Master Thesis

Czech

Technical
University
in Prague

F 3 Faculty of Electrical Engineering
Department of Computer Graphics and Interaction

Efficient Rendering of Earth Surface for
Air Traffic Visualization

Vojtéch Kaiser

Supervisor: doc. Ing. Jifi Bittner, Ph.D.
January 2018

ii

Ceské vysoké udeni technické v Praze
Fakulta elektrotechnicka

Katedra pocitacové grafiky a interakce

ZADANI DIPLOMOVE PRACE

Student: Bc. Vojtéch Kaiser

Studijni program: Oteviena informatika
Obor: Pocita¢ova grafika a interakce

Nazev tématu: Efektivni zobrazovéani zemského povrchu pro vizualizaci letecké dopravy

Pokyny pro vypracovani:

Provedte reSerSi metod pro Skdlovatelné zobrazovani letecké dopravy v planetarnim méfitku.
Zameite se na metody pro zobrazovani rozsahlych terénu. Zvolte vhodnou metodu pro vykreslovani
Zemé s realnymi daty reprezentujicimi zemsky povrch. Zaméfte se na optimalizaci vizualni kvality
vystupu za predpokladu omezeného mnozstvi dat uchovavaného v hlavni paméti. Umoznéte
zobrazovani obecnych 3D objektl (modely letadel a letist) a jejich popiskl. Implementaci zvolenych
metod realizujte jako novy vizualizani nastroj pro systém AgentFly. Vyslednou implementaci
dikladné otestujte v nékolika vizualizaénich scénafich a s pouzitim rznych hardwarovych platforem.

Seznam odborné literatury:

[1] R. Kooima, J. Leigh, A. Johnson, D. Roberts, M. SubbaRao and T. A. DeFanti: Planetary-Scale Terrain
Composition. In [EEE Transactions on Visualization and Computer Graphics, vol. 15, no. 5, pp. 719-733, Sept.-
Oct. 2009.

[2] A. Mahdavi-Amiri, T. Alderson, F. Samavati: A Survey of Digital Earth, Computers & Graphics, Volume 53,
Part B, December 2015, Pages 95-117, ISSN 0097-8493

[3] F. Losasso, H. Hoppe: Geometry clipmaps: terrain rendering using nested regular grids. ACM Transactions
on Graphics (TOG). Vol. 23. No. 3. ACM, 2004.

(4] Livny, Y., Kogan, Z. & El-Sana: Seamless patches for GPU-based terrain rendering. J. Vis Comput (2009)
25:197.

[5] M. Wimmer, P. Wonka: Rendering Time Estimation for Real-Time Rendering. Proceedings of Eurographics
Symposium on Rendering 2003, ACM SIGGRAPH, June 2003.

[6] O. Mattausch, J. Bittner, M. Wimmer: CHC++: Coherent Hierarchical Culling Revisited. Comput. Graph.
Forum, 27(2), pp. 221-230, 2008.

Vedouci: doc. Ing. Jifi Bittner, Ph.D.

Platnost zadani: do konce zimniho semestru 2018/2019

S TECs

/'/3\-"2;\‘53%(ol !90/7/]/" /O%
Y A
(3% p
&
Jifi Zara, CSc. N3z &/ prof. Ing. Pavel Ripka, CSc.

vedduci katedry

/

dékan

V Praze dne 3.4.2017

iv

Acknowledgements

I would like to express my gratitude to
my supervisor Jif{ Bittner for his useful
advice, comments and remarks. Further-
more, I would like to thank my parents
for all the support, emotional and finan-
cial, they provided me with. At last, I
would like to express my sincere grati-
tude to my dear Dominique for keeping
me sane, encouraging me and showing me
all the support possible, emotional and
grammatical.

Declaration

I hereby declare that I have completed
this thesis independently and that I have
used only the sources (literature, software,
etc.) listed in the enclosed bibliography.

Prague, 9. January 2018

Abstract

When rendering large-scale scenes, we do
encounter a different set of issues than
in scenes usually used in games or cine-
matography. These need to be addressed
at the lower level of used visualization en-
gine. In case of this work, the problem
is to render Earth surface for any camera
configuration, maximizing visual fidelity
while avoiding framerate stutters. We
break our large data-set into a hierarchical
data structure and then use incremental
scene construction algorithm that builds
a slice through the data structure, taking
into account cost and fidelity of particu-
lar elements. The final implementation
maintains steady 60 frames per second
while visualizing Earth surface from any
distance or direction. The devised ap-
proach works for intended use cases in the
AgentFly simulation system, although it
needs more development in the future.

Keywords: rendering, large scenes,
planet, geospatial visualization, LOD,
Java, OpenGL

Supervisor: doc. Ing. Jifi Bittner,

Ph.D.

vi

Abstrakt

Pri vykreslovani rozsdhlych scén se po-
tykdme s jinymi problémy nez v pripadé
scén pro kinematografii nebo pocitacové
hry. Témto problémtim se musime vénovat
V pripadé této prace fesime vykreslovani
povrchu zemé pro libovolnou konfiguraci
kamery, a snazime se maximalizovat vizu-
alni kvalitu vykreslenych snimkt vyhyba-
jic se viditelnym poklesim ve vykreslovaci
frekvenci. Nase vstupni data jsme rozlo-
zili do hierarchické datové struktury, a
s pomoci inkrementalniho algoritmu sta-
vime Tez touto hierarchii s ohledem na
vizualni kvalitu a cenu vykresleni jednot-
livych elementti. Pfedstavena implemen-
tace udrzuje stabilnich 60 snimkt za vte-
finu pfi vykreslovani povrchu zemé z kte-
rékoliv vzdalenosti a sméru. Vysledny pii-
stup funguje pro vsechny uvedené scénate
pouziti pro AgentFly simulac¢ni systém,
avsak dalsi vyvoj je nezbytny.

Klicova slova: vykreslovani, rozsahlé
scény, LOD, planeta, Java, OpenGL

Contents

1 Introduction 1
1.1 Motivation.................... 1l
1.2 Structure of this thesis
2 Background 5|
2.1 The current system
2.2 General requirements.
2.3 Functional requirements
2.4 Expected use cases............. 9
2.4.1 Large scale Earth
2.4.2 Small scale Earth 12
2.4.3 Controller view
2.5 Related work
3 Scalable Earth surface
representation 17
31 Quadtree
3.1.1 Indexing
3.2 Elevation
321 Format
3.2.2 80urces 22|
3.23Query ...
3.3 Imagery
331 Format 251
3.3.250urces 26
3.3.3 Sentinel 2 28
34Mesh...........oi 311
3.4.1 Generation 32
3.4.2 Decimation................ 33
3.4.3 Stitches................... 35!
4 Rendering Earth surface 39
4.1 Spatial precision

4.1.1 Double precision matrices . ..
4.1.2 Dynamic center method

vii

4.1.3 Fixed grid center. ..
4.1.4 The selected option
4.2 Slice construction
4.2.1 Visual fidelity model
4.2.2 Algorithm base
4.2.3 Algorithm extension
4.2.4 Desirability heuristic
4.2.5 Adjacency enforceme
4.2.6 View frustum culling
4.2.7 Occlusion culling. . .
4.3 Load balancing
4.3.1 Data transfer
4.3.2 Fidelity settings ...
4.3.3 Memory limits.
4.4 Controls

5 Implementation
5.1 Technology
5.2 Engine organization . . .
5.3 Render passes
5.4 Dynamic shaders
5.5 Render batching
5.6 Integration...........
5.7 Scenarios
5.7.1 Earth layer provider
572 ATC view

6 Results
6.1 Missing features
6.2 Known issues.........

6.3 Generator performance

nt

6.4 Earth viewing performance.

6.4.1 Fixed quality
6.4.2 Comparative
7 Conclusion
7.1 Future plans
Bibliography 93
A CD contents 95
AlFiles.............ooiii.. 95
A.2 Distribution 97
A21Data......oooovvvvii.... 97
A.2.2 Execution 97
A23Controls.................. 98
A24O0utputs..................
B Measurement details 101
B.1 Tile generator performance ... [101
B.2 Earth viewing performance ... [101
B.3 Tested computer 101
C Considered technology [105|
C.l Engines 105
C.2 Additional technologies and data
SOUICES « vt v e e e eeeae 108

viii

Figures

2.1 Data transfer approaches
2.2 VFR and satellite maps
2.3 Sector visualization [11]
2.4 Flight plan tunnel
2.5 Wind visualization 12l
2.6 Prague airport
2.7 Scanned model 13
2.8 Controller view
3.1 Indexing example
3.2 Indexing relations.............
3.3 RGB elevation tiles 211
3.4 3" arc coverage
3.5 1" arc EU coverage............
3.6 1" arc USA coverage
3.7 Elevation map normal
3.8 Blue Marble top level
3.9 Black Marble top level
3.10 Landsat 7 top level
3.11 Sentinel 2 top level...........
3.12 PlanetSAT top level..........
3.13 Sentinel 2 coverage...........
3.14 Sentinel 2 color correction 30l
3.15 Sentinel 2 coastline cutoff
3.16 Sentinel 2 loud coverage
3.17 Elevation sample mapping
3.18 Average plane calculation
3.19 Earth mesh regular
3.20 Earth mesh decimated. 135!
3.21 Tile mesh stitch 136
4.1 Single precision transformation .
4.2 Offset transformation
4.3 Double precision transformation

ix

44 Fixed grid
4.5 OBB frame, e = 100
4.6 OBB frame,e =1
4.7 Occlusion cone construction [(3l
4.8 Occlusion cone test [54]
4.9 Camerapan..................
4.10 Zoom calculation 60)

5.1 Render batching

5.2 Earth, no exaggeration
5.3 Earth, no lights...............
5.4 Earth, e = 100, global
5.5 Earth, e = 100, d =6
5.6 ATC view, global
5.7 ATC view, closeup
6.1 Generator performance
6.2 Frame time, Q = 1............
6.3 Dissatisfied, memory, Q = 1....
6.4 Cut size, rendered, Q = 1......

6.5 Frame time, comparative

6.6 Dissatisfied, comparative

6.7 Cut size, comparative
6.8 Rendered, comparative
B.1 Frame time, Q = 0.025....... 102

B.2 Dissatisfied, memory, Q = 0.025

B.3 Cut size, rendered, Q = 0.025. [103
B.4 Frame time, Q =5 103
B.5 Dissatisfied, memory, Q =5 .. |[103
B.6 Cut size, rendered, Q =5 [104

Tables

3.1 Dataset comparison
6.1 Test PC details............... R3l
B.1 Tile generator times 101
B.2 Additional test PC details [104

C.1 Engine comparison table

Chapter 1

Introduction

This thesis focuses on design and implementation of replacement of visualiza-
tion system in the project AgentFly. The currently used system, visio, has
become obsolete over the years, and its replacement is more than necessary.
The following pages will cover the current state and reasons it needs to change,
analysis of used data for visualization, rendering techniques for large-scale
scenes such as those in air traffic control, and finally the implementation of
proposed solutions.

Realization of the engine itself will be covered only lightly, as our primary
interest is the visualization of Earth surface with visual fidelity being adjusted
to fit the current point of view. The topic of visualization engines is very well
covered, and we will focus on what needs to be different to satisfy specific
needs of planetary scale scenes.

. 1.1 Motivation

AgentFly |!| is a system that operates in two spheres of interest. Civilian
air traffic control simulation and analysis, and various scenarios around
unmanned aircraft control. The former requires visualization of global data
over Earth surface and ATC view screens, while the latter uses mostly small
scenes with no significant issues.

The old visualization system turned obsolete for reasons discussed in the
following text, from which the most important is spatial precision around
the surface, and overall rendering performance. In essence, visualized scenes
get rendered under ten frames per second and vertices shake due to floating
point precision issues when the camera is close to the surface of the Earth.

Because the whole system is built on technology that is no longer supported
is beyond saving, new one needs to be implemented to replace it. This means
a new visualization engine that has the same functional capabilities as the
old one needs to be constructed (or adapted) while solving our precision and

1Www.agentfly. com

www.agentfly.com

1. Introduction

performance issues.

Since the main problems in the previous system were with large-scale
scenes with the entire Earth, that will be our focus when implementing the
replacement. We need to deal with adaptive visual fidelity from a large
dataset of textures (satellite imagery) and geometry (meshes from elevation
maps) while maintaining sufficient spatial precision (non-trivial, as graphics
pipeline operates in single precision floats).

When changing such an integral part of our work pipeline, we need to take
a great care designing the new architecture. This goes hand in hand with
integration of the new system in the rest of the AgentFly project, as many
modules are intertwined with the old solution, and amount of work to transfer
will be non-negligible.

. 1.2 Structure of this thesis

This thesis is composed out of four main parts that will gradually take us
from the current state being replaced to working implementation of the
replacement.

In the "background"' chapter current visio system will be discussed and
what exactly is right or wrong with it. Then we will focus on formal require-
ment specifications that lay out boundaries of our design, mostly based on
shortcomings of the current solution. To help us grasp the scope and the
use of the new system, we will take a look at most prominent use cases of
previous one, whether they are being used or are planned to be implemented.
At last, we will explore the related work on large-scale scenes and planetary
scenes with real data.

Before investigating ways to visualize Earth surface, first we need to define
what data and format will be forming it. The reasoning behind quadtree
choice will be unveiled, followed by its application on elevation data and
satellite imagery. The elevation map data structure is going to be defined
as an API with a description of its queries and their uses in surface shape
generation, while satellite imagery datasets will be discussed from accessibility
and quality standpoint. In the end, scene object generation is going to be
formalized in the form of quadtree tile structure and relation between these
tiles.

When rendering large-scale scenes, we need to address spatial precision
that stems from floating point arithmetic issues. Then we will move onto
the construction algorithm, discussing various optimizations that will help us
build the best scene for a specific view. Further options for load balancing will
be elaborated. With the scene built and optimized for maximum performance,
ideal camera controls for common use cases are going to be proposed.

In the last part the implementation of the new system will be reported.
Specific optimizations will be described and placed in the context of the

1.2. Structure of this thesis

whole system. Two example scenarios will be introduced, one for air traffic
controller view, and the more crucial one, for global Earth view. Before
moving to performance reports and benchmarks, known issues and missing
features will be listed to contextualize these results.

Chapter 2

Background

The following sections will cover the current system, its usage, and require-
ments we can conclude from it. We will take a look at current and expected
use cases to highlight what features are the most important considering a
complete transition from the old system to its replacement.

B 2.1 The current system

Firstly, we need to take a closer look at details of the current system. Its
inner design should hint us what mistakes can be avoided, and its current use
cases should be a hint where we can gain more performance in comparison to
general or game visualization systems.

The system we will be looking at, further referenced as visio, was developed
under java3d || visualization API, which was at the time one of the few well
supported robust options with ongoing development.

One of the key issues with visio is that java3d, despite being developed by
Oracle, stopped being officially supported around 2008, and unofficial support
from various forks definitely ceased around 2012. Since java3d suffers not
only performance-wise but also lacking in features, it makes it less and less
practical each passing year.

Lack of support is not only reason java3d is no longer suitable for AgentFly,
as Oracle replaced it with JavaFX scene graph. The whole idea of the standard
game engine or scene graph does not fit massive asynchronous visualization,
and position precision issues would be challenging to resolve practically in
any engine.

Over the years, visio performance did not rise, and at the moment, it
runs somewhere around ten frames per second. Various bugs and issues
started popping up, for instance, the maximum line width of two or broken
painter’s algorithm for transparent objects (change of sorting algorithm from

Ihttps://en.wikipedia.org/wiki/Java_3D

https://en.wikipedia.org/wiki/Java_3D

2. Background

Merge-Sort to Tim-Sort in Java 7).

Taking a look at implemented features of current visio, we do not see much
out of the ordinary. Of course, advanced materials and textures are missing,
as is shadow rendering, but these were never really necessary for any scenario
in the development.

Approach to data. As far as engine built over java3d goes, the solution
is actually quite fitting the use even today, but there was a line of intended
usage changes, and in the end, none of them work particularly well for their
own reasons.

First introduced was so called LayerProvider construct, where a wrapper
class took data from simulation and processed it into its own scene graph.
Each simulation scenario then defined a list of these providers to be used for
its visualization window. This approach was the most potent, as pretty much
all features of the system could be accessed in it.

Second, possibly because of the introduction of distributed simulation, came
the idea that visualization could run on a different computer from the simu-
lation. This was implemented through the system of VisualModule classes,
where all these modules have common implementation LayerProvider counter-
part. The scene graph is then created right where visualized data are created,
and then it is sent in the form of commands to its counterpart (possibly
over the network). The feature set of visual modules is somewhat simplified,
for instance, user input access was reduced to on/off toggle controlling the
visibility of the whole thing.

The last iteration came in the form of DynamicVisualModule. Since most
of the layers were not visible during usage, network and event channels were
flooded with unnecessary graphics updates. Dynamic visual modules added
the subscribe/provide system that sends data only when someone is willing to
draw them. This module was meant as a direct replacement of VisualModules
but got even less attention with implementation, and only the most talkative
layers were changed into it to solve the immediate problem, and with that,
only features these used were implemented in it.

The sensible solution thus seems to be sending data to visualization, as it
was in the first implementation of layer providers, but only when there are
any subscribing to it. This would combine the best of both worlds. With
good data fractioning, the same information can be used by many different
providers, which is not possible with visual modules and data have to be sent
multiple times.

Figure 2.1| shows above approaches to data transfers in the order they
were described. Note the message texts, primarily for the difference between
data and scene being sent. The layer provider entity represents an interface
covering distinct implementations for each case.

6

2.1. The current system

sd Business Process Model /J

00 O O O O

Ren:lerer Scena rln Player VlsuaIMndule Dynamlchsuaandule Tnplcl:rnsnle L,a]rerF"rnw:Ier
' I I } I
alt I.a1,r+'='|r provider scheme / ! send dats as topic) ! ! :
| L | i |
: : : : forward topic{) I
| | | |
| | | | | n
| | | | | |custem codel)
| | | | | = !
! ! ! generate scene() !
L | | i | H
1 1 1 | 1 |
| | | | | |
alt Visual module scheme/ : : : :
1 T generate scene() | | | |
| send scene 85 topic]) | |
| | |] forward topic{) |
I I | aggregate()
| | | | 7
l . l l generate scene() l -
Lr= I I | I H
| | | | | T
T T T T T T
I I I ! I !
alt Dynamic wisual moedule scheme/ | | | |
T T generate scene{) | | |
| Ll'l 1 ched: subsoribers() | |
| | | I
| | | |
: : : confirm subscribers{) :
I I I < TTToTTo [
: : : send scene as topic) :
: : : I| forward topic]) |
| | | | L.l Eg;grigate::-
| | ! ! ' =
| | | M | -
- I I generate scEn:—.:- I
|'I'| | | | | -
| | | |

Figure 2.1: Sequence diagram for data flow in three patterns in current system.

Optimizations. The only deliberate optimizations of rendering speed in
visio are done in (dynamic) visual modules, where received objects are sorted
into prepared aggregation objects to reduce the number of draw calls. It is
important to note that objects coming into this process (user scene graph) are
the same as the ones coming out of it, so no platform dependent knowledge
is being exploited to speed up the rendering process.

This approach could be a good thing if we were to switch the underlying
technology quite often and thus any optimizations would carry over, but since
we have a single technology of choice for years, it makes sense to move them
under the hood.

2. Background

B 22 General requirements

General requirements, or sometimes referred as non-functional, are such, that
place constrains on how the system should be implemented, rather than what
specifically. These rarely change and should represent a broad idea of how
will the final product behave.

Multi-platform New implementation should run on most recent versions
of Windows, Linux, and OSx distributions.

Spatial precision The current visio has spatial precision in tens of meters,
which is not enough for scenarios around airports and scenarios for UAVs.
The new system should be significantly more precise; specifically, the
margin of error should be below one centimeter.

Speed Even though current simulation is not utilizing as many threads as it
could, and thus not utilizing CPU resources to the fullest, resulting code
should use as little of CPU resources as possible, leaving it for simulation
itself. The system should run well on lower-end GPUs, and sufficiently
on integrated ones.

Extensibility Easy extension of visualization using a module-like system,
abstracting interface of the system allowing silent technology modification,
and have graphics providers written to fit data being displayed.

Synchronization The current implementation works in two modes, either
graphics is created at a remote source and is sent to the device displaying
it, or it is created from a local data source at displaying device. Syn-
chronization with simulation in the new system should be unified and
optimized.

Documentation The whole system should be well documented and de-
scribed for reference in future development. The documentation should
also include manual for users of the system on best practices for its use.

Scalability System should be prepared to handle well increasing amounts
of displayed data.

Decoupling System should be able to handle multiple windows simulta-
neously, and also multiple computers participating in simulation or
visualization.

Data sources Data should be available from offline and online sources.

Late-comer Visualization client connecting into ongoing simulation should
be able to produce a valid scene.

B 2.3 Functional requirements

Functional requirements specify things that need to be implemented in the
new system. These should broadly cover all topics of implementation, may
change over time, but the overall scope of the project should stay the same.
The following list represents a basic version of the new system, that should

8

2.4. Expected use cases

serve as a foundation for upcoming development. Functional requirements
that are implied from general requirements are not listed.

Complete scene graph The system should offer all essential tools for scene
construction, such as layers, groups, transformations, or links.

Renderable objects Basic renderable objects should be implemented, such
as lines, points, and meshes.

Background optimizations The system should analyze data to be dis-
played and look for ways to aggregate render calls without explicit user
intervention.

Material-lighting Suitable renderable objects should have material and
lighting attributes.

Data sources OBJ and MTL file format support.

Dynamically constructed Earth model Displayed Earth model should
dynamically change its shape and fidelity based on camera position.

Height map integration The Earth model should integrate height maps.

Text rendering The system should provide efficient text rendering tools
for text in world space and screen space.

Transparent meshes The system should incorporate blending for purely
transparent meshes.

User input mapping User inputs should be mapped to appropriate actions
and provided to user classes.

Screen capture The system will allow different modes of screen capture,
such as video and images based on real-time manipulation with the scene,
as well as based on simulation time based one.

Graphics primitives The system will support set of graphics primitives
that can be placed in the environment.

Virtual Reality The system has the possibility to integrate VR for UAV
operators, meaning two different cameras looking at the same scene in
high refresh rates.

GUI integration The system should be designed with GUI framework
in mind, as the final version of visio system should be encompassing
complete development environment.

Asynchronous modification The scene should be modifiable indepen-
dently on rendering cycle of the engine.

Since this work is not focusing on completion of the proposed system, it
concentrates on laying out the foundation for its future development. First
and foremost, the dynamic Earth will be our sole goal, and most other
implemented features will be its prerequisites.

B 24 Expected use cases

In this section will be listed expected use cases of the new system, mostly
overlapping with current use of visio with an addition of future projects.

9

2. Background

B 2.4.1 Large scale Earth

It is necessary to render large-scale air traffic control (ATC) on actual 3D
Earth due to distortion that occurs in any mapping to 2D space. For small-
scale sectors is used stereographic projection, which configured to minimize
the relative error, but that is simply not possible when looking at flights
across the globe. This view consists of several major sections.

Earth surface. The first and foremost is the surface of the Earth itself,
with fidelity changing based on distance from the camera. This surface can
be either textured with satellite imagery, air traffic control maps, or tiles
generated from a vector source such as open street maps. Two used textures
are visible in figure For the most part, this surface provides visual cues
for quick orientation around the airspace, but it can contain any number of
additional information. Even though the Earth itself is relatively smooth,
we want to display elevation to have our traffic land/takeoff at the correct
altitude. This elevation can be exaggerated to provide further visual cues.

Figure 2.2: VFR map (left) and satellite image (right) used as surface textures.

Air control sectors. Representation of physical boundaries between con-
trolled sectors has been so far visualized as colored semi-transparent volumes
(figure . The number of these can be quite substantial, and it is not usual
to have all centers and their sectors displayed at the same time unless there is
some additional information. For instance, the color of sectors was previously
used to visualize cognitive load of their controllers (figure [2.3).

Aircraft. The most important part — for simulation purposes at least — is,
of course, the traffic itself. Besides displaying a model of the corresponding
type (it is not realistic to have a model for each existing aircraft, so our
primary goal is to map each aircraft to model with similar properties, such
as size, number of engines, wingspan), we also want to display various data
about that particular flight.

10

2.4. Expected use cases

Figure 2.3: Sector boundaries used to display cognitive load of their controller
(left), sectors under different centers (right).

Aircraft label (datablock) can contain the usual ground/horizontal/vertical
speed, aircraft type, call sign, but also runtime properties such as currently
running interaction of the pilot with ATC. The key point here is that every
aircraft will carry around its data block with content that may completely
change each simulation tick, and it should not lag behind (update of label
position is one tick behind aircraft position update).

Now that we have an aircraft in space, we would like to know its direction
and origin of departure. There are two kinds of flight plans being displayed,
original schedule and up to date plan according to adjustments from ATC.
The latter is visualized as semi-transparent tunnel as a five miles radius one
flight level cylinder around each position on the plan (figure 2.4)). This plan
does not change all that often, but it can be quite long which can pose some
issues from the rendering standpoint.

Figure 2.4: Aircraft flight plan visualization near an airport.

Weather information. ATCs also make their decisions based on weather
conditions (mostly around airports), and we need to visualize such in the
least intrusive way. For instance, ATC may choose a route that is more fuel
efficient based on direction and strength of wind, so we currently display
that as vector array, but it is entirely possible to aggregate more weather
information in the on-the-fly generated texture. Figure shows the current

11

2. Background

visualization of wind data over the USA.

Figure 2.5: The current visualization wind data in the form of a grid of color
coded arrows.

B 2.4.2 Small scale Earth

As small scale scenarios can be considered scenes of interest (hot spots)
with a radius of at most several kilometers, such as airport traffic control,
or basically any UAV scenario. Spatial precision is absolutely critical in
these. Airport traffic control obeys the same set of requirements, with a
small addition of airport buildings and detailed visualization of runways and

taxiways (figure [2.6)).

Figure 2.6: The current visualization of Prague airport with taxiways and
buildings.

12

2.4. Expected use cases

Buildings. Many UAV scenarios revolve around infrastructure, such as
building 3D scanning or patrolling. When considering the latter, we can
expect the simplest representations deprived of any photorealistic details,
mainly because we are interested the most in colliders. Reconstruction from
a video scan can, on the other hand, produce detailed geometry that needs

to be handled equally well (figure .

Figure 2.7: Model of a building scanned with UAV flyover.

Vegetation. When speaking of colliders, we cannot forget to mention trees.
These can be placed manually in small areas, and there they behave like
any other object, but can also be automatically generated in a larger scene.
To increase the visual quality of rendered scenes, it is expected that grass
coverage will be added at some point.

B 2.4.3 Controller view

The ATC view is the simplest use case of them all, as it uses only lines and
text in orthographic projection. It consists of controlled sector outline, trace
line with data block label for each aircraft, named fixes in that particular

airspace, and a couple of inner screens with details on selected flights mostly
in textual and table form (figure2.8§]).

13

2. Background

SECTOR

[4493] in

CONTROLLER LOAD
[4384] out SWA3833, contact ZID on <0995
4 [4670] in
[4472] out ASQ4229, contact 2ID on <099
[4452] in
[2964] in ZKC, AWESO, maintain FL 350 {Contact)
[2996] out
2KC, CPZ5794, maintain FL 360 {Contact)

Cognitive Load:

[4458] out RPA1609, contact ZKC on <094
[4401] in

[4441] out UAL1175, contact ZKC on <094
[4615] in

elocity vectors)
lay velocity vectors)

[982] HO 429 to 21D099

[999] HO 119 to ZID0SY
[1007] HO 542 to ZID099
[1074] ACCEPTHO 198
[1033] ACCEPT HO 382
[995] HO 349 to ZKC094

[704] DROP FDB 429
[691] DROP FDB 119
[720] DROP FDB 542
[955] HO 443 to ZKC094.

Figure 2.8: Example of controller view interface.

B 2.5 Related work

The visualization of large geospatial scenes comes with several problems to
solve. Considering we already have data to display, likely in large quantities,
we need to project them on the surface of the Earth. Snyder [3] aims to
describe all possible map projections with all their details. These projections
are categorized and with complete description of their features, usages, and
necessary math for their application.

Having the data projected in a continuous space, we need to discretize
them for rendering purposes and place them in a so-called Discrete Global
Grid System (DGGS). Sahr et al. [1] is investigating most promising geodesic
DGGS, but inspected systems are for the most part systems based on the
icosahedron. Considering a DGGS of a particular structure, we need a way
to index a cell within that is unique to its corresponding cell and can be
used in both directions — storing and reading of location within the system.
Mahdavi-Amiri et al. [4] is elaborating on all kinds of indexations in different
DGGS. All above topics are also covered by another, more extensive, survey
by Mahdavi-Amiri et al. [5].

Techniques used in adaptive triangulations can be split into three categories:
regular hierarchical structures, general triangulations, and combined solutions.
Regular ones can be represented by direct icosahedron subdivision as presented
by Kooima et al. [15], square tiles that are subdivided into triangle patches

14

2.5. Related work

for texturing convenience discussed by Livny et al. [I6], on the fly constructed
geometric clip-maps introduced by Losasso et al. [I7], and many more.

In Planet-Sized Batched Dynamic Adaptive Meshes by Cignoni et al. [2]
(P-BDAM) is discussed interactive rendering of planet-sized textured terrain
surfaces. It covers performance side of the problem, as well as floating point
precision limitations (also covered by Thorne [10]). The used structure is
regular triangle patch grid where each patch is irregularly triangulated to
add elevation data. This work is further extended by Gobbetti et al. [13]
(C-BDAM), adding compression and maximum visual error to the mix. It
is important to mention the use of speculative prefetch as opposed to frame
time prediction heuristics proposed by Wimmer and Wonka [14].

At last, we can represent and render the data as a triangulated irregular
network (TIN). Instead of regular sampling, we place vertices in defining points
on the surface, triangulating resulting point cloud, preferably as Delaunay
(Kidner et al. [19]) or Quasi-Delaunay (Liu et al. [I§]).

15

16

Chapter 3

Scalable Earth surface representation

Before we can start with the construction of any scenes Earth surface scenes,
we first need to prepare the data in the best format for this use. In the
beginning, we partition Earth surface in a hierarchical structure to subdivide
the visualization problem, then we place displayed data in this structure, in
our case elevations and satellite imagery, and lastly, we generate 3D objects
that will be placed in a scene and rendered.

. 3.1 Quad tree

When looking for a hierarchical structure for Earth data, we need to simplify
the problem a bit. Looking at the Earth as a spheroid makes things too
complicated, especially if we do care only about its surface. The ideal solution
is unwrapping it in 2D space, and continuing there, but no mapping from
sphere to 2D is perfect, and all of them bring their own errors.

We could go with the stranger approach mapping on faces of a polyhedronﬂ
with further triangular subdivision, as used by Dutton [7] (octahedron) or
Lee [§] (icosahedron), but mapping square textures into such a thing would
be a nightmare. This brings up the first restriction, our mapping of choice
should be rectangular to ease up the texture work as much as possible.

Looking for more common, conventional projection, we will find that
Mercator projection E| is rectangular, and as simple as it gets. We will merely
treat latitude and longitude coordinates in degrees as values on y and x axis
respectively, producing a rectangle with 2 : 1 side ratio.

Now we just need to subdivide our Mercator rectangle to form a hierarchical
structure. From structures with rectangular cells can be picked, for instance,
a kD tree. This approach would efficiently cut out unnecessary detail over
sea and poles, but it would make it difficult to get neighbors for cells we want
to render (stitching purposes). To fix that, we can split the cell always in the

Ihttp: //www.progonos . com/furuti/MapProj/Normal/ProjPoly/projPoly.html

https://en.wikipedia.org/wiki/Mercator_projection

17

http://www.progonos.com/furuti/MapProj/Normal/ProjPoly/projPoly.html
https://en.wikipedia.org/wiki/Mercator_projection

3. Scalable Earth surface representation

middle, and alternate split axis regularly. We not only fixed neighbor lookup
problem, but we also remove the main advantage of kD tree (adaptation to

data), leaving us with a regular quadtree.

Quadtree in our case is slightly modified, as we have two zero level cells,
western and eastern hemisphere. Otherwise, we split each cell into four smaller
same size cells for the following level. Since root cells are square shaped
(dividing 2 : 1 ratio rectangle), all cells in the tree are also square shaped.

latitude 90° latldz O
longitude -180° Ingldz O

latIdxz 0O
IngIdz 1

mercator [2,1]

latIdx 1
IngIdxz O

latldx 1
Ingldz 1

latldxz 1
Ingldz 2

1ot Toaes:
IngIdx 3

true scale

latIdx O
IngIdx 0O

latldz O
Ingldz 1

latldx O
Ingldx 2

latIdz 0O
lngldz 3

mercator [0,0]

latitude -90°
longitude 180°

Figure 3.1: Indexed space at depth zero (blue) and one (red), mercator and

spheric space bounds.

B 3.1.1 Indexing

To be able to deterministically name each node without having to build any
structure, we need to devise an indexing method that allows us to perform all
the necessary operations around a node. Methods to assign unique identifier
to a cell are numerous, but they can be generally divided into three categories,

as described by Mahdavi-Amiri [9].

B Hierarchy-Based indexing relies on numbering assigned to initial nodes in
the structure, and the method of expansion of this code along subdivision.
For example, we can name our root nodes A and B, and assign a number
0 — 3 to each child. This way each cell is identified by a string following
expression [AB][0..3]% where d is depth in the tree.

® Space-filling curve indexing, where we define a pattern of a walk through

a cell grid, incrementing an address number.
of possible curves (Hilbert, Peano, Morton, ..

indexing complexity and use related other properties.

There is quite a few
.), each with different

3.1. Quad tree

® Axes based indexing splitting addressed space by a number of axes and
using a set of coordinates instead of a single number.

For our purpose, the best fitting approach seems to be axes based indexing.
Index of a node in our quadtree is composed out of three numbers: latitude
index, longitude index, and depth. To avoid the necessity to specify in which
hemisphere are we indexing, the depth for latitude index will be increased by
one in all calculations (figure [3.1).

We can imagine a regular grid over Earth surface, that has granularity
dependent on depth. That means that grid at depth d will be a space
[0,2(¢+D — 1] x [0,2% — 1], in which we index specific cell of interest. It is
important to remember, that this space wraps between left and right edge.

latIdsz n+l
IngIdsz m
latIdx n>>1
Ingldz m»>1
latIdz n latIdxz n latIds n
Ingldx m XOR 1 lngldx m Ingldz m+1
latIldz n XOR 1 latIdz n XOR 1
lngldxz m XOR 1 lngldxz m

Figure 3.2: Relations between tiles, green siblings, red neighbors, and blue
parent.

To demonstrate how simple is movement in between node indexes in the
quadtree, basic operations will be briefly described below. See figure for
a visualization of some of the relations.

Ancestor. If we represent latitude or longitude index in binary, each bit cor-
responds to diving in to the left/right or bottom/top, respectively. Therefore,
to get any ancestor in specific depth, we simply need to erase number of least
significant bits. Consider being at depth d; with latitude index [t; going to
ancestor at depth ds wanting to know its latitude index Ito, where dy > da,

19

3. Scalable Earth surface representation

then Ity = {ﬁJ . This may not seem overly simple, but in practice, going
to parent means bit shift to the right.

Children. If we want to break down a node into its children, we can simply
multiply its latitude/longitude indices by two, and add one if we want a child
in the right column or top row.

Siblings. Distinguishing the difference between sibling and a neighbor is
important. Sibling of a node has the same parent and always exists, while
neighbor may have distinct parent and may not exists. It is important to
note, that siblings may be missing in general quad tree. However, since we do
not allow parent and children to coexist in single scene, and we demand full
coverage of the surface, our quadtree will require presence of either none or all
children. To get a sibling, we only modify the least significant bit, so we get
the index of a sibling in a row as Ingldz @ 1 (@ is bitwise XOR operation).

Neighbors. When considering siblings, we need to add extra checks for top
and bottom to account for limited space on y axis and wrap on x axis. Since
getting neighbors is movement in same grid granularity, we can simply add or
subtract one, and apply space limitation checks. A neighbor does not have to
exist, for instance, no node with latitude index equal to zero has the bottom
neighbor, but it may be missing for other nodes due to undefined source data
as well. We will consider nodes to be neighbor only if they share an edge.

. 3.2 Elevation

We will take a look at elevation data for the Earth, first in their raw form,
then in the context of our quadtree structure, and finally their use case in
our system.

B 3.2.1 Format

When discussing about elevation data, we usually consider some collection of
samples with values in meters above/below sea level, organized depending on
their usage. The organization can be dependent on the way the data were
collected, for instance, the stripe tracing path of a satellite where rows are
particular scan lines %, or it can be dependent on the usage, such as rectangle
area of samples corresponding latlong rectangle in Mercator.

Either way, we need to refit the data into our quadtree for further processing.
That means writing a reader for each data source, which will find the best
depth in the quadtree to scale the data to while minimizing sample and
precision loss and convert all source samples to it. At this point, we have

3see https://earthexplorer.usgs.gov/|for SRTM dataset samples

20

https://earthexplorer.usgs.gov/

3.2. Elevation

one consistent new set of tiles (quad tree nodes), which we want to reflect
upwards towards the root (assuming previously present data were built from
coarser samples). At last, we need to fill in missing data in all new tiles to
avoid unnecessary edge cases during usage.

Going through this process will leave us with a somewhat large dataset
of 2D float arrays that we need to store, but that would take way too much
space and slow down downloading during usage. We could, of course, apply
any standard compression such as zip or rar, but we can do much better.

The more compression algorithm knows about compressed data, the better
it can compress it. That leads us to compression of 2D data, which is
commonly applied to images. We simply map our float samples to colors in
an image and store it using one of the conventional formats. Mapping to
greyscale is not sufficient even if we resort to 16-bit tiff, so we will have to
map samples to RGB space (figure . Consider sample s in meters which
we want to convert to color ¢ as single integer value containing 24-bit RGB.

¢ = round((s + 1000) - 100) - 16

We first offset original value by 1000 to get the range of values above zero,
then we extract centimeters by multiplying by 100 and rounding, and at last,
we shift it bitwise by four to the left to get least significant bits to the visible
part of blue for visual inspection. This scheme leaves us enough space to
record any elevation on Earth with centimeter precision (minimum -1000m,
maximum 9000m).

Image generated with these colors can be stored using any lossless image
file format (jpg turned out generating an average error of 600 meters).

Figure 3.3: Example of zero depth (left) and depth six (right) elevation map tiles

21

3. Scalable Earth surface representation

B 3.2.2 Sources

As datasets for this project had to be used only ones under a license allowing
commercial use. Two main sources were used, but one was partially source for
the other. The resolution of sources is quantified in arc seconds per sample.
That means what resolution was the dataset captured before its transition
in Mercator projection, so even though there are more samples per meter in
Mercator further from the equator, it is no more precise. The three levels
defined are 15 arc seconds (460m/sample), 3 arc seconds (90m/sample), and 1
arc second (30m/sample). When talking about data constructed from SRTM,
we should keep in mind that all samples were captured at 1 arc second and
then transformed into lower resolutions based on the amount of missing data
and fragmentation.

ViewFinderPanoramas. Well known and used collection of elevation data
in all three described resolutions. The author claims it is a collection of
multiple sources with cleaned up missing samples and fragments. While 3
arc second dataset is complete mosaic for all land masses (figure , 1 arc
second is available only for a couple of mountain ranges in central Europe
and northern Europe (figure [3.5).

Figure 3.4: Map of 3 second arc global coverage.

SRTM. Shuttle Radar Topography Mission was a collaborative project under
NASA aiming at global landmass elevation map coverage (more on the project
in its documentation E]) Specifically 1 arc second available for download from
NASA servers [5 has coverage only over USA territories, and it is unfiltered
mosaic, meaning there are missing data and fragments (figure .

“http://viewfinderpanoramas.org/dem3.html|
°https://dds.cr.usgs.gov/srtm/version2_1/Documentation/SRTM_Topo. pdfl
“https://dds.cr.usgs.gov/srtm/version2_1/SRTM1/|

22

http://viewfinderpanoramas.org/dem3.html
https://dds.cr.usgs.gov/srtm/version2_1/Documentation/SRTM_Topo.pdf
https://dds.cr.usgs.gov/srtm/version2_1/SRTM1/

3.2. Elevation

a
~

= ol

\1_, G -170 160 150 “Iido . -130 -120 110 -100 90 80

Figure 3.6: Map of 1 second arc USA coverage.

Connected. All datasets put together form a quadtree starting at depth
9 with full coverage going to depth 11 with selective coverage (USA, Alps,
Northern Europe). The final size is 170GB over 480 000 tiles in 512 x 512
samples, zero tiles removed. All missing data were pulled from 15 arc second
dataset, as it had complete coverage.

B 3.2.3 Query

Performing an elevation query is trivial when one does know exact tile in
question, and as long as the query point is far from the edge of that tile. It
gets a tad bit more complicated once we start querying elevation data based
on latitude and longitude in degrees with no knowledge of how deep is the
quadtree at that point.

23

3. Scalable Earth surface representation

Nearest Neighbor. Doing an NN query is relatively easy, as we just recur-
sively dive into the quadtree from the following top position of query point
to depth that interests us. This approach has one crucial flaw: if the query
point is on the edge of a sample or even a tile, result of such search depends
purely on float precision "randomness" how we got the query point. We can
calculate the same point twice using different methods (calculating an edge
point on two different levels involves different starting numbers, for instance),
and the resulting elevation may differ significantly.

Linear interpolation. To make sure our query process is stable, we need to
do four NN queries and linearly interpolate between them. That way, a slight
difference in query point will result in a slight difference in returned elevation,
and that can be usually tolerated. To make our four queries, we need to go
to the grid at our depth of interest, take closest cells around query point, and
use their centers for NN search.

We can, of course, perform a range search around initial query point, but
that gets a little complicated around edges and corners of tiles, as relevant
samples can be far depth-wise. Range search approach would potentially save
us significant number of traversal steps.

Sampling depth. Mentioned several times, we have to deal with "depth of
interest". This depth can depend on use; for instance, we want all queries to
be performed at the same non-maximum depth when constructing tile stitch
at that depth to avoid aliasing. We can also want to get elevation from the
maximum depth not knowing how much it really is. The former is easy to
resolve, as we perform NN queries in the grid of depth we know ahead, but
for the latter, we need to account for a couple of problematic cases. In the
order for linear interpolation to work correctly, we need to have samples from
same depth, thus forming a square (at least when we want to avoid the hassle
of dealing with four additional positions and weights). This means we need
to find out the maximum depth in the proximity of our query by checking
if tiles around query are in grid cell distance. If they are close enough, we
proceed to consider their depth as well.

Normals. Since surface normals are directly calculated from local elevation
gradient, it only makes sense to query them from the elevation map. To do
calculations in 2D field of values, we need to gather maximum information
from sample surroundings. That means doing 8 elevation queries forming a
square around our query point. Here we have to perform full query instead
of NN, as we would suffer from same issues with float precision. Knowing
surrounding elevation is not enough, of course, we need to set the calculation
in context of the Earth, creating a fan of vectors from center to all surrounding
samples, calculating normals of adjacent ones, and averaging those into final
returned normal. (see figure 3.7)

24

3.3. Imagery

2 0

Figure 3.7: The elevation map normal query, the red dots are considered
samples, the green lines are normals of triangle fan around the query sample,
and the red line is final normal as average of triangle fan normals.

B 33 Imagery

This section discusses some of the available options for imagery coverage of
Earth surface. Even though these tiles could contain basically any kind of
2D data, we will focus on satellite imagery, as that is the type we will display
first and the most. Our first interest is the format used for particular tiles,
then we will take a look at a couple of relatively accessible datasets, and in
the end, dataset intended for future use and its processing will be elaborated.

B 3.3.1 Format

When talking about tile format, we have very few variables to consider this
time around. Essentially, we can specify compression and resolution in pixels.

With compression, it is mainly the decision between lossy and lossless,
as it is JPEG for the former and PNG for the latter, but there are still
options to be explored later. For instance, long-time standard JPEG has a
"new" contender in the form of BPG format |7, which prides itself on better
quality/size ratio. There are unfortunately no Java libraries for its decoding,
and even though we could run provided JavaScript decoder directly in Java
interpreter, the performance would be questionable to say the least, so we
will have to set it aside for the time being.

"https://bellard.org/bpg/

25

https://bellard.org/bpg/

3. Scalable Earth surface representation

The issue we can have with lossy compression is that same compression
can make a different type of compromises on neighboring tiles, and the edge
between them will become more visible. This problem did not become all
that visible during testing, so there is no other reason not to use JPEG.

As far as the resolution goes, our baseline is at 512 x 512 pixels, but based
on observations of different map viewers such as google or bing, squares
256 x 256 seems to be quite popular. Without further measurements, we can
pick the higher resolution, and decrease it at any later time when we have
more usage data.

B 3.3.2 Sources

From available sources, we will be considering four most interesting ones. Our
factors for the dataset selection are for the most part maximum resolution,
global coverage, price, and quality.

Blue marble. This dataset ° is provided by NASA as global base map
constructed from countless captures to maximize visual quality as far as color
consistency and cloudlessness goes. It is provided for free in three versions
for each month, one with captured colors only, one with added topography
(3D effect), and one with added bathymetry (oceans look more lively).

When converted into our quadtree, it is complete all the way to depth
6, making it sufficient for some large-scale scenarios, but not for all, and
datasets from other sources are not very well fitting with it (figure 3.8)).

Figure 3.8: Top level of blue marble dataset.

Black marble. The only notable night dataset, more specifically its second
iteration from 2016, black marble from NASA. This dataset [’| is available in

Shttps://visibleearth.nasa.gov/view_cat.php?categoryID=1484
%https://earthobservatory.nasa.gov/Features/NightLights/page3.php

26

https://visibleearth.nasa.gov/view_cat.php?categoryID=1484
https://earthobservatory.nasa.gov/Features/NightLights/page3.php

3.3. Imagery

the same resolution as Blue Marble and could be used simultaneously with its
day version for 24-hour large-scale scenarios. With traffic all around the globe,
and switching between night and day texturing depending on simulation time
sun position as a temporal cue could be beneficial (figure 3.8).

Figure 3.9: Top level of black marble dataset.

Landsat 7. This dataset is also publicly available, but unlike blue marble,
it is not in the form of processed mosaic but raw satellite flyover data that
contain fragments and clouds. These are then processed and merged with
other datasets by private companies and sold |'¥| as global base maps.

This dataset is not a true color capture; instead, other bands were mapped
into colors in visible spectrum: mid-infrared to red, near-infrared to green,
visible green to blue. This composition gives dataset the recognizable and
unfortunately unnatural pink-lime scheme.

Landsat 7 is used in the current visio, but its fidelity outside of selected
part of USA is utterly insufficient, and it needs to be replaced (figure 3.10).

Sentinel 2. Sentinel dataset was a similar story as Landsat 7, at least as far
as availability of its processed mosaic goes, until August 2017. The mosaic
was released || for the public in its full resolution. Whole dataset can be
viewed online|'?, and downloaded from Amazon Web Service (AWS) bucket [®
(in requester pays mode — about 380USD for complete dataset of 4.2TB)
(figure [3.11)).

Planet SAT. This commercial dataset from Planet Observer ['4is collection
of tiles from Landsat 7 and Landsat 8. Its main advantage, besides visual
quality, is option to expand this 30m/sample dataset by compatible high

Ohttp://cms.mapmart . com/Products/SatelliteImagery/EarthSat.aspx
https://eox.at/2017/08/sentinel-2-global-cloudless-mosaic/
2https://s2maps.eu/
https://eox.at/2017/03/sentinel-2-cloudless-original-tiles-available/
Mhttps://www.planetobserver.com/

27

http://cms.mapmart.com/Products/SatelliteImagery/EarthSat.aspx
https://eox.at/2017/08/sentinel-2-global-cloudless-mosaic/
https://s2maps.eu/
https://eox.at/2017/03/sentinel-2-cloudless-original-tiles-available/
https://www.planetobserver.com/

3. Scalable Earth surface representation

Figure 3.11: Top level of Sentinel 2 dataset.

resolution imagery (up to 0.5m/sample). The only drawback is the price,
starting on 12 000 EUR for a single customer, and ending at 60 000 EUR for
multiple customers (figure 3.12).

Summary. In table 3.1] is a summary of considered datasets and their
properties.

B 3.3.3 Sentinel 2

Although we explored some other options that were not listed above (not
suitable), Sentinel 2 dataset seemed like the best solution for the time being.
The problem is, it is not usable out of the box, as there is no complete
coverage level with fitted seas (such as in Landsat 7 case), and they need
to be added in one way or the other. There are also occasional fragments
of missing data and pieces of clouds that ought to be removed before usage

28

3.3. Imagery

Figure 3.12: Top level of PlanetSAT dataset.

Name ‘ Resolution Quality Captured Cost

Blue Marble 500m Consistent, complete 2004 Free
Black Marble 500m Consistent, complete 2016 Free
Landsat 7 30m Not true color, 5% cloud 1992-2000 1.500 USD
PlanetSAT 30m Consistent, no sea data 2013-2017 60.000 EUR
Sentinel 2 10m Consistent, missing data, 5% cloud 2016-2017 380 USD

Table 3.1: Comparison table for considered datasets.

(figure B.13).

In following text will be elaborated the concept of preparation of sentinel
data, not actual process that was completely implemented. Any work with
the dataset this large requires a lot of time and is out of the scope of this
thesis.

Figure 3.13: Sentinel 2 dataset coverage, red pixels represent available tiles.

Missing data. First in order to fix are missing samples. We can use a
complete dataset to fill any missing samples one to one, but the color scheme
will not match. Thus we need to find a mapping from one color space to the
other based on correspondences of data we have in both datasets (figure |3.14).

This simplest solution would be to assume that the mapping does not

29

3. Scalable Earth surface representation

depend on any variable (although we can expand this model by inclusion of
latitude and longitude), and follows linear equations C; - M + K = Cy, where
(4 is RGB sample in complete set, (5 is sample in incomplete set, and M
with K are vectors of three constant values.

Each correspondence will thus generate three equations of six unknowns:

Cir-Mpr+ Kr = Cap
Cig Mg+ Kg = Coq

Cip-Mp+ Kp =Csp

We technically need only two correspondences, but to increase the precision,
we can get as many as we like and solve resulting overdetermined system
using least squares. This approach works, but only locally, as unlike with
blue marble, sentinel data were taken at various times of the year.

Figure 3.14: Example of a tile with filled data from blue marble with color
correction.

To apply it globally, we could try using correspondence that includes
latlong coordinates, or just calculate local mapping for multiple locations,
and interpolate it everywhere else.

Coastline. Since sentinel dataset does not have any sea coverage besides land
overlaps, we need to add the sea values from a different dataset (assuming
we do not want constant value). In theory, transitions of missing data should
handle this problem to a degree, but we can help it a little bit more. Using
GSHHG dataset EL we can create artificial shoreline in a fixed distance from
the real one, and use it to consistently cut off missing ocean data (figure .
Then we can proceed with missing data substitution.

https://www.ngdc.noaa.gov/mgg/shorelines/gshhs . html
P g g g8 g

30

https://www.ngdc.noaa.gov/mgg/shorelines/gshhs.html

3.4. Mesh

Figure 3.15: Example of coastline cutoff as done by EOX.

Clouds removal. Even though the sentinel dataset is near cloudless, there
are still patches of clouds here and there, and we could try to remove them
(figure 3.16). The solution could be approached in two steps, where the second
is already solved — filling in missing data. Since cloud pixels serve no real
purpose, we can mark them as missing data, and fill them with something
even slightly more useful.

Reliable detection of cloud data might be a bit tricky, but we can call for
help to our trusty blue marble. We can try to assume that if there is an
almost white pixel in sentinel data, and at the same time a dark pixel in blue
marble, the pixel in question is a cloud with its near surroundings.

Of course, this problem is much more complicated and requires more
attention in the future. We can use some of the multi source or hybrid gap
filling/inpainting algorithms, summarized in a survey article by Desai and
Ganatra [I1].

. 3.4 Mesh

Now that we have all the necessary raw data, we can move on to the construc-
tion of actual mesh that will be displayed in the scene. This construction
process is composed out of three main parts: generation of base geometry,
decimation of tile insides, and generation of stitch geometry.

31

3. Scalable Earth surface representation

Figure 3.16: Example of more prominent cloud coverage in sentinel dataset.

B 3.4.1 Generation

When generating tile vertices, we need to place them correctly with respect to
their corresponding elevation samples. Since those are defined for the middle
of pixels in elevation data image, we need to place our vertices in the same
position. That leaves tile edges — which are shared with neighbors — for
stitching purposes (see figure 3.17).

We first generate all vertices in latlong coordinates and then transfer them
to Cartesian while adding radius of the Earth and elevation value. At last
faces are created by filling in triangles to each quad row by row. Texture
coordinates are set immediately, as they are at this point same for every tile.
We do not generate normals yet, as they are subject to decimation process.

When generating tiles that touch either pole, we can notice that whole
bottom or top edge gets crumpled into single point of degenerated geometry,
and triangles generally have ill distribution. This can be fixed by starting with
single triangle at the pole and make each row towards equator one triangle
longer than the last one. Since we work with square tiles, the last row will
have the same length as row of its connecting "square" neighbor.

Because elevations visualized at the global scale are barely visible, we may
want to exaggerate them by some factor. Of course, all graphics in the same
scene needs to be elevated by equal factor. Even though it might seem as
only a visual candy, it can actually be useful to have flight levels further apart

32

3.4. Mesh

[] . - - I
|
[] [] - | [] - -
[] [] | - [] - - - -
| ERN |

Figure 3.17: Mapping of elevation samples for square (left) and triangle (right)
tiles, blue dots are dataset samples, red dots are samples from linear interpolation
between tiles, grey lines are generated triangles, and black lines are areas of
original samples (pixels in original texture).

(they are usually near indistinguishable at real scale), and with these needs
to be elevated surface of the Earth.

B 3.4.2 Decimation

If we were to generate a square tile mesh at full resolution of our elevation
map tile, we would get (512 + 3) - (512 + 3) - 2 = 530 450 triangles. That is a
lot for a single tile, and it is also completely unnecessary, as removal of most
vertices would be hardly perceivable from intended view distance.

This means that we can dramatically reduce the number of triangles in
the mesh by merely removing a number of vertices and re-triangulating holes
that appear after their removal. However, why don’t we just generate a mesh
with lower resolution right away? Well, the explanation lies in aliasing issues.
The fact a vertex is expendable is not determined by its position in the grid,
but by actual elevation values of its neighbors.

For decimation purposes will be used the algorithm in listing Going
through the algorithm, we first load all non-border vertices into a priority
queue under their plane deviance. We do not want to remove border vertices
for stitching purposes. We repeatedly take a vertex from the queue and
consider its removal.

In case we are above the maximum error but have not yet reached the
desired number of vertices, we will keep removing. On the other hand, if we
are past the maximum number of vertices in the mesh, it will not stop us
from removing more if it is possible. Now onto a bit conspicuous check, that
is the maximum neighbor area. This was added to the algorithm, to keep
coastal sea triangles eating away vertices from land, as expanding already
large triangles is not allowed due to this check.

33

3. Scalable Earth surface representation

In the last section of the algorithm is performed attempt for removal, but
only in case this vertex does not have too many neighbors. Each non-border
neighbor of the removed vertex is then added/updated with its new plane
deviance. The algorithm terminates after a finite number of steps when the
necessary amount of vertices has been removed, or none can be removed any
further.

As it is integral to the algorithm, we will take a look at the calculation of
plane deviance. First, we calculate average plane for vertex v with base point

ZTtaxtc
P:te

2. la

teT

and normal

Sty Xty
_teT

Yt

teT

where T is set of all triangles containing v, t, is area of ¢, t. is center of ¢,
and t, is normal vector of a triangle ¢. In other words, we do weighted average
(by surface area) of triangle normals and centers in triangle fan around v.
(see figure 3.18))

Figure 3.18: Average plane calculation, blue lines are borders of considered
triangles, green lines are triangle normals in their centers, the black dot is
center of mass of triangle centers, the red line is average plane normal.

Now we simply measure distance d = |dot(n,v) — dot(n, P)| of vertex v
from our plane to be used as deviance heuristic. The closer the point it to this
plane, the lesser of an impact it will make on overall error if it is removed.

34

3.4. Mesh

In figure is Earth mesh wireframe render for no decimation performed
at tile resolution of 128 x 128 and exaggeration of 100, tile depth 3, and in
figure the very same mesh with decimation process applied.

Figure 3.19: Earth surface at level 3 before mesh decimation process.
(Elevation exaggeration set to 100)

Figure 3.20: Earth surface at level 3 after mesh decimation process. (Ele-
vation exaggeration set to 100)

B 3.4.3 Stitches

Let us consider for a moment, that we would not generate any stitches, and
all tiles would be fully covered from initial generation. If previously defined
elevation query process is used, tiles on same depth will display just fine,
but once two neighboring tiles have a different depth, edge vertices may not
match onto each other, and we will see holes in the surface.

35

3. Scalable Earth surface representation

There is a number of ways to deal with this problem. For example, we can
extrude each tile to sides a little and downwards (towards Earth core), creating
sort of interlocking wings that prevent the appearance of any holes. This
solution has its own issues, as most of the others. Based on the evaluation of
all these pros and cons, stitches came out as the best idea, mostly because of
its perfect visual connection (although it is more demanding and complicated).

A stitch geometry (see figure is created for each possible neighbor
depth, and only the relevant one is rendered once a scene is assembled. If we
choose neighboring tiles being at maximum depth difference of one, we will
have to define only two dynamic stitches per tile, and each has to have only
two versions (for the same and coarser level).

In this case only two small parts prove to be difficult. Tile corner and
edge middle elevations are issues because these vertices can appear on tiles
with depth difference of two, and thus their values must be from maximum
sampling depth instead of tile depth (problem already solved by elevation
map queries). The second issue is with normals, as edge normals cannot be
calculated from DCEL structure, and must be queried from elevation map
(again, solved by elevation map queries).

Figure 3.21: A connection of three tiles with depth difference of one. Top
tile is on a lower depth that bottom tiles, all 4 x 4. Red dots are stitch
vertices present in all tiles, blue are vertices in their respective tiles, and
grey lines are triangles of all involved meshes. Stitch triangles are between
blue and red vertices.

36

3.4. Mesh

Data: Tile mesh as DCEL

Q = heap;
for v € mesh.vertices do

e

if v.isBorder then
‘ continue;
end
d = planeDeviance(v);
Q.add(v, d);

nd
while () is not empty do

v, d] = Q.poll();

if d > MAX FERROR AND mesh.size < MAX SIZE then
‘ break;

end

if v.maxNeighborArea > MAX TRIANGLE ARFEA then
‘ continue;

end

N = v.neighbors;

if N.size > MAX NEIGHBOR_COUNT OR !mesh.remove(v) then
‘ continue;

end

for n € N do

if n.isBorder then

‘ continue;

end

d = planeDeviance(n);

if Q.contains(n) then
‘ Q.update(n, d);

end

else
‘ Q.add(n, d);

end

end

end

Algorithm 1: Decimation of triangle mesh

37

38

Chapter 4

Rendering Earth surface

Now that we have prepared all the necessary data, we will take a look on how
to get them on the screen in the most efficient manner, as it is impossible to
even to fit all of them in main memory, much less draw them. In the following
sections will be elaborated the issue of spatial precision as foreshadowed in the
introduction, algorithm of view based scene construction will be presented,
followed by sections devoted to other optimizations that help us to put more
on the screen.

B a1 Spatial precision

As we display Earth in various levels of detail and positions of the camera,
we encounter issues with floating point precision near the surface, specifically
when we start recognizing objects on screen that are meters apart. The
moment this issue appears, of course, varies case by case, but generally, it is
always eventually there. We can safely assume that users will never require
higher precision than millimeters, so infinite precision is not really what we
are after.

Let us take a look what is the precision problem all about in the first place.
Consider an integer with a fixed number of digits, say seven. The number
that can be in this integer can be for instance ¢ = 1234567. Now we can use
another number, call it exponent, to move decimal point to left or right, so
e = 3 means ¢ = 1234567000, or e = —2 means ¢ = 12345.67.

Now imagine our integer is the radius of the Earth in meters » = 6378100.
If we would want to record two positions hundred meters apart, we have no
issue r; = 6378100, ro = 6378200, d = ro — r; = 100. However, in case we
wanted a distance of half a meter, we are suddenly out of digits, and have to
round up or down, creating a visible error.

Of course, the problem is not only in spatial positions relative to coordinate
system center but also in precision in depth buffer during rendering. Even
though we may have sufficient precision on x and y axis (the difference due

39

4. Rendering Earth surface

to rounding is sub-pixel), we may still encounter z-fighting. As suggested by
Sellers et al. [6], we can tackle this issue by splitting frustum along the Z axis
and rendering the scene in multiple passes.

There are several options how we can deal with the insufficient precision of
floating point arithmetic, namely:

® Moving all calculations to double precision. This solution is straightfor-
ward to implement but does not scale very well at all. On the CPU is the
problem not that critical, as double precision arithmetic must be used
either way, but most GPUs have only a few units for double precision

computation, and those that have sufficient amount are overly expensive.
® Maintaining transformation matrices in double precision. This allows us

to have all the data used on the GPU in single precision, most impor-
tantly vertex positions, and deal with the doubles only while calculating
transformation matrices. That, unfortunately, creates quite a strain
on CPU side with numerous already expensive matrix multiplications
slowed down by double precision. Furthermore, it indeed does not scale
well for cases where not only a model transformation matrix is in double
precision, but all accompanied vertex positions as well, in which case all

have to be transformed on CPU.
® Creating a fixed grid of local coordinate systems. In this case, we would

discretize in fixed size blocks that use single precision, but whenever
requested, positions of higher precision to given point can be produced.
This would mean that camera movement between these blocks triggers
recalculation of all positions relative to the center of block camera is in.
This can be of course done on the shader, as by definition everything
within the same block is already prepared in sufficient precision, and
positions from other blocks can be prepared by single MAD ! operation
per position, assuming we intend to use these positions only for rendering

and thus screen space error is insignificant for objects that are distant.
B Shifting coordinate space with camera movement. This method relies

on coordinate system change whenever screen space precision would be
insufficient, meaning when display error reaches one pixel, coordinate
space center is shifted in the current position of the camera minimizing
it. In coordinate system change must be recalculated all positions at the
cost of one double precision addition and cast to single precision which,
unfortunately, cannot be moved to the shader. Unlike with fixed grid
method where maximum error is determined by edge length of the grid,
here we have to check it with every camera movement. Effectivity of
this method strongly depends on the implementation of this check. For
instance, if we were basing our error only on the distance of camera from
coordinate center, it would take as little of CPU time as possible, but
when the camera is moving by vast distances during whole Earth view,

IMAD operation, multiply and add, is often implemented as single instruction in
hardware, exploiting nature of both instructions working from lower orders to higher.
Dependent read after multiply instruction is removed, and overall precision is increased as
normalization and denormalization are not performed between mult and add.

40

4.1. Spatial precision

recalculation of all positions would be requested pretty much in every
frame. On the other hand, if we were to calculate screen space error for
every visible entity, the check would take significant chunk of time. The
whole matter is quite extensively covered by Thorne [10], called floating
origin.

We will take a closer look at latter three solutions.

B 4.1.1 Double precision matrices

This method is exceptional in its implementation simplicity since the only
thing we have to do is to declare model and view matrix constructions in
double precision, cast their result to float and carry on with transformation
matrices as in any other visualization system.

We have to keep in mind that lights calculations, unlike with other men-
tioned methods, have to be done in camera coordinates instead of world
coordinates. Light positions, in this case, have to be put into view space on
the CPU using double precision and then be transferred to GPU to be used
in a fragment shader.

The most significant disadvantage of this method is that we have no way
how to deal with objects that have their vertex positions in double precision
and cannot be converted into single precision. In these cases, we have to
perform the transformation of those vertex positions on CPU in double
precision which can prove to be quite expensive indeed.

This problem will most likely arise in case of objects that are way too large,
such as flight path of an aircraft flying from Europe to the west coast of USA.
In those cases, the center of mass all positions are relative to will be too
far, and when looking at landing section of such flight, we would experience
significant jittering.

B 4.1.2 Dynamic center method

As described earlier, we are shifting the coordinate system center to current
camera position whenever screen error for displayed objects exceeds one pixel.
Firstly, we need to take a look at requirements on object implementation side,
most general use case, and then less frequent specific cases.

Since we need to be able to recalculate each position from World Coordinates
(WC) to Shifted World Coordinates (SWC) and we do not want to do it in
every draw call, we have to retain both at all times. Then a call with the new
center in WC double precision must be accepted and propagated by those
objects generating positions in SWC. These then must be automatically used
in all draw calls. This update call should be made in every frame where
camera position changed and screen space error is large enough. This leads
us to error calculation. We stand in front of optimization, where we want

41

4. Rendering Earth surface

to minimize the amount of work taken by error recalculation, and also the
number of SWC recalculations.

Possible approaches are:

® Recalculation is done at a fixed distance of the camera from SWC origin.
This means that error will never exceed a specific value, but also that
when the camera is moving fast through empty space, error on no object
is over one pixel, yet recalculation of SWC is done in every frame.

B When a position enters a radius around the camera, which grows larger
the further camera gets from SWC origin. Here we know recalculation of
SWC is done only if it is necessary, but at the cost of additional distance
computation to all positions with every camera movement. Since we
need to take into consideration the worst case scenario, we may have to
resolve to consider bounding spheres during this check. We can employ
acceleration structure to search through all present positions faster and
avoid those that are apparently out of range.

® Recalculation is done at a dynamic distance of the camera from SWC.
In this case can be exploited the fact that we know the camera is mostly
moving around the Earth observing airplanes that are moving in limited
space above the ground. This way we can change the recalculation
distance based on distance to the Earth surface. This approach is
much less flexible but offers close to optimal results for next to none
computational cost.

In the ideal case, the fast third option would be implemented alongside
with the second one just to keep the system ready for general cases.

Now we will take a look at the most general use case of the system described
in the graph below. We can see there that model data are given in single
precision while model and camera positions are in double precision (as they
will be in all following cases). Here we simply apply SWC origin position
in WC to view and model transformation matrices and continue using them
in rendering pipeline (figure |4.1). This case is from a computational cost
perspective the cheapest, as we do not have to touch the model data at all.
As an example, we can take a look at any airplane model that is placed
somewhere in the world.

A case that proves to be a bit more complicated is when we have model
data in double precision and thus raises a question how to accurately represent
it. If the data perchance do not lose precision by conversion to float, we
can do that and move to the previously presented case. Another option
is to check whether the center of mass for all positions within our objects
are close to each other enough to not generate any fragments, and if they
are, we can recalculate them as relative to the center of mass, and apply
its offset on model transformation. Even though this might seem like the
general case again, it is not. We need to keep in mind that whenever model
transformation changes, this offset needs to be kept separate and reapplied

42

4.1. Spatial precision

class Spatial precision 1

Coordinate system center

aprimitives

<double>

N

s ~
y Y
aprimitives aprimitives
Wodel transformation Camera transformation
<double> <double=
| |
v v
aprimitives aprimitives aprimitives aprimitives aprimitives
Modeldata | _ _ ~_| Meodel transformation | | Camera transformation | ~_| Projection transformation _ _ =~ | View data =float=
<float= = <float= = <float> = <float= =

Figure 4.1: Data transformation with input in single precision.

(figure 4.2)). As an example of this case could serve Earth tile mesh generated
at runtime in double precision relative to Earth center, that is small enough
to be recalculated.

class Spatial precision 2

Coordinate system center

aprimitives

<double=

K

A N
P »
wprimitives apfimitives aprimitives
Model data L = Model transformation Camera transformation
<double= <double> <double=
| | |
v v v
aprimitives aprimitives aprimitives aprimitives aprimitives
Model data Medel transformation Camera transformation Projection transformation View data <float=
“float= = <float= = =float= = =float= =

Figure 4.2: Data transformation with input in double precision with possible
offset.

The third case is essentially the previous one without the preprocessing
option. Here we have to recalculate all positions of the mesh relative to SWC
origin with its every change (figure 4.3|). Cases like these should be rare,
mostly occurring for Earth tiles that are too large. It is important to note
that while Earth surface is dynamically generated, and tiles that are covered
by this cases do not stick around for long. If we are looking at such tile from
proximity allowing us to see some errors, it means this tile is not detailed
enough for our view, and it will be replaced by different one soon enough,
possibly one covered by the previous case.

43

4. Rendering Earth surface

class Spatial precision 3 7

wprimitives
Coordinate system center
=double>

F | -

|
V2 A =
aprimitives aprimitives aprimitives
Model data Model transformation Camera transformation
=double> =double> <double>
| | |
v v v
aprimitives aprimitives aprimitives aprimitives aprimitives
Model data ___>. Model transformation ____>. Camera transformation ____>. Projection transfermation | _ _:} View data <float=
=float= =float> <float= <float=

Figure 4.3: Data transformation with input in double precision.

B 4.1.3 Fixed grid center

In this method a fixed grid is used as a substitute for higher order decimals.
Given three integer address of a block in 3D space, and then three single
precision float position within that block, we can calculate WC position by
multiplying address by block edge length and adding block position.

Implementation of this approach requires that every position has an address
of block it belongs to in addition to a single precision position within the
block. Position is then recalculated every time camera moves using formula

xr=—cp+ (va—ca) e+ vp

where z is position in camera space, cp is camera position in its block, ca is
camera address, va is vertex address, e is block edge length, and vp is block
position of our vertex. This formula uses integer and single precision float
arithmetic only, and we can see that the smaller difference in addresses is,
the smaller the error is (figure 4.4).

When both the camera and the examined vertex are in the same block,
the error is minimal. This minimum error is then determined by block edge
length. We can derive desired edge length by simply taking desired precision
in world units, which would be at least centimeters, and calculate how many
of those fit into six decimal places of precision for single precision float. By
this logic, we arrive at edge length 10°-0.01 = 10*m. Considering our use
case needs to fit in the Earth of 6300km radius with the addition of 200km
above the ground, we divide that number by 10km, we will arrive at the grid
of 1300 x 1300 x 1300 virtual blocks.

Recalculation of positions in this method is as opposed to dynamic center
method arguably more demanding, but it can be done in the shader per
vertex, which is much better, as we want to spare the CPU as much as
possible. That means we need to pass to shader vector of three integers for

44

4.1. Spatial precision

Vertex

w3

Camera
-

[=253

Figure 4.4: Vector relations in fixed grid approach. A camera in a block
with address ca and offset cp is looking at a vertex in a block with address
pa and offset vp. Resulting vector to the vertex in camera space is in purple.
World coordinate space origin is out of the frame, with green vectors hinting
its (far) position.

cases where vertex positions are offset only by the transformation matrix, or
array of three integer vectors as vertex attributes in case these vertices are
defined in double precision.

Coordinate processing cases are similar to those with the dynamic center
method with the only difference being modification primitive stating block
address instead of coordinate system center.

B 4.1.4 The selected option

Considering all advantages and disadvantages, fized grid center seems like
the most flexible option, but it is quite complicated as far as implementation
goes. We can use the double precision matrices method for the time being
with little to no intrusion to our system, and consider changing it later on
when it seems unavoidable.

45

4. Rendering Earth surface

This leaves us one case that is likely to occur, causing precision issues and
is not handled well in our solution of choice. Whenever we receive an object
that is too large that even relative position to its center of mass produces
rounding errors, we can split it into multiple smaller parts that do not pose
such problems. We could, of course, place this responsibility on users of the
system, but since we are trying to minimize necessary knowledge for system
use, this is the next best thing.

. 4.2 Slice construction

In this section, we will be elaborate on the process of Earth scene construction.
It is, in essence, a slice through our quadtree at different levels, ensuring each
point on Earth surface is represented exactly once in the scene. We will first
take a look at what tiles are desirable in the scene with respect to specific
camera configuration, and then construction algorithm will be elaborated on.

Topics lightly touched in the algorithm overview will be properly described,
such as heuristic of the desirability of tiles, enforcement of consistency, and
stitch switching connection. We will also briefly mention used methods for
reducing of the number of rendered tiles based on the view frustum.

B 4.2.1 Visual fidelity model

To better understand how to build a visually appealing scene, we need to
formalize what visual fidelity is actually desirable and how to quantify it.

Screen texture coverage How many texels of used texture correspond to
each pixel of rendered surfaces on the screen. If there are too many texels
per one pixel, resulting image will show signs of aliasing. This manifests
in randomly disappearing details for instance. The other extreme, one
texel per too many pixels, will lead to an equally undesirable issue, that
is lack of detail and overall blurriness. Since application of mipmaps
can mitigate issues with oversampling, we really care only about closest
available texture where maximum pixel/texel ratio is below one.

Maximum elevation deviance What is the maximum error of Earth tile
points between a maximum and used fidelity in screen space? In other
words, how visible is the difference on the screen? This value can be
calculated from precomputed error in world units for each level of detail
and the corresponding size of world unit in pixels. If on given tile is the
elevation error 50 meters or less, and one meter is at the closest point on
that tile 0.001 pixels, we can conclude this error will not be visible and
thus it is acceptable. We want this error as close to one pixel as possible
not to waste performance.

Consistency What is the maximum difference between different tiles dis-
played on the screen? It is a crucial visual aspect to keep the graphical

46

4.2. Slice construction

fidelity on a similar level for all elements on the screen, as the gap only
highlights imperfections of low fidelity ones. This can be expressed by
placement of above attributes on an exponential curve when calculating
priority of what to place in the scene next.

B 4.2.2 Algorithm base

In this section, the currently implemented basic algorithm will be described
and its issues will be discussed. A short outline can be found in listing [2

At the beginning is created a priority queue, where objects (quadtree tiles)
are sorted by their current desirability with respect to the current camera
view. We add root tile and move to the loop of perpetual improvement.

A tile is examined in the loop for whether it is already planned in the next
cut, as it might have been inserted during application of neighboring tile.
Then whether it is sufficient for the current view, which tests its visibility (all
culled tiles are considered sufficient) and its desirability. Then we make sure
the tile and all its connections are ready (more on that in subsection 4.2.5),
and if they are not, a prefetch of their data will be scheduled. Only if a tile is
not planned, sufficient, and ready, it will be added to the next cut. In the end,
all tiles that changed their state are either activated or deactivated, which
essentially means addition or removal from the rendered scene, respectively.

This approach is reasonably simple, but it bears a burden of low scalability
for a couple of reasons.

® Unnecessary loads of tiles that are not sufficient will be performed. We
can see from the algorithm, that the cut moves from root to leaves and
all tiles in between have to be loaded, even though we may know ahead
they are not sufficient. This progression makes sense at first cut search,
but when a camera moves from one cut in greater depth to another one,

it is no longer necessary.
8 We have to traverse whole quadtree up to our cut in each frame. This

does not seem to have an impact at the moment, but it may have it

when we start exploring datasets with a depth greater than ten.
® Assumes everything in the tree above the cut fits in memory. In case we

run out of GPU memory during exploration, it may happen that root
node will be released along with unwanted nodes, and Earth will change
its fidelity to its lowest level for a couple of frames. It is important to
note that this problem can also be solved by adjustments to data release
policies.

B 4.2.3 Algorithm extension

The algorithm after extension is very similar to the base one, but it has two
important changes to address highlighted issues.

47

4. Rendering Earth surface

The first change is the addition of progression stack to our original probing
mechanism. Instead of checking whether a tile is ready for being in the scene,
we ignore its state and along with its addition to cut add it to progression
stack. Each element of this stack also holds information on min/max tile
quality in the cut at that time and number of tiles that are not ready. Once
we traverse to the desired cut, we find a position in probing time that offers
the best missing tiles to gained quality ratio, and prefetch those tiles. Then
we find the best ready cut and activate those tiles.

This change will behave nearly identically to initial state in the base
algorithm, but after a deep cut has been established and changed, we suddenly
no longer need all tiles above the cut. We can always display previous one
(the one ready cut), and move with each frame a little closer to the desired
cut. This change removes not only issue with unnecessary loads, but also
problem with having to keep everything in the memory.

The second change is a rather simple one; we initiate the probing phase
at previous cut instead of root. This is, of course, simple change only as
far as the logic of the algorithm goes, as we need to maintain a consistent
neighborhood, and thus each tile not only needs to keep an eye on lower
depth nodes when improving but also on higher depth tiles when degrading.
This way we no longer have to traverse the whole quadtree, and thus the
number of steps on probing stack is significantly smaller.

B 4.2.4 Desirability heuristic

When mentioning a tile quality in construction algorithm, we never talk about
the exact properties or ways it is calculated, and for a very good reason. The
inner working of the algorithm should not depend on tile fidelity evaluation,
and the value itself should represent quality only in two ways, sufficiency and
relative quality between two tiles.

As far as sufficiency goes, we want to have a known boundary, that is
crossed once the camera is far enough. As described in visual fidelity model,
we do care mostly about texel density and maximum vertex displacement,
but these two values are expensive to acquire, so it is not a bad idea to look
for substitutes.

For vertex displacement, we can look no further than at a ratio between
volume diagonal, and distance from that bounding volume. This will come
out as a number around one (our boundary) that we can tune to get the
popping effect at its minimum for most tiles.

Texel density is a relation between screen resolution and texture resolution,
which goes to 1 if these two match.

Combining these two approximations, we want such an effect that in case
of double the resolution of the screen to a texture, we have to be twice as far.
Final quality formula can then look like

48

4.2. Slice construction

12/%
a2
where [is the distance from the camera to the closest point on bounding
volume of the tile, d is bounding volume diagonal, h is screen height in
pixels, and t is texture edge length in pixels. This heuristic is, of course, not
ideal, and we can try any number of different ones, visually confirming their
effectivity.

dh =

B 4.2.5 Adjacency enforcement

As mentioned before, we need to maintain some amount of consistency in
neighboring tiles, but not only for visual fidelity itself but also because of
stitching requirements. At data preparation stage, we chose a number of
stitches we want to include in each mesh. This number has to be at least one,
but it can go as high as we want.

We need to make sure that when two tiles appear next to each other in
the scene, we have a stitch to prevent any holes between them, and since
each tile has prepared stitch up to certain lower depth, we need to enforce
maximum difference in depth of neighboring tiles.

When a tile is considered for improvement in our base algorithm, we need to
check whether it is not about to violate restriction with any of its neighbors,
and if so, such neighbor needs to be improved along with it (and so on
recursively). This rule can be generalized into two connections for each tile to
its upper non-parent edge neighbor at a depth lower than enforced distance.

Following on reference from the advanced algorithm, we need to deal with
connections from both sides, if we ever want to perform simplifications along
improvement operations. In simplification case, a different set of connections
must be established in the other direction in the same manner, except this
time, we will have four connections for depth difference of one, eight for
difference of two and so on.

Why would we want to have higher than one of depth difference though?
Since we are enforcing that a complete cut has to be loaded at all times, even
when its parts are not in the view, we want to be able to emerge from finer
levels as fast as possible. This holds true especially when we are inspecting
airports, and most surrounding tiles are not even remotely visible.

When talking about adjacency connections, we might as well mention stitch
connections. These are very similar to adjacency once, except in case enforced
depth difference is greater than one, we have a connection to each lower depth
neighbor instead of just the most distant one. A tile in the scene then checks
if any of its connections is also in the scene, and if so, it will apply a stitch
corresponding to that connection. If no connection is active, default (same
depth) stitch is chosen, and it is assumed neighbors will deal with the stitch
on their side.

49

4. Rendering Earth surface

B 4.2.6 View frustum culling

VFC is the process of cutting objects from rendering pipeline based on their
visibility in view frustum. Using geometry of culled object for the test
would be quite inefficient, and that is why we usually use substitute objects,
bounding volumes. These volumes enclose processed object with varying
tightness and have also varying cost of the frustum intersection test.

For instance, the bounding sphere has a fast test, but will not be very
tight in the majority of cases, whereas complete convex hull of an object will
have expensive test while being one of the tightest generic bounding volumes.
Whole volume selection is then optimization process, where we minimize test
cost and spare silhouette surface at the same time.

In our case, Oriented Bounding Box (OBB) seems like a good idea, as
most deeper tiles do have square-ish shape with just different orientation
around the globe. Constructing tight OBB is not as simple as it may sound,
as we need to choose a correct center, rotation of its orthogonal system, and
dimensions. Size is technically directly dependent on remaining two, but it is
still a lot of freedom to make bad choices.

In figure |4.5| are visualized oriented bounding boxes calculated as described
below. We can see there is room for improvement as these boxes can be tilted
and thinned, but it is a consistent start. If we take a look at figure 4.6, we
will find out that this quality issue is much less prominent on the surface
generated with no exaggeration. The construction of our tile OBB will be
split into three parts, one for each property.

Axis. While calculating axis for tile OBB, we start with the easiest one. Axis
Aj is calculated as a normalized vector pointing to the center of the tile. Then
we calculate a help vector A}, that leads from center of the tile to its east
side. Second axis is perpendicular to third and our help vector As = A} x As,
while first axis is perpendicular to second and third, A1 = Az x As.

Dimensions. Having an orthogonal system, we now project all contained
vertices onto its vectors, and find six points defining a minimum and maximum
extent. This can be done for instance by initializing all extent points to the
first vertex, and then iteratively calculating dot product between a checked
axis and vector from tested point to previous maximum/minimum. Consider
minA; being current minimum extent point along axis A;, and D vector
from minA; to tested point P. If D.dot(A;1) < 0, then tested point is new
minimum extent in that axis.

Having all six extent points, we can now measure a distance between them
along their respective axis and get our dimensions. The measurement is
done by a projection of vector between minimum and maximum onto their
normalized axis (dot product).

50

4.2. Slice construction

Figure 4.5: Oriented Bounding Box volumes visualized on top of Earth
tiles with exaggeration equal to 100.

Center. Finding the center seems very simple, but it still takes a few more
calculations. We know that center lies on dividing planes for all axis. We can
construct all three planes from midpoints between minimums and maximums
combined with their respective axis. Performing an intersection of planes P
and P} should yield line along axis As. Now we perform an intersection of the
line L1 and plane P3, which is the same as the projection of As midpoint
onto As, and also same as OBB center.

B 4.2.7 Occlusion culling

VFC is not nearly sufficient for removal of all unnecessary tiles, as many tiles
on the other side of the globe are still in the view frustum, but occluded by
the Earth itself. To get rid of off all these tiles, we need to define in a simple
test when they stop being visible due to Earth being in the way. Ideally, we
would like to test camera position on a volume tied to culled tile, and if the
camera is in this volume, tile contents cannot be visible.

To cover all rays coming from the camera towards our tile, we can put a
cone on top of it. The first variable, the cone will share its axis with the
center of the tile. The second variable, the cone will be tangent with Earth
surface. And the third variable, we need to choose how far will be the tip of
the cone from Earth surface. We need it exactly so far that every vertex of

o1

4. Rendering Earth surface

Figure 4.6: Oriented Bounding Box volumes visualized on top of Earth
tiles with no exaggeration.

the tile is inside of that cone. If we place the highest elevation in the corner
of the tile, we will have a furthermost possible point on tile surface from its
center, and this point lies on the surface of the cone we are looking for.

Now whenever the camera is inside of this cone, tile is not visible. However,
that does not hold for the volume between the tip and the tangent circle
on Earth, and this area is covered rather by the Earth itself. To solve this
problem, we will offset the tip of the cone to the center of the Earth, and use
Minkowski sum using Earth sphere on it. This way, we will have a cone with
a rounded tip with the exact size of the Earth.

To calculate it we simply need to follow angles as depicted in figure [4.7.
We know vector C pointing into the center of the tile, and point P as a vector
pointing to the non-pole corner of the tile prolonged to maximum elevation.
Since T is lying on a tangent to Earth, angle PT'O must be a right angle,
which gets us using the law of sines to angle . We can calculate angle 8 from
vectors P and C', and thus vector w. Now we know that ¢ + w + § = 180°,
we can derive 0 and at last 6, which is also half our cone opening angle. The
direction of the cone is reversed normalized vector C.

The test for a point being inside of this volume is quite fast. Looking at
scheme in figure 4.8 we first test whether our point is in cone Cy, areas Aj...4.
Then we take backward facing cone Cy with the tip in Earth center (has the
same intersection with Earth as C1), and check whether our point is inside.
If not, it must be inside area Az or Ay; otherwise, we verify if it is in Earth
sphere and thus As.

B 43 Load balancing

In this section, we will discuss settings that are tied to different hardware
limitations, and to the implementation of the system. First, we will take
a look at data transfer overview for biggest "hitters", then various fidelity
settings will be examined along with their settings mapping, and in the end,
we will take a look at memory consumption issues.

52

4.3. Load balancing

Figure 4.7: Calculation of opening angle for tile occlusion cone.

B 4.3.1 Data transfer

Now we need to take a look at things that do change between frames and
cannot be loaded ahead of time. For instance, entity models can usually be
loaded at startup of the application, as we know exactly which pieces may or
will appear during the tested scenario. In our main scenario with Earth, only
Earth tiles, aircraft positions, and aircraft labels will produce notable strain.

Entities. At peak times, there are 4000 airplanes changing their position
every simulation tick. That means in case of instanced rendering a rendering
call for every entity type in the system, which we have about 20. Of course,
each entity type is consisting of multiple parts that wary based on fidelity
and LOD level, but the number of calls for all should not exceed 100. Each
entity needs a model-view matrix, normal matrix, and model-view-projection
matrix for rendering with lighting model. That means three 4 x 4 matrices
totaling to 4000 - (4 -4 -4 - 3) = 768k B, which we can for safety round up to
1M B of data.

Labels. Next on the list are labels that can be handled in various ways to
minimize performance demands or amount of transferred data.

B One of them is a mesh aggregating method that will squeeze all labels
into a single call. This is done by a complete reconstruction of single
label mesh of quads with mapping into a font texture. That means

53

4. Rendering Earth surface

Figure 4.8: Help volumes used for point intersection test with cone occlusion
volume.

every time a label position is changed the whole buffer needs to be
updated. Considering average ten characters per label, four vertices per
character and each vertex having UV coordinate and position, we arrive
at 10-4-(2-4+3-4) =800B.

Now each aircraft may have several such labels, usually no more than
4. Final number for one update is then 800 - 4 - 4000 = 12M B. This is,
of course, an extreme case, as not much would be visible, and culling
methods are usually employed to reduce this amount, but we should still
keep this number in mind.

® Another option is the use of a custom shader that will construct all
the geometry for all labels on the fly from an array of characters and
translation vector. For programming convenience, we will fix length of
every label to a required maximum; let us say in our case 20 characters.
This way, we will be sending into our shader with instanced rendering on
a topology of 20 quads once for all labels, an array of characters IV - 20,
and an array of translation vectors of size N - 12, where N is the number
of labels.

Now we initiate instanced rendering for our quads, setting up instance
data stride of length 20 in our text array, and instance data stride of
length 12 in our translation array. This means we will be able to render
all labels in a single call without constructing geometry on the CPU. In
the shader, we will then use a built-in variable for vertex ID to pair a
character with its quad, and thus correctly pick its offset and texture
mapping. This method is, of course, subject to further testing, as in
current proposition, we have to iterate through all preceding quads and
their offset to get offset for the i-th quad. Data-wise, this approach

o4

4.3. Load balancing

will require 20 + 12 = 32B per label, 32 - 4000 = 512k B for expected
maximum load, making it rather negligible.

Tiles. Lastly, camera position can change between two frames in such a
manner, that the whole Earth has to be reconstructed basically from scratch
(for instance changing the view to an aircraft on the other hemisphere). We
have currently Earth surface textures in the format 512 - 512 - 3 RGB model,
leaving us with 768k B per quadtree tile.

Overall. Summed requirements for largest items form about 20M B of data
per frame:

768k B for entity positions.

768k B for single surface tile, eight tiles for full HD full-screen coverage
is TM B.

Either 12M B or 512k B for labels, depending on the used method.
Tile mesh data size depends on tile elevation complexity, but usually
does not exceed 100k B, with mentioned eight for full HD at 800kB.

Discussion. The minimum expected communication speed on the bus to
the graphics card is 2GB/s, which is about PCl-e 2.0 4%, technology from
2007. If we assume on-screen data change in the worst possible way, we need
to allocate that bandwidth from the beginning of that particular frame.

We want 60 frames per second with 2GB/s at our disposal (about (2 -
1024)/60 ~ 34MB) within that particular frame, while needing about
20M B/s.

Of course, as mentioned earlier, we still need to wait for some drawing to
be done after data transfer, but we have clear sectioning between demanding
tasks in rendering, and we can pipeline rendering with data transfer in a
way that does maximize overall bandwidth. Call for entity model rendering
requires the least amount, so it can go first, while we are waiting for Earth
textures to upload, then we can render Earth while constructing and uploading
aggregated labels. Also, there are quite a few more static objects that need
to be rendered, and with which we can fill up the downtime.

B 4.3.2 Fidelity settings

Presented slice construction algorithms do partly take care of fidelity balancing,
as if there are no resources to load new improvements, the scene will stay
as constructed at the edge of desired FPS. The problem arises when the
amount of available power is decreased, due to a new instance of visualization
being turned on for example. For these reasons, we need to react to resource
availability change by redefining what is desired fidelity.

For this purpose, we can imagine imaginary slider, a number ¢ € [0, 1],
where ¢ = 0 is the bare minimum for visualization of all the necessary data,

55

4. Rendering Earth surface

and ¢ = 1 is state in which any improvement makes no or insignificant
difference. We can now map any fidelity settings on this range, and whenever
there is a dip in performance, we can easily move current quality factor up or
down to maintain steady FPS.

Slice construction constant As mentioned before, we have quite a simple
desirability heuristic for tile sufficiency evaluation. This means we can
add to it an arbitrary factor from range [min, 1], where 0 < min < 1
is our bare minimum fidelity, visually confirmed. This factor can be
linearly mapped onto quality slider.

Resolution multiplier Using rendering into higher resolution buffer can be
easily achieved the simplest version of anti-aliasing. Since we are using a
buffer of arbitrary size and then downscaling it with linear interpolation,
we can define relative size as a number in the range [0.5, 2].

Anisotropic filtering Even though performance impact of this option is
up for discussion, it is a number we can change based on system load,
and it is objectively faster setting it to lower value.

MipMaps Generation of mipmaps is rather on/off option, where we define
a point on our spectrum when it is no longer being used. Turning off
mipmap generation will mostly cut down necessary texture setup time,
and overall demands on GPU memory (although we save only about
1/4).

Texture resolution The smaller textures we use, the more likely it is pro-
cessed texels are in fast GPU memory, so it makes sense to decrease
texture resolution on GPU if we are having performance issues. Since
textures used in our system will be mostly squares in power of two, we
can map texture downscaling to a tolerable minimum from the original
size.

Lighting model Lighting model also offers only a few meaningful options.
Essentially, we can turn off the specular component, and in subsequent
reduction keep only ambient light. This change should be mostly cosmetic,
as light should not carry any visualization data in any scenario. Cutting
of lights means substantial simplification of shader code and thus higher
fill rates.

It is important to note that we might want to fixate rendering quality
on maximum for purposes of video recording. Low framerates are usually
quite inconvenient, but when capturing 24-hour runtime, the final video gets
condensed and framerate from the time of recording does not matter at all.

B 4.3.3 Memory limits

Because we are usually working with large datasets, memory management
needs to be discussed. As our simulation machines have between 32GB and
64GB or RAM, CPU memory is not as important as it would be in different

56

4.4. Controls

systems. The rule of thumb is not to hold onto unnecessary data, and we
should be fine for the most part.

The main issue with CPU memory is not so much the amount of space,
rather than amount of generated objects. Assuming new system will be
implemented on a platform with garbage collection, we need to make sure
our rendering and scene construction process produces minimum amount of
temporaty objects that prolong garbage collection pauses. This particular
problem will be discussed in following chapter.

What can become an important issue is GPU memory. Since the transition
of data from CPU to GPU memory is expensive, we do not discard objects
on the graphics card as soon as they are not used, but instead, we keep them
in hopes they will be needed again. Since running visio is, for the most part,
the only application consuming GPU memory, we can afford to splurge it at
our whim.

We do need to monitor how much memory we have left, and once we
reach a certain point, we have to start releasing data from it to make room
for newcomers. Of course, we can perform this release at random, but
implementing specific policy may improve our performance significantly (cache
release policies are quite extensively researched topic 7).

When releasing data, we need to keep in mind that this process takes time
same way any other action on the GPU does. This means that we need
to release data gradually every frame to spread out the load, so we do not
experience frame drops in case of unexpected memory demands.

. 4.4 Controls

Once we have data to look at placed in the scene, it is an excellent time
to start talking about how to inspect them. No matter how good looking
graphics we generate, or how efficient we are about it, poor camera controls
can bring all user productivity down. In this section are proposed camera
control options inspired by other Earth viewing applications.

B 4.4.1 Pan

The most basic mechanic is panning around the surface of the Earth. We
expect that when we drag cursor along Earth surface, the camera will move in
opposite direction keeping mouse cursor above the same spot. This movement
needs to be generic enough to work in any camera orientation; given Earth is
in the view.

We start by getting two mouse positions, for which we calculate camera
rays defined by camera position and respective directions. Using these rays,

Zhttps://en.wikipedia.org/wiki/Cache_replacement_policies

o7

https://en.wikipedia.org/wiki/Cache_replacement_policies

4. Rendering Earth surface

Figure 4.9: Example of camera rotation in arbitrary plane intersecting the
Earth in the center. Intersection points I; and /s hold the same angle «
as camera positions C7 and Cy. Note that ray to the Earth center and to
the intersection point hold the same angle 5 in both configurations, thus
leaving the cursor at the same point on the screen.

we calculate two vectors to intersection points with Earth sphere, I; and
I>. At this point, we calculate axis of rotation A and angle of rotation «

(figure [4.9).

A= Il X IQ
dOt(Il,IQ)
a = acos(7————"
sl - [2|

From these two, rotation matrix is assembled, and applied to all camera
components.

The only unfortunate result of this scheme is that we have to pan along
latitude lines to keep up vector aligned with the north. This is not necessarily
a bad thing, as any precaution dealing with this alignment would cause
problems when camera misaligns itself through different means.

o8

4.4. Controls

B 4.4.2 Zoom

Now that we can pan above a specific point, we might want to zoom to take
a closer look at it. Zoom function can behave a bit differently when we are
moving closer or further. For starters, we would expect it to maintain cursor
above the same spot on the Earth surface and move closer or further at an
exponential rate. Zoom difference of 10% of the distance to intersection point
seems to work well, as we do want to move fast when far and slow when close.

Misaligned with center. When camera direction vector does not point at
the Earth center, we want to just move along intersection ray. In case we are
zooming away, we should, at a certain distance from Earth, start aligning the
camera with the Earth center to ensure normal operation point.

Aligned without intersection. Since we know the camera is pointing at the
Earth center, we want to move relative to the intersection point, but also
keep it at the same spot on the screen. That is not always possible because
the Earth can get too small after zooming out for this relation not to have a
solution.

First we calculate initial and final center distances d; = ||P1]||, and dy =
r+ (dy —r) - (14 d), where P is starting position of the camera, r is Earth
radius, and d is zoomed distance as a fraction. Now we calculate angle
y=m— asin(d?'%”(a)), which may not exists, and that tells us there is no
solution with cursor in the same spot. See figure 4.10| for context.

Once we know there is no solution, we can move along camera direction
vector. It can be shown that this case happens only when zooming out.

Aligned with intersection. Continuing in the previous case as if we had
found the v angle, we calculate 8 = m — v — «, which is the angle we need to
rotate intersection vector by to get it pointing at the new camera position.
After rotating it, we rescale it into distance dy and set it to the camera
along with new direction vector pointing to Earth center. Axis of rotation
is perpendicular to vectors pointing at the intersection and starting camera
position.

B 4.4.3 Look around

Being zoomed in on the area of interest, we might want to look around, so
to say break the direct view of the Earth surface. To do that, we separate
vertical difference A, and horizontal difference A, in mouse cursor movement
and calculate horizontal angle oy, and vertical angle o, in degrees.

ah:M-ZAZ
w

99

4. Rendering Earth surface

Figure 4.10: Zoom with alignment calculation.

fov-1/a
oy = —— - 2A
v h Yy
where fov is camera field of view, w is screen width in pixels, h is screen

height in pixels, and a is camera aspect ratio. Having these two angles, we
rotate the camera around up and right vectors to get new orientation.

B 4.4.4 Inspection point

When we want to inspect an object on the surface, pan and turn are not
exactly convenient. For this reason, inspection point rotation is added, where
a user clicks on Earth surface to select a point, and subsequent mouse drag
rotates the camera around that point.

Movement, in this case, is done by calculation of two angles, similarly to
look around action, except here we do not have any particular scale to adhere.
Vertical rotation angle o, = Ay - s, where s is constant inspection speed
(horizontal analogically). Rotation axis for vertical is camera right vector,
the axis for horizontal is the vector from Earth center to the inspection point.

The slightly problematic part is bounds for vertical rotation, as we want
to prevent user to flip the camera upside down. We calculate vector n
perpendicular to right camera and inspection point vector, facing the camera,
and measure the angle between camera direction and n. Depending on the
direction of the movement is clamped its amount to avoid flip or Earth
collision.

60

Data: Quad tree root, Set P of previous cut

Result: Set N of new cut
Q = heap;
Q.add(root);
N.add(root);
while @ is not empty do
tile = Q.poll();
if N.contains(tile) then
‘ continue;
end
if tile.sufficient() then
‘ continue;
end
if tile.notReady() then
tile.prefetch();
continue;
end
tile.apply(N, Q);
nd
or tile € P do
if N.contains(tile) then
‘ continue;
end
else
‘ tile.deactivate();
end

=5 0

end

for tile € N do

if P.contains(tile) then
‘ continue;

end

else

‘ tile.activate();

end

end

Algorithm 2: Base slice construction

61

4.4. Controls

62

Chapter 5

Implementation

This chapter will elaborate on parts of previous chapters that were imple-
mented, and how. Since target solution is rather large, not all made it into
this work, but they stayed on the roadmap for the most part with varying
priority.

We will take a look at the technology of choice, general engine organization,
and then a couple of implemented features of the rendering system. Current
integration of the system will be mentioned.

B 51 Technology

At the beginning of our technology selection was technically possible every
engine and language. Since visio is on top of our dependency tree, we can
transfer any data to it using TCP/IP, as any structures have to be redefined
on receiving end either way.

Requirement for multi-platform system did cut quite a few down, but
difficulties with access to low level code did final blow to most (even scene
graph from JavaFX [| and JME3 engine E[) This essentially left us with
java language using OpenGL API through JOGL EL conveniently in same
language as simulation when using near-native rendering API (OGL bindings
are automatically generated).

Since JOGL usage is almost identical to its C version, all documentation
and educational materials apply not only with their "how to", but also with
their efficiency. In essence, C application that just renders a static scene on
the screen will be as fast as JOGL application that does the same thing.

At the moment, required java version is 1.8, but it is very likely the whole
project will follow any latest release (it is usually not a problem to move up
in a version, as Oracle maintains backward compatibility). Required OpenGL

"https://en.wikipedia.org/wiki/JavaFX

http://jmonkeyengine.org/
https://jogamp.org/jogl/wwu/

63

https://en.wikipedia.org/wiki/JavaFX
http://jmonkeyengine.org/
https://jogamp.org/jogl/www/

5. Implementation

version will likely be at least 4.3, but its increase is less likely, as OpenGL
version support is, unlike with Java, hardware dependent.

As far as the library used for GUI, we will side with JavaFX. Even though
its 3D scene graph does not suit our needs, its Ul elements are much more
like elements from web environment (positioning and CSS styling), which is
much, much more appealing than the old way of swing *| and awt °.

B 5.2 Engine organization

New visio system is organized into three more or less separated sections.

Abstraction Side of the system that will be generally encountered by the
average user will be called abstraction. In this space is defined a scene
with no direct connection to the technology used to render elements on
the screen. It gathers information from the user and sends it over to be
rendered at specific synchronization time.

Implementation Technology bound side will be called implementation, as
all rendering specifics are implemented here. This side essentially takes
gathered scene information and is supposed to render it as efficiently as
possible.

Renderer The significant distinction between implementation and renderer
side, is that implementation section has information on all objects cur-
rently inserted in the scene, and knows how to render them, whereas
renderer cares only about those that should be rendered, and triggers
the rendering process.

One of the main reasons for division between abstraction and implemen-
tation sides is the asynchronous nature of the simulation. This way we can
perform any changes to abstraction side scene, and only once these changes are
final, we commit them to implementation side. This process is done through
change events, where each event carries an instance of a mutated object, a
code used to mutate it as a lambda, and data to be passed to mutating code.
These are stored chronologically in a queue along with moment of stability
marks. Now rendering system goes through this queue at the beginning
of each frame and applies all committed changes to implementation scene.
Neither side waits for the other during this process.

When the user performs a commit on their scene (must be a conscious
decision), the whole scene graph is crawled for transformation changes, and
these are added to the queue. We do this in particular because we do not
want to maintain scene graph on both sides, so implementation has only
terminals with final transformations.

4https://en.wikipedia.org/wiki/Swing_(Java)
Shttps://en.wikipedia.org/wiki/Abstract_Window_Toolkit

64

https://en.wikipedia.org/wiki/Swing_(Java)
https://en.wikipedia.org/wiki/Abstract_Window_Toolkit

5.2. Engine organization

It is important to note, that even though objects on implementation side
are created along with user commit, data for these objects may be loaded
right before their usage, or never if we never use them. That means that all
Earth tiles have their mesh objects created and ready right away, they are
but empty shells with manual how to get their data if need be.

This leads us to the next part. We already have a list of objects that might
be added to the scene before being committed, then a list of objects that
could be in the scene before getting their data, and lastly, we have objects
that are in the scene. These are inserted inside of a renderer, which keeps
track of rendered scene, its properties, and does its best to render it as fast
as possible.

Usually, objects that are directly inserted in the scene root are also passed
in the renderer without further ado, but there are objects, such as Earth
tiles, that user inserted in LOD group and those might be rendered only in
specific camera position. At the beginning of every frame is performed a check
with these dynamic groups using the camera for that particular frame, which
might result in a change of renderer scene contents. Tiles of Earth quadtree
are handled using such a structure, and Earth surface building algorithm is
implemented on top of its hierarchy.

We already mentioned a couple of things that happen during a single frame,
so it might as well be the perfect time to list the rest of notable remainder:

Inputs First are evaluated all input events from the platform. This includes
keyboard and mouse, but also window and operating system cues. They
are passed on to all registered listeners from abstraction side. These
might be implemented asynchronously to render loop, but since user
interaction with objects in the scene is directly tied to GL context, they
had to be synchronized.

Prepare Next a preparation of the scene for this frame is called. This
consists of camera fixation (camera state at this exact moment will be
used for the entirety of the frame rendering), and its passing along the
implementation scene. Mainly LOD groups react to it by change of their
contents, but also lights that need to be uploaded to the graphics card

in camera space (necessary for double precision calculations).
Update This call is performed on all objects in the renderer, which we now

know to be in the scene. It usually includes load or update of any data on
the GPU, but that depends from object to object. To avoid unnecessary
updates, objects form a hierarchy of subscribers, where a component
will notify its users in case it was changed, so they all can integrate this
change when their update time comes. Because various objects share
components, this update is performed on each modified component only

once per frame.
Render At this moment scene is up to date and loaded on the GPU, so

renderer performs all necessary draw calls. This, of course, includes
numerous state changes in the form of binding updates and uniform
uploads. We may have some amount of time left in the current frame,

65

5. Implementation

and we might want to use this time to perform work on one of the
following tasks.

Cleanup As scene changes, resources that are later no longer necessary stay
allocated, taking up space for those that are vital in the current view. To
make space, we can either destroy (preferably) objects that are no longer
in abstraction scene, or release data of objects that are not in current
renderer scene (this release can only be done over objects that have
renewable data, such as static textures or meshes). We check frame time
after each processed component to make sure budget is not exceeded.

Prefetch Since we never rely on resource planning (concurrently running
application may exhaust all the bandwidth), we prefetch data that we
might need in the following frame. This call does the only transition of
data to GPU and construction of OGL objects. Prefetch for objects is
scheduled during scene construction of the current frame, where every
dissatisfied tile generates prefetch order. Prefetch queue is cleared at the
beginning of every frame, so only fresh demands are being processed.

Each render loop described above must be executed in a synchronized
manner relative to other running visio windows in same JVM. For that
purpose is there render scheduler that triggers render of each window in its
preferred frequency (or as close as possible), and most importantly, avoids
expensive context switching.

B 53 Render passes

Scene rendering is currently done in multiple passes based on their coordinate
space, used buffers, or purpose. There are three main passes based on
coordinate space:

World This pass covers standard scene objects that require no particular
alignment or other treatment. Transformations done in this pass are
calculated directly from the main camera.

Aligned When we want to render text (or any other object for that matter)
that is in world coordinate system but always aligned to face the camera
with constant size on the screen, we will render it in the aligned pass.
Objects in this pass have one special additional offset that is applied in
world coordinates, and then is its transformation matrix treated as the
transformation in this aligned 2D space.

Screen This pass is for objects that are in orthogonal screen space and
aligned with one of screen anchor points (combination of vertical and
horizontal lines: bottom, top, center, left, right).

Whole render pass is a little bit more complicated than changing three
transformation basis, as item buffer (rendering of objects with solid color
corresponding to unique identifiers for click detection) is added to the mix. It

66

5.4. Dynamic shaders

should be noted that item buffer and main buffer share depth/stencil buffer.
It proceeds roughly as follows:

Buffer resize to correspond with latest window size changes.

Main buffer clear.

Render world pass into main buffer.

Render aligned pass into main buffer.

Item buffer clear.

Render world pass into item buffer.

Render aligned pass into item buffer.

Clear common depth buffer, we are completely switching coordinate

space and depth values are thus incompatible.

9. Set stencil buffer for writing.

10. Render screen pass into the main buffer.

11. Set stencil buffer for reading.

12. Clear stencil bits in item buffer. This clear is removing recorded IDs
from item buffer whenever they are occluded by objects in screen space.
Since not all objects are rendered in item buffer, this occlusion might
not otherwise occur.

13. Turn off stencil buffer.

14. Render screen pass into item buffer.

15. Blit rendered image into screen buffer for display.

g 98 BN s B9 9 1=

Render passes themselves differ only in the mode in which used transfor-
mation provider operates when they are being performed.

B 54 Dynamic shaders

OpenGL of version 2.0 and higher moved a bit away from fixed rendering
pipeline and added support of rendering shaders that allow customized data
processing in each stage of the pipeline. In new implementation are supported
all types of shaders with dynamic construction on top.

When a specific feature of a shader is turned off, we would, in normal
circumstances, have to pass a flag to the shader telling it not to process
the data in a certain way, and this flag would be checked with every vertex
or fragment being processed, introducing significant performance loss. For
instance, in case we do not want to render a mesh with lighting, we have to
add a flag in fragment shader telling it to skip a chunk of code dealing with
lighting and using material and texture settings in a different way.

An alternative solution would be to create a shader for different uses to
avoid this kind of slowdown, but with increasing amount of features a shader
can support rises the number of all possible subsets and with those number
of separate files to maintain. Having a switch to per vertex coloring, textures,
and lighting will already generate 23 = 8 different shaders, and a number of
controlled features can get much higher than that.

67

5. Implementation

The best solution for this issue is to create a system that will generate
different code based on usage without intervention of the programmer. Luckily,
GLSL ° provides preprocessor commands that can be used to do just that.
In the new system is each shader written to encompass all possible features
and enclosed in conditional compilation block so it can be controlled when
the shader is being compiled.

The shader is then built from a configuration that contains all compilation
flags adding them as defines at the beginning of the shader source code.

As a little helper for shader writing and usage, not only feature flags can be
included in shader configuration, but also layout locations of inputs, outputs,
texture bindings, and various constants that could be possibly changed for
different objects.

To aid the programmer with debugging of shaders, binary of Tiny C
Compiler || was added to the system to do the preprocessor work into a debug
file where it can be viewed. The programmer has then available original code
with all features and branches, generated file as seen by GLSL preprocessor,
and generated file after preprocessor work. The second file is necessary, as all
shader compilation reporting is done with line number references relative to
file state before preprocessor pass and not having to count and add added
defines is a great help. The third file helps to debug all preprocessor branching
seeing what actually goes into GLSL compiler.

Since a shader is completely determined by its configuration instance, we
can use these instances to group all objects that would use the same shader
and render them without shader switching. This grouping is one of the
background optimizations that conserve resources without user intervention.

It is important to note that using too many different shaders that are
overspecialized can actually be more harmful than few that do some extra
work, as too much of shader switching can generate substantial strain on the
system, not to mention longer loading time caused by compilation of each
such shader.

B 5.5 Render batching

When rendering a large number of objects, the total number of state changes
to OpenGL becomes a performance issue. To reduce it, we want to group
together similar objects and set their common properties only once. We can
imagine rendering process as a sequence of pyramids, where each floor on
the left side is the assignment of property, right side is the removal of this
property, and the top is a draw call.

Now we face optimization problem, where we are given a graph of these

Shttps://en.wikipedia.org/wiki/OpenGL_Shading_Language
"http://bellard.org/tcc/

68

https://en.wikipedia.org/wiki/OpenGL_Shading_Language
http://bellard.org/tcc/

5.5. Render batching

pyramids, and our goal is to reorder them on the timeline to reduce the length
of the graph to a minimum. The more advanced approach allows not only
swapping different pyramids on the timeline, but also swapping floors to have
the most common properties on bottom based on what objects are being
batched together.

For instance, we can have two objects that share shader and lights. In
case we have fixed sequence of state changes, one that does not fit currently
processed object, we might happen to bundle by shader, find out that the
two objects do not share material, and that results in one unnecessary lights
bind. If we were to swap floors in our pyramid, we could safely bind shader,
lights, and then optimally diverge on the material.

Looking at the simpler version (see figure 5.1) with a fixed sequence, we
can just sort our pyramids at each level, achieving an optimal solution in
O(N - K), where N is the number of objects, and K is sequence length. That
is a fairly favorable solution, but we can still make it faster by keeping the
solution from the previous frame, and apply only changes at the cost O(K)
per changed item, where O(N - K) is only the worst case.

RENDER TILE #1 RENDER TILE #2

TRANSFORM UNIFORM /\ /\

GEOMETRY VAO
MATERIAL TEXTURE
WIREFRAME FLAG
MATERIAL UBO
LIGHTS UBO
SHADER

CALL DEPTH

TIME

Figure 5.1: Render batching with fixed sequence for mesh objects.

The more complicated version, although with more potential for speed
improvement, could be defined incrementally. We need to insert IV objects
into a structure, and we have K! possible sequences for each object. This
means optimal solution lies in a tree that has depth h = N and branching
factor k = K!. The number of possible arrangements is at most number of
leaves of this tree:

EHl -1 kb1 (k-1)-Kh-2
— = ~ k= (kHN
k—1 k—1 k—1 K= (K

We can, of course, apply various combinatoric optimization techniques
(branch and bound) to reduce this number significantly, but whether it would
not take more time to render using suboptimal solution or to find the optimal
one is up for debate.

Because optimal solution had such questionable expected results from the
start, only the simpler version was implemented. Each object type (text,

69

5. Implementation

mesh, line, point) has its own hand-picked sequence, and from that is built
a render batch tree where leaves are transformation nodes unique to each
object. Each level has a lambda for comparing a property, lambda for getting
hash of compared property (finding correct subtree in constant time), and
lambda for applying that property.

When object changes, its special flag for batch related changes is set, and
during render batch update phase is such object removed and reinserted. For
instance, VBO contents change will not trigger batch position update, as a
list of objects using that VBO did not change, so correct order of binding is
not violated.

This approach is significantly better than the previous solution, which was
grouping together only identical terminals. That resulted in Earth tiles doing
unnecessary full rebind.

B 56 Integration

This issue was touched only lightly, as a primary focus of this work was a
creation of one specific scene and underlying system, but we should still take
a look at how simulation should be integrated into new visio.

User programming will be handled in a similar fashion as in current visio,
using layer providers. Each layer provider has access to its own scene root,
camera object to be manipulated, and user inputs for listeners and bindings.
A user can then populate the scene with objects in an asynchronous manner,
and commit them to be rendered on the screen.

This is of course not enough, and layer provider will need access to simu-
lation data. Access should be managed from a single provider that handles
data subscriptions and offers, so they are transferred only if someone needs
them. We also need access to communication bus that allows interaction with
UI elements, but a similar system is already in use, and will likely be reused
for visio.

These layer providers will be dynamically loaded and initialized based on
configuration XML file, but there is a possibility of loading them up at any
time. The current implementation is, unfortunately, using only a couple of
statically created providers with no option for outside intervention.

. 5.7 Scenarios

For purposes of this work, two main layer providers were created, one con-
taining dynamic surface Earth, and one with air traffic controller view.

70

5.7. Scenarios

B 5.7.1 Earth layer provider

This provider contains only the algorithm for Earth surface scene building,
and camera controls as described in section 4.4l

The construction algorithm works in two phases, where first is run syn-
chronously with layer provider initialization inserting in the scene first two
levels of the quadtree, and second running in the background adding all the
remaining levels we have data for.

Addition of a tile consists of data wrapper construction (positions, indices,
normals, texture, ...), material preparation, and connection of all these into
a tile mesh. Then LOD group is created containing this mesh, having links to
previously created neighboring groups on lower levels (stitch and adjacency
links). This new group is then inserted in the scene followed by a commit.
Since we are constructing floor by floor from lowest levels, all groups we might
want to connect to are always already prepared.

Originally, the whole scene was built and externalized into a file, but loading
times were in the order of seconds, which was rather unacceptable. This way,
there is something on the screen immediately, and the addition of new levels
is generally faster than their loading, so no real delay was introduced. Since
each layer provider has its own change queue, we do not mind large number
of background threads in various other providers, at least as long as they are
synchronized on the inside.

Thanks to this dynamic building process, the initialization process of Earth
layer provider can be measured in the order of tens of milliseconds.

Since LOD groups are not part of the aggregated scene graph, they also
appear on the implementation side, where the presented base algorithm is
building the rendered scene out of them. The advanced algorithm was not
added, as the generation of data for it to make any difference takes way too
long, and dataset (Sentinel 2) that would be used for it became available only
recently.

B 5.7.2 ATC view

Layer provider for air traffic controller view was added just as a validation of
the engine implementation, whether it is able to handle a larger number of
moving and changing labels.

To create a view similar to ATC view we have in the current system, air
traffic records were extracted from currently used reference records. Each
aircraft has its own record of positions, graphics group with a trail of previous
positions, and data block label (static flight ID and dynamic index in the
replayed record).

A background thread will check 60 times a second what aircraft should be
visible and with what settings, and commits them on the screen, all based

71

5. Implementation

Figure 5.2: Earth surface with no exaggeration.

on artificial simulation speed of 720 (simulation time seconds per real-time
second). This is slightly above the current maximum of AgentFly simulation
speed.

To add some amount of context to the view, real sector boundaries are
rendered as lines and fix points [along with them accompanied by their
names. The number of fix points is rather large, so their labels can be turned
on or off for visual clarity reasons.

Camera used in this scenario is a simple orthogonal view that has a "zoom'"
feature in form of projection plane size change, and pan.

Example of global view is in figure 5.6 with fix positions visualized only as
circles with points inside, while closeup can be seen in figure [5.7] where fix
positions have added labels.

8Named latlong coordinates used for faster and error-prone communication between
ATCs and pilots. Pilots usually construct their flight plan as a sequence of these points
and altitudes.

72

5.7. Scenarios

Figure 5.3: Earth surface with no exaggeration with lights turned off.

Figure 5.4: Earth surface with 100 x exaggeration, global view.

73

5. Implementation

Figure 5.5: Earth surface with 100 x exaggeration, depth 6 view.

Figure 5.6: Air traffic controller view with whole Czech Republic in frame.

74

5.7. Scenarios

= EKVES

= ELWEK

Figure 5.7: Air traffic controller view closeup with fix position labels.

75

76

Chapter 6

Results

This chapter presents the evaluation and measurements of the implemented
system. We will take a look at missing features and known issues, and then
will be discussed the performance of the generator and Earth viewing.

B 6.1 Missing features

In this section we list some of the features that are on the implementation
road-map, but did not make it into this work. Of course, listing things that
are not in the system could take a while, so only the most important are
mentioned.

Transparency. As mentioned earlier, sectors and flight plans are displayed
using semi-transparent volumes. To ensure correct color blending on semi-
transparent objects, we have to render them in back to front order. That
means all fragments that fall under same screen pixel need to be sorted. There
is a number of possible methods dealing with this problem, many described
by Maule et al. [I2] (object sorting, primitive sorting, and fragment sorting).

First and simplest option is to sort objects by their centroids, which
definitely helps, but the rendering of overlaps within same objects is not
stable nor guaranteed correct. Objects that are intertwined may also yield
wrong results. This approach becomes especially problematic with large
objects, such as flight plans.

A more complicated option is to sort directly triangles. There is still danger
we will get a set of triangles that cannot be sorted (we still may use triangle
centroids for simplicity), but it is less prominent. This approach is quite
expensive, as buffers for rendered objects may change in every frame.

The most accurate option would be so-called depth peeling |'[?, where we
render scene multiple times into different buffers. Each pass uses depth buffer

"https://en.wikipedia.org/wiki/Depth_peeling
Zuww. eng.utah.edu/~cs5610/handouts/order_independent_transparency.pdf

77

https://en.wikipedia.org/wiki/Depth_peeling
www.eng.utah.edu/~cs5610/handouts/order_independent_transparency.pdf

6. Results

from the previous pass for testing (less fails the test), and new buffer for
writing. This way we peel the scene front to back each time getting one layer.
When we reach a pass that did not write any pixels, we can start composing
all buffers into single image back to front. This method ensures pixel-perfect
results, but in case of complex scenes requires a large number of passes.

In the end, centroid sorting will be probably the first implemented, followed
by depth peeling with early exit (only fixed number of passes is made, with
the last one containing all remaining geometry rendered in centroid order).

Dynamic near-far. Since our scenarios may include large-scale views as well
as close up ones in a single scene, we need to set near and far attributes
of the used camera depending on the current relation of camera and scene.
To maximize the precision of depth buffer, these two values need to be as
close to each other as possible, shifting near away when we are not close to
any objects, and moving far closer when all furthest objects are behind the
horizon.

To do this precisely, we need to find closest and furthest object in view
frustum in each frame. That requires us to have a bounding volume over
each object that appears in the scene with up to date transformation. The
new system does not have this implemented, so near and far settings are
determined by the distance of the camera from the surface of the Earth. This
approximate approach works for Earth view scenarios, and dynamic near-far
is not necessary for the others, but it still should be implemented for a general
scene.

Instanced rendering. There is a large number of aircraft in Earth traffic
replays, but they use only a limited amount of models. Render batching
removes a lot of unnecessary hassle with these, but it can be a lot faster with
use of instanced rendering. This essentially means that instead of standard
draw call over VAO is performed instanced draw call, and instead of uploading
a single set of matrices in uniforms, we upload arrays of them. Single draw call
can then take care of rendering of hundreds of objects, significantly increasing
the throughput of the system.

Test traffic replays showed that the strain from traffic rendering is not
negligible, and instanced rendering would alleviate a lot of it, especially on
the weaker hardware used for presentations outside of the office.

Normal maps. Since we have elevation data in tiles that have the exact
same dimensions as diffuse tile textures, we might convert these elevations
in normal maps and increase visual fidelity of tiles at very low cost. This
would help especially with hill shadows that pop in with higher level tiles
being used, as these would be visible on lower levels with no extra geometry.

Implementation of normal maps specifically for Earth tiles is a little bit
more complicated, as used normals would not be correct on stitches. Because

78

6.2. Known issues

of issues like this, normal map addition in the system got low priority.

Geometry aggregation. Visualized data can be quite often separated into
small pieces of geometry, aircraft trail line for example, and they produce
unnecessary strain on the system. We can take all these little lines of same
color and width, and merge them into a single object. Even though we will
be forced to do buffer update for this object in nearly every frame, it is still
faster than performing hundreds of draw calls for separated lines.

. 6.2 Known issues

In this section will be described some of the unresolved issues with the new
system, and ideas how to go about solving them.

Garbage collector. Because the language used is Java, one with an automatic
memory management and garbage collection, we encounter issues with pauses
dedicated to the cleanup of dead objects. Issues with standard garbage
collectors are that they usually have one or more stop-the-world phases
causing frame delays. Luckily for us, Java 1.7 introduced new concurrent
garbage collector intended for real-time applications.

G1 GC is running in parallel with the application and is cleaning up objects
without frequent pauses. Unfortunately, it is not always possible to avoid
pauses, and they have to be performed at least occasionally. This manifests
in rendering lag that is out of our control.

We can set G1 GC to try to limit its pauses below a specified amount of
milliseconds, but that serves only as a hint, and it is usually not followed.
We can also try to force garbage collection at the end of each frame, hoping
it will do its work in between waiting for GPU synchronization barrier, but
system call for GC triggers long pause that flat out butchers our rendering
performance.

We are basically out of options on JVM side of things and have to reduce
the amount of generated garbage. In early system tests, GC pauses were above
one second every five seconds of runtime, which was cut down drastically to
about 100ms in intervals that depend on current activity, but that is still
quite uncomfortable.

Profiling done over current system implementation showed that a large
number of collected objects is generated by in-built Java collections (HashMap,
LinkedList, TreeSet, etc.), that use objects for its inner structures. This
means we have to either modify these collections to use object pooling [°, or
write new collections that do not use any additional objects, and work only
with arrays of primitive types and stored objects.

3https://en.wikipedia.org/wiki/Object_pool_pattern

79

https://en.wikipedia.org/wiki/Object_pool_pattern

6. Results

Modification of inbuilt collections is not made exactly easy, but it should
not be impossible either, as methods that create or stop using inner helper
objects are often exposed for an override. Such a modification can come at
a performance cost, since specifically in Java, the new operator takes only
a couple of cycles, while pool object retrieval can consume hundreds, and it
gets especially nasty in case of a concurrent environment.

Implementation of these hotspot collections in garbage-less versions can be
quite time-consuming, mostly because we are trying to match the performance
of well thought out competition that evolved over many years.

The last option is to look for salvation in a library such as Trove [*, which
may or may not help, depending on specific replacements. Some of the Trove
collections are garbage-less and could benefit our cause.

Insufficient GPU memory. When moving close to Earth poles in the global
scenario, a large number of tiles will be forced on screen (even though their
contribution is questionable, to say the least). This results not only in a large
number of rendered tiles but also in large quantities of tiles forced in GPU
memory due to maximum +1/-1 adjacency. The total number of tiles is over
500 when viewing poles at depth six, resulting in GPU memory swap into
main memory and drastic framerate drops.

In the ideal case, we would replace poles with caps that subdivide more
efficiently, but that is difficult to do in the generic quadtree, and we would
reintroduce all mapping issues mentioned in data representation chapter.
What seems like a more viable option is to generate maximum adjacency
depth difference connections in a way that closer to poles means we can
afford higher resolution difference. This approach along with lower maximum
resolution at poles would reduce the number of ready tiles down to 80
(assuming pole depth 5 is sufficient and we allow depth difference of 2), which
is much more manageable.

B 6.3 Generator performance

Since the Earth surface data generation is an integral part of global scenarios,
and it turned out to take a non-negligible amount of time, we should take a
better look at overall performance of used generator.

Generation was implemented as described in section|3.4. Raw data for mesh
representation is constructed for each tile separately (texture coordinates,
indices, positions, normals, bounding volume, occlusion volume), and stored
in resource module under a unique key.

The whole process can take up to 24 hours for mere quadtree depth 6. The
main reason for this slow generation is elevation map queries. If we were to

4https://bitbucket.org/trovedj/trove

80

https://bitbucket.org/trove4j/trove

6.3. Generator performance

perform the same process over same mesh resolution, we would need only
minutes to produce a quadtree of equal depth.

There sure is room for improvements in current elevation map implementa-
tion, but it is a good idea to try to beat the problem over the head with raw
hardware power before diving into optimizations that may or may not help.
The main reasoning is that we will generate this dataset only once (assuming
change of raw data will be rare), and thus it is not a problem if it takes a
couple of weeks to finish. However, it is a problem to spend a couple of weeks
perfecting generation algorithm to save percents.

First, we take a look at multi-thread parallelization. Because elevation
map implementation is thread-safe, we can run construction on all tiles in
any order, as there are no other dependencies between them. Storage is not
an issue either, because we are storing into a binary file under a key, and it is
not relevant where in it is stored what particular tile component. Of course,
we should proceed in more or less ordered fashion simply for elevation query
caching purposes, but it is not necessary.

We can see in figure [6.1] that threads working together do not indeed
influence each other all that much. Overall time it takes to generate the
quadtree in the maximum depth of 6 is split in the number of physical cores
assigned to the generator, while virtual threads do not help all that much
anymore.

This approach cuts down generation of depth 6 to bearable 5 hours, but
what if we were to construct quad tree for depth of 12, matching our current
satellite dataset. To get rough estimate, we can start by calculating time for

single tile t = m&% Time is our measured 19 332 seconds, and number
of nodes in complete quad tree is n = S - 483—_1 = 21 845 — our tree is

half empty, so total number of nodes to consider is 10 922 — leaving us with

t= %8 ggg ~ 1.77 second per tile, and ¢t = 7.08 seconds for single threaded
work.

Now we need to calculate the number of tiles being generated in a complete
tree, but we should keep in mind, that we will not generate tiles for sea.
For this estimate, we can take a look at the number of tiles at the deepest
level, and start dividing them by four to get to lower levels. Therefore we
are solving sum of geometric series S, = ag * 1{_’?, where ag = 11 626 643
is number of tiles in depth 12, » = 1/4 subdivision factor, and n = 12 — 6
depth difference we are accounting for. The total number of tiles is then
S, ~ 1.54984059521484375 - 107, and time to generate their data about 717

days of single-threaded computing time.

Two years is a somewhat unacceptable amount of time, but because we are
generating the data independently into a keyed binary file, and because we
can chain multiple of these files together in the new system, we can run the
generation process on any number of computers without any additional work.

In means of AgentFly, if we employ just five of our six core machines, total

81

6. Results

\
\
\
\
‘.
0.9}
\I\\
\I\\‘
08+ |\
\I\\
\
‘.‘“
0.7 ‘-!
o \
03] \
I} \
3
o 0.6 \
= \
® \
T
0.5 \
0.4 \
\\\
0.3
02 | | | L L L
1 2 3 4 5 6
thread count

Figure 6.1: Time to generate depth 6 quad tree Earth surface, values
relativized to single thread performance. Test machine has 4 cores and 8
threads.

tile gets cut down to

717.519
56

= 23 days. If we run the generator only outside
of work hours, it will take about a month, which is already manageable.

only elevation map (=175GB).

It is important to note that textures are keyed separately, so only single
computer needs to have access to Sentinel 2 dataset, and remaining ones need

B 6.4 Earth viewing performance

At last, we will investigate the performance of Earth surface viewing in the
new system.

Scene.

Measurements were performed on complete Blue Marble dataset
scene with elevation map of the same depth and resolution 128 x 128 per the
corresponding tile, exaggeration set to 100x. Decimation vertex maximum

was set to 10 000 (about 18 000 triangles) per tile. Each tile in the scene has

82

6.4. Earth viewing performance

set identical ambient and directional light (sun).

As far as renderer properties go, all frames were rendered in 8K resolu-
tion with linear down-sampling. All textures have generated mipmaps and
anisotropic filtering 16x. Used lighting model was complete Phong |’ Target
framerate was set to 60 FPS with preferred GC pauses on 10ms, vsync
off. Safety scene rendering budget was set to 10ms to account for unknown
expected last operation duration (setting it higher results in more frequent
frame drops under 60 FPS).

Camera. To ensure more or less consistent results, single 30 seconds camera
movement was recorded and replayed on abstraction side. Samples will not
be exactly 1 : 1, but at the scale of 2000 frames, the difference should not be
visible even if we consider GC interruption. Camera replay was started right
after Earth layer provider initialization.

Fidelity. As mentioned in subsection 4.3.2, constant quality factor was added
to desirability heuristic.

12/(h.
2
() = 1 does not change the heuristic at all,) < 1 will decrease final fidelity,
@ > 1 will increase final fidelity.

Test computer. Measurements were performed only on a single machine
(see table 6.1), as we are interested in relative values rather than absolute
performance. We can always adjust quality factor to fit the used hardware
and achieve similar results. This was tested on multiple computers, but their
results did not differ enough to justify their presence in this thesis.

OS MS Windows 10 Enterprise x64 || CPU Intel Core i7-7700 CPU @ 4.2GHz
Cores (threads) | 4(8) RAM 64GB

GPU GeForce 1070 8GB Driver version | 388.13

Java 1.8.152 Graphics clock | 1506 MHz

Bandwidth 256.3 GB/s Shader units 1920

Pixel fill 96.4 GPixel/s Texel fill 180.7 GTexel/s

Table 6.1: Test computer

B 6.4.1 Fixed quality

First, we will take a look at the scenario with () = 1. Please note that this
scenario has different camera trajectory than one used for comparative charts.
We start with the camera at three times Earth radius away from Earth center,
zoom in on maximum depth and wait until it is loaded (frame 400). Then we

Shttps://en.wikipedia.org/wiki/Phong_reflection_model

83

https://en.wikipedia.org/wiki/Phong_reflection_model

6. Results

start panning around, and after a couple of seconds look around the horizon
from a fixed position (frame 1600).

In figure 6.2 are full frame times in particular frames. This number includes
the whole process described in section 5.2 not only rendering. We can see
that most frames that take longer than target 16.66ms are those with garbage
collector pauses. These stutters are unfortunately noticeable, and we should
try to reduce them as much as possible (see section 6.2 for an in-depth
discussion on GC issue).

60 —

frame time
O GC pause
target maximum

50 [~

i

MU\ ¥

‘ Lo

Ew—

& WM f

10 ft

‘M’w
| ;J 1]

| 1 I | | I 1
200 400 600 800 1000 1200 1400 1600 1800 2000
frame number

I
‘ \ | ‘ s oMty
bl M (NI L e 1 e

' ‘ {‘*{W M W MH
[T

Figure 6.2: Frame time for () = 1, green line shows target frame time of
16.66ms, and red circles mark garbage collector pauses.

Dissatisfied tiles figure |6.3| shows us a number of tiles that were considered
for improvement in that particular frame but were not available. We can
see how this number rapidly grows as we zoom in at frame 200, reach its
peak after we stop zooming in, and then decrease as prefetch process starts
catching up. When we start panning at frame 600, we can see how quadtree
cut gets expanded only slightly. Since panning was done with the camera
facing Earth center, dissatisfied tiles did not have time to appear in the
view. GPU memory occupancy shadows decrease in dissatisfied tiles count,
as expected.

Looking at the particular distribution of tiles in the current cut (see
figure 6.4), we can see how depths 0 — 2 disappear almost immediately, 3 — 4
get to a stable amount (opposite side of the globe changes less frequently),
5 — 6 responding to the current view. At frame 400 is visible how VFC kicks
in reducing requirements on tiles that are not in view, as those are always
assumed to be of sufficient quality.

The same story goes for the number of rendered tiles, where those at lower
depth are rendered in the beginning, but are quickly replaced by maximum
depth or culled away by VFC. Between frames 400 and 650 is camera too
close to one particular tile, and nothing else is rendered. Then we zoom out

84

6.4. Earth viewing performance

GB consumed
N
.

05
200 400 600 800 1000 1200 1400 1600 1800 2000 200 400 600 800 1000 1200 1400 1600 1800 2000
frame number frame number

Figure 6.3: Number of dissatisfied tiles over time (left), amount of consumed
GPU memory in GB (right).

a little bit having different maximum level tiles in the view. Around frame
1200 is zoomed in for a moment, and then the look around where VFC does
not cover horizon tiles.

250 140
. o . o
- 120 [
- 2
200 —N -
4 100 4
: s
6
150) 0

count
count

100

50

20 "
il T N\
200 400 600 800 1000 1200 1400 1600 1800 2000 200 400 600 800 1000 1200 1400 1600 1800 2000
frame number frame number

Figure 6.4: Current quad tree cut size in number of tiles per depth (left), number
of rendered tiles from current cut per depth (right).

B 6.4.2 Comparative

We were discussing quality factor equal to one, which is base desirability
heuristic. Now is the time to take a look at comparative measurements of
different factors. These graphs are fairly cluttered and serve only for an
overview of the general relation between quality factor and performance.

In figure are frame times for different quality factors, and it is clear that
system stays at 60FPS, with only outliers in the form of garbage collection
pauses. We can also see that render times are very similar for all settings, at
least when nothing is being loaded onto GPU (lowermost line).

When looking at dissatisfied tile counts in figure it looks almost as
if chart for Q = 5 was scaled down for the others. Cut size in figure 6.7
could at first glance suggest similar behavior, but in first 400 is quite clearly
visible how lower qualities scale at a steady pace, and then higher qualities
hit system limits for tile loading (1 — 5 do almost overlap). The same effect

85

6. Results

50 -
——Q=0.025
Q=01
45 ~ Q=05
Q=1
-~ a=2
4 os2
350
30

600 800 1000 1200 1400 1600 1800
frame number

Frame time for different quality factors.

is visible in this figure as well as in the number of rendered tiles in figure 6.8

80—
——Q=0.025
| ——Q=01
ok e Q=05

1| B A i | ; ‘ A) LA . , |
0 200 400 600 800 1000 1200 1400 1600 1800
frame number

Figure 6.6: Number of dissatisfied tiles for different quality factors over time.

86

6.4. Earth viewing performance

350 —

300 —

250 —

count

400 600 800 1000 1200 1400 1600 1800
frame number

Figure 6.7: Size of the cut for different quality factors over time.

count

800 1000 1200 1400 1600 1800
frame number

Figure 6.8: Number of rendered tiles for different quality factors over time.

87

88

Chapter 7

Conclusion

Throughout this work, the project AgentFly and circumstances of its visual-
ization system upgrade were introduced.

At first, we took a look at all specifics of the current system, all its
specifics and flaws, and what are requirements for its replacement. Elaborated
requirements were not only rigid general ones, or specific functional, but also
requirements set by its past and future usage. When talking about such a
visualization system, we had to investigate related works that deal with large
scale scenes as well as works on budget rendering topics.

When displaying planetary scene, we encounter large amounts of data, so
we analyzed the best representation of such datasets. Specific collections of
data were brought up and adapted to our environment, with details on how
to deal with their issues. Processes for conversion of raw data to 3D scene
objects were drafted.

Furthermore, rendering of large-scale scenes and specifically Earth surface
was elaborated on. Spatial precision issues were taken apart, and multiple
solutions were proposed. To put the only subset of generated data on the
screen, an algorithm for scene slice construction was devised and broken down.
Impact of concurrent tasks and hardware performance was accounted for,
and ways to deal with it were introduced. Controls of the camera in such a
large scene were described as far as their expected behavior goes, and then
calculations necessary for their realization were presented.

Lastly, the actual implementation of previously proposed solutions was
described on specific platform and technology with several optimizations
being mentioned. Earth view and controller view scenarios were shown in
their current state in the new system. We took a look at missing features
and known issues of final implementation, suggested ways to deal with them,
and finally the measured performance of the system and its parts.

The current implementation of the new system is not ready for exchange
with previous one, at least not in full extent, but most of the groundwork
on the engine is laid out, and Earth surface visualization is usable for the
most part. Even though we cannot display all the data, it is possible to build

89

7. Conclusion

the most common and used scenarios while more specific features are being
added.

B 7.1 Future plans

This section contains a short overview of plans for near future with the
development of the new system. These are not necessarily in order, but they
should be addressed sooner or later.

Known issues. As described in section [6.2] we need to take a proper look at
garbage collection pauses, mainly at sources of temporary objects and ways
to reduce their production. Even though it is only noticeable, and far from
problematic when the system is being used, it should be still reduced to a
minimum. Integration of Trove library is the least that can be done.

Issue with number of tiles around poles should be definitely resolved, not
only because it pretty much breaks viewing experience (even though we never
look there), but also because implementation of steps larger than one can
enable us to add narrower data cones around hot-spots, thus having to supply
lower volumes of data to costumers.

Missing features. From missing features (see section |6.1)), transparency is a
must have, and needs to be addressed in at least the minimal centroid sorting
manner. Other mentioned points are rather nice-to-have and will be likely
added over time when the necessity or occasion arises.

The main point is that we do not pay as much attention to other listed
missing features, that is that they are oriented to performance improvements,
and that is more or less sufficient at the moment. Of course, if we use weaker
hardware, we will likely experience a certain amount of performance loss.
However, it runs sufficiently on a notebook integrated graphics card, so it
makes sense to start optimizing once rendered scenes get too complicated.

Scene construction extension. In section 4.2]is described base construction
algorithm (which is implemented), and extended version that deals with
known potential issues. This change should be added sooner than later, as it
might require changes on abstraction side objects, and those might interfere
with any transferred code from the old system.

Extended construction algorithm should enable deeper and more complex
scene cuts on weaker machines, as it better utilizes currently available resources
and does not reset state after each frame. When tuning construction, we
should take a look at desirability heuristic, and possibly introduce performance
feedback loop to quality factor.

90

7.1. Future plans

Data. Because our elevation dataset is now as good as it will likely get
anytime soon, our only concern is tile data generator speed and Sentinel 2
missing data. For the former, we can, as described in section 6.3, generate
slowly all tile data without having specific diffuse textures, as they can be
added later.

For latter, at least a proper cleanup process needs to be derived for missing
sea samples with smooth transitions. That means loading and processing of
coastal vector lines and implementation of color filters directly in the new
system (color correction values were calculated manually in Matlab).

GUI. The new system needs to be appropriately bound with GUI envi-
ronment, allowing communication of Ul elements with visualization layer
providers, but also with simulation scenario providers (modules that control
simulation).

Since technology is already selected (JavaFX), we only need to establish
UI architecture. This means well thought out connection between all three
systems (visio, simulation, GUI), but also templates that allows easy addition
of new control elements.

Simulation binding. Not only controls need to be communicated between
visio and simulation, but also data. Large amounts of data. For this will be
necessary to implement module system for offer/subscription of data. These
data modules will have to handle static data (flight plans registered from
pilots), dynamic generational data (currently valid flight plans), but also
incremental data (history of flight plan changes).

This process requires involvement of entire AgentFly team to avoid any
unpleasant surprises in the form of rare specifics and legacy systems.

91

92

[1]

2]

Bibliography

Sahr K, White D, Kimerling AJ. Geodesic discrete global grid systems.
Cartogr Geogr Ing Sci 2003:30(2):121-34.

Cignoni P, Ganovelli F, Gobbetti E, Marton F, Ponchio F, Scopigno R.
Planet-sized batched dynamic adaptive meshes (P-BDAM). Proceedings of
IEEE visualization, VIS’03, Seatle, WA, USA: IEEE Computer Society;
2003, p. 147-55.

Snyder JP. Map projections — a working manual. Washington, DC, USA;
US Government Printing Office; 1987.

Mahdavi-Amiri A, Samavati FF, Peterson P. Categorization and conver-
stons for indexing methods of dicrete global grid systems. ISPRS Int J
Geo-Inf 2015;4:320-36.

Mahdavi-Amiri A, Alderson T, Samavati FF. A Survey of Digital Earth,
Computers and Graphics, vol. 53/(2015), pp. 95-117.

Sellers G, Obert J, Cozzi P, Ring K, Persson E, de Vahl J, et al. Rendering
massive virtual worlds. SIGGRAPH 2013 courses. ACM; 2013.

G.H. Dutton. A hierarchical coordinate system for geoprocessing and
cartography. Lecture notes in earth sciences, Springer, Berlin, Heidelberg
(1999)

Lee M, Samet H. Traversing the triangle elements of an icosahedral
spherical representation in constant time. In: Proceedings of the 8th
international symposium on spatial data handling, 1998. p. 22-33.

A Mahdavi-Amiri, FF Samavati, P Peterson. Categorization and conver-
stons for indexing methods of discrete global grid systems. ISPRS Int J
Geo-Inf, 4 (2015), pp. 320-336

[10] Thorne C. Using a floating origin to improve fidelity and performance of

large, distributed virtual worlds. In: Proceedings of the 2005 international
conference on cyberworlds, CW05, 2005.

93

Bibliography

[11] Desai M, Ganatra A. Survey on Gap Filling in Satellite Images and
Inpainting Algorithm. In: International Journal of Computer Theory and
Engineering, Vol. 4, No. 3, June 2012

[12] Maule, Marilena, Joao L. D. Comba, Rafael P. Torchelsen, et al. A Sur-
vey of Raster-Based Transparency Techniques, Computers and Graphics
(Pergamon), vol. 35/no. 6, (2011), pp. 1023-1034.

[13] Gobbetti E, Marton F, Cignoni P, Di Benedetto M, Ganovelli F. C-
BDAM — Compressed Batched Dynamic Adaptive Meshes for Terrain
Rendering. Computer Graphics Forum, 25: 333-342. doi:10.1111/j.1467-
8659.2006.00952.x (2006)

[14] Wimmer M, Wonka P. Rendering Time Estimation for Real-Time Ren-
dering. Proceedings of Eurographics Symposium on Rendering 2003, ACM
SIGGRAPH, June 2003.

[15] Kooima R, Leigh J, Johnson A, Roberts D, SubbaRao M, DeFanti TA.
Planetary-Scale Terrain Composition. IEEE Transactions on Visualization
and Computer Graphics. 2009;15(5):719-33.

[16] Livny Y, Kogan Z, El-Sana J. Seamless patches for GPU-based terrain
rendering. The Visual Computer. 2009;25(3):197-208.

[17] Losasso F, Hoppe H. Geometry clipmaps: Terrain rendering using nested
reqular grids. NEW YORK: ASSOC COMPUTING MACHINERY; 2004.

[18] Liu X, Rokne JG, Gavrilova ML. A novel terrain rendering algo-
rithm based on quasi Delaunay triangulation. The Visual Computer.
2010;26(6):697-706.

[19] Kidner DB, Ware JM, Sparkes AJ, Jones CB. Multiscale Terrain
and Topographic Modelling with the Implicit TIN. Transactions in GIS.
2000;4(4):361-78.

94

Appendix A

CD contents
In this chapter will be described contents of CD attached to this thesis.

B A1 Files

All files on the disc are compressed in .zip archive in the root folder. The list
below contains all notable files and folders with a short description of their
purpose. Please note that documentation and source files are a "snapshot" that
does not include code used for argument handling in attached distribution.

/thesis.pdf
PDF document with this text.
/javadoc/index.html
Generated documentation entry point. Documentation was generated
using Java Oracle generator || over attached sources.
/sources/common/
Source codes for communication interfaces between abstraction and
implementation sides. These interfaces have suffix A to denote their
purpose.
/sources/facade/

Source codes for abstraction side classes, word facade used because

abstract is Java keyword. These classes have no suffix.
/sources/glsl/

GLSL sources before compiler processing and added defines. Files for
same shader have same name with extension defining their purpose (.vert
vertex shader, .frag fragment shader, .comp compute shader).
/sources/GUI/
Package intended for GUI related classes, currently contains only single
frame entry point.
/sources/implementation/
Source codes for all implementation side classes, also contains renderer

Ihttps://docs.oracle.com/javase/7/docs/technotes/tools/windows/javadoc.
html

95

https://docs.oracle.com/javase/7/docs/technotes/tools/windows/javadoc.html
https://docs.oracle.com/javase/7/docs/technotes/tools/windows/javadoc.html

A. CD contents

objects. Classes with a direct counterpart on abstraction side have either
Data or Object suffix depending on their purpose, source data wrapper
or OpenGL object wrapper, respectively.

/sources/testing/
Source codes for all test classes, implemented scenarios, and data pro-
cessing code.

/sources/testing/earth/
Earth data processing classes, elevation and imagery source tile data,
and mesh generation.
/sources/utils/
Source codes with utility classes used throughout the project.
/distribution/lib/tcc.exe
Tiny C Compiler | for shader debugging.
/distribution/src/glsl/
Shader sources loaded at runtime, may be modified to change rendered
scene (normals display, camera distance, - - -).
/distribution/natives/
Native libries for JOGL.
/distribution/visio__lib/gluegen-rt.jar
Generator [*| of JNI /% code for specific platform during application startup.
This dependency is used for JOGL, JOCL, and JOAL.
/distribution/visio__lib/jai__imageio-1.1.jar
Library °| for additional image formats, currently used only for tif f file
processing.
/distribution/visio__lib/java-data-front.jar
Library %| for wavefront "l OBJ and MTL file support.
/distribution/visio__lib/jogl-all.jar
JOGL [, Java OpenGL API bindings.
/distribution/visio__lib/vecmath.jar
Vecmath library for simple vector math, pulled out of J3D project for
compatibility, to be replaced by newer version or in-house fork.
/distribution/work/
Source and temporary data files.
/distribution/visio.jar
Compiled visio distribution, requires specific set of arguments to run.
/distribution/run.bat
Batch file running sample scenario with predefined arguments for JVM
and visio itself.

Zhttps://bellard.org/tcc/
3https://jogamp.org/gluegen/wuw/
4https://en.wikipedia.org/wiki/Java_Native_Interface
Shttps://github.com/jai-imageio/jai-imageio-core
Shttps://github.com/mokiat/java-data-front
"https://en.wikipedia.org/wiki/Wavefront_.obj_file
Shttps://jogamp.org/jogl/www/

96

https://bellard.org/tcc/
https://jogamp.org/gluegen/www/
https://en.wikipedia.org/wiki/Java_Native_Interface
https://github.com/jai-imageio/jai-imageio-core
https://github.com/mokiat/java-data-front
https://en.wikipedia.org/wiki/Wavefront_.obj_file
https://jogamp.org/jogl/www/

A.2. Distribution

B A.2 Distribution

This section describes details regarding attached test distribution of the
system. First, we will take a look at attached data and their properties,
then requirements for successful execution will be stated along with possible
arguments. Controls within running application will be listed, and outputs
elaborated on.

B A.21 Data

There are three data packages included in the distribution. Two for mesh
data at zero and 100 exaggeration, and one containing textures. Each of these
packages is split into two files, one with —C' LF suffix (keys, sizes, and offsets),
and one with —DF suffix (raw data). Mesh packages contain vertex positions,
texture coordinates, indices, normals, and bounding/occlusion volumes.

Both generated datasets are for quadtree of depth 4 with elevation map in
resolution 128 x 128. Applied decimation had maximum vertex count set to
10 000, the base error of 100 meters, and maximum triangle area A = 10!,

Il A.2.2 Execution

Execution of this distribution requires at least Java 8, graphics card with
OpenGL 4.3 capabilities, and at least 2GB of available graphics and system
memory. It may be necessary that administrator privileges will be necessary,
as the code needs access to native libraries and generated gluegen executables.

For the execution of visio.jar distribution is necessary to pass a number
of arguments, some of the notable ones are listed below:

® autoplay [boolean], when set to true, camera replay layer provider will
initiate camera replay immediately after successful initialization. This
option is intended for comparative benchmarks.

® displayOBB [boolean|, when set to true, the wireframe of used oriented
bounding boxes for tiles will be displayed.

® windowCount [0 < integer], a specified number of windows with identical
contents will be generated. It is not intended use case to have multiple
Java virtual machines running in parallel; all AgentFly instances should
be under a single environment.

m qualityFactor [0 < float < Inf], quality coefficient described with
desireability heuristic. Neutral value is Q = 1, lower value results in
lower quality, higher value in higher quality.

® resolutionMultipler [0.5 < float < 2], resolution of render buffer is screen
resolution multiplied by this factor. Since linear interpolation on four
NN samples is used, it makes no sense to set values outside of half and
double resolution.

97

A. CD contents

® targetFPS [0 < float < Inf], frames per second render manager should
strive for. Maximum frame budget is statically set to 10ms, so there will
be frame drops on higher desired frame rates due to tile loading, but 60
FPS should generally be a minimum.

® exaggeration [boolean], when set to true, a dataset with exaggeration
e = 100 will be used for all tile meshes.

B Xms2g, JVM argument setting starting heap space size, in this case to
2GB.

B Xmx4g, JVM argument setting maximum heap space size, in this case
to 4GB.

B XX:+PrintGC, JVM argument that enables garbage collector debug
output. It generally contains marks when various phases start and end.

8 XX:-PrintGCTimeStamps, JVM argument that adds duration times-
tamps to garbage collector output.

Do not change the order of arguments in run.bat. The correctness of given
arguments is not checked, and passing invalid values may result in a crash.

B A.2.3 Controls

In this section will be listed specific control binding from implemented layer
and camera providers.

Camera control. Bindings for camera movement are defined in testing
package, Sphere Camera Controller class.

® Inspection mode is activated by mouse wheel press on the surface of the
Earth, followed by drag. Movement up and down will tilt the camera,
while a movement to the left and right will rotate it around inspection
point axis. Tilt is constrained to about 90 degrees.

® Press of the right mouse button will initiate mode in which drag down
and up results in smooth zoom in and out, respectively. In case the
press was initiated over Earth surface, zoom function will try to keep
this point in the same spot on the screen.

® Drag with left mouse button pans the camera around the globe. The
camera can be in any configuration as long as the cursor is over Earth
surface. In case cursor leaves it, panning will be interrupted and resumed
in case cursor returns.

B Step zoom can be performed either with scroll wheel (forward is zoom in,
backward is zoom out), or using double click (left mouse button zooms
in, right mouse button zooms out).

® To look around camera position, hold CTRL and drag with left mouse
button across the screen. Vertical movement is camera tilt, and horizontal
movement is rotation around vector from the Earth center to camera
position. This movement is not restricted.

98

A.2. Distribution

Camera replay. Bindings for camera replay are defined in testing package,
Camera Replay Layer Provider. Record in the file is automatically loaded
during provider initialization.

® Toggle recording with CTRL + R. Recording always adds at the end of
the currently loaded record.

8 Toggle replay with CTRL + P. Replay starts either at the beginning of
the current record or at the position it was previously paused on. When
replay reaches the end, it stops, and pointer in the record is set to the
beginning. If replay is resumed on out of bounds pointer, it immediately
stops and is reset.

® To load record from file (camera.dat) press CTRL + L. The loaded
record is always added at the end of current one.

® To store current record to a file (camera.dat) press CTRL + S.

® To delete the record currently residing in memory press CTRL + D.
This action does not affect the record in the file.

® To return to the default/initial camera position press home.

Scene. Bindings for scene control are defined in the testing package, Earth
Layer Provider.

® To properly see what tiles are loaded and in what level, we can switch
between fill and wireframe render mode by toggling W key. This wire-
frame will still perform backface culling, and it will not remove Earth
occlusion.

® Earth has in its scene a fixed directional light source. This light can be
turned on or off by toggling L key, allowing us to see darker areas of the
surface.

® Currently rendered tiles can be viewed by camera state fixation by
pressing C' key. When the camera is fixated, its state from the time of
fixation will be used for scene construction purposes until it is released
with a repeated press of C' key.

B A.2.4 Outputs

Running application produces three kinds of outputs: benchmark files that
record the state of the dynamic Earth scene in text form, console outputs
with GC and frame time, and used shader files.

Benchmarks. Each run of the distribution produces a file work /benchmarks
that contains one line of performance information for each frame of runtime.
Each line contains 19 cells separated by a comma:

1 Number of tiles in current scene cut. These must be loaded on GPU, but
do not have to be rendered in case they are not in view.

99

A. CD contents

2-8 Number of tiles in current scene cut depending on their level in quad
tree. First cell is level zero, and seventh cell is level six.

9 Number of rendered tiles in this frame.

10-16 Number of rendered tiles in this frame depending on their level in
quad tree. First cell is level zero, and seventh is level six.

17 Frame time in milliseconds. This number includes complete frame render
excluding user input processing time.

18 GPU memory as a fraction of maximum available.

19 Number of tiles that were not sufficient in current cut, but their improve-
ment was not ready.

Console. Only outputs printed into console are initialization system proper-
ties, frame times that exceed 18 milliseconds, and garbage collector debug
output [’} Frame times are printed next to garbage collector logs so we can
see when we drop frames due to scene building issues and when the garbage
collector is to blame.

Shader files. As mentioned before, there are two exported formats for shader
source codes.

File in format [hash]_num__src_glsl_[name].[frag|vert|comp] denotes
numbered source code before preprocessor work. This version is necessary
because compiler and runtime error refer to line numbers in this file, not the
original source to which we have added compilation attributes.

In file [hash|_out_src_glsl_[namel.[frag|lvert|comp] is the code after
preprocessor work for debugging of that specific workflow. Unfortunately,
this code is not formatted, and an external formatter needs to be used.

9To better understand Java G1 GC logs, see https://blog.gceasy.i0/2016/07/07/
understanding-gl-gc-log-format/

100

https://blog.gceasy.io/2016/07/07/understanding-g1-gc-log-format/
https://blog.gceasy.io/2016/07/07/understanding-g1-gc-log-format/

Appendix B

Measurement details

In this chapter are details related to system performance measurements, such
as extra graphs or less relevant test machine details.

B B.1 Tie generator performance

In table are real times that tested machine took to generate Earth tiles
of depth 4 for different number of threads.

of threads time [min] relative speed

1 121.68 1.00

physical 2 63.78 0.53
cores 3 44.16 0.36
4 34.68 0.29

5 32.40 0.27

virtual 6 31.80 0.26
cores 7 28.26 0.23
8 29.04 0.24

Table B.1: Table with real measured values from tile generator testing.

B B.2 Earth viewing performance

In this section are graphs for Earth viewing performance for lowest (Q = 0.025)
and highest (Q = 5) quality factors tested.

B B.3 Tested computer

Besides basic parameters of the tested computer that were listed in the
table we might want to know additional properties of the graphics card,

101

B. Measurement details

w05
° —— frame time
O GCpause
sl - target maximum
30
25
o [
2o
15 “ ‘
| b
10 ‘/ ‘
5 ‘ J J | ‘ |
‘ ‘l UL LLa—.) bl VT) SOTRTR | U S S Bl e
N
bt rarr

I I | L L I I L
0
200 400 600 800 1000 1200 1400 1600 1800

frame number

Figure B.1: Frame time for Q = 0.025, green line shows target frame time
of 16.66ms, and red circles mark garbage collector pauses.

4 2-
35 19+ -
18
3
7
25 B e
g16
E 2
32 | g
@40
15 &1
| 131
1 I
‘ 12
05 1l
0 ‘ 1t
200 400 600 80D 1000 1200 1400 1600 1800 200 400 600 80D 1000 1200 1400 1600 1800
frame number frame number

Figure B.2: Number of dissatisfied tiles over time (left), amount of consumed
GPU memory in GB (right), both for Q@ = 0.025

and the machine in general. See table for transfer speeds and graphics
card properties.

102

B.3. Tested computer

200 400 600 800 1000 1200 1400 1600 1800 200 400 600 800 1000 1200 1400 1600 1800
frame number frame number

Figure B.3: Current quad tree cut size in number of tiles per depth (left), number
of rendered tiles from current cut per depth (right), both for = 0.025.

60 —

—— frame time
O GC pause
~ target maximum

50

200 400 600 800 1000 1200 1400 1600 1800
frame number

Figure B.4: Frame time for () = 5, green line shows target frame time of
16.66ms, and red circles mark garbage collector pauses.

count
a
5
GB consumed
N
o

N |
WZ L_AJJ WNW\J r_AMJ\M by

200 400 600 800 1000 1200 1400 1600 1800 200 400 600 800 1000 1200 1400 1600 1800
frame number frame number

Figure B.5: Number of dissatisfied tiles over time (left), amount of consumed
GPU memory in GB (right), both for @ =5

103

B. Measurement details

200 120
100

80

count
3
8

count

60

40

200 400 600 800 1000 1200 1400 1600 1800
frame number

40
20
20[1 |
o Py iLLLIT

200 400 600 800 1000 1200 1400 1600 1800

frame number

Figure B.6: Current quad tree cut size in number of tiles per depth (left),
number of rendered tiles from current cut per depth (right), both for @ =5

Key Value
MAX_ COMBINED_TEXTURE_IMAGE_UNITS 192
MAX_ CUBE_MAP_TEXTURE_SIZE 32768
MAX_ DRAW_ BUFFERS 8
MAX FRAGMENT_UNIFORM_COMPONENTS 4096
MAX_ TEXTURE_IMAGE_UNITS 32
MAX_ TEXTURE_SIZE 32768
MAX_ VARYING_FLOATS 124
MAX_ VERTEX_ ATTRIBS 16
MAX_VERTEX_ TEXTURE_IMAGE_UNITS 32
MAX_VERTEX_UNIFORM__COMPONENTS 4096
MAX_ VIEWPORT_DIMS 32768
MAX_ UNIFORM_BUFFER,_ BINDINGS 84
MAX_UNIFORM_BLOCK_ SIZE 65536
MAX_VERTEX_UNIFORM_BLOCKS 14
MAX_ FRAGMENT_UNIFORM_BLOCKS 14
MAX GEOMETRY_UNIFORM_BLOCKS 14
MAX COMPUTE_WORK_GROUP_INVOCATIONS 1536
MAX_ELEMENTS_INDICES 1048576
MAX_ FRAMEBUFFER,_WIDTH 32768
MAX FRAMEBUFFER_HEIGHT 32768
GL_DEPTH_BITS 24
SHADING_LANGUAGE_ VERSION 4.50 NVIDIA

VENDOR

MAX_ COMPUTE_WORK_ GROUP_SIZE
MAX_COMPUTE_WORK__GROUP_COUNT
CPU_TO_GPU_NANO_PER BYTE
DRIVE_TO_CPU_NANO_PER BYTE
CPU_TO_GPU_MB_PER_SECOND
DRIVE_TO_CPU_MB_PER_SECOND

NVIDIA Corporation
[1536, 1024, 64]
[2147483647, 65535, 65535]
0.12541300773620606
4.45505442475302
7604.269554017955
214.065693812286

Table B.2: Additional test computer details.

104

Appendix C

Considered technology

In this chapters are elaborated technologies and engines we looked into.

B ci1 Engines

In this section is described process of selection of suitable existing engines for
tasks described in the requirements section.

Basic requirements for graphics engine are:

B Engine must be available for all major platforms — Windows, OSX and
Linux. This means that it is possible to simply compile source codes for

these platforms without too much of additional work.
® Ongoing development of the engine. It is important to make sure the

technology will stay with us for a considerable amount of time, and if

possible, be improved as well.
® Feature wise complete engine that allows implementation of everything

in previous system.
® Active community that will be able to provide support with implementa-

tion of more specific features.
® Complete documentation.
® Possibility of GUI integration.
® Access to the source code.

Unity Engine 5. Unity 3D E| is full feature game engine allowing development
on all possible platforms. It prioritizes visual programming unity FlowCan-
vas E[) using Unity 3D editor, and does not allow access and modification of
source codes of the engine.

It has learning program available, as well as online support for subscription
licenses. These are backed by wide community support and community
created content on unity asset store.

1unitySd.com

https://forum.unity3d.com/threads/flowcanvas-inspired-by-unreal-blueprintls.
245646/

105

unity3d.com
https://forum.unity3d.com/threads/flowcanvas-inspired-by-unreal-blueprints.245646/
https://forum.unity3d.com/threads/flowcanvas-inspired-by-unreal-blueprints.245646/

C. Considered technology

According to community lacks newer C# features and .Net compatibility,
version control causes issues in larger teams, and most importantly, severely
limits the ability to make large open worlds without extensive custom archi-
tecture and expensive source code access. Unityscript (a version of JavaScript)
is supposedly much worse than JavaScript itself.

Flightgear. FlightGear Flight Simulator [’ is complete simulator with an
extensive dataset, but due to its license, it is not suitable for commercial
products.

Open Scene Graph. Open Scene Graph * (OSG) is graphics middleware
for virtual scene visualization. It consists of the scene graph that is capable
of rendering in real time using OpenGL, loader tools for import of necessary
media in the system and so-called node kits, that serve as modules for the
base engine.

Amount of created content for this framework and size of the community
suggest this is one of the best options, as we have full access to source codes
of the rendering process, which is essential for the solution of our precision
issues.

In attempts to make the source of OSG work, it turned out that large part
of the documentation is outdated and it was difficult to even compile the
sources due to inconsistency with dependencies.

Lockheed Martin’s Prepar3D. Prepar3D P|is a flight simulator. It allows
the creation of training scenarios for pilots of various vehicles within the
system. There is SDK for development for Prepar3D, but it is documentation
not very helpful and it seems to be for minor changes and configurations only.

Virtual Battle Space 3. Virtual Battle Space 3 % is full feature 3D engine
API specifically designed for combat simulators. Because of its compatibility
windows-only it cannot be used for our project.

CryEngine 5. CryEngine 5 || is a full-feature game engine that allows
pretty much everything every other AAA game engine does. It offers visual
editor, full access to source codes (but their modification is not allowed under
standard license).

According to the community, this engine is somewhat tricky and compli-
cated for use compared to other engines of similar size. It is essential to be
able to change source codes of the engine, as one of our particular problems
is position precision, which requires such modifications.

Swww . flightgear.org
“www . openscenegraph. org
Sww . prepar3d.com|
Sbisimulations.com
Twww.cryengine . com

106

www.flightgear.org
www.openscenegraph.org
www.prepar3d.com
bisimulations.com
www.cryengine.com

C.1. Engines

Godot engine. Godot engine P|is a 2D/3D game engine that provides most
of the necessary features and is open source so that it could be extended.
It goes the way of scripting in a custom python-like scripting language. It
has very well structured and complete documentation along with a line of
tutorials.

Ogre3D engine. Ogre3D P|is a fast full-feature 3D game engine. One of the
main disadvantages of this engine is its size, as the engine is quite complex and
large, and it is difficult to get into, not to mention not all that user-friendly
documentation.

Unreal engine 4. Unreal engine 4 'V is full feature engine for game develop-
ment. It is pushing interactive visual development using a provided editor
and scripting language. The user has full access to source codes of the engine,
and it can be modified in full extent.

LWJGL 3. Lightweight Java Game Library ['!|is unifying myriad of interfaces
under one hood. The only thing it provides is certain assurance of compati-
bility of already created code with newer versions of wrapped interfaces. This
means more freedom for the cost of more time spent programming, but that
still may pay off, as it is not required to overcome different design decisions
of the engine while implementing special cases of created system.

JOGL. JOGL % (Java OpenGL ') is, similarly to LWJGL, API interface,
but it works only with OpenGL. Offers OpenCL (JOCL) and OpenAL (JOAL)
bindings as well.

LibGDX. LibGDX is a framework that on the back-end uses LWJGL, so it
can technically do anything LWJGL can do, but it is not necessarily better
option at all circumstances. It contains set of helpers for graphics, audio,
physics, and math, and it is only up to the user to pick from them. There is
no forced design of the system.

JMonkeyEngine. JMonkeyEngine |'*| is high level engine built on top of
LWJGL. 1t provides all features and constructs of modern game engines, such
as Unity3D or UnrealEngine. Since jMFES is fully open-source, it is possible
to modify any code inside of the engine to fit current needs.

8godotengine.org

9www.ogreSd.org
10www.unrealengine.com
11www.legl.org
12jogamp.org/jogl/www/

'www.opengl.org
14jmonkeyengine.org/

107

godotengine.org
www.ogre3d.org
www.unrealengine.com
www.lwjgl.org
jogamp.org/jogl/www/
www.opengl.org
jmonkeyengine.org/

C. Considered technology

Type Lang | Activity Price License 0S
Unity 5 game engine | C# ongoing $125USD/month | per seat all
Flightgear simulator C++ | alive May 2016 | Free GNU all
0SG scene graph | C++ | alive Nov 2015 | Free GNU all
Prepar3D simulator C++ | alive Sep 2015 | $200USD per seat W
VBS3 game engine | C++ | alive Jun 2016 | NA NA W
CryEngine 5 game engine | C++ | ongoing Free Games only | L/W
Godot game engine | C++ | alive Jul 2016 | Free MIT all
Ogre3D game engine | C++ | alive Mar 2016 | Free MIT L/W
Unreal 4 game engine | C++ | ongoing royalties custom all
LWJGL 3 graphics API | java | alive Jun 2016 | Free GPL all
JOGL graphics API | java | alive Jun 2016 | Free CC all
LibGDX graphics API | java | alive Jun 2016 | Free Apache all
JMonkeyEngine | game engine | java | ongoing Free BSD all
World Wind Earth view java | dead Jun 2012 | Free NASA all

Table C.1: Engine comparison table.

NASA World Wind. NASA World Wind [° is SDK with an integrated
view on Earth with textured surface and various sources of remote content.
Because of this project being dead for quite a while, it is not viable as a base
for this work, but it can be used as a source of inspiration on how it can be
approached, as implemented features in World Wind largely overlap with
requirements for our new system.

. C.2 Additional technologies and data sources

In this section are listed technologies and data sources that can be coupled
to a varying extent with previously listed engines. Use of these should be
considered when selecting the new engine.

SIMTHETIQ. Simthetiq['%is a company providing assets for virtual worlds.
Their store contains a wide range of military land, naval and air vehicles.
Amount of civilian models is rather small. Simthetiq prides itself on the
accuracy of their models, which are supposed to be modeled in several levels
of detail, and with rigged moving parts. Advertised environments and airports
are not available in their online store. The potential benefit from this model
library may be in military scenarios or those few civilian models in air traffic
control.

Listed compatibility seems to stem only from available model formats and
has no direct connection to engines in question.

Type Model library

Contents detailed military models, scarce civilian models

Activity seems to maintain the store, but not the development. Support is
not really necessary in this case

15 - -
worldwind.arc.nasa.gov/java/
1w simthetiq.com

108

worldwind.arc.nasa.gov/java/
www.simthetiq.com

C.2. Additional technologies and data sources

Price $2000USD/piece

License redistribution with software

Compatibility CryEngine, Unity 3, OgreEngine, Unreal Engine 3, VBS2,
OSG, Source Engine

17

UnityFS. Unity Flight Simulator '¥ is an asset for Unity engine enabling
detailed simulation of piloting of an aircraft. Out of the box are available
aircrafts to be piloted, but the main feature of this engine is the addition of
custom aircrafts without any coding.

This asset could be used as an option to let real pilots control simulated
aircrafts, but besides that, it has no other application in our case.

Type Unity engine asset (C#)

Contents aircraft simulation model, 1000 aircrafts
Activity last version (1.04) from February 27, 2014
Price $75USD

License per seat

Compatibility Unity 3.5+ (Guaranteed Unity 5)

BlueSkies. BlueSkies |'’| is Unity engine plugin that allows easy import
of clouds, fog, wind and precipitation combined with light effects. It also
provides accurate star map along with the correct movement of Earth and
moon relative to the sun.

Results presented on the official page have somewhat questionable qual-
ity, and it could be considered inferior to solutions presented later in this
document.

Type Unity engine plugin (C#)

Contents volumetric clouds, fog, wind, lighting, precipitation
Activity Alive at February 2016

Price $2000USD

License per project

Compatibility Unity 5

Sundog Triton. The Triton [V is software development kit for adding water

surface effects and ocean effects into scenes that run either on OpenGL or
DirectX.

Allows easy integration in any C++/C# project thanks to pre-compiled
libraries and API. This suggests easy integration into any chosen solution,
and thus we can conclude this feature as taken care of.

17
1

www.simthetiqestore.com/licences.php

8unityfs.chris—cheetham.com

Yagilesrc.com/blueskies
20sundog-soft.com/sds/features/ocean-and-water-rendering-with-triton/

109

www.simthetiqestore.com/licences.php
unityfs.chris-cheetham.com
agilesrc.com/blueskies
sundog-soft.com/sds/features/ocean-and-water-rendering-with-triton/

C. Considered technology

Type SDK for OGL and DirectX (C++)

Contents ocean effects

Activity active 3. June 2016

Price $2500USD ($3500USD with source code)

License per project

Compatibility Windows, MacOS, Linux, OpenGL 2.0, OpenGL 3.2+, Di-
rectX9, DirectX11, integration built-in for osgEarth

Sundog Silverlining sky. Silverlining sky [°! is software development kit for
adding atmospheric effects in scenes. It not only manages clouds and fog but
also night sky with the accurate movement of sun, moon, and stars.

Allows easy integration in any C++/C# project thanks to pre-compiled
libraries and API. This suggests easy integration into any chosen solution,
and thus we can conclude this feature as taken care of.

Type SDK for OGL and DirectX (C++)

Contents atmospheric effects

Activity active 3. June 2016

Price $2500USD ($3500USD with source code)

License per project

Compatibility Windows, MacOS, Linux, OpenGL 2.0, OpenGL 3.2+, Di-
rectX9, DirectX11, integration built-in for osgEarth

Trian3DBuilder. Trian3DBuilder %2 is an editor for generation of virtual
worlds. It allows to generate a database of objects and surfaces within a
virtual world and export it in formats compatible with OSG and VBS2.

Since our terrain is mostly generated from real-world data, and we want to
keep it that way, this tool is out of the question.

Type world generation tool
Contents visual editor
Activity alive July 7. 2016
Price unavailable

License per seat
Compatibility OSG, VBS2

FullTerrain. FullTerrain *°|is environment upgrade pack for Prepar3D and

FSX (Microsoft Flight Simulator X). It consists of global Earth data pack
and numerous expansions for countries and airports.

The main issue with this pack is that it is only available in a closed format
as ere installer, and thus it cannot be used without a support provided by
the author.

21!
22

sundog-soft.com/sds/features/real-time-3d-clouds/
www.triangraphics.de/7q=en/produkte/Trian3d-Builder
#¥fullterrain.com

110

sundog-soft.com/sds/features/real-time-3d-clouds/
www.triangraphics.de/?q=en/produkte/Trian3d-Builder
fullterrain.com

C.2. Additional technologies and data sources

Type environment library

Contents real world environment model

Activity alive July 5. 2016

Price $1900USD for basic Earth

License commercial end user (redistribution not listed)
Compatibility Prepar3D, FSX

Terra Vista. Terra Vista |[*4|is terrain generation tool with integrated viewer
and export to various engines, from which only notable ones are VBS. VBS
solution was rejected, and thus this tool is out of the question as well.

Type generator

Contents terrain generation tool
Activity unknown

Price not listed

License not listed
Compatibility VBS2, VBS3

Zyww . presagis.com/products_services/products/modeling-simulation/content_

creation/terra_vista/

111

www.presagis.com/products_services/products/modeling-simulation/content_creation/terra_vista/
www.presagis.com/products_services/products/modeling-simulation/content_creation/terra_vista/

	Introduction
	Motivation
	Structure of this thesis

	Background
	The current system
	General requirements
	Functional requirements
	Expected use cases
	Large scale Earth
	Small scale Earth
	Controller view

	Related work

	Scalable Earth surface representation
	Quad tree
	Indexing

	Elevation
	Format
	Sources
	Query

	Imagery
	Format
	Sources
	Sentinel 2

	Mesh
	Generation
	Decimation
	Stitches

	Rendering Earth surface
	Spatial precision
	Double precision matrices
	Dynamic center method
	Fixed grid center
	The selected option

	Slice construction
	Visual fidelity model
	Algorithm base
	Algorithm extension
	Desirability heuristic
	Adjacency enforcement
	View frustum culling
	Occlusion culling

	Load balancing
	Data transfer
	Fidelity settings
	Memory limits

	Controls
	Pan
	Zoom
	Look around
	Inspection point

	Implementation
	Technology
	Engine organization
	Render passes
	Dynamic shaders
	Render batching
	Integration
	Scenarios
	Earth layer provider
	ATC view

	Results
	Missing features
	Known issues
	Generator performance
	Earth viewing performance
	Fixed quality
	Comparative

	Conclusion
	Future plans

	Bibliography
	CD contents
	Files
	Distribution
	Data
	Execution
	Controls
	Outputs

	Measurement details
	Tile generator performance
	Earth viewing performance
	Tested computer

	Considered technology
	Engines
	Additional technologies and data sources

