Master’s Thesis

Czech

Technical
University
in Prague

F 3 Faculty of Electrical Engineering

Department of Computer Science

Performance analysis of a
master-key system solver

Martin Horenovsky
Open Informatics — Artificial Intelligence

horenmar@fel.cvut.cz

Jan 2018

Supervisor: Radomir Cernoch, MSc.

Acknowledgement

I would like to thank my supervisor for
guidance given through the year I spent
working on this, my friends for being
(mostly) willing listeners when I ran into
problems, and for their help with proof-
reading this text. I also want to thank
my puppy for not trying to eat this the-
sis once it was printed out.

/ Declaration

I hereby declare that I have done this
work on my own and I declared all used
sources according to “Metodicky pokyn
o dodrzovani etickych principa pri
pripravé vysokoskolskych zavérecnych
praci”.

Prohlasuji, ze jsem pfredlozenou praci
vypracoval samostatné a ze jsem uvedl
veskeré pouzité informacni zdroje v sou-
ladu s Metodickym pokynem o dodr-
zovani etickych principt pri pripravé
vysokoskolskych zavérecnych praci.

Abstrakt

Tato prace popisuje existujici resi¢ sys-
tému generalniho klice vyvinuty na ka-
tedie pocitact, FEL, CVUT, ktery je za-
lozeny na problému SAT. Price posky-
tuje prehled, jak se systém generdlniho
klice prevadi na problém SAT, jaké jsou
primarni faktory ovliviujici velikost vy-
sledného problému SAT a jaké optima-
lizace smérované na zmenseni této veli-
kosti byly v Tesici jiz implementovany.

Nasledné navrhuje nékolik zmén zpu-
sobu, jakym je systém generalniho klice
prevadén na SAT, a nékolik praktickych
optimalizaci, napriklad pouziti domé-
nové zavislych znalosti k poskytovani
implementace MiniSatu za ucelem jeho
zrychleni. Daéle je zkoumaéna rychlost
rozdilnych tesich SATu na formulich
generovanych katedernim resicem.

Vsechny navrzené zmény jsou vyhod-
noceny za pouziti realnych zakazek
na vyrobu systémi generalniho klice,
které byly poskytnuty Kkatedernimi
pramyslovymi partnery. Tyto zmény
také umoznily vyresit dosud nevyreseny
systém.

Na =zakladé namérenych vysledki je
nakonec navrzeno nékolik dalsich sméri
pro navazujici vyzkum a praci.

Klicova slova: Systém generalniho klice,
mechanické klice, mechanické zamky,
splnitelnost logickych formuli, SAT

Preklad titulu: Analyza vykonu fesice
systému generdlniho klice a hlavnich

/v o

kli¢a

/ Abstract

This thesis describes an existing SAT-
based master-key system solver devel-
oped at Department of Computer Sci-
ence, FEE, CTU, providing an overview
of how the solver converts a master-key
system to SAT, what are the main fac-
tors affecting the size of the resulting
SAT problem and what optimizations
towards reducing the size have already
been implemented.

It then proposes several changes to how
the master-key system is converted to
SAT, along with practical optimiza-
tions, such as using domain-specific
knowledge to provide suggestions to the
underlying SAT solver, or modifying
MiniSat’s internals to speed it up. The
performance of different SAT solvers
on computer-generated problems is also
investigated.

All suggested changes are evaluated us-
ing a set of real-world inputs provided
by the department’s industrial partners
resulting, among other things, in the
modified algorithm finding a solution to
a previously unsolved problem.

Finally, several areas of possible follow-
up work are suggested based on the
benchmarking results.

Keywords: Master-key system, mechan-
ical keys, mechanical locks, boolean sat-
isfiability programming, SAT

Contents

1 Introduction 1
1.1 Mechanical locks and keys....... 1
1.2 Master-key systems 3

1.2.1 Lock-charts................. 3

1.2.2 Keyway profiles 4
1.3 Boolean Satisfiability prob-

lem (SAT) ..., 4
1.4 CDCL SAT solvers............... 5

141 CDCL ..cooiiiiiiii 6

1.4.2 Decision variables.......... 6

1.5 Local search based SAT solvers ..7
2 Description of a master-key

probleml 8
2.1 Customer provided lock-chart ...8
2.2 Platform geometry............... 9

2.2.1 General constraints
(gecons) 9
2.2.2 Ezistential constraints
(excons)ccoovvunn.. 10
2.2.3 KeyDiff constraints...... 10
2.2.4 KeyDepthLockDepth
MapPPIngsoveeenennnn.. 10

2.3 Solving a master-key system .. 11
2.3.1 Encoding physical

properties 12
2.3.2 Encoding desired prop-

erties ...l 13
2.3.3 Adding constraints....... 13
2.3.4 KeyDepthLockDepth

Mappingseveeeneen.. 15
2.3.5 Summary 16

2.4 Optimizations already

present in the compiler 17
2.4.1 Simplifying lock defini-

tions ... 17

2.4.2 Using implication in
defining “stand-in”

variables.................. 18

3 Optimizing the conversion to
SAT ... 19

3.1 Implication vs equivalence in
variable definition.............. 19

3.2 Different ways of formulating
KeyDiff constraints............ 19

3.2.1 Generalization of the
old scheme 20

3.2.2 “Direct” definition
scheme....................
3.3 Reducing the number of de-
cision variables
3.4 Reformulating profile posi-
TIONS .« .o
3.4.1 New profile formulation .
3.5 Summary ...,
4 Optimizing compiler internals ...
4.1 Hinting assignments of vari-
ables ...
4.1.1 Applying key shape hint .
4.2 Memory consumption and
SAT variable storage...........
4.3 Different SAT solvers..........
4.3.1 Reasons for the chosen
VErSionS......oovevnennnn..
4.3.2 Unified SAT solver API .
4.4 Changing MiniSat’s imple-
mentation of 1bool
5 Results
5.1 Benchmarking setup
5.2 Settings and configurations.. ..
5.2.1 Configuration names.....
5.3 Inputs ...
5.3.1 Platform description.....
5.4 Evaluation methodology.......
5.5 Benchmark results
5.5.1 Closer look at the ef-
fect of individual set-
tings ..o
5.6 Evaluating changes to Min-
iSat implementation
6 Conclusion
References
A Specification......................
B Fullresults
CGlossarycooovvviiinnnnn..

27
27

28
30

31
31

Chapter].
Introduction

Solving complex master-key systems is a surprisingly unexplored field of study given the
real-world applications of results. The Department of Computer Science, FEE, CTU
has developed a production ready master-key system solver based on work described in
Radomir Cernoch’s doctoral thesis[1].

This thesis investigates the performance characteristics of the SAT-based master-key
system solver, provides overview of the current state of the solver, including how the
master-key system is converted to SAT, what factors affect the size of the resulting SAT
problem and optimizations already implemented by the solver.

Further changes to how the existing solver converts master-key systems into SAT will
be proposed, along with more practical optimizations such as using domain-specific
knowledge to provide advice for the underlying SAT solver. The performance of newer
SAT solvers on our specific problems will also be investigated.

All of these changes and optimizations will be evaluated using a set of non-trivial real-
world inputs provided by our industrial partners and their effects on the department’s
solver run time will be reviewed.

The structure of this thesis is as follows: rest of this chapter provides an introduction
into the working of mechanical locks and SAT solvers, chapter 2 provides a more formal
description for the master-key problem and describes the current state of the depart-
ment’s master-key system solver. Chapters 3 and 4 explain the proposed changes, with
chapter 3 focused on proposed changes in how the problem is converted to SAT and
chapter 4 focused on the more practical optimizations. Chapter 5 explains the bench-
marking methodology and analyzes the results. Finally, chapter 6 provides a conclusion
to this thesis along with outlining a potential areas for further improvements.

To disambiguate our faculty’s master-key system solver from the SAT solver it relies on,
it shall be referred to as “SAT compiler”, or “compiler”, and “solver” shall be reserved
for the underlying SAT solver hereafter.

I 1.1 Mechanical locks and keys

The underlying idea behind mechanical locks and keys is quite old, often dated to the
ancient Egypt and sometimes even further back[2]. Although some places started using
electronic cards and electric locks instead, there is still a large demand for manufacturing
classical keys and locks, as both the mechanical and the electronic approach have their
advantages. Some high-security implementations even use both independently, such as

CLIQ[3).

The idea is that the lock contains a tumbler, a movable part that prevents the lock from
opening. The tumbler is hard to move using lock-picking tools, but a correct key can

1. Introduction

pins
N

lock body /N lock body

shear-line - shear-line

Figure 1.1. Pin tumbler lock schema. Blue and green parts of pins are disconnected by
a cut. Left: Compatible key is inserted, cuts are aligned with the shear line. Right:
Incompatible key is inserted, cuts are not aligned with the shear line.

move it away easily. This design can be implemented in many different ways; even for
various European countries, we find that the key and lock designs differ significantly,
e.g. a different core design for the tumbler is used in the Czech Republic and in the
Scandinavian countries.

The most common and the most well-known lock type in the Czech Republic is the
pin tumbler lock, so named because it contains spring-loaded pins that rest against the
inserted key. Each pin has one or more horizontal cuts that correspond to cuttings on
the key that opens the lock. For a lock to open, cuts of all its pins must align with the
shear line. When a key does not open the lock, one or more of the pins are not aligned
with the shear line. (Figure 1.1)

Modern pin tumbler locks require manufacturing equipment with low degree of me-
chanical tolerances, with the divide between the tumbler and the body of the lock often
being smaller than a single millimeter. A view inside a modern pin tumbler lock is
shown in figure 1.2.

Figure 1.2. Lock for the Mortise door profile. Left: All pins are aligned with the shear
line, when correct key is inserted into the lock. Right: The cylinder can be turned.
© 2003 by Matt Blaze

The specific type of locks, along with the number of pins, the number of possible cutting
depths, manufacturing and security constraints, etc., is called a platform.

I 1.2 Master-key systems

A master-key system is a key-lock system where a single lock can be opened by multiple
keys (and a single key may open multiple locks). These are commonly found in business
buildings, where a typical person should only be able to access their own office, whereas
some selected individuals should be able to open all doors on a floor and perhaps in
the entire building. The most common schema used to specify which keys open which
locks is called a lock-chart.

B 1.2.1 Lock-charts

Lock-charts are a way of encoding arbitrary key opens lock and key does not open lock
(key is blocked in lock) constraints between a set of keys and a set of locks in a master-
key system. The simplest way of visualizing a lock-chart is a full-sized table, such as
the one in figure 1.3. This figure encodes a master-key system with 1 general key G,
2 master keys My and Ms, 8 individual keys K;, 8 master keyed locks L;, and a maison
keyed lock GL, for a total of 11 keys and 9 locks with non-trivial relationships.

G M, M, Ky Ky K3 Ky K5 Kg K7 Kg

i
..
LR

| |

Ly

Figure 1.3. An example of a non-trivial lockchart

A lock-chart is considered solved when all keys and locks are assigned cutting depths,
and the assignments conform to all opens and blocked constraints encoded in the lock-
chart. Obviously this needs more information about the physical properties of keys and
locks than are encoded in the lock-chart, at least the number of positions, and possible
cutting depths at each position, are needed.

In the absence of other constraints, two kinds of lock-charts are proven to be solvable in
polynomial time[l], a “diagonal” lock-chart, i.e. a lock-chart containing only master key
and individual keys (as shown in figure 1.4), and a “key-to-differ” lock-chart, i.e. a lock-
chart containing only individual keys (as shown in figure 1.5).

While a key-to-differ lock-chart is only rarely encountered in practice, diagonal lock-
charts are quite common and are usually solved using the method known as rotating
constant method[4].

The complexity of solving non-trivial kinds of lock-charts, such as the one in figure 1.3,
is currently unknown. In the presence of specific kinds of constraints, solving any type
of lock-chart is proven to be an NP-complete[l] problem.

mk ky ko ks kg ks ki ky ks Ky ks

l1 b
ly 5
I3 l3
ly ly
Is B Is B
Figure 1.4. An example of a diagonal lock- Figure 1.5. An example of a key-to-differ
chart with 5 locks lock-chart with 5 locks

B 1.2.2 Keyway profiles

A keyway is the part of the lock that keys slide into. Generally, these can be cut in
different ways, further disambiguating between different keys. Throughout this work,
these cuts will be referred to as profiles'. Whereas a key with wrong cutting depths
would be unable turn the tumbler inside the lock, a key with an incompatible keyway
profile would not even enter the lock. For obvious reasons, each key and each lock can
only have a single keyway profile.

The relations between profiles are encoded in a profile map. We can represent the
map either as a directed graph, where a key with profile n is compatible with all locks
with profiles that are reachable from node n, i.e. in figure 1.6, a key with profile 0 can
open a lock with any profile, while a key with profile 1 can open locks with profile 1
or 3. An alternative way of representing profile maps can be seen in figure 1.7. This
representation is very similar to a lock-chart, except that instead of showing which key
opens which lock, it shows which key profile is compatible with which lock profile. Our
compiler works with the latter representation.

An example of a real world profile hierarchy can be found in figure 1.8.

CeD o
0 CD .

Ipo
Q Ips .

Figure 1.6. A small profile hierarchy as a Figure 1.7. The same profile hierarchy as
directed graph a profile map

kpo kpy kps kps

B 1.3 Boolean Satisfiability problem (SAT)

Boolean satisfiability problem (SAT) is the problem of deciding whether a formula in
boolean logic is satisfiable, i.e. whether there is at least one interpretation in which the

L Not to be confused with the external profile of a lock, such as the Mortise profile mentioned in figure 1.2.

All-Section Key ;
/I\‘
Multi-Section
Keys
H J K

PODOBDD

c CE E FG G

Figure 1.8. An example of a real-world profile hierarchy. © Allegion plc, 2014

formula evaluates to TRUE. SAT for formulas in conjuctive normal form (CNF) was
the first problem proven to be NP-complete, by Cook[5], and can be used to prove NP-
completeness of other problems, including solving master-key systems with non-trivial
constraints.

SAT solvers are a very active area of research, with frequent competitions! between
different SAT solvers. This means that it is easy to quickly find a high-quality im-
plementation, and that these implementations accept a well-defined input format? for
encoding CNF', making selecting and testing performance of different SAT solvers fairly
easy.

Modern SAT solvers fall into one of 2 groups: Conflict Driven Clause Learning (CDCL)
based solvers, or local search based solvers.

I 1.4 CDCL SAT solvers

CDCL based solvers are an evolution of DPLL[6] (Davis-Putnam-Logemann-Loveland)
based solvers. DPLL algorithm is a complete and sound backtracking search algorithm.
It works by selecting a variable to branch-on?, sets its truth-value and propagates the
truth-value into clauses. All clauses containing a positive literal (a literal that evaluates
to true given the variable’s truth value) of the propagated variable are deleted, and all
occurrences of negative literals are removed from their respective clauses. Whenever
an empty (i.e. unsatisfiable) clause is generated, the algorithm backtracks and tries
different truth-value for variable(s). This is repeated until either all variables are set
without generating an empty clause, or the algorithm has exhausted all possible truth-
value assignments without succeeding.

What separates the DPLL from a naive backtracking algorithm is the usage of 2 sim-
plification rules at each step, propagating unit clauses and eliminating variables that
provably cannot affect the satisfiability of results. This is called pure literal elimina-
tion and happens whenever all occurrences of a variable have the same polarity. All
clauses containing such variable can be trivially satisfied and thus do not provide further
constraints on the satisfiability.

Unit clauses are clauses with only one unassigned literal. The only way to satisfy
such clause is to assign the corresponding variable truth-value equal to the polarity of

http://satcompetition.org/

http://www.satcompetition.org/2009/format-benchmarks2009.html

There are many different strategies and heuristics for the selection, but they are unimportant for this
work.

http://satcompetition.org/
http://www.satcompetition.org/2009/format-benchmarks2009.html

the unassigned literal. This assignment can then be propagated in the same way as
assignments done by the core backtracking loop of DPLL, including repeatedly propa-
gating newly found unit clauses and removing pure literals. This process is called unit
propagation.

B 141 CDCL

CDCL algorithm modifies how the DPLL algorithm backtracks. While DPLL back-
tracks chronologically, i.e. if both potential assignments of a variable lead to empty
clauses, it then attempts to change assignment of the previously chosen variable, CDCL
backtracks non-chronologically.

Specifically, when a CDCL based solver runs into a conflict (a variable would have to be
assigned both TRUE and FALSE based on unit propagation®), it analyses the conflict,
the clauses that caused it, and attempts to generate a conflict clause. This new clause
is added to the portfolio of clauses, potentially? providing the solver with a clause that
leads to conflicts quickly and allows the solver to backtrack (backjump) over multiple
clauses.

CDCL solvers became widespread with MiniSat[7], an open source implementation of
a state-of-the-art (as of 2003) SAT solver. MiniSat has shown that it is possible to im-
plement a state-of-the-art SAT solver within a fairly minimal amount of code, and has
been used as the basis for many newer experimental SAT solvers, such as Glucose[8].
Glucose innovates by keeping only certain kinds of learnt clauses and aggressively delet-
ing other ones, thus accelerating unit propagation, which would otherwise be slowed
down by superfluous clauses.

B 1.4.2 Decision variables

Naive conversion of a logic formula into CNF, using De Morgan laws and distributivity,
can easily create a formula with exponential size. A typical example is converting
a formula in a disjunctive normal form (DNF), e.g. (zg A x1) V (22 A 23) V (24 V x5)
is converted into six ternary clauses. In general case, a naive conversion of logical
formula f consisting of N clauses in DNF would produce] [cl| clauses of N literals.

To prevent this explosion in the size of a formula, a more efficient way of converting
a formula into CNF can be used, i.e. Tseitin transformation[9]. These transformations
introduce additional variables to the formula and the resulting CNF formula is not
equivalent, but rather only equisatisfiable.

This means that in real-world problems, it is common for a problem to contain both
“real” variables, that represent some truth about the actual problem, and “stand-in”
variables, that were created in order to efficiently convert the original formulation into
CNF. As an example, if we use SAT solver to find factors of a number, we would need
to encode the working of binary multiplication circuits into CNF, but only the variables
that represent inputs to the multiplication circuits need to be set as decision variables,
all other variables will be inferred.

This can be exploited by the SAT solver when deciding which literal to branch on next,
allowing it to branch on the “real” variables instead of the ones that stand-in for specific

This is functionally equivalent to generating an empty clause, but can be detected somewhat earlier in
practice.

In practice, most of the generated clauses are useless and selecting helpful ones to keep is an active area
of research.

assignment of other variables. Branching only on “real” variables does not necessarily
have to be beneficial, because it limits the solver’s exploration and thus the kind of
clauses it can learn from conflicts. It also means that “non-decision” variables are set
only if their value is inferred, e.g. by unit propagation. Soundness of a solution can
be compromised in cases where the conflict would arise between non-decision variables
that will not be inferred from values of decision-variables. If we mark decision variables
x; and non-decision variables y;, then (1.1) shows an example of unsatisfiable CNF
formula that the SAT solver will decide to be satisfiable.

(o V1) A(—x0V-ox) A(Vyo Vi) A (o Vyr) Alyo V=) A=y V) (L.1)

I 1.5 Local search based SAT solvers

Unlike CDCL based solvers, SAT solvers using local search are not necessarily com-
plete, i.e. they might not find an existing solution, but can quickly provide solutions to
large problems. In general, local-search based SAT solvers work by assigning a random
truth-value to each variable and checking whether such assignment satisfies all clauses.
If it does, the solver marks the formula as satisfiable and returns the current assign-
ment. If the current assignment does not satisfy all clauses, then a variable needs to be
flipped and the new assignment checked again. This process repeats until all clauses
are satisfied, or some predetermined amount of time has elapsed, as termination is not
guaranteed and the algorithms are not complete.

Two notable implementations of local-search based SAT solvers are WalkSat[10] and
GSat[11]. GSat selects the variable to flip by determining how many clauses would
be unsatisfied after the flip, and picking the variable that leads to the least number
of unsatisfied clauses after flipping. To avoid being stuck in a local-minima, a ran-
dom variable can also be selected with some probability. WalkSat picks an unsatisfied
clause at random, and selects a variable that minimizes the number of newly unsatisfied
clauses. Just as GSat, it can pick a random variable to flip in an attempt to escape
local-minima.

Chapter 2
Description of a master-key problem

The input to our department’s master-key solver consists of 2 parts:

s Customer provided lock-chart
m Description of platform geometry

The description of platform geometry can further be broken down into 3 parts:

m Description of cutting depths
m Fuxistential, General and KeyDiff constraints
m KeyDepthLockDepth mappings

Various platform-specific constraints are translated into these in a preprocessing step
that is not part of the solver itself.

I 2.1 Customer provided lock-chart

Each master-key problem must contain a lock-chart providing

m set K of all keys in the master-key system,

m set L of all locks in the master-key system,

s function opens : K — { lock | lock is opened by key K},
m function openedBy : L — { key | key opens lock L}.

A lock-chart is always specific to one master-key system and thus is expected to change
between problems.

If we take the example lock-chart from 1.3, then the above takes these concrete values

K =1{0,1,2,...,10}
L=1{0,1,2,....8}
opens(0) = {0,1,...,8}
opens(1l) = {0,1,2,3,8} (2.1)
(4,5,...,8)
{0, 8}

opens(3

(

(1)
opens(2)

(3)

Notice that when describing master-key problem, they keys and locks are no longer
named, only numbered.

I 2.2 Platform geometry
Platform geometry is a septuple consisting of:

m A depth tuple

m A set of general constraints

m A set of existential constraints

m A set of KeyDiff constraints

m Two functions to provide KeyDepthLockDepth mappings

® A set defining which positions in the depth tuple represent keyway profiles

For later reference, we also define set P as the set of all possible positions and set D as
the set of all possible depths.

The depth tupleis a p-tuple of natural numbers (ng, n1, ..., np—1), where n; is the maximal
cutting depth at position 7. The set of possible cutting depths for position ¢ is assumed
to be a set of natural numbers, {0,1,2,...,n;}. If any of these cutting depths needs to
be forbidden, it can be done using a general constraint.

This means that a depth tuple (2, 2, 2, 2) specifies maximal cutting depths for 4 posi-
tions, each of which can be cut to depth 0, 1 or 2. It also defines set P as {0,1,2,3}
and set D as {0, 1,2}.

If the given platform contains keyway profiles, they are transformed into new cutting
position(s), called profile position(s), and the profile maps (similar to lock-chart, but for
profiles) are encoded into KeyDepthLockDepth functions, as explained later. This often
leads to an “un-even” geometry, with the last couple of positions having significantly
different maximal cutting depth from the other ones. As an example that illustrates the
typical size of the problem, a real-world platform that uses profile positions may have
a depth tuple of (8, 8, 8, 8, 8, 8, 60), with the last position being the profile position.

Geometry description can be expected to remain the same across many inputs, because
each platform is designed to service a large number of customer requests.

B 2.2.1 General constraints (gecons)

In the context of this thesis, a gecon is the same as defined in Radomir Cernoch’s
doctoral thesis[1], but using a different, more compact, representation.

One gecon is an ordered tuple of (Position, Depth) pairs that are forbidden from ap-
pearing in a cutting. A key whose cutting does not match all of the gecon’s constituent
(Position, Depth) pairs is allowed. As an example, gecon ((0, 2), (1, 3), (2, 4)) forbids
a key cutting of (2, 3, 4), but allows any of (1, 3, 4), (2, 2, 4), (2, 3, 3).

An example of constraint that gets preprocessed into a set of gecon constraints is the
so-called jump. A jump of 3 means that cuttings at two neighbouring positions in a key
cannot have depth difference larger than 3. For example, assuming a very simple depth
tuple of (5, 5), the result of such preprocessing is a set of 6 gecons shown in table 2.1.

((0,0),(1,4)) ((0,0),(1,5)) ((0,1),(1,5))
((0,4),(1,0)) ((0,5),(1,0)) ((0,5),(1,1))

Table 2.1. Example results of processing jump constraint into gecons

2. Description of a master-key problem

In the general case, a jump is translated into a polynomial number of gecons as seen
in (2.2)*

<2-(Zd—j—i)+<d—2j)-<d—2j—1>>‘<p—1> (2.2)

In the solver itself, a gecon can either apply to any key/lock, or a specific key/lock.
This can be used for e.g. disabling a cutting for the master key, but leaving it enabled
for the individual keys.

B 2.2.2 Existential constraints (excons)

An ezistential constraint (excon) serves to constrain cutting depths occurring in a key
on any position. An excon is an n-tuple of cutting depths, at least one of which has
to be present in the key for it to satisfy the constraint. For example, excon (1,3) is
satisfied by all of these cuttings: (1, 1, 1), (2, 2, 3) and (1, 3, 1), but is not satisfied by
cutting (0, 2, 4), because neither 1 nor 3 is contained in the cutting.

One of the requirements that are easily convertible into excons is a requirement on the
minimum difference between the deepest and the shallowest cutting depth in a key.
This is done to prevent keys that are too “straight” and would cause locks to open with
all pins in a single plane.

As an example, if possible cutting depths of keys are 1-6 and the manufacturer require-
ment is that the difference is at least 2, 5 excons are generated: (3, 4, 5, 6), (1, 4, 5, 6),
(1,2, 5, 6), (1, 2, 3, 6), (1, 2, 3, 4).

B 2.2.3 KeyDiff constraints

KeyDiff constraint is a triplet (ki, ko, n), that defines the amount of differentiation
between keys k; and ko, to n. Specifically, it constraints how many positions can the
cutting of two keys differ at, e.g. (1,1, 1, 1, 2) and (1, 1, 1, 99, 2) would have a KeyDiff
of 1, as they differ at only one position and the size of the individual difference does
not matter.

There are two kinds of KeyDiff constraints, MinKeyDiff and MaxKeyDiff. A MinKeyD-
iff sets the minimum difference? and MaxKeyDiff sets the maximum difference between
a pair of keys. An alternative way of looking at things is that MaxKeyDiff of m sets the
minimum number of positions that have to match between a pair of keys to |P| — m.

B 2.2.4 KeyDepthLockDepth mappings
The KeyDepthLockDepth mappings are 2 functions

m blocked : P x D — {{depths},{depths},...},
m implies : P x D — {{depths},{depths},...}

There is a mistake in Radomir Cernoch’s thesis stating that it is % * jump * (jump+ 1) * (p — 1), but that
is an obvious oversight, as it would mean that the amount of generated constraints does not depend on
the platform geometry depths.

Note that the problem structure implies that the difference between two keys with different opens has a
MinKeyDiff of at least 1.

10

that map key’s cutting depth d at position p onto a set of sets of cutting depths for the
same position in a lock.

One possible way of looking at KeyDepthLockDepth mappings is that they return a set
of corresponding “superpositions” in lock to a (position, depth) pair in key, where the
superpositions are arbitrary combinations of depths. The meaning of the implies map-
ping is that for the key to open lock at given position, at least one of the superpositions
must be cut inside the lock. A superposition is considered cut when all of its constituent
depths are cut.

Because blocking is, by definition, the negation of opening, the meaning of the blocking
mapping is that none of the superpositions can be cut inside the lock for a key to be
blocked in the lock. A superposition is not cut when at least one of its constituent
depths is not cut.

KeyDepthLockDepth mappings often serve to encode profiles at a position. As an ex-
ample, the profile map in 1.6 would be encoded into KeyDepthLockDepth mappings as
seen in (2.3).

implies(p,0) = blocked(p,0) = {{0},{1},{2},{3}}
implies(p,1) = blocked(p, 1) = { {1}, {3}} (2.3)
implies(p,2) = blocked(p,2) = { {2},{3}}
implies(p, 3) = blocked(p,3) = { {3}}

In the basic physical model of keys and locks, each (position, depth) pair cut in a key
requires the exact same (position, depth) pair to be cut in a lock for it to open. This is
equivalent with the semantics of defining both KeyDepthLockDepth mappings to return
{{d}} for given (position, depth) pair. This means that, for the sake of simplicity, it
suffices to provide KeyDepthLockDepth mappings only when they are non-trivial. With
that in mind, we define “Profile positions” as the set of all positions for which an implies
mapping has been provided.!

I 2.3 Solving a master-key system

To solve a master-key system, the compiler converts it into a CNF that can be given to
a SAT solver. To simplify potential cross-referencing, I will be using the same notation
as Radomir Cernoch’s thesis[1], where possible, and attempt to keep new notation
similar.

Because the original problem domain is naturally discrete, converting the Master-key
specification into SAT can be done in a fairly straightforward manner, though different
formulations might have different advantages and disadvantages, which we discuss in
later chapters.

When converting a master-key system into SAT, we can roughly split the process into
3 parts:

m Encoding the physical properties

Theoretically an input could require implies mapping for positions that are not transformed profiles, but
we have not come across such an input yet.

11

[un

m Encoding the desired properties
m Encoding the constraints on the solution

The physical properties of a system define locks and keys and their basic properties,
such as that a key can be cut to only one depth at given position. The desired properties
define relationships between locks and keys, e.g. the fact that key 1 should open every
lock. Finally, the constraints can forbid certain solutions, e.g. to prevent repeated
generation of an existing system, or to avoid systems that could not be manufactured
because of tolerances involved in manufacturing the system.

The distinction between these is not always completely clear-cut.

B 2.3.1 Encoding physical properties

To define physical properties of keys, a total of |K| % p x d variables has to be created,
one for each depth, each position and each key. A variable for position p, depth d and
key k is denoted as key]’; d-

To encode that each position in a key must have exactly 1 cutting depth, we create
a number of clauses. First, we force at least one cutting depth for each position by
adding |K| * p clauses:

\/ key;f’d (2.4)

deD
Then, we enforce at most 1 cutting depth for each position by adding |K| * p * @
clauses:
k k
/\ k:eypdl = ﬁk‘eypm (2.5)
di,d2€D, di<d2
or, as CNF:
k k
/\ —keyy 4, V —key, 4, (2.6)

di,d2€D, di1<d>

To define physical properties of locks, a total of |L|* p*d variables needs to be created.
A variable for position p, depth d and lock [is denoted as lock‘éyd. Unlike keys, locks
can have an arbitrary number of cuttings per position, so it is enough to enforce! at
least 1 cutting depth per position, by adding |L| * p clauses:

\/ lock,gd (2.7)

deD

The above is not sufficient when a platform differentiates between key profiles, because
at profile positions, locks can also have at most 1 cutting depth. In this case, we have
to add further clauses per each profile position and lock:

l l
/\ —lock, 4, V —lock,, 4, (2.8)
di,d2€D,d1<d2

Note that under certain circumstances, even these clauses can be omitted. This will be further explained
later on.

12

B 2.3.2 Encoding desired properties
Essentially, there are 2 desired properties in a master-key system:

m Keys open certain locks
s Keys do not open (are blocked in) other locks

Because a key opens a lock when the cutting of the key allows for the pin in the lock
to clear the shear line, translation to our SAT model is simple:

/\ key;f’d = lockéyd (2.9)
peP,deD
or, in CNF:
/\ ﬁk:ey]’;’d \Y lockjl,’d (2.10)
pePdeD

This definition allows for cutting depths in locks that are not matched to any key, which
is undesirable as each extra cutting increases manufacturing costs and decreases lock
security. However, once a solution is found, superfluous cuts in locks can be removed
in polynomial time by checking all keys that open given lock for their cutting depths
at given position.

For a key to be blocked in a lock, their cutting must differ in at least one position. This
can also be written down in a straightforward manner, as seen in (2.11).

\/ (key;f’d A ﬂlocké,d) (2.11)
pEP,deD

However, a straightforward conversion of this formulation into CNF results in 27 clauses

of length P. Instead, let us declare a new variable, blocking;f’é, as seen in (2.12),

k‘ey]],f’d A —|lock:£,7d = bloc/@;f”fi (2.12)

for each blocked key-lock pair and each position. Then we can define one blocking
clause for each key-lock pair as seen in (2.13).

\/ blocky, (2.13)

peP,deD

Some key manufacturers prefer a key to be blocked in lock via multiple positions, for
added security and increased manufacturing tolerance. This can be done using the
same idea that is described in section 3.2.1 for MinKeyDiff constraints, but replacing
comp_total variables with blocking variables for given key and lock pair.

B 2.3.3 Adding constraints
There are three ways to introduce a constraint on the solution into the solver:

m gecons
m excons
s KeyDiff constraints

13

A gecon can be translated in a straightforward manner, whereas excons and KeyDiff
constraints require introducing additional variables.

A gecon can apply to either all keys, all locks, single key or a single lock. For simplicity,
we can consider gecon that applies to all keys the same as | K| gecons one for each key,
and similarly a gecon for all locks is equal with |L| constraints, one for each lock. This
means that we only need to translate the latter two kinds of gecons into SAT.

Each gecon creates a single clause. Given a gecon for key k, it is as follows:

\/ keyh, (2.14)

(p,d)€gecon

As an example, converting one of the gecons from section 2.2.1, specifically
((0,0),(1,5)), for key 3 generates this clause:

—key&o Y ﬁkeyi’é (2.15)

A gecon for a lock is converted in the same manner, with the difference that it applies
to a set of lock instead:
\/ —lockf, (2.16)

(p,d)egecon

The straightforward way of converting excon to SAT is to create clause over key variables
for all positions and all depths contained in the excon, as shown in figure (2.17).

V V keysy (2.17)

p€eP deexcon

This leads to | K| clauses of length |excon|-|P| per each excon constraint. However, our
compiler instead uses a different translation. First, we define a new variable shape’j,
that is true if key k is cut to depth d in any position and false otherwise, as seen
in figure (2.18). Using these variables, we can translate excon constraint as seen in
figure (2.19).

shapel; \/ keyg,d (2.18)
peP
\/ shape”; (2.19)
d€excon

This approach leads to approximately® |K|-|D| new variables, |K|-|D| clauses of length
|P| and |K|-|D]-|P| binary clauses to define these variables, and | K| clauses of length
|excon| to translate each excon.

At first glance, using the second translation of excons might appear inefficient, but
there are a couple factors in its favour:

m The shape variables and their assorted clauses are defined once and can be reused for
each excons constraint.

L The compiler defines variables lazily, so if a shape variable would not be required, it is not defined.

14

s Handling of binary clauses in modern SAT solvers is very efficient.

The way shape variables are defined can also be optimized further, as will be covered
in section 2.4.

To define KeyDiff, more helper variables need to be defined, namely comp’;c}b, as shown
in (2.20) and comp_totali'*, as shown in (2.21).

compﬁ’lg’ll€2 = (keyﬁ}d = keyl;fd) (2.20)
d

comp,total];“k2 = \/—|compl;§y1i’l62 (2.21)
=0

k2

Using these definitions, comp,total;fl’ is true when keys k; and ko have different depth

cut on position p. This works because comp’;ffz is true if keys k; and ks either both
have, or both do not have cut in position p at depth d. Note that either all comp®i-*2
variables will be true, or two will be false, because key can only have a single cutting

depth at a given position.

In total, for each pair of keys, p+p-d variables will be defined, using p-d binary clauses,
4 -p-d ternary clauses and p clauses of length d.

Using these variables a MinKeyDiff (ki, k2, 1) is converted into a disjunction over all
comp_total variables for the given key pair, as seen in (2.22).

\/ cormn,total];l’k2 (2.22)
peP

A MinKeyDiff (ki, ko, 2) is converted by reusing conversion for MinKeyDiff with
difference of 1, and adding a set of implications from (2.23).

/\ (comp,total’l;l1 k2 = \/ comp,total’;; k2) (2.23)
p1EP P2EP,p1#p2

This works because the conversion from (2.22) forces at least 1 position to be different.
Then the set of implications from (2.23) mean that if a position differs, then at least
1 more, different, position has to differ between the two keys.

Note that the original compiler only supports MinKeyDiff with a difference of 1 or 2; the
support for other KeyDiff constraints is one of the outcomes of my work. A generalized
schema for both MinKeyDiff and MaxKeyDiff constraints with an arbitrary difference
will be provided in section 3.2.

B 2.3.4 KeyDepthLockDepth mappings

KeyDepthLockDepth mappings change how blocked-in and opens relations between keys
and locks are converted to SAT. To simplify notations in this section, let us define [
as Cartesian product and shorten implies function as i and blocked as b. Let us also
define P; as [[pe;pa) D] and By as [[pey,q) [P]; meaning that P is the number of

15

tuples generated as cartesian product over sets in implies and P, is the same, but for
blocking.

The KeyDepthLockDepth mappings do not add clauses directly, but rather change how
a key opens lock and key blocked in lock relations are encoded. For implies, the formu-
lation in (2.9) is replaced with set of clauses generated in (2.24).

/\ key;f’d = (lock:é,do Y lockzédl V...V locké,dn) (2.24)
(d(J’dl’""d")eHDei(p,d) D

This means that P; clauses with size |i(p,d)| + 1 are created for implies when Key-
DepthLockDepth mappings are used. We can also see that the formulation in (2.9) is
just a special case of KeyDepthLockDepth mapping, that returns a single singular set.

For blocked mapping, the changes are done to how the blocking variables are defined.
The new formulation can be derived by starting with negating (2.24). By applying
De Morgan’s laws, we get (2.25). This is a DNF, which is efficiently converted to CNF
by substituting the inner conjunction for a blocking variables, as shown in (2.26).

\/ (keygd A lock;do AN lock:fa’dn) (2.25)
(do,dl dn)GHDeb(p,d)D

dord)ellpeny oy * DIOCK) = (heyh g A =lockh g A ... A =lockh,) (2.26)

This means that the formulation in (2.12) is replaced by the formulation in (2.26) for
positions and depths that have a KeyDepthLockDepth mapping.

This means that P, blocking variables, P, - (|b(p,d)| + 1) binary clauses and P, clauses
of length |b(p,d)| + 2 are created per each position, depth per key, lock pair that is
blocked. Once again, the formulation in (2.12) can be seen as special case of blocking
KeyDepthLockDepth mapping returning single singular set.

Finally, for positions that originated as keyway profiles we know that the inner sets
returned from KeyDepthLockDepth mappings are always singular. This means that
P, = P, =1 for profile positions.

B 235 Summary

Before trying to summarize the size of resulting CNF input to a SAT solver, we need
to define some auxiliary sets and terms:

m p is the number of positions (the size of depth tuple),

m nd is the number of all possible cutting depths (or X¥_ (d; + 1)),
= no is the number of all (key, lock) pairs that open,

m nb is the number of all (key, lock) pairs that block,

s kp is the number of all different key pairs (or |K||+71|),

16

2.4 Optimizations already present in the compiler

variables clauses
number size
keys |K| - nd |K]-p-% 2
|K|-p di
locks |L| - nd |L|-p d;
converted profiles |L|-p- % 2
opening — no - nd 2
implies mapping — P, li(p,d)| + 1
blocking nb - nd 2-nb-nd 2
nb - nd 3
nb nd
blocked mapping nb - nd - Py(p,d) nb - nd - Py(p,d) - (|b(p,d)| + 1) 2
nb-nd - Py(p,d) |b(p,d)| + 2
gecons — |gecons| - | K]! <p
Excons |K|-d |Excons| - |K| <d
K] - d 1+p
|K|-d-(p+1) 2
comp variables kp-p-d 4-kp-p-d 3
comp_total variables kp-p kp-p-d 2
kp-p d
MinKeyDiff 1 — |[MinKeyDif f]| D
MinKeyDiff 2 — |MinKeyDiff|-(p+1) D

Table 2.2. Summary of the size of CNF generated using simple conversion

Using these terms we can calculate the effect of each part of the conversion on the
size of the resulting CNF, as shown in table 2.2. It is important to note that for large
lock-charts we expect nb > no to hold. Furthermore, given that no+ nb = |K|-|L| by
definition, we also expect nb to approach |K| - |L|.

This means that for sufficiently large systems, the two dominating factors for CNF
size is the implementation of blocking between keys and locks, and defining comp and
comp_total variables for use in implementation of KeyDiff constraints.

I 2.4 Optimizations already present in the compiler

This section gives an overview of existing optimizations in the compiler that make the
resulting CNF smaller, as compared to the naive translation that has been the focus of
this chapter so far.

B 2.4.1 Simplifying lock definitions

In (2.7) we define clauses ensuring that each lock has at least one cutting depth at
each position. However, these can be skipped for each lock that is opened by at least
one key, as the cutting depths in key will force at least one cutting depth in the lock
because of (2.9), otherwise the lock could not be opened by the key.

This saves |L| - p clauses of length d;.

17

B 2.4.2 Using implication in defining “stand-in" variables

The blocking variables in section 2.3.2 are defined as an equivalence, because that is
their formal meaning. This leads to 3 clauses per variable, but 2 binary clauses could
be saved by using implication instead, as shown in (2.27). Logical propagation in this
formulation is different, but the resulting CNF is still equisatisfiable, at least for pure
SAT model.

Providing a full proof would take a considerable amount of paper, but consider this quick
sketch of one of the implications: Assume that we have TRUE/FALSE assignments for
all key and lock variables. If an equivalence-based model is satisfied by such assignment,
then the implication-based model is also satisfied by such assignment. This can be seen
from the fact that the implication-based CNF is a subset of the equivalence-based CNF,
and if a CNF is satisfied, then all of its subsets are also satisfied.

block];’fi = keyﬁd A ﬂlockzl,,d (2.27)

This saves nb - p - nd binary clauses.

Just like blocking variables, the shape variables in section 2.3.3 are defined as an equiv-
alence, because that is their formal meaning, but can be instead defined using an
implication, as shown in (2.28). This saves p binary clauses per shape variable, while
still being equisatisfiable in a pure SAT model.

shapet = \/ keyﬁ’d (2.28)
peP

18

Chapter 3
Optimizing the conversion to SAT

This chapter goes over various details of the conversion to SAT presented in the previous
chapter and optimization opportunities they present. Namely, the opportunities consist
of

m switching between defining blocking variables using implication or equivalence,

m switching between defining shape variables using implication or equivalence,

m different ways of defining opens and blocks for profile positions,

® using the concept of decision variables to guide the problem space exploration per-
formed by the SAT solver,

m different ways of implementing KeyDiff constraints.

The chapter does not concern itself with more practical concerns, such as choice of the
SAT solver, efficient in-memory representation of the input, nor speed-ups gained from
improving the implementation of either our compiler, or the underlying SAT solver.
These concerns are left to chapter 4.

I 3.1 Implication vs equivalence in variable definition

Although it was mentioned in section 2.4 as an optimization, the practical effect of
defining blocking and shape variables as an implication, instead of as an equivalence,
is not so clear-cut.

In practice, a larger number of clauses can allow the SAT solver to find conflicts quicker,
or derive better learnt clauses. Having more short clauses also speeds up unit propaga-
tion, especially when the clauses are binary. Because removing the second implication
in definitions of blocking and shape variables removes only binary clauses, it might be
beneficial to keep them in the resulting CNF.

As both blocking and shape variables can use either model independently, there are
4 different configurations to test:

m both blocking and shape variables are defined using equivalences,
m blocking variables are defined using equivalences, shape variables using implications,
m blocking variables are defined using implications, shape variables using equivalences,
m both blocking and shape variables are defined using implications.

I 3.2 Different ways of formulating KeyDiff
constraints

As mentioned in 2.3.3, the compiler used to only implement converting the MinKeyDiff
variant of KeyDiff constraint, with possible differences limited to 1 or 2. This section

19

describes a generalized scheme for arbitrary differences, a different scheme for arbitrary
differences and how they apply to MaxKeyDiff constraints. The SAT compiler uses the
same scheme for converting both MinKeyDiff and MaxKeyDiff constraints, leading to
2 configurations to test.

B 3.2.1 Generalization of the old scheme

The original scheme builds up clauses for difference 2, by reusing the clause for differ-
ence 1 to force at least 1 position to differ, and then adding an implication for each
position saying that if this position differs, then at least one other position has to dif-
fer. With some extra effort, this recursive scheme can be generalized to work for an
arbitrary difference between two keys.

To enforce a MinKeyDiff (ki, ko, n), we need to enforce a MinKeyDiff (k1, ko, n — 1)
and then create a new set of implications, as seen in (3.1).

/\ (/\ comp,totallgj’kz) = (\/ comp,total]’;;’k?) (3.1)
seleselect K (Pn—1) pi€sel pj¢sel

where selectK(S, K) is a function that returns all K-combinations of items from set
S. For MinKeyDiff (k1, ko, 1), a disjunction of all comp_total variables is generated,
as shown in (2.22).

Enforcing a MazKeyDiff (ki, ks, n) works analogously, but with the logic inverted. The
basic idea is that if two keys are to differ in at most n positions, then |P| —n positions
must be the same. Using this insight, we can enforce a MaxKeyDiff (k1, ko, n) by
enforcing MazKeyDiff (k1, ko, n+ 1) and then a new set of implications is created, as
shown in (3.2).

COmp, ola D = CO’I?’Lp,tOlfa D .
t t l ! ,k Z ; ,k :; 2
SElESEleCtK(P,IP‘—TL—l) piesel Pj ¢sel

The base case in the recursive definition of MazKeyDiff constraints is MazKeyDiff (kq,
ko, |P| — 1), defined as shown in (3.3).

\/ —|comp,total’;1’]€2 (3.3)
peP

Given a MinKeyDiff (ki, ks, n), this scheme leads to)} (\PI) clauses of size | P|. Given

2

a MaxKeyDiff (k1, ko, n), this scheme leads to Z?:‘PHAL (“;') clauses of size |P| as well.

This scheme was expected to perform well in cases where a customer would prefer a
stricter KeyDiff constraints, but would accept a solution for less strict one, e.g. a cus-
tomer wants MinKeyDiff between two keys to be 2, but is willing to accept a solution
with MinKeyDiff 1. There are two ways to implement this, either to compile the prob-
lem with MinKeyDiff 2 and if the SAT solver finds no solution, compile the problem
with MinKeyDiff 1 and run the solver again, or use incremental solving.

Incremental solving is the process of adding new clauses and variables to a problem
already once solved by a SAT solver. The previous clauses, variables, assignments and
inferences are kept between runs, meaning that most of the problem is already solved,
in our case this means that the recursive portion of the KeyDiff constraint is already
present and solved.

20

B 3.2.2 “Direct” definition scheme

The alternative scheme is based on principle that if at least k positions out of n should
differ, then no group of N —k+1 positions can contain only positions that do not differ.
This idea can be straightforwardly converted into CNF using comp_total variables,
i.e. a MinKeyDiff (k1, k2, n) is converted as shown in (3.4).

/\ (\/ comp,totallzfl’h) (3.4)

seleselect K (P,|P|—n+1) p€sel

The same concept applies to conversion of MaxKeyDiff. If k positions out of n should
not differ, then no group of N — K + 1 positions can contain only positions where the
two keys differ. This means that a MazKeyDiff (ki, ko, n) is converted to CNF as shown
in (3.5).

/\ (\/ ﬂcomp,total’;“h) (3.5)

seleselect K (P,|P|—n+1) p€sel

Given KeyDiff (k1, ko, n), this scheme leads to (|P\|—Pn‘+1) clauses of length |P| —n + 1.
This means that at worst, this scheme will generate clauses as long as the generalized
legacy scheme, but will generate shorter clauses for stricter constraints. In fact, for
KeyDiff constraining only a single position, the generated clause will be the same.

This scheme has a very strong advantage in some pathological cases, because a MinKey-
Diff constraint that allows two keys to only have the same cutting at a single position
will only generate % binary clauses, where the generalized version of the original

scheme would generate ZLZ'O_I (“Z.D |) clauses with length |P|. This saves a significant
number of clauses and leads to overall shorter clause length.

Similarly, a highly constraining MaxzKeyDiff constraint, e.g. a MazKeyDiff that allows
two keys to only have different cutting position at a single position, will only generate
w binary clauses.

I 3.3 Reducing the number of decision variables

As mentioned in section 1.4.2, decision variables enable users to give a SAT solver extra
information to guide its selection of variables to branch on.

For our problem, only key and lock variables describe a real, physical, property of
the master-key system, and other variables were created to simplify defining various
constraints and logical properties of the system. This means that only key and lock
variables need to be decision variables, and other variables can be be set as non-decision.

Setting blocking and shape variable as non-decision variables at the same time as defining
them using only implications (shown in section 2.4.2) is unsound and an incorrect
solution may be found. Therefore there are 5 sound combined configurations, as shown
in table 3.1.

21

decision variables blocking definition shape definition sound
all = = Vv
all = = Vv
all = = V4
all — — Vv
key, lock = = X
key, lock = <— X
key, lock = = X
key, lock — — Vv

Table 3.1. Overview of possible configurations when combining decision variables with
implication/equivalence usage in definitions

I 3.4 Reformulating profile positions

Keyway profiles are currently treated as special positions, where keys have Key-
DepthLockDepth mappings and where locks can have at most 1 cutting depth, as seen
in (2.8). This approach is fully compatible with the optimization described in sec-
tion 2.4.1. This section proposes a different way of converting keyway profiles into
CNF clauses.

B 3.4.1 New profile formulation

The new formulation of profile positions is based on the observation that a key can
open a lock only if they have compatible profiles and, inversely, that key is blocked in
a lock if they have incompatible profiles. More formally, let us define two sets, T" and F',
T,F C K x L, where T consists of all (key-, lock-) -profile pairs that open each other,
and F' consists of all (key-, lock-) -profile pairs that are blocked. As an example, taking
the profile map from figure 1.7, we get T" and F' shown in (3.6).

T =1(0,0),(0,1),(0,2),(0,3), (1,1),(1,3),(2,2),(2,3), (3,3) (3.6)
F = (1,0),(1,2), (2,0), (2,1), (3. 1), (3,2), (3,3) '
These definitions mean that |T|+ |F| = d?, where d is the number of profiles at a given
position.

A key k opening a lock [at a profile position p is compiled into SAT as shown in (3.7).

N\ —keyly, v -lockl, (3.7)
(kp,lp)EF

This means that |F'| binary clauses are created for each key, lock pair that open each
other, as opposed to d clauses of varying lengths. We can expect |F| > d to hold,
especially in larger profile maps, where |F| tends to approach d?. However, this refor-
mulation can still be advantageous as SAT solvers handle binary clauses much faster
than longer ones. More importantly, this formulation is not compatible with the opti-
mization in 2.4.1, as it does not force any cutting depths to be selected in the lock for
the profile position.

A seemingly similar observation “a key can open lock only if they have compatible
profile”, formally expressed as shown in (3.8), was neither used, nor tested, as it was

22

deemed likely to worsen performance compared to the old formulation. Converting this
formulation into CNF would either result in up to 2/”! clauses of size |T|, using a naive
approach and distributing the inner conjunctions, or in |T'| new variables and 2-|T| new
ternary clauses. This was deemed likely to worsen the performance, because the old
formulation of opens for profile positions creates d new clauses (d < |T'|) and no new
variables.

\/ keyfy, Alockl, (3.8)
(kp,lp)eT

We can use similar observation, “a key is blocked in a lock if they do not have compatible
profiles”, to reformulate how the block variable is defined at profile positions

block:g’l = /\ ﬁkey]]j’kp Y ﬂlockéykl (3.9)
(kp,lp)eT

Notice that we no longer define a block variable for each depth at position, but rather
a single variable per profile position!. This saves a number of variables equal to the
number of profiles per each blocked key-lock pair. As noted in section 2.3.5, the number
of blocked key-lock pairs approaches |K| - |L| for large master-key systems, making this
potentially significant?.

To properly analyze the resulting CNF clause sizes, we need to decompose the equiva-
lency into 2 implications, shown in (3.10) and (3.11).

block:;f’l = /\ —\k:ey]’;’kp Y ﬁlockéykl (3.10)
(kp,lp)eT

block:];’l = /\ ﬂkey§7kp Y ﬁlockzl)’kl (3.11)
(kp,lp)€T

Converting the implication in (3.10) to CNF leads to |T'| clauses of size 3, as seen
in (3.12). This can be an improvement, because even though the original formulation
leads to simpler, binary, clauses, it creates d + |F| of them, and for large profile maps
it holds that |T'| < |F].

/\ ﬁblocklg’l Y ﬁk:ey;;’kp \Y% —Jock:évlp (3.12)
(kp,lp)eT

Converting the implication in (3.11) to CNF leads to 2!7l clauses with size |T| + 1,
generated as a disjunction of Cartesian product over literals from all binary clauses
on the right-hand side, disjuncted with the blockﬁ’l variable. The conversion could be
made smaller with use of stand-in variables, but doing so would create more variables
than were saved by defining only one block variable per profile position?.

Because of this, this formulation is advantageous when block variables are defined im-
plicatively, but leads to extremely large number of non-trivial clauses otherwise. In

The final blocking clause remains disjunction over all blocking variables for given key, lock pair.

In fact, even for inputs with small number of profiles the number of created literals was cut roughly in
half.

3 Essentially, it would lead back to the old formulation of profile positions.

23

order to use it when block variables are defined using equivalences, we have to make
use of a different observation: “A key is blocked in a lock if they have incompatible
profiles”. Expressed as a logical expression, it leads to the two implications in (3.13)
and (3.14).

block:;f’l:> \/ l-cey;f’kp/\lock:é,kl (3.13)
(kp,lp)EF

block;,f’l¢ \/ k:ey;f’kp/\locké,kl (3.14)
(kp,lp)EF

Converting the implication in (3.14) to CNF leads to |F| clauses with size 3, as shown
in (3.15).

/\ block;f’l v —\keyfg’kp Y —\lockzl,,lp (3.15)
(kp,lp)eF

However, converting the implication in (3.13) to CNF leads once again to 271 clauses
of size |F| 4+ 1, for the same reasons as converting the implication in (3.11). What we
can do is to take the fact that all equivalences in (3.16) hold and use that to define the
block variables as shown in (3.17).

block;;’l — \/ k‘ey;f’kp A lock&kl

(kp,lp)eF
block;f’l = /\ ﬂkeyg)kp \Y% ﬂlockgkl (3.16)
(kp,lp)eT
\/ k:ey;;’kp A lock]lgvkl = /\ ﬁkeyg,kp \Y% ﬁlocké’kl
(kp;lp)eF (kp,lp)eT
/\ ﬁkeygvkp Y ﬁlock]lo,kl = blocklg’l = \/ k‘eyg’kp A lockzl,’kl (3.17)
(kp,lp)eT (kp,lp)EF

This formulation of blocking for profile positions keeps the advantage of defining a single
block variable per profile position, instead of defining a variable per profile. Clause-wise,
it generates |T'| + |F| (or d?) clauses of length 3 when block variables are defined using
equivalence, and thus can be competitive with the old way of converting profile positions
to CNF.

The above can be easily generalized to platforms with multiple profile positions: define
clauses and variables for every profile position separately. The reformulations of opens
and blocks are also independent of each other and thus it is possible to e.g. define opens
using the new formulation, but define blocking using the old formulation.

In case of multiple profile positions it is also possible to use different formulation for
each profile position, but this has not been implemented and tested in this work.

24

I 3.5 Summary

Before summarizing the effect of possible optimizations in master-key system conversion
to CNF, we have to bring back terms from the summary of the current state of the
compiler in section 2.3.5 and define some new ones.

m p is the number of positions (the size of depth tuple)

nd is the number of all possible cutting depths (or X?_(d; + 1))
no is the number of all (key, lock) pairs that open

nb is the number of all (key, lock) pairs that block

np is the number of profiles in the platform
kp is the number of all different key pairs (or
m T is the set of all compatible profiles

m F' is the set of all incompatible profiles

K| K-1
| \|2 I)

Optimization Compatible with
Decision variables ‘ Lock clause removal

Reformulated profile opens
Reformulated profile blocked
Implicative block
Implicative shape

X X <L <

J
v
J

Table 3.2. Compatibility overview between different settings

Optimization CNF size difference
adds removes

Reformulated profile opens no - |F| binary clauses no - np clauses of varying size
Reformulated profile blocked nb- (|F| + |T|) clauses of size 3 nb - np clauses of varying size

nb variables nb - np variables
Implicative block — 2 -nb - nd clauses with size 2
Implicative block: new profiles — nb - |T| clauses of size 3
Implicative shape — | K| - dmas - p binary clauses
Lock clause removal — |L| - p clauses with sizes d;
Setting decision variables N/A N/A
KeyDiff n: incremental scheme kp->0, (f) clauses of size p N/A
KeyDiff n: “direct” scheme kp - (p_ﬁ +1) clauses of size p —n + 1 N/A

Table 3.3. Summary of the different settings’ influence on the final CNF size

Judging only by table 3.3, it would seem that defining stand-in variables as an impli-
cation is clearly advantageous. However, it does not necessarily hold that more clauses
make a problem harder, especially when the clauses are small. Implicative definitions
are also incompatible with exploiting decision variables. Similarly, removing the lock
clauses specifying that each position in a lock has to have a cutting is not a clear win,
because it is incompatible with the reformulated profile open.

None of the other optimizations can be clearly decided, either. Since |F| + |T| = p?
we can safely assume that |F'| > p and |T| > p. This means that reformulating profile
positions increases the total number of generated clauses, but also generally creates

25

shorter clauses. In the case of blocked profiles, it also decreases the total number of
created variables.

Since none of the approaches is obviously better than others, we compare the possible
optimizations using a benchmark detailed in chapter 5.

26

Chapter 4
Optimizing compiler internals

This chapter goes over the more practically oriented optimizations, such as using dif-
ferent SAT solvers, optimizing memory consumption in both compiler and the solver,
investigating possible improvements in the implementation of MinSat and using domain-
specific knowledge to provide the solver with hints as to what assignments are more
likely for specific variables.

I 4.1 Hinting assignments of variables

One of the possible avenues towards speeding up solving master-key systems is provid-
ing hints as to the likely truth value of specific variables. These hints can have two
forms, unary clauses, in which case the SAT solver does not consider other possibili-
ties, and default truth assignment, in which case the solver always considers the hinted
assignment first, but can find solutions that require different assignment from the one
hinted.

These hints are usually derived from some external domain-specific knowledge, such
as the fact that, as mentioned in section 1.2.1, some types of lock-charts are known
to be solvable in polynomial time. Another potential source of information is solving
a master-key system with reduced lock-chart, and then applying this solution to the
same problem with full-sized lock-chart.

The part of the master-key system solver responsible for providing hints shall be referred
to as the hinter. The compiler can query the hinter for a likely key shape for any key,
and then apply the shape to the generated SAT formula (for details see section 4.1.1).

The hinter itself distinguishes between two types of keys, individual keys and master
keys! and uses different ways of generating shapes for both. A pseudo-code for this is
shown in figure 4.1. The profile positions are explicitly excluded from being used by
the rotating constant method because their semantics in locks differs from standard
positions and their effect on the algorithm is not well-studied.

B 4.1.1 Applying key shape hint

A key shape hint is an n-tuple of numbers specifying cutting depths of the key, excluding
profile positions. Assuming that all variables have default assignment of false, a key
shape hint for key k is applied by setting specific key, shape and lock variables to true,
as shown in (4.1).

V(p,d) € hinty, : k:eygd
V(p,d) € hinty, : shape” (4.1)
V(p,d) € hinty,Vl € openedBy(k) : lock;d

L For the purposes of hinter, every key that opens at most 2 locks is considered an individual key.

27

Step 0: Initialization

lockchart -- the original lockchart being solved
individual-keys -- set of keys that open at most 2 locks
num_positions -— number of non-profile positions in the platform
gecons -- set of {\em gecons}

excons -- set of {\em excons}

Step 1: Generating shapes for master keys
lockchart := remove-individual-keys(lockchart)
lockchart := remove-duplicated-locks(lockchart)
pos_used := num_positions
while solve(lockchart, timeout):
key-hints := extract-solution(lockchart)
force-keys-same-at (pos_used)
pos_used := pos_used - 1

Step 2: Generating shapes for individual keys
for shape in rotating-constant(general-key, num_positions - pos_used):
if satisfies(shape, gecons, excons):
key-hints += shape

Figure 4.1. Pseudocode of how hinter derives hints for different types of keys

The defaults for comp and comp_total variables are unchanged, because these variables
depend on shapes of two keys, rather than just on the shape of one key, requiring
a quadratic amount of work. The defaults for blocking variables are unchanged for
a similar reason, as their interactions with cuttings for keys and locks is even more
complex.

I 4.2 Memory consumption and SAT variable storage

High memory usage is one of the limiting factors on the size of the master-key problems
that can be solved. The high-water mark of memory consumption over all inputs
described in chapter 5 is ~70 GB, ~6 GB of which was used by the compiler.

Because a SAT solver views specific variables as numbers, e.g. as “132”, while the
compiler views them by their purpose, e.g. as k:ey;f,d, the compiler needs a way to
transform it’s own view of variables to that of a SAT solver. This mapping is what
takes most of the memory used by the compiler, as it works by allocating a large flat
array for each variable type, e.g. a key is a type and lock is different type, and storing
the mapped values there. The index into these arrays is calculated using a common
flattening method, e.g. the index for variable key;fi 4, 1s calculated as ki -p-d+p1-d+dy,
where p is the number of positions in the platform and d is the largest depth for this
platform.

Using the largest depth introduces large inefficiencies for platforms with significantly un-
even depth tuples, such as the example shown in section 2.2, where the last position has
more than 7x the possible depths of other positions. This results in significant memory-

28

1

2

Po P1 P2 P3 P4 DPs
do 211 23| 26| 30| 33| 36

dy|22|24|27|31| 34| 37
do| ® | 25| 28| 32| 35| 38
dz| ®|® |29 ®|*|39
dy ®|®|®|e|e]|40

Figure 4.2. Mapping of single key to SAT variables. Numbers are actual SAT values, dots
mark slots wasted due to using maximal depth.

use overhead for these platforms!. figure 4.2 provides an illustration of how the memory
is wasted and how the mapping is realized for platform with depths (1,2,3,2,2.4).

This section describes 3 possible approaches towards reducing this memory overhead
and explains why they were ultimately rejected. The three described approaches are:

m computing the values of SAT solver variables directly, just as the original prototype
used to,

m using jagged arrays instead of a single flat one,

® using a data structure intended for mapping sparse keys to values, e.g. a hash map.

The original prototype used a simple scheme that is very similar to the current one, but
instead of calculating an index inside an array where the value of corresponding SAT
variable is stored, it used this index directly as the variable’s number. To disambiguate
between different types of compiler variables, an arbitrary ordering was imposed upon
the variable types and the computed index of a variable is offset by the number of
variables allocated by all preceding variable types.

This scheme has some advantages, such as no need to allocate additional memory inside
the compiler, and no need to look up the mapping as it can be computed directly. It does
however suffer from the same disadvantage as the current mapping scheme: overhead
for platforms with highly different depths at different positions. This disadvantage is
further exacerbated by this scheme because the overhead is in the number of variables
allocated by the SAT solver and a variable inside SAT solver takes at least 60 bytes
of memory, while a slot to store an allocated variable outside of SAT solver only takes
4 bytes. Adding extra variables to a SAT solver also incurs some performance overhead,
even if they are not used.

While the overhead could be eliminated by calculating exact offsets per each position
and variable, effectively trading CPU time for memory usage,? there is another problem
that makes the original scheme infeasible. The current version of the compiler supports
solving a problem with only part of the lock-chart added, e.g. the compiler might at
first only add keys 1 and 5 and try to solve this smaller problem, before adding other
keys. A small example of how the current mapping scheme deals with this is shown in
figure 4.3.

Using directly-indexed jagged arrays to implement the current approach of storing ac-
tual values for specific variables is an easy way to eliminate the overhead from un-even

For one real-world platform this overhead means that only roughly 1 out of 3.3 bytes, allocated for these
mappings, is actually used.
This can also be applied towards reducing the memory overhead of the current mapping approach.

29

do di dy do dy da do di da do di dy do dy dy do di do
1121013451000 |0|0]0|6 70|89 10

7o — D1 Po —P1 7o —7D1
kO k:l kZ

Figure 4.3. Mapping of multiple keys to SAT variables. Numbers are actual SAT values,
zeroes mark slots that do not have a value yet.

depths, but has several disadvantages. It increases the number of allocations sharply,
e.g. for cornpl;;}l€2 variable mapping, naively using jagged arrays would require |K|?-|P|
allocations. Given that each allocation incurs a memory usage overhead, this approach
is unlikely to actually decrease memory usage of the variable mapping, and the de-

creased data locality of this scheme would incur a performance overhead.

The number of allocations could be decreased by using a less naive approach towards
using jagged arrays, where only the position dimension is split-off from the flattened
mapping and other dimensions remain flattened. This would lead to only | P| allocations
per mapping, but would require extra programmer’s work for each mapping and would
still incur a CPU time overhead because of increased indirection and decreased data
locality.!

Sparse maps of various kinds run into similar problems, where they decrease data
locality and add overhead, but the source of memory overhead is different. Maps need
to store the key as well as the value, and the keys in this case are larger than the values,
e.g. for comp’;ja}kz the key size is at least 10 bytes?, most likely 12 bytes due to alignment
requirements. This means that to break even, at most 1 out of 4 mapping slots can be

used, and that for “even” depth tuples, the memory usage would be quadrupled.

Given that the most un-even platform we have uses at least 1 out of ~3.3 mapping slots,
in practice this approach only increases the total memory needed by the compiler to
map its own variables to SAT variables.

I 4.3 Different SAT solvers

The master-key system solver consists of 2 main parts: a compiler, that compiles
a master-key system in a set of logical clauses in CNF, and an off-the-shelf SAT solver,
that then solves the resulting SAT format. Initially, MiniSat version 2.2 was used, with
some extra fixes to address building the used C++ library parts on various platforms.
MiniSat was the original choice because it provides an easy-to-use set of bindings for
C++ code.

This led us to test Glucose 3.0 as the underlying SAT solver, because it is based on
MiniSat 2.2 and its C++ library API is identical to MiniSat’s. Glucose improves over
MiniSat by introducing of new technique of selecting which learnt clauses are worth
keeping, naming the kept clauses “glue clauses”.

We also decided to test a solver not based on MiniSat to determine the difficulty with
which we could integrate a completely new SAT solver. To this end we decided to test

! Tterating over each depth of each position is a common pattern inside the compiler, making this quite

costly.
2 2.4 bytes for keys, 1 byte for position, 1 byte for depth

30

CryptoMiniSat, because it is under active development and also regularly places highly
in the yearly SAT solving competitions. To make run-time switching between different
SAT solvers possible, we also had to create an abstraction layer over different SAT
solver interfaces.

These three solvers and versions were chosen for testing:

m A fork of MiniSat version 2.2, hash 2f9caab52053ca2498d83ef201e31cbe229da073!
m A fork of Glucose version 3.0, hash bd3ed96d47c575346519b109b9ad99ca930c4d45>
s CryptoMiniSat version 5.0.1, official release?

The MiniSat and Glucose forks do not contain any changes to the core solver function-
ality, only changes that enable/simplify building them on different platforms.

B 4.3.1 Reasons for the chosen versions

MiniSat was grandfathered in from the original prototype for the compiler. The exact
reasons why it was chosen are unknown, but some speculations can be done: it is well
known for being simple, yet performant, SAT solver. This makes it appropriate for
prototyping new applications that rely on a SAT solver to do the heavy lifting.

The reason why Glucose was chosen in version 3.0 and not later ones is relatively simple.
According to Glucose version 4.0 and 4.1 release notes, the newer versions brought a non-
deterministic[12] parallel SAT solver to the table, along with some internal refactoring.
This means that the single threaded performance of version 3.0 should be equivalent*
with the single threaded performance of all the newer versions.

The parallel version of Glucose is not relevant to our use case for two reasons, firstly: it
has a non-standard licence, which makes it unclear whether we can use it in commercial
product the way we want to, and secondly: we desire determinism, which the parallel
version does not offer.

For CryptoMiniSat we picked the last officially released version at the time of implemen-
tation®. At the time, this version was over a year old and there had been ~1000 commits
to the CryptoMiniSat’s repository since. This suggests that some potentially significant
performance improvements have been done since the release we used, but ~3 commits
per day made picking a stable commit to work with hard.

CryptoMiniSat also provides a parallel version, but it does not guarantee deterministic
results when used in parallel either[13].

B 4.3.2 Unified SAT solver API

The unified SAT solver API inside the compiler needs to abstract over the core func-
tionality of SAT solvers and over optional settings. The core functionality includes
translating between variable encodings of the compiler and the solver, literal encoding,
creating variables and adding clauses to the problem. The optional settings include,
but are not limited to, setting the preferred truth value for a variable, the random seed,
or the time budget a solver is allowed to use.

https://github.com/cernoch/minisat

https://github.com/horenmar/glucose
https://github.com/msoos/cryptominisat/releases

Modulo changes to how the code ends up being laid-out in the binary by the C++ compiler
At the time of writing, there is a pre-release of version 5.0.2

31

https://github.com/cernoch/minisat
https://github.com/horenmar/glucose
https://github.com/msoos/cryptominisat/releases

This abstraction layer is implemented by having a per-solver translator, that provides
a translation between the compiler function calls and used data structures to calls to the
specific SAT solver and its own data structures. These translators also implement some
basic performance optimizations, such as caching memory used to translate compiler’s
input to the solver’s data structures.

I 4.4 Changing MiniSat’s implementation of 1bool

This change is taken from Mate Soos’s blog post[14] about modifying MiniSat’s im-
plementation of 1bool, a class implementing tri-state booleans. He notes that the
implementation of 1bool has changed significantly between MiniSat version 2.0 and
2.2, to remove conditional branches from its operators.

A shortened version of the old implementation is shown in figure 4.4, while figure 4.5
shows a shortened version of the new implementation. Notice that the old implementa-
tion has very simple comparison operators, but XORing uses a branch. Because of the
context this branch is mostly unpredictable, making it expensive. The new implemen-
tation has much simpler implementation of XOR, only a single XOR on the internal
value, but has a complex, although branch-free, equality operator.

class 1bool {

char value;

public:
explicit 1bool(int v) : value(v) {
1bool() : value(0) { }

1bool(bool x) : value((int)x*2-1) { }

bool operator == (1lbool b) const { return value == b.value; }
bool operator != (1lbool b) const { return value '= b.value; }
lbool operator ~ (bool b) const {

return b 7 lbool(-value) : lbool(value);

}
175
const 1bool 1_True = 1lbool(1);
const 1bool 1 False = 1bool(-1);
const 1bool 1 _Undef = 1lbool(0);

Figure 4.4. Reduced 1bool from MiniSat 2.0

Soos’s proposed implementation follows the code from MiniSat 2.0, but implements the
XOR operator differently, as return 1bool(value * (-2*(char)b + 1));. This also
avoids the branch, while keeping the extremely simple (and thus cheap in CPU time)
comparison operators.

Table 4.1 shows optimized ASM output for the three 1bool implementations, as com-
piled by GCC 4.9.4 using -03 flag. operator!= has been omitted for brevity as it is
always equal to the equality operator with sete changed into setne and vice-versa. As
it shows, MiniSat 2.2’s comparison operators contain more than 10 instructions with

32

class 1bool {
uint8_t value;

public:
explicit lbool(uint8_t v) : value(v) { }

1bool(): value(0) { 2}
explicit 1lbool(bool x) : value(!x) { }

bool operator == (1bool b) const {

return !!(((b.value&2) & (value&2)) |

(' (b.value&2)&(value == b.value)));

}
bool operator != (lbool b) const { return !(*this == b); }
1lbool operator ~ (bool b) const {

return 1bool ((uint8_t) (value” (uint8_t)b));
}

};

#define 1_True (1bool((uint8_t)0))
#define 1 False (1bool((uint8_t)1))
#define 1 Undef (1bool((uint8_t)2))

Figure 4.5. Reduced 1bool from MiniSat 2.2

a moderately long dependency chain, but the XOR operator is trivial. In contrast,
both MiniSat 2.0 and the proposed implementation have trivial comparison operators,
but longer XOR operator. In case of MiniSat 2.0, it contains only 3 instructions, but
one of them is an unpredictable branch. The newly proposed implementation requires
5 instructions, but they are all part of a dependency chain.

Thanks to the lack of unpredictable branching, the newly proposed implementation
can be reasonably expected to be faster than the old one from MiniSat 2.0. However,
because of the significantly different trade-offs with the implementation in MiniSat 2.2,
whether the proposed implementation performs better needs to be measured.

33

4.0ptimizingCOmpi/eI’internaISlll-llll-llllllllllllllllllll-lllll

Table 4.1. An overview of optimized assembly output for different 1bool implementations.
Compiled with GCC 4.9.4, using —03

34

Chapter 5
Results

I 5.1 Benchmarking setup

All benchmarks were run using a dedicated departmental server. The server had two
CPU sockets, each with a Intel Xeon E5-2687W 0 clocked at 3.10GHz. As main memory,
there was 128 GB of DDR-3 RAM clocked at 1600 MHz. The operating system was
Debian 9.2 (Stretch), with Linux kernel in version 4.9.0-3-amd64, compiled using gcc
6.3.0.

Each input in each configuration was given 3600 seconds before being killed by an
external watchdog. All randomness inside the SAT solvers was disabled in order to get
repeatable results.

I 5.2 Settings and configurations

As the result of this work, 7 settings for the compiler were implemented and bench-
marked. An overview of these settings is shown in table 5.1. One extra setting that was
implemented but was not benchmarked is the two alternate ways of translating Key-
Diff constraints. This is due to all of the inputs being treated identically by the two
implementations; none of the inputs use a MaxKeyDiff constraint and the MinKeyDiff
constraints, whenever used, specify a difference of 1, where both implementations give
the same set of clauses.

Setting Possible values
shape variable Use implication/equivalence in definition
SAT solver MiniSat, Glucose, CryptoMiniSat
hinter Use / Do not use
blocking variable Use implication/equivalence in definition
Decision variables All / only key and lock variables
opens for profile positions Old / New
blocked for profile positions Old / New

Table 5.1. Overview of settings and their possible values.

Doing a simple cartesian product over all settings would suggest that there are 192 pos-
sible configurations, but some options are incompatible with each other, namely im-
plicative definition of either shape variables or blocking variables cannot be used when
the set of decision variables does not encompass all variables. Consequently, there are
only 120 valid configurations for the compiler.

35

B 5.2.1 Configuration names

Each configuration can be described by a septuple containing values assigned to all
of the compiler settings. The order of the settings is the same as used in table 5.1.
Throughout this chapter, specific configurations will be referred to by a name consisting
of comma-separated internal names for each individual setting in the configuration.

The internal, more compact, name for each setting is shown in table 5.2.

Value internal name
Define shape variable using implication impli-shape
Define shape variable using equivalence equiv-shape
Use MiniSat as the underlying SAT solver minisat

Use Glucose as the underlying SAT solver glucose

Use CryptoMiniSat as the underlying SAT solver cmsat

Use hinter hinter

Do not use hinter no-hinter
Define blocking variable using implication impli-block
Define blocking variable using equivalence equiv-block
Set all variables as decision variables all-decisions
Set only key and lock variables as decision variables reduced-decisions
Use new formulation for profile position opens new-profile-opens
Use old formulation for profile position opens old-profile-opens
Use new formulation for profile position blocked new-profile-blocks
Use old formulation for profile position blocked old-profile-blocks

Table 5.2. Overview of internal names for different setting values.

As an example, a configuration where

m shape variables are defined using equivalence,

s CryptoMiniSat is used as the SAT solver,

® hinter is used,

® blocking variables are defined using equivalence,

m reduced set of decision variables is used,

® the new formulation of opening at profile positions is used,
m the old formulation of blocking at profile positions is used,

would be named equiv-shape/cmsat/hinter/equiv-block/reduced-decisions/
new-profile-opens/old-profile-blocks using the names from table 5.2.

I 5.3 Inputs

All inputs used in master-key system solver benchmarking were provided by our indus-
try partners. Consequently, the measured results should reflect the performance of our
compiler when used in practice. On the other hand, this also means that the exact
specifics of platform descriptions contained within are confidential and thus cannot be
described in this work. Only approximations that attempt to duplicate the interesting
properties of the inputs can be provided here. Their names cannot be used either, so

36

they will be referred to as “Manufacturer A” through “Manufacturer F”. In total, 46 in-
puts were provided from 6 different key manufacturers, but after filtering out trivial
inputs!, only 34 inputs were left.

Per-Manufacturer Breakdown is shown in table 5.3.

Manufacturer # inputs # inputs used
Manufacturer A 8 7
Manufacturer B 11 9
Manufacturer C 3 3
Manufacturer D 6 1
Manufacturer E 15 12
Manufacturer F 3 2

Table 5.3. Overview of manufacturers and number of inputs provided by them

Different manufacturers also use different platforms, sometimes significantly so. An
overview of the basic properties is shown in table 5.4. With the exception of Manufac-
turer A, all inputs provided by a single manufacturer use the same platform. Because
Manufacturer A tends to have a high number of profiles, the average depth per position
is provided in two numbers. The first is the average over standard positions, the one in
parentheses is average including profile positions.

Manufacturer 7+ positions avg. depth at position # profiles
Manufacturer A (3 inputs) 6 4 0
Manufacturer A (1 inputs) 6 4 (8) 1
Manufacturer A (3 inputs) 6 4 (12) 1
Manufacturer B 12 6 0
Manufacturer C 17 6 12
Manufacturer D 7 7 1
Manufacturer E 6 9 0
Manufacturer F 30 3 0

Table 5.4. Overview of manufacturers’ platform properties

The number of excons and gecons also varies significantly between different manufac-
turers, with the least constrained platform having only ~60 constraints and the most
constrained platform having ~300 constraints. A per-platform breakdown is shown in
table 5.5.

More detailed descriptions of each manufacturer’s platform follows. Note that, be-
cause of the aforementioned confidentiality agreement, the descriptions have to be kept
somewhat vague and inexact.

B 5.3.1 Platform description

Manufacturer A provided inputs with 3 different platforms, two of which use profile
positions and one does not. For platforms that contain profile positions, the profiles

L An input was considered trivial if it contained less than ~50 keys or locks.

37

Manufacturer # excons # gecons
Manufacturer A 150 10
Manufacturer B 60 0
Manufacturer C 180 120
Manufacturer D 180 0
Manufacturer E 90 120
Manufacturer F 70 0

Table 5.5. Approximate number of excons and gecons per manufacturer

are assigned manually by the manufacturer. This means that the input does not ex-
ercise the compiler ability to select profiles All of the Manufacturer A’s platform uses
KeyDepthLockDepth blocked mappings for non-profile positions.

Manufacturer B’s platform does not use profile positions and has the least number of
constraints. The largest provided input, at ~2000 keys and locks, uses this platform.

Manufacturer C’s platform has the most profile positions of all platforms, with 12 profile
positions. Discounting profile positions, this platform has the least cutting positions,
and is also the most constrained platform. Manufacturer C is also one of the two
manufacturers that use KeyDepthLockDepth mappings for non-profile positions.

Only one of Manufacturer D’s inputs was classified as non-trivial and used for bench-
marking. The input uses 1 profile position, but each key has a manually assigned profile
from the manufacturer.

Manufacturer E’s platform is on-par with Manufacturer A’s platform as the shortest,
but has the highest number of possible cutting depths per position and does not utilize
keyway profiles. It is the second most constrained platform.

Manufacturer F’s platform has a very large number of positions, but each position has
only few possible cutting depths. There are no profile positions and the overall number
of constraints is low.

I 5.4 Evaluation methodology

Every input from section 5.3 has been run against every configuration from section 5.2
and the total run time of the compiler was recorded. The measured run time for an
input is then compared to the run time of the baseline configuration, and the relative
result is then used for further comparisons. Two configurations are compared by taking
an average of these relative results over relevant inputs. As an example, if baseline
configurations took 20, 100 and 900 seconds to solve problems A, B and C respectively,
and configuration A needed 30, 80 and 800 seconds to solve these problems, then con-
figuration A’s relative times would be 1.5, 0.8 and 0.89 and the average would be 1.06
meaning that configuration A is worse than the baseline.

The baseline configuration is a set of settings that most closely resemble the state
of the compiler before this work started, described as impli-shape/minisat/
no-hinter / impli-block / no-reduced-decision-vars / old-profile-opens / old-
profile-blocks using rules from section 5.2.1.

If the compiler exceeds 3600s when solving an input, a run time of 4000s is used.

38

Configuration Avg. of rel. run times
impli-shape/minisat/no-hinter/impli-block/all- 0.973
decisions/old-profile-opens/new-profile-blocks
impli-shape/minisat/no-hinter/impli-block/all- 0.974
decisions/new-profile-opens/old-profile-blocks
equiv-block/minisat/no-hinter/impli-block/all- 0.975
decisions/new-profile-opens/old-profile-blocks

Table 5.6. Best 3 configurations when compared over inputs from all manufacturers

I 5.5 Benchmark results

The results of the three best configurations over all inputs are shown in 5.6. As shown,
the best configurations provide a small but measurable improvement over the baseline.

Comparing configurations for each manufacturer’s platform separately! shows that tun-
ing configuration towards specific platform provides significant speedup for 3 manufac-
turers, Manufacturer A, Manufacturer C and Manufacturer D, as shown in tables 5.7,
5.8 and 5.9 respectively.

Configuration Avg. of rel. run times
equiv-shape/minisat/no-hinter/equiv-block/ 0.729
reduced-decisions/old-profile-opens/old-profile-

blocks

equiv-shape/minisat/no-hinter/impli-block/all- 0.953

decisions/old-profile-opens/new-profile-blocks

impli-shape/minisat/no-hinter/impli-block/all- 0.954
decisions/old-profile-opens/new-profile-blocks

Table 5.7. Best 3 configurations when compared over all inputs from Manufacturer A.

Manufacturer A’s platform shows a significant speed-up, 27%, but for a single specific
configuration only. Interestingly, the 3 worst results all have the average run time 460x
longer than the baseline. This shows that there is a significant potential for difference
in performance when using different configurations, but the baseline happens to already
be near the optimum for this platform.

Interestingly, all 3 worst-performing configurations for this platform use Glucose with
blocking variables defined using equivalence and with hinter disabled.

The best configurations for Manufacturer B’s platform improve upon the baseline’s
run time by less than 2%, while the worst-performing configurations increase the run
time ~40x. This suggests that there is less space for performance differences between
different configurations and that the baseline configuration is near the optimum again.

Once again, all 3 worst-performing configurations for this platform use Glucose with
blocking variables defined using equivalence and with hinter disabled.

Manufacturer C’s platform shows a significant benefit from different configurations, with
the best configuration improving over the baseline by ~50%. The worst-performing

Manufacturer A’s 3 platforms are considered together, as they are very similar with the exception of
keyway profiles.

39

5. Results

Configuration Avg. of rel. run times
equiv-shape/minisat/hinter/equiv-block/reduced- 0.507
decisions/new-profile-opens/old-profile-blocks
equiv-shape/glucose/no-hinter/equiv-block/ 0.552
reduced-decisions/old-profile-opens/old-profile-

blocks

impli-shape/glucose/no-hinter/impli-block/all- 0.561
decisions/new-profile-opens/new-profile-blocks

Table 5.8. Best 3 configurations when compared over all inputs from Manufacturer C

Configuration Avg. of rel. run times
equiv-shape/glucose/no-hinter/equiv-block/ 0.335
reduced-decisions/new-profile-opens/new-profile-

blocks

equiv-shape/glucose/no-hinter/equiv-block/all- 0.362

decisions/old-profile-opens/new-profile-blocks

impli-shape/glucose/no-hinter/equiv-block/all- 0.363
decisions/old-profile-opens/new-profile-blocks

Table 5.9. Best 3 configurations when compared over all inputs from Manufacturer D

configurations increase the run time ~16x and, interestingly, all use MiniSat as the
SAT solver, together with equivalence-defined block variables.

Results for Manufacturer D’s platform need to be taken with a grain of salt, as Man-
ufacturer D provided us with only a single non-trivial input to benchmark. However,
because the underlying platform remains the same even for trivial inputs, the results can
be expected to generalize well across other non-trivial inputs using the same platform.

Manufacturer E’s and Manufacturer F’s platforms have very similar results. The best-
performing configurations do not improve performance significantly and the distance
between best and worst-performing configuration is small for both (from 0.958 to 6.069
and from 0.973 to 7.317 respectively).

These two platforms also share common parts of the worst-performing configurations;
they both use hinter and use CryptoMiniSat as the underlying SAT solver.

B 5.5.1 Closer look at the effect of individual settings

This section is primarily based on the results shown in section 5.5, but also discusses re-
sults that were omitted from the main work for brevity and can be found in appendix B.

When looking at global and per-platform results, some trends in regards to individ-
ual settings emerge. One of them is that configurations using the hinter are rarely
amongst the best-performing, but they also are not overly represented amongst the
worst-performing configurations. This is caused by the fact that the run time cost of
hinter’s step 1 (as described in figure 4.1) is significant and increases with the cost
of obtaining a full solution of the whole problem.

Using the hinter has proven to be a win in one regard: only 8 out of all configurations
have been able to find solution to the largest input tested (described in section 5.3.1),

40

with all of them utilizing the hinter. Because the input does not use profiles, the
8 configurations collapse into 2:

m impli-shape/minisat/hinter/equiv-block/reduced-decisions,
m equiv-shape/minisat/hinter/equiv-block/reduced-decisions.

Among SAT solvers, MiniSat is the best-performing solver by far. It is used by all
3 best configurations globally and the 3 best configurations for five of the platforms. It
is also used by the best-performing configuration for the sixth one. The remaining SAT
solvers, Glucose and CryptoMiniSat, are both widely used by the worst per-platform
configurations and Glucose is used by all 3 of the globally worst configurations. Unlike
CryptoMiniSat, Glucose does have a platform it excels at solving, specifically Manu-
facturer C’s platform.

Glucose’s underperformance relative to MiniSat is likely caused by the fact that it uses
significantly different search restarts that are optimized towards solving unsatisfiable
problems, rather than the satisfiable ones[15].

The different ways of defining shape variables do not seem to have a clear effect on the
performance of the compiler. This is an interesting result on its own, as the difference
between using implicative definition and equivalence-based definition is adding a large
amount of binary clauses. This ought to have a measurable effect on the results and
further investigations need to be done.

Reducing the number of decision variables enables a significant speed-up for Manu-
facturer A’s and Manufacturer C’s platforms, but also enables the worst-performing
configurations for Manufacturer B’s platform.

There are no discernible trends for the performance impact of different ways of defining
block variables. While the implicative definition is used by the globally best configura-
tions and equivalence-based definition by the globally worst, the per-platform results
are more mixed, i.e. both definitions show up about as often in the best configurations
as in the worst-performing configurations.

Out of the 6 manufacturers, only 3 use keyway profiles in their platforms and out of
these three, two assign profiles to keys manually. Consequently, there is a very limited
sample size for evaluating the impact of different conversions of profile positions to SAT.

To judge performance for platforms without manually-assigned profiles we should look
at the results for Manufacturer C’s platform. There, the best configuration uses the new
definition for opening and the old one for blocking at profile positions. At the same time,
the second best uses the old definitions for both and the third one uses new definitions
for both, and all three configurations improve upon the baseline significantly. What is
also interesting is that there is no option shared between all three of these successful
configurations. This suggests that both schemes for defining opening and blocking at
profile positions can perform equally well when used for platform where keys are not
manually assigned to their profiles, but highly depend on other configurations.

There is one combination that seems to perform badly; the three worst-performing
configurations for Manufacturer C’s platform share the combination of using new defi-
nitions for blocking but old definitions for opening at profile positions.

41

I 5.6 Evaluating changes to MiniSat implementation

The results discussed above do not include the modified version of MiniSat because the
changs to MiniSat’s implementation of 1bool should not significantly change MiniSat’s
speed. After-all, the main parts, e.g. the branching heuristic, remain the same, only
the speed of a small part of internal functions changes. Because MiniSat has already
shown the best performance amongst the tested SAT solvers, the potential speed-up
would not change the results, reported in 5.5, in a meaningful way.

To evaluate the performance of the modifications, we compared the modified MiniSat to
unmodified MiniSat 2.2 across different inputs and configurations. The configurations
used are the same as described in section 5.2, but the inputs were only a subset of those
used for comparing different configurations for the compiler. The run times of both
versions for each configuration, input pair were then compared, and cases when either
of the two MiniSat versions performed better by more than a certain threshold were
counted.

The results for three different thresholds are shown in table 5.10. As they show, for most
problems the difference between the two is insignificant, but sometimes one version is
statistically significantly faster. However, the unmodified implementation wins by more
than a specific threshold more often, meaning that its run time is better on average.

Threshold | # MiniSat-mod better | # MiniSat-2.2 better | Runs compared

2% 31 292 932
5% 17 42 932
10% 11 21 932

Table 5.10. Summary of MiniSat modification benchmark results

42

Chapter 6
Conclusion

This thesis investigated performance characteristics of a SAT-based master-key system
solver developed by the Department of Computer Science, FEE, CTU. It described
the current state of the solver, along with explaining what factors change the size of
the generated SAT problem and detailing what optimizations for this process already
existed before this work started.

Further possible changes to the conversion to SAT, along with more practically-oriented
optimizations, were proposed and benchmarked. The practically-oriented optimizations
included employing domain-specific knowledge to guide the underlying SAT solver to-
wards finding the solution, and changing the implementation of MiniSat’s internals.

Benchmarking these proposed changes showed that no set of changes is significantly
beneficial over all inputs provided by our industrial partners, but that most platforms
can be sped-up significantly by using the right configuration for the compiler. Two
configurations also enabled the compiler to solve a very large, and previously unsolved,
master-key system in ~10 minutes.

Based on the results, there are several possible directions for future work. First is to
obtain permission and submit SAT problems generated by the compiler to SAT solving
competitions. Classical wisdom suggests that MiniSat is significantly outperformed by
newer SAT solvers, but for our specific SAT problems it performed the best out of the
three tested solvers. This suggests that the SAT output from the compiler has some
properties that are not well exploited by the more modern SAT solvers.

Another is to explore new heuristics for the hinter component of the compiler. The
current implementation of the hinter allows the solver to solve previously unsolvable
problems and limits the performance penalty from some of the worst configurations,
but its own run-time cost pessimises total run time of simple inputs. There are several
places where a new heuristic could provide a significant speed-up. First, a heuristic to
determine at which position the step 1 should start could avoid several costly calls to
the SAT solver. Second, a heuristic could be used to provide solutions for general keys
without invoking the SAT solver and third, a better heuristic for setting the timeout of
the SAT solver in step 1 could also provide significant time savings.

Third direction for future work is to select which profile definition is used by using a cost
model, rather than the current model where the definition is decided by a command-
line flag. The variables that indicate the number and size of clauses generated by
converting profile positions to SAT, e.g. |F| and |T|, are either known or easy to
calculate, so dynamically selecting conversion scheme should carry only small run-time
penalty. There is even potential for significant gains for platforms with multiple profile
positions where a different, and hopefully better performing, conversion scheme could
be chosen on a per position basis. However, it is important to note that because
the cause-and-effect relationship between generated problem size and a SAT solver’s
performance is non-trivial, any such decision making would be only heuristical.

43

Finally, there is one non-speculative improvement that can be implemented in the
compiler. As was explained in chapter 2, the two dominant factors influencing the size of
resulting SAT problem are implementation of blocking relations and shape variables used
by KeyDiff constraints. However, for keys with different opens sets on platforms without
profile positions, the problem structure already guarantees that a MinKeyDiff of 1
between these two keys is satisfied. Because this is the most common kind of a KeyDiff
constraint, skipping converting MinKeyDiff constraints under these conditions should
prove a worthwhile optimization.

In closing, solving complex master-key systems is still a very hard and mostly unex-
plored problem that deserves further attention, if not for anything else, then for the
real-world application it has. Regrettably, we cannot release our industrial input port-
folio nor can be our implementation open-sourced, but the description contained within
this thesis should provide any interested party a basis towards implementing their own
master-key system solver and experimenting with it, further exploring this field.

44

References

[1] CErNOCH, Radomir. Lock-chart solving. Czech Technical University in Prague,
2017. Ph.D. Thesis. Unpublished, can be found at
https://github.com/cernoch/mks-dis.

[2] JAMES, Peter, and Nick THORPE. Ancient Inventions. New York: Ballantine Books,
1994. ISBN 978-0345364760.

[3] Mul-T-Lock CLIQ sales page.
http://wuw.mul-t-lock-cliq.com/.

[4] O’SHALL, Don. The Definitive Guide to RCM — Rotating Constant Method of
Master Keying. Locksmithing Education, 2015. ISBN 9781937067137.
https://books.google.cz/books?id=5Hz rQEACAAJ.

[5] CooK, Stephen A. The Complexity of Theorem-proving Procedures. In: Pro-
ceedings of the Third Annual ACM Symposium on Theory of Computing. New
York, NY, USA: ACM, 1971. pp. 151-158. STOC ’71. Available from DOI
10.1145/800157.805047.
http://doi.acm.org/10.1145/800157.805047.

[6] Davis, Martin, George LOGEMANN, and Donald LOVELAND. A Machine Pro-
gram for Theorem-proving. Commun. ACM. New York, NY, USA: ACM,
jul, 1962, Vol. 5, No. 7, pp. 394-397. ISSN 0001-0782. Available from DOI
10.1145/368273.368557.

[7] EEN, Niklas, and Niklas SORENSSON. An extensible SAT-solver. In: Theory and
applications of satisfiability testing. 2003. pp. 502-518.

[8] AUDEMARD, Gilles, and Laurent SIMON. Predicting Learnt Clauses Quality in
Modern SAT Solvers. In: Proceedings of the 21st International Jont Conference
on Artifical Intelligence. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 2009. pp. 399-404. IJCAT’09.

[9] TsEITIN, G. S. On the Complexity of Derivation in Propositional Calculus.
In: Jorg H. SIEKMANN, and Graham WRIGHTSON, eds. Automation of Reason-
ing: 2: Classical Papers on Computational Logic 1967-1970. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1983. pp. 466-483. ISBN 978-3-642-81955-1. Available
from DOIT 10.1007/978-3-642-81955-1_28.
https://doi.org/10.1007/978-3-642-81955-1_28.

[10] SELMAN, Bart, Henry A KAuTz, Bram COHEN, and OTHERS. Local search strate-
gies for satisfiability testing.. Cliques, coloring, and satisfiability. 1993, Vol. 26,
pp. 521-532.

[11] SELMAN, Bart, Hector LEVESQUE, and David MITCHELL. A New Method for Solv-
ing Hard Satisfiability Problems. In: Proceedings of the Tenth National Conference
on Artificial Intelligence. AAAI Press, 1992. pp. 440-446. AAAT’92. ISBN 0-262-
51063-4.

45

https://github.com/cernoch/mks-dis
http://www.mul-t-lock-cliq.com/
https://books.google.cz/books?id=5Hzunhbox voidb@x kern .06em vbox {hrule width.3em}rQEACAAJ
http://dx.doi.org/10.1145/800157.805047
http://doi.acm.org/10.1145/800157.805047
http://dx.doi.org/10.1145/368273.368557
http://dx.doi.org/10.1007/978-3-642-81955-1unhbox voidb@x kern .06em vbox {hrule width.3em}28
https://doi.org/10.1007/978-3-642-81955-1unhbox voidb@x kern .06em vbox {hrule width.3em}28

References

[12] Release notes for Glucose 4.0.
http://www.labri.fr/perso/lsimon/glucose/.

[13] Mate Soos’s answer to “Are cryptominisat’s results deterministic when using mul-
tiple threads?” issue on github.
https://github.com/msoos/cryptominisat/issues/443#issuecomment-354576602.

[14] Mate Soos’s blog post about lbool in MiniSat.
https://www.msoos.org/2014/03/speeding-up-minisat-with-a-one-liner/.

[15] OH, Chanseok. Improving SAT Solvers by Ezploiting Empirical Characteristics of
CDCL. New York University, 1, 2016. Ph.D. Thesis.

46

http://www.labri.fr/perso/lsimon/glucose/
https://github.com/msoos/cryptominisat/issues/443#issuecomment-354576602
https://www.msoos.org/2014/03/speeding-up-minisat-with-a-one-liner/

Appendix A
Specification

Ceske vysoké udeni technické v Praze
Fakulta elektrotechnicka

Katedra poéitaél

ZADANI DIPLOMOVE PRACE

Student: Hofenowvsky Martin

Studijni program: Oteviend informatika
Obor: Uméla inteligence

Mézev tématu: Analyza vykonu Fesite systému generalniho klige a hlavnich kIigG

Pokyny pro vypracovani;

i Diplomova prace se tyka fedeni systému generainiho klié2 a hlavnich kligh (master key sysiem). Hiavnim cilem je
| zryehleni existujicihe fedite vyvijeného na katedfe poditad.

1) |dentifikujte faktory, kleré oviiviuji debu bBhu sougasného algositmu a jeho nércky na alokovancu pamét,
Zaméfe se jak na absirakini popls dlohy, na jeji pfeklad do problému spinitelnosti vrokowpch formull (SAT),
wvaujte viiv datowych struktur pouEivanych knihoven,

2) Mawrhnéte robusini todiku méfeni rychlosti wipoliu. Vysledny postup by mél wést k opakovatelnym
vysledkim, nezdvislym na trividinich zrménach vstupu (napgl. pleuspefadani omezujicich podminek).

3) Diskulujle zplsoby zmendenl systémovych narokl lesite. Zvadte doménovd zdvislé | nezdvish: heuristiky, volbu
knihoven a zplsoby kompilace,

4) Efekt pledchoziho bodu cvfte na dodané mnafing testovacich pfikladi. PouZijte jednak vefajné dostupny
datasel [4] a jednak nevelejny dalase! z projekiu CyberCale,

Seznam odborné literatury;

[1] Eén M., Strensson M. (2004) An Exensible SAT-solver. In: Giunchiglia E., Tacchella A. {eds) Theory and
Applizations of Satisfiabiity Testing, SAT 2003, Lecture Motes in Computer Science, vol 2019, Springer, Berlin,
Heidelberg

[2] Nudeiman E., Leyten-Brown K., Hoos H.H., Devkar A, Shoham Y. (2004) Understanding Random SAT: Beyond
the Clauses-lo-Variables Ratio, In: Wallace M, (eds) Principles and Practice of Constraint Programming 7 CP 2004,
CP 2004, Lecture MNotes in Computer Science, vol 3258, Springer, Berin, Heidelberg

[3] The international SAT Competitions wab page. hitp:lwww_ satcompetition.ong!

[4] Lawer, A, (2004), Calculation of Lock Systems. Master. Reyal Institute of Technology.

[5] Junker, U, (1998, October), Constraint-based Problem Decomposition for & Key Configuration Problem. In
International Conference on Principles and Practice of Constrainl Programming (pp. 265-279). Springer Bedin
Heldelberg.

[&] Cem, R., Kufelka, O.. & 2elezny, F. (2016). Palynomial and Extensible Solutions in Lock-Chart Sohving.
Applied Arificial IMeligence, 20(10), 923-941.

Vedouci: Radomir Cernoch, MSc.
Platnost zadani do ko niho semestru 20182019

praf. Dr. Michal Péchoudek, MSc, prof. In;;ﬂ'—‘avel Ripka, CSc.
vedouci katedry dékan

\ Praze dne 21.7.2017

47

Appendix B
Full results

Chapter 5 discusses the best and worst-performing configurations and displays the best-
performing ones for platforms with significant speed-ups. This appendix provides tables
of the best and worst-performing configurations for all platforms.

For practical reasons, this appendix cannot contain all of the measured data. In-
stead an anonymized .csv file is provided on the enclosed CD, and online, at https://

codingnest.com/files/thesis-results.csv

Configuration

Avg. of rel. run times

impli-shape/minisat/no-hinter/impli-block/all-
decisions/old-profile-opens/new-profile-blocks

0.973

impli-shape/minisat/no-hinter/impli-block/all-
decisions/new-profile-opens/old-profile-blocks

0.974

equiv-shape/minisat/no-hinter/impli-block/all-
decisions/new-profile-opens/old-profile-blocks

0.975

impli-shape/glucose/no-hinter/equiv-block/all-
decisions/old-profile-opens/new-profile-blocks

97.536

equiv-shape/glucose/hinter/equiv-block/all-
decisions/old-profile-opens/new-profile-blocks

97.651

impli-shape/glucose/hinter/equiv-block/all-
decisions/old-profile-opens/new-profile-blocks

97.654

Table B.1. 3 best and worst configurations when compared over all inputs

Configuration

Avg. of rel. run times

equiv-shape/minisat/no-hinter/equiv-block/
reduced-decisions/old-profile-opens/old-profile-
blocks

0.729

equiv-shape/minisat/no-hinter/impli-block/all-
decisions/old-profile-opens/new-profile-blocks

0.953

impli-shape/minisat/no-hinter/impli-block/all-
decisions/old-profile-opens/new-profile-blocks

0.955

impli-shape/glucose/no-hinter/equiv-block/all-
decisions/old-profile-opens/new-profile-blocks

461.845

equiv-shape/glucose/no-hinter/equiv-block/all-
decisions/new-profile-opens/old-profile-blocks

462.116

impli-shape/glucose/no-hinter/equiv-block/all-
decisions/new-profile-opens/old-profile-blocks

462.143

Table B.2. 3 best and worst configurations when compared over all inputs from Manufac-

turer A

49

https://codingnest.com/files/thesis-results.csv
https://codingnest.com/files/thesis-results.csv

B Full results

Configuration Avg. of rel. run times
equiv-shape/minisat/no-hinter/equiv-block/all- 0.981
decisions/new-profile-opens/old-profile-blocks
equiv-shape/minisat/no-hinter/equiv-block/all- 0.982
decisions/old-profile-opens/new-profile-blocks
equiv-shape/minisat/no-hinter/equiv-block/all- 0.984
decisions/new-profile-opens/new-profile-blocks
equiv-shape/glucose/no-hinter/equiv-block/ 40.561
reduced-decisions/old-profile-opens/new-profile-

blocks

equiv-shape/glucose/no-hinter/equiv-block/ 40.576
reduced-decisions/new-profile-opens/new-profile-

blocks

equiv-shape/glucose/no-hinter/equiv-block/ 40.657

reduced-decisions/new-profile-opens/old-profile-
blocks

Table B.3. 3 best and worst configurations when compared over all inputs from Manufac-

turer B

Configuration Avg. of rel. run times
equiv-shape/minisat/hinter/equiv-block/reduced- 0.508
decisions/new-profile-opens/old-profile-blocks
equiv-shape/glucose/no-hinter/equiv-block/ 0.552
reduced-decisions/old-profile-opens/old-profile-

blocks

impli-shape/glucose/no-hinter/impli-block/all- 0.562
decisions/new-profile-opens/new-profile-blocks
equiv-shape/minisat/no-hinter/equiv-block/all- 16.182
decisions/old-profile-opens/new-profile-blocks
impli-shape/minisat/hinter/equiv-block/all- 16.203
decisions/old-profile-opens/new-profile-blocks
equiv-shape/minisat/hinter/equiv-block/all- 16.282

decisions/old-profile-opens/new-profile-blocks

Table B.4. 3 best and worst configurations when compared over all inputs from Manufac-

turer C

50

Configuration Avg. of rel. run times
equiv-shape/glucose/no-hinter/equiv-block/ 0.335
reduced-decisions/new-profile-opens/new-profile-

blocks

equiv-shape/glucose/no-hinter/equiv-block/all- 0.362
decisions/old-profile-opens/new-profile-blocks
impli-shape/glucose/no-hinter/equiv-block/all- 0.363
decisions/old-profile-opens/new-profile-blocks
impli-shape/minisat/hinter/impli-block/all- 1.457
decisions/old-profile-opens/new-profile-blocks
equiv-shape/cmsat/hinter/equiv-block/reduced- 1.461
decisions/new-profile-opens/old-profile-blocks
equiv-shape/cmsat/hinter/equiv-block/reduced- 1.506

decisions/new-profile-opens/new-profile-blocks

Table B.5. 3 best and worst configurations when compared over all inputs from Manufac-

turer D

Configuration Avg. of rel. run times
equiv-shape/minisat/no-hinter/equiv-block/all- 0.958
decisions/new-profile-opens/new-profile-blocks
equiv-shape/minisat/no-hinter/equiv-block/all- 0.969
decisions/old-profile-opens/new-profile-blocks
equiv-shape/minisat/no-hinter/impli-block/all- 0.973
decisions/old-profile-opens/old-profile-blocks
equiv-shape/cmsat/hinter/impli-block/all- 6.013
decisions/old-profile-opens/new-profile-blocks
impli-shape/cmsat/hinter/equiv-block/all- 6.041
decisions/new-profile-opens/new-profile-blocks
impli-shape/cmsat/hinter/equiv-block/all- 6.070

decisions/old-profile-opens/new-profile-blocks

Table B.6. 3 best and worst configurations when compared over all inputs from Manufac-

turer E

51

B Full results

Configuration Avg. of rel. run times
impli-shape/minisat/no-hinter/impli-block/all- 0.973
decisions/new-profile-opens/old-profile-blocks
impli-shape/minisat/no-hinter/equiv-block/all- 0.992
decisions/old-profile-opens/new-profile-blocks
impli-shape/minisat/no-hinter/equiv-block/all- 0.993
decisions/new-profile-opens/old-profile-blocks
equiv-shape/cmsat/hinter/impli-block/all- 7.258
decisions/old-profile-opens/new-profile-blocks
equiv-shape/cmsat/hinter/equiv-block/all- 7.264
decisions/new-profile-opens/new-profile-blocks
impli-shape/cmsat/hinter/impli-block/all- 7.317

decisions/old-profile-opens/old-profile-blocks

Table B.7. 3 best and worst configurations when compared over all inputs from Manufac-

turer F

52

Appendix C

Glossary

binary clause

CDCL

CNF

DNF

DPLL

equi-satisfiable

pin tumbler lock

SAT

ternary clause

tumbler

unit clause

3-SAT

A clause consisting of 2 literals

Conflict Driven Clause Learning is a modification of the DPLL
algorithm with non-chronological backtracking

Conjuctive normal form. A logical formula is in CNF if it is
a conjunction of clauses, which themselves are disjunctions of
literals

Disjunctive normal form. A logical formula is in DNF if it is
a disjunction of clauses, which themselves are a conjuction of
literals

David-Putnam-Logemann-Loveland algorithm is a complete
backtracking search algorithm for solving (CNF) SAT

Two formulae are equi-satisfiable if either both formulae can be
satisfied, or neither can

A tumbler lock where spring-loaded pins are used to block the
tumbler from moving

Abbreviation of Boolean Satisfiability Problem — determining
whether given boolean formula can be satisfied

A clause consisting of 3 literals

A part of lock that blocks it from opening until the correct key is
inserted

A clause with single (unassigned) literal

SAT variant where each formula is limited to at most 3 literals

53

	TITLE
	Acknowledgement/Declaration
	Abstrakt/Abstract
	Contents
	Introduction
	Mechanical locks and keys
	Master-key systems
	Lock-charts
	Keyway profiles

	Boolean Satisfiability problem (SAT)
	CDCL SAT solvers
	CDCL
	Decision variables

	Local search based SAT solvers

	Description of a master-key problem
	Customer provided lock-chart
	Platform geometry
	General constraints (gecons)
	Existential constraints (excons)
	KeyDiff constraints
	KeyDepthLockDepth mappings

	Solving a master-key system
	Encoding physical properties
	Encoding desired properties
	Adding constraints
	KeyDepthLockDepth mappings
	Summary

	Optimizations already present in the compiler
	Simplifying lock definitions
	Using implication in defining ``stand-in'' variables

	Optimizing the conversion to SAT
	Implication vs equivalence in variable definition
	Different ways of formulating KeyDiff constraints
	Generalization of the old scheme
	``Direct'' definition scheme

	Reducing the number of decision variables
	Reformulating profile positions
	New profile formulation

	Summary

	Optimizing compiler internals
	Hinting assignments of variables
	Applying key shape hint

	Memory consumption and SAT variable storage
	Different SAT solvers
	Reasons for the chosen versions
	Unified SAT solver API

	Changing MiniSat's implementation of lbool

	Results
	Benchmarking setup
	Settings and configurations
	Configuration names

	Inputs
	Platform description

	Evaluation methodology
	Benchmark results
	Closer look at the effect of individual settings

	Evaluating changes to MiniSat implementation

	Conclusion
	References
	Specification
	Full results
	Glossary

