
CENTER FOR

MACHINE PERCEPTION

CZECH TECHNICAL

UNIVERSITY IN PRAGUE

M
A

S
T

E
R

’S
T

H
E

S
IS

Semidefinite Programming for
Geometric Problems in Computer

Vision
Pavel Trutman

pavel.trutman@cvut.cz

January 3, 2018

Available at
http://cmp.felk.cvut.cz/∼trutmpav/master-thesis/thesis/thesis.pdf

Thesis Advisor: Ing. Tomáš Pajdla, PhD.

This work was supported by EU Structural and Investment
Funds, Operational Programe Research, Development and Educa-
tion project IMPACT No. CZ.02.1.01/0.0/0.0/15 003/0000468.EU-
H2020 and by EU project LADIO No. 731970.

Center for Machine Perception, Department of Cybernetics
Faculty of Electrical Engineering, Czech Technical University

Technická 2, 166 27 Prague 6, Czech Republic
fax +420 2 2435 7385, phone +420 2 2435 7637, www: http://cmp.felk.cvut.cz

Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Cybernetics

DIPLOMA THESIS ASSIGNMENT

Student: Bc. Pavel T r u t m a n

Study programme: Cybernetics and Robotics

Specialisation: Robotics

Title of Diploma Thesis: Semidefinite Programming for Geometric Problems in Computer
 Vision

Guidelines:
1. Review the state of the art in semidefinite programming [1,2,3] and its use for solving
 variations of so called minimal problems in computer vision [4,5].
2. Suggest and develop a semidefinite solver for solving a variation of minimal problems.
3. Implement the solver, choose a relevant computer vision problem and investigate
 the performance of the solver in comparison to standard algebraic methods for solving
 the problem.

Bibliography/Sources:
[1] Y. Nesterov. Introductory lectures on convex optimization. Kluwer Academic Press, 2004.
[2] M. Laurent. SUMS OF SQUARES, MOMENT MATRICES AND OPTIMIZATION OVER
 POLYNOMIALS (http://homepages.cwi.nl/~monique/files/moment-ima-update-new.pdf).
[3] M. Laurent and P. Rostalski. The Approach of Moments for Polynomial Equations. In
 Handbook on Semidefinite, Conic and Polynomial Optimization, M. F. Anjos, J. B. Lasserre,
 eds., Springer 2012.
[4] C. Aholt, S. Agarwal, R. Thomas. A QCQP Approach to Triangulation, Computer Vision –
 ECCV 2012, Lecture Notes in Computer Science 7572 (2012), 654-667.
[5] F. Kahl, D. Henrion. Globally Optimal Estimates for Geometric Reconstruction Problems.
 ICCV 2005, (http://www2.maths.lth.se/vision/publdb/reports/pdf/kahl-henrion-ijcv-07.pdf).

Diploma Thesis Supervisor: Ing. Tomáš Pajdla, Ph.D.

Valid until: the end of the summer semester of academic year 2017/2018

 L.S.

prof. Dr. Ing. Jan Kybic
Head of Department

 prof. Ing. Pavel Ripka, CSc.
Dean

Prague, January 6, 2017

Acknowledgements

I would like to express my thanks to my advisor Tomáš Pajdla for his guidance and
valuable advices, which enabled me to finish this thesis. I would also like to thank Didier
Herion for introducing me into semidefinite programming and polynomial optimization
techniques and for his useful discussion and comments to my work. Special thanks go
to my family for all their support.

v

Author’s declaration

I declare that the presented work was developed independently and that I have listed
all sources of information used within it in accordance with the methodical instructions
for observing the ethical principles in the preparation of university theses.

Prague, date .
Signature

vi

Abstract

Many problems in computer vision lead to polynomial systems solving. The state of
the art algebraic methods for polynomial systems solving are able to efficiently solve the
systems over complex numbers. In computer vision and robotics non-real solutions are
then discarded, as they are not solutions of the original geometric problems. On this
purpose, we review and implement the moment method for polynomial systems solving,
which solves the problems over real numbers directly. We show that the moment method
is applicable to the minimal problems from geometry of computer vision. For that, we
give description of the calibrated camera pose problem and of the calibrated camera pose
with unknown focal length problem. We compare our implementation of the moment
with the state of the art methods on these two selected minimal problems on real 3D
scenes.

Moreover, we review and implement a method for solving polynomial optimization
problems, which can extend the moment method with inequality constraints. This
method uses Lasserre’s hierarchies to find the optimal values of the original optimization
problems. We compare the performance of our implementation with the state of the
art methods on synthetically generated polynomial optimization problems.

Since the semidefinite programs solving is a key element in the moment method
and the polynomial optimization methods, we review and implement an interior-point
algorithm for semidefinite programs solving. We compare the performance of our im-
plementation with the state of the art methods on synthetically generated semidefinite
programs.

Keywords: computer vision, polynomial systems solving, polynomial optimization,
semidefinite programming, minimal problems

vii

Abstrakt

Mnoho problémů v poč́ıtačovém viděńı vede na řešeńı systémů polynomiálńıch rov-
nic. Současné metody na řešeńı systémů polynomiálńıch rovnic jsou schopny řešit tyto
systémy v oboru komplexńıch č́ısel. V poč́ıtačovém viděńı a robotice jsou nereálná řešeńı
následně vyřazena, protože ta nejsou řešeńımi p̊uvodńıch geometrických problémů. Z to-
hoto d̊uvodu prozkoumáme a implementujeme metodu moment̊u pro řešeńı systémů po-
lynomiálńıch rovnic, která řeš́ı tyto problémy př́ımo v oboru reálných č́ısel. Ukážeme, že
metoda moment̊u je použitelná na minimálńı problémy z geometrie poč́ıtačového viděńı.
Proto poṕı̌seme problém nalezeńı polohy kalibrované kamery a problém nalezeńı polohy
kalibrované kamery s neznámou ohniskovou vzdálenost́ı. Na těchto dvou vybraných mi-
nimálńıch problémech a reálných 3D scénách porovnáme naš́ı implementaci metody
moment̊u se současnými metodami.

Dále prozkoumáme a implementujeme metodu na řešeńı polynomiálně optimalizačńıch
problémů, která může rozš́ı̌rit metodu moment̊u o omezeńı s nerovnostmi. Tato me-
toda využ́ıvá Lasserrových hierarchíı k nalezeńı optimálńıch hodnot p̊uvodńıch optima-
lizačńıch problémů. Na synteticky generovaných polynomiálně optimalizačńıch problé-
mech porovnáme výkon naš́ı implementace se současnými metodami.

Protože řešeńı semidefinitńıch programů je kĺıčovým elementem metody moment̊u a
metod polynomiálńı optimalizace, prozkoumáme a implementujeme algoritmus vnitřńıch
bod̊u na řešeńı semidefinitńıch programů. Na synteticky generovaných semidefinitńıch
problémech porovnáme výkon naš́ı implementace se současnými metodami.

Kĺıčová slova: poč́ıtačové viděńı, řešeńı polynomiálńıch systémů, polynomiálńı opti-
malizace, semidefinitńı programováńı, minimálńı problémy

viii

Contents

1. Introduction 8
1.1. Motivation . 8

1.2. Contributions . 9

1.3. Thesis structure . 9

2. Semidefinite programming 10
2.1. Preliminaries on semidefinite programs 10

2.1.1. Symmetric matrices . 10

2.1.2. Semidefinite programs . 11

2.2. State of the art review . 12

2.3. Interior point method . 13

2.3.1. Self-concordant functions . 13

2.3.2. Self-concordant barriers . 16

2.3.3. Barrier function for semidefinite programming 20

2.4. Implementation details . 24

2.4.1. Package installation . 24

2.4.2. Usage . 25

2.5. Comparison with the state of the art methods 27

2.5.1. Problem description . 27

2.5.2. Time measuring . 29

2.5.3. Results . 31

2.6. Speed–accuracy trade-off . 32

2.6.1. Precision based analysis . 32

2.6.2. Analysis based on the required distance from the solution 33

2.7. Conclusions . 34

3. Optimization over polynomials 35
3.1. Algebraic preliminaries . 35

3.1.1. The polynomial ring, ideals and varieties 35

3.1.2. Solving systems of polynomial equations using multiplication ma-
trices . 37

3.2. Moment matrices . 40

3.3. Polynomial optimization . 42

3.3.1. State of the art review . 42

3.3.2. Lasserre’s LMI hierarchy . 43

3.3.3. Implementation details . 46

3.3.4. Comparison with the state of the art methods 48

3.4. Solving systems of polynomial equations over the real numbers 51

3.4.1. State of the art review . 51

3.4.2. The moment method . 52

Positive linear forms . 52

Truncated positive linear forms 55

The moment matrix algorithm 57

1

3.4.3. Implementation details . 59
Implementation in MATLAB with MOSEK toolbox 59
Polyopt package implementation 60
Usage . 61

3.4.4. Comparison with the state of the art methods 61
3.5. Conclusions . 62

4. Minimal problems in geometry of computer vision 63
4.1. Dataset description . 63
4.2. Calibrated camera pose . 64

4.2.1. Performance of the polynomial solvers 66
4.3. Calibrated camera pose with unknown focal length 69

4.3.1. Performance of the polynomial solvers 72
4.4. Conclusions . 74

5. Conclusions 78
5.1. Future work . 78

A. Contents of the enclosed CD 80

Bibliography 81

2

List of Figures

2.1. Example of a simple semidefinite problem for y ∈ R2. Boundary of the
feasible set

{
y | F (y) � 0

}
is shown as a black curve. The minimal value

of the objective function b>y is attained at y∗. 12

2.2. Illustration of the logarithmic barrier function for different values of t. . 22

2.3. Hyperbolic paraboloid z = y2
2 − y2

1. 23

2.4. Illustration of the sets DomF (y) and
{
y | X(y) � 0

}
. 24

2.5. Graph of the semidefinite optimization problem stated in Example 2.21. 27

2.6. Graph of execution times based on the size of semidefinite problems
solved by the selected toolboxes. 31

2.7. Graph of numbers of iterations required to solve the semidefinite prob-
lems by Algorithm 2.3 for different values of problem size k based on ε
using the implementation from the Polyopt package. 32

2.8. Example of a simple semidefinite problem with steps of Algorithm 2.3.
The algorithm starts from the analytic center y∗F and finishes at the opti-
mal point y∗. Selected fractions of the distance ‖y∗−y∗F ‖ are represented
by concentric circles. 33

2.9. Graph of numbers of iterations required to get within the distance λ‖y∗−
y∗F ‖ from the optimal solution y∗ using Algorithm 2.3 for different values
of problem size k based on λ using the implementation from the Polyopt
package. 34

3.1. The intersection of the ellipse (3.21) and the hyperbola (3.22) with solu-
tions found by the eigenvalue and the eigenvector methods using multi-
plication matrices. 38

3.2. Feasible region and the expected global minima of the problem (3.67). . 45

3.3. Graph of execution times of the polynomial optimization problems with
the relaxation order r = 1 based on the number of variables solved by
the selected toolboxes. 51

3.4. Graph of execution times of the polynomial optimization problems in
n = 2 variables based on the degree of the polynomial in the objective
function solved by the selected toolboxes. 53

4.1. Sculpture of Buddha head. Surface representing a point cloud recon-
structed from the taken images. 63

4.2. Scheme of the P3P problem. A pose of a calibrated camera can be
computed from three known 3D points X1, X2, X3 and their projections
x1, x2, x3 into the image plane π. The camera projection center is
denoted as C. Distances d12, d23, d13 denote the distances between the
respective 3D points. 64

4.3. Histogram of the maximal reprojection errors of all correspondences in
the image for the best camera positions and rotations estimated by the
selected polynomial solvers for the P3P problem compared to the maxi-
mal reprojection errors computed for the ground truth camera positions
and rotations. 67

3

4.4. Histogram of the errors in estimated camera positions computed by the
selected polynomial solvers for the P3P problem with respect to the
ground truth camera positions. 68

4.5. Histogram of the errors in rotation angles computed by the selected poly-
nomial solvers for the P3P problem with respect to the ground truth
camera rotations. 69

4.6. Histogram of the execution times required to compute the P3P problem
by the selected polynomial solvers. 70

4.7. Histogram of maximal degrees of relaxed monomials of the P3P prob-
lem. It corresponds to the value of variable t in the last iteration of
Algorithm 3.4 for the Polyopt package and the MATLAB with MOSEK
implementation. For the Gloptipoly toolbox it corresponds to two times
the given relaxation order. 71

4.8. Scheme of the P3.5Pf problem. A pose of a calibrated camera with
unknown focal length can be computed from four known 3D points X1,
X2, X3, X4 and their projections x1, x2, x3, x4 into the image plane π.
The camera projection center is denoted as C. 72

4.9. Histogram of the maximal reprojection errors of all correspondences in
the image for the best camera positions and rotations estimated by the
selected polynomial solvers for the P3.5Pf problem compared to the max-
imal reprojection errors computed for the ground truth camera positions
and rotations. 73

4.10. Histogram of the relative focal length errors computed by the selected
polynomial solvers for the P3.5Pf problem with respect to the ground
truth focal lengths. 74

4.11. Histogram of the errors in estimated camera positions computed by the
selected polynomial solvers for the P3.5Pf problem with respect to the
ground truth camera positions. 75

4.12. Histogram of the errors in rotation angles computed by the selected poly-
nomial solvers for the P3.5Pf problem with respect to the ground truth
camera rotations. 75

4.13. Histogram of the execution times required to compute the P3.5Pf prob-
lem by the selected polynomial solvers. 76

4.14. Histogram of maximal degrees of relaxed monomials of the P3.5Pf prob-
lem. It corresponds to the value of variable t in the last iteration of
Algorithm 3.4 for the Polyopt package and the MATLAB with MOSEK
implementation. For the Gloptipoly toolbox it corresponds to two times
the given relaxation order. 76

4

List of Tables

2.1. Execution times of different sizes of semidefinite problems solved by the
selected toolboxes. 30

3.1. Execution times of the polynomial optimization problems in different
number of variables with the relaxation order r = 1 solved by the selected
toolboxes. 50

3.2. Execution times of the polynomial optimization problems for different
degrees of the polynomial in the objective function in n = 2 variables
solved by the selected toolboxes. 52

4.1. Table of numbers of all real and complex solutions and of numbers of
found real solutions by each of the selected polynomial solver for the
P3P problem. 68

4.2. Table of numbers of all real and complex solutions and of numbers of
found real solutions by each of the selected polynomial solver for the
P3.5Pf problem. 77

List of Algorithms

2.1. Newton method for minimization of self-concordant functions. 15
2.2. Damped Newton method for analytic centers. [36, Scheme 4.2.25] 18
2.3. Path following algorithm. [36, Scheme 4.2.23] 20

3.4. The moment matrix algorithm for computing real roots. [30, Algorithm 1] 58

List of Listings

2.1. Installation of the package Polyopt. 25
2.2. Typical usage of the class SDPSolver of the Polyopt package. 25
2.3. Code for solving semidefinite problem stated in Example 2.21. 28

3.1. Typical usage of the class POPSolver of the Polyopt package. 48
3.2. Code for solving polynomial optimization problem stated in Example 3.16. 49
3.3. Typical usage of the class PSSolver of the Polyopt package. 61
3.4. Code for solving system of polynomial equations stated in Example 3.35. 61

5

List of Symbols and Abbreviations

BA Bundle adjustment.
C Set of complex numbers.
cl(S) Closure of the set S.
deg(p) Total degree of the polynomial p.
diag(x) Diagonal matrix with components of the vector x on the di-

agonal.
dom f Domain of the function f .
Dom f cl(dom f).
f ′(x) First derivative of the function f(x).
f ′′(x) Second derivative of the function f(x).
G-J elimination Gauss-Jordan elimination.
I(V) Vanishing ideal of the variety V .
In Identity matrix of size n× n.√
I Radical ideal of the ideal I.

R√I Real radical ideal of the ideal I.
〈f1, f2, . . . , fn〉 Ideal generated by the polynomials f1, f2, . . . , fn.
int S Interior of the set S.
ker(QΛ) Kernel of the quadratic form QΛ.
ker(M) Kernel of the matrix M .{
λi(A)

}n
i=1

Set of all eigenvalues of the matrix A ∈ Rn×n.

LMI Linear matrix inequality.
LP Linear program.
N Set of natural numbers (including zero).
NB(f) Normal form of the polynomial f modulo ideal I with respect

to the basis B.
Pn Cone of positive semidefinite n× n matrices.
PnP problem The perspective-n-point problem.
P3P problem The perspective-three-point problem.
P3.5Pf problem The perspective-three-and-half-point problem with unknown

focal length.
POP Polynomial optimization.
QCQP Quadratically constrained quadratic program.
R Set of real numbers.
R[x] Ring of polynomials with coefficients in R in n variables x ∈

Rn.
R[x]∗ Dual vector space to the ring of polynomials R[x].
RANSAC Random Sample Consensus.
Sn Space of n× n real symmetric matrices.
SDP Semidefinite programming.
SfM Structure from motion.
SGM method Semi-global matching method.
SO(3) Group of all rotations about the origin of three-dimensional

space.

6

SVD Singular value decomposition.
tr(A) Trace of the matrix A.
vec(p) Vector of the coefficients of the polynomial p with respect to

some monomial basis.
VC(I) Algebraic variety of the ideal I.
VR(I) Real algebraic variety of the ideal I.

x(i) i-th element of the vector x.
x> Transpose of the vector x.
dxe min{m ∈ Z | m ≥ x}; ceiling function.
bxc max{m ∈ Z | m ≤ x}; floor function.
Xf Multiplication matrix by the polynomial f .
Z Set of integers.

7

1. Introduction

In geometry of computer vision, many problems are formulated as systems of poly-
nomial equations. The state of the art methods are based on polynomial algebra, i.e.
on Gröbner bases and multiplication matrices computation. Contrary to this approach,
this work applies non-linear optimization techniques to solve the polynomial systems,
which is a novel idea in the field of geometry of computer vision. Moreover, the appli-
cation of the optimization techniques allows us to enrich the polynomial systems with
polynomial inequalities or to solve polynomial optimization problems, i.e. optimizing a
polynomial function with given polynomial constraints.

1.1. Motivation

Object recognition and localization, reconstruction of 3D scenes, self-driving cars,
film production, augmented reality and robotics are only few of many applications of
geometry of computer vision. Thus, one would like to solve geometric problems effi-
ciently, since these problems often have to be solved in real-time applications. Typical
geometric problems from computer vision are the minimal problems, which arise when
estimating geometric models of scenes from given images. To be able to solve these
problems computationally, they are often represented by systems of algebraic equa-
tions. Hence, one of the issues of computer vision is, how to solve systems of polynomial
equations efficiently, which is the scope of this work.

The polynomial systems obtained from the geometric problems are often not trivial,
but usually consist of many polynomial equations of high degree in several unknowns.
From that reason, general algorithms for polynomial systems solving are not efficient for
them, and therefore special solvers have been developed for different problems to solve
these problems efficiently and robustly. Previously, these solvers were handcrafted,
which is quite time demanding process that has to be done for each problem from
scratch. Then, the process was automated by automatic generators [22, 23], which
automatically generate efficient solver for a given type of the polynomial system. These
solvers obtain the Gröbner basis of the system and then construct the multiplication
matrix, from which solutions are extracted by eigenvectors computation. The side effect
of this approach is that some non-real solutions often appear amongst real solutions,
which are not solutions to the original geometric problem. Since the computation of
the non-real solutions takes time, a method which would find real solutions only may
be faster than the contemporary approach.

Some of the arisen systems may be overconstrained. Such systems have a solution
when solved on precise data using precise arithmetic, but they have no solution when
solved on real noisy data. However, these systems may be transformed into optimiza-
tion problem by relaxing some of the constrains and by minimizing the error of these
constraints. Therefore, an efficient polynomial optimization method may prove useful
for overconstrained systems.

8

1.2. Contributions

1.2. Contributions

To solve polynomial systems over real numbers only, we apply the moment method
introduced by J. B. Lasserre et al. This method uses hierarchies of semidefinite pro-
grams to find a Gröbner basis of real radical ideal constructed from the ideal generated
by the given polynomials. Then, a multiplication matrix is constructed and solutions
are obtained from it. In this case, the multiplication matrix should have smaller size
than a multiplication matrix obtained from the automatic generator, which can save
some computation time. We implement this method in Python and MATLAB and
examine its properties on several minimal problems from geometry of computer vision
on real 3D scenes. We show that this method is applicable on problems from computer
vision.

The second contribution of this work is, that we describe and review a method for
polynomial optimization problems. This method solves hierarchies of semidefinite pro-
grams to find the optimal value. An application of this method can, for example, be a
solver of overconstrained polynomial systems. We implement our own implementation
of this method in Python and compare it to the state of the art methods on synthetic
polynomial optimization problems.

Since semidefinite programs solving is a key element in both previously mentioned
methods, we review and describe an interior-point method for semidefinite programs
solving. To be able to use this method in implementations of the moment method
and the polynomial optimization method, we implement this interior-point method in
Python. To verify our implementation we compare it to the state of the art semidefinite
solvers on synthetic semidefinite programs.

1.3. Thesis structure

In this work, we first review an interior-point method for semidefinite programs solv-
ing. To do so, general properties of self-concordant functions and barriers need to be
introduced, since they are key elements in convex optimization. Then, a specialized
barrier function for semidefinite programming will be described. We describe our im-
plementation of the semidefinite programs solver and compare it to the state of the art
methods.

Secondly, we focus on polynomial optimization. After an introduction to polynomial
algebra and moment matrices, we describe and implement a method, which solves
polynomial optimization problems by relaxations of semidefinite programs. Then, we
review the moment method and describe its implementation in Python.

To compare the implementation of the moment method to the state of the art meth-
ods, we introduce two minimal problems from computer vision on which we perform
the experiments. The minimal problems are the estimation (i) of the calibrated camera
pose and (ii) of the calibrated camera pose with unknown focal length. We show that
our implementation of the moment method is applicable to these selected geometric
problems from computer vision.

9

2. Semidefinite programming

The goal of the semidefinite programming (SDP) is to optimize a linear function on
a given set, which is an intersection of a cone of positive semidefinite matrices with an
affine space. This set is called a spectrahedron and it is a convex set. SDP, which is
optimizing a convex function on a convex set, is a special case of convex optimization.

Since SDP can be solved efficiently in polynomial time using interior-point meth-
ods, it has many applications in practise. For example, any linear program (LP) and
quadratically constrained quadratic program (QCQP) can be written as a semidefinite
program. However, this may not be the best idea to do as more efficient algorithms exist
for solving LPs and QCQPs. On the other hand, there exist many useful applications
of SDP, e.g. many NP-complete problems in combinatorial optimization can be approx-
imated by semidefinite programs. One of the combinatorial problem worth mentioning
is the MAX CUT problem (one of the Karp’s original NP-complete problems [21]), for
which M. Goemans and D. P. Williamson created the first approximation algorithm
based on SDP [14]. Also in control theory, there are many problems based on linear
matrix inequalities, which are solvable by SDP.

Special application of SDP comes from polynomial optimization since global solution
of polynomial optimization problems can be found by hierarchies of semidefinite pro-
grams. Systems of polynomial equations can also be solved by hierarchies of semidefinite
problems. This approach has the advantage that there exists a method that allows us
to compute real solutions only. Since in many applications, we are not interested in
non-real solutions, this method may be the right tool for polynomial systems solving.
We will focus in details on SDP application in polynomial optimization and polynomial
systems solving in Chapter 3.

2.1. Preliminaries on semidefinite programs

In this section, we introduce some notation and preliminaries about symmetric ma-
trices and semidefinite programs. We will introduce further notation and preliminaries
later on in the text when needed.

At the beginning, let us denote the inner product for two vectors x, y ∈ Rn by

〈x, y〉 =
n∑
i=1

x(i)y(i) (2.1)

and the Frobenius inner product for two matrices X, Y ∈ Rn×m by

〈X,Y 〉 =

n∑
i=1

m∑
j=1

X(i,j)Y (i,j). (2.2)

2.1.1. Symmetric matrices

Let Sn denotes the space of n× n real symmetric matrices.
For a matrix M ∈ Sn, the notation M � 0 means that M is positive semidefinite.

M � 0 if and only if any of the following equivalent properties holds true:

10

2.1. Preliminaries on semidefinite programs

1. x>Mx ≥ 0 for all x ∈ Rn.

2. All eigenvalues of M are nonnegative.

The set of all positive semidefinite matrices is a cone. We will denote it as Pn and it is
called the cone of positive semidefinite matrices.

For a matrix M ∈ Sn, the notation M � 0 means that M is positive definite. M � 0
if and only if any of the following equivalent properties holds true:

1. M � 0 and rankM = n.

2. x>Mx > 0 for all x ∈ Rn.

3. All eigenvalues of M are positive.

2.1.2. Semidefinite programs

The standard (primal) form of a semidefinite program in variable X ∈ Sn is defined
as follows:

p∗ = sup
X∈Sn

〈C,X〉

s.t. 〈Ai, X〉 = b(i) (i = 1, . . . ,m)
X � 0

(2.3)

where C, A1, . . . , Am ∈ Sn and b ∈ Rm are given.
The dual form of the primal form is the following program in variable y ∈ Rm.

d∗ = inf
y∈Rm

b>y

s.t.
m∑
i=1

Aiy
(i) − C � 0

(2.4)

The constraint

F (y) =
m∑
i=1

Aiy
(i) − C � 0 (2.5)

of the problem (2.4) is called a linear matrix inequality (LMI) in the variable y. The
feasible region defined by LMI is called a spectrahedron. It can be shown, that this
constraint is convex since if F (x) � 0 and F (y) � 0, then ∀α, 0 ≤ α ≤ 1 there holds

F
(
αx+ (1− α)y

)
= αF (x) + (1− α)F (y) � 0. (2.6)

The objective function of the problem (2.4) is linear, and therefore convex too. Because
the semidefinite program (2.4) has convex objective function and convex constraint, it
is a convex optimization problem and can be solved by standard convex optimization
methods. See Figure 2.1 to get a general picture, how a simple semidefinite problem
may look like.

The optimal solution y∗ of any semidefinite program lies on the boundary of the
feasible set, supposing the problem is feasible and the solution exists. The boundary of
the feasible set is not smooth in general, but it is piecewise smooth as each piece is an
algebraic surface.

Example 2.1 (Linear programming). Semidefinite programming can be seen as
an extension to the linear programming when the componentwise inequalities between

11

2. Semidefinite programming

−b

y∗

F (y) � 0

F (y) 6� 0

Figure 2.1. Example of a simple semidefinite problem for y ∈ R2. Boundary of the feasible set{
y | F (y) � 0

}
is shown as a black curve. The minimal value of the objective function b>y

is attained at y∗.

vectors in linear programming are replaced by LMI. Consider a linear program in the
standard form

y∗ = arg min
y∈Rm

b>y

s.t. Ay − c ≥ 0
(2.7)

with b ∈ Rm, c ∈ Rn and A =
[
a1 · · · am

]
∈ Rn×m. This program can be transformed

into the semidefinite program (2.4) by assigning

C = diag(c), (2.8)

Ai = diag(ai). (2.9)

2.2. State of the art review

An early paper by R. Bellman and K. Fan about theoretical properties of semidefinite
programs [5] was issued in 1963. Later on, many researchers worked on the problem
of minimizing the maximal eigenvalue of a symmetric matrix, which can be done by
solving a semidefinite program. Selecting a few from many: J. Cullum, W. Donath,
P. Wolfe [10], M. Overton [39] and G. Pataki [40]. In 1984, the interior-point methods
for LPs solving were introduced by N. Karmarkar [20]. It was the first reasonably effi-
cient algorithm that solves LPs in polynomial time with excellent behavior in practise.
The interior-point algorithms were then extended to be able to solve convex quadratic
programs.

In 1988, Y. Nesterov and A. Nemirovski [37] did an important breakthrough. They
showed that interior-point methods developed for LPs solving can be generalized to all
convex optimization problems. All that is required, is the knowledge of a self-concordant
barrier function for the feasible set of the problem. Y. Nesterov and A. Nemirovski have
shown that a self-concordant barrier function exists for every convex set. However, their
proposed universal self-concordant barrier function and its first and second derivatives
are not easily computable. Fortunately for SDP, which is an important class of convex
optimization programs, computable self-concordant barrier functions are known, and
therefore the interior-point methods can be used.

12

2.3. Interior point method

Nowadays, there are many libraries and toolboxes that one can use for solving
semidefinite programs. They differ in methods used and their implementations. Be-
fore starting solving a problem, one should know the details of the problem to solve
and choose the library accordingly to it as not every method and its implementation is
suitable for every problem.

Most methods are based on interior-point methods, which are efficient and robust for
general semidefinite programs. The main disadvantage of these methods is that they
need to store and factorize usually large Hessian matrix. Most modern implementations
of the interior-point methods do not need the knowledge of an interior feasible point in
advance. SeDuMi [46] casts the standard semidefinite program into the homogeneous
self-dual form, which has a trivial feasible point. SDPA [50] uses an infeasible interior-
point method, which can initialized by an infeasible point. Some of the libraries (e.g.
MOSEK [34]) have started out as LPs solvers and were extended for QCQPs solving
and convex optimization later on.

Another type of methods used in SDP are the first-order methods. They avoid storing
and factorizing Hessian matrices, and therefore they are able to solve much larger
problems than interior-point methods, but at some cost in accuracy. This method is
implemented, for instance, in the SCS solver [38].

2.3. Interior point method

In this section, we will follow Chapter 4 of [36] by Y. Nesterov, which is devoted to the
convex optimization problems. This chapter describes the state of the art interior-point
methods for solving convex optimization problems. We will extract from it the only
minimum, just to be able to introduce an algorithm for semidefinite programs solving.
We will present some basic definitions and theorems but we will not prove them. Look
into [36] for the proofs and more details.

2.3.1. Self-concordant functions

Definition 2.2 (Self-concordant function in R). A closed convex function f : R 7→
R is self-concordant if there exist a constant Mf ≥ 0 such that the inequality

|f ′′′(x)| ≤Mff
′′(x)3/2 (2.10)

holds for all x ∈ dom f .

For better understanding of the self-concordant functions, we provide several exam-
ples.

Example 2.3.

1. Linear and convex quadratic functions.

f ′′′(x) = 0 for all x (2.11)

Linear and convex quadratic functions are self-concordant with constant Mf = 0.

13

2. Semidefinite programming

2. Negative logarithms.

f(x) = − ln(x) for x > 0 (2.12)

f ′(x) = −1

x
(2.13)

f ′′(x) =
1

x2
(2.14)

f ′′′(x) = − 2

x3
(2.15)

|f ′′′(x)|
f ′′(x)3/2

= 2 (2.16)

Negative logarithms are self-concordant functions with constant Mf = 2.

3. Exponential functions.

f(x) = ex (2.17)

f ′′(x) = f ′′′(x) = ex (2.18)

|f ′′′(x)|
f ′′(x)3/2

= e−x/2 → +∞ as x→ −∞ (2.19)

Exponential functions are not self-concordant functions.

Definition 2.4 (Self-concordant function in Rn). A closed convex function f : Rn 7→
R is self-concordant if function g : R 7→ R

g(t) = f(x+ tv) (2.20)

is self-concordant for all x ∈ dom f and all v ∈ Rn.

Now, let us focus on the main properties of self-concordant functions.

Theorem 2.5 ([36, Theorem 4.1.1]). Let functions fi be self-concordant with constants
Mi and let αi > 0, i = 1, 2. Then, the function

f(x) = α1f1(x) + α2f2(x) (2.21)

is self-concordant with constant

Mf = max

{
1
√
α1
M1;

1
√
α2
M2

}
(2.22)

and

dom f = dom f1 ∩ dom f2. (2.23)

Corollary 2.6 ([36, Corollary 4.1.2]). Let function f be self-concordant with some
constant Mf and let α > 0. Then, the function φ(x) = αf(x) is also self-concordant
with the constant Mφ = 1√

α
Mf .

We call function f(x) as the standard self-concordant function if f(x) is some self-
concordant function with the constant Mf = 2. Using Corollary 2.6, we can see that any
self-concordant function can be transformed into the standard self-concordant function
by scaling.

14

2.3. Interior point method

Theorem 2.7 ([36, Theorem 4.1.3]). Let function f be self-concordant. If dom f con-
tains no straight line, then the Hessian f ′′(x) is nondegenerate at any x from dom f .

For some self-concordant function f(x), for which we assume that dom f contains
no straight line (which implies that all f ′′(x) are nondegenerate, see Theorem 2.7), we
introduce two local norms as

‖u‖x =
√
u>f ′′(x)u, (2.24)

‖u‖∗x =
√
u>f ′′(x)−1u. (2.25)

Consider the following minimization problem

x∗ = arg min
x∈dom f

f(x) (2.26)

with self-concordant function f(x). Algorithm 2.1 describes an iterative process of
solving the optimization problem (2.26). The algorithm is divided into two stages by
the value of ‖f ′(xk)‖∗xk . The splitting parameter β guarantees quadratic convergence
rate for the second part of the algorithm. The parameter β is chosen from interval
(0, λ̄), where

λ̄ =
3−
√

5

2
, (2.27)

which is a solution of the equation

λ

(1− λ)2
= 1. (2.28)

Algorithm 2.1. Newton method for minimization of self-concordant functions.

Input:
f a self-concordant function to minimize
x0 ∈ dom f a starting point
β ∈ (0, λ̄) a parameter of size of the region of quadratic convergence
ε a precision

Output:
x∗ an approximation to the optimal solution to the minimization problem (2.26)

1: k ← 0
2: while ‖f ′(xk)‖∗xk ≥ β do
3: xk+1 ← xk − 1

1+‖f ′(xk)‖∗xk
f ′′(xk)

−1f ′(xk)

4: k ← k + 1
5: end while
6: while ‖f ′(xk)‖∗xk > ε do
7: xk+1 ← xk − f ′′(xk)−1f ′(xk)
8: k ← k + 1
9: end while

10: return x∗ ← xk

The first while loop (lines 2 – 5) represents damped Newton method, where at each
iteration we have

f(xk)− f(xk+1) ≥ β − ln(1 + β) for k ≥ 0, (2.29)

15

2. Semidefinite programming

where

β − ln(1 + β) > 0 for β > 0, (2.30)

and therefore the global convergence of the algorithm is ensured. It can be shown that
the local convergence rate of the damped Newton method is also quadratic, but the
presented switching strategy is preferred as it gives better complexity bounds.

The second while loop of the algorithm (lines 6 – 9) is the standard Newton method
with quadratic convergence rate.

The algorithm terminates when the required precision ε is reached.

2.3.2. Self-concordant barriers

To be able to introduce self-concordant barriers, let us denote Dom f as the closure
of dom f , i.e. Dom f = cl(dom f).

Definition 2.8 (Self-concordant barrier [36, Definition 4.2.2]). Let F (x) be a stan-
dard self-concordant function. We call it a ν-self-concordant barrier for set DomF ,
if

sup
u∈Rn

(
2u>F ′(x)− u>F ′′(x)u

)
≤ ν (2.31)

for all x ∈ domF . The value ν is called the parameter of the barrier.

The inequality (2.31) can be rewritten into the following equivalent matrix notation

F ′′(x) � 1

ν
F ′(x)F ′(x)>. (2.32)

In Definition 2.8, the hessian F ′′(x) is not required to be nondegenerate. However,
in case that F ′′(x) is nondegenerate, the inequality (2.31) is equivalent to

F ′>(x)F ′′(x)−1F ′(x) ≤ ν. (2.33)

Let us explore, which basic functions are self-concordant barriers.

Example 2.9.

1. Linear functions.

F (x) = α+ a>x, domF = Rn (2.34)

F ′′(x) = 0 (2.35)

From (2.32) and for a 6= 0 follows, that linear functions are not self-concordant
barriers.

2. Convex quadratic functions.
For A = A> � 0:

F (x) = α+ a>x+
1

2
x>Ax, domF = Rn (2.36)

F ′(x) = a+Ax (2.37)

F ′′(x) = A (2.38)

After substitution into (2.33) we obtain

(a+Ax)>A−1(a+Ax) = a>A−1a+ 2a>x+ x>Ax, (2.39)

which is unbounded from above on Rn. Therefore, quadratic functions are not
self-concordant barriers.

16

2.3. Interior point method

3. Logarithmic barrier for a ray.

F (x) = − lnx, domF =
{
x ∈ R | x > 0

}
(2.40)

F ′(x) = −1

x
(2.41)

F ′′(x) =
1

x2
(2.42)

From (2.33), when F ′(x) and F ′′(x) are both scalars, we get

F ′(x)2

F ′′(x)
=
x2

x2
= 1. (2.43)

Therefore, the logarithmic barrier for a ray is a self-concordant barrier with pa-
rameter ν = 1 on domain

{
x ∈ R | x > 0

}
.

Now, let us focus on the main properties of the self-concordant barriers.

Theorem 2.10 ([36, Theorem 4.2.1]). Let F (x) be a self-concordant barrier. Then,
the function c>x+ F (x) is a self-concordant function on domF .

Theorem 2.11 ([36, Theorem 4.2.2]). Let Fi be a νi-self-concordant barriers, i = 1, 2.
Then, the function

F (x) = F1(x) + F2(x) (2.44)

is a self-concordant barrier for convex set

DomF = DomF1 ∩DomF2 (2.45)

with the parameter

ν = ν1 + ν2. (2.46)

Theorem 2.12 ([36, Theorem 4.2.5]). Let F (x) be a ν-self-concordant barrier. Then,
for any x ∈ DomF and y ∈ DomF such that

(y − x)>F ′(x) ≥ 0, (2.47)

we have

‖y − x‖x ≤ ν + 2
√
ν. (2.48)

There is one special point of a convex set, which is important for solving convex
minimization problems. It is called the analytic center of convex set and we will focus
on its properties.

Definition 2.13 ([36, Definition 4.2.3]). Let F (x) be a ν-self-concordant barrier for
the set DomF . The point

x∗F = arg min
x∈DomF

F (x) (2.49)

is called the analytic center of convex set DomF , generated by the barrier F (x).

17

2. Semidefinite programming

Theorem 2.14 ([36, Theorem 4.2.6]). Assume that the analytic center of a ν-self-
concordant barrier F (x) exists. Then, for any x ∈ DomF we have

‖x− x∗F ‖x∗F ≤ ν + 2
√
ν. (2.50)

This property clearly follows from Theorem 2.12 and the fact that F ′(x∗F) = 0.
Thus, if DomF contains no straight line, then the existence of x∗F (which leads to

nondegenerate F ′′(x∗F)) implies that the set DomF is bounded.
Now, we describe the algorithm and its properties for obtaining an approximation

to the analytic center. To find the analytic center, we need to solve the minimization
problem (2.49). For that, we will use the standard implementation of the damped
Newton method with a termination condition

‖F ′(xk)‖∗xk ≤ β for β ∈ (0, 1). (2.51)

The pseudocode of the whole minimization process is shown in Algorithm 2.2.

Algorithm 2.2. Damped Newton method for analytic centers. [36, Scheme 4.2.25]

Input:
F a ν-self-concordant barrier
x0 ∈ DomF a starting point
β ∈ (0, 1) a centering parameter

Output:
x∗F an approximation to the analytic center of the set DomF

1: k ← 0
2: while ‖F ′(xk)‖∗xk > β do
3: xk+1 ← xk − 1

1+‖F ′(xk)‖∗xk
F ′′(xk)

−1F ′(xk)

4: k ← k + 1
5: end while
6: return x∗F ← xk

Theorem 2.15 ([36, Theorem 4.2.10]). Algorithm 2.2 terminates no later than after
N steps, where

N =
1

β − ln(1 + β)

(
F (x0)− F (x∗F)

)
. (2.52)

The knowledge of the analytic center allows us to solve the standard minimization
problem

x∗ = arg min
x∈Q

c>x (2.53)

with bounded closed convex set Q ≡ DomF , which has nonempty interior, and which
is endowed with a ν-self-concordant barrier F (x). Denote

f(t, x) = tc>x+ F (x) for t ≥ 0 (2.54)

as a parametric penalty function. Using Theorem 2.10 we can see that f(t, x) is self-
concordant in x. Let us introduce new minimization problem using the parametric
penalty function f(t, x)

x∗(t) = arg min
x∈domF

f(t, x). (2.55)

18

2.3. Interior point method

This trajectory is called the central path of the problem (2.53). We will reach the
solution x∗(t) → x∗ as t → +∞. Moreover, since the set Q is bounded, the analytic
center x∗F of this set exists and

x∗(0) = x∗F . (2.56)

From the first-order optimality condition, any point of the central path satisfies equation

tc+ F ′
(
x∗(t)

)
= 0. (2.57)

Since the analytic center lies on the central path and can be found by Algorithm 2.2,
all we have to do, to find the solution x∗, is to follow the central path. This enables us
an approximate centering condition

‖f ′(t, x)‖∗x = ‖tc+ F ′(x)‖∗x ≤ β, (2.58)

where the centering parameter β is small enough.
Assuming x ∈ domF , one iteration of the path-following algorithm consists of two

steps:

t+ = t+
γ

‖c‖∗x
, (2.59)

x+ = x− F ′′(x)−1
(
t+c+ F ′(x)

)
. (2.60)

Theorem 2.16 ([36, Theorem 4.2.8]). Let x satisfy the approximate centering condi-
tion (2.58)

‖tc+ F ′(x)‖∗x ≤ β (2.61)

with β < λ̄ = 3−
√

5
2 . Then for γ, such that

|γ| ≤
√
β

1 +
√
β
− β, (2.62)

we have again

‖t+c+ F ′(x+)‖∗x+ ≤ β. (2.63)

This theorem ensures the correctness of the presented iteration of the path-following
algorithm. For the whole description of the path-following algorithm please see Algo-
rithm 2.3.

Theorem 2.17 ([36, Theorem 4.2.9]). Algorithm 2.3 terminates no more than after N
steps, where

N ≤ O

(
√
ν ln

ν‖c‖∗x∗F
ε

)
. (2.64)

The parameters β and γ in Algorithm 2.2 and Algorithm 2.3 can be fixed. The
reasonable values are:

β =
1

9
, (2.65)

γ =

√
β

1 +
√
β
− β =

5

36
. (2.66)

Algorithm 2.2 and Algorithm 2.3 can be easily used to solve the standard minimiza-
tion problem (2.53), supposing we have a feasible point x0 ∈ Q.

19

2. Semidefinite programming

Algorithm 2.3. Path following algorithm. [36, Scheme 4.2.23]

Input:
F a ν-self-concordant barrier
x0 ∈ domF a starting point satisfying ‖F ′(x0)‖∗x0 ≤ β, e.g. the analytic center x∗F
of the set DomF
β ∈ (0, 1) a centering parameter

γ a parameter satisfying |γ| ≤
√
β

1+
√
β
− β

ε > 0 an accuracy
Output:

x∗ an approximation to the optimal solution to the minimization problem (2.53)

1: t0 ← 0
2: k ← 0
3: while εtk < ν + (β+

√
ν)β

1−β do

4: tk+1 ← tk + γ
‖c‖∗xk

5: xk+1 ← xk − F ′′(xk)−1
(
tk+1c+ F ′(xk)

)
6: k ← k + 1
7: end while
8: return x∗ ← xk

2.3.3. Barrier function for semidefinite programming

In this section, we are going to show how to find a self-concordant barrier for the
semidefinite program (2.4) so that we can use Algorithm 2.2 and Algorithm 2.3 to solve
it. For the purpose of this section, we are interested only in the constrains of the
problem. The constrains are defining us the feasibility set

Q =

{
y ∈ Rm | A0 +

m∑
i=1

Aiy
(i) � 0

}
, (2.67)

where A0, . . . , Am ∈ Sn. Let us denote X(y) = A0 +
∑m

i=1Aiy
(i). If the matrix X(y) is

block diagonal

X(y) =

X1(y) 0 · · · 0

0 X2(y) · · · 0
...

...
. . .

...
0 0 · · · Xk(y)

 (2.68)

with Xj(y) ∈ Snj for j = 1, . . . , k and
∑k

j=1 nj = n, then the feasibility set Q can be
expressed as

Q =
{
y ∈ Rm | Xj(y) � 0, j = 1, . . . , k

}
. (2.69)

This rule allows us to easily add or remove some constraints without touching the others
and to keep the sizes of the used matrices small, which can significantly speed up the
computation.

Instead of the set Q, which is parametrized by y, we can directly optimize over the
set of positive semidefinite matrices. This set Pn is defined as

Pn =
{
X ∈ Sn | X � 0

}
(2.70)

20

2.3. Interior point method

and it is called the cone of positive semidefinite n × n matrices. This cone is a closed
convex set with interior formed by positive definite matrices and on its boundary lie
matrices that have at least one eigenvalue equal to zero.

Now, we are looking for a self-concordant barrier function, which will enable us to
optimize over the cone Pn. The domain of this function needs to contain the set Pn and
the values of the function have to be growing to +∞ as getting closer to the boundary
of the set Pn. This will create us a repelling force from the boundary of Pn, when
following the central path (2.55). Consider the function

F (X) = − ln

n∏
i=1

λi(X) (2.71)

as the self-concordant barrier function for the set Pn, where X ∈ intPn and
{
λi(X)

}n
i=1

is the set of eigenvalues of the matrix X. To avoid the computation of eigenvalues, the
function F (X) can be also expressed as

F (X) = − ln det(X). (2.72)

Theorem 2.18 ([36, Theorem 4.3.3]). Function F (X) is an n-self-concordant barrier
for Pn.

Example 2.19. Consider one-dimensional problem with linear constraint x ≥ 0. Then,
the set Q is

Q = {x ∈ R | x ≥ 0} (2.73)

and one of the barrier functions for this set Q is

F (x) = − ln(x). (2.74)

Then, when following the central path (2.55), the function F (x) allows us to reach the
boundary of Q as t grows to +∞. This situation is shown in Figure 2.2 for different
values of t.

Note, that DomF ⊇ Pn because det(X) ≥ 0 when the number of negative eigenvalues
of X is even. Therefore, the set DomF is made by disjoint subsets, which one of them is
Pn. As Algorithm 2.2 and Algorithm 2.3 are interior point algorithms, when the starting
point is from intPn, then we never leave Pn during the execution of the algorithms and
the optimal solution is found.

Similarly, the self-concordant barrier function for the set Q is a function

F (y) = − ln det
(
X(y)

)
. (2.75)

Example 2.20. To make it clearer, what is the difference between the set Q and
DomF (y), let us present an example. Let

X(y) =

[
y2 y1

y1 y2

]
, (2.76)

where y =
[
y1 y2

]>
. The equation

z = det
(
X(y)

)
= y2

2 − y2
1 (2.77)

21

2. Semidefinite programming

−0.5

0

0.5

1

1.5

2

−1 −0.5 0 0.5 1 1.5 2 2.5 3

−
1 t

ln
(x

)

x

t = 1
t = 2
t = 5
t = 10

t→ +∞

Figure 2.2. Illustration of the logarithmic barrier function for different values of t.

represents a hyperbolic paraboloid, which you can see in Figure 2.3. Therefore, the
equation z = 0 is a slice of it, denoted by the purple color in Figure 2.4. The domain
of the self-concordant barrier function is

DomF (y) =
{
y | det

(
X(y)

)
≥ 0
}

(2.78)

and is shaded blue. We can see, that the set DomF (y) consists of two disjoint parts.
One of them is the set where X(y) � 0 (denoted by the orange color) and the second
part is an area where both eigenvalues of X(y) are negative. Therefore, one has to pick
his starting point x0 from the interior of the set Q =

{
y ∈ R2 | X(y) � 0

}
to obtain

the optimal solution from the set Q.

When the matrix X has the block diagonal form (2.68), we can rewrite the barrier
function (2.75) as

F (y) = −
k∑
j=1

ln det
(
Xj(y)

)
. (2.79)

For the purposes of Algorithm 2.2 and Algorithm 2.3, we need the first and the second
partial derivatives of this function. Let us denote Xj(y) = Aj,0 +

∑m
i=1Aj,iy

(i) for
j = 1, . . . , k, then the derivatives are:

∂F

∂y(u)

(
y
)

= −
k∑
j=1

tr
(
Xj(y)−1Aj,u

)
, (2.80)

∂2F

∂y(u)∂y(v)

(
y
)

=

k∑
j=1

tr
((
Xj(y)−1Aj,u

)(
Xj(y)−1Aj,v

))
, (2.81)

22

2.3. Interior point method

−2 −1.5 −1 −0.5
0

0.5
1

1.5
2 −2

−1.5
−1
−0.5

0
0.5

1
1.5

2

−4
−3
−2
−1

0
1
2
3
4

z

z = y2
2 − y2

1

y1

y2

z

Figure 2.3. Hyperbolic paraboloid z = y22 − y21 .

for u, v = 1, . . . ,m.

The computation of the derivatives is the most expensive part of each step of Algo-
rithm 2.2 and Algorithm 2.3. Therefore, the estimated number of arithmetic operations
of computation of the derivatives is also the complexity of each step in the algorithms.
The number of arithmetic operations for j-th constraint in form

{
y | Xj(y) � 0

}
is as

follows:

• the computation of Xj(y) = Aj,0 +
∑m

i=1Aj,iy
(i) needs mn2 operations,

• the computation of the inversion Xj(y)−1 needs n3 operations,

• to compute all matrices Xj(y)−1Aj,u for u = 1, . . . ,m is needed mn3 operations,

• to compute tr
(
Xj(y)−1Aj,u

)
for u = 1, . . . ,m is needed mn operations,

• the computation of tr
((
Xj(y)−1Aj,u

)(
Xj(y)−1Aj,v

))
for u, v = 1, . . . ,m needs

m2n2 operations.

The most expensive parts requires mn3 and m2n2 arithmetic operations on each con-
straint. Typically, the value k, the number of constraints, is small and is kept constant
when the semidefinite programs are generated as subproblems, when solving more com-
plex problems, e.g. polynomial optimization. Therefore, we can say, that k is constant
and we can omit it from the complexity estimation. To sum up, one step of Algo-
rithm 2.2 and Algorithm 2.3 requires

O
(
m(m+ n)n2

)
(2.82)

arithmetic operations.

23

2. Semidefinite programming

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

y 2

y1

DomF (y){
y | X(y) � 0

}
det
(
X(y)

)
= 0

Figure 2.4. Illustration of the sets DomF (y) and
{
y | X(y) � 0

}
.

2.4. Implementation details

To be able to study the algorithms described previously in this section, we have
implemented them in the programming language Python [47]. The full knowledge of
the code allows us to trace the algorithms step by step and inspect their behaviors.
Instead of using some state of the art toolboxes for semidefinite programming, e.g.
SeDuMi [46] and MOSEK [34], which are more or less black boxes for us, the knowledge
of the used algorithms allows us to decide, if the chosen algorithm is suitable for the
given semidefinite problem or not. Moreover, if we would like to create some specialized
solver for some class of semidefinite problems, we can easily reuse the code, edit it as
required and build the solver very quickly. On the other hand, we can not expect
that our implementation will be as fast as the implementation of some state of the art
toolboxes, as much more time and effort was used to develop them.

The implementation is compatible with Python version 3.5 and higher. The package
NumPy is used for linear algebra computations. Please refer to the installation guide
of NumPy for your system to ensure, that it is correctly set to use the linear algebra
libraries, e.g. LAPACK [3], ATLAS [48] and BLAS [31]. The incorrect setting of these
libraries causes significant drop of the performance. Other Python packages are required
as well, e.g. SymPy and SciPy, but theirs settings are not so crucial for the performance
of this implementation.

2.4.1. Package installation

The package with implementation of Algorithm 2.2 and Algorithm 2.3 is named
Polyopt, as the semidefinite programming part of this package is only a tool, which
is used for polynomial optimization and polynomial systems solving, which will be
described in Chapter 3. The newest version of the package is available at http://cmp.
felk.cvut.cz/~trutmpav/master-thesis/polyopt/. To install the package on your

24

http://cmp.felk.cvut.cz/~trutmpav/master-thesis/polyopt/
http://cmp.felk.cvut.cz/~trutmpav/master-thesis/polyopt/

2.4. Implementation details

system, you have to clone and checkout the Git repository with the source codes of the
package. To install other packages that are required, the preferred way is to use the
pip1 installer. The required packages are listed in the requirements.txt file. Then,
install the package using the script setup.py. For the exact commands for the whole
installation process please see Listing 2.1.

Listing 2.1. Installation of the package Polyopt.

1: git clone https://github.com/PavelTrutman/polyopt.git

2: cd polyopt

3: python3 setup.py install

To check, whether the installation was successful, run command python3 setup.py

test, which will execute the predefined tests. If no error emerges, then the package is
installed and ready to use.

2.4.2. Usage

The Polyopt package is able to solve semidefinite programs in the form

y∗ = arg min
y∈Rm

c>y

s.t. Aj,0 +

m∑
i=1

Aj,iy
(i) � 0 for j = 1, . . . , k,

(2.83)

where Aj,i ∈ Snj for i = 0, . . .m and j = 1, . . . , k, c ∈ Rm and k is the number of
constraints. In addition, a strictly feasible point y0 ∈ Rm must be given.

The semidefinite program solver is implemented in the class SDPSolver of the Polyopt
package. Firstly, the problem is initialized by the matrices Aj,i and the vector c. Then,
the function solve is called with parameter y0 as the starting point and with the method
for the analytic center estimation. A choice from two methods is available, firstly, the
method dampedNewton, which corresponds to Algorithm 2.2, and secondly, the method
auxFollow, which is the implementation of the Auxiliary path-following scheme [36].
However, the auxFollow method is unstable and it fails in some cases, and therefore it
is not recommended to use. The function solve returns the optimal solution y∗. The
minimal working example is shown in Listing 2.2.

Listing 2.2. Typical usage of the class SDPSolver of the Polyopt package.

1: import polyopt

2:

3: # assuming the matrices Aij and the vectors c and y0 are already

defined

4: problem = polyopt.SDPSolver(c, [[A10, A11, ..., A1m], ..., [Ak0,

Ak1, ..., Akm]])

5: yStar = problem.solve(y0, problem.dampedNewton)

Detailed information can be printed out during the execution of the algorithm. This
option can be set by problem.setPrintOutput(True). Then, in each iteration of
Algorithm 2.2 and Algorithm 2.3, the values k, xk and eigenvalues of Xj(xk) are printed
to the terminal.

1The PyPA recommended tool for installing Python packages. See https://pip.pypa.io.

25

https://pip.pypa.io

2. Semidefinite programming

If n, the dimension of the problem, is equal to 2, boundary of the set DomF
(2.78) and all intermediate points xk can be plotted. This is enabled by setting
problem.setDrawPlot(True). An example of such a graph is shown in Figure 2.5.

The parameters β and γ are predefined to the same values as in (2.65) and (2.66).
These parameters can be set to different values by assigning to the variables problem.beta
and problem.gamma respectively. The default value for the accuracy parameter ε is
10−3. This value can be changed by overwriting the variable problem.eps.

The function problem.getNu() returns the ν parameter of the self-concordant barrier
function used for the problem according to Theorem 2.18. When the problem is solved,
we can obtain the eigenvalues of X(y∗) by calling problem.eigenvalues(). We should
observe, that some of them are positive and some of them are zero (up to the numerical
precision). The zero eigenvalues mean, that we have reached the boundary of the set
Q, because the optimal solution lies always on the boundary of the set Q.

It may happen, that the set DomF is not bounded, but the optimal solution can be
attained. In this case, the analytic center does not exists and the proposed algorithms
can not be used. By adding a constraint

Xk+1(y) =

R2 y(1) y(2) · · · y(m)

y(1) 1 0 · · · 0

y(2) 0 1 · · · 0
...

...
...

. . .
...

y(m) 0 0 · · · 1

 for R ∈ R, (2.84)

we bound the set by a ball with radius R. The constraint (2.84) is equivalent to

‖y‖22 ≤ R2. (2.85)

This will make the set DomF bounded and the analytic center can by found in the
standard way by Algorithm 2.2. When optimizing the linear function by Algorithm 2.3,
the radius R may be set too small and the optimum may be found on the boundary
of the constraint (2.84). Then, the found optimum is not the solution to the original
problem and the algorithm has to be run again with bigger value of R. The optimum
is found on the boundary of the constraint (2.84), if at least one of the eigenvalues of
Xk+1(y∗) is zero. In our implementation, the artificial bounding constraint (2.84) can
be set by problem.bound(R). When the problem is solved, we can list the eigenvalues
of Xk+1(y∗) by the function problem.eigenvalues(’bounded’).

Example 2.21. Let us present a simple example to show a detailed usage of the package
Polyopt. Let us have semidefinite program in a form

y∗ = arg min
y∈R2

y(1) + y(2)

s.t.

1 + y(1) y(2) 0

y(2) 1− y(1) y(2)

0 y(2) 1− y(1)

 � 0
(2.86)

with starting point

y0 =
[
0 0

]>
. (2.87)

Listing 2.3 shows the Python code used to solve the given problem. The graph of the
problem is shown in Figure 2.5. The analytic center of the feasible region of the problem
is

y∗F =
[
−0.317 0

]>
, (2.88)

26

2.5. Comparison with the state of the art methods

the optimal solution is attained at

y∗ =
[
−0.778 −0.592

]>
(2.89)

and the objective function has value −1.37. The eigenvalues of X(y∗) are{
λi
(
X(y∗)

)}3

i=1
= {2.32 · 10−4; 1.32; 2.45}. (2.90)

−1

−0.5

0

0.5

1

−1.5 −1 −0.5 0 0.5 1 1.5

y
(2

)

y(1)

Boundary of the set DomF
Steps of Algorithm 2.2
Steps of Algorithm 2.3

Figure 2.5. Graph of the semidefinite optimization problem stated in Example 2.21.

2.5. Comparison with the state of the art methods

Because a new implementation of a well-known algorithm was made, one should
compare many properties of this implementation with the contemporary state of the
art implementations. For that reason, we have generated some random instances of
semidefinite problems. We have solved these problems by our implementation from
the Polyopt package and by selected state of the art toolboxes, namely SeDuMi [46]
and MOSEK [34]. Firstly, we have verified the correctness of the implementation by
checking that the optimal solution is the same as the solution obtained by SeDuMi and
MOSEK for each instance of data. We have also measured execution times of all three
libraries and compared them in Table 2.1 and Figure 2.6.

2.5.1. Problem description

Now, let us describe, how the random instances of the semidefinite problems were
generated. From (2.82) we know that each step of Algorithm 2.2 and Algorithm 2.3

27

2. Semidefinite programming

Listing 2.3. Code for solving semidefinite problem stated in Example 2.21.

1: from numpy import *

2: import polyopt

3:

4: # Problem statement

5: # min c1*y1 + c2*y2

6: # s.t. A0 + A1*y1 + A2*y2 >= 0

7: c = array([[1], [1]])

8: A0 = array([[1, 0, 0],

9: [0, 1, 0],

10: [0, 0, 1]])

11: A1 = array([[1, 0, 0],

12: [0, -1, 0],

13: [0, 0, -1]])

14: A2 = array([[0, 1, 0],

15: [1, 0, 1],

16: [0, 1, 0]])

17:

18: # starting point

19: y0 = array([[0], [0]])

20:

21: # create the solver object

22: problem = polyopt.SDPSolver(c, [[A0, A1, A2]])

23:

24: # enable graphs

25: problem.setDrawPlot(True)

26:

27: # enable informative output

28: problem.setPrintOutput(True)

29:

30: # solve!

31: yStar = problem.solve(y0, problem.dampedNewton)

32:

33: # print eigenvalues of X(yStar)

34: print(problem.eigenvalues())

28

2.5. Comparison with the state of the art methods

requires m(m+ n)n2 arithmetic operations, where m is the size of the matrices in the
LMI constraint and n is the number of variables. Since in typical applications of SDP,
the size of the matrices grows with the number of variables, we have set m = n to have
just single parameter, which we call the size of the problem.

In our experiment, we have generated 50 unique LMI constraints for each size of the
problem from 1 to 25. Each unique constraint has form

Xk,l(y) = Ik +
k∑
i=1

Ak,l,iy
(i) (2.91)

for the size of the problem k = 1, . . . , 25 and unique LMI constraint l = 1, . . . , 50,
where Ak,l,i ∈ Sk. The matrices Ak,l,i were filled with random numbers from uniform
distribution (−1; 1) with symmetricity of the matrices preserved. The package Polyopt
requires the starting point y0 to be given by the user in advance. But from the structure
of the constraint (2.91) we can see that y0 ∈ Rk

y0 =
[
0 · · · 0

]>
(2.92)

is a feasible point. We used the point y0 to initialize problems for Polyopt package
but we have let SeDuMi and MOSEK use their own initialization process. However,
since the LMI constraints were randomly generated, there is no guarantee that the
sets, which they define, are bounded. Therefore, we have added constraint (2.84) for
R = 103, which guarantees that we are optimizing over bounded sets.

The objective function of the problem is generated randomly too. For each unique
instance, we have generated random vector r ∈ Rn from uniform distribution (−1; 1).
Then, the objective function to minimize is r>y. The final generated problem denoted
as Pk,l looks like

min
y∈Rk

r>k,ly

s.t. Ik +

k∑
i=1

Ak,l,iy
(i) � 0

R2 y(1) y(2) · · · y(k)

y(1) 1 0 · · · 0

y(2) 0 1 · · · 0
...

...
...

. . .
...

y(k) 0 0 · · · 1

 � 0.

(2.93)

2.5.2. Time measuring

To eliminate influences that negatively affect the execution times on CPU, such as
other processes competing for the same CPU core, processor caching, data loading
delays, etc., we have executed each problem Pk,l 50 times. So, for each problem Pk,l we
have obtained execution times τk,l,s for s = 1, . . . , 50. Because the influences mentioned
above can only prolong the execution times, we have selected minimum of τk,l,s for each
problem Pk,l.

τk,l =
50

min
s=1

τk,l,s (2.94)

29

2. Semidefinite programming

Since the execution times of problems of the same sizes should be more or less the same,
we have computed the average execution time τk for each size of the problem.

τk =
1

50

50∑
l=1

τk,l (2.95)

These execution times τk, where k is the size of the problem, were measured and
computed separately for the Polyopt, SeDuMi and MOSEK toolboxes and are shown
in Table 2.1 and Figure 2.6.

Problem Toolbox
size Polyopt SeDuMi [46] MOSEK [34]

1 0.011 20 s 0.019 60 s 0.002 09 s
2 0.015 30 s 0.027 00 s 0.002 39 s
3 0.016 60 s 0.028 70 s 0.002 45 s
4 0.018 70 s 0.032 40 s 0.002 83 s
5 0.021 20 s 0.034 60 s 0.003 01 s
6 0.024 60 s 0.036 90 s 0.003 22 s
7 0.029 20 s 0.037 10 s 0.003 42 s
8 0.034 30 s 0.039 20 s 0.003 74 s
9 0.040 80 s 0.039 50 s 0.004 14 s
10 0.047 80 s 0.042 80 s 0.004 79 s
11 0.055 30 s 0.043 60 s 0.005 21 s
12 0.065 00 s 0.044 80 s 0.005 46 s
13 0.075 40 s 0.046 50 s 0.006 06 s
14 0.087 50 s 0.048 00 s 0.006 39 s
15 0.098 60 s 0.049 20 s 0.006 86 s
16 0.112 00 s 0.049 70 s 0.007 35 s
17 0.126 00 s 0.052 20 s 0.008 62 s
18 0.145 00 s 0.054 70 s 0.008 91 s
19 0.164 00 s 0.056 70 s 0.009 70 s
20 0.183 00 s 0.059 10 s 0.010 50 s
21 0.208 00 s 0.063 90 s 0.012 00 s
22 0.237 00 s 0.066 50 s 0.013 50 s
23 0.264 00 s 0.068 60 s 0.014 60 s
24 0.292 00 s 0.071 70 s 0.015 30 s
25 0.326 00 s 0.075 40 s 0.017 30 s

Table 2.1. Execution times of different sizes of semidefinite problems solved by the selected
toolboxes.

It has to be mentioned, that the Polyopt toolbox is implemented in Python, but the
toolboxes SeDuMi and MOSEK were run from MATLAB with precompiled MEX files
(compiled C, C++ or Fortran code) and therefore the execution times are not readily
comparable. On the other side, the Python package NumPy uses common linear algebra
libraries, like LAPACK [3], ATLAS [48] and BLAS [31], and we can presume that
SeDuMi and MOSEK use them too.

Our intention was to measure only the execution time of the solving phase, not of
the setup time. In case of the Polyopt package, we measured the execution time of
the function solve(). For SeDuMi and MOSEK, we have used MATLAB framework

30

2.5. Comparison with the state of the art methods

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 5 10 15 20 25

E
x
ec

u
ti

on
ti

m
e

[s
]

Problem size

Polyopt — solving time
Polyopt — setup time

SeDuMi [46] — solving time
SeDuMi [46] — setup time

MOSEK [34] — solving time
MOSEK [34] — setup time

Figure 2.6. Graph of execution times based on the size of semidefinite problems solved by the
selected toolboxes.

YALMIP [32] for defining the semidefinite programs and calling the solvers. The exe-
cution time of the YALMIP code is quite long, because YALMIP makes an analysis of
the problem and compiles it into a standard form. Only after that, an external solver
(SeDuMi or MOSEK) is called to solve the problem. Fortunately, YALMIP internally
measures the execution time of the solver, so we have used this time in our statistics.
For overall comparison we have also measured the setup time, e.g. the execution time
spent before the SDP solver is actually called, of all three packages and we have shown
them in Figure 2.6.

The experiments were executed on Intel Xeon E5-1650 v4 CPU 3.60GHz based com-
puter with sufficient amount of free system memory. The installed version of Python
was 3.5.3 and MATLAB R2017b 64-bit was used.

2.5.3. Results

By the look of the solving times shown in Figure 2.6, we can see that the MOSEK
toolbox totally wins. The SeDuMi toolbox seems to have some constant overhead, but
the execution time grows slowly with the increasing size of the problem. The Polyopt
package accomplishes quite bad results compared to SeDuMi and MOSEK, especially for
large sizes of problems. But this behavior was expected, as we know that the execution
time should be proportional to k4, where k is the size of the problem. However, due to
SeDuMi overhead, the Polyopt package is faster than SeDuMi for problem sizes up to
eight.

Regarding the setup times of the solvers, we can observe that the YALMIP framework
spends more execution time by analyzing and compiling the problem than by solving
it. This makes inadequate overhead for small problems, but it may prove crucial for
solving large problems with many unknowns.

31

2. Semidefinite programming

2.6. Speed–accuracy trade-off

Obtaining a precise solution of a semidefinite program is quite time consuming, es-
pecially for problems with many unknowns, as we can see from Figure 2.6. However,
in many applications we have no need for a precise solution. We only need a “good
enough” solution, but obtained in a limited time period. Therefore one should be
interested in a analysis describing this speed–accuracy trade-off.

2.6.1. Precision based analysis

The first experiment is an observation how many iterations, and therefore how much
time, is required to find a solution based on the value of ε from Algorithm 2.3. This
value of ε represents an accuracy of Algorithm 2.3 and sets up a threshold for the
termination condition. The bigger the value of ε the less iterations the algorithm needs
to terminate, and therefore less computation time is spent.

To evaluate the dependency we have generated unique semidefinite programs Pk,l
according to (2.93) for k = 5, 10, 15, 20 and l = 1, . . . , 1000. For each of this problem
and accuracy ε we have measured the number of iterations Nk,l,ε of Algorithm 2.3
required to find the solution. Then, we have averaged the numbers across the unique
problems.

Nk,ε =
1

1000

1000∑
l=1

Nk,l,ε (2.96)

The values of Nk,ε are plotted in Figure 2.7 for different values of k and ε.

0

50

100

150

200

250

300

350

10−9 10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1 100

N
u

m
b

er
of

it
er

a
ti

on
s

ε

k = 5
k = 10
k = 15
k = 20

Figure 2.7. Graph of numbers of iterations required to solve the semidefinite problems by
Algorithm 2.3 for different values of problem size k based on ε using the implementation
from the Polyopt package.

From the plot we can see that the number of iterations, and therefore the execution
time, required to solve a given problem of fixed problem size k is proportional to log(ε).

32

2.6. Speed–accuracy trade-off

This results is in accordance with the estimated number of steps from the equation
(2.64).

2.6.2. Analysis based on the required distance from the solution

Algorithm 2.3 starts at the analytic center y∗F of the feasible set of the problem and
then follows the central path until it is sufficiently close to the optimal solution y∗.
The sizes of the steps of the algorithm are decreasing as the algorithm is closing to the
solution. Therefore, we need only few iterations to get within half the distance ‖y∗−y∗F ‖
from the solution, but many of them to be within 1 % of the distance ‖y∗ − y∗F ‖ from
the solution. The situation for a simple semidefinite problem is shown in Figure 2.8.

−3

−2

−1

0

1

2

−6 −4 −2 0 2 4

y
(2

)

y(1)

Boundary of the feasible set of the problem
Steps of Algorithm 2.3

50 % of ‖y∗ − y∗F ‖
25 % of ‖y∗ − y∗F ‖
10 % of ‖y∗ − y∗F ‖

y∗F

y∗

Figure 2.8. Example of a simple semidefinite problem with steps of Algorithm 2.3. The
algorithm starts from the analytic center y∗F and finishes at the optimal point y∗. Selected
fractions of the distance ‖y∗ − y∗F ‖ are represented by concentric circles.

To see how many iterations are needed to get within some fraction of the distance
‖y∗−y∗F ‖ from the optimal solution y∗, we have generated unique semidefinite problems
Pk,l for the problem sizes k = 5, 10, 15, 20 and l = 1, . . . , 1000 according to (2.93). Then,
we have solved each problem with accuracy ε = 10−9 to obtain a precise approximation
of the solution y∗. After that we have counted how many iterations Nk,l,λ are needed to
get within the distance λ‖y∗ − y∗F ‖ from the solution y∗ for the given problem and for
selected values of λ. Then, we have averaged the numbers across the unique problems.

Nk,λ =
1

1000

1000∑
l=1

Nk,l,λ (2.97)

The values of Nk,λ are plotted in Figure 2.9 for different values of k and λ.

From the experiments we can see that the number of iterations, and therefore the
execution time, of Algorithm 2.3 required to get within some fraction λ of the distance
‖y∗−y∗F ‖ for a given problem with fixed problem size k is almost proportional to log(λ).

33

2. Semidefinite programming

0

50

100

150

200

250

300

350

10−9 10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1 100

N
u

m
b

er
o
f

it
er

at
io

n
s

λ

k = 5
k = 10
k = 15
k = 20

Figure 2.9. Graph of numbers of iterations required to get within the distance λ‖y∗−y∗F ‖ from
the optimal solution y∗ using Algorithm 2.3 for different values of problem size k based on λ
using the implementation from the Polyopt package.

2.7. Conclusions

In this chapter, we have reviewed the state of the art interior point algorithm for
solving convex optimization problems and we have shown its application on semidef-
inite programming. We have implemented this algorithm in Python and verified its
correctness on synthetically generated semidefinite programs. The computation time
comparison to the state of the art toolboxes SeDuMi [46] and MOSEK [34] was given
and it revealed that out implementation is significantly slower. The computation times
are comparable to the state of the art toolboxes only for small semidefinite problems, let
us say for problems up to 10 unknowns. Then, we have investigated the speed–accuracy
trade-off, which has shown that computation time can be saved when the precision of
the solution is not crucial.

34

3. Optimization over polynomials

This chapter is devoted to the application of semidefinite programming in polyno-
mial algebra. Firstly, we introduce basic notation from the polynomial algebra and
the state of the art method for solving systems of polynomial equations using so called
multiplication matrices. Then, we introduce the theory of moment matrices, since mo-
ment matrices will be used to relax the polynomial problems into the semidefinite ones.
After that, we will focus on polynomial optimization, i.e. optimizing a polynomial func-
tion given polynomial constrains. We will present a method how to use hierarchies of
semidefinite problems to solve a polynomial optimization problem. We implement this
method and compare it to the state of the art optimization toolboxes. In the last section
of this chapter, we will introduce the moment method for polynomial systems solving.
This method also uses hierarchies of semidefinite problems to solve the polynomial sys-
tems with the advantage that only real solutions are found. When solving polynomial
systems arisen from geometry of computer vision, we are typically interested only in
the real solutions. Polynomial optimization method may prove to be a useful tool to
eliminate the non-real solutions.

3.1. Algebraic preliminaries

In this chapter, which is focused on polynomial optimization and polynomial systems
solving, we will follow the notation from [9]. Just to keep this chapter self-contained,
we will recall some basics of polynomial algebra.

3.1.1. The polynomial ring, ideals and varieties

The ring of multivariate polynomials in n variables with coefficients in R is denoted as

R[x], where x =
[
x1 x2 · · · xn

]>
. For α1, α2, . . . , αn ∈ N, xα denotes the monomial

x1
α1x2

α2 · · ·xnαn , with a total degree |α| =
∑n

i=1 αi, where α =
[
α1 α2 · · · αn

]>
.

A polynomial p ∈ R[x] can be written as

p =
∑
α∈Nn

pαx
α (3.1)

with a total degree deg(p) = maxα∈Nn |α| for non-zero coefficients pα ∈ R.

A linear subspace I ⊆ R[x] is an ideal if (i) p ∈ I and q ∈ R[x] implies pq ∈ I and
(ii) p, q ∈ I implies p+ q ∈ I. Let f1, f2, . . . , fm be polynomials in R[x]. Then, the set

〈f1, f2, . . . , fm〉 =

{
m∑
j=1

hjfj | h1, h2, . . . , hm ∈ R[x]

}
(3.2)

is called the ideal generated by f1, f2, . . . , fm. Given an ideal I ∈ R[x], the algebraic
variety of I is the set

VC(I) =
{
x ∈ Cn | f(x) = 0 for all f ∈ I

}
(3.3)

35

3. Optimization over polynomials

and its real variety is

VR(I) = VC(I) ∩ Rn. (3.4)

The ideal I is said to be zero-dimensional when its complex variety VC(I) is finite. The
vanishing ideal of a subset V ⊆ Cn is the ideal

I(V) =
{
f ∈ R[x] | f(x) = 0 for all x ∈ V

}
. (3.5)

The radical ideal of the ideal I ⊆ R[x] is the ideal

√
I =

{
f ∈ R[x] | fm ∈ I for some m ∈ Z+

}
. (3.6)

The real radical ideal of the ideal I ⊆ R[x] is the ideal

R√
I =

{
f ∈ R[x] | f2m +

∑
j

h2
j ∈ I for some hj ∈ R[x],m ∈ Z+

}
. (3.7)

The following two theorems are stating the relations between the vanishing and (real)
radical ideals.

Theorem 3.1 (Hilbert’s Nullstellensatz [9, Section 4.2, Theorem 6]). Let I ∈ R[x]
be an ideal. The radical ideal of I is equal to the vanishing ideal of its variety, i.e.

√
I = I

(
VC(I)

)
. (3.8)

Theorem 3.2 (Real Nullstellensatz [6, Theorem 4.1.4]). Let I ∈ R[x] be an ideal.
The real radical ideal of I is equal to the vanishing ideal of its real variety, i.e.

R√
I = I

(
VR(I)

)
. (3.9)

The quotient ring R[x]/I is the set of all equivalence classes of polynomials in R[x]
for congruence modulo ideal I

R[x]/I =
{
[f] | f ∈ R[x]

}
, (3.10)

where the equivalence class [f] is

[f] =
{
f + g | g ∈ I

}
. (3.11)

Because R[x]/I is a ring, it is equipped with addition and multiplication on the equiv-
alence classes:

[f] + [g] = [f + g], (3.12)

[f][g] = [fg] (3.13)

for f, g ∈ R[x].
For zero-dimensional ideal I, there is a relation between the dimension of R[x]/I and

the cardinality of the variety VC(I):

|VC(I)| ≤ dim
(
R[x]/I

)
. (3.14)

Moreover, if I is a radical ideal, then

|VC(I)| = dim
(
R[x]/I

)
. (3.15)

36

3.1. Algebraic preliminaries

Assume that the number of complex roots is finite and let N = dim
(
R[x]/I

)
, and

therefore |VC(I)| ≤ N . Consider a set B = {b1, b2, . . . , bN} ⊆ R[x] for which the
equivalence classes [b1], [b2], . . . , [bN] are pairwise distinct and

{
[b1], [b2], . . . , [bN]

}
is a

basis of R[x]/I. Then, every polynomial f ∈ R[x] can be written in a unique way as

f =

N∑
i=1

cibi + p, (3.16)

where ci ∈ R and p ∈ I. The normal form of the polynomial f modulo I with respect
to the basis B is the polynomial

NB(f) =
N∑
i=1

cibi. (3.17)

3.1.2. Solving systems of polynomial equations using multiplication
matrices

Systems of polynomial equations can be solved by computing eigenvalues and eigen-
vectors of so called multiplication matrices. Given f ∈ R[x], we define the multiplication
operator (by f) Xf : R[x]/I → R[x]/I as

Xf ([g]) = [f][g] = [fg]. (3.18)

It can be shown that Xf is a linear mapping, and therefore can be represented by its
matrix with respect to the basis B of R[x]/I. For simplicity, we again denote this matrix
Xf and it is called the multiplication matrix by f . When B = {b1, b2, . . . , bN} and we

set NB(fbj) =
∑N

i=1 ai,jbi for aij ∈ R, then the multiplication matrix is

Xf =

a1,1 a1,2 · · · a1,N

a2,1 a2,2 · · · a2,N
...

...
. . .

...
aN,1 aN,2 · · · aN,N

 . (3.19)

Theorem 3.3 (Stickelberger theorem). Let I be a zero-dimensional ideal in R[x],
let B = {b1, b2, . . . , bN} be a basis of R[x]/I, and let f ∈ R[x]. The eigenvalues of the
multiplication matrix Xf are the evaluations f(v) of the polynomial f at the points
v ∈ VC(I). Moreover, for all v ∈ VC(I),

X>f [v]B = f(v)[v]B, (3.20)

setting [v]B =
[
b1(v) b2(v) · · · bN (v)

]>
; that is, the vector [v]B is a left eigenvector

with eigenvalue f(v) of the multiplication matrix Xf .

Therefore, we can create the multiplication matrix Xxi for the variable xi and then
the eigenvalues of Xxi correspond to the xi-coordinates of the points VC(I). This means
that the solutions of the whole system can be found by computing eigenvalues λxi ={
λj(Xxi)

}N
j=1

of the multiplication matrix Xxi for all variables xi. Then, VC(I) is a
subset of the Cartesian product λx1 × λx2 × · · · × λxn and one has to select only the
points that are solutions. However, this method becomes inefficient for large n, the
number of variables, since n multiplication matrices have to be constructed and their
eigenvalues computed.

37

3. Optimization over polynomials

For this reason, the second property of multiplication matrices is used. The roots
can be recovered from the left eigenvectors of Xf , when all left eigenspaces of Xf have
dimension one. This is the case, when the values f(v) for v ∈ VC(I) are pairwise distinct
and when the ideal I is radical. In that case, each left eigenvector of Xf corresponds
to one solution v ∈ VC(I) and the values of the eigenvectors are the evaluations bi(v)
for bi ∈ B, and therefore when the variable xi ∈ B, we can readily obtain its value.

Example 3.4. Let us have a system of two polynomial equations.

− 20x2 + xy − 12y2 − 16x − y + 48 = 0 (3.21)

12x2 − 58xy + 3y2 + 46x− 47y + 44 = 0 (3.22)

The first equation represents an ellipse and the second one a hyperbola as you can see
in Figure 3.1. Let us solve the system using multiplication matrices.

−3

−2

−1

0

1

2

3

−5 −4 −3 −2 −1 0 1 2 3 4

y

x

Ellipse (3.21)
Hypebola (3.22)

VC(I)
ṼC(I)

Figure 3.1. The intersection of the ellipse (3.21) and the hyperbola (3.22) with solutions found
by the eigenvalue and the eigenvector methods using multiplication matrices.

First of all, we have to compute the Gröbner basis [4] of the ideal, for example using
the F4 Algorithm [11]. We have got the following basis:

164x2 + 99y2 + 126x + 15y − 404, (3.23)

41xy + 3y2 − 16x + 34y − 52, (3.24)

41y3 − 15y2 + 48x− 170y + 96. (3.25)

Now, we can select the monomial basis B

B =
[
1 y x y2

]>
(3.26)

38

3.1. Algebraic preliminaries

and construct the multiplication matrices Xx and Xy accordingly, knowing that

Xx
([

1
])

=
[
x
]

= 1
[
x
]
, (3.27)

Xx
([
y
])

=
[
xy
]

= − 3

41

[
y2
]

+
26

41

[
x
]
− 34

41

[
y
]

+
52

41

[
1
]
, (3.28)

Xx
([
x
])

=
[
x2
]

= − 99

164

[
y2
]
− 63

82

[
x
]
− 15

164

[
y
]

+
101

41

[
1
]
, (3.29)

Xx
([
y2
])

=
[
xy2
]

= − 37

41

[
y2
]

+
20

41

[
x
]

+
18

41

[
y
]

+
40

41

[
1
]
, (3.30)

and

Xy
([

1
])

=
[
y
]

= 1
[
y
]
, (3.31)

Xy
([
y
])

=
[
y2
]

= 1
[
y2
]
, (3.32)

Xy
([
x
])

=
[
xy
]

= − 3

41

[
y2
]

+
26

41

[
x
]
− 34

41

[
y
]

+
52

41

[
1
]
, (3.33)

Xy
([
y2
])

=
[
y3
]

=
15

41

[
y2
]
− 48

41

[
x
]

+
170

41

[
y
]
− 96

41

[
1
]
. (3.34)

Then, the multiplication matrices are:

Xx =

0 52

41
101
41

40
41

0 −34
41 − 15

164
18
41

1 26
41 −63

82
20
41

0 − 3
41 − 99

164 −37
41

 , (3.35)

Xy =

0 0 52

41 −96
41

1 0 −34
41

170
41

0 0 26
41 −48

41
0 1 − 3

41
15
41

 . (3.36)

The eigenvalues of Xx and Xy are{
λi(Xx)

}4

i=1
=

{
−2; −1; −1

2
; 1

}
, (3.37){

λi(Xy)
}4

i=1
= {−2; 0; 1; 2}. (3.38)

Therefore, there are 4 × 4 = 16 possible solutions of the system and we must verify,
which of them are true solutions. Let us denote the set of all possible solutions as ṼC(I).
These possible solutions are shown in Figure 3.1 by the blue color.

Secondly, we compute the left eigenvectors of the multiplication matrix Xx such that
their first coordinates are ones, as it corresponds to the constant polynomial b1 = 1.
We obtain following four eigenvectors corresponding to four different solutions:

1
1
1
1

 ,

1
0
−2
0

 ,

1
2
−1

2
4

 ,

1
−2
−1
4

 . (3.39)

Since the second and the third coordinate corresponds to b2 = y and b3 = x respectively,
we have got four solutions to the system of polynomials (3.21) and (3.22):

VC(I) =

{[
1
1

]
;

[
−2
0

]
;

[
−1

2
2

]
;

[
−1
−2

]}
. (3.40)

These solutions are shown by the orange color in Figure 3.1.

39

3. Optimization over polynomials

3.2. Moment matrices

Polynomial optimization and solving systems of polynomial equations via hierarchies
of semidefinite programs is based on the theory of measures and moments. But to keep
the scope simple, we will avoid to introduce this theory. However, since it provides bet-
ter understanding of the matter, interested reader may look into [29]. Moreover, we will
introduce the only minimal basics to be able to proceed with polynomial optimization
and polynomial systems solving. Detailed information can be found in [29] too.

Now, let us start with the theory about moment matrices, which are crucial for the
application of SDP on polynomial optimization and polynomial systems solving. Recall
that a polynomial has a form (3.1). Let us introduce a polynomial p ∈ R[x] of the
degree d ∈ N:

p(x) =
∑
α∈Nn

d

pαx
α, (3.41)

where Nd are natural numbers (including zero) up to the number d. This polynomial
has at most

(
n+d
n

)
non-zero coefficients, since there are

(
n+d
n

)
monomials in n variables

up to degree d. We will use the notation vec(p) for the vector of the coefficients of the
polynomial p with respect to some monomial basis B:

vec(p)(α) = pα (3.42)

for α ∈ Nnd .

Definition 3.5 (Riesz functional [26, page 38]). Given a sequence y(α) = yα for
α ∈ Nn, we define the Riesz linear functional `y : R[x]→ R such that

`y(x
α) = yα (3.43)

for all α ∈ Nn.

The linearity of the Riesz functional allows us to apply it on polynomials.

`y
(
p(x)

)
= `y

∑
α∈Nn

d

pαx
α

 =
∑
α∈Nn

d

pα`y(x
α) =

∑
α∈Nn

d

pαyα (3.44)

From the equation above, we can see that Riesz functional substitutes a new variable
yα for each monomial xα, and therefore we can interpret the Riesz functional as an
operator that linearizes polynomials.

Example 3.6. Given polynomial p ∈ R[x1, x2]

p(x) = x2
1 + 3x1x2 − 7x2 + 9 (3.45)

with deg(p) = 2, the vector of its coefficients with respect to monomial basis

B =
[
x2

1 x1x2 x2
2 x1 x2 1

]>
(3.46)

is

vec(p) =
[
1 3 0 0 −7 9

]>
. (3.47)

The Riesz functional of p(x) is

`
(
p(x)

)
= y20 + 3y11 − 7y01 + 9y00. (3.48)

40

3.2. Moment matrices

Definition 3.7 (Moment matrix [29, page 53]). A symmetric matrix M indexed by
Nn is said to be a moment matrix (or generalized Hankel matrix) if its (α, β)-entry
depends only on the sum α + β of the indices. Given sequence y(α) = yα for α ∈ Nn,
the moment matrix M(y) has form

M(y)(α,β) = yα+β (3.49)

for α, β ∈ Nn.

Definition 3.8 (Truncated moment matrix [29, page 53]). Given sequence y(α) =
yα for α ∈ Nn, the truncated moment matrix Ms(y) of order s ∈ N has form

Ms(y)(α,β) = yα+β (3.50)

for α, β ∈ Nns .

The moment matrices are linear in y and symmetric, we can see that

Ms(y) ∈ S(n+s
n) (3.51)

since
(
n+s
n

)
is the number of monomials in n variables up to degree s.

Example 3.9. For n = 2, the moment matrices for different orders are:

M0(y) =
[
y00

]
, (3.52)

M1(y) =

y00 y10 y01

y10 y20 y11

y01 y11 y02

 , (3.53)

M2(y) =

y00 y10 y01 y20 y11 y02

y10 y20 y11 y30 y21 y12

y01 y11 y02 y21 y12 y03

y20 y30 y21 y40 y31 y22

y11 y21 y12 y31 y22 y13

y02 y12 y03 y22 y13 y04

 . (3.54)

All the elements in the blocks separated by the dashed lines have the same degree.
Moreover, we can see that the moment matrices of smaller order are nothing more than
submatrices of the moment matrices of a bigger order.

And just one example for n = 3:

M1(y) =

y000 y100 y010 y001

y100 y200 y110 y101

y010 y110 y020 y011

y001 y101 y011 y002

 . (3.55)

Definition 3.10 (Localizing matrix [29, page 53]). Given sequence y(α) = yα for
α ∈ Nn and polynomial q(x) ∈ R[x], its localizing matrix Ms(qy) of order s has form

Ms(qy)(α,β) =
∑
γ

qγyα+β+γ (3.56)

for α, β ∈ Nns .

Notation Ms(qy) emphasis that the localizing matrix is bilinear in q and y.

41

3. Optimization over polynomials

Example 3.11. For n = 2 and a polynomial q(x) = x1x2 + 2x1 + 3, the localizing
matrix of order one is

M1(qy) =

y11 + 2y10 + 3y00 y21 + 2y20 + 3y10 y12 + 2y11 + 3y01

y21 + 2y20 + 3y10 y31 + 2y30 + 3y20 y22 + 2y21 + 3y11

y12 + 2y11 + 3y01 y22 + 2y21 + 3y11 y13 + 2y12 + 3y02

 . (3.57)

3.3. Polynomial optimization

The task of the polynomial optimization (POP) is to optimize a polynomial function
on a set, which is given by a set of polynomial inequalities. For given polynomials
p0, . . . , pm ∈ R[x], we can define a standard polynomial optimization problem in a form
(3.58).

p∗ = min
x∈Rn

p0(x)

s.t. pk(x) ≥ 0 (k = 1, . . . ,m)
(3.58)

Let the feasibility set P of the optimization problem (3.58) be a compact (closed and
bounded) basic semialgebraic set, defined as

P =
{
x ∈ Rn | pk(x) ≥ 0, k = 1, . . . ,m

}
. (3.59)

Since the set P is compact, the minimum p∗ is attained at a point x∗ ∈ P . On the
other hand, we do not assume convexity of neither the polynomial p0 nor the set P , and
therefore the problem (3.58) may have several local minima and several global minima
in general case. We are, of course, interested in the global minima only.

3.3.1. State of the art review

It is known that the polynomial optimization problem (3.58) is NP-hard, and there-
fore several authors have proposed to approximate the problem (3.58) by a hierarchy
of semidefinite relaxations. The first idea of applying a convex optimization technique
to minimize unconstrained polynomial is from [44] by N. Z. Shor. Then, Y. Nesterov in
[35] has shown a description of the cones of polynomials that are representable as a sum
of squares and by exploitation of the duality between the moment cones and the cones
of non-negative polynomials he has shown the characterization of a moment cone by
LMIs when the non-negative polynomials can be written as a sum of squares. A break-
through in polynomial optimization was done by J. B. Lasserre [25] who, by application
of algebraic results by M. Putinar [43], showed that the polynomial optimization prob-
lems can be approximated by a sequence of semidefinite program relaxations, optima
of which converge to the optimum of the polynomial optimization problem. Nowadays,
efficient algorithms and their implementations for solving semidefinite programs exist
as described in Section 2.2, and therefore polynomial optimization problems in a form
(3.58) can be solved efficiently.

In these days, many implementations of polynomial optimization problem solver ex-
ists. Probably the most common is the MATLAB toolbox Gloptipoly [18], which can
use many different semidefinite program solvers to solve the SDP problem arising from
the relaxations. Then, there is the GpoSolver [16], which uses MATLAB to describe
the problem and then generates C++ code, which solves the problem for given param-
eters and which can be included into an existing codebase. Also the SOSTOOLS [42]
is a toolbox implemented in MATLAB, which can be used to solve the sum of squares
optimization problems.

42

3.3. Polynomial optimization

3.3.2. Lasserre’s LMI hierarchy

The global minimum of a polynomial optimization problem in form (3.58) can be
found by hierarchies of semidefinite programs. This was introduced by J. B. Lasserre
in [25]. He has shown that the polynomial optimization problem can be equivalently
written as the following semidefinite program (3.60).

p∗ = inf
y∈RNn

∑
α∈Nn

p0αyα

s.t. y0 = 1
M(y) � 0

M(pky) � 0 (k = 1, . . . ,m)

(3.60)

This infinite-dimensional semidefinite program is not solvable by computers, and there-
fore consider Lasserre’s LMI hierarchy (3.61) for a relaxation order r ∈ N.

p∗r = inf
y∈RNn2r

∑
α∈Nn

2r

p0αyα

s.t. y0 = 1
Mr(y) � 0

Mr−rk(pky) � 0 (k = 1, . . . ,m)

(3.61)

Where rk =
⌈

deg(pk)
2

⌉
and r ≥ max{r1, . . . , rm}. The semidefinite program (3.61) is a

relaxed version of the program (3.60) or of the initial polynomial optimization problem
(3.58).

Theorem 3.12 (Lasserre’s LMI hierarchy converges [17, Proposition 3.3]). For
r ∈ N there holds

p∗r ≤ p∗r+1 ≤ p∗ (3.62)

and

lim
r→+∞

p∗r = p∗. (3.63)

The semidefinite program (3.61) can be solved by the state of the art semidefinite
program solvers or by the Polyopt package as described in Section 2.4. Solving the
relaxed semidefinite programs for increasing relaxation order r gives us tighter and
tighter lower bounds on the global minimum of the original problem (3.58).

Theorem 3.13 (Generic finite convergence [17, Proposition 3.4]). In the finite-
dimensional space of coefficients of the polynomials pk, k = 0, 1, . . . ,m, defining the
problem (3.58), there is a low-dimensional algebraic set, which is such that if we choose
an instance of the problem (3.58) outside of this set, the Lasserre’s LMI relaxations have
finite convergence, i.e. there exists a finite r∗ ∈ N such that p∗r = p∗ for all r ∈ N : r ≥ r∗.

This means that in general it is enough to compute one finite relaxed semidefinite
program (3.61) of the relaxation order big enough to obtain the global optimum of
the polynomial optimization problem (3.58). Only in some exceptional and somewhat
degenerate problems the finite convergence does not occur and the optimum can not
be obtained by computing finite-dimensional semidefinite program in the form (3.61).

We know from Theorem 3.13 that the finite convergence of the Lasserre’s LMI hier-
archy is ensured generically for some relaxation order r, which is a priory not known
to us. The verification that the finite convergence occurred provides us the following
theorem.

43

3. Optimization over polynomials

Theorem 3.14 (Certificate of finite convergence [17, Proposition 3.5]). Let y∗ be
the solution of the problem (3.61) at a given relaxation order r ≥ max{r1, . . . , rm}. If

rankMr−max{r1,...,rm}(y
∗) = rankMr(y

∗), (3.64)

then p∗r = p∗.

So when we find a relaxation order r big enough, for which Theorem 3.14 is satisfied,
we know, we have finished and we can extract the global optima. However, if we expect
that there is only one global optimum, we can check a simpler condition.

Theorem 3.15 (Rank-one moment matrix [17, Proposition 3.6]). The condition
of Theorem 3.14 is satisfied if

rankMr(y
∗) = 1. (3.65)

If the condition of Theorem 3.15 holds, the global optimum of the problem (3.58)
can be easily recovered as

x∗ =
[
y10...0 y01...0 · · · y00...1

]>
. (3.66)

As usual, we are interested in the complexity estimation. Given the polynomial
optimization problem (3.58) in n variables, we obtain a relaxed semidefinite program
(3.61) for a relaxation order r. This program is in N =

(
n+2r
n

)
variables, which is equal

to the number of monomials in n variables up to degree 2r. If n is fixed, for example
when solving given polynomial optimization problem, then N grows in O(rn), that is
polynomially in r. If the relaxation order r is fixed, then N grows in O(nr), that is
polynomially in the number of variables n.

Example 3.16. Let us set up some polynomial optimization problem for demonstration
purposes. We use the same ellipse and hyperbola from Example 3.4 to define us the
feasible set, while minimizing the objective function −x1 − 3

2x2.

p∗ = min
x∈R2

−x1 − 3
2x2

s.t. −20x2
1 + x1x2 − 12x2

2 − 16x1 − x2 + 48 ≥ 0
12x2

1 − 58x1x2 + 3x2
2 + 46x1 − 47x2 + 44 ≥ 0

(3.67)

We expect that the problem has two global optimal points[
x∗1
x∗2

]
=

{[
−1

2
2

]
;

[
1
1

]}
(3.68)

with value of the objective function

p∗ = −2.5. (3.69)

The illustration of the problem is depicted in Figure 3.2.
Firstly, we start with the relaxation order r = 1. The relaxed semidefinite problem

is the following one.

p∗1 = min
y∈RN22

−y10 − 3
2y01

s.t. y00 = 1y00 y10 y01

y10 y20 y11

y01 y11 y02

 � 0[
−20y20 + y11 − 12y02 − 16y10 − y01 + 48y00

]
� 0[

12y20 − 58y11 + 3y02 + 46y10 − 47y01 + 44y00

]
� 0

(3.70)

44

3.3. Polynomial optimization

−3

−2

−1

0

1

2

3

−5 −4 −3 −2 −1 0 1 2 3 4

x
2

x1

Ellipse (3.21)
Hypebola (3.22)

Feasible region
Global optima

Optimum of the first relaxation

Figure 3.2. Feasible region and the expected global minima of the problem (3.67).

By solving this problem, we obtain a possible solution

[
x∗1
x∗2

]
=

[
0.20
1.56

]
, (3.71)

p∗1 = −2.54, (3.72)

which is not feasible. Ranks of different sizes of the moment matrix are

rankM0(y∗) = 1, (3.73)

rankM1(y∗) = 2. (3.74)

Since the condition of Theorem 3.14 is not satisfied, we continue with the second relax-
ation.

45

3. Optimization over polynomials

The second relaxation for r = 2 is below.

p∗2 = min
y∈RN24

−y10 − 3
2y01

s.t. y00 = 1

y00 y10 y01 y20 y11 y02

y10 y20 y11 y30 y21 y12

y01 y11 y02 y21 y12 y03

y20 y30 y21 y40 y31 y22

y11 y21 y12 y31 y22 y13

y02 y12 y03 y22 y13 y04

 � 0

−20y20 + y11 − 12y02 − 16y10 − y01 + 48y00 −20y30 + y21 − 12y12 − 16y20 − y11 + 48y10 −20y21 + y12 − 12y03 − 16y11 − y02 + 48y01

−20y30 + y21 − 12y12 − 16y20 − y11 + 48y10 −20y40 + y31 − 12y22 − 16y30 − y21 + 48y20 −20y31 + y22 − 12y13 − 16y21 − y12 + 48y11

−20y21 + y12 − 12y03 − 16y11 − y02 + 48y01 −20y31 + y22 − 12y13 − 16y21 − y12 + 48y11 −20y22 + y13 − 12y04 − 16y12 − y03 + 48y02

 � 012y20 − 58y11 + 3y02 + 46y10 − 47y01 + 44y00 12y30 − 58y21 + 3y12 + 46y20 − 47y11 + 44y10 12y21 − 58y12 + 3y03 + 46y11 − 47y02 + 44y01

12y30 − 58y21 + 3y12 + 46y20 − 47y11 + 44y10 12y40 − 58y31 + 3y22 + 46y30 − 47y21 + 44y20 12y31 − 58y22 + 3y13 + 46y21 − 47y12 + 44y11

12y21 − 58y12 + 3y03 + 46y11 − 47y02 + 44y01 12y31 − 58y22 + 3y13 + 46y21 − 47y12 + 44y11 12y22 − 58y13 + 3y04 + 46y12 − 47y03 + 44y02

 � 0

(3.75)

The minimum of the problem is

p∗2 = −2.5, (3.76)

which is in correspondence with the optimal points[
x∗1
x∗2

]
=

{[
−1

2
2

]
;

[
1
1

]}
. (3.77)

Ranks of different sizes of the moment matrix are

rankM0(y∗) = 1, (3.78)

rankM1(y∗) = 2, (3.79)

rankM2(y∗) = 2, (3.80)

and therefore Theorem 3.14 is satisfied and we do not have to continue with the next
relaxation. We can verify that the found optimal points (3.77) are the same as the
expected optimal points (3.68) of the original problem (3.67). At the end, we verify
that Theorem 3.12 holds.

p∗1 ≤ p∗2 ≤ p∗ (3.81)

−2.54 ≤ −2.5 ≤ −2.5 (3.82)

3.3.3. Implementation details

To verify and for better understanding of the Lasserre’s LMI hierarchies, we have
implemented the approach described in the previous section into the package Polyopt.
More information about the Polyopt package and how to install it are in Section 2.4.1.

For solving the semidefinite programs (3.61) as proposed by Lasserre, we can use the
interior-point algorithm as described in Section 2.3 and implemented in the Polyopt
package. All we have to do is to construct the moment matrix and the localizing
matrices from the polynomial constraints for a given relaxation order, which is quite
straightforward.

What may be slightly complicated is, how to find the initial feasible point for the
interior-point algorithm. The vector y of the semidefinite program (3.61) can be con-
structed from a vector x of the polynomial optimization problem (3.58) as follows

y(α) = xα (3.83)

46

3.3. Polynomial optimization

for α ∈ Nn2r. If x is from the feasible region P as stated in (3.59), then y is a feasible
point of (3.61). Then, the moment matrix Mr(y) has rank one, since

Mr(y) = ζζ>, (3.84)

and therefore y is not strictly feasible point, as it is required by the SDPSolver class.
Hence, we construct N feasible points yi from N different feasible points xi for N ≥(
n+r
n

)
followingly:

y
(α)
i = xαi , (3.85)

for i = 1, . . . , N and α ∈ Nn2r. Then, the strictly feasible point y can be constructed as

y =
1

N

N∑
i=1

yi (3.86)

and then the moment matrix is

Mr(y) =
1

N

N∑
i=1

ζiζ
>
i , (3.87)

where ζi are linearly independent, if xi are pairwise different. Then, Mr(y) has full
rank if N is bigger or equal to the number of rows or columns of Mr(y), which is

(
n+r
n

)
.

The polynomial optimization solver is implemented in the class POPSolver of the
Polyopt package. This solver can solve polynomial problem in the form (3.58) for re-
laxation order r and with given strictly feasible points x1, . . . , xN of the polynomial
optimization problem (3.58). Firstly, we initialize the problem with the objective func-
tion p0, the constraining polynomials p1, . . . , pm and with the relaxation order r. Then,
a strictly feasible point y0 of the semidefinite problem is computed by the function
getFeasiblePoint() from the strictly feasible points x1, . . . , xN of the polynomial op-
timization problem (3.58). Finally, the problem is solved by the function solve(),
which returns the optimal point x∗. The minimal working example is shown in List-
ing 3.1. For the purpose of the Polyopt package, the polynomials in n variables are
represented by dictionaries in Python. The values are the coefficients and the keys are
n-tuples of integers, where each tuple represents the corresponding monomial and the
integers represent the degrees of each variable of the monomial.

Example 3.17. For x ∈ R2 the polynomial

p(x) = −20x2
1 + x1x2 − 12x2

2 − 16x1 − x2 + 48 (3.88)

is represented in Python as a variable p in a following way.

p = {(2, 0): -20, (1, 1): 1, (0, 2): -12, (1, 0): -16, (0, 1): -1,

(0, 0): 48}

The variable p is a dictionary indexed by tuples. The first integer in each tuple rep-
resents the degree of the variable x1 in the given monomial and the second integer
represents the degree of the variable x2.

47

3. Optimization over polynomials

Listing 3.1. Typical usage of the class POPSolver of the Polyopt package.

1: import polyopt

2:

3: # assuming the polynomials pi, the vectors xi and the relaxation

order r is already defined

4: problem = polyopt.POPSolver(p0, [p1, ..., pm], r)

5: y0 = problem.getFeasiblePoint([x1, ..., xN])

6: xStar = problem.solve(y0)

Detailed information about the execution of the SDP solver can be printed out to
the terminal by setting problem.setPrintOutput(True). By calling of the function
problem.getFeasiblePoint(xs) we obtain the feasible point y from the feasible points
xi stored in the list xs. If the feasible points xi are not know, they can be generated ran-
domly from a ball with radius R by calling problem.getFeasiblePointFromRadius(R).
When the polynomial problem is solved, the rank of the moment matrix can be obtained
by calling problem.momentMatrixRank().

Example 3.18. The Python code for the polynomial optimization problem (3.67) from
Example 3.16 is shown in Listing 3.2.

3.3.4. Comparison with the state of the art methods

To get an idea, how the implementation from the Polyopt package is performing, we
have compared it to the state of the art optimization toolbox Gloptipoly [18]. Gloptipoly
is a MATLAB toolbox, which uses the Lasserre hierarchy to transform the polynomial
optimization problem to the relaxed semidefinite program. This semidefinite program is
then solved by some state of the art semidefinite program solver, by default by SeDuMi
[46]. We have to point out that we are comparing a Python implementation with a
MATLAB one.

We have generated random instances of a polynomial optimization problem Pn,d,k for
k = 1, . . . , 50 of a type

min
x∈Rn

pn,d,k(x)

s.t. 1−
n∑
i=1

x2
i ≥ 0,

(3.89)

where n is the number of variables, d is the degree of the polynomial pn,d,k. The gen-
erated instances differ in the coefficients of vec(pn,d,k), which were generated randomly
from uniform distribution (−1; 1). Moreover, the Polyopt package requires the initial
point of the generated semidefinite program, which was randomly generated by the
function getFeasiblePointFromRadius(1) in advance for each problem Pn,d,k. Then,
the execution times of each problems were measured. One option was to measure only
the execution times of the semidefinite programs solvers. But since this depends only
on the size of the generated semidefinite program, the results would be similar to the
experiments in Section 2.5. Therefore, we have measured the sum of times required
to construct the semidefinite program and to solve the semidefinite program. For the
Polyopt package we have measured the execution times of the functions POPSolver()

and solve(). For the Gloptipoly toolbox the execution times of the functions msdp()

and msol() were measured.
Firstly, we have fixed the degree of the polynomial d = 2, and therefore we have

set the relaxation order r = 1. We have solved the problems Pn,2,k for the number of

48

3.3. Polynomial optimization

Listing 3.2. Code for solving polynomial optimization problem stated in Example 3.16.

1: from numpy import *

2: import polyopt

3:

4: # objective function

5: p0 = {(1, 0): -1, (0, 1): -3/2}

6:

7: # constraint functions

8: p1 = {(2, 0): -20, (1, 1): 1, (0, 2): -12, (1, 0): -16, (0, 1):

-1, (0, 0): 48}

9: p2 = {(2, 0): 12, (1, 1): -58, (0, 2): 3, (1, 0): 46, (0, 1): -47,

(0, 0): 44}

10:

11: # feasible points of the polynomial problem

12: x1 = array([[-1], [-1]])

13: x2 = array([[-1], [0]])

14: x3 = array([[-1], [1]])

15: x4 = array([[0], [-1]])

16: x5 = array([[0], [0]])

17: x6 = array([[1], [0]])

18:

19: # degree of the relaxation

20: r = 2

21:

22: # initialize the solver

23: problem = polyopt.POPSolver(p0, [p1, p2], r)

24:

25: # obtain a feasible point of the SDP problem from the feasible

points of the polynomial problem

26: y0 = problem.getFeasiblePoint([x1, x2, x3, x4, x5, x6])

27:

28: # enable outputs

29: problem.setPrintOutput(True)

30:

31: # solve!

32: xStar = problem.solve(y0)

49

3. Optimization over polynomials

variables n = 1, . . . , 7 repeatedly for s = 1, . . . , 50 to eliminate some fluctuation in the
time measuring. The measured times were saved as τn,k,s. Because the influences in
time measuring can only prolong the execution times, we have selected minimum of
τn,k,s for each problem Pn,d,k.

τn,k =
50

min
s=1

τn,k,s (3.90)

Since the execution times of the problems of the same sizes should be the same, the
average of the computation times was computed for each number of variables n =
1, . . . , 7.

τn =
1

50

50∑
k=1

τn,k (3.91)

These execution times τn were measured and computed separately for the Polyopt
package and the Gloptipoly toolbox and are shown in Table 3.1 and Figure 3.3.

Number of Dimension of Toolbox
variables the SDP Polyopt Gloptipoly [18]

1 3 0.008 63 s 0.018 70 s
2 6 0.020 00 s 0.020 10 s
3 10 0.043 20 s 0.020 20 s
4 15 0.088 10 s 0.022 00 s
5 21 0.171 00 s 0.022 90 s
6 28 0.311 00 s 0.024 60 s
7 36 0.518 00 s 0.025 20 s

Table 3.1. Execution times of the polynomial optimization problems in different number of
variables with the relaxation order r = 1 solved by the selected toolboxes.

Secondly, we have fixed the number of variables n = 2 and let the degree d of the
polynomial pn,d,k vary. We have set the relaxation order as low as possible to r =

⌈
d
2

⌉
.

We have solved the problems P2,d,k for degrees d = 1, . . . , 7 repeatedly for s = 1, . . . , 50
to eliminate some fluctuation in the time measuring. The measured times were saved as
τd,k,s. For the same reasons as stated in the first case, we have proccessed the measured
times as follows

τd,k =
50

min
s=1

τd,k,s, (3.92)

τd =
1

50

50∑
k=1

τd,k. (3.93)

These execution times τd were measured and computed separately for the Polyopt
package and the Gloptipoly toolbox and are shown in Table 3.2 and Figure 3.4.

The experiments were executed on Intel Xeon E5-1650 v4 CPU 3.60GHz based com-
puter with sufficient amount of free system memory. The installed version of Python
was 3.5.3 and MATLAB R2017b 64-bit was used.

From the graphs we can see that the Polyopt package is not comparable with Glop-
tipoly for high dimensions of the generated semidefinite program. This is in accordance
with the results of Section 2.5, since the semidefinite programs solver is the most expen-
sive part in the polynomial optimization. On the other hand, for really small polynomial
optimization problems, the execution times of the Polyopt package are similar to the
Gloptipoly execution times.

50

3.4. Solving systems of polynomial equations over the real numbers

0

0.1

0.2

0.3

0.4

0.5

0.6

0 1 2 3 4 5 6 7

E
x
ec

u
ti

o
n

ti
m

e
[s

]

Number of variables

Polyopt
Gloptipoly [18]

Figure 3.3. Graph of execution times of the polynomial optimization problems with the relax-
ation order r = 1 based on the number of variables solved by the selected toolboxes.

3.4. Solving systems of polynomial equations over the real
numbers

The goal of this section is to solve the system of polynomial equations (3.94) without
computation of the non-real solutions. Let x ∈ Rn and f1, f2, . . . , fm ∈ R[x].

f1(x) = 0
f2(x) = 0

...
fm(x) = 0

(3.94)

We will present and describe one of the state of the art method for solving polynomial
systems over the real numbers. We will implement the method, so we will be able to
apply it on some selected problems from geometry of computer vision and compare it
with the state of the art methods used in computer vision.

3.4.1. State of the art review

Solving polynomial equations efficiently is a key element in geometry of computer
vision. For this reason, specialized solvers are constructed for the most common geom-
etry problems to make the solvers efficient and numerically stable. Previously, these
solvers were handcrafted, then the process was automated by automatic generators
[22, 23]. The automatic generator is based on Gröbner bases [4], which are typically
computed by the Buchberger Algorithm [7] or by its successor, by the F4 Algorithm
[11]. When the Gröbner basis is found, the multiplication matrix is constructed and the
solutions are found by the eigenvalue computation of the multiplication matrix. The
disadvantage of this approach is that non-real solutions appear, which have no sense in

51

3. Optimization over polynomials

Degree
Relaxation Dimension of Toolbox

order the SDP Polyopt Gloptipoly [18]

1 1 6 0.0176 s 0.0205 s
2 1 6 0.0174 s 0.0196 s
3 2 15 0.0933 s 0.0257 s
4 2 15 0.0932 s 0.0258 s
5 3 28 0.3730 s 0.0299 s
6 3 28 0.3770 s 0.0302 s
7 4 45 1.2100 s 0.0391 s

Table 3.2. Execution times of the polynomial optimization problems for different degrees of
the polynomial in the objective function in n = 2 variables solved by the selected toolboxes.

the geometry point of view and are discarded in the end. In case that many non-real
solutions are present and only few real solutions are obtained, the time consumed by
computing the non-real solutions is much bigger than the time needed to compute the
real solutions, in which we are interested.

Therefore, one should be interested in a method, which would solve the polynomial
system over the real numbers only. One of the methods is the moment method in-
troduced in [27] and extended to the complex numbers in [28] both by J. B. Lasserre,
M. Laurent and P. Rostalski. The moment method is summarized and enriched with
examples in [30], which we will follow in this section.

3.4.2. The moment method

The moment method is based on obtaining of the real radical ideal R√I of the original
ideal I. The real radical ideal is found by computing the kernel of a moment matrix,
which is obtained by solving a hierarchy of semidefinite programs. Once the real radical
ideal is found, its Gröbner basis is constructed and the solutions can be extracted in a
standard way.

Since the moment method is based on positive linear forms and real radical ideals,
let us introduce some basics from the theory about positive linear forms and their
connection to the real radical ideals.

Positive linear forms

Let the dual vector space of the polynomial ring R[x] is denoted as R[x]∗. Given a
linear form Λ ∈ R[x]∗, consider the quadratic form QΛ : R[x] 7→ R such that

QΛ(f) = Λ
(
f2
)

(3.95)

with kernel

ker(QΛ) =
{
f ∈ R[x] | Λ(fg) = 0 ∀g ∈ R[x]

}
. (3.96)

Definition 3.19 (Positivity). Linear form Λ ∈ R[x]∗ is said to be positive if Λ
(
f2
)
≥ 0

for all f ∈ R[x], i.e. if the quadratic form QΛ is positive semidefinite.

How the positive linear forms are connected to real radical ideals shows the following
theorem.

52

3.4. Solving systems of polynomial equations over the real numbers

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1 2 3 4 5 6 7

E
x
ec

u
ti

o
n

ti
m

e
[s

]

Degree of the polynomial in the objective function

Polyopt
Gloptipoly [18]

Figure 3.4. Graph of execution times of the polynomial optimization problems in n = 2
variables based on the degree of the polynomial in the objective function solved by the
selected toolboxes.

Theorem 3.20 ([30, Lemma 2.1]). Let Λ ∈ R[x]∗. Then, ker(QΛ) is an ideal in R[x],
which is real radical ideal when Λ is positive.

We need to extend the theory about moments and moment matrices introduced in
Section 3.2 and apply it to the linear forms. Therefore, we use a new definition of the
moment matrix, which is equivalent to Definition 3.7.

Definition 3.21 (Moment matrix of Λ [30, Definition 2.3]). A symmetric matrix
M indexed by Nn is said to be a moment matrix (or generalized Hankel matrix) if its
(α, β)-entry depends only on the sum α+β of the indices. Given linear form Λ ∈ R[x]∗,
the moment matrix M(Λ) has form

M(Λ)(α,β) = Λ
(
xαxβ

)
(3.97)

for α, β ∈ Nn.

The moment matrix M(Λ) has some interesting properties. For p ∈ R[x] the equation

QΛ(p) = Λ
(
p2
)

= vec(p)>M(Λ) vec(p) (3.98)

holds, and therefore M(Λ) is the matrix of the quadratic form QΛ in some monomial
basis. This concludes that Λ is positive if and only if M(Λ) � 0.

The second interesting property is that a polynomial p is from ker(QΛ) if and only
if its coefficient vector vec(p) is from ker

(
M(Λ)

)
. Therefore, we identify both ker(QΛ)

and ker
(
M(Λ)

)
with a set of polynomials hereafter. Thus by Theorem 3.20, ker

(
M(Λ)

)
is an ideal, which is real radical ideal when M(Λ) � 0.

53

3. Optimization over polynomials

Example 3.22. For n = 2, let us have the linear form Λ ∈ R[x]∗ defined by

Λ(1) = 1, (3.99)

Λ(x1x2) = 1, (3.100)

Λ
(
xα1

1 xα2
2

)
= 0 for all other monomials. (3.101)

Then, the moment matrix M(Λ) (rows and columns indexed by 1, x1, x2, x2
1, x1x2, x2

2,
. . .) is

M(Λ) =

1 0 0 0 1 0 · · ·
0 0 1 0 0 0 · · ·
0 1 0 0 0 0 · · ·
0 0 0 0 0 0 · · ·
1 0 0 0 0 0 · · ·
0 0 0 0 0 0 · · ·
...

...
...

...
...

...
. . .

(3.102)

with rankM(Λ) = 4 and with kernel

ker
(
M(Λ)

)
=
〈
x2

1, x
2
2, 1− x1x2

〉
. (3.103)

Since the kernel is not a radical ideal, Λ is not positive.

Theorem 3.23 ([30, Lemma 2.2]). Let Λ ∈ R[x]∗ and let B be a set of monomials.
Then, B indexes a maximal linearly independent set of columns of M(Λ) if and only if
B corresponds to a basis of R[x]/ ker

(
M(Λ)

)
. That is,

rankM(Λ) = dim
(
R[x]/ ker

(
M(Λ)

))
. (3.104)

Which means that the monomial basis B of the quotient ring R[x]/ ker
(
M(Λ)

)
can

be selected by looking at the maximal linearly independent set of columns of M(Λ).

The following theorem shows, how to construct linear form Λ, such that the kernel
of its moment matrix ker

(
M(Λ)

)
is a vanishing ideal of some selected points from Rn.

Theorem 3.24 ([30, Lemma 2.3]). Let Λvi ∈ R[x]∗ is the evaluation at vi ∈ Rn. Let

B∞ is monomial basis containing all monomials, B(α)
∞ = xα for all α ∈ Nn. If Λ is a

conic combination of evaluations at real points,

Λ =
r∑
i=1

λiΛvi , (3.105)

where λi > 0 and vi are pairwise distinct, then moment matrix constructed as

M(Λ) =

r∑
i=1

λi[vi]B∞ [vi]
>
B∞ (3.106)

has rankM(Λ) = r and ker
(
M(Λ)

)
= I(v1, v2, . . . , vr).

Next theorem shows the converse implication to Theorem 3.24 so there is an equiva-
lence in the end.

54

3.4. Solving systems of polynomial equations over the real numbers

Theorem 3.25 (Finite rank moment matrix theorem [30, Theorem 2.6]). Assume
that Λ ∈ R[x]∗ is positive with rankM(Λ) = r <∞. Then,

Λ =
r∑
i=1

λiΛvi (3.107)

for some distinct v1, v2, . . . , vr ∈ Rn and some scalars λi > 0. Moreover, {v1, v2, . . . , vr} =

VC

(
ker
(
M(Λ)

))
.

Now, we provide a semidefinite characterization of real radical ideals using positive
linear forms. For that, we define the convex set

K =
{

Λ ∈ R[x]∗ | Λ(1) = 1,M(Λ) � 0,Λ(p) = 0 ∀p ∈ I
}
. (3.108)

For any Λ ∈ K, ker
(
M(Λ)

)
is a real radical ideal, which contains I, and therefore its

real radical ideal R√I, which implies

dim
(
R[x]/ ker

(
M(Λ)

))
≤ dim

(
R[x]/

R√
I
)
. (3.109)

When the real variety VR(I) is finite, then ker
(
M(Λ)

)
is zero-dimensional and

rankM(Λ) ≤ |VR(I)|. (3.110)

The equaility holds only for special elements Λ ∈ K named generic linear forms, which
are described by the following definition.

Definition 3.26 (Generic linear forms [30, Definition 2.4]). Let K be defined as in
(3.108) and assume |VR(I)| < ∞. A linear form Λ ∈ K is said to be generic if M(Λ)
has maximum rank, i.e. if rankM(Λ) = |VR(I)|.

The last theorem in this part is about equivalent condition on generic linear forms,
which is crucial for computation of R√I using linear forms.

Theorem 3.27 ([30, Lemma 2.4]). Assume |VR(I)| < ∞. An element Λ ∈ K is a
generic linear form if and only if ker

(
M(Λ)

)
⊆ ker

(
M(Λ′)

)
for all Λ′ ∈ K. Moreover,

ker
(
M(Λ)

)
= R√I for all generic linear forms Λ ∈ K.

Truncated positive linear forms

Using the results of the previous section, we should be able to solve any system of
polynomial equations with finite number of real solutions. From the given polynomial
system (3.94) generating an ideal I we construct the set K (3.108), from which we find
a generic linear form Λ (Definition 3.26). Then, by Theorem 3.27, we find the real
radical ideal R√I = ker

(
M(Λ)

)
. Next, monomial basis B of the quotient ring R[x]/ R√I

is found using Theorem 3.23. In the end, the multiplication matrices are obtained and
the real solutions of (3.94) are found from their eigenvectors.

However, since we deal with infinite-dimensional spaces R[x] and R[x]∗, this method is
not applicable computationally. Therefore, we restrict ourselves to the finite-dimensional
subspaces R[x]s and

(
R[x]2s

)∗
, where [x]s denotes the vectors of all monomials up to

degree s ∈ N. Again we define the quadratic form QΛ : R[x]s 7→ R of the linear form
Λ ∈

(
R[x]2s

)∗
such that

QΛ(f) = Λ
(
f2
)

(3.111)

with matrix Ms(Λ) denoted as truncated moment matrix of order s of Λ defined below.

55

3. Optimization over polynomials

Definition 3.28 (Truncated moment matrix of Λ [30]). Given linear form Λ ∈(
R[x]2s

)∗
, the truncated moment matrix Ms(Λ) of order s ∈ N has form

Ms(Λ)(α,β) = Λ
(
xαxβ

)
(3.112)

for α, β ∈ Nns .

Linear form Λ is positive if and only if Λ
(
f2
)
≥ 0 for all f ∈ R[x]s, which is equivalent

to the condition Ms(Λ) � 0. As before, we identify kerQΛ and ker
(
Ms(Λ)

)
as a subset

of R[x]s.

Theorem 3.29 (Flat extension theorem [30, Theorem 2.8]). Let Λ ∈
(
R[x]2s

)∗
and

assume that Ms(Λ) is a flat extension of Ms−1(Λ), i.e.

rankMs(Λ) = rankMs−1(Λ). (3.113)

Then, one can extend (uniquely) Λ to Λ̃ ∈
(
R[x]2s+2

)∗
is such a way that Ms+1(Λ̃) is a

flat extension of Ms(Λ), thus rankMs+1(Λ̃) = rankMs(Λ).

This theorem is a crucial one for the moment method, since is allows to conclude the
information about the infinite moment matrix M(Λ) from its finite part Ms(Λ). The
following theorem describes how this can be done.

Theorem 3.30 ([30, Theorem 2.9]). Let Λ ∈
(
R[x]2s

)∗
and assume (3.113) holds true.

Then, one can extend Λ to Λ̃ ∈ R[x]∗ in such a way that M(Λ̃) is a flat extension of
Ms(Λ), and the ideal ker

(
M(Λ̃)

)
is generated by the polynomials in ker

(
Ms(Λ)

)
, i.e.

rankM(Λ̃) = rankMs(Λ), (3.114)

ker
(
M(Λ̃)

)
=
〈
ker
(
Ms(Λ)

)〉
. (3.115)

Moreover, any monomial set B indexing a basis of the column space of Ms−1(Λ) is a
basis of the quotient space R[x]/ ker

(
M(Λ̃)

)
. If, moreover, Ms(Λ) � 0, then the ideal〈

ker
(
Ms(Λ)

)〉
is real radical ideal and Λ is of the form

Λ =

r∑
i=1

λiΛvi , (3.116)

where λi > 0 and {v1, v2, . . . , vr} = VC

(
ker
(
Ms(Λ)

))
⊆ Rn.

This result allows as to represent a real radical ideal R√I (infinite set of polynomials)
by a finite truncated moment matrix Ms(Λ). Moreover, the monomial basis B of the
quotient ring R[x]/ R√I can be readily obtained from it.

Now, the theory about positive linear forms and flat extensions of truncated moment
matrices can be used to construct an algorithm for computing R√I from the generators of
an ideal I operating on finite-dimensional subspaces R[x]t only. Given 〈f1, f2, . . . , fm〉 =
I from the polynomial system (3.94) to solve and t ∈ N, we define the set

Ft =
{
fix

α | i = 1, 2, . . . ,m, |α| ≤ t− deg(fi)
}

(3.117)

of prolongations up to degree t of the polynomials fi. The truncated analogue of the
set K is defined as

Kt =
{

Λ ∈
(
R[x]t

)∗ | Λ(1) = 1,Mbt/2c(Λ) � 0,Λ(f) = 0 ∀f ∈ Ft
}
. (3.118)

56

3.4. Solving systems of polynomial equations over the real numbers

Since the set Kt is an intersection of a cone of positive semidefinite matrices with an
affine space, the set is a spectrahedron. This property allows us to use a SDP solver to
find an element of this set, named generic truncated linear form. The required properties
of this element describes the following theorem, which is the truncated analogue of
Theorem 3.27.

Theorem 3.31 (Generic truncated linear forms [30, Lemma 2.6]). The following
assertions are equivalent for Λ ∈

(
R[x]t

)∗
:

1. rankMbt/2c(Λ) ≥ rankMbt/2c(Λ
′) for all Λ′ ∈ Kt.

2. ker
(
Mbt/2c(Λ)

)
⊆ ker

(
Mbt/2c(Λ

′)
)

for all Λ′ ∈ Kt.

3. The linear form Λ lies in the relative interior of the convex set Kt.

Then, Λ is called a generic element of Kt and the kernel Nt = ker
(
Mbt/2c(Λ)

)
is inde-

pendent of the particular choice of the generic element Λ ∈ Kt.

Theorem 3.32 ([30, Theorem 2.10]). We have

Nt ⊆ Nt+1 ⊆ . . . ⊆
R√
I, (3.119)

with equality R√I = 〈Nt〉 for t large enough.

Now, we are almost ready to write down the algorithm, which will be described
in the following section. All we need is the stopping criterion, which will describe
Theorem 3.33 and the certificate of termination, which is ensured by Theorem 3.34.

Theorem 3.33 ([30, Theorem 2.11]). Let I = 〈f1, f2, . . . , fm〉 be an ideal in R[x],

D = maxmi=1 deg(fi), and d =
⌈
D
2

⌉
. Let Λ ∈ Kt be a generic element and assume that

at least one of the following two conditions holds:

rankMs(Λ) = rankMs−1(Λ) for some D ≤ s ≤
⌊
t

2

⌋
, (3.120)

rankMs(Λ) = rankMs−d(Λ) for some d ≤ s ≤
⌊
t

2

⌋
. (3.121)

Then, R√I =
〈
ker
(
Ms(Λ)

)〉
, and any basis of the column space of Ms−1(Λ) is a basis of

the quotient space R[x]/ R√I.

Theorem 3.34 ([30, Theorem 2.12]). Let I be an ideal in R[x].

1. If VR(I) = ∅, then Kt = ∅ for t large enough.

2. If 1 ≤ |VR(I)| < ∞, then for t large enough, there exists an integer s for which
(3.121) holds for all Λ ∈ Kt.

The moment matrix algorithm

Algorithm 3.4 describes the moment matrix algorithm for computing real solutions
of the system of polynomial equations.

In each iteration of the algorithm, a generic element Λ of the set Kt has to be found.
As we mentioned above, we can view Kt as a spectrahedron, and therefore we would
like to use the knowledge of semidefinite programming to find Λ. Thus, we represent
the set Kt as the feasible region of a semidefinite program and then we can use any of
the state of the art SDP solvers to find any relative interior point of the feasible region.

57

3. Optimization over polynomials

Algorithm 3.4. The moment matrix algorithm for computing real roots. [30, Algo-
rithm 1]

Input:
f1, f2, . . . , fm generators of an ideal I = 〈f1, f2, . . . , fm〉 with |VR(I)| <∞

Output:
VR(I) a set of real solutions

1: D ← maxmi=1 deg(fi)

2: d←
⌈
D
2

⌉
3: t← D
4: done← false
5: while not done do
6: Ft ←

{
fix

α | i = 1, 2, . . . ,m, |α| ≤ t− deg(fi)
}

7: Λ← any generic element of the set Kt =
{

Λ ∈
(
R[x]t

)∗ | Λ(1) = 1,Mbt/2c(Λ) �

0,Λ(f) = 0 ∀f ∈ Ft
}

8: if rankMs(Λ) = rankMs−1(Λ) for some D ≤ s ≤
⌊
t
2

⌋
or

rankMs(Λ) = rankMs−d(Λ) for some d ≤ s ≤
⌊
t
2

⌋
then

9: J ←
〈
ker
(
Ms(Λ)

)〉
10: B ← a monomial set indexing a basis of the column space of Ms−1(Λ)
11: G← a basis of the ideal J
12: X ← a multiplication matrix (computed using B and G)
13: VR(I)← VC(J) (computed via the eigenvectors of X)
14: done← true
15: else
16: t← t+ 1
17: end if
18: end while
19: return VR(I)

Since we are interested in any feasible point of Kt, we will optimize a constant function.
The following semidefinite program (3.122) fulfils all our requirements and by solving
it, we obtain a generic linear form Λ.

min
Λ∈(R[x]t)∗

0

s.t. Λ(1) = 1
Mbt/2c(Λ) � 0

Λ
(
fix

α
)

= 0 ∀i ∀|α| ≤ t− deg(fi)

(3.122)

Given the linear form Λ, ranks of its moment matrices Ms(Λ) for many values of
s have to be computed in order to check the stopping conditions (3.120) and (3.121).
This may become very challenging task, since we need to compute ranks of matrices
consisting of numerical values. This is typically done by singular values computation,
but is has to be treated very carefully.

When one of the stopping conditions holds for some s, there are as many linear inde-
pendent columns of Ms−1(Λ) as many real solutions there are. We select the monomials
indexing these columns and they form the basis B of the quotient ring R[x]/ R√I.

Then, we select any variable xi, for which we construct the multiplication matrix Xxi .
For the construction, the polynomials from ker

(
Ms(Λ)

)
are used since for each b ∈ B

58

3.4. Solving systems of polynomial equations over the real numbers

the monomial bxi can be rewritten as

bxi =
∑
j

λjbj + q, (3.123)

where bj ∈ B, λj ∈ R and q ∈ ker
(
Ms(Λ)

)
.

Having the multiplication matrix Xxi constructed, the real solutions of the polynomial
system (3.94) are found by the eigenvectors computation.

3.4.3. Implementation details

To understand Algorithm 3.4 and the theory behind deeply, we have decided to write
our own implementation of the algorithm. Firstly, just to verify our understanding
of the algorithm, we have implemented it in MATLAB using optimization toolbox
YALMIP [32] in conjunction with the state of the art SDP solver MOSEK [34]. Sec-
ondly, to be able to use our own SDP solver from the Polyopt package, presented in
Section 2.4, we have implemented Algorithm 3.4 in Python into the Polyopt package.
Both implementations are described below.

Implementation in MATLAB with MOSEK toolbox

The implementation in MATLAB is quite straightforward. In each iteration over t,
the set Ft is extended with new polynomials of higher degree. Then, the semidefinite
program (3.122) is built. To avoid the notation of linear forms, the program can be
rewritten into notation of moment matrices as known from Section 3.2 using LMI and
affine constraints only. The fact that Mbt/2c(y) is a moment matrix is implied by its
structure. Using this, we get a equivalent semidefinite program (3.124).

y∗ = arg min
y∈RNnt

0

s.t. y0 = 1
Mbt/2c(y) � 0

vec
(
fix

α
)>
y = 0 ∀i ∀|α| ≤ t− deg(fi)

(3.124)

This program is solved by MOSEK [34] using the YALMIP [32] toolbox as an interface.
The result from MOSEK is the moment matrix Mbt/2c(y

∗), since we are not really
interested in the y∗ values. Then, if the stopping condition (3.120) or (3.121) holds for
some s, we are ready to construct the multiplication matrix. Since Ms is a matrix of
numerical values, we firstly impose its rank, which we have computed when checking
the stopping conditions. This is done via the singular value decomposition (SVD) by
annulling the singular values close to zero. We construct the basis B by selecting the
pivot columns of the Gauss-Jordan (G-J) elimination of the matrix Ms−1. Because we
have the SVD computed already, we use it to compute ker(Ms). We perform the G-J
elimination on it with columns indexed by B permuted to the rightmost side. By this we
have all required monomials expressed in terms of linear combinations of the monomials
from B as stated in (3.123). Finally, the multiplication matrix is constructed and the
solutions are extracted via eigenvectors computation. In case that some variable is not
present in B and can not be read directly from the eigenvectors, it can computed easily
by substituting B into the eliminated version of ker(Ms).

59

3. Optimization over polynomials

Polyopt package implementation

The implementation from the Polyopt package follows the implementation in MAT-
LAB. The part where they differ is, how to solve the semidefinite program, which is in
a form (3.124). Because the SDP solver from the Polyopt package is able to solve only
semidefinite programs with LMI constraints as stated in (2.83), we need to eliminate
the affine constraints. We use these affine constraints to eliminate as much variables as
possible, so only the LMI constraints remain. The new equivalent semidefinite program
has form (3.125).

ȳ∗ = arg min
ȳ∈Rm

0

s.t. A0 +
m∑
i=1

Aiȳ
(i) � 0

(3.125)

This problem should be now easily solved by the SDP solver from the Polyopt package
as presented in Section 2.4.

Unfortunately, since we lowered the dimension of the semidefinite problem by elimi-
nation of some variables, the size r =

(
n+t
n

)
of the matrix A(ȳ)

A(ȳ) = A0 +

m∑
i=1

Aiȳ
(i) (3.126)

from the LMI constraint stayed the same as before the elimination. This causes that
A(ȳ) is singular independently on the values of ȳ. Therefore, for each value of ȳ there
is at least one eigenvalue of A(ȳ) zero, and thus there is no interior point of the feasible
region of the problem (3.125). This is no problem for the moment method algorithm,
because we are looking for a point from its relative interior. But since the SDP solver
from the Polyopt package is an interior-point method, it can not solve a problem, which
has no feasible strictly interior point. This issue can be solved by a method called facial
reduction [41], which shrinks the matrix A(ȳ) and removes the superfluous dimensions so
that there will be interior points in the feasible region. However, we did not implemented
this method, but it may be a possible improvement to this implementation. Instead of
this, we have constructed new semidefinite program (3.127).

τ∗, ȳ∗ = arg min
τ∈R,ȳ∈Rm

τ

s.t. A0 +

m∑
i=1

Aiȳ
(i) + Irτ � 0

τ ≥ 0

(3.127)

Feasible region of this problem has strictly interior points, since for each value of ȳ
we can find τ large enough that A(ȳ) + Irτ has all eigenvalues positive. Moreover,
we can easily find a starting point for the SDP solver, for example when fixing ȳ0 =[
0 0 · · · 0

]>
, any

τ0 > −min

{{
λi
(
A(ȳ0)

)}r
i=1

; 0

}
(3.128)

is suitable starting point for the algorithm.
When we apply the Polyopt SDP solver on the program (3.127), we obtain some

optimal τ∗. If τ∗ is zero up to the numerical precision, we recover y∗ from ȳ∗ by back

60

3.4. Solving systems of polynomial equations over the real numbers

substitution. Then, the moment matrix Mbt/2c(y
∗) is reconstructed and the solutions

are computed in similar way as in the MATLAB implementation. If τ∗ is not zero,
then the semidefinite program (3.124) has empty feasible region, which means that the
original polynomial system (3.94) has no real solutions.

Usage

The class PSSolver from the Polyopt package provides Python implementation of
the polynomial solver using the moment method. The class method solve() finds
the real solutions of the polynomial system (3.94). Minimal working example pro-
vides Listing 3.3. Detailed information about the execution can be enabled by setting
problem.setPrintOutput(True).

Listing 3.3. Typical usage of the class PSSolver of the Polyopt package.

1: import polyopt

2:

3: # assuming the polynomials fi are already defined

4: problem = polyopt.PSSolver([f1, ..., fm])

5: solution = problem.solve()

Example 3.35. The Python code solving the system of polynomial equations consisting
of equation (3.21) and (3.22) from Example 3.4 is shown in Listing 3.4.

Listing 3.4. Code for solving system of polynomial equations stated in Example 3.35.

1: import polyopt

2:

3: # polynomials of the system

4: f1 = {(0, 0): 48, (1, 0): -16, (2, 0): -20, (1, 1): 1, (0, 1): -1,

(0, 2): -12}

5: f2 = {(0, 0): 44, (1, 0): 46, (2, 0): 12, (1, 1): -58, (0, 1): -47,

(0, 2): 3}

6:

7: # initialize the solver

8: problem = polyopt.PSSolver([f1, f2])

9:

10: # enable outputs

11: problem.setPrintOutput(True)

12:

13: # solve!

14: solution = problem.solve()

3.4.4. Comparison with the state of the art methods

Efficiency and numerical stability of the new algorithm implementations should be
compared to the contemporary state of the art implementations. We would like to
compare our implementation with another implementations of the moment method. A
MATLAB toolbox called Bermeja should use this method as mentioned in [30], however
we were unable to obtain it despite the provided link. Different, but still on moment
matrices and SDP solvers built, algorithm uses the MATLAB toolbox Gloptipoly [18].
Then, there are polynomial system solvers based on the Gröbner bases computations,

61

3. Optimization over polynomials

e.g. the F4 Algorithm [11], which compute all complex solutions. The most challenging
will probably be the comparison with solvers specialized for the given task, for example
generated by some automatic generators [22, 23].

To compare these solvers in general, one would generate random polynomial systems,
solve them by the selected solvers and compare their results and computational times.
But in the end, we are interested in performance on real geometric problems from
computer vision computed on data captured from real 3D scenes, and therefore we
skip these random polynomial system experiments and refer to the experiments on real
geometric problems performed in Chapter 4.

3.5. Conclusions

Firstly, the basics of polynomial algebra and moment matrices have been reviewed.
Secondly, we focused on polynomial optimization. We have reviewed the state of

the art method for solving polynomial optimization problems by using hierarchies of
semidefinite problems. We have implemented this method in Python and the descrip-
tion of it was given. We have verified the implementation on synthetically generated
polynomial optimization problems and compared its performance to the state of the
art toolbox Gloptipoly [18]. Since the SDP solver is the most time consuming part of
the method, the computation time of our implementation is comparable to Gloptipoly
only for small POP problems, which generates semidefinite programs with up to 10
variables, e.g. for POP problems with three unknowns and polynomials up to degree
two.

Thirdly, the moment method for solving systems of polynomial equations was re-
viewed. We have implemented this method in Python with the SDP solver from Chap-
ter 2 and in MATLAB with MOSEK [34] SDP solver. No experiments has been per-
formed, since we will evaluate the performance on minimal problems from computer
vision in the next chapter.

62

4. Minimal problems in geometry of computer
vision

Many problems from geometry of computer vision can be modeled by systems of
polynomial equations. A problem that requires only the minimal subset of data points
to solve the problem is called a minimal problem. A typical example is the 5-point
algorithm [45] for relative pose estimation between two cameras given five image cor-
respondences only. In many applications, solvers of these minimal problems are used
in the Random Sample Consensus (RANSAC) algorithm [12], where the minimal prob-
lems has to be solved repeatedly for a large amount of input data. Thus, these solvers
are required to be fast and efficient. The state of the art method is to generate these
solvers by automatic generators [22, 23], which are based on Gröbner bases construction
and eigenvectors of multiplication matrices computation. In these solvers both real and
non-real solutions are computed, but the non-real solutions are discarded, since they
have no geometric meaning.

In Section 3.4, we have proposed and implemented an algorithm, which does not need
to compute the superfluous non-real solutions, and therefore may be faster than the
standard solvers generated by the automatic generator. In this section, we compare the
speed and the numerical stability of the state of the art solvers with our implementations
of the moment method algorithm for polynomial system solving. For this reason, we
have selected few minimal problems from geometry of computer vision, on which we
will compare the selected solvers.

4.1. Dataset description

First of all, we describe the scene, which we have chosen for our experiments. It
is a real scene of a sculpture of Buddha head taken for the LADIO [2] project. The
reconstructed 3D model can be seen at webpage https://skfb.ly/67ZxD and the
source images are publicly available at Github in repository alicevision/dataset_

buddha. For the reader we show the reconstructed surface of the sculpture in Figure 4.1.

Figure 4.1. Sculpture of Buddha head. Surface representing a point cloud reconstructed from
the taken images.

There are 67 taken images of the sculpture, from which 145 001 spatial points were re-
constructed using a scene reconstruction pipeline from the photogrammetric framework

63

https://skfb.ly/67ZxD
https://github.com/alicevision/dataset_buddha
https://github.com/alicevision/dataset_buddha

4. Minimal problems in geometry of computer vision

named Alice Vision [1]. This complex pipeline consists of SIFT [33] feature detection,
RANSAC [12] outlier detection framework using epipolar geometry and incremental
structure from motion (SfM) algorithm. This algorithm starts with epipolar geome-
try between two cameras triangulating the corresponding 2D features into 3D points.
Then, new cameras are iteratively added and resectioned based on the 2D-to-3D cor-
respondences using the perspective-n-point (PnP) [51] algorithm in a RANSAC [12]
framework. Pose of each added camera is then refined by a non-linear optimization.
After that new 3D points are triangulated and by a bundle adjustment (BA) extrin-
sic and intrinsic parameters of all cameras as well as the position of all 3D points are
refined. Then, next iteration of the SfM algorithm is performed until all cameras are
estimated. Next step of the reconstruction pipeline is the retrieval of the depth value for
each pixel for each reconstructed cameras. The method used in the pipeline is the semi-
global matching (SGM) [19] method. After that mesh is created from the reconstructed
point cloud by the 3D Delaunay tetrahedralization, which is then textured.

Usage this complex reconstruction pipeline provides us good ground truth values for
our experiments with minimal number of outliers.

All the experiments were executed on Intel Xeon E5-1650 v4 CPU 3.60GHz based
computer with sufficient amount of free system memory. The installed version of Python
was 3.5.3 and MATLAB R2017b 64-bit was used.

4.2. Calibrated camera pose

Computation of calibrated camera pose (its rotation and location with respect to the
global coordinate system) is one of the typical problems in computer vision. The pose
can be computed from at least three known 3D points and their perspective projection
into the image plane, thus the problem is called the perspective-three-point (P3P)
problem and it is known since 1841 from [15], but its modern and complete description
can be found in [13].

C

x1

x2x3

X1

X2

X3

d13

d12

d23

π

Figure 4.2. Scheme of the P3P problem. A pose of a calibrated camera can be computed from
three known 3D points X1, X2, X3 and their projections x1, x2, x3 into the image plane π.
The camera projection center is denoted as C. Distances d12, d23, d13 denote the distances
between the respective 3D points.

The problem is stated followingly: Given three 3D points X1, X2, X3 ∈ R3 in the
global coordinate system and their projections x1, x2, x3 ∈ R2 respectively into the
image plane in the image coordinate system, we are looking for a camera projection

64

4.2. Calibrated camera pose

center position C ∈ R3 and a camera rotation matrix R ∈ SO(3) – all rotations in 3D
space around the origin, such that the projection equation

λi

[
xi
1

]
= K

[
R −RC

] [Xi

1

]
(4.1)

holds for i = 1, 2, 3 and λi ∈ R/{0}, where K ∈ R3×3 is known calibration matrix of
the camera. The situation is depicted in Figure 4.2.

It has been shown that for a general case this problem can be solved by finding roots
of a quartic equation in variable ξ ∈ R

a4ξ
4 + a3ξ

3 + a2ξ
2 + a1ξ + a0 = 0 (4.2)

with coefficients a0, . . . , a4 ∈ R, which can be computed by the formulae below.

a4 = −4d4
23d

2
12d

2
13c

2
23 + d8

23 − 2d6
23d

2
12 − 2d6

23d
2
13 + d4

23d
4
12 + 2d4

23d
2
12d

2
13 + d4

23d
4
13 (4.3)

a3 = 8d4
23d

2
12d

2
13c12c

2
23 + 4d6

23d
2
12c13c23 − 4d4

23d
4
12c13c23 + 4d4

23d
2
12d

2
13c13c23 (4.4)

− 4d8
23c12 + 4d6

23d
2
12c12 + 8d6

23d
2
13c12 − 4d4

23d
2
12d

2
13c12 − 4d4

23d
4
13c12

a2 = −8d6
23d

2
12c13c12c23 − 8d4

23d
2
12d

2
13c13c12c23 + 4d8

23c
2
12 − 4d6

23d
2
12c

2
13 (4.5)

− 8d6
23d

2
13c

2
12 + 4d4

23d
4
12c

2
13 + 4d4

23d
4
12c

2
23 − 4d4

23d
2
12d

2
13c

2
23 + 4d4

23d
4
13c

2
12 + 2d8

23

− 4d6
23d

2
13 − 2d4

23d
4
12 + 2d4

23d
4
13

a1 = 8d6
23d

2
12c

2
13c12 + 4d6

23d
2
12c13c23 − 4d4

23d
4
12c13c23 + 4d4

23d
2
12d

2
13c13c23 − 4d8

23c12 (4.6)

− 4d6
23d

2
12c12 + 8d6

23d
2
13c12 + 4d4

23d
2
12d

2
13c12 − 4d4

23d
4
13c12

a0 = −4d6
23d

2
12c

2
13 + d8

23 − 2d4
23d

2
12d

2
13 + 2d6

23d
2
12 + d4

23d
4
13 + d4

23d
4
12 − 2d6

23d
2
13 (4.7)

Where the distances d12, d23 and d13 are

d12 = ‖X1 −X2‖, (4.8)

d23 = ‖X2 −X3‖, (4.9)

d13 = ‖X1 −X3‖ (4.10)

and the coefficients c12, c23 and c13 are cosines of the angles between the respective pro-
jection rays, and they can be directly computed from the projected points coordinates.

c12 =
x>1 K

−>K−1x2

‖K−1x1‖‖K−1x2‖
(4.11)

c23 =
x>2 K

−>K−1x3

‖K−1x2‖‖K−1x3‖
(4.12)

c13 =
x>1 K

−>K−1x3

‖K−1x1‖‖K−1x3‖
(4.13)

The equation (4.2) may have zero, two or four real roots, but some of them are
discarded by checking three polynomial equations, that the law of cosines holds up to
some numerical precision in triangles 4

(
CXiXj

)
for i, j = 1, 2, 3 and i 6= j, i.e.

d2
12 = ‖X1 − C‖2 + ‖X2 − C‖2 − 2c12‖X1 − C‖‖X2 − C‖, (4.14)

d2
23 = ‖X2 − C‖2 + ‖X3 − C‖2 − 2c23‖X2 − C‖‖X3 − C‖, (4.15)

d2
13 = ‖X1 − C‖2 + ‖X3 − C‖2 − 2c13‖X1 − C‖‖X3 − C‖. (4.16)

65

4. Minimal problems in geometry of computer vision

The camera pose (C and R) is then computed from each of the remaining solutions.

The P3P problem is probably the simplest problem, which could be chosen from the
geometry of computer vision for comparison of the polynomial systems solvers, since
only one polynomial of degree four in one variable is given.

In the experiment, we have selected all available 67 cameras, for each of them 1000
triplets of 2D–to–3D correspondences has been randomly chosen. For each triplet, the
coefficients a0, a1, a2, a3, a4 of the equation (4.2) has been precomputed. Then, the real
roots ξ of the equation (4.2) has been found by the selected polynomial solvers. From ξ
the camera location C and rotation R has been computed in a standard way. Then, the
best tuple C and R minimizing the maximal reprojection error on all correspondences
in the image for each camera and solver has been selected.

4.2.1. Performance of the polynomial solvers

We used the described P3P minimal problem to compare following polynomial sys-
tems solvers. Firstly, we would like to see the performance of some state of the art
purely algebraic solver. A possible candidate is a solver generated by the automatic
generator [22], which in case of one degree four polynomial equation in one variable is
reduced to eigenvectors computation of multiplication matrix of size 4 × 4. Secondly,
the implementation of the moment method from the Polyopt package has been tested.
Thirdly, to be able to compare different implementations of the moment method with
different implementation of the SDP solver, we have run the MATLAB implementa-
tion with MOSEK toolbox as described in Section 3.4.3. Lastly, the MATLAB toolbox
Gloptipoly [18] was used to compare the solvers with another method with built-in
optimization.

The histograms of the maximal reprojection errors for the selected tuples of C and
R for each polynomial solver can be seen in Figure 4.3. For each estimated camera
center position C, we have computed the error eC of the camera position compared to
the ground truth values

eC = ‖C − CGT ‖, (4.17)

i.e. the distance of the estimated camera position to the ground truth position. The
histograms of these position errors for each polynomial solver are in Figure 4.4. For each
estimated camera rotation R, we have computed the residual rotation to the ground
truth camera rotation and computed the angle eR of this residual rotation as

eR = arccos

(
1

2

(
tr
(
R−1
GTR

)
− 1
))
. (4.18)

The histograms of the angles of residual rotations for each polynomial solver are in
Figure 4.5. We have also measured the execution time required to solve each instance
of the equation (4.2) by each polynomial solver and histogram of these times can be
found in Figure 4.6. We have split the times to offline and online phases for the
Polyopt package and the MATLAB implementation. The offline phase is the part of the
algorithm that does not depend on the given parameters of the problem but only on its
structure, and therefore it can be precomputed in advance, as it is done in the automatic
generator when generating the solver. On the other hand, the online phase is dependent
on the parameters, and thus it has be computed for each instance of the problem. The
performance of our implemented polynomial solvers depends on the number of iterations
of Algorithm 3.4. This represents the variable t from the algorithm, which is the degree

66

4.2. Calibrated camera pose

of monomials, which are relaxed. The values of t at which the algorithm terminated
are shown as histograms in Figure 4.7. For the Gloptipoly toolbox we have shown the
values of two times the relaxation order, which has to be provided for the toolbox in
advance. This value is equivalent to the final value of the variable t.

0

10

20

30

40

50

60

70

0.5 0.6 0.7 0.8 0.9 1

F
re

q
u

en
cy

Logarithm of the reprojection error [px]

Ground truth
Automatic generator [22]

Polyopt
MATLAB implementation with MOSEK [34]

Gloptipoly [18]

Figure 4.3. Histogram of the maximal reprojection errors of all correspondences in the image
for the best camera positions and rotations estimated by the selected polynomial solvers for
the P3P problem compared to the maximal reprojection errors computed for the ground
truth camera positions and rotations.

Further off, we are interested in the number of real solutions found by the polynomial
solvers. Since the algebraic solver computes all complex solutions first and then the
non-real filters out, we are sure that this solver finds all real solutions. On the other
hand, given our observation, the methods based on optimization do not recover all real
solutions, despite the theory. The implementation from the Polyopt package has some
numerical issues, which we were unable to remove in the time of writing this thesis,
and therefore there is a small chance that the SDP solver fails in its computation and
the solution is not found. Moreover, the number of real solutions is related to the
rank of the moment matrix found by the SDP solver, which numerically depend on
how good representative of the set K we have obtained. This issue is common for both
Polyopt implementation and the MATLAB with MOSEK implementation. In case of
the Gloptipoly toolbox, which is in the first case a polynomial optimization toolbox and
not a polynomial system solver, the relaxation order has to be given in advance. If the
relaxation order is not high enough, no solution is found without distinguishing the cases
when there is no solution or just the relaxation order is not high enough. Surprisingly,
when the relaxation order is too high, there are not found all the real solutions (typically
one or none solution is found), because of reasons not known to us. Therefore, we have
set the relaxation order for Gloptipoly to one fixed value, in this case to three, which
is the most common relaxation order from all runs of the Polyopt package and the
MATLAB with MOSEK implementation, as you can see from Figure 4.7. Since these
solvers are typically used in RANSAC-like [12] algorithms, it may not be a big issue,

67

4. Minimal problems in geometry of computer vision

0

2

4

6

8

10

12

14

16

−4 −3.5 −3 −2.5 −2

F
re

q
u

en
cy

Logarithm of the error in camera position

Automatic generator [22]
Polyopt

MATLAB implementation with MOSEK [34]
Gloptipoly [18]

Figure 4.4. Histogram of the errors in estimated camera positions computed by the selected
polynomial solvers for the P3P problem with respect to the ground truth camera positions.

when some of the real solutions are not found, of course depending the application. For
the reasons stated above we present in Table 4.1 number of all complex solutions and
number of real solutions found by each of the polynomial solvers.

Polynomial Number of found Percent of found
solver real solutions real solutions

Automatic generator [22] 158 850 100.0 %
Polyopt 129 394 81.5 %

MATLAB implementation
141 702 89.2 %

with MOSEK [34]
Gloptipoly [18] 71 934 45.3 %

Number of all complex solutions is 268 000.
Number of all real solutions is 158 850, which is 59.3 % of all complex solutions.

Table 4.1. Table of numbers of all real and complex solutions and of numbers of found real
solutions by each of the selected polynomial solver for the P3P problem.

We can see that for the P3P problem there is about 40 % of non-real solutions,
which need not be computed. We observe that in practice the moment method based
implementations do not found all of the real solutions. The Polyopt implementation
found only 80 % of the solutions, but we belive that this can be improved up to 90 %
success rate, which shows the MATLAB implementation. Very poor results performed
the Gloptipoly toolbox, but they can be probably improved by correct setting of the
relaxation order. On the other hand, from the histograms in Figures 4.3, 4.4, 4.5 we
can see that the overall results for the P3P problem of the Polyopt implementation and
the MATLAB implementation are comparable to the purely algebraic solver, despite

68

4.3. Calibrated camera pose with unknown focal length

0

2

4

6

8

10

12

14

16

18

−4 −3.5 −3 −2.5 −2 −1.5 −1

F
re

q
u

en
cy

Logarithm of the error in rotation angle [rad]

Automatic generator [22]
Polyopt

MATLAB implementation with MOSEK [34]
Gloptipoly [18]

Figure 4.5. Histogram of the errors in rotation angles computed by the selected polynomial
solvers for the P3P problem with respect to the ground truth camera rotations.

they have not found all the real solutions. Regarding the computation times shown in
Figure 4.6, we can see that the moment method based implementations are significantly
slower than the pure algebraic solver. The best results from the moment method based
solvers shows the Gloptipoly [18] toolbox, but note that we have set the relaxation
order in advance, and therefore only one semidefinite program had to be solved for each
instance.

4.3. Calibrated camera pose with unknown focal length

A computer vision problem slightly more complicated than the P3P problem is the
calibrated camera pose estimation with unknown focal length. In this problem the
pose and focal length of a calibrated camera is estimated from four known 2D–to–3D
correspondences. This problem has seven degrees of freedom, and therefore is over-
constrained with four points. A minimal solver for this problem has been presented
by C. Wu in [49] using 3.5 points, i.e. ignoring one of the image coordinates for one
of the points. Since then, the problem is called the P3.5Pf problem. However, this
representation contains a degeneracy, which has been removed in [24] by application of
clever parametrization and clever elimination techniques. We use this representation to
test our implementations of the moment method. The scheme of the problem geometry
can be seen in Figure 4.8.

The solution of the P3.5Pf problem comes from the projection equation

λi

[
xi
1

]
= KknownKf

[
R −RC

] [Xi

1

]
(4.19)

for i = 1, 2, 3, 4 and λi ∈ R/{0}, where Kknown ∈ R3×3 is the known calibration matrix

up to the unknown focal length, which is stored in the matrix Kf = diag
([
f f 1

]>)
.

69

4. Minimal problems in geometry of computer vision

0

10 000

20 000

30 000

40 000

50 000

60 000

70 000

−5 −4 −3 −2 −1 0 1

F
re

q
u

en
cy

Logarithm of the execution time [s]

Automatic generator [22]
Polyopt — offline phase
Polyopt — online phase

MATLAB with MOSEK [34] — offline phase
MATLAB with MOSEK [34] — online phase

Gloptipoly [18]

Figure 4.6. Histogram of the execution times required to compute the P3P problem by the
selected polynomial solvers.

The matrix R ∈ SO(3) is the rotation matrix and the vector C ∈ R3 is the projection
centre of the camera. The 3D coordinates are given in vectors Xi and their projections
in vectors xi. We remove the known calibration matrix from the equation (4.19) by
pre-calibrating of the image coordinates.

x̃i = K−1
knownxi (4.20)

We group the unknowns f , R and C into one camera projection matrix P ∈ R3×4 as
follows:

Kf

[
R −RC

]
= P =

P>1P>2
P>3

 =

p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34

 . (4.21)

Then, the projection equation (4.19) is transformed into

λi

[
x̃i
1

]
= P

[
Xi

1

]
. (4.22)

Each 2D–to–3D correspondence gives us two linearly independent equations in the
camera matrix.

P>1

[
Xi

1

]
− x̃(1)

i P>3

[
Xi

1

]
= 0 (4.23)

P>2

[
Xi

1

]
− x̃(2)

i P>3

[
Xi

1

]
= 0 (4.24)

That gives us eight linearly independent equations and by ignoring one of them we get
a minimal problem. To fix the scale we add one additional equation

P>3

[
X1

1

]
= 1. (4.25)

70

4.3. Calibrated camera pose with unknown focal length

0

10 000

20 000

30 000

40 000

50 000

60 000

70 000

2 3 4 5 6 7 8 9 10 11

F
re

q
u

en
cy

Maximal degree of relaxed monomials

Polyopt
MATLAB implementation with MOSEK [34]

Gloptipoly [18]

Figure 4.7. Histogram of maximal degrees of relaxed monomials of the P3P problem. It
corresponds to the value of variable t in the last iteration of Algorithm 3.4 for the Polyopt
package and the MATLAB with MOSEK implementation. For the Gloptipoly toolbox it
corresponds to two times the given relaxation order.

These eight equations can be written in a matrix form

−X>1 −1 0 0 x̃
(1)
1 X1 x̃

(1)
1

0 0 −X>1 −1 x̃
(2)
1 X1 x̃

(2)
1

−X>2 −1 0 0 x̃
(1)
2 X2 x̃

(1)
2

0 0 −X>2 −1 x̃
(2)
2 X2 x̃

(2)
2

−X>3 −1 0 0 x̃
(1)
3 X3 x̃

(1)
3

0 0 −X>3 −1 x̃
(2)
3 X3 x̃

(2)
3

−X>4 −1 0 0 x̃
(1)
4 X4 x̃

(1)
4

0 0 0 0 X>1 1

P1

P2

P3

 =

0
0
0
0
0
0
0
1

(4.26)

Ap = b (4.27)

with coefficient matrix A ∈ R8×12 and vector b ∈ R8. Then, we can parametrize the
problem only by four unknowns using the vectors p1, p2, p3, p4 representing the nullspace
of A and particular solution p0 of the equation (4.27).

p = p0 + ξ1p1 + ξ2p2 + ξ3p3 + ξ4p4 (4.28)

To ensure that the camera projection matrix P can be decomposed to Kf , R and C
as stated in the equation (4.21) we need to introduce next nine polynomial equations

71

4. Minimal problems in geometry of computer vision

C

x1

x3x4

X1

X3

X4

π

X2

x2

Figure 4.8. Scheme of the P3.5Pf problem. A pose of a calibrated camera with unknown focal
length can be computed from four known 3D points X1, X2, X3, X4 and their projections
x1, x2, x3, x4 into the image plane π. The camera projection center is denoted as C.

on P .

p21p31 + p22p32 + p23p33 = 0 (4.29)

p11p31 + p12p32 + p13p33 = 0 (4.30)

p11p21 + p12p22 + p13p23 = 0 (4.31)

p2
11 + p2

12 + p2
13 − p2

21 − p2
22 − p23 = 0 (4.32)

p2
13p32 − p2

21p32 − p2
22p32 − p12p13p33 − p22p23p33 = 0 (4.33)

p12p13p32 + p22p23p32 − p2
12p33 + p2

21p33 + p2
23p33 = 0 (4.34)

p11p13p32 + p21p23p32 − p11p12p33 − p21p22p33 = 0 (4.35)

p2
13p31 − p2

22p31 + p21p22p32 − p11p13p33 = 0 (4.36)

p12p13p31 + p22p23p31 − p11p21p33 − p21p22p33 = 0 (4.37)

By solving these equations we obtain the unknowns ξ1, ξ2, ξ3, ξ4, from which we recover
the projection matrix P , which we decompose by standard methods to Kf , R and C.
In general the system of equations has 10 complex solutions.

In the experiment, we have randomly selected 20 cameras, for each of them 100
quadruples of 2D–to–3D correspondences has been randomly chosen. For each quadru-
ple, the coefficient vectors p0, p1, p2, p3, p4 of the equation (4.28) has been precomputed.
Then, the real roots ξ1, ξ2, ξ3, ξ4 of the equations (4.29) – (4.37) has been found by the
selected polynomial solvers. The focal length f , the camera location C and the camera
rotation R has been computed in a standard way from the solutions. Then, the best
triple f , C and R minimizing the maximal reprojection error on all correspondences in
the images for each camera and solver has been selected.

4.3.1. Performance of the polynomial solvers

We have tested our two implementations of the moment method, i.e. the Polyopt
package and the MATLAB implementation with MOSEK semidefinite programming
solver, on the previously described P3.5Pf problem. We compared them with the state
of the art polynomial solver Gloptipoly with fixed relaxation order to three and with
a pure algebraic solver generated by the automatic generator [22] as described in [24].

72

4.3. Calibrated camera pose with unknown focal length

The generated solver consists of G-J elimination of a coefficient matrix of size 25× 35
and of eigenvector computation of a multiplication matrix of size 10× 10.

The histograms of the maximal reprojection errors can bee seen in Figure 4.9. To
evaluate the estimated focal length, we computed the relative focal length error for each
of the estimated camera using the following formula:

ef =

∣∣∣∣f − fGTfGT

∣∣∣∣. (4.38)

The histograms of these relative focal length errors are shown in Figure 4.10. We have
computed the errors in camera positions with respect to the ground truth values as de-
scribed by the equation (4.17). These errors are presented as histograms in Figure 4.11.
Histograms of the residual rotation angle for each estimated camera computed by the
equation (4.18) are in Figure 4.12. Execution times required to solve each instance of
the equations (4.29) – (4.37) have been measured and presented in a form of histograms
in Figure 4.13. Also the values of the variable t from the last iteration of Algorithm 3.4
and the relaxation orders given to the Gloptipoly toolbox are shown as histograms in
Figure 4.14. The numbers of all complex and real solutions as well as the numbers of
found real solutions by each of the polynomial solver are written in Table 4.2.

0

5

10

15

20

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85

F
re

q
u

en
cy

Logarithm of the reprojection error [px]

Ground truth
Automatic generator [22]

Polyopt
MATLAB implementation with MOSEK [34]

Gloptipoly [18]

Figure 4.9. Histogram of the maximal reprojection errors of all correspondences in the image
for the best camera positions and rotations estimated by the selected polynomial solvers for
the P3.5Pf problem compared to the maximal reprojection errors computed for the ground
truth camera positions and rotations.

From the results of the polynomial solvers applied on the P3.5Pf problem we can see
that there is only 50 % of real solutions amongst all complex solutions. Given efficient
polynomial solver computing only real solutions, in theory we would be able to reduce
the computation time to half in contrary to the state of the art algebraic solvers, which
compute all complex solutions. Although the moment based solvers did not recover all
real solutions, the overall results are comparable to the algebraic solver as can be seen

73

4. Minimal problems in geometry of computer vision

0

1

2

3

4

5

−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5

F
re

q
u

en
cy

Logarithm of the relative focal length error

Automatic generator [22]
Polyopt

MATLAB implementation with MOSEK [34]
Gloptipoly [18]

Figure 4.10. Histogram of the relative focal length errors computed by the selected polynomial
solvers for the P3.5Pf problem with respect to the ground truth focal lengths.

from the histograms. The only disadvantage of the moment method based solvers is
the computation time, which is incomparable to the algebraic solver.

4.4. Conclusions

We have described two minimal problems of computer vision: the calibrated camera
pose problem and the calibrated camera pose with unknown focal length problem. We
have solved the polynomial systems arisen from these problems by our implementation
of moment method in Python and MATLAB and compared it to Gloptipoly [18] toolbox
and to algebraic solvers generated by the automatic generator [22].

Our implementation succeeded in solving these problems, which one them is one poly-
nomial of degree four in one variable and the second one is a system of nine polynomials
of degrees two and three in four variables.

The reprojection errors, errors in camera positions and rotations and the focal length
relative errors of cameras estimated by the moment method are comparable to the
errors of cameras estimated by the algebraic solvers. On the other hand, the algebraic
solvers are much faster than the implementations of the moment method.

74

4.4. Conclusions

0

0.5

1

1.5

2

2.5

3

3.5

4

0.2 0.4 0.6 0.8 1 1.2

F
re

q
u

en
cy

Logarithm of the error in camera position

Automatic generator [22]
Polyopt

MATLAB implementation with MOSEK [34]
Gloptipoly [18]

Figure 4.11. Histogram of the errors in estimated camera positions computed by the selected
polynomial solvers for the P3.5Pf problem with respect to the ground truth camera positions.

0

1

2

3

4

5

6

7

8

−4 −3.5 −3 −2.5 −2

F
re

q
u

en
cy

Logarithm of the error in rotation angle [rad]

Automatic generator [22]
Polyopt

MATLAB implementation with MOSEK [34]
Gloptipoly [18]

Figure 4.12. Histogram of the errors in rotation angles computed by the selected polynomial
solvers for the P3.5Pf problem with respect to the ground truth camera rotations.

75

4. Minimal problems in geometry of computer vision

0

200

400

600

800

1000

1200

1400

1600

1800

2000

−5 −4 −3 −2 −1 0 1 2

F
re

q
u

en
cy

Logarithm of the execution time [s]

Automatic generator [22]
Polyopt — offline phase
Polyopt — online phase

MATLAB with MOSEK [34] — offline phase
MATLAB with MOSEK [34] — online phase

Gloptipoly [18]

Figure 4.13. Histogram of the execution times required to compute the P3.5Pf problem by the
selected polynomial solvers.

0

500

1000

1500

2000

2 4 6 8 10 12

F
re

q
u

en
cy

Maximal degree of relaxed monomials

Polyopt
MATLAB implementation with MOSEK [34]

Gloptipoly [18]

Figure 4.14. Histogram of maximal degrees of relaxed monomials of the P3.5Pf problem. It
corresponds to the value of variable t in the last iteration of Algorithm 3.4 for the Polyopt
package and the MATLAB with MOSEK implementation. For the Gloptipoly toolbox it
corresponds to two times the given relaxation order.

76

4.4. Conclusions

Polynomial Number of found Percent of found
solver real solutions real solutions

Automatic generator [22] 9608 100.0 %
Polyopt 8110 84.4 %

MATLAB implementation
8698 90.5 %

with MOSEK [34]
Gloptipoly [18] 5907 61.5 %

Number of all complex solutions is 20 000.
Number of all real solutions is 9608, which is 48.0 % of all complex solutions.

Table 4.2. Table of numbers of all real and complex solutions and of numbers of found real
solutions by each of the selected polynomial solver for the P3.5Pf problem.

77

5. Conclusions

In this work, we have reviewed and implemented interior-point method for semidefi-
nite programs solving. In the experiments on synthetic semidefinite programs we have
verified the correctness of the implementation and we have compared it to the state of
the art methods. The results showed that our implementation is significantly slower
than the state of the art methods, but an efficient semidefinite programs solver was not
a goal of this work. However, the goal was to understand the implemented method, so
we can now exploit its advantages and minimize the effects of its disadvantages when
applied in polynomial optimization methods. In Section 2.6 we have shown that typ-
ically only few iterations of Algorithm 2.3 are enough to get a good approximation of
the optimal point.

Furthermore, we have focused on polynomial optimization. We have implemented a
method, which uses hierarchies of semidefinite programs to solve the original non-convex
problem. The new implementation has been compared to the state of the art methods
on synthetically generated polynomial optimization problems. From the results can
be seen that our implementation is slower than the state of the art methods, which is
mainly because of the inefficient SDP solver, which is the most time consuming part of
the algorithm.

The main contribution of this work is the review and implementation of the moment
method for polynomial systems solving. The advantage of this method is that it allows
us to find only real solutions of polynomial systems, which can save some computa-
tion time. We have successfully applied this method to some minimal problems from
geometry of computer vision, which is a novel idea in the field of computer vision.

To see the performance of the implementation of the moment method on some real
problems, we have described two simple minimal problems (namely P3P and P3.5Pf
problems) from geometry of computer vision, which we have tested on real 3D scene.
We have found out that for the P3P problem there is about 40 % of non-real solutions,
which need not be computed. For the P3.5Pf problem it is about 50 % of all solutions.
The comparison with the algebraic solvers showed that the moment method is applicable
on the minimal problems, i.e. that the estimation errors of the camera poses and the
focal lengths are comparable to the results of the state of the art methods. The main
drawback of the moment method is the computation time, which is significantly higher
compared to the algebraic solvers generated by the automatic generator [22].

5.1. Future work

We have seen that the described moment method can be applied on minimal problems
from computer vision, but due to its slow computation time it is not comparable to the
algebraic methods. The performance can be improved by many ways.

Firstly, it showed up that the semidefinite programs constructed inside the moment
method have typically no feasible strictly interior point. Therefore, the interior-point
algorithm we have implemented in Chapter 2 can not be used to find a feasible point
from the relative interior. In this work, we have solved this issue by solving another
semidefinite program (3.127). Different approach can be to implement another SDP

78

5.1. Future work

solver, which would use an infeasible interior-point method. Another solution to this
issue may bring a method called facial reduction [41]. This method is able to find a
reduced version of the original problem by solving a sequence of easier semidefinite
programs. Using this method we would be able to remove the superfluous dimensions
of the SDP problem, which causes that then the problem is solvable by an interior-
point method and moreover the size of the problem is reduced, and therefore some
computation time can be saved.

Secondly, it is possible that the idea of automatic generators [22, 23] could be trans-
formed to the optimization world, i.e. that for a given problem we would be able to
generate a parametrized solver that would solve the problem efficiently for a given value
of parameters of the problem. This idea is proposed in [8]. The authors suggest that
if we found out that the SDP relaxation is tight for a given value of parameters, and
therefore solves the problem correctly, then under some sufficient conditions the relax-
ation is tight even for small perturbation of the parameters. Moreover, from histograms
in Figure 4.7 and Figure 4.14 we can see that typically one relaxation order prevails
over the others. Therefore, it would make sense not to start from the minimal possible
relaxation order in Algorithm 3.4, but to solve the problem only for one given relaxation
order that would be known in advance.

Although we were unable to show that the moment method can beat the algebraic
methods in computation time, there might be a problem on which the moment method
will be faster. Such a problem would have probably a lot of non-real solutions and only
few real solutions, so the moment method could benefit from its advantages. If such a
problem would be found, the moment method could be included amongst the state of
the art methods for polynomial systems solving in computer vision.

Another advantage of usage optimization methods for polynomial systems solving,
which we have not shown in this work, is that overconstrained systems can be solved
by them. An overconstrained system can be solved in precise arithmetic, but typically
it has no solution when solved on real noisy data in floating-point arithmetic. But the
constraints of such problems can be relaxed and the errors of them minimized, and then
the optimization techniques as described in Section 3.3 can be applied. We have not
provided such an experiment in this work, but it would be nice to find a problem, on
which this approach would be applicable and to see, how this approach is performing
compared to the state of the art approaches.

In this work, we have provided one implementation for polynomial optimization prob-
lems solving (Section 3.3) and a different one for solving polynomial systems (Sec-
tion 3.4). This is because of the evolution of this work. But since both these methods
are based on hierarchies of semidefinite programs, it makes sense to implement one uni-
versal algorithm, which would be able to solve both tasks. The advantages are obvious.
We would be able to add constraints in form of polynomial equations to the polynomial
optimization problems (3.58), which currently allows only polynomial inequality con-
straints. On the other hand, we would be able to introduce polynomial inequalities into
the systems of polynomial equations and eliminate some solutions by this approach.
This would lead to smaller multiplication matrices, and therefore to faster eigenvector
computations. A typical example from minimal problems from computer vision may
be to impose positivity on focal lengths.

79

A. Contents of the enclosed CD

/

thesis/ folder with files related to the thesis
data/dataset for the experiments
sources/

scripts/scripts performing the experiments
thesis.pdfdigital copy of the thesis

polyopt/the polyopt package
polyopt/sources of the polyopt package
tests/unit tests
demoPOPSolver.pypolynomial optimization demo
demoPSSolver.pypolynomial systems solving demo
demoSDPSolver.pysemidefinite programming demo
setup.pyinstall script

momentMethod/MATLAB implementation of the moment
method

solve.mMATLAB function implementing the moment
method

80

Bibliography

[1] Alice vision: Photogrammetric computer vision framework. https://

alicevision.github.io/ [Online; accessed 2017-11-09]. 64

[2] LADIO: Live action data input / output project. https://griwodz.github.io/

ladioproject/ [Online; accessed 2017-11-09]. 63

[3] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users’
Guide. Society for Industrial and Applied Mathematics, Philadelphia, PA, 3rd
edition, 1999. 24, 30

[4] Thomas Becker and Volker Weispfenning. Gröbner Bases, A Computational Ap-
proach to Commutative Algebra. Number 141 in Graduate Texts in Mathematics.
Springer-Verlag, New York, NY, 1993. 38, 51

[5] Richard Bellman and Ky Fan. On systems of linear inequalities in hermitian matrix
variables. In Convexity: Proceedings of Symposia in Pure Mathematics, volume 7,
pages 1–11. American Mathematical Society Providence, 1963. 12

[6] Jacek Bochnak, Michel Coste, and Marie-Françoise Roy. Real Algebraic Geometry,
volume 36 of Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer, Berlin,
Germany, 1998. 36

[7] Bruno Buchberger. Ein Algorithmus zum Auffinden der Basiselemente des Rest-
klassenringes nach einem nulldimensionalen Polynomideal. PhD thesis, Mathema-
tical Institute, University of Innsbruck, Austria, 1965. 51

[8] Diego Cifuentes, Sameer Agarwal, Pablo A. Parrilo, and Rekha R. Thomas. On
the local stability of semidefinite relaxations. ArXiv e-prints, October 2017. 79

[9] David Cox, John Little, and Donald O’Shea. Ideals, Varieties, and Algorithms :
An Introduction to Computational Algebraic Geometry and Commutative Algebra.
Undergraduate Texts in Mathematics. Springer, New York, USA, 2nd edition, 1997.
35, 36

[10] Jane Cullum, W. E. Donath, and P. Wolfe. The minimization of certain nondif-
ferentiable sums of eigenvalues of symmetric matrices. In Nondifferentiable Opti-
mization, pages 35–55. Springer Berlin Heidelberg, Berlin, Heidelberg, 1975. 12

[11] Jean-Charles Faugère. A new efficient algorithm for computing gröbner bases (f4).
Journal of pure and applied algebra, 139(1–3):61–88, July 1999. 38, 51, 62

[12] Martin A. Fischler and Robert C. Bolles. Random sample consensus: A paradigm
for model fitting with applications to image analysis and automated cartography.
Communications of the ACM, 24(6):381–395, June 1981. 63, 64, 67

[13] Xiao-Shan Gao, Xiao-Rong Hou, Jianliang Tang, and Hang-Fei Cheng. Complete
solution classification for the perspective-three-point problem. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 25(8):930–943, August 2003. 64

81

https://alicevision.github.io/
https://alicevision.github.io/
https://griwodz.github.io/ladioproject/
https://griwodz.github.io/ladioproject/

Bibliography

[14] Michel X. Goemans and David P. Williamson. Improved approximation algo-
rithms for maximum cut and satisfiability problems using semidefinite program-
ming. Journal of the ACM, 42(6):1115–1145, November 1995. 10

[15] Johann August Grunert. Das pothenotische problem in erweiterter gestalt nebst
über seine anwendungen in der geodäsie. Grunerts Archiv für Mathematik und
Physik, 1:238–248, 1841. 64

[16] Jan Heller and Tomas Pajdla. Gposolver: A matlab/c++ toolbox for global poly-
nomial optimization. Optimization Methods Software, 31(2):405–434, March 2016.
42

[17] Didier Henrion. Optimization on linear matrix inequalities for polynomial systems
control, September 2014. 43, 44

[18] Didier Henrion, Jean-Bernard Lasserre, and Johan Löfberg. Gloptipoly 3: Mo-
ments, optimization and semidefinite programming. Optimization Methods Soft-
ware, 24(4–5):761–779, August 2009. 42, 48, 50, 51, 52, 53, 61, 62, 66, 67, 68, 69,
70, 71, 73, 74, 75, 76, 77

[19] Heiko Hirschmüller. Stereo processing by semiglobal matching and mutual informa-
tion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(2):328–
341, February 2008. 64

[20] Narendra Karmarkar. A new polynomial-time algorithm for linear programming.
Combinatorica, 4:373–395, 1984. 12

[21] Richard M. Karp. Reducibility among combinatorial problems. In Complexity of
Computer Computations, pages 85–103. Springer US, Boston, MA, 1972. 10

[22] Zuzana Kukelova, Martin Bujnak, and Tomas Pajdla. Automatic generator of
minimal problem solvers. In Proceedings of The 10th European Conference on
Computer Vision, ECCV 2008, October 12–18 2008. 8, 51, 62, 63, 66, 67, 68, 69,
70, 72, 73, 74, 75, 76, 77, 78, 79

[23] Viktor Larsson, Kalle Astrom, and Magnus Oskarsson. Efficient solvers for minimal
problems by syzygy-based reduction. In The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), July 2017. 8, 51, 62, 63, 79

[24] Viktor Larsson, Zuzana Kukelova, and Yinqiang Zheng. Making minimal solvers
for absolute pose estimation compact and robust. In The IEEE International
Conference on Computer Vision (ICCV), October 2017. 69, 72

[25] Jean B. Lasserre. Global optimization with polynomials and the problem of mo-
ments. Society for Industrial and Applied Mathematics Journal on Optimization,
11:796–817, 2001. 42, 43

[26] Jean B. Lasserre. An Introduction to Polynomial and Semi-Algebraic Optimization.
Cambridge Texts in Applied Mathematics. Cambridge University Press, 2015. 40

[27] Jean Bernard Lasserre, Monique Laurent, and Philipp Rostalski. Semidefinite char-
acterization and computation of zero-dimensional real radical ideals. Foundations
of Computational Mathematics, 8(5):607–647, October 2008. 52

82

Bibliography

[28] Jean Bernard Lasserre, Monique Laurent, and Philipp Rostalski. A unified ap-
proach to computing real and complex zeros of zero-dimensional ideals. In Emerg-
ing Applications of Algebraic Geometry, pages 125–155, New York, 2009. Springer
New York. 52

[29] Monique Laurent. Sums of squares, moment matrices and optimization over
polynomials. In Emerging Applications of Algebraic Geometry, pages 157–270.
Springer New York, 2009, Updated version from 2010. http://homepages.cwi.

nl/~monique/files/moment-ima-update-new.pdf [Online; accessed 2017-05-05].
40, 41

[30] Monique Laurent and Philipp Rostalski. The approach of moments for polynomial
equations. In Handbook on Semidefinite, Conic and Polynomial Optimization,
pages 25–60, Boston, MA, 2012. Springer US. 5, 52, 53, 54, 55, 56, 57, 58, 61

[31] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. Basic linear al-
gebra subprograms for fortran usage. ACM Trans. Math. Softw., 5(3):308–323,
September 1979. 24, 30

[32] Johan Löfberg. YALMIP : A toolbox for modeling and optimization in MATLAB.
In Proceedings of the CACSD Conference, Taipei, Taiwan, 2004. 31, 59

[33] David G. Lowe. Distinctive image features from scale-invariant keypoints. Inter-
national Journal of Computer Vision, 60(2):91–110, November 2004. 64

[34] MOSEK ApS. The MOSEK optimization toolbox for MATLAB manual. Version
7.1 (Revision 28), 2015. http://docs.mosek.com/7.1/toolbox/index.html [On-
line; accessed 2017-04-25]. 13, 24, 27, 30, 31, 34, 59, 62, 67, 68, 69, 70, 71, 73, 74,
75, 76, 77

[35] Yurii Nesterov. Squared functional systems and optimization problems. In High
Performance Optimization, pages 405–440. Springer US, 2000. 42

[36] Yurii Nesterov. Introductory lectures on convex optimization : A basic course.
Springer, 2004. 5, 13, 14, 15, 16, 17, 18, 19, 20, 21, 25

[37] Yurii Nesterov and Arkadi Nemirovski. A general approach to polynomial-time
algorithms design for convex programming. Technical report, Central Economical
and Mathematical Institute, USSR Academy of Sciences, Moscow, USSR, 1988. 12

[38] Brendan O’Donoghue, Eric Chu, Neal Parikh, and Stephen P. Boyd. SCS: Splitting
conic solver, version 1.2.6. https://github.com/cvxgrp/scs [Online; accessed
2017-04-22], April 2016. 13

[39] Michael Overton. On minimizing the maximum eigenvalue of a symmetric matrix.
SIAM Journal on Matrix Analysis and Applications, 9:256–268, April 1988. 12

[40] Gabor Pataki. On the multiplicity of optimal eigenvalues. University of Michigan,
Ann Arbor, MI (United States), December 1994. 12

[41] Frank Permenter and Pablo A. Parrilo. Partial facial reduction: simplified, equiv-
alent SDPs via approximations of the PSD cone. ArXiv e-prints, August 2014. 60,
79

83

http://homepages.cwi.nl/~monique/files/moment-ima-update-new.pdf
http://homepages.cwi.nl/~monique/files/moment-ima-update-new.pdf
http://docs.mosek.com/7.1/toolbox/index.html
https://github.com/cvxgrp/scs

Bibliography

[42] Stephen Prajna, Antonis Papachristodoulou, Peter Seiler, and Pablo A. Parrilo.
Sostools: Sum of squares optimization toolbox for matlab, 2004. 42

[43] Mihai Putinar. Positive polynomials on compact semi-algebraic sets. Indiana
University Mathematics Journal, 42(3):969–984, 1993. 42

[44] Naum Z. Shor. Class of global minimum bounds of polynomial functions. Cyber-
netics, 23(6):731–734, November 1987. 42

[45] Henrik Stewenius, Christopher Engels, and David Nister. Recent developments
on direct relative orientation. ISPRS Journal of Photogrammetry and Remote
Sensing, 60(4):284–294, May 2006. 63

[46] Jos F. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for optimization over
symmetric cones. Optimization Methods and Software, 11–12:625–653, 1999. 13,
24, 27, 30, 31, 34, 48

[47] Guido van Rossum and Fred L. Drake. The Python Language Reference Manual.
Network Theory Ltd, 2011. 24

[48] R. Clint Whaley and Antoine Petitet. Minimizing development and maintenance
costs in supporting persistently optimized BLAS. Software: Practice and Experi-
ence, 35(2):101–121, February 2005. http://www.cs.utsa.edu/~whaley/papers/
spercw04.ps [Online; accessed 2017-04-18]. 24, 30

[49] Changchang Wu. P3.5p: Pose estimation with unknown focal length. In The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), June 2015. 69

[50] Makoto Yamashita, Katsuki Fujisawa, Kazuhide Nakata, Maho Nakata, Mituhiro
Fukuda, Kazuhiro Kobayashi, and Kazushige Goto. A high-performance soft-
ware package for semidefinite programs: SDPA7. Technical report, Tokyo Japan,
September 2010. 13

[51] Yinqiang Zheng, Yubin Kuang, Shigeki Sugimoto, Kalle Åström, and Masatoshi
Okutomi. Revisiting the pnp problem: A fast, general and optimal solution. In 2013
IEEE International Conference on Computer Vision, pages 2344–2351, December
2013. 64

84

http://www.cs.utsa.edu/~whaley/papers/spercw04.ps
http://www.cs.utsa.edu/~whaley/papers/spercw04.ps

	Introduction
	Motivation
	Contributions
	Thesis structure

	Semidefinite programming
	Preliminaries on semidefinite programs
	Symmetric matrices
	Semidefinite programs

	State of the art review
	Interior point method
	Self-concordant functions
	Self-concordant barriers
	Barrier function for semidefinite programming

	Implementation details
	Package installation
	Usage

	Comparison with the state of the art methods
	Problem description
	Time measuring
	Results

	Speed–accuracy trade-off
	Precision based analysis
	Analysis based on the required distance from the solution

	Conclusions

	Optimization over polynomials
	Algebraic preliminaries
	The polynomial ring, ideals and varieties
	Solving systems of polynomial equations using multiplication matrices

	Moment matrices
	Polynomial optimization
	State of the art review
	Lasserre's LMI hierarchy
	Implementation details
	Comparison with the state of the art methods

	Solving systems of polynomial equations over the real numbers
	State of the art review
	The moment method
	Positive linear forms
	Truncated positive linear forms
	The moment matrix algorithm

	Implementation details
	Implementation in MATLAB with MOSEK toolbox
	Polyopt package implementation
	Usage

	Comparison with the state of the art methods

	Conclusions

	Minimal problems in geometry of computer vision
	Dataset description
	Calibrated camera pose
	Performance of the polynomial solvers

	Calibrated camera pose with unknown focal length
	Performance of the polynomial solvers

	Conclusions

	Conclusions
	Future work

	Contents of the enclosed CD
	Bibliography

