

Diploma Thesis

Czech
Technical
University in
Prague

F3
Faculty of Electrical Engineering
Department of Computer Science

An extension of Process Simulate
for optimization of robotic cells

Jan Dryk
Open Informatics

January 8, 2018
Supervisor: Ph.D. Přemysl Šůcha

i

ii

Acknowledgement / Declaration

First, and foremost I would like
to thank my supervisor Ph.D.
Přemysl Š̊ucha for his valuable
advice and suggestions while I
was writing the thesis as well as
for his time.

I would also like to thank Ing.
Libor Bukata for his kind help
with my research.

Last but not least I would like
to thank my colleagues, family
and friends for their patience and
support during the preparation of
this thesis.

I declare that the presented work
was developed independently and
that I have listed all sources of
information used within it in
accordance with the methodical
instructions for observing the eth-
ical principles in the preparation
of university theses.

I agree with the utilization of
the information presented in my
thesis pursuant to Copyright Act
121/2000 Coll., Sec. 60.

Prague, January 8, 2018

. .

iii

iv

Abstrakt / Abstract

Process Simulate od firmy
Siemens je pr̊umyslovým stan-
dardem v oblasti softwaru pro
návrh výrobńıch linek. Umožňuje
výrobc̊um plánovat a ověřovat
montážńı linku dlouho než
začneme stavět budovu. Tato
práce usiluje o to, aby uživatel̊um
pomohla zlepšit kvalitu svých
návrh̊u t́ım, že jim poskytne
rozš́ı̌reńı aplikace zaměřené na
optimalizaci. Toto rozš́ı̌reńı
poskytuje uživatelské rozhrańı
k zahrnutému optimalizačńımu
algoritmu, jehož ćılem je mini-
malizovat dobu cyklu a zároveň
zabránit koliźım. Nejprve roboti-
ckou buňku a operaci analyzuje
a poté upravuje operaci podle
optimálńıho řešeńı, které našel
optimizačńı algoritmus. Řešeńı
bylo navrhnuto modulárně, aby
mohlo být v budoucnu rozš́ı̌reno
o sofistikovaněǰśı optimalizačńı
algoritmy.

Process Simulate by Siemens is
the industry standard in the area
of assembly line design software.
It allows the manufacturers to
plan and validate an assembly line
long before breaking the ground.
This work strives to help the users
improve the quality of their de-
signs by providing them with an
optimization plugin. This plugin
provides a user interface to the
included optimization algorithm
which, aims to minimize the cycle
time while avoiding any collisions.
First, it analyzes the robotic cell
and the operation and then it ad-
justs the operation according to
the optimal solution found by the
algorithm. The plugin was built
with modularity in mind so that it
can be extended with more sophis-
ticated optimization algorithms in
the future.

1

2

Contents

1 Introduction 5

1.1 Motivation . 7

1.2 Related Work . 8

1.3 Contribution . 9

2 Problem Statement 11

3 MILP Model 13

4 Interface 17

4.1 Users Perspective . 17

4.1.1 Create a Study . 17

4.1.2 Inserting Components 18

4.1.3 Modeling . 18

4.1.4 Defining Kinematics 19

4.1.5 Robot Tools . 21

4.1.6 Positioning Robots . 25

4.1.7 Operations . 27

4.1.8 Detecting Collisions 30

4.2 Programming Interface . 31

4.3 Writing Plug-ins . 31

4.4 API . 34

4.4.1 TxApplication . 34

4.4.2 TxSelection . 35

4.4.3 TxApplicationEvents 36

4.4.4 TxOptions . 37

4.4.5 TxDocument . 38

4.4.6 Operations . 39

3

CONTENTS

5 Integration 41
5.1 Architecture . 41
5.2 Commands . 42
5.3 Optimization Process . 43

5.3.1 Simulation . 45
5.3.2 Graph . 47
5.3.3 Graph Builder . 47
5.3.4 Interpolator . 50
5.3.5 Generator . 52

6 Experiments 53
6.1 Performance Testing . 53
6.2 User Testing . 54

6.2.1 Interpolator . 55
6.2.2 Graph Builder . 55
6.2.3 Collision Analysis . 56
6.2.4 Operation Backup . 56
6.2.5 Optimization Process 57

7 Conclusion 59
7.1 Future work . 60

A Abbreviations 63

B CD Contents 65

4

Chapter 1

Introduction

Streamlined manufacturing process always been an important factor for the
success of a manufacturer in the market. Quality of the product, however,
does not necessarily lead to high profit, which is essential for the company
to grow. A product is profitable only if it can be produced with a lesser
production cost than market price. While the price is controlled by the
market, the cost is easier to positively influence. It can be influenced for
example by improving the efficiency of the manufacturing system. Mod-
ern manufacturing is highly automated and consists of robotic cells which
can produce parts even without an intervention of a human in some cases [1].

When developing a new product the engineers usually create a computer
model of the product and based on that they can build prototypes. After the
product is refined a different engineering team is tasked with designing an
assembly line that could mass produce the parts and assemble them together.

Currently, assembly lines are designed in a specific type of CAD soft-
ware, which allows the simulation of the full assembly sequence. This way
the engineers can validate correctness of the design including human factors,
as well as performance indicators like the production cycle time or lead time.
One example of such software is the Tecnomatix suite by SIEMENS. Tecno-
matix Process Simulate (see Figure 1.1) is an industry leading software for
digital manufacturing, used by the likes of Volkswagen or Samsung [2].

When designing an assembly line for a product the focus is on the success-
ful creation of the product, which in itself is no mean feat. Then searching
for the optimal layout of the robotic cell and schedule of the tasks that need
to be executed for the desired result is an superhuman task. That leaves a
lot of potential for computer assistance in this area.

The vision of the future, predicting the 4th industrial revolution (see

5

CHAPTER 1. INTRODUCTION

Figure 1.1: Process Simulate

Figure 1.2, was given a name ”Industry 4.0”. This term was popularized
by the German government when they recognized the value of innovation in
this field and started supporting the movement. Lasi et al. [3] also outline
two different directions Industry 4.0 projects can take. A technological push
which consists of further increasing mechanization and automation, digitiza-
tion and networking, and miniaturization. Or an application pull which has
mainly these areas: time to market, individualization on demand, flexibility,
decentralization and resource efficiency.

In the context of this work the last point is the most interesting. Re-
source efficiency is important for several reasons. For example the increase
of resource prices, government regulations as well as higher sensitivity to our
environment. Due to these, a more intensive focus on sustainability and ef-

6

CHAPTER 1. INTRODUCTION

Figure 1.2: Industry 4.0, by Christoph Roser at AllAboutLean.com

fectivity of the processes is required. The aim is an economic and ecological
increase in efficiency.

1.1 Motivation

As we touched in the previous chapter, optimization of manufacturing pro-
cesses is a fascinating field with a lot of potential.

Optimizing cycle time allows the manufacturer to produce more units in
the same time-span. That, in turn, increases the overall effectivity of the
factory and the passive resource usage per unit (lighting, heating, employ-
ees, etc.) in contrast to the active resource consumption (robot movement,
welding, etc.).

Cycle time, also known as production rate or period, corresponds to
a time interval (1/throughput) between two consecutively leaving work-
pieces. The duration of the start-up phase called a leading time in cyclic
scheduling is the total time required for the first work-piece to be processed
by the robotic cell, or in other words, it is a time difference between the
time the work-piece entered and the time it left the robotic cell. The cycle
time is typically shorter than the duration of the start-up phase, and as a
consequence, there is usually more unfinished work-pieces in the robotic cell
at once [4].

An alternative to optimizing cycle time is to optimize the energy usage
of the robots. Usually, it is possible to improve the energy usage without

7

CHAPTER 1. INTRODUCTION

increasing the cycle time. Even a small reduction in resource usage could
have an enormous impact on the finances of the company. For example in
the case of General Motors, their factories drew about nine terawatt hours
in the year 2015 [5]. According to Meike et al. [6], about 8% of the energy
used in the manufacturing plants is consumed by industrial robots. Assum-
ing consumer pricing of 10 cents per kWh even with 1 percent improvements
in energy efficiency this roughly equates to $ 720000 in potential savings. In
addition to that, the manufacturing business is also affected by government
regulations such as the plan of the European Union for energy savings [7]
which strive to reduce the emissions and resource usage.

1.2 Related Work

Theoretical optimization of processes in robotic cells, due to the remark-
able improvements, is not revolutionary. Due to its high usage of industrial
robots, optimization is often linked to the automotive industry. However,
the concepts translate to different kinds of industries. Moreover, all sorts
of factors can be optimized. For example, as shown by R. G. Fenton et al.
[8], the location of the robots in a robotic cell can have a profound effect
on the cycle time. It is possible to obtain the optimal position using a nu-
merical optimization routine and a kinematic computer graphics simulation
program.

Another approach to optimize the cycle time of robotic cells was shown
by Jiafan Zhang et al. [9]. In their research, the focus was laid mainly on
scheduling movement of robots with single or dual grippers. The throughput
of most dual-gripper robots can be improved using the method their team
has presented in this article.

Moreover, recently Edvin Åblad et al. [10] took a look at the practical
challenges of real assembly line designs. Rather than focusing on certain
parts of the robot movement, this group chose to tackle, collision resolution,
a different factor influencing the cycle time. Collisions, which are another
problem relevant to this thesis, are avoided by introducing synchroniza-
tion schemes among the robots. These synchronization locks are preventing
shared volumes of the workspaces to be simultaneously entered, which is a
safe way of avoiding issues. On the other hand, it also has a negative impact
on the cycle time. Edvin and the team show a new approach to maximizing
throughput while eliminating all synchronizations among robots.

With the collaboration with one of the top players in the automotive
industry, Davis Meike et al. [6] investigates potential energy savings on

8

CHAPTER 1. INTRODUCTION

robotic assembly lines for the automotive industry. Davis and the team
present two practical methods for reducing the overall energy consumption.
The methods entail the implementation of energy-optimal trajectories ob-
tained utilizing time scaling, concerning the robots’ motion from the last
process point to the home positions and reduction of energy consumption
by releasing the actuator brakes earlier when the robots are kept stationary.
Notable are also the results which were simulated based on input from a
real manufacturing plant. In the future, it’s likely that some manufacturers
might choose even to sacrifice cycle time to reach higher energy efficiency of
the factory.

Building on top of the work of Meike et al., a study by L. Bukata et al.
[4] focuses more narrowly on the energy optimization of industrial robotic
cells. They have devised a mathematical model, which takes into account
various robot speeds, positions, power-saving modes, and alternative orders
of operations. Furthermore, a mixed-integer linear programming formula-
tion is included, ready to be used. Due to speed concerns, they also created
a hybrid heuristic capable of utilizing multi-core processors. Experiments
show that theoretically, the energy consumption can be reduced by as much
as 20% merely by optimizing the robot speeds and applying power-saving
modes.

Anne-Laure Coiffier [11] wrote a thesis, which also focuses on the Tecno-
matix suite of tools. The goal of her work was to find an optimal schedule
for a given setup of a robotic cell and a set of operations. In comparison
to my work, her approach was to assign tasks to robots, whereas I consider
a fixed assignment and manipulate the speed of the robots. Her algorithm
performs a mapping of the operations to the given resources, taking into
account the material flow. The optimization was conducted by a Depth-
First Search algorithm with backtracking rather than ILP, suggesting that
a heuristic approach might be worth considering.

1.3 Contribution

Interfacing with a program capable of kinematic simulation, like Process
Simulate, can add a lot of value to the optimization process. Certain sub-
tleties of the domain are more straightforward to simulate rather than to
capture them in a mathematical model which could make it difficult to mine
it from the application and to compute the optimal solution. Moreover, due
to the diversity of the methods and objectives, which all lead to an improved
manufacturing process, I recognized that the plugin must be modular and
flexible enough so that the user can select different optimization cores fo-

9

CHAPTER 1. INTRODUCTION

cusing on a particular objective.

The main contribution of this thesis is the integration of an optimiza-
tion algorithm with Process Simulate so that optimization techniques can be
brought from the academia to the industry, into the hands of the engineers.
The plugin is developed as a foundation stone for future work. As such it
is designed to be extendable and reusable. The integration mainly focuses
on analyzing the designed robotic cell, setting up a generic optimization
process, introducing helpers to get more information from the system and
finally adjusting the robotic cell based on results of the optimization.

The work is divided into six chapters. The opening chapter introduces
the reader to the industry and defines the goals of the work. The second
chapter breaks down the problem at hand and establishes formal notation
which is used throughout the rest of the work. After that a MILP model
is devised which can be used with a generic solver to provide an optimal
solution minimizing cycle time. Then in chapter 4 I introduce Process Sim-
ulate and explain in detail its inner workings. The chapter after that focuses
on the plugin itself from features to architecture. This chapter is especially
important because the plugin is meant to be expandable and reusable for
future work. The Second to last chapter is dedicated to a formal validation
of the work. The MILP model is benchmarked, and the plugin itself is tested
by the users. And finally a conclusion is made with the recommendations
for future work.

10

ch:introduction
ch:problem_statement
ch:problem_statement
ch:milp_model
ch:interface
ch:integration
ch:experiments
ch:conclusion

Chapter 2

Problem Statement

The optimization problem of a robotic cell can be defined as follows. There
is a set of robots R = {1, . . . ,m} and a graph a graph G = (V,E,C) where
its vertices V are operations (welding, moving, painting, waiting . . .) and
edges represent relations between the operations.

Let V = {1, . . . , n}, then every operation i ∈ V is characteristic by
its minimum (di) and maximum(di) duration. Additionally, for each robot
r ∈ R I define a set Or, so that it contains all the operations assigned to it.
Each operation is assigned to exactly one robot, and this assignment means
that the robot will execute the operation.

Edges (i, j) in the edge set E represent the precedences between oper-
ations. Like vertices, an edge (i, j) also has several properties of its own.
Mainly, we recognize three different types of edges defined in typei,j . A robot
loop precedence which stems from the sequential order of the operations in
the robots schedule, a link which sets precedences between two operations
of different robots and last but not least a robot loop reset which starts the
next cycle. Another property of an edge is the delay Di,j ≥ 0 which is spec-
ifying that the following operation vto can start no earlier than Di,j seconds
after i has completed in the same cycle.

Finally, there is the collision set C which contains the pairs of operations
(i, j) ∈ V 2 : i 6= j that can’t be executed at the same time, as this would
result in a collision.

The goal of the optimization algorithm included in this work is to mini-
mize cycle time ω as defined it in Chapter 1.1.

For example the robotic cell in Figure 2.1 has only 2 robots and consists
of operations V = v1, . . . , v6, with robots having 3 operations each. Robot r1

11

CHAPTER 2. PROBLEM STATEMENT

has operations v1 (move around left corner), v2 (weld point 1), v3 (weld point
2). Naturally these three operations need to be performed in a sequence,
which is ensured by two robot loop edges which are marked red. When the
robot finishes with operation v3 he can start working on the next product
coming on the assembly line hence the green robot loop reset edge from v3
to v1. Likewise for robot r2. Figure 2.1 also shows a link edge which is
highlighted blue and shows that v2 must be finished before v5 starts. Let’s
say that the areas where v3 and v6 operate overlap (the points that are
being spot-welded are too close together) and they can’t be processed at the
same time. A new collision c ∈ C would be introduced in the graph so that
c = (v3, v6).

v1: move around left corner
————-

Duration: 1,564336
Robot: r1: kr310r2100

v2: weld point 1
————-

Duration: 2,33929
Robot: r1: kr310r2100

v3: weld point 2
————-

Duration: 1,564336
Robot: r1: kr310r2100

v5: weld point 3
————-

Duration: 1,493985
Robot: r2: kr210r3100

v4: move around right corner
————-

Duration: 1,724067
Robot: r2: kr210r3100

v6: weld point 4
————-

Duration: 1,493985
Robot: r2: kr210r3100

Figure 2.1: Graph generated from a simple robotic cell

12

Chapter 3

MILP Model

The input to the algorithm is a graphG = (V,E,C) where V is a collection of
vertices, E is a collection of edges, and C is a set of collision pairs of vertices.
These pairs could cause collisions if executed simultaneously, as described
in the previous chapter. For the purposes of the MILP model, we define the
following variables. We want to minimize cycle time ω. For operation i ∈ V
we define si as the start of the operation. Furthermore, s′i is a start time of
the same operation with respect to cycle time ω. The relation between si
and s′i is given by Equation 3.3 where qi is the index of the execution period.

Equation 3.4 specifies precedences of the operations. The duration is
split into the proposed duration di, and the wait time dwi . The wait time
specifies how long the robot waits after the operation is finished before start-
ing to work on the next operation. The duration di is constrained by its
lower bound di as well as its upper bound di. In this equation hij = 1 if the
edge is a robot loop reset, hij = 0 otherwise.

Equation 3.5 specifies the collision constrains. In this model, if there is
a collision between operation A and operation B, either A ends before B
starts or B ends before A starts, but they can’t be running simultaneously.

This is a cyclic scheduling problem with resource constraints, which in
our case are the collision zones. This problem is NP-Hard, as shown by
Hanen and Munier [12].

13

CHAPTER 3. MILP MODEL

min
ω

ω (3.1)

s.t. (3.2)

si = s′i + qiω ∀i ∈ V (3.3)

si + di + dwi = sj + hijω ∀i, j ∈ E (3.4)

s′i + di ≤ s′j + xijω ∀i, j ∈ C (3.5)

xij + xji = 1 ∀i, j ∈ C (3.6)

di ≤ di ≤ di ∀i ∈ V (3.7)

where: (3.8)

ω ∈ R+ (3.9)

si, s
′
i, di ∈ R+ (3.10)

qi ∈ Z+ (3.11)

xij , hij ∈ {1, 0} (3.12)

This model has many problems, mainly the multiplication of xij and ω,
therefore we use substitution to remove this multiplication of two variables
and simplify the model. In the next step the following substitution was ap-
plied: τ = 1

ω .

max
τ

τ (3.13)

s.t. (3.14)

siτ = s′iτ + qi ∀i ∈ V (3.15)

siτ + diτ + dwi τ = sjτ + hij ∀i, j ∈ E (3.16)

s′iτ + diτ ≤ s′jτ + xij ∀i, j ∈ C (3.17)

xij + xji = 1 ∀i, j ∈ C (3.18)

diτ ≤ diτ ≤ diτ ∀i ∈ V (3.19)

where: (3.20)

τ ∈ R+ (3.21)

si, s
′
i, di ∈ R+ (3.22)

τ ∈ R+ (3.23)

qi ∈ Z+ (3.24)

xij , hij ∈ {1, 0} (3.25)

And finally, after the last substitution Si = siτ , S′
i = s′iτ , Di = diτ ,

Dw
i = dwi τ the following is what is implemented in the plug-in.

14

CHAPTER 3. MILP MODEL

max
τ

τ (3.26)

s.t. (3.27)

Si = S′
i + qi ∀i ∈ V (3.28)

Si +Di +Dw
i = Sj + hij ∀i, j ∈ E (3.29)

S′
i +Di ≤ S′

j + xij ∀i, j ∈ C (3.30)

xij + xji = 1 ∀i, j ∈ C (3.31)

diτ ≤ Di ≤ diτ ∀i ∈ V (3.32)

where: (3.33)

Si, S
′
i, Di ∈ R+ (3.34)

τ ∈ R+ (3.35)

qi ∈ Z+ (3.36)

xij , hij ∈ {1, 0} (3.37)

At this stage, we have a linear MILP model which can be solved by most
modern MILP solvers. In this final form, I used the MILP model in the
optimization algorithm used in the plugin.

15

CHAPTER 3. MILP MODEL

16

Chapter 4

Interface

This chapter I’d like to acquaint the reader with Process Simulate, its inner
workings and the programming interface (API) which I used to develop this
solution. The reason I present this chapter is to familiarize the users with
the terminology and internal processes used in the next chapter (5). First I
will explain the tool from the users perspective which should help the user
better picture what we try to achieve and how. Then I will describe the
most relevant aspects of the API. I will also go through how to accomplish
the most common programming exercise, writing Process Simulate plugins.

4.1 Users Perspective

The usefulness of the Process Simulate application stems from its ability to
verify the feasibility of an assembly process before breaking ground. Val-
idating reachability and collision clearance is done by simulating the full
assembly sequence of the product and the required instruments [13]. Fig-
ure 1.1 shows a screenshot of the application.

To walk the readers through Process Simulate, I put together this rather
practical text. It includes helpful tips and instructions should the reader
want to follow along. While the Process Simulate tool isn’t widely available,
SIEMENS offers a similar application, RobotExpert, with limited function-
ality, to which this text is applicable as well.

4.1.1 Create a Study

To begin working with Process Simulate one first has to set up his workspace.
The content of every project is divided into two parts. A library and a study.
The library contains the models and specifics of the robots, tools, and oth-
ers, while the study includes information about a specific space, a robotic

17

CHAPTER 4. INTERFACE

cell perhaps, with instances of the models positioned within.

The first thing to create a project is to set up both your library and
create a new study. The library is set up at install time and will be shared
for all of your studies. Process Simulate will walk you through creating a
new study.

I advise after creating a study to turn on floor rendering by selecting
View >Screen Layout >Display Floor in the ribbon menu.

4.1.2 Inserting Components

You can insert a component by selecting Modeling >Components >Insert
Component in the ribbon menu. You will be prompted to select a folder
containing your model. The supported folders have a name ending with .co
or .cojt which signifies that they’re in the proper format.

When inserting a component for the first time, you may receive an error
saying that you needed to define its type. The fastest way to define a com-
ponent’s type is to enter the search commands and objects popup (Ctrl+F)
and search for a Define Component Type command. You will be prompted
to select a folder (the same folder as before) and then to choose the type
of the component. Types offered include a robot, gun, container, etc. The
component will be inserted at the origin point in the study.

4.1.3 Modeling

Process Simulate offers a modest kit of modeling tools. Most of the tools
are located in the Modeling tab. Before you can start creating geometries
you need to select a modeling scope. Modeling scope is a group to which the
created geometries will belong. You can select a modeling scope by selecting
the component and pressing Modeling >Scope >Set Modeling Scope. You
can have more than one component in a modeling scope, however, its rec-
ommended to end the modeling scope once you’ve finished altering it. You
can end a modeling scope similarly to starting it by pressing the Modeling
>Scope >End Modeling button.

Like any other CAD software, Process Simulate offers a suite of funda-
mental 3D modeling tools. In the Components group next to the familiar
Insert Component button, we can find commands for creating brand new
components and resources.

18

CHAPTER 4. INTERFACE

In the next tab named Layout, is mainly dedicated to tools for position-
ing the elements of the study. Notably, the placement manipulator dialog
can be accessed using a keyboard shortcut Alt+P. This group also contains
the Create Frame command for which there are several options how to spec-
ify a Frame. Frames are oriented points that specify a separate coordinate
system within the study, and they are crucial for defining, for example,
where do robots hold their tools and so on.

Finally, the Geometry group contains commands to create geometries
and unify/subtract them together.

4.1.4 Defining Kinematics

Definition of kinematics is the process of defining parts of the model and
linking them together with movable joints. It is done using the Kinematics
Editor, which you can see in Figure 4.1. This feature can be accessed using
the Modeling >Kinematics >Kinematics Editor command.

19

CHAPTER 4. INTERFACE

Figure 4.1: Kinematics Editor

In the Kinematics Editor, the first button (Create Link) will allow you
to select all the geometries that belong to a single part. Once there are
multiple parts defined a joint can be established by dragging a mouse from
a source part onto a destination part. This order is significant in the defini-
tion of the joint. The source part will stay stationary while the destination
part, to which the arrow is pointed, will be the one moving. As a next step,
it is necessary to define the axis of the movement and its limitations. Once
defined the joint can be tested in the Joint Jog dialog.

20

CHAPTER 4. INTERFACE

4.1.4.1 Poses

A component or a resource can have several predefined poses. A pose is just
an assignment of values for each joint which controls how rotated the joint
is. Poses can be specified using the Pose Editor dialog that has a button
in the Kinematics group. You can see the Pose Editor in Figure 4.2. Fig-
ure 4.3 shows how to define an new pose.

Figure 4.2: Pose Editor

Figure 4.3: New Pose

4.1.5 Robot Tools

We can define a tool for a robot as a component. Each tool type has a set
of specific conventions that need to be followed for the application to know

21

CHAPTER 4. INTERFACE

how to work with this tool.

Each gun type tool needs at least two frames. A mounting frame and an
effector frame. These can have arbitrary names. However, we will have to
configure the robot to know which frame to use as an effector and which as
a mounting frame. The Mount frame function specifies where and at what
angle will the tool be connected to the robot. Effector frame specifies where
and what angle should the tool touch the product.

4.1.5.1 Spot Welding Tool

Each tool type has a few different quirks of its own. The specific part about
a spot welding gun is that it needs to have defined three poses to help the
application generate a clamping animation. These poses need to be named
exactly HOME, OPEN, SEMIOPEN and CLOSE. Even though it doesn’t
fit grammatically CLOSE is correct without the N at the end, and doesn’t
work otherwise.

4.1.5.2 Tool Definition

Another step in creating tools is to define it as a tool. We have already
marked the component as a Gun, Gripper or another tool type, but we still
need to assign a TCP. TCP stands for Tool Center Point, and it is a frame
where the tool affects the product. This dialog, shown in Figure 4.4, can be
accessed using the Modeling >Kinematics >Tool Definition command.

22

CHAPTER 4. INTERFACE

Figure 4.4: Tool Definition

4.1.5.3 Mounting

Now the tools are ready to be mounted. We can do so using the mount
dialog which can be accessed from the context menu (Right Mouse Button)
on the specific robot we want to mount the tool on and select Mount Tool.
A dialog will be presented, as shown in Figure 4.5. Here, we need to spec-
ify what tool we need to mount, using which frame, on which robot and
on which frame of the robot respectively. Sometimes not all of the frames
owned by the tool are displayed under the combo box. If this is the case
enter modeling scope of the tool using the Set Modeling Scope command
and all the frames should now appear.

23

CHAPTER 4. INTERFACE

Figure 4.5: Mount Tool

The second the two fields are related to the robot and should be pre-
populated with the correct information. If for some reason the robot wasn’t
well defined and doesn’t contain a default tool frame you can set it here.

4.1.5.4 Robot effector frame

Last but not least we need to make sure the robot knows which frame to
use to alter the product. We can do this from the Robot Properties dialog
which can be accessed from the context menu of the robot by selecting the
command with the same name. Here we set the TCP frame equal to the
tools TCP frame. In Figure 4.6 is a screenshot from this dialog of a correctly
configured robot.

24

CHAPTER 4. INTERFACE

Figure 4.6: Robot Properties

4.1.6 Positioning Robots

There is nothing special on positioning robots as far as the basics go. Robots
can be placed manually using the Placement manipulator as any other com-
ponents or resources. For robots, however, Process Simulate includes several
beneficial tools. All of these tools are located as usual in the ribbon menu,
in the Robot tab. I’d like to note a pair of them.

4.1.6.1 Smart Place

The Smart Place feature is located under Robot >Reach >Smart Place. It
allows to quickly find places from which the specified robot will be able to
reach all the specified points. The feature works by making a grid around
the robot and doing a reachability test for all the points in the grid. Afore-
mentioned grid can be seen in Figure 4.7.

25

CHAPTER 4. INTERFACE

Figure 4.7: Smart Place

4.1.6.2 Reach test

The Reach Test feature can be found under Robot >Reach >Reach Test.
This feature allows testing given a robot and points out which operations he

26

CHAPTER 4. INTERFACE

can or can’t reach out of a specified list of operations. Figure 4.8 pictures
the dialog controlling the feature.

Figure 4.8: Reach Test

4.1.7 Operations

Operations are a way of defining movement for the robots. The main view to
interact with operations through is the Operations Tree panel. Operations
have a root node and form a tree structure by nesting. The leaves of this
tree we call points because they signify the individual locations in 3D space
that the robot must visit. One layer above are operations which are linked
to a robot and encompass a list of points. All the layers above are for logical
grouping. Although there are many types of operations, the best example
of this is a Compound Operation that makes up most layers above paths,
including the root.

Commands for working with operations can be found on the Operations
tab. Some common operation commands are on the Home tab. However,
the Operations tab contains those and more, which are necessary when cre-
ating welding operations.

27

CHAPTER 4. INTERFACE

4.1.7.1 Compound Operation

Compound Operation is a very simple but an essential building block. It
allows for grouping operations into a larger block and more importantly
managing when and how long will each suboperation run. It enables to run
multiple child operations at the same time or having one operation start
after another, even composing intricate timelines.

To start managing the timeline the operation needs to be set as a current
operation. You can select an operation by highlighting it in the Operations
Tree and selecting Set Current Operation from the mouse context menu or
using the keyboard shortcut Shift + S.

Process Simulate will then populate the Sequence Editor panel (see Fig-
ure 4.9) with information about the newly set current operation.

Figure 4.9: Sequence Editor

The order of operations within a compound operation can be reordered
by dragging and dropping inside the Operations Tree panel. This order is
merely for convenience as it doesn’t affect the order of execution. For this,
we have the Sequence Editor. In this panel, each operation is represented
by a blue bar next to the operations name in the left list. These bars are
draggable and represent the start, the duration and the end of the operation.

28

CHAPTER 4. INTERFACE

4.1.7.2 Device Operation

Device operation moves a robot to a specific pose. Which robot and into
which pose should it move needs to be specified when it’s being created.
This operation is mainly useful for returning robots into their home posi-
tion so they can be ready for the next product after finishing work on the
current one.

4.1.7.3 Object Flow Operation

Object Flow Operation moves an object from one place to another. Process
Simulate will present a dialog asking for a start frame, and an end frame
(from and to) should the object be moved, similarly to other operations.
This operation is unique by not having to be assigned to a robot.

4.1.7.4 Spot Weld Operation

Spot welding in Process Simulate is separated into two parts: picking weld
points, and combining weld points into weld operations. Spots on the prod-
uct that is to be spot welded need to be designated for welding. This can be
done using the Process >Discrete >Create Weld Point by Pick/Coordinates
command. Clicking Create Weld Point by Coordinates will present a dialog
where one can fill coordinates and select on which part the weld will hap-
pen. On the other hand Create Weld Point by Pick will change a cursor and
allow the user to pick points in the study where to weld. These points don’t
yet have a part associated with them so Process Simulate can compute a
perpendicular angle from the part’s surface and correctly guide the robot.
Unassociated points can be projected on a surface of a part using the Project
Weld Points command in the same command group. The user will be again
presented with a dialog to select all the weld points to be projected and a
list of parts to project them onto.

Once each point is created and projected on a part, an operation will
appear for it. This is where the second part comes in. We need to create a
weld operation (Operation >Create Operation >New Operation >New Weld
Operation), specify a robot to do the welding and populate its weld list.
That is a list of the individual weld point operations we just created in the
first part. The robot will then go in order of the atomic operations inside
of the weld operation and process the points.

29

CHAPTER 4. INTERFACE

4.1.8 Detecting Collisions

Now that we defined our operations we can talk about simulating operations
and detecting any problems that might occur when using that operation in
the real world. We are already familiar with the Sequence Editor panel, of
which will take further advantage. Furthermore, we’ll explore the Collision
Viewer panel which is located in the same area. Using the Collision Viewer
panel (see Figure 4.10) we need first to define what collisions to check. Col-
lision checking is a time-consuming process, so the fewer checks we have
defined, the faster the simulation will go.

Figure 4.10: Collision Viewer

To specify a new check, we use the New Collision Set command which
can be invoked by the first button in the Collision Viewer panel. You will be
prompted to fill in for collisions of what objects with which objects (usually
the robot and the product as depicted in Figure 4.10). Note the Collision
Options command on the Collision Viewer ; the dialog contains options from
tolerances to stop the simulation when a collision is detected. Last but not
least we need to make sure we have Collision Mode enabled. This option is
controlled by another button in the Collision Viewer panel.

After we set up our collision detection, we can run the simulation. We
can do so from the Sequence Editor by clicking the friendly looking play
button. A simulation will now start moving the robots and when a collision
happens a beep sound will be played unless configured otherwise.

30

CHAPTER 4. INTERFACE

4.2 Programming Interface

Programming for SIEMENS Tecnomatix Process Simulate was initially de-
sirable, as it exposes a Microsoft .NET Framework compatible API. This
allows developers to choose any of the many .NET languages to create Pro-
cess Simulate plugins, including but not limited to C#, C++, F#, Visual
Basic, Iron Python. All the code in this work is written in C#.

4.3 Writing Plug-ins

Any .NET assembly can be a Process Simulate plugin, as it only looks at
the contents. A class library project is ideal for this as there is no benefit
for any other project type. For Process Simulate to pick up the assembly,
it should be located in DotNetCommands or DotNetExternalApplications
directories and registered with the application. These directories and any
following paths are relative to the programs installation directory. Typically
this would be C:/Program Files/Tecnomatix 13.0/eMPower , but might
differ based on the user’s choice at install-time.

To register an external application or a command with Process Simulate,
we need to use a utility CommandReg.exe which comes with the application.
When you launch the program a dialog, similar to the one presented in Fig-
ure 4.11, will appear. In this dialog we select the compiled file, we want to
load, pick the commands located in the assembly and choose a filename for
the configuration XML file which will be newly created. This XML allows
the settings to be moved between computers easily.

31

CHAPTER 4. INTERFACE

Figure 4.11: CommandReg Utility

After we registered our commands, we need to configure our workspace
to be able to use them. More specifically, we need to choose where the appli-
cation should display buttons for the commands in the ribbon menu. This
can be achieved by right-clicking the ribbon to invoke the context menu and
selecting the Customize Ribbon option as shown in Figure 4.12. A dialog like
you see in Figure 4.13 will appear where the user can add new commands
to the ribbon and customize the layout. The newly registered actions will
appear in the list. Unfortunately, there is no grouping available. Therefore
the best option is to look for the exact names in the alphabetically sorted list.

32

CHAPTER 4. INTERFACE

Figure 4.12: Customize the Ribbon

Figure 4.13: Add commands to the Ribbon

Next, we will look like at how to code new commands so that Process
Simulate would recognize them. For this, we first need to include a refer-
ence for the main dynamically linked library Tecnomatix.Engineering.dll
. Writing plugins for the application revolves mostly around this one library,
as it contains all the classes used to interact with the application. There
are multiple types of commands which are recognized by Process Simulate.
They are named based on the UI elements they represent and range from

33

CHAPTER 4. INTERFACE

buttons to combo boxes. Most commonly used command type is the but-
ton, which Figure 4.14 shows implemented. To create a button command we
have to create a new class and inherit the TxButtonCommand abstract
class. After the user clicks the button, the Execute method will be
invoked, where we put our business logic.

Figure 4.14: Example Command

public class MyCommand : TxButtonCommand

{

public override String Category { get; } = "My Category";

public override String Name { get; } = "My Command";

public override void Execute(Object cmdParams)

{

}

}

4.4 API

This section is dedicated to acquainting the reader with the most important
classes in the Tecnomatix.Engineering.dll library. It is not the only library
available for the plugin developers, but apart from edge-cases it’s the only
one developers need. It allows developers to extract information from the
application instance that loaded the plugin and currently the opened project.
It includes routines to control some of the functions of the application.

4.4.1 TxApplication

TxApplication is a static class which serves as the main entry point to the
application. This class can be readily described as the root of a tree. It
holds instances of sub-services in its static properties bound to the current
application instance. It also contains routines which control application
specific behavior. In Figure 4.15 I picked out the most important properties
and presented their signature, as I believe that for a person with development
experience this is the most valuable information, and the easiest to imagine.

34

CHAPTER 4. INTERFACE

Figure 4.15: TxApplication API

public sealed class TxApplication

{

public static TxDocument ActiveDocument { get; }

public static TxSelection ActiveSelection { get; }

public static TxApplicationEvents ApplicationEvents { get;

}↪→

public static TxOptions Options { get; }

public static string StatusBarMessage { set; }

public static void RefreshDisplay()

}

• ActiveDocument is the pivotal property of this object. It contains
information about the currently opened study and allows the plugin
to manipulate it. The features of this object are described in Chap-
ter 4.4.5, which talks about the TxDocument type.

• ActiveSelection allows the plugin to see what the user selected or
modify the selection. This feature is especially useful when used as
part of the plugins user interface, allowing the user to pick inputs for
the plugin by selecting them in the application.

• ApplicationEvents property provides binding actions to important
application events. Chapter 4.4.3 goes into more detail about how to
use this property.

• Options contains a hierarchy of objects used to retrieve and set ap-
plication options. These mimic the options found in the Settings
dialog of the application. Chapter 4.4.4 goes into more detail.

• StatusBarMessage is a simple String. Modifying this property will
make the text appear in the status bar area of the application. It is a
simple, but effective, way to communicate with the user unobtrusively.

• RefreshDisplay() causes all panels in the application to redraw using
the latest data.

4.4.2 TxSelection

The TxSelection class controls the current selection. All different kinds
of items can be selected simultaneously. For this reason, the API includes
this specialized class allowing the developers to interact with all kinds of
selections fairly easily. In Figure 4.16 I prepared a filtered definition of the
class.

35

CHAPTER 4. INTERFACE

Figure 4.16: TxSelection API

public sealed class TxSelection{

public void Clear();

public void AddItems(TxObjectList items);

public void SetItems()

public void RemoveItems()

public ITxObject GetLastPickedItem();

public TxTransformation GetLastPickedLocation();

public TxObjectList GetPlanningItems();

public TxObjectList GetAllItems();

public TxObjectList GetOrderedItems();

public event TxSelection_ItemsSetEventHandler ItemsSet;

public event TxSelection_ItemsAddedEventHandler

ItemsAdded;↪→

public event TxSelection_ItemsRemovedEventHandler

ItemsRemoved;↪→

}

• GetOrderedItems() gets the objects that are currently selected. In
addition to that, this routine returns only the loaded objects, in their
engineering representation in the order they were selected.

• GetAllItems() returns the same information, but does not guarantee
order.

• GetPlanningItem() returns planning representations like TxPlan-
ningPart or TxPlanningResource , in contrast to the aforementioned
routines which return engineering representations like TxRobot or
TxComponent .

• GetLastPickedLocation() returns coordinates of the last picked object.

4.4.3 TxApplicationEvents

The TxApplicationEvents class wraps multiple application events. The
events include the closing of the application which the plugin can use to
clean up temporary resources. The application exit request can also be in-
tercepted should the user have some unsaved work in the plugin. You can see
the class definition in Figure reffig:CodeTxApplicationEvents. Additionally,
Figure 4.18 shows how the events in this class are used.

36

CHAPTER 4. INTERFACE

Figure 4.17: TxApplicationEvents API

public sealed class TxApplicationEvents

{

public event TxApplication_ExitingEventHandler Exiting;

public event TxApplication_ExitRequestEventHandler

ExitRequest;↪→

public event TxApplication_ExitingEventHandler Closing;

}

• Exiting Occurs when the application is about to exit.

• ExitRequest Occurs before the application is about to exit. To reject
the request to exit, specify false for the Approve field of the
event arguments.

• Closing Occurs when a project is closed.

Figure 4.18: TxApplicationEvents Usage

class Demo()

{

public Demo()

{

TxApplication.ApplicationEvents.Exiting += (sender, e)

=> {↪→

Save();

};

TxApplication.ApplicationEvents.ExitRequest +=

(sender, e) => {↪→

e.Approve = !unsavedWork;

};

}

}

4.4.4 TxOptions

The TxOptions provides access to the application options as they mirror
the options in the Options dialog. These options include collision check-
ing configuration, units used, simulation and so on. Please note that spot
welding options aren’t available in RobotExpert, only in Process Simulate.

37

CHAPTER 4. INTERFACE

Figure 4.19 shows the usage of and points out the option I found the most
useful. It ensures the simulation player stops playing when it reaches the
first collision.

Figure 4.19: TxOptions Usage

TxApplication.Options.Collision.StopOnCollision = true;

4.4.5 TxDocument

The TxDocument class represents a study. When talking about the
TxApplication.ActiveDocument object this would be the currently open
study. Under the document, we can find all physical objects, operations,
manufacturing features, and robotic programs. It also facilitates access to
objects that have a single instance per document.

Figure 4.20: TxDocument API

public sealed class TxDocument

{

public ITxOperation CurrentOperation { get; }

public TxOperationRoot OperationRoot { get; }

public TxPhysicalRoot PhysicalRoot { get; }

public TxMfgRoot MfgRoot { get; }

public TxCollisionRoot CollisionRoot { get; }

public TxSimulationPlayer SimulationPlayer { get; }

}

• OperationRoot is the root of the operation tree

• PhysicalRoot is the root of the physical object tree

• MfgRoot is the root of the manufacturing features tree.

• ColisionRoot is the root of the collision pairs. It is used to determine
where the workspace currently contains a collision.

• SimulationPlayer is used to simulate operations and events. At any
given moment there is a single, current simulation player, with which
all commands and viewers work.

38

CHAPTER 4. INTERFACE

4.4.6 Operations

Operations in Process Simulate inherit the ITxOperation interface. When
they have children, as all operations except on the point level do, they also
implement the ITxObjectCollection interface which serves as a nongeneric
List specific to the Process Simulate .NET API. All operations have a name
and a description.

4.4.6.1 TxOperationRoot

This class is the root of all operations. Its children are usually of type
TxCompoundOperation . We can query all children with the GetAllDe-
scendants() or GetDirectDescendants() methods. Operations can’t be
created using the new keyword invoking a constructor. To create a new
operation use the CreateXOperation() on a class that implements ITx-
OperationCreation , like for example TxOperationRoot . The X in Cre-
ateXOperation() is the specific operation type you are trying to create, and
the classes contains methods for all operation types. For example, if we
wanted to create a GenericRoboticOperation we would use the Cre-
ateGenericRoboticOperation method. The created operation still needs to
be inserted into a specific place in the operation tree.

Figure 4.21: TxOperationRoot API

bool CanCreateXOperation()

TxXOperation CreateXOperation(XCreationData creationData)

GetDirectDescendants(ITxTypeFilter filter)

GetAllDescendants(ITxTypeFilter filter)

//usage:

TxCompoundOperation newOperation

=TxApplication.ActiveDocument.OperationRoot.CreateCompoundOperation(newTxCompoundOperationCreationData("name"));↪→

foreach (ITxOperation op

inTxApplication.ActiveDocument.OperationRoot.GetDirectDescendants(newTxNoTypeFilter()))↪→

{

}

4.4.6.2 TxCompoundOperation

This operation groups a set of operations (its children) into a logical group.
They can also specify dependencies and offsets within the parent.

39

CHAPTER 4. INTERFACE

4.4.6.3 TxContinuousRoboticOperation

This path operation contains an ordered list of points. It has a robot assigned
which will carry out the whole sequence of the points. In the object model,
it contains a set of child links, each having a reference to a source and target
operations. These links are read only but can be read and manipulated
using the GetChildAt() and MoveChildAfter() functions. Timing
offsets and durations are read-only which are captured after a simulation.
Changing operation speeds won’t recalculate this value, a new simulation
needs to be performed.

4.4.6.4 TxRoboticViaLocationOperation

This operation is used to avoid obstacles since a normal operation goes for a
direct approach to the target point which can result in collisions. It simply
navigates the robots head to a designated point.

4.4.6.5 TxObjectFlowOperation

This operation is used for moving products from one location to another.
The operation specifies how the object is supposed to be gripped with
GripFrame (= TxFrame) and GripFrameType (= Geometric-
Center) properties. The product will be moved through points specified by
objects of type TxObjectFlowLocationOperation that are children of the
operation (as IEnumerable).

40

Chapter 5

Integration

This chapter focuses on the plugin, how it works and how it was developed.
Here I will walk the reader through the integration I implemented, its fea-
tures, how I achieved it and the reasoning behind the design. First of all, I’ll
go through the general architecture of the solution, then explain the features
this work brings and then deep dive into the essential part, the optimization
process.

5.1 Architecture

The plugin is written in Microsoft.NET Framework using C# in Microsoft
Visual Studio 2017. I chose this language out of all the possibilities compati-
ble with the Tecnomatix API because I like the enterprise strategy Microsoft
has taken with it. As such it pushes the users to write scalable and main-
tainable applications. I used the best practices in the industry to push the
boundaries of readability of the code and straightforward extensibility as
this was one of the goals.

The user interface of the plugin, which is just a few dialogs, is built using
WPF (Windows Presentation Foundation). This technology is the state of
the art for building UI on the Microsoft Windows operating system. It uses
an XML based language called XAML to define the object tree of the UI el-
ements. It supports hardware acceleration, animations, data templates and
more out of the box. With each component, there isn’t only a XAML file
but also a so-called ”code-behind” file which is standard C#. In the code-
behind, we can use code to specify behavior which the XAML language can’t
express, or it would be too verbose.

WPF is tightly bound together with the MVVM architectural design
pattern which was developed by Microsoft employees specifically for WPF.
It was since recognized by the developer community as a significant pattern

41

CHAPTER 5. INTEGRATION

in UI design and ported to many other languages and frameworks. The
MVVM pattern says that Views, which we can think of as screens or dia-
logues and correspond to the WPF components, are controlled by so-called
View Models. This way we can have multiple Views for different screen
sizes or places in the application, but share the same business logic which
is located in the View Model. View Models also bind the Models and the
Views together. Models hold our data which the Views present to the user.

One thing the pattern doesn’t talk about, but can’t live without are
services. Service is a part of the functionality which provides access to or
implements capabilities of the application which the business logic can then
use. There are multiple ways to define services, depending on the content
and needs of the application. The simplest way is to define services as static
classes. That is only possible if the services don’t need configuration. If
they do, the standard way of handling this problem is to use dependency
injection to manage our services. Business logic specifies its dependencies
and an IOC container will inject them. We call this principle Inversion of
Control (IOC) because the business logic is no longer in control and only
specifies its requirements which the container aims to satisfy. In this model,
it’s the responsibility of the IOC container to manage the configuration and
in some cases auto-discover the services. The last recommendation is to use
interfaces for services so that the business logic isn’t dependant on a single
implementation and the IOC container can choose between different imple-
mentations the one best suited for the situation.

While in this work I chose to go the purer route of static services as I
didn’t have any advanced requirements I’d like to exhibit an example of this
good practice from an external code-base. Instead of using a MILP solver
directly, tying the code to a specific implementation like Gurobi [14], I used
an abstraction over MILP solvers in general. Because of this I could use
an open-source solver like LP SOLVE [15] or Google OrTools [16] and have
confidence that when a more complicated MILP model comes, the solver
can be quickly swapped for a more sophisticated solver like Gurobi [14] or
CPLEX [17].

5.2 Commands

In the previous chapter, I described what a command is, how to develop
them and how to add them to the ribbon menu. Installing this plugin into
Process Simulate will allow the user to add commands contained in this
assembly onto his command bar. The following commands are a part of the
plugin.

• Clone Operation. After selecting an existing operation and setting it

42

CHAPTER 5. INTEGRATION

as active, invoking this command will create a deep copy. The same
function will be used for optimization backup. Therefore it’s an excel-
lent way to test if the backup is going to meet quality standards. It
can also be used to create clones for experimentation without disturb-
ing the primary workspace. This capability was implemented using
the internal API used for the drag & drop functionality of Process
Simulate.

• Optimize Operation. This command is the entry point to the main
functionality of the plugin. It displays a dialog to configure and start
the optimization process. The process is described in detail in a forth-
coming section.

• Analyze Collisions. This command will run a simulation which ana-
lyzes collisions each time-frame. The output of this process is a list of
operations that caused collisions which will be displayed on the screen.
In contrast to the functionality included in Process Simulate that only
provides the user with information about colliding objects.

• Operation Report. This command will run a simulation which analyzes
the active operation and its descendants and produces read-outs of the
data. First, a report outlining the energy usage of every robot at every
time-frame. Second, a report exposing joint speeds and accelerations
of the different robots at every time-frame and finally a report showing
the current robot settings. Then the user will be offered to pick file
locations to where csv files with these three datasets should be created.

• Show Optimization Graph. This command strives to demonstrate what
the optimization graph looks. It uses the GraphVisualizationService
class to construct a model of the operation identical to the one used
by the optimization process. It serializes this instance to a Graphviz
format and uses dot.exe to draw it to an image. Graphviz [18] needs
to be installed on the local machine and the dot.exe executable must
be in the path for the image to get produced.

• Interpolate Speed. This command uses the operation OperationDura-
tionInterpolator class to adjust the speed of the operation to match
the specified duration. A point operation must be active, and the
duration must lie within the maximum and minimum duration attain-
able.

5.3 Optimization Process

The optimization process consists of the main optimization routine and sev-
eral modules that provide the required functionality for the algorithm which

43

CHAPTER 5. INTEGRATION

then glues it together. This chapter will first explain the optimization pro-
cess and then focus on the supporting modules in the sub-sections.

Figure 5.1: Optimization Dialog

The user first triggers the optimization dialog (see Figure 5.1) by clicking
on the Optimize button provided by the plugin. The dialog allows the user
to adjust parameters of the optimization process. First, the system presents
him with the operation which should be optimized, which is the operation
he had currently set the as the active operation so that he has a chance to
adjust this before starting the optimization process. In the following text, I
will refer to this operation as the root operation. The user is also presented
with the choice to optionally backup the operation which will create a copy
of the root operation and then set the duplicate as the new root. Setting a
specific cycle time in seconds will make the MILP model try to match the
cycle time instead of minimizing it. Lastly, the debug option can provide
the user with additional information from the MILP solver, explaining the
solution, should he have troubles with the proposed schedule.

The dialog uses the optimization service which is implemented in the
OptimizationService class located in the Tecnomatix.Optimization.Ser-
vices.Optimization namespace. This service is responsible for the main
optimization flow described below. The service has one dependency, and
that’s an optimization provider (IOptimizationProvider). In this thesis
I included an optimization provider which uses the MILP model defined in
Chapter 3 which optimizes cycle time. It is implemented in the De-
faultOptimizationProvider class and the service mentioned above defaults
to this provider. It can also be swapped out for a different provider which
implements the IOptimizationProvider interface for example for a dif-
ferent criteria function.

44

CHAPTER 5. INTEGRATION

When started, the optimization process will first aim to gather data
about the root operation. It will first simulate the behavior of the root op-
eration while the robots are set to maximum and minimum speeds to obtain
the minimum and maximum duration of the individual child activities.

Then an optimization graph is built by analyzing the operation tree.
This graph is also augmented with the information about the simulation
and any initial collisions the process might have encountered. After this
initial batch of data is gathered the optimization cycle can start. In this
loop, the graph is given to a solver which proposes a solution. The process
adjusts the root operation to match the proposed solution, and the result
is simulated. If there are no collisions, we have the best viable solution,
and the cycle ends. Otherwise, we advance to the next round. To prevent
an infinite loop, this can only be repeated a limited amount of times. This
constant is defined in the OptimizationService class.

When the process finishes the system will display a helpful report (see
Figure 5.2) presenting the most important information about the solution
to the user. In the header the cycle time can be found and the body is filled
with a graphical representation of the schedule.

Figure 5.2: Optimization Result Dialog

5.3.1 Simulation

The simulation module is a wrapper around the kinematic simulation capa-
bility of Process Simulate. It is meant to help with obtaining data about the
study which can only be measured. The simulation services are placed in
the Tecnomatix.Optimization.Services.Simulation and revolve around
the Simulation class. All new simulations must derive from this class
and then can be easily executed. The engine also supports executing multi-
ple simulations simultaneously.

To run a simulation, the system needs an operation as an input. Pro-
cess Simulate will block the UI and compute the movement of the robots
in the scope of the given operation, frame by frame. While simulating the
player fires events, which the specific simulation can choose to subscribe to
if they are relevant for its purpose. Usually, as the playback progresses, the

45

CHAPTER 5. INTEGRATION

simulation will store some data which when processed will form the output
values. Events available range from the simulation being started or ending,
operations beginning and ending to the individual time intervals at which
the locations of all the objects within the study are computed.

A report is a specialized type of simulation. This simulation gathers
data while the simulation is in progress and processes them. This data can
then be exported into a csv file. Reports are useful for debugging or gaining
insight into the performance of the activities within the study.

The plugin comes with the following simulations implemented:

• Collision Simulation. This simulation is checking every frame if there
is a collision between the specified collision pairs. The collision pairs
can be adjusted in the Collision Viewer panel in Process Simulate.
The simulation will also track down the responsible operations which
controlled the parts that collided. This is done by assigning to each
operation a set of objects which can be moved by the operation and in-
tersecting them with the set of objects that collided. It is assumed that
a collision can happen only between two operation controlled objects,
otherwise this is a fault of the robotic cell design which optimization
can’t fix and the collision is ignored.

• Energy Report. This report captures the simulated energy usage of the
robots. Please note that the readings are only as accurate as the robot
controller and using a dedicated controller from the manufacturer of
the robots is recommended as the readings given by the default robot
controller are inaccurate.

• Joint Speed Report. This report captures the speeds of the joints of
the robots while performing the various tasks engulfed in the robotic
operation.

• Duration Simulation. To capture how long it will take for a robot to
perform the operation it is first needed for a simulation to run. This
information will be captured by Process Simulate afterward, but if
any changes happened to the study, it might be inaccurate. For this
reason, to obtain accurate readings, this simulation will capture the
durations right after the simulation finishes. It is also able to adjust
the speed of the robots before running the simulation and restore the
original values when done.

• Operation Speed Report. This report extracts the speeds the robots
are set to run at while executing the particular operations.

46

CHAPTER 5. INTEGRATION

5.3.2 Graph

The heart of the optimization process is a model of the problem. We defined
this model in Chapter 2 and the optimization graph is just a set of entities
capturing it in code. The OptimizationGraph class represents the
graph as a whole. The vertices and edges also have their classes, those are
OptimizationVertex and OptimizationEdge respectively. Properties
of all of the classes correspond to what we defined in Chapter 2.

On top of holding data, the OptimizationGraph class also contains
methods for serialization (JSON) and visualization of the graph. Out of the
box, there are two visualization options available.

• Graph View. Presented in Figure 2.1, this view is the natural view of
the graph. It shows all the edges, vertices, and values of the major
properties. This view can be generated by the ExportDiagram
method and uses the QuickGraph library for Microsoft .NET to se-
rialize the nodes and relations into a Graphviz [18] dot format. The
Graphviz library, specifically the dot.exe executable is used to turn
the graph description into a picture. I chose the Sugiyama-style [19]
hierarchical layout, implemented in the Graphviz library, due to the
good quality of the results.

• Schedule View. Presented in Figure 5.2, this view focuses on the pro-
posed solution. It visualizes the times and durations of the individual
operations. In this view, the y-axis shows the different processing units
(robots) and the x-axis plots time. It can be generated by the Ex-
portTimeline method and the diagram is constructed in the HTML
format, each operation corresponding to a div element with absolute
positioning which is calculated based on the proposed duration, pro-
posed start, and the index of the robot associated with the operation.
It can be displayed in a dialog by an embedded web browser.

5.3.3 Graph Builder

Putting together the optimization graph which serves as the model of the
study is one of the most fundamental aspects of the optimization process. It
takes a compound operation as an input and traverses all of its descendants
transforming it into a flat structure. It also has to analyze the dependencies
of the operations and how would it operate in a production cycle.

This functionality is being provided by the GraphVisualizationService
which is located in the Tecnomatix.Optimization.Services namespace.
It can generate a graph either at bottom-most level of points or one level
higher, at the level of paths. For the optimization process used in the point

47

CHAPTER 5. INTEGRATION

level graph we use the point level graph.

First, the optimization graph is filled with vertexes which are the chil-
dren of the root operation lying at the desired level, grouped by the robot
which is assigned to perform them. In each group, the operations are ordered
and a so-called ”robot loop” is created, by linking the operations together
in pairs, each one with the next. One exception to this rule is the edge
between the first and the last operation, which are linked by a ”robot loop
reset” edge instead.

The hardest part of the graph creation are the ”link” edges which can
appear at any level in the operation tree. Since we are flattening the tree
into a graph, we need to project them into this new structure. This process
is different whether we flatten to the level of paths or points.

Let’s say that descendants(x) is a function which returns all descendants
on the level of paths (for example on Figure 5.3, if Operation 1 was given as
an input to this function, output of the function would be only the children
in the frame ”Paths”). Next we need to define the function first(x) which
returns the first child (a point) of path x and last(x) returns the last child
of x.

In the first case, it is possible to just find all the descendants at the
level of paths of the source of the link l = (source, target) and of the tar-
get of the link. Then we compute the Cartesian product of these two sets
S = descendants(source), T = descendants(target), P = S × T . For each
item in the set ∀(from, to) ∈ P we create a new link of type ”link” which
leads from the vertex source to the vertex target in the graph. These nodes
are guaranteed to exist if the link leads inside the root operation. If it leads
outside its is ignored because it wouldn’t have any impact on the run of the
operation.

In the latter case, when creating a graph at the level of points, the sit-
uation is similar, however, after forming the Cartesian product, we have
to select the correct points from the paths. A custom recursive function
ProjectOntoGraph achieves this. The projection which is a result of the
function is illustrated in Figure 5.3. This function first creates the Cartesian
product P = S × T on the path level, as in the previous case. Then it se-
lects the last or first point ∀(from, to) ∈ P : edge = (last(from), first(to)),
depending if the set is coming from a source or a target operation respec-
tively. And then create the corresponding edge in the graph. For example
on Figure 5.3 this function would project the blue operation link into the
nine purple edges shown in the middle of the diagram.

48

CHAPTER 5. INTEGRATION
F

ig
u

re
5
.3

:
P

ro
je

ct
io

n
o
f

th
e

op
er

a
ti

on
tr

ee
on

to
a

fl
at

la
ye

r.
A

n
op

er
at

io
n

li
n

k
b

et
w

ee
n

tw
o

co
m

p
ou

n
d

op
er

at
io

n
s

(b
lu

e)
is

p
ro

je
ct

ed
in

to
9

p
ro

je
ct

ed
li
n

k
s

b
et

w
ee

n
p

oi
n
ts

(p
u

rp
le

).

O
p

e
ra

ti
o

n
 1

O
p

e
ra

ti
o

n
 1

O
p

e
ra

ti
o

n
 2

O
p

e
ra

ti
o

n
 2

Paths Paths Points PointsOperations OperationsCompound Compound Operations Operations Compound CompoundPath PathPoints Points

P
h

a
se

P
h

a
se

P
h

a
se

P
h

a
se

O
p

e
ra

ti
o

n
 L

in
k

P
ro

je
c
te

d

li
n

k

e
d

g
e
s

49

CHAPTER 5. INTEGRATION

5.3.4 Interpolator

The interpolator is the main ingredient in the process responsible for tak-
ing the output of the optimization and adjusting the operation accordingly.
Since how the component works and how its used is very closely tied to-
gether, I will explain both in this section. But before we jump to the al-
gorithms we need to realize a few unintuitive facts which we determined
experimentally.

Figure 5.4: Relation of operation duration to robot speed

0 20 40 60 80 100
0

20

40

60

80

100

Speed (percent)

D
u

ra
ti

on
(s

ec
on

d
s)

Firstly, as you can see in Figure 5.4, the relation between duration, which
the optimization algorithm calculates, and speed which we need to set for
the robots, isn’t linear. Unfortunately, the curve also varies from robot to
robot and from operation to operation which means the value can’t be cal-
culated at all. This challenge we tackle by using a modified interpolation
search with a simulation to check what is the actual duration.

The second challenge stems from the fact that movement operations can
have different precision associated with them. For example, when moving
around a corner when the precision requirements are minimal, we can set
the operation zone as ”coarse” which will allow the robot to move to the
next operation after reaching a region around the point specified by a con-
figured tolerance. As opposed to a ”fine” zone which will require the robot
to move precisely to the specified point and only then it can advance to the
next operation. Due to this, the speed of an operation can influence the fol-
lowing operation, and some operations are effectively skipped which implies
that adjusting their speed will not change the duration. To address this, I

50

CHAPTER 5. INTEGRATION

added an upper bound to the MILP model for the operation duration. An
operation which is being skipped will then have d = d = d, consequently
the optimization engine won’t try to adjust this operations duration and
therefore its speed.

To use the interpolator to adjust speeds of an operation we first need
to instantiate the OperationDurationInterpolator class located in the
Tecnomatix.Optimization.Services.Interpolation namespace. First, we need
to set the desired processing durations of the points which can be achieved
by the SetBlockDuration method. Please note that the interpolator is
designed to adjust multiple operations at the same time because the process
needs simulations to check that the adjusted speed resulted in the correct
duration. Since simulations are by far the most expensive process, it is a
good practice to use the least amount of simulations as possible. The inter-
polator can also adjust operations in blocks in case it didn’t make sense to
adjust the operation individually, but only the cumulative duration was im-
portant. In this case, all the operations in the block will be adjusted to the
same speed, and the sum of their durations will be matched to the specified
desired duration. After the interpolator has all the data, we can begin the
calibration process by calling the Adjust method on the instance of
the interpolator class. This is a blocking operation due to the fact that the
simulations are blocking the UI thread.

First of all the interpolator holds a lower and upper bound for the speed
and duration of each operation. These bounds are set to a speed of 1 (min-
imum) and the speed of 100 (maximum) and the durations observed for
those speeds. Similarly to an interpolation search, the interpolator will it-
erate until it finds an acceptable solution or decides that it is impossible or
impractical to continue. In the loop, the first action is to make a prediction
of the speed based on the upper and lower bounds and the desired duration.
At first, I considered linear interpolation (Equation 5.1), but because the
relation isn’t linear as shown on Figure 5.4, binary halving (Equation 5.2)
was used instead because it should converge in fewer iterations in most cases.

prediction = Smin +
D

Dmax −Dmin
× (Smax − Smin) (5.1)

prediction =
Smin + Smax

2
(5.2)

After the algorithm makes predictions for the whole batch, the next step
is to modify the joint speed of all the operations in the blocks based on
the projections and test them with a simulation. Based on the results of

51

CHAPTER 5. INTEGRATION

the simulation, either the upper or the lower bound of each block is modified.

Some readers, acquainted with Process Simulate, might be wondering
why we don’t convert the movement kind of the operation from joint speed
to motion type and write the proposed duration in there. The reason is that
the motion type duration only affects the period of the movement, and any
OLP commands or welding action take extra time on top of that. Ideally, if
we could find out the length of the static part, we could subtract it from the
total duration, and still write out the times as motion type. Alas, there is
no way to determine the length of the two distinct parts, and therefore we
can’t use that feature and have to discover the joint speed by simulation.

5.3.5 Generator

The generator piece does as the name suggests. It allows for the program-
matic generation of random optimization graphs which can be used for au-
tomated testing. These graphs are not guaranteed to be feasible.

Random graphs can be generated using the GraphGenerationService
located in the Tecnomatix.Optimization.Services.Generation namespace.

The inputs to the routine are three parameters which control the size
and density of the graph. The variables are robots which is the number of
robot loops, operationsPerRobot which specifies the number of operations
in each loop ±variance. After this trivial graph is created, the process aims
to expand the model to mirror a real-life scenario. A number of random
dependencies between robots are inserted (equal to operationsPerRobot),
and the same amount of collisions are artificially constructed to complicate
the graph.

Ordinarily, the graph vertices are linked to Tecnomatix representations
of the operations and robots so this time they are replaced by virtual oper-
ations and robots so that most processes can function with this graph.

52

Chapter 6

Experiments

Due nature of the problem not all of the testing and validation could be
performed automatically and compared with related works. For this reason,
I split the formal validation of this work into two parts. First I assess the
performance of the MILP model and determine whether a heuristic needs
to be used instead. Then I perform manual testing evaluating the quality of
the optimization process on predefined test scenarios.

6.1 Performance Testing

To benchmark the performance of the provided optimization provider, which
consists of a MILP model and a selected MILP solver for the model, I
chose to feed it randomly generated models and measure the time it took
the provider to come up with a solution. The randomly generated mod-
els were created by the generator module which is explained in detail in
Chapter 5.3.5. I used this module to generate 100 random models for each
complexity setting and then averaged the results into the number which you
can see in the Table 6.1. A complexity setting of n corresponds to a robotic
cell with n co-operating robots. Each robot has n+2 actions to act out, and
the overall system includes n collisions. To ensure the instances aren’t triv-
ial also n inter-robot dependencies are added. I tested complexity settings
1 to 40 as the higher complexity settings took too much time to process 100
times and having 40 robots is not practical in a single robotic cell.

I run the benchmarks on a computer equipped with Intel Xeon E3-1230v2
@ 3.30 GHz [20] and 32 GB of RAM. The architecture of the plugin allows for
a smooth replacement of the MILP solver. However, the presented bench-
marks were performed using the open source engine LP SOLVE [15].

Based on the results shown in Figure 6.1 obtained I decided that a heuris-
tic solution wasn’t needed for this model as even in the most extreme case of

53

CHAPTER 6. EXPERIMENTS

40 robots the solver takes only 22 seconds. On the other hand, the architec-
ture of the plugin doesn’t bind the optimization providers to a MILP solver,
and for more complex models a heuristic solution can be used. Considering
the duration of the simulations in the optimization process, 22 seconds for
a run of the optimization provider is an acceptable value.

0 10 20 30 40
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25
·104

Complexity (robots)

D
u

ra
ti

o
n

(m
il

li
se

co
n

d
s)

Figure 6.1: Growing duration with complexity of the model

6.2 User Testing

Unit testing is preferable when it comes to assuring the quality of compo-
nents of an application. However, components that interact with Process
Simulate need a study to be loaded. That, unfortunately, requires user in-
put and can’t be done programmatically because of it, therefore can’t be
unit tested. In this chapter, I present the experiments that were carried out
for the components that require a study and the optimization process overall.

The testing was performed two different studies. A group of engineers
from a professional environment provided the first, realistic, study seen on
Figure 1.1 (”weld test study”). And the second was a custom study created
for testing collisions (”collision test study”). Unfortunately, both contain
proprietary information and can’t be released as a part of this thesis.

The weld test study simulates a robotic cell, where the product comes
in a box. The central robot picks up the robot from the box and places
it on a turning table. The table turns and allows access to the product to
two welding robots which perform some welding on the side of the product.

54

CHAPTER 6. EXPERIMENTS

Then the table turns back, and the central robot picks up the product again.
This time it puts it into a stationary punch, holding it in place, while the
punch makes a hole. Meanwhile one of the welding robots puts his tool into
a grinding device which cleans up the residue from welding. After the hole
is punched, the central robot transfers the product into another stationary
machine and then back into the box. Multiple processes are executed at
parallel showcasing all types of links and operations in the study.

The collision test study consists of two robots facing each other, one
moving his tool frame on a line (”line operation”), while the other is period-
ically crossing the line (”cross operation”). Each of the paths is made out of
four operations. Depending on the operation speed the robots would either
collide or not. Of course, collision detection is enabled and configured with
appropriate collision pairs.

6.2.1 Interpolator

The Interpolator component was manually tested according to the following
scenario:

• Open Process Simulate

• Load the weld test study

• Select a point operation and mark it as active

• Invoke the Interpolate Speed command and enter a value between
the maximum and minimum

• Write down the resulting operation speed and compare to expectations

A point operation was selected from the test study. When running it at
minimum speed (10%) a maximum duration of 3.1s was obtained and like-
wise at maximum speed (100%) a minimum duration of 0.34s was observed.
I selected the duration of 2s as the target and executed the command. When
the process has finished I observed a duration of 2.00s and the interpolated
speed of 16.42 in the Path Editor window.

6.2.2 Graph Builder

The Graph Builder component was manually tested according to the follow-
ing scenario:

• Open Process Simulate

• Load the weld test study

55

CHAPTER 6. EXPERIMENTS

• Select a compound operation and mark it as active

• Invoke the Show Optimization Graph command

• Compare the presented diagram to the operation tree

When testing the graph builder, I selected the top-most compound op-
eration representing the whole welding process of using multiple robots co-
operating. After executing the command, I compared each node and the
values within. More importantly, I made a point of checking all the edges
to match operation tree.

6.2.3 Collision Analysis

The Collision Analysis component was manually tested according to the
following scenario:

• Open Process Simulate

• Load the collision test study

• Select the compound operation and mark it as active

• Invoke the Analyze Collisions command

• Compare the result with the expected outcome (1 collision)

• Adjust the operation speed of the line operation to 50%

• Invoke the Analyze Collisions command

• Compare the result with the expected outcome (0 collisions)

The Analyze Collisions command outputs a list of operations that
were being executed at the time of the collision and had a relationship with
one of the objects causing the collision. It is therefore important to also
check the operation names to match the expectation.

6.2.4 Operation Backup

The Operation Backup component was manually tested according to the
following scenario:

• Open Process Simulate

• Load the weld test study

• Select any operation and mark it as active

56

CHAPTER 6. EXPERIMENTS

• Invoke the Clone Operation command

• Compare the operation trees by simulation

• Compare the links to resources and appearances

After testing with the users, I found out that even though the operation
tree copy is perfect, specific bindings, namely appearances, are not always
preserved. That is something that I can’t add to the process because there is
no API for manipulating appearances. I sincerely hope the Process Simulate
team will fix this in a future version of the application since it also affects
other capabilities using this API like drag & drop or copy & paste.

6.2.5 Optimization Process

The optimization process was tested on both studies to highlight specific
aspects of the optimization algorithm. The testing process included the
following scenarios.

• Open Process Simulate

• Load the collision test study

• Select the root operation and mark it as active

• Invoke the Optimize Operation command and click ”Optimize”

• Assess the quality of the solution (a valid solution without collisions)

In the collision test the algorithm found a solution, avoiding possible col-
lisions but increasing the root operation duration. This is not the minimum
possible cycle time, but the minimum cycle time that could have been found
with the ”safe” collision resolution method used.

• Open Process Simulate

• Load the weld test study

• Select the root operation and mark it as active

• Find an operation on the critical path and decrease its speed to 50%

• Invoke the Optimize Operation command and click ”Optimize”

• Assess the quality of the solution (all operations on the critical path
have speed set to 100%)

The final test for the plugin will be a trial run in a professional environ-
ment, which will determine the future direction of this project.

57

CHAPTER 6. EXPERIMENTS

Complexity Constraints Variables Time

2 235 231 20ms
3 332 335 17ms
4 449 464 27ms
5 566 593 33ms
6 708 752 48ms
7 892 963 71ms
8 1081 1179 98ms
9 1298 1431 134ms
10 1477 1635 170ms
11 1750 1954 229ms
12 1950 2184 284ms
13 2318 2621 383ms
14 2498 2825 434ms
15 2849 3241 549ms
16 3224 3684 690ms
17 3522 4034 814ms
18 3812 4374 956ms
19 4349 5017 1241ms
20 4730 5468 1448ms
21 5153 5971 1680ms
22 5422 6286 1876ms
23 6054 7044 2327ms
24 6475 7544 2639ms
25 6995 8166 3032ms
26 7261 8476 3269ms
27 7711 9012 3713ms
28 8228 9629 4267ms
29 9100 10681 5305ms
30 9662 11354 6532ms
31 10156 11943 7787ms
32 10550 12410 9359ms
33 11578 13652 12013ms
34 11743 13841 12451ms
35 12574 14842 13046ms
36 12960 15299 14080ms
37 13810 16323 15514ms
38 14865 17599 19106ms
39 15670 18569 21427ms
40 16136 19124 21700ms

Table 6.1: MILP Solver Benchmark

58

Chapter 7

Conclusion

The main goal of my thesis was to explore how we can increase the effectiv-
ity of manufacturing systems, by integrating a CAD software designed for
simulating manufacturing processes with an optimization algorithm.

First, I had to familiarize myself with the Process Simulate application
and the manufacturing domain. I examined the features of the application
and created a simple assembly line consisting of three robots working on a
product that moved on a conveyor belt.

Then I had to investigate options for creating plugins for the software.
This part could have been much easier if not for the fact that documenta-
tion for the Tecnomatix suite is practically non-existent. I created a guide
on how to create new commands that will appear in the ribbon bar of the
application. I also set up a development environment where the build pro-
cess will automatically produce a library which the application can read and
start it so that it could see the results quickly.

I explored the functionality officially available to developers and docu-
mented them. For specific capabilities, like reading out the energy usage of
robots, I was able to find an undocumented way to retrieve this information.
Based on the available functionality, which was unfortunately quite limiting,
I designed a process that analyzes the open study and uses several different
algorithms determine the optimal operation settings. This process can use
an optimization module which defines the criteria for optimality. I devised
a MILP model that optimizes the cycle time of an operation and trans-
formed it into code. Together these functions form a helper the users can
use to make sure their robotic cells produce products at maximum efficiency.

To test the correctness of the plugin, and its performance, I created a
generator of artificial models with variable complexity. I used the genera-

59

CHAPTER 7. CONCLUSION

tor to generate a hundred models for each complexity level and allow the
algorithm to solve them. The performance of the solver was measured and
analyzed. I found the performance of the solver satisfying, especially com-
pared to the time spent by simulation, and therefore a heuristic algorithm
was not implemented.

The plugin was also tested manually with practical examples of robotic
cells provided by engineers experienced in the field.

7.1 Future work

Unfortunately, I can’t claim to have solved the topic of optimization in
manufacturing or saved billions of any currency. A lot more work has to be
done on this application for it to be usable in a professional environment.
As it usually is, progress, especially in science, is incremental. As I was
building on the shoulders of giants, I’d like to propose few areas where to
take this work in the future.

• Energy Consumption Optimization. Even within optimal cycle time,
we can look at sleep modes and operation speeds to reduce energy
usage. Some preliminary work was already made [4] with good results.

• More accurate predictions for the interpolation search algorithm. Pre-
dicting better speeds based the duration could result in fewer cycles
and therefore fewer simulations which take most of the time in the
duration of the optimization process.

• Specialized behavior for different scenarios. Different kinds of opera-
tions have to be treated in their specific way. Handling as many kinds
as possible could significantly improve the flexibility of the algorithm
and also its results.

• More granular collision handling. Currently, If there is a collision
between two operations the operations are forbidden to be operating
simultaneously at any stage of the execution. A more precise algorithm
could track down the problematic section of the operation make sure
only that portion is restricted so that the operations can still overlap,
albeit partially.

60

Bibliography

[1] Chi G. Lee and Sang C. Park. “Survey on the virtual commissioning
of manufacturing systems”. In: Journal of Computational Design and
Engineering 1.3 (2014), pp. 213–222. issn: 2288-4300. doi: https://
doi.org/10.7315/JCDE.2014.021. url: http://www.sciencedirect.
com/science/article/pii/S2288430014500292.

[2] Siemens Product Lifecycle Management Software. Customer Case Stud-
ies by Company. 2017. url: https://www.plm.automation.siemens.
com/en/about us/success/customer-case-studies/.

[3] Ray Y. Zhong, Xun Xu, Eberhard Klotz, et al. “Intelligent Manufac-
turing in the Context of Industry 4.0: A Review”. In: Engineering 3.5
(2017), pp. 616–630. issn: 2095-8099. doi: https://doi.org/10.1016/
J.ENG.2017.05.015. url: https://www.sciencedirect.com/science/
article/pii/S2095809917307130.

[4] L. Bukata, P. Š̊ucha, Z. Hanzálek, et al. “Energy Optimization of
Robotic Cells”. In: IEEE Transactions on Industrial Informatics 13.1
(Feb. 2017), pp. 92–102. issn: 1551-3203. doi: 10 . 1109 / TII . 2016 .
2626472.

[5] GM Media. GM Commits to 100 Percent Renewable Energy by 2050.
2016. url: http://media.gm.com/media/us/en/gm/home.detail .
html/content/Pages/news/us/en/2016/sep/0914-renewable-energy.
html.

[6] D. Meike and L. Ribickis. “Energy efficient use of robotics in the auto-
mobile industry”. In: 2011 15th International Conference on Advanced
Robotics (ICAR). June 2011, pp. 507–511. doi: 10.1109/ICAR.2011.
6088567.

[7] European Commision. Energy Efficiency. 2017. url: https://ec.europa.
eu/energy/en/topics/energy-efficiency.

61

https://doi.org/https://doi.org/10.7315/JCDE.2014.021
https://doi.org/https://doi.org/10.7315/JCDE.2014.021
http://www.sciencedirect.com/science/article/pii/S2288430014500292
http://www.sciencedirect.com/science/article/pii/S2288430014500292
https://www.plm.automation.siemens.com/en/about_us/success/customer-case-studies/
https://www.plm.automation.siemens.com/en/about_us/success/customer-case-studies/
https://doi.org/https://doi.org/10.1016/J.ENG.2017.05.015
https://doi.org/https://doi.org/10.1016/J.ENG.2017.05.015
https://www.sciencedirect.com/science/article/pii/S2095809917307130
https://www.sciencedirect.com/science/article/pii/S2095809917307130
https://doi.org/10.1109/TII.2016.2626472
https://doi.org/10.1109/TII.2016.2626472
http://media.gm.com/media/us/en/gm/home.detail.html/content/Pages/news/us/en/2016/sep/0914-renewable-energy.html
http://media.gm.com/media/us/en/gm/home.detail.html/content/Pages/news/us/en/2016/sep/0914-renewable-energy.html
http://media.gm.com/media/us/en/gm/home.detail.html/content/Pages/news/us/en/2016/sep/0914-renewable-energy.html
https://doi.org/10.1109/ICAR.2011.6088567
https://doi.org/10.1109/ICAR.2011.6088567
https://ec.europa.eu/energy/en/topics/energy-efficiency
https://ec.europa.eu/energy/en/topics/energy-efficiency

BIBLIOGRAPHY

[8] R.G. Fenton, D. Poon, and S.P. Davies. “Robotic Workcell Cycle
Time Optimization Using Computer Graphics”. In: CIRP Annals 41.1
(1992), pp. 509–512. issn: 0007-8506. doi: https://doi.org/10.1016/
S0007-8506(07)61256-6. url: http://www.sciencedirect.com/science/
article/pii/S0007850607612566.

[9] J. Zhang and X. Fang. “Robot move scheduling optimization for max-
imizing cell throughput with constraints in real-life engineering”. In:
2013 IEEE International Conference on Robotics and Biomimetics
(ROBIO). Dec. 2013, pp. 221–227. doi: 10.1109/ROBIO.2013.6739462.

[10] E. Åblad, D. Spensieri, R. Bohlin, et al. “Intersection-Free Geometrical
Partitioning of Multirobot Stations for Cycle Time Optimization”. In:
IEEE Transactions on Automation Science and Engineering PP.99
(2017), pp. 1–10. issn: 1545-5955. doi: 10.1109/TASE.2017.2761180.

[11] Anne-Laure Coiffier. “Analysis and design of manufacturing opera-
tions”. PhD thesis. Czech Technical University in Prague, Mar. 2017.

[12] Claire Hanen and Alix Munier. “A study of the cyclic scheduling prob-
lem on parallel processors”. In: Discrete Applied Mathematics 57.2
(1995). Combinatorial optimization 1992, pp. 167–192. issn: 0166-
218X. doi: https://doi.org/10.1016/0166-218X(94)00102-J. url: http:
//www.sciencedirect.com/science/article/p%20ii/0166218X9400102J.

[13] Siemens AG. Process Simulate. 2017. url: https://www.plm.automation.
siemens .com/en/products/tecnomatix/manufacturing- simulation/
assembly/process-simulate.shtml.

[14] Gurobi. Gurobi Optimizer. 2017. url: http : / / www . gurobi . com /
products/gurobi-optimizer.

[15] Peter Notebaert Kjell Eikland. lpsolve. 2017. url: http : / / lpsolve .
sourceforge.net.

[16] Google Inc. Google Optimization Tools. 2017. url: https://developers.
google.com/optimization/.

[17] IBM Corporation. CPLEX Optimizer. 2017. url: https://www.ibm.
com/analytics/data-science/prescriptive-analytics/cplex-optimizer.

[18] Graphviz - Graph Visualization Software. 2017. url: https://graphviz.
gitlab.io/.

[19] K. Sugiyama, S. Tagawa, and M. Toda. “Methods for Visual Under-
standing of Hierarchical System Structures”. In: IEEE Transactions
on Systems, Man, and Cybernetics 11.2 (Feb. 1981), pp. 109–125. issn:
0018-9472. doi: 10.1109/TSMC.1981.4308636.

[20] Intel® Xeon® Processor E3-1230 v2. 2017. url: https://ark.intel.
com/products/65732/Intel-Xeon-Processor-E3-1230-v2-8M-Cache-
3 30-GHz.

62

https://doi.org/https://doi.org/10.1016/S0007-8506(07)61256-6
https://doi.org/https://doi.org/10.1016/S0007-8506(07)61256-6
http://www.sciencedirect.com/science/article/pii/S0007850607612566
http://www.sciencedirect.com/science/article/pii/S0007850607612566
https://doi.org/10.1109/ROBIO.2013.6739462
https://doi.org/10.1109/TASE.2017.2761180
https://doi.org/https://doi.org/10.1016/0166-218X(94)00102-J
http://www.sciencedirect.com/science/article/p%20ii/0166218X9400102J
http://www.sciencedirect.com/science/article/p%20ii/0166218X9400102J
https://www.plm.automation.siemens.com/en/products/tecnomatix/manufacturing-simulation/assembly/process-simulate.shtml
https://www.plm.automation.siemens.com/en/products/tecnomatix/manufacturing-simulation/assembly/process-simulate.shtml
https://www.plm.automation.siemens.com/en/products/tecnomatix/manufacturing-simulation/assembly/process-simulate.shtml
http://www.gurobi.com/products/gurobi-optimizer
http://www.gurobi.com/products/gurobi-optimizer
http://lpsolve.sourceforge.net
http://lpsolve.sourceforge.net
https://developers.google.com/optimization/
https://developers.google.com/optimization/
https://www.ibm.com/analytics/data-science/prescriptive-analytics/cplex-optimizer
https://www.ibm.com/analytics/data-science/prescriptive-analytics/cplex-optimizer
https://graphviz.gitlab.io/
https://graphviz.gitlab.io/
https://doi.org/10.1109/TSMC.1981.4308636
https://ark.intel.com/products/65732/Intel-Xeon-Processor-E3-1230-v2-8M-Cache-3_30-GHz
https://ark.intel.com/products/65732/Intel-Xeon-Processor-E3-1230-v2-8M-Cache-3_30-GHz
https://ark.intel.com/products/65732/Intel-Xeon-Processor-E3-1230-v2-8M-Cache-3_30-GHz

Appendix A

Abbreviations

.NET Framework for writing applications developed by Microsoft

CAD Computer Assisted Design

API Application Programming Interface

MVVM Model–View–ViewModel architectural pattern

WPF Windows Presentation Foundation

XAML Extensible Application Markup Language

DI Dependency Injection

IOC Inversion of Control

MILP Mixed-Integer Linear Programming

63

APPENDIX A. ABBREVIATIONS

64

Appendix B

CD Contents

• /bin - Folder containing the compiled plugin

• /src

– /Tecnomatix.Optimization.sln - The Visual Studio Solution

– /Tests - The unit test project

– /Tecnomatix.Optimization - The plugin project

• /doc

– /thesis.zip - source files of the text part of this thesis (LATEX)

– /thesis.pdf - this text in PDF

– /research/apiresearch.md - documentation for Process Simu-
late API with code examples

65

	1 Introduction
	1.1 Motivation
	1.2 Related Work
	1.3 Contribution

	2 Problem Statement
	3 MILP Model
	4 Interface
	4.1 Users Perspective
	4.1.1 Create a Study
	4.1.2 Inserting Components
	4.1.3 Modeling
	4.1.4 Defining Kinematics
	4.1.5 Robot Tools
	4.1.6 Positioning Robots
	4.1.7 Operations
	4.1.8 Detecting Collisions

	4.2 Programming Interface
	4.3 Writing Plug-ins
	4.4 API
	4.4.1 TxApplication
	4.4.2 TxSelection
	4.4.3 TxApplicationEvents
	4.4.4 TxOptions
	4.4.5 TxDocument
	4.4.6 Operations

	5 Integration
	5.1 Architecture
	5.2 Commands
	5.3 Optimization Process
	5.3.1 Simulation
	5.3.2 Graph
	5.3.3 Graph Builder
	5.3.4 Interpolator
	5.3.5 Generator

	6 Experiments
	6.1 Performance Testing
	6.2 User Testing
	6.2.1 Interpolator
	6.2.2 Graph Builder
	6.2.3 Collision Analysis
	6.2.4 Operation Backup
	6.2.5 Optimization Process

	7 Conclusion
	7.1 Future work

	A Abbreviations
	B CD Contents

