualization of the collected
data. In this example they are not yet obtained, and, therefore, the user sees a yellow
bar indicating this.

Charts

Figure 9 shows an example of a histogram chart that is designed to visually check the
distribution of collected values across variables.

Figure 9. Histogram sample.

Using the form located on the top, the user can select a particular variable whose
values are shown in the histogram. Also, for the user’s convenience, I added the ability
to configure the histogram by such parameters as a step size, the total number of bands,
minimum and maximum values.

Values located under the bars on the horizontal axis represent the interval between
the previous value and the current one. In the screenshot the intervals will be [200,
1200), [1200, 2200), [2200, 3200) and so on.

In the upper right corner the block of the chart settings is visible. It appears by
clicking the "Settings" button. All changes occur immediately, so the user can set up a

45

4. Implementation

chart by himself in a few seconds and download the resulting image by clicking on the
"Save" button.

The "Raw data" button is placed under the graph, which shows or hides the list of
variable values that are displayed in the histogram. The user can easily copy these
values and use them at his own discretion.

The next very important chart is the boxplot (Figure 10). This is the visualization
of confidence intervals. On the experiment detail page, the user can add his custom
boxplot using a special form that is located above all the boxplots. But to make the
text more compact I arranged the form and the boxplot next to it.

In this form the user needs to specify the name of the boxplot, to select a variable
whose values will be calculated, and to choose a method that will be used for calculations
(log transformation or distribution).

The next step is to select a variable that will filter the values of the target variable. A
filter variable is selected from string type variables in order to separate the analyzable
variables from the informative ones. After selecting a filter variable, the user needs to
specify its values by which the data itself will be filtered. The "+" icon adds a subsequent
value, and the number of these values corresponds to the number of compartments on
the horizontal axis.

It is also possible to use the "all" value that does not take the filter into consideration
and calculates all values of the target variable.

This graph also has the "Settings" and the "Save" button, the same as the histogram
in Figure 9. The new "Del" button removes the definition of this chart and it no longer
appears on the page.

The boxplot as well as the histogram has a button under the chart to display confi-
dence interval values in the form of a table.

a) Form for a new boxplot. b) Example of boxplot.

Figure 10. Boxplot examples.

Tooltip sample

Further examples of clarifying titles to some UI elements will be presented. (Figure 11).
In this particular case descriptions of the statuses of the experiment are shown in Fig-
ure 16a. The tooltip to action icons (Figure 16b) and the tooltip for some fields in
the experiment form (Figure 12) are also present.

46

4.3. Results

a) Tooltip on experiment’s "Open" state. b) Tooltip on "Export" icon.

Figure 11. Examples of tooltips.

Experiment form
Another equally important part of the “Web service” is the form for defining a new
experiment which is partially visible in Figure 12. The “Experiment” object con-
tains only the name and description properties, but it is also important to define
the “Part” and “Variable” object and link them together. Therefore the “Experiment”
form contains a nested form for “Part”, and “Part”, in turn, contains a nested form for
“Variable”.

Figure 12. Cut from experiment creation form.

Parts can be added with the “add part” button and deleted using the “x” icon
in the upper right corner of the gray block. The same applies to adding/removing
variables with one difference - some variables are already predefined, so the user just

47

4. Implementation

needs to press, for example, the “Completion time” button, and a variable with
prefilled fields will be added. Those prefilled fields, of course, can be changed. The
“Custom variable” button creates a variable with empty fields that the user should
fill in.

48

5. Testing

This chapter describes testing the system as a whole with real users. The target appli-
cation will be explained in detail as well as the setup of the experiment and its results.
In the end, the calculations will be compared with the results from public sources.

5.1. Target application prototype
To check the operation of the entire system all three of its components should be present:
“Web service”, “Transfer library”, and “Target application”. For testing pur-
poses I implemented a simple client application for testing the labeling methods.

The underlying idea of this application is that the participant is provided with a
picture of the scheme of some object or system with signed labels. Each time one of the
parts of the system/object is highlighted, and the participant must determine which
label refers to the selected part and click on the corresponding label.

Figure 13 is an example of such picture. This schema shows a drill with a tip
highlighted in green color which corresponds to the Label_4.

Figure 13. Model Drill.

The purpose of the experiment is to test which method of the label location is more
understandable and effective for users. I chose 2 methods for testing and 4 models
(schemes) on which they will be applied.

With this in mind, the experiment was designed and setted up in the “Web service”.
The experiment consisted of three parts: an introductory part in which participants
get acquainted with the rules of the experiment, and in addition to this they are asked
about their age and gender, and two identical parts for each labeling method.

It should be noted that it is very important to think about the experiment split, how

49

5. Testing

many parts will be there, which variables will be gathered, and what will be compared,
since the parameter that will be compared (method, UI solutions) should be defined as
a separate part.

In the main part every participant will see pictures with labels and one highlighted
part of the scheme. As soon as the participant presses the “start” button, one of
the parts will turn green and from now on the time will count down for finding the
corresponding label.

This time will be sent to the server, along with the error code: 0 - the answer was
correct, 1 - not a valid label was clicked, 2 -“I cannot decide”, 3 -“No correct label”.
In addition, in conjunction with the time and the error code, the name of the current
model will also be sent, so that later it will be possible to filter the data by the “Model”
variable.

This (Figure 14) is how the definition of the experiment in the “Web service”
system looks like for this particular target application.

Figure 14. Experiment details.

The “repetitions count” parameter displays the number of clicks from the one partic-
ipant. Taking into account that all 4 models will be shown to all the participants, but
with different methods, 12 labels for model “digestive” + 12 labels for model “drill”
+ 17 labels for “fork” + 12 labels for “head” = 53.

The entire target application was written using HTML, CSS, Javascript and the
jQuery library. The code is included in a file together with the “Transfer library”.

Ten people have participated in the experiment. Since the experiment had the within-
subject design, that is, one participant passed the test with both methods, I used the
counterbalancing technique - from the model to the model the methods were alternated
as shown in Table 9.

digestive drill fork head
P1 M1 M2 M1 M2
P2 M2 M1 M2 M1
P3 . . .

Table 9. Counterbalancing table for labeling experiment.

The upper row describes the sequence of models, and the subsequent rows describe
the alternation of methods (M1, M2) for the models for each participant (P1, P2..).

50

5.2. Check the accuracy

After the experiment, I got the following results. Figure 15 shows the boxplots for
the Time variable of the two methods filtered for each model and also the boxplots
without any filter.

Figure 15. Boxplot for task times.

On this chart it is very clearly visible that the second method(“Method 2”) is more
effective than the first(“Method 1”) because the participants spent on average less time
to find a proper label. Another proof that the difference between theese two methods is
statistically significant is that their Confidence Intervals do not overlap (It was described
in Section 2.3.1). In addition, this theory (that the second method is more effective)
confirms the number of mistakes made: the first method has 11 errors, the second
method has none.

5.2. Check the accuracy

In addition to testing with real users, I compared the results of my calculator with other
public online calculators and also with examples from the book "Quantifying the User
Experience” [6]. Let us look at one example from this book for a 𝑡-confidence interval
with the given data:

data = [90, 77.5, 72.5, 95, 62.5, 57.5, 100, 95, 95, 80, 82.5, 87.5]

Results from the book:

Mean: 82.9
Standard deviation: 13.5
Standard error: 3.9
Margin of error: 8.6
Confidence interval: 74.3 to 91.5

My results:

Mean: 82.917
Standard deviation: 13.519
Standard error: 3.903
Margin of error: 8.589
Confidence interval: 74.327 to 91.506

Since the “Web service” does not work in the same way a public calculator does,
there is no possibility to load the given data using the UI. In order to check the data
from the book, I used the interactive project mode in the command line, the command
rails c , and a manual. This works because Ruby is a dynamic interpreted language.

Looking at the results it is clear that my values differ only in the precision, owing to
the fact that my CiCalculator returns values rounded to a certain number of decimal
places (default value of the precision is 3).

51

5. Testing

Further I compare my results with the online calculator “MeasuringU”1 to calculate
the Confidence Intervals for the task time. Now the sequence of actions is reversed. I
take my raw data and load them into the calculator with the following settings:

∙ Confidence Level = 95%
∙ Log transformation = true

a) “MeasuringU” calculator results. b) CI table of my results.

Figure 16. Examples of tooltips.

My results are again almost identical to the values obtained from the online calculator.
For verification I used the values of the variable “Time” for the “Method 1” part of the
experiment without filtering by the “Model” variable, this means that all calculations
were made using all values.

Time is measured in milliseconds, and, therefore, the obtained results (means, CI
bounds, etc.) are in milliseconds, too. In this regard, I consider the differences in
0.167 - 0.215 milliseconds insignificant.

1https://measuringu.com/time_intervals/

52

6. Conclusion

In this part, I would like to summarize the whole thesis. The aim was to create a system
for collecting and evaluating data from user tests, which would facilitate a routine work
for researchers.

In order to understand the needs of researchers, I conducted an analysis of the varia-
tions of the testing, existing designs of experiments with users (BSD and WSD), exam-
ined the pros and cons of these designs as well as several techniques that solve some of
their problems. It was equally important to study the possible types of variables that
the researcher is going to collect and analyze and also the methods of the statistical
analysis depending on the properties of these variables. Between two methods of the
statistical data processing, I chose the confidence intervals. Because they are better
visualized and more suitable for comparative purposes. The analytical part brought
clarity to this problem and prepared the basis for the next part - Design.

Further, the future system was described in greater detail, the ways of its usage
together with the needs of the researchers were analyzed. Two research parts of this
thesis helped to develop a list of requirements which made a basis for the system.

In the practical part (Implementation), I tried to describe the main points of the
created system where the web service made the largest component of the whole system.
Besides that, the implementation part included key code snippets providing valuable
insights. In the end of the practical part, I conducted a short overview of the resulting
web application.

The very last part was the Testing. In this part, I described the prototype of the
tested application, the final component of the whole system, as well as the results
of this testing. In addition, I compared the accuracy of the results with one of the
available online calculators and with an example from the book “Quantifying the User
Experience”.

Working on this thesis was definitely beneficial to me. I learned a lot of new and useful
information. Developing the whole project independently was an interesting experience
since one person must go through all the stages of the project development and also
have a complete understanding of all its connecting parts. During the implementation, I
was faced with tasks and problems that required non-standard solutions. Undoubtedly,
everything above mentioned vastly improved my programming skills.

6.1. Future work
The "Web service" is a complete product with some additional functionality. But this
does not mean that this project has nowhere to grow. There is an unlimited number of
ideas and additions that could improve this product. For example, the “Web service”
could send emails and give suggestions to the user. It could calculate 𝑝-value and effect
size for each of the confidence interval.

53

Bibliography

[1] Elizabeth Goodman, Mike Kuniavsky, and Andrea Moed. Observing the User
Experience (Second Edition). Second Edition. Boston: Morgan Kaufmann, 2012.
isbn: 978-0-12-384869-7. url: https://www.sciencedirect.com/science/
article/pii/B9780123848697000012.

[2] Jeffrey Rubin and Dana Chisnell. Handbook of Usability Testing: How to Plan,
Design, and Conduct Effective Tests. Wiley Technical Communications Library.
Wiley, 2008. isbn: 978-0-47-038608-8. url: http://ebookcentral.proquest.
com/lib/cvut/detail.action?docID=343716.

[3] John J. Shaughnessy, Eugene B. Zechmeister, and Jeanne S. Zechmeister. Re-
search methods in psychology. New York: McGraw-Hill, 2006. isbn: 978-0-07-
803518-0. url: https://steladhima.files.wordpress.com/2014/03/john-
j-shaughnessy-eugene-b-zechmeister-jeanne-s-zechmeister-research-
methods-in-psychology-2012.pdf.

[4] Martyn Shuttleworth. Counterbalanced Measures Design. 2009. url: https://
explorable.com/counterbalanced-measures-design.

[5] Hypothesis testing: Confidence intervals, t-tests, ANOVAs, and regression. 2010.
url: https://my.vanderbilt.edu/joshuabazuin/files/2011/08/HOD-2990-
Stats-21.pdf (visited on 01/03/2018).

[6] Jeff Sauro and James R. Lewis. Quantifying the User Experience. Boston: Morgan
Kaufmann, 2012. isbn: 978-0-12-384968-7. url: https://www.sciencedirect.
com/science/article/pii/B9780123849687000011.

[7] David M. Lane and Heidi Ziemer. Distributions. 2013. url: http://onlinestatbook.
com/2/introduction/distributions.html.

[8] I. Scott MacKenzie. Human-Computer Interaction. An Empirical Research Per-
spective. Elsevier Science, 2012. url: https://ebookcentral.proquest.com/
lib/cvut/detail.action?docID=1110719#.

[9] John Mueller. Understanding SOAP and REST Basics And Differences. 2013.
url: https://blog.smartbear.com/apis/understanding-soap-and-rest-
basics/.

[10] Roy Thomas Fielding. “Architectural Styles and the Design of Network-based
Software Architectures”. PhD thesis. Irvine: University of California, 2000.

[11] Rolf Timmermans. Entity-Relationship Diagrams for Ruby on Rails. 2010. url:
https://voormedia.github.io/rails-erd/ (visited on 12/14/2017).

[12] Ruby on Rails. url: http://rubyonrails.org/ (visited on 12/22/2017).
[13] Slim. url: http://slim-lang.com/ (visited on 12/22/2017).
[14] PostgreSQL. PostgreSQL. 2010. url: https://www.postgresql.org/docs/9.

4/static/datatype-json.html.
[15] Chart.js. url: http://www.chartjs.org/ (visited on 01/05/2018).

55

https://www.sciencedirect.com/science/article/pii/B9780123848697000012
https://www.sciencedirect.com/science/article/pii/B9780123848697000012
http://ebookcentral.proquest.com/lib/cvut/detail.action?docID=343716
http://ebookcentral.proquest.com/lib/cvut/detail.action?docID=343716
https://steladhima.files.wordpress.com/2014/03/john-j-shaughnessy-eugene-b-zechmeister-jeanne-s-zechmeister-research-methods-in-psychology-2012.pdf
https://steladhima.files.wordpress.com/2014/03/john-j-shaughnessy-eugene-b-zechmeister-jeanne-s-zechmeister-research-methods-in-psychology-2012.pdf
https://steladhima.files.wordpress.com/2014/03/john-j-shaughnessy-eugene-b-zechmeister-jeanne-s-zechmeister-research-methods-in-psychology-2012.pdf
https://explorable.com/counterbalanced-measures-design
https://explorable.com/counterbalanced-measures-design
https://my.vanderbilt.edu/joshuabazuin/files/2011/08/HOD-2990-Stats-21.pdf
https://my.vanderbilt.edu/joshuabazuin/files/2011/08/HOD-2990-Stats-21.pdf
https://www.sciencedirect.com/science/article/pii/B9780123849687000011
https://www.sciencedirect.com/science/article/pii/B9780123849687000011
http://onlinestatbook.com/2/introduction/distributions.html
http://onlinestatbook.com/2/introduction/distributions.html
https://ebookcentral.proquest.com/lib/cvut/detail.action?docID=1110719#
https://ebookcentral.proquest.com/lib/cvut/detail.action?docID=1110719#
https://blog.smartbear.com/apis/understanding-soap-and-rest-basics/
https://blog.smartbear.com/apis/understanding-soap-and-rest-basics/
https://voormedia.github.io/rails-erd/
http://rubyonrails.org/
http://slim-lang.com/
https://www.postgresql.org/docs/9.4/static/datatype-json.html
https://www.postgresql.org/docs/9.4/static/datatype-json.html
http://www.chartjs.org/

Bibliography

[16] Heroku platform. url: https://www.heroku.com/platform (visited on 12/28/2017).
[17] Getting Started with Rails. url: http://guides.rubyonrails.org/getting_

started.html (visited on 12/20/2017).
[18] Rails Routing from the Outside In. url: http://guides.rubyonrails.org/

routing.html (visited on 12/20/2017).
[19] Promise. url: https://developer.mozilla.org/cs/docs/Web/JavaScript/

Reference/Global_Objects/Promise (visited on 12/29/2017).

56

https://www.heroku.com/platform
http://guides.rubyonrails.org/getting_started.html
http://guides.rubyonrails.org/getting_started.html
http://guides.rubyonrails.org/routing.html
http://guides.rubyonrails.org/routing.html
https://developer.mozilla.org/cs/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/cs/docs/Web/JavaScript/Reference/Global_Objects/Promise

Appendix A.

T-distribution table example

𝛼 0.05 0.025 0.01 0.005 0.0025 0.001 0.0005

df

1 6.3138 12.7065 31.8193 63.6551 127.3447 318.4930 636.0450

2 2.9200 4.3026 6.9646 9.9247 14.0887 22.3276 31.5989

3 2.3534 3.1824 4.5407 5.8408 7.4534 10.2145 12.9242

4 2.1319 2.7764 3.7470 4.6041 5.5976 7.1732 8.6103

5 2.0150 2.5706 3.3650 4.0322 4.7734 5.8934 6.8688

6 1.9432 2.4469 3.1426 3.7074 4.3168 5.2076 5.9589

7 1.8946 2.3646 2.9980 3.4995 4.0294 4.7852 5.4079

8 1.8595 2.3060 2.8965 3.3554 3.8325 4.5008 5.0414

9 1.8331 2.2621 2.8214 3.2498 3.6896 4.2969 4.7809

10 1.8124 2.2282 2.7638 3.1693 3.5814 4.1437 4.5869

11 1.7959 2.2010 2.7181 3.1058 3.4966 4.0247 4.4369

12 1.7823 2.1788 2.6810 3.0545 3.4284 3.9296 4.3178

. . .

Table 10. My caption

57

Appendix A. T-distribution table example

58

Appendix B.

F-distribution table example

𝐷𝐹2/𝐷𝐹1 1 2 3 4 5 6 7 8 9 10 . . .

1 39.86346 49.50000 53.59324 55.83296 57.24008 58.20442 58.90595 59.43898 59.85759 60.19498

2 8.52632 9.00000 9.16179 9.24342 9.29263 9.32553 9.34908 9.36677 9.38054 9.39157

3 5.53832 5.46238 5.39077 5.34264 5.30916 5.28473 5.26619 5.25167 5.24000 5.23041

4 4.54477 4.32456 4.19086 4.10725 4.05058 4.00975 3.97897 3.95494 3.93567 3.91988

5 4.06042 3.77972 3.61948 3.52020 3.45298 3.40451 3.36790 3.33928 3.31628 3.29740

6 3.77595 3.46330 3.28876 3.18076 3.10751 3.05455 3.01446 2.98304 2.95774 2.93693

7 3.58943 3.25744 3.07407 2.96053 2.88334 2.82739 2.78493 2.75158 2.72468 2.70251

8 3.45792 3.11312 2.92380 2.80643 2.72645 2.66833 2.62413 2.58935 2.56124 2.53804

9 3.36030 3.00645 2.81286 2.69268 2.61061 2.55086 2.50531 2.46941 2.44034 2.41632

10 3.28502 2.92447 2.72767 2.60534 2.52164 2.46058 2.41397 2.37715 2.34731 2.32260

. . .

Table 11. My caption

59

Appendix B. F-distribution table example

60

Appendix C.

CD content

CD
source... the directory of source codes

server................................web service implementation sources
library .. library sources

transfer.js..................................... library in JavaScript
transfer.java...library in Java

target_app.....................target application implementation sources
thesis..the thesis text directory

src....................... the directory of LATEX source codes of the thesis
thesis.pdf the thesis text in PDF format

61

	Introduction
	Goals of the Thesis
	Motivation
	Structure of the Thesis

	Analysis
	User research
	The Qualitative and Quantitative dimension
	Types of User research methods
	Summary

	Experimental designs
	Variables
	Between-subject design
	Within-subject design

	Evaluating methods
	Confidence intervals
	Introduction
	Interpretation of confidence intervals
	Discrete and Continuous Values
	CI for Continuous Values
	CI for Discrete Values
	CI for Task Time
	CI for different designs
	Recapitulation

	Analysis of Variance
	One-way ANOVA
	Repeated measures ANOVA

	Summary

	Design
	System overview
	Architecture comparison
	Web service structure
	Entity relationship diagram
	User
	Experiment
	Experiment::Part
	Experiment::Variable
	Experiment::Datum
	LongDatum, DoubleDatum, StringDatum
	Participant
	Experiment::JsonDatum
	ChartQuery

	Transfer library design
	Requirements
	Functional requirement
	Non-Functional requirement

	Implementation
	Web service
	Selected technologies
	Project structure
	Prerequisites
	How to start the app
	Code samples
	Database
	Router
	Experiment FSM
	Chart.js modification

	Transfer library
	Results

	Testing
	Target application prototype
	Check the accuracy

	Conclusion
	Future work

	Bibliography
	T-distribution table example
	F-distribution table example
	CD content

