Master Thesis

Czech

Technical
University
in Prague

F 3 Faculty of Electrical Engineering
Department of Control Engineering

Cooperative path planning for a team of
mobile robots

Tomas Novak

Supervisor: RNDr. Miroslav Kulich, Ph.D.
Field of study: Cybernetics and Robotics

Subfield: Systems and Control
January 2018

ii

Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Control Engineering

DIPLOMA THESIS ASSIGNMENT

Student: Novak Tomas

Study programme: Cybernetics and Robotics
Specialisation: Systems and Control

Title of Diploma Thesis: Cooperative path planning for a team of mobile robots

Guidelines:

1. Get acquainted with current approaches to collision-free path planning for a team of cooperating
agents/robots, especially the Push and Rotate method [1,2].

2. Propose an extension of the method, which will allow concurrent motion of several robots.

3. Implement the proposed extension, verify it experimentally and compare its behaviour with a
selected state-of-the-art method.

4. Describe and discuss obtained results.

Bibliography/Sources:

[1] B. de Wilde, A. W. ter Mors and C. Witteveen. Push and Rotate: a Complete Multi-agent
Pathfinding Algorithm, Volume 51, pages 443-492, 2014

[2] B. de Wilde. Cooperative Multi-Agent Path Planning, Ph.D. thesis, Delft, the Netherlands, 2012?

[3] W. Wang and W. B. Goh. A stochastic algorithm for makespan minimized multi-agent path planning
in discrete space. Appl. Soft Comput. 30, C, May 2015, 287-304.

[4] Peasgood, M.; Clark, C.M.; McPhee, J. A Complete and Scalable Strategy for Coordinating
Multiple Robots Within Roadmaps, in Robotics, IEEE Transactions on , vol.24, no.2, pp.283-292, April
2008

Diploma Thesis Supervisor: RNDr. Miroslav Kulich, Ph.D.

Valid until the summer semester 2017/2018

L.S.

prof. Ing. Michael Sebek, DrSc. prof. Ing. Pavel Ripka, CSc.
Head of Department Dean

Prague, February 21, 2017

iv

Acknowledgements

I wish to thank Miroslav Kulich for his
patience and support. I am very grateful
for the frequent helpful consultations and
his constant will to direct me during the
process of writing this thesis.

Declaration

I hereby declare that this thesis is my
own work and that I stated all the re-
sources used in accordance with “Metod-
icky pokyn o dodrzovani etickych principa
pri pripravé vysokoskolskych zavéreénych
praci”.

Prohlasuji, ze jsem predlozenou préci
vypracoval samostatné a ze jsem uvedl
veskeré pouzité informacni zdroje v
souladu s Metodickym pokynem o do-
drzovani etnickych principt pfi pripravé
vysokoskolskych zédvéreénych praci.

In Prague, January 9t 2018
V Praze, 9. ledna 2018

signature

Abstract

The purpose of this thesis is to design
an algorithm that is able to calculate
collision-free trajectories for robots mov-
ing in a warehouse using a map of said
warehouse. For this, the challenges of the
problem are discussed and several state-
of-the-art methods are explored with em-
phasis on the Push and Rotate method.

A new algorithm inspired by approach
used in the Push and Rotate algorithm
is proposed. This algorithm aims to over-
come challenges that arise from expected
use in a real warehouse environment.

The algorithm was implemented in
C++ programming language. Its prop-
erties are shown through experiments on
a map of a real warehouse.

Keywords: robot, planning, warehouse
Supervisor: RNDr. Miroslav Kulich,
Ph.D.

Jugosldvskych partyzanu 1580/3,
160 00 Praha 6

vi

Abstrakt

Tato prace se zabyva ndvrhem algorithmu,
ktery umoznuje vypocitat bezkolizni tra-
jektorie robotu pohybujicich se ve skladu
za pouziti grafu. Nejprve jsou prezento-
vany vyzvy, které tento problém prindsi,
a nékolik znamych metod je diskutovano
s dirazem na metodu Push and Rotate.
V préci je predstaven novy algoritmus
inspirovany algoritmem Push and Rotate.
Tento algoritmus se zamétfuje na preko-
nani nedostatki diskutovanych metod pro
vyuziti v prostiedi redlného skladu.
Algoritmus byl implementovan v pro-
gramovanim jazyce C++. Jeho vlastnosti
jsou prezentovany nékolika experimenty
provedenymi na mapé realného skladu.
Kli¢ova slova: robot, planovani, sklad

Pteklad nazvu: Kooperativni planovani
pro tym mobilnich robotu

Contents

1 Introduction 1
2 Problem background 3
2.1 Problem description............

2.1.1 Multi-agent path-planning

problem
2.1.2 Addressed problem
2.2 Existing approaches
2.2.1 Push and Rotate............ 6l

3 Proposed algorithm
3.1 Basic definitions
3.2 Warehouse problem requirements
3.2.1 Non-constant time of movement
between nodes
3.2.2 Node/edge conflicts, mainly at
spline edges and complicated
junctions

3.2.3 Parallel movement of robots .
3.2.4 Simplifications
3.2.5 Runtime requirements
3.3 Algorithm description
3.3.1 Single robot path planning
phase L
3.3.2 Initial trajectory generation
phase L
3.3.3 Robot maneuvering phase . . .
334StOp. .o
335Push 20)
336 Replan
3.4 Algorithm properties
3.4.1 Algorithm limitations.
3.4.2 Algorithm advantages
3.5 Algorithm implementation
3.5.1 Support applications
3.5.2 Programming language and
tools 28|
3.5.3 Arena representation
3.5.4 Generated trajectories
representation................. 28]
3.5.5 Robot model
3.5.6 Conflicts 29
3.5.7 Implementation difficulties . .
4 Experiments 33
4.1 Execution delay
4.2 Two approaches comparison

vii

4.2.1 Number of conflicts
comparison
4.2.2 Calculation time comparison
4.2.3 Solution time comparison . ..
4.3 Calculated trajectory length. . ..

5 Conclusion

6 Appendix
6.1 CD content
6.2 Figures

Bibliography

S EES B EEEE

Figures
1.1 The four "industrial revolutions".
Author: Christoph Roser at

[http://www.allaboutlean.com]
AllAboutLean.com

2.1 The polygon graph with unsolvable
(a) and solvable (b) tasks..........
2.2 Complex spline junctions at the
corners of aisles in the warehouse. . .
2.3 The safety concept of a
human-robot collaboration in a
warehouse. Author: SafeLog at
[http://safelog-
project.eu/index.php/safety-
concept/]
safelog-project.eu.................
2.4 If agent as has a higher priority
and was planned first, solution does
not exist. If agent a; was planned
first, the solution is found.
2.5 Three push operations performed
by agent aj........
2.6 Example of swap operation.
2.7 Example of rotate operation.

=]

5

9

3.1 Examples showing when the stop
operation is possible and when it is

NOL. oo 18
3.2 Examples of stop operation

situations. 19
3.3 Comparison of the original and

new push operation on simple case.

3.4 The robot ro cannot be pushed to
the closest nodes, because those are
occupied by finished robots r3 and ry4
and must be pushed

3.5 It is impossible to push the robot
r1, because the only exiting edge
ends on a node occupied by the robot
ro, which is trying to push it. The
robot ro must be pushed.

3.6 The both operations stop and push
would fail, because the robot rq is
finished and cannot be moved. This
situation require the replan
operation. 24

3.7 Small warehouse graphs.

viii

3.8 The FleetManagerTerminal

window. oL 28]
3.9 Simple conflict definitions.
3.10 Complex conflict definitions. ..

4.1 Comparison of real-time during the
state time of the algorithm during

the calculation. [34]
4.2 Comparison of the number of

conflicts between the sequential

approach and the standard

approach.

4.3 Comparison of the calculation time
between the sequential approach and

the standard approach.
4.4 Calculation time of adding one
robot to the solution............. 136/

4.5 Comparison of the solution time
between the sequential approach and
the standard approach.

4.6 Comparison of the sum of the
lengths of the lowest threshold
trajectories and the conflict-free
trajectories. 138

4.7 Extension of the sum of the lengths
of the trajectories compared to the
sum of the lengths of the lowest

threshold trajectories.
6.1 Map of a real warehouse.
6.2 Cutout from the map of a real

warehouse. 45|

3.1 Node attributes
3.2 Oriented node attributes
3.3 Edge attributes........
3.4 Robot attributes.......

Tables

ix

Chapter 1

Introduction

Industry 4.0 (Figure |1.1) is a concept of modernization and automation of
factories and production in general. One of its goals is to eliminate or limit
the human presence in the process. Highly automated production lines can
be already seen in automotive, food, or electronics industries, but in most of
them the human presence remains. As Prof. Ing. Vladimir Marik DrSc. says,
the revolution is using methods of cybernetics, artificial intelligence, and the
Internet of things. [CR]

Warehouses are used by industries to store assembly parts or goods to be
sold. These warehouses often already have a computer system that tracks
the position of the product in the racks but the goods are usually moved
to and from the racks by human beings. They navigate trough the space
between the racks searching for the correct rack and then they search for
the item. Their movement requires a lot of space between the racks. This
space could have been used more efficiently. When assembling an order
composed from several different items, they usually spend a lot of the time
walking around the warehouse. Some companies, for example Amazon, have
implemented a system for automated warehouses where robots bring whole
racks to pick-stations. Here the human workers pick up the desired items and
put them into a boxes according to orders. Such a system requires the robots
to be able to navigate trough the warehouse and avoid obstacles which could
be static — such as walls and racks — or dynamic, mainly other robots and

Mechanization, Mass production, .
P X Computer and Cyber Physical
water power, steam assembly line, .
L automation Systems
power electricity

Figure 1.1: The four "industrial revolutions". Author: Christoph Roser at
[http://www.allaboutlean.com] AllAboutLean.com

1. Introduction

occasionally human beings.

This type of problem that needs to be solved is called Multi-agent Pathfind-
ing. When searching for an optimal solution, this problem is NP-complete for
a discrete graph and PSPACE-complete for real environment [HSS84]. The
Pebble-motion problem is a subcategory of multi-agent pathfinding problems
and consists of moving multiple pebble-like objects from a node to a node in
a graph, while only one pebble can occupy one node at a given time. The
most famous application of this problem is the 15-puzzle where the goal is
to rearrange fifteen squares on a 4 x 4 grid leaving only one free node. The
recently published algorithm called Push and Rotate [{WtMW14] is complete
for instances with at least two empty nodes and consist of three operations —
push, swap, and rotate. The main shortcoming of the pebble-motion solving
algorithms is that individual agents cannot move at the same time. Therefore,
the real usage of such a solution in a warehouse would be time-wasting and
ineffective. All of the above-mentioned algorithms also only assume one type
of agent while in the automated warehouse the agents might be separated
to those with and those without racks and assume constant node-to-node
movement time which is not possible in real application.

In this thesis, I am proposing a modification of the Push and Rotate algo-
rithm. I aim for a real warehouse application that allows parallel movement
of two types of agents and accounts for non-constant node-to-node movement
time. It is applicable for only a subset of graph types with a limited number
of agents but it is designed to be suitable for typical automated warehouses.
The proposed algorithm moves agents on the shortest possible trajectories to
their destinations and in case of conflict it uses a modified push operation or
one of the newly proposed operations: stop and replan.

In Chapter 2| we define the problem and investigate the different types
of the state-of-the-art algorithms and their usability in a real warehouse
environment. The proposed algorithm is described in detail in Chapter |3
with all its components and implementations. The performed experiments
can Chapter 4. Finally, the results of this thesis are summarized in Chapter
Bl

Chapter 2

Problem background

B 2.1 Problem description

The multi-agent path-planning problem in general is described in this section.
The existing approaches to the solution with more detailed description of the
Push and Rotate algorithm are examined. The challenges resulting in real
warehouse environment path-planning are also explored.

B 2.1.1 Multi-agent path-planning problem

Suppose a simple connected graph G = (N, E), where N is a set of nodes
and F is a set of directed or undirected connections between the nodes which
are called edges. Also, suppose a set of agents A = {(n%,n})}i;, where n}
are the starting nodes and ny are the goal nodes to which the given agent
is supposed to get. The algorithm solving the multi-agent path-planning
problem aims to find a set of trajectories from n’ to nz for each agent, while
no agents occupy the same node at any given time. The graph can have any
possible shape, but there are conditions that must be met for an instance
to have a solution. For example an instance in Figure 2.1a) has no solution
because it is not possible to exchange agent a; with agents as or ag, while
the other agents starting and goal nodes are identical. The instance on the
same graph in Figure) can be solved easily.

As mentioned above, the graph must be connected. If it is not the case, it
can be separated into several simple connected subgraphs that are solved sep-
arately assuming no agent has starting and goal nodes in different subgraphs.

B 2.1.2 Addressed problem

The problem of path-planning in a real warehouse environment has many
challenges, however, is also introduces simplifications. Consider two types of
robots: one type moving with the rack and the other type moving without
the rack. They are both moving on a known graph with directed edges and
several types of nodes. Figure is a graph of real warehouse that was used
for the algorithm design and testing. For better visualization a more detailed
cutout can be seen in Figure All types of nodes that are considered and

3

2. Problem background

Figure 2.1: The polygon graph with unsolvable (a) and solvable (b) tasks.

described below are visible so that it is easy to make an idea about the shape
of the typical warehouse.

Road nodes are used by all robots for movement but never as start or goal
nodes (red nodes in Figure 6.1)).

Storage location nodes are used for rack storage . All robots can use
them as start and goal nodes, but only robots without racks can move
over two or more nodes consecutively (grey nodes with rectangles around
in Figure|6.1)).

Pick-station nodes serve as goal nodes for robots with racks. The robots
stop for an indeterminate time at the station while a human worker picks
the goods from the rack. There can be multiple pick stations at different
places in one warehouse (dark blue nodes in Figure 6.1)).

Queue nodes form parallel lines just before the pick-station nodes to make
a queue of robots that were requested at the pick-station (light blue
nodes in Figure [6.1)).

Maintenance nodes are used by robots get charge or to be repaired by
human workers. They are the only nodes in the graph neighboring with
only one node (orange nodes in Figure 6.1)).

The shape of the warehouse graph is biconnected — a connected graph
which remains connected even if any node is removed. The graph in Figure
6.1] has exactly this property with the exception of the nodes neighboring
maintenance nodes. Thus by restriction of their usage as only start or goal
nodes, we can suppose the graph is biconnected. This is going to simplify
the required algorithm. Another assumption decreasing the requirements
is that the number of robots in the warehouse is much smaller than the
number of nodes. This assumption is justifiable by solving an optimization
problem of makespan minimalization with the number of robots or by simple
reasoning. The number of trips to bring n racks to the pick station that
robots have to perform is asymptotically approaching zero with increasing
number of robots while the complexity of the maneuvers to avoid crashes

4

2.2. Existing approaches

is increasing polynomially, making the trips longer and the solution more
resource demanding.

The challenges originating from real usage are mainly based on physical
properties of agents that have a physical shape and non-discrete dynamical
movement. The non-constant movement time is caused by different distances
between nodes, different velocities at which robots travel and their acceleration
and deceleration. This allows for the robots to be anywhere between two
nodes at any time and while one robot can move trough three nodes in 9
seconds, others might be able to travel only trough two. This forces us to
use a much finer time step and define conflicts between nodes and edges.
The common shape of the warehouse creates a graph with straight corridors
and sharp corners. To avoid frequent stops and on place rotations in one of
the most critical sections where agents meet, spline edges as in Figure |2.2a
and [2.2b/ are added into the graph. The extra edges cause a spatial problem
where the blue agent crossing the spline edge would collide with agent on
the green node (Figure [2.2a). The definition of the conflict must be adjusted
accordingly.

Atan s a8

(a) : Spline shortcuts : Complex spline junctions

Figure 2.2: Complex spline junctions at the corners of aisles in the warehouse.

The warehouse map (Figure 6.1) with all the nodes, edges, and conflicts
defined is given by the SafeLog project [saf]. The project aims for a human-
robot collaboration in a flexible warehouse. Part of the project is the problem
solved in this theses, the trajectory planning for a group of robots in an real
warehouse. The ability for a flexible planning and prediction of the future
state of the robots will help the project to implement their goals in safe and
efficient collaboration of robots and humacs. The Figure [2.3| shows the safety
concept of robots and humans navigating trough the common environment.

B 22 Existing approaches

The multi-agent path-planning problem is well researched, but in comparison
with the single robot path-planning problem it is not solved as comprehensively
and efficiently. Most of the approaches can be divided into two categories:
coupled and decoupled planning.

In coupled planning, the joint configuration space of all possible states
(meaning the positions of agents) in the graph is searched by standard search

5

2. Problem background

Figure 2.3: The safety concept of a human-robot collaboration in a warehouse.
Author: SafeLog at [http://safelog-project.eu/index.php/safety-concept/| safelog-
project.eu.

algorithms, such as A*. Every state is a set of agent positions on a graph
and every expansion of the state adds all the possible combinations of robot
movement from the current state into the open set. Considering the most
common search algorithms, time complexity usually grows exponentially with
the number of agents. The number of possible expansions also increases
exponentially with the number of agents. Therefore the algorithm takes an
enormous amount of processing time and memory to find the solution when
used for problems with more than a few agents. To challenge this problem,
different approaches to state representation or expansion may be considered.
Many approaches often relax the optimality of the solution but extremely
decrease the complexity and allow scalability to large problems. For example
by using the modification of the RRT algorithm [SSH13].

The decoupled planning methods plan for each agent separately while
using different ways od manipulation to prevent conflicts. Mors et al. [tMII]
present a decoupled planning algorithm that searches a minimum-time path
for a single agent while avoiding the already planned paths of others. The
algorithm can find optimal conflict-free routes in low-polynomial time, but
it is not complete. These types of algorithms are usually non-optimal and
incomplete, mostly because of their high dependency on the sequence in which
the agents are driven along the path to their destinations (Figure . One
of the algorithms proven to be complete is Push and Rotate [dWtMWT14]
which is further discussed in detail in Subsection

If we focus on the addressed problem, solutions have already been developed
by private companies. These companies sell their products as complete
solutions with hardware and software together and do not publish their
approaches, thus there is no publicly available algorithm solving this issue.

B 2.2.1 Push and Rotate

The Push and Swap algorithm [LBI1I] by Luna and Bekris was published
in 2011 as a complete solution for any connected graph with two or more
unoccupied nodes. The completeness was disprooved and an improved version
was proposed by De Wilde at al. in 2014 as the Push and Rotate algorithm
[dWtMW14]. This algorithm is proved to be complete for setups with two or

6

2.2. Existing approaches

Figure 2.4: If agent as has a higher priority and was planned first, solution does
not exist. If agent a; was planned first, the solution is found.

more unoccupied nodes.

The main idea of this algorithm is to divide the problem into subproblems
and then drive the agents one by one to their goal positions along the shortest
path, performing one of the operations — push, swap, or rotate — on every
step in the path.

One of the flaws the original Push and Swap algorithm had was that it
did not take into account Kornhauser’s [KMS84] result that agents cannot
swap if there is an isthmus (an edge whose deletion would separate connected
graph into 2 mutually disconnected graphs also called bridge) between them
longer than the number of empty nodes minus two. This was solved by
the decomposition of the problem into biconnected components and an
introduction of the rotate operation.

When the graph is decomposed into biconnected components, the agents
are assigned to the subproblems according to their initial position and number
of empty nodes in that subproblem. Next, the priority between subproblems
is evaluated. This depends on the final position of the robots. The detailed
description of the decomposition and priority evaluation can be found in
[dWtMW14]. This is out of the scope of this thesis. When the priority calcu-
lation is finished, the robots are moved one by one to their final destination
along the shortest path. When moved from one node to another, one of the
operations described below is used. When the solution is found, redundant
steps generated during the evaluation must be removed. If any agent returns
back to a node that it has already visited and no other agent visited the same
node in the meantime, the redundant moves are excluded.

B Push

The push operation attempts to move the agent a; from current node v to
the adjacent node u. When the uw node is not empty, the clear operation is
evoked to empty it.

The clear operation finds the shortest path from the node u to the closest
unoccupied node n. The operation must not use a set of blocked nodes that
mainly consist of the node v to avoid moving the agent backward. Then all

7

2. Problem background

the agents alongside the path are moved in the direction of n, clearing the
node u, and agent a; can move to said node. Only one agent moves toward
its goal node in this algorithm; thus the agents moved aside does not have
to be brought back to their original position after the push operation. If no
path is found, then the swap operation is triggered.

In Figure 2.5| the agent a; performs three push operations. In the first two
operations, the clear operation is evoked to clear agent as from the adjacent
node.

Figure 2.5: Three push operations performed by agent a.

B Swap

The swap operation attempts to exchange the position of two agents a; and
az. This can only be done at a node with a degree (number of edges coincident
with the node) three or higher (green node in Figure 2.6). The agents are
moved to the closest node n with this property, their positions are swapped,
and then they are moved back to their original position. When moved to the
node n, some other agents may be moved out of the way. The movements
done are recorded and reversed after the swap is finished. All the agents
eventually go back to their original position; therefore the operation can even
use the blocked nodes. The operation is proved to find a solution for swapping
of any two agents if and only if they belong to the same subproblem.

1. @ 2. O 3. O, 4+ @

Figure 2.6: Example of swap operation.

2.2. Existing approaches

B Rotate

The rotate operation is used when the agent visits the same node it has
already visited before. This circle is then removed from the agents path and
the robots occupying the nodes in the circle are moved one step forward. If
at least one node in the circle is empty, the rotation is trivial. Otherwise, the
algorithm searches for a node v (green node in Figure [2.7)) in the circle that
can be cleared and the agent at the v swaps with the previous agent in the
circle. Similarly, as in the swap operation, all the changes in other agents
positions are reversed.

In Figure 2.7| the agent a4 is first moved from the circle, then it is swapped
with ay using swap operation (somewhere outside the displayed figure) and
then all the agents are rotated one step forward.

Figure 2.7: Example of rotate operation.

B Real environment usage

The algorithm as originally presented does not account for any of the challenges
mentioned in Subsection 2.1.2 The modification for non-constant node-to-
node movement would be simple and only required post-processing procedure
because only one agent is moving towards the goal at a time.

Although it is an advantage for continuous-time usage, the restriction of one
at the time agent movement is degrading the performance and limits the real
use scenarios. There would be no reason to have more than 2 agents in the
whole warehouse. One agent would be always moving around the warehouse
and the other would wait at the pick-station after the goods were collected
from it. The modification of the algorithm for parallel movement of agents
will require fundamental changes in the overall design of the algorithm.

10

Chapter 3

Proposed algorithm

. 3.1 Basic definitions

The problem discussed in this chapter is the problem of planning paths for
real robots in the real warehouse environment considering two types of robots:
with and without the rack. The result is a set of trajectories that robots
can simultaneously follow without any collision. The trajectories consist of
movement from a node to a node across an edge, rotation in place and waiting
on a node.

Consider a graph G = (N, E), where N is a set of nodes connected by
directed edges E. The task is defined by a set of robots R. Each node has
attributes described in Table|3.1. The node type attribute can be set to one of
the types described in Subsection [2.1.2. Oriented node (attributes described
in Table [3.2) is defined by its orientation (0, 90, 180 or 270 deg) and defines
a set of other edges and oriented nodes that are in conflict (no robot should
occupy them while there is a robot occupying this oriented node). Each node
has a set of oriented nodes. The edge attributes (Table |3.3)) consist of basic
parameters and same sets of conflicts as in Oriented node. The start and end
angle is included to distinguish between the spline and direct edges. The cost
attribute is used for A* planning algorithm and specifies the desirability of
edge usage. Attributes of a robot (Table |3.4) define the start and goal state,
if the robot carries the rack, if the robot is in its final position, its priority,
temporary priority, its current velocity and heading angle.

ID | identification number

Type | node type
Position | point in 2D Euclidean space
Entering edges | set of edges ending in node

Exiting edges | set of edges starting in the node

Oriented nodes | set of oriented nodes

Table 3.1: Node attributes

11

3. Proposed algorithm

1D

identification number

Orientation

(0, 90, 180 or 270) deg

Parent node

reference to its parent node

Edges conflicts

set of edges in conflict

Oriented nodes conflicts

set of oriented nodes in conflict

Table 3.2: Oriented node attributes
ID | identification number
Start angle | (0,360) deg
End angle | (0,360) deg
Cost | (0,inf)
Start node | reference to a start node
End node | reference to a end node
Edges conflicts | set of edges in conflict
Oriented nodes conflicts | set of oriented nodes in conflict

Table 3.3: Edge attributes

. 3.2 Warehouse problem requirements

As mentioned in Subsection 2.1.2] there are several challenges when designing
an algorithm for real continuous environment usage instead for a discrete
world of graphs. On the other with assumption of several properties of the
warehouse graph, one can employ several simplifications in comparison with
complete graph algorithms. The main challenges that had to be resolved
during the algorithm design are discussed in this section.

One could use a robot mathematical model to adjust any discrete algorithm
for the continuous time by making sure that all the robots always cross a node
together by adjusting their velocity. This algorithm would generate solutions
with high makespan as many robots would be significantly slowed down by
robots who have to rotate on nodes to change the direction of movement.

B 3.2.1 Non-constant time of movement between nodes

The non-constant time of movement from a node to another node is one of
the main difference from standard graph algorithm. The robots are not tied
to a single node, but rather can occupy space somewhere between the nodes.
To allow the algorithm to work with robots between nodes, the movement
from node to node is represented by a sequence of time steps containing
necessary information about the robots: time, position, rotation, velocity
and a set of occupied nodes. To generate these sequences a model of robot’s
movement is necessary. The precision of this model defines the usability on
real scenario, however in the proposed algorithm we only use very simple
model and propose modification to deal with its inaccuracy in the real world
scenario.

12

3.2. Warehouse problem requirements

ID | identification number

Start node | reference to an initial node

Goal node | reference to a target node
Start orientation | (0,360) deg
End orientation | (0,360) deg
Rack | true/false
Finished | true/false
Priority | priority of the robot

Temporary priority | accumulated priority of robot

Velocity | current velocity

Heading angle | current robot orientation (0, 360) deg

Table 3.4: Robot attributes

B 3.2.2 Node/edge conflicts, mainly at spline edges and
complicated junctions

Unlike standard graph algorithms where each agent occupies only the node
that it is located at, in the warehouse graph considered the robots can be
located either at an oriented node or edge, each having defined a set of other
oriented nodes and edges that no robot can be present at the same time.
This can mean that no robot is allowed to be present at neighboring node,
which is mainly case of spline edges and complicated junctions as in Figure
2.2l The set of conflicts for an oriented node typically consists of all oriented
nodes of the occupied node and oriented nodes of neighboring nodes oriented
in a direction of an edge entering the parent node of the oriented node and
said edges. The set of conflicts for an edge is typically the occupied edge, all
oriented nodes of the start and end node of the edge and edges entering the
said nodes.

B 3.2.3 Parallel movement of robots

Parallel movement of robots is a crucial goal of this algorithm to reduce the
makespan of the solution and make it viable for usage in a real warehouse.
To overcome this challenge, all robots are moved one time step together.
When one robot happens to conflict with another robot, one of the operations
described in Section [3.3]is invoked to resolve the conflict. All of the operations
involve only the robots in conflict and position of the finished robots. The
consideration of parallel movement of robots causes an increase in complexity
of the algorithm, but also add more flexibility which results in new stop
operation that aims to reduce the frequency of more complicated push usages.

B 3.2.4 Simplifications

The real warehouse environment increases the complexity of the algorithm
significantly, however the graph of the warehouse has certain propeties that
we can use to simplify the original algorithm. In a real warehouse environment

13

3. Proposed algorithm

we assume that the graph is always biconnected; thus the decomposition used
in Push and Rotate algorithm will always end up with one component of the
whole graph. Therefore the decomposition can be omitted from the algorithm.
When the whole graph is biconnected, the swap operation will always succeed
as proved in [dWtMW14] and the rotate operation can be omitted.

The remaining operations are now push and swap. To include the swap
operation, the implementation might become unbearable, while it would be
used in practice only when the number of robots would get close to the
number of nodes; thus I have omitted it and introduced new operation replan
that is supposed to help to solve situations that the push operation is not
able to solve and even directly in the push operation to find new path for
robots that had to be diverted from their original path. This simplification
brings limitation on number of robots explained in Section |3.4.1l

B 3.2.5 Runtime requirements

Consider usage in a real warehouse. The robots are not given the tasks at once,
but rather the goals are assigned one by one from warehouse management
software. When a goal is assigned to the robot, the time to find the solution is
supposed to be as fast as possible, which is a challenging requirement to meet.
Thus the algorithm should be able to reuse the already evaluated solution and
just add new robot’s movement as fast as possible. The proposed algorithm
produces sequences of time steps for each robot that are collision-free. If we
add a goal for a new robot, we can run the shortest path planning phase only
for the new robot and reuse the already evaluated paths for the rest of the
robots. When running the algorithm again, only new conflicts caused by the
impact of the added robot are resolved again. To further reduce the impact
of the added robot, the shortest path might avoid nodes at which most of the
operations occur if possible.

Also there is no need to wait for the algorithm to finish. When solving
the problem, time is moved forward and all calculated paths until current
time-step are collision-free. When there is a conflict, the time is usually
moved backwards. In extreme case where one operation immediately causes
new conflicts, the time can be moved backwards significantly, however this
can be statistically evaluated to calculate how long the solution buffer must
be to start the movement of the robots. In extreme case the buffer would get
too small during the movement of the robots, the movement would have to
be paused.

B 33 Algorithm description

The full algorithm that is supposed to navigate the robots in the warehouse
is composed of 3 layers. The highest layer is the warehouse manager which
creates a queue of tasks that are supposed to be accomplished from an order
that is actually processed. The order may consist of several items that are
stored at different locations, thus their position is determined and the manager

14

3.3. Algorithm description

adds the information which racks has to be brought to which pick station.
This layer is also supposed to handle queues in front of the pick station,
thus the other layers can move the robots only to the isthmus leading to the
queue nodes. The robots can be sorted in the queue part of warehouse using
complete algorithm such as Push and Rotate with only one robot moving at
the time.

The middle layer is a part of the planner, that processes the queue from the
manager and selects the robot for each task. The planner selects a robot that
is idle or the first one to finish its current task. If there are multiple robots
available, then the one with shortest path to the goal is selected. This layer
also performs the initial state estimation and reuse of the already planned
paths, if they are available. When all the information is collected, the planner
runs the path-planning algorithm that generates collision-free trajectories
that solve the given task.

The lowest layer, the path-planning algorithm, takes the set of robots R,
the graph G describing the warehouse and reduced graph G, C G from which
all storage location nodes and all edges connected to them are removed as
an input. The algorithm is divided into three parts: the single robot path
planning phase, the initial trajectory generation and the robot maneuvering
phase (Algorithm |1). In the single robot path planning phase, shortest path
using A* algorithm is calculated for each robot from its start node to its
goal node. In the second phase, the trajectories following the calculated
paths are generated using the robot model. The robot maneuvering phase
simulates movement of the robots following calculated trajectories and uses
operations stop, push and replan to modify the trajectories in case of conflict.
Each robot has its planned trajectory J,, and pointer to the current state.
When the time is shifted forward or backwards, the pointer is incremented
or decremented for all robots. This way the state of the whole warehouse is
moved.

At the beginning, the robots have assigned main, unchangeable priorities
according to the length of the shortest path to their destination. The tem-
porary priority can be incremented by the push operation and reset to the
value of main priority. The stop operation is trying to resolve the conflict
by stopping one of the robots, the push operation pushes robot with lower
priority.

B 3.3.1 Single robot path planning phase

The lines [1] to [8] of the Algorithm [1] describe the single robot path planning
phase. First the shortest paths for all robots are generated on the graph
G or the reduced graph G, depending on the attribute Rack of the actual
robot. The shortest paths from a start node ng to an goal node n, are found
by widely used path-finding algorithm A* [Bee|. This algorithm is complete
and optimal for consistent heuristic. The heuristic function H(n;) is the
Euclidean distance to n. while G(ng,n;) is the known cost from ng to n,.
The heuristic function H (n,) is used to sort nodes in the open list (lost of not
yet explored nodes). In the proposed algorithm, three costs for long spline

15

3. Proposed algorithm

Algorithm 1: Robot path-planning algorithm
Data: Set of robots R with tasks, graph G, reduced graph G,., robot
model L
Result: Collision free trajectories for robots
1 trajectories <— empty vector
2 paths <+ empty vector
3 forall r € R do

4 if Robot r has rack then

5 ‘ P + shortest__path(r,G,)

6 else

7 ‘ P + shortest__path(r,G)

8 end

9 Jr < generate_trajectories(P,G, L)
10 trajectories < trajectories + J,
11 paths < paths + P
12 end

13 Jgo < solver(trajectories, paths, G, R)

edges (7}, edges to storage location nodes C; and default edges Cy are used.
The default cost Cy is chosen to be 1. The cost C} is based on the length of
the spline edges. Traveling trough spline edge is shorter than travel trough
two default edges, but longer than traveling trough one; thus Cy < C; < 2Cy
and is set to 1.5. The edges that end in the storage location nodes are in
most cases traveled by the robots without racks. To enforce their preference
to travel under the racks and leave more space on the road nodes for robots
with racks, the cost Cs must be 0 < Cy < Cy and 0 < C5 < %, and is set to
0.1. The robots that carry a rack cannot use edges starting or ending at the
storage location nodes with exception of initial and goal state of the robots.

B 3.3.2 Initial trajectory generation phase

The generated paths are processed by the robot model (line |13). The output
for each robot r, is a list of time steps J, = {j1,Jj2,...,7Jn}, where n is
the number of time steps in the path. The output data depends on the
model parameters. Because we need to discretize continuous movement, the
time steps are actually samples of real trajectory movement; thus sample
frequency must be defined reasonably. The algorithm directly processes the
time samples, therefore the computational difficulty grows with the sampling
frequency. Choosing too small number of samples could lead to failure in case
that there are not at least 2 samples between two nodes — each where robot
occupies one of the two nodes on the edge. The robots could into conflict in
moments that were not captured by the samples; thus the algorithm would
not detect it. It is reasonable to have at least 10 samples for each edge.
To make sure, the sampling frequency Fj is sufficient, it should meet the
condition Fy > % x 10, where l,,, is the minimum length of an edge and v,

16

3.3. Algorithm description

is the maximal robot velocity. The sample time T = Fis is usually used in
the algorithm.

Algorithm 2: Solver algorithm

Data: generated trajectories J

Result: Trajectories J, modified to be collision-free.
1 solved < false

2 while !solved do

3 if conflict_detect() then
4 ‘ resolve__crash(crash)

5 if check__solved() then

6 ‘ solved < true

7 else

8 resolve__priority__reset()
9 resolve__replan()

10 state__shift(1)
11 end
12 end

Bl 3.3.3 Robot maneuvering phase

This phase is described by Algorithm 2. The loop (line 2) is repeated until
the problem is solved. First it is checked if there is conflict in the current
state of robots (line 3). If there is one, it is immediately resolved using
Algorithm |4l Then it is checked if the problem is not yet solved by checking if
all robots reached their destination (line |5). When the problem is not solved
yet the state is shifted forward by one step (line|10]). The two resolve methods
preceding the state shift are used to envoke certain operations, their purpose
is described further in the operations description.

The Conflict detect (Algorithm 3) searches trough all the blocked oriented
nodes and edges and checks whether no robot occupy any of them. It only
skips the blocked nodes and edges that originated from currently tested robot
to avoid robot conflicting with itself.

The Resolve crash Algorithm [4] solves only one crash at the time. If more
than one crash occurs at the same time only the first found is resolved,
however all the operations will cause the time ¢ (and state of all robots) to
decrement for at least T; thus the other crashes will be also resolved. In the
algorithm, it is first decided which operation should be used (line 1) and then
it is executed. The executed algorithm now depends on operation that was
decided to be used and are described further in separate sub-chapters.

The Decide operation (Algorithm 5) first decides which robot has higher
priority and which one has lower priority. If any of the robots is finished,
the replan operation is used. This is because after robot reaches its final
destination we do not want to move it. It is possible, because no robot can
finish on Road node, thus there is always another path to the destination

17

3. Proposed algorithm

of the robot. When no robot is finished, the stop is tested if it can be used.
This is done by testing two conditions for both robots.

The first one is that the other robot’s path does not cross the node that
the tested robot would be stopped at. In Figure [3.1b], the robot r3 has a path
planned in a way, that stopping the robot r; would not help to resolve the
conflict. If the path was planned differently (Figure 3.1a), the stop operation
helps resolve the conflict completely.

The second condition is implemented to prevent a dead-lock situations that
might rise from stop. When the robot is stopped, it is put into idle state
and waits until the first edge that it needs to travel trough is empty. This
might lead into a dead-lock situation. In Figure |3.2b| the deadlock would
occur when the robot 1 would get stopped because of the robot 79, the robot
ro would get stopped because of the robot r3 and the robot r3 would get
stopped because of the robot r1. To avoid this situation, the robot that is
supposed to be let go cannot have any idle robots on its way. This condition
will assure there will be no deadlock situation, but also can cause that stop
operation is not used in situations it would help.

When no other operation is selected, the push operation is chosen.

(a) : stop operation is (b) : If ry is stopped, the

possible. Stopping robot robot 7o would still crash
r1 allows robot r9 to into it.

Figure 3.1: Examples showing when the stop operation is possible and when it
is not.

B 3.3.4 Stop

The idea of the stop operation (Algorithm (6) is very simple — to stop one
robot that the other one can continue without disruption. Most of the edges
between road nodes are one way; thus most of the time if one robot stops for
a short time, the other one can easily pass and the conflict is resolved (Figure
3.2a).

18

3.3. Algorithm description

Algorithm 3: Conflict detect algorithm

Result: Indicator whether there is conflict in current robot state is
returned. If there is conflict, it is reported which robots

conflicted.
1 forall blocked oriented nodes do
2 forall robots do
3 if robot occupy current oriented node and node was not blocked

by current robot then

4 Report conflict.

5 return true

6 end

7 end

8 forall blocked edged do

9 forall robots do

10 if robot occupy current edge and edge was not blocked by current
robot then

11 Report conflict.

12 return true

13 end

14 end

15 return false

Algorithm 4: Resolve crash algorithm

Data: Robots that crashed r; and r

Result: Resolves the actual crash between two robots.
1 operation < decide_ operation()
2 Execute operation.

|
|

|
H H |
(@) : The stop opera- *

tion will be always suc- :
cessful. (b) : Deadlock example

Figure 3.2: Examples of stop operation situations.

19

3. Proposed algorithm

Algorithm 5: Decide operation algorithm

Data: Robots that crashed r; and r9

Result: Decides operation that should be executed to resolve the
conflict.

if temporary priority of r1 > temporary priority of ro then

Thigh_priority < T1
Tlow_priority < T2
else
Thigh_priority < T2
Tlow_priority < T1
end
if r1 is finished or ro is finished then
‘ return Replan_operation(rhighipriority7 rlowﬁpriom’ty)
if can_ be_ stopped then
‘ return Stop_operation(Thighiprioritya Tlowipriority)
return PUShfoperation(rhithriority7rlowﬁriority)

© 0w N O ok W N+

I
N = O

At first it is decided which robot should be stopped (line|1). The algorithm
already has a set of robots (of size 1 or 2) which can be stopped and selects
the one with lower temporary priority. Then the time is shifted back until
the 740p is occupying a node (line 2). At this node ns the robot rg, will
be stopped. The wait sequence is generated (line [3). It is a sequence of
steps__shift time steps where the robot rgy, stands still on the node n,
ending with time step with special idle flag. When this special time step is
the next step, it is checked during the state shift (Algorithm 2, line |10)) if
the edge that the robot rg,), is going to move at is not in conflict with any
other robot (if by traveling the edge, the robot does not get into conflict with
other robots). Until there is a conflict, the wait sequence is prolonged. The
generated wait sequence is then added into the path after the current state
prolonging the planned trajectory J,,,, (line 4).

stop

Algorithm 6: stop operation
Data: Robots that crashed r; and ry, robot model L
Result: Stops one of the robots and resolves conflict.
1 [Tstops rgo] < Decide which robot to stop
2 steps_shift < Shift time back until r,, is occupying a node
3 Juwait — Generate wait sequence using L.
4 Update J,_, with Jyqur

stop

B 3.3.5 Push

The push operation is based on the operation from the Push and Rotate
algorithm with the same name. The original push operation is used for the
movement of the agents even when there is no conflict (Subsection [2.2.1). In

20

3.3. Algorithm description

this algorithm, only the part of the operation that is invoked when the next
node is occupied by an agent is considered, because it is used for resolving
conflicts and not moving the robots itself. In the original algorithm, when the
other agents are pushed away, they are always moved only by one node; thus
the operation can be executed several times for a single robot if the robots
have a conflict on a long isthmus. The red arrows in Figure [3.3a/ show the
operation had to be carried consecutively twice in order to let the agent aq
trough. This version of the operation moves the agents arbitrarily far, when
moving on an isthmus or when the closest nodes cannot be used for example
if they are occupied by finished robots (Figure 3.4)).

(a) : Original push operation. (b) : New push operation.

Figure 3.3: Comparison of the original and new push operation on simple case.

The new push (Algorithm |7) has to decide first which robot rp,s, will be
pushed away and which robot rg, will continue on its path (line 1). Due
to the properties of warehouse graph, two (non-finished) robots can always
perform this operation, because at least one robot can always be pushed. The
robot’s temporary priority is the main factor in the decision of the robot roles.
The preferred robot to be pushed is the robot with lower temporary priority,
because it is less likely that the robot was pushed recently and the robot with
higher priority has more likely longer trajectory to travel trough. In some
situations, one of the robots cannot be pushed, because the warehouse graph
can have directed edges. There are nodes with only one exiting edge from
the node and the other robot might occupy the end node of this edge (see
Figure 3.5. The operation selects the robot that can be pushed with respect
to the directed edges.

The operation needs to find the closest node that is not in the path of the
robot r4,. This search needs a lists of nodes and edges that are in a path
of the robot 74, to know which nodes cannot be selected (lines 3| and 4). It
also needs a list of nodes that the algorithm is forbidden to expand during
the search. First, the node where the robot rg, is going to wait is added to
the nodes list to prohibit robot 7, being pushed trough this node (line 5)
and all nodes with finished robots are added since it is not possible to move
them (line |6). Then the path is found (line 8) using Dijkstra’s algorithm [Sie]
modified to respect the blocked edges and nodes with forbidden expansion.
The state of the algorithm is shifted back until the robot r,,, occupies a
node (line 9) and all its future time steps are removed from it’s planned
trajectory to be later replaced with the push trajectory (line 10]).

21

3. Proposed algorithm

Figure 3.4: The robot ro cannot be pushed to the closest nodes, because those
are occupied by finished robots r3 and r4 and must be pushed

The trajectory is generated using the model of the robot and special reset
flag is added to the last generated step (line |11). The temporary priority of
a robot 7,4 is always increased by rg, (line|14)) to push other robots that
might get into conflict with the robot 7, while being pushed. This way only
a robot with really high priority would be able to push this robot back. The
priority system ensures the non-finished robot with highest priority always
moves towards its destination. When the push is finished, the robot rp,,
resets its temporary priority when the time step with reset flag is encountered
in the Algorithm 2| (line 8).

As the push of the robot 7,4, is executed on directed edges, moving back
to the original position using the same path might be impossible. Instead, the
algorithm generates trajectory from the last node of push_ path to the goal
node of rpysp (line 12) using replan (see Subsection [3.3.6)). The trajectories
are added together to form a new trajectory for the robot 7p,sp-

Figure 3.5: It is impossible to push the robot 71, because the only exiting edge
ends on a node occupied by the robot ro, which is trying to push it. The robot
ro must be pushed.

The algorithm needs to stop the robot rg, on the last visited node before
the conflict. First we need to shift the time to a state where the robot rg, is
at the node. However, the state was shifted back before thus the state must
be shifted by (steps_ shift —tpack to node), Where tpack to node i the number
of steps from robot 74, leaving the previous node before the state shift back

22

3.3. Algorithm description

(line [15)). This shift can be either forward or backwards. Similarly as in the
stop operation, the operation generates the wait sequence Jy,qi: for the robot
g0 With minimal wait of (steps_shifttpack to node) Steps to ensure that the
robot rp,sp Will get to the state of conflict. The special idle flag is added to
the last step of the wait (line [16). The operation adds Jyei sequence into
the J,.,, trajectory right after the current step (line[17) and the operation is
complete.

Algorithm 7: The push operation.
Data: Robots that crashed r; and r9, robot model L, graph G
Result: Resolves conflict with push operation.
["push, Tg0] < Decide which robot to let go and which robot to push.
thack to node <— Number of steps from when rg, left last node.
blocked_nodes < Nodes in path of 74,.
blocked__edges < Edges in path of 74,.
no__expansion_nodes <— Node where rg, waits.
no__expansion_ nodes < Nodes with finished robots.
n, < Last node that 7,,s, occupied.
push_path < Find path to closest node to n, with respect of
blocked_nodes, blocked__edges and no__expansion_nodes on graph
G.
9 [steps shift, tney| < Shift state back until rp,s, is occupying a node.
10 erush < eru.sh (jo, R 7j(tnow))‘
11 Jpusn < Generate push trajectory using push_path and L.
12 Jyeplanned < Generate trajectory from last node of push_path to goal
node of rp,s, using replan.
13 erush — erush U qush U Jreplanned‘
14 temporary priority of rp,s, < temporary priority of ry,.,+ temporary
priority of rg,.
15 Shift state by (steps_ shift — tpack to node)-
16 Jyuait < Generate wait sequence with at least
(tbackitoinode - StepsfShift)'
17 Update J;,, with Jyqit-

@ g O ok W N

B 3.3.6 Replan

The replan operation (Algorithm 8)) is used when one of the robots is finished
(Figure [3.8). The finished robots cannot be moved, thus push and stop would
not help in this case. The operation plans a new trajectory from current node
n. that the robot r, occupies to its goal node ngy, while avoiding all nodes
that the finished robots occupy. The property of graph that by removing any
storage location nodes, the graph will not become disconnected, is considered.
This property assures that there is always a path to the goal destination
if any storage location node is removed, assuming the removed node is not
the node the robot is occupying or its goal node. The graph could become

23

3. Proposed algorithm

disconnected by removing road nodes, but no robot can finish on a road node.

Figure 3.6: The both operations stop and push would fail, because the robot ry
is finished and cannot be moved. This situation require the replan operation.

At first, the algorithm identifies which of the robots is not finished (line 1)) to
select the one that needs to be replanned. This robot needs to avoid all robots
that are already finished, therefore all nodes occupied by finished robots are
added to the list nodes_to__avoid (line 2)). The solution state is shifted back
until the robot 7, is occupying a node (line [3). The operation removes the
planned trajectory of the robot r, from the current state to replace it further
with the new replanned one (line [6). Similarly as in Subsection 3.3.1} the
algorithm calculates the shortest path from the currently occupied node n.
to the goal node n, using A* algorithm (line 7). However all the nodes in the
nodes_to__avoid list are removed from the graph. From the calculated path,
the operation generates trajectory for the robot r, describing its movement
from node n. to its goal node n, (line 8). This trajectory is then added to
the planned trajectory J,, (line|9).

The replan operation removed part of the planned trajectory and replaced
it with a new one. If the robot r, was preforming the push operation, the
special reset flag for resetting the priority would be deleted. To avoid this
loss, the algorithm resets the priority (line [10), because the change of the
trajectory causes the robot is no longer performing the push operation.

The push operation uses the replan operation as described in Subsection
3.3.5/ to replan a path of a robot after being pushed. The main difference
is that the operation is not supposed to solve conflict, but only generate a
new trajectory. To fit the description of Algorithm [8, one can simply assume
that rp,sn = r1 = 2. The algorithm still benefits from the avoidance of the
finished robots saving future replan operation calls.

24

3.4. Algorithm properties

Algorithm 8: replan operation

Data: Robots that crashed r; and r9, robot model L, graph G

Result: Replan the trajectory J,, of the non-finished robot 7.

ry < The robot (r; or rg) that is not finished.

nodes__to__avoid < Nodes occupied by all finished robots.

thow < Shift state back until r, is occupying a node.

n. < Node occupied by 7.

ng < Goal node of 7.

JTz A JTz (j0> s 7j(tnow))'

P < Calculate the shortest path from n. to n, avoiding nodes in
nodes__to__avoid.

Jreplan < Generate trajectory using path P and the robot model L.
9 JTz A JTz U Jreplan

10 temporary priority of r, < main priority of r.

N O A W=

(0]

B 34 Algorithm properties

The algorithm has several properties that are discussed in this section. First
there are some limitations given the assumed graph structure and goal nodes.
Also there are several advantages pointed out in comparison with standard
graph algorithms.

B 3.4.1 Algorithm limitations

Limitations of the proposed algorithm are caused by simplifications of the
Push and Rotate algorithm and specialization on the real environment. We
have the assumptions to the graph properties and possible goal nodes for the
robots. The directed graph must be connected and biconnected at nodes which
robots are allowed to have their goal nodes with exception of maintenance
nodes. The other nodes do not need to be biconnected.

Another limitation is the maximal number of robots. In theory, the number
of robots that should be able to navigate is same as in the Push and Rotate
algorithm, therefore n — 1 where n is the number of robots. However in the
proposed algorithm the finished robots cannot be moved which requires the
warehouse-like graph structure with road nodes surrounding storage location
nodes. Also, no robots can finish on the road nodes. The maximum number
of robots on the graph is n — n,, where n,. is the number of road nodes. In
Figure [3.7al, there is an example of small warehouse graph with 4 storage
location nodes in the center surrounded by 8 road nodes, thus only 4 robots
can navigate this 12-node graph. This can be extended by maintenance nodes
(or they can also be storage location nodes) connected to each road node
(Figure [3.7). This way the robots to nodes rate is much better, 12 robots can
navigate on 20 node graph. The width of the storage location nodes block
must be maximally 2, but the length can be arbitrary. In an ideal case, if
there would be only 1 block with a length close to infinity, the rate of robots

25

3. Proposed algorithm

to nodes would be % In the warehouse used during development and testing
of the algorithm, the rate (ignoring pick-station, isthmuses leading to and
from pick-stations and queue parts of graph) is approximately 0.52.

e O

O——
>——(

(@) : Small graph © ©
with 4 storage loca- (b) : Small graph with extended ca-
tion nodes. pacity using 4 maintenance nodes.

Figure 3.7: Small warehouse graphs.

B 3.4.2 Algorithm advantages

The calculation of trajectories for a high number of robots in a big warehouse
is computationally demanding. Also the goals for robots do not have to be
known at the same time and some might be added during the execution of the
tasks by robots. Existing approaches usually require to finish the calculation
to obtain paths. The proposed algorithm solves both of these issues.

The algorithm moves the state forward in time and only when any conflict
occurs it moves the state back in time. For one operation, the time the
state is moved back is the maximal time of the conflicted robots moving
from last node on the edge. However if the operation causes another conflict
before the operation is finished (for example stopping one robot causes a new
conflict with another robot), the state could be moved back again. The shift
back is not limited and it could be shifted arbitrarily far, but moving back
significantly is highly improbable. The algorithm can start running, buffering
the solution for some time and then the robots can start moving in real time
with low risk of the solution state moving behind the state of the warehouse.
Of course an implementation of safety halt of the system when the state
of the robots get close to the state of the solution should be implemented.
The buffering time must be decided by numerous simulations on a planned
warehouse graph with given number of robots. The computational power that
is available must also be considered. Results showing how long this buffering
time must be in the case of the warehouse graph used in this thesis are shown
in Section /4l

The algorithm allows for tasks being added during the calculation. The
state of the solution must be moved back to the time when the new robot

26

3.5. Algorithm implementation

is supposed to start moving and the robot is simply added with its shortest
path to its destination. It might cause new conflicts in previously calculated
trajectories, but for conflicts that it does not affect, there is no need for
recalculation, while the trajectories of these robots are already collision-free.
One issue that might occur is that due to the impact of the newly added
robot, some robots will perform operations that are no longer needed. For
example the newly added robot r; affects another robot ry that in previous
calculation would get into conflict with the robot r3. In previous iteration, the
robot ro pushed the robot r3 and this trajectory was added to its trajectory.
In the next iteration the robot r; stops the robot ro and it will not get into
conflict with the 73, but while the robot r3 has the trajectory of the operation
already calculated it will still perform it. This might lead to a unnecessary
movements and delays.

B 35 Algorithm implementation

The implementation aims to prove the usability of this proposed algorithm. It
allows two types of robots (with and without the rack) to move from arbitrary
position to a storage location or a maintenance node.

B 3.5.1 Support applications

The visualization of the solution is important to understand what is actually
happening and how the robots are moving. To accomplish this a GUI
application had to be developed. I have started working on the basic GUI
that is able to load the warehouse maps from xml files. This project was
taken over and has grown into three separate applications: FleetManager,
CarryFleetSimulator and FleetManagerTerminal. FleetManager simulates
the warehouse manager software. The application allows to load the map
and the solution from algorithm generated as a list of operations for a list of
robots. These messages are sent to the CarryFleetSimulator that simulates
the movement of the robots. The state of the warehouse is displayed in
FleetManagerTerminal, which is basically the GUI I have developed.

Currently this simulation software is bypassed to only display the calculated
trajectories, because of the current incompatibility of its simulator with the
proposed trajectory planner. In future this planner is supposed to be running
in parallel with these applications to calculate the trajectories and recalculate
them when new tasks for robots are given by the FleetManager.

27

3. Proposed algorithm

[} Warehouse simulation

i et i P 7
Al i ;
-

[/

<3
: :
. -ﬂ ! i—%

Figure 3.8: The FleetManagerTerminal window.

-*LF_?
+

B 3.5.2 Programming language and tools

The algorithm and the support applications are written in C4++. The al-
gorithm was developed in Linux Mint operating system using CodeLite
application to write the source code and CMake to grenerate Makefiles. Com-
patibility with OSX was added later and the development was done in Xcode
to benefit from its debugging capabilities.

For the GUI in FleetManagerTerminal, the SFML [Gom| and SFGUI
[ea] libraries were used. To load the map in the FleetManager and in the
implemented algorithm the libxml2 library [Vei] is used to process the map
files which were created in xml file format. For A* algorithm the boost [Bee]
library is used as very fast and reliable implementation.

B 3.5.3 Arena representation

The warehouse graph is represented as a pair of two vectors. One vector
contains all nodes with all needed information (Table [3.1). The second vector
contains edges of the graphs (Table . The Arena contains the warehouse
graph, description of tasks and references to the algorithms used during the
solution (A* and dijkstra algorithms).

B 3.5.4 Generated trajectories representation

Each robot has its trajectory which is represented as a list of nodes (in the
sense of a list node, not a graph node). These nodes contain full state of the
robot, reference to the previous node and next node, but also the first and
last node of a segment. The segment is a part which starts with the first list
node when the robot occupies a given graph node, contains the rotation at
the graph node or time the robot is idle at the graph node and the movement
on the next edge. The last list node of a segment is always the last list node
before the robot occupies the next graph node.

The list object has implemented methods for removing any node and adding
nodes or full parts of the trajectory between arbitrary nodes. It also has a

28

3.5. Algorithm implementation

function used in push and replan operations to remove all nodes after certain
node.

B 3.5.5 Robot model

The robot model that is implemented is very simple. One of the main
simplifications is that it allows instantaneous change of velocity, allowing
the robots to accelerate to maximal velocity and stop immediately. The
model allows to generate trajectory from a given path, rotating robots on the
spot, moving on straight and elliptic edges. The simplicity of the model is
important for the trajectory modification to be implemented. For example to
stop a robot, the trajectory to the node at which it will be stopped would
have to be modified. The instantaneous change of velocity allows to avoid
this complexity and simplify the implementation of the prototype algorithm.

B 3.5.6 Conflicts

The conflicts definition is one of the most essential parts that needs to be
defined correctly for the algorithm to work well. As mentioned in Section [3.1]
all edges and oriented nodes have a list of their conflicts with other edges
and oriented nodes. The definitions for simple grid-like parts of the graph
are simple.

(a) : Conflicts definition for (b) : Conflicts definition for

the oriented node the robot r the edge the robot r occu-
occupies. pies.

Figure 3.9: Simple conflict definitions.

In Figure|3.9althe robot r occupies the 0-degree oriented node. The conflicts
defined for it are other oriented nodes for 90, 180 and 270 degrees of the
same node at which it stands and all the exiting and entering edges of the
node. It is important that the other nodes around are not considered to be in
conflict for other robots to freely move, mainly then solving an conflict. All
of the operations move robots back to nodes to ensure they are not in conflict
after the operation is competed. Figure [3.9b| shows the conflict definition for
robots traveling on edges. There are considerably more conflicts than when a

29

3. Proposed algorithm

robot is occupying a node. The start and end nodes of the edge and all their
entering and exiting edges are in conflict while the robot could physically
collide with any robots traveling on such edges or standing at such nodes.

(a) : Conflicts definition for (b) : Conflicts definition for

the node the robot r occu- the edge the robot r occu-
pies. pies.

Figure 3.10: Complex conflict definitions.

The conflict definition gets more complicated at more complex parts of
the graph. In the center of the graph used during the development of this
algorithm there are junctions with many elliptical edges that cross each other.
The robot r in Figure [3.10aj occupies the node in the center. In this case
the situation is similar as in Figure 3.9al having all the edges entering and
exiting the node in the conflict. But when the robot enters an edge in this
part, especially one of the elliptical edges, the definition of conflicts gets very
complicated. The situation can be seen in Figure [3.10bl Not only edges
entering and exiting the start and end node, but also edges crossing these
edges and nodes that are close to the curved edge must be considered to
ensure space for the robot to move without collision, in particular for the
robots carrying the racks. These conflicts are very complicated and there is
no simple way to automate their definition, thus must be chosen by hand.

The used warehouse graph has these definition already set up and they are
loaded during the loading of the map from the provided xml file.

B 3.5.7 Implementation difficulties

The implementation brought several challenges that made it very difficult.
The algorithm is very sensitive for any mistakes in the code that leads to
crash or a unsolvable situations that cycles the solution. Most of the bugs
were fixed but one major issue remains unsolved. The map that was provided
has its conflicts defined in its xml file, but some of the conflicts are too strict
and do not allow for the algorithm to function. When robots are in conflict
at least one of them is moved back to a node, but sometimes the node has
defined conflicts in a way that it is impossible for the other robot to move
without causing a new conflict. Most of these problematic conflicts do not
make sense, while the other robot would not physically hinder it. There are
some conflicts that are helping to overcome crash when the robots are rotated

30

3.5. Algorithm implementation

is a specific direction while carrying a rack, but the algorithm is not designed
for such case. The solution for this issue is to put more space between the
nodes to make those conflicts obsolete. These issues were found later in
development and to allow the algorithm to work, some conflicts are ignored.
It may still happen that there conflicts that cannot be solved are created. To
improve the functionality, new conflict generator must be developed, or the
conflicts must be cautiously defined by hand.

31

32

Chapter 4

Experiments

The goal of the experiments is to assess the usability of the proposed algorithm
in practice. The experiments were performed on Linux Mint on a computer
with the Intel i7-4771 processor and 8GB RAM. The computer is an older
one, thus it is supposed that one with more modern CPU would perform
significantly better. While most of the late development was done on macOS,
a lot of testing was also done on MacBook Air (early 2014) which performed
equally and sometimes even faster than the PC setup.

During the experiments, the warchouse map displayed in Figure |6.1] was
used. I have created a task for 50 robots with various distances from the
start node to the goal node. There are 22 robots that carry racks and 28
robots without the rack. Only maintenance nodes and storage location nodes
were used as start and goal positions for the robots. During the experiments,
the algorithm was executed with 2 to 50 robots to study the influence of the
growing number of robots to the performance.

B 41 Execution delay

One of the main advantages of the algorithm is discussed in Subsection [3.4.2]
The algorithm moves forward in time and the calculated trajectories can be
performed before the algorithm finishes. The algorithm can move back in
time, thus the risk of the execution being prior to the calculation must be
addressed.

The algorithm was executed with 50 robots and the time of the solution
state was compared to real-time. In Figure 4.1 one can see that the difference
between state time and real-time grows (logarithmic scale was used for an
easier visual comparison), thus it is highly unlikely that the lines ever cross.
In this case, the buffering time can be very small, thus the robots can start
moving towards their goals instantly.

The more difficult the problem is (bigger warehouse, more robots), the
higher is the risk of the execution catching up to the algorithm. This can be
overcome with more computational resources and reasonable buffering time.
One can also assume that not all robots will move at the same time. Some
robots might be charging at the maintenance stations while others might be
waiting in queue for the pick station.

33

4. Experiments

time [ms]

m——— State time
s Real-time

10° ' ' ' '
0 1000 2000 3000 4000

Algorithm iterations [-]

Figure 4.1: Comparison of real-time during the state time of the algorithm
during the calculation.

. 4.2 Two approaches comparison

The ability of the algorithm to add robots to the plan during the calculation
was discussed in Subsection [3.4.2l The extreme case of adding robots one by
one to the beginning of the solution was tested to assess the impact on the
results. The algorithm always calculates the complete solution. Then another
robot is added, while the other robots keep their original trajectories. This
approach is named sequential, while the approach of calculating all n robots
at once is named standard. Several indicators, for example the run-time and
solution time impact, are compared to the standard approach which calculates
all robots at the same time.

B 4.2.1 Number of conflicts comparison

The number of conflicts for each amount of robots from 2 to 50 was recorded
using a standard approach and then the sequential approach was tested. The
conflicts from each run accumulated to be comparable. Figure 4.2, one can see
that the cumulative sum of conflicts for the sequential approach is comparable
with the standard approach for the amount of robots ranging from 2 to 39.
This shows that the newly added robots in this task only cause few new
conflicts with comparison with the full calculation.

34

4.2. Two approaches comparison

150 - - . ;
— = Standard approach
‘;‘ m—— Sequential approach
2 100 |
c
o
o
©
8 50 ¢
£
S
Pz

O 1 1 1

10 20 30 40 50
Number of robots [-]

Figure 4.2: Comparison of the number of conflicts between the sequential
approach and the standard approach.

With the growing number of robots, the probability of long parts of the
trajectories of robots being replanned and changed completely due to the
addition of new robots is growing, thus the conflicts that have been solved
previously might be thrown away with the trajectory and thus new conflicts
must be calculated. The shape of the curves can vary highly according to
the current tasks and situations. The order of the robots in which they are
being added also plays a significant role. In this case the robots were added
for standard approach ranging from 2 to 50 robots in the same order as they
were added during the sequential approach. This result also confirms the
expected property that the number of conflicts grows exponentially with the
number of robots.

B 4.2.2 Calculation time comparison

Perhaps the most significant impact of the standard approach is on the solution
time. Running the algorithm multiple times trough the whole plan demands
significantly more computational resources. In each run less resources are
needed due to the fact that most conflicts were already solved. However the
cumulative value of calculation time for the sequential approach is always
significantly higher as seen in Figure (a logarithmic scale is used for better
visualization). In less extreme cases, adding a task during the calculation will
still cause a delay, however, this is not as significant than the recalculation of
the whole solution.

35

4. Experiments

106
_ 104}
%)
£
o)
£
102 |
= Standard approach
= Sequential approach
100 1 1 1 1

10 20 30 40 50
Number of robots [-]

Figure 4.3: Comparison of the calculation time between the sequential approach
and the standard approach.

For example, 40 robots start moving at the same time and the algorithm
gets far in front of the real execution. After a few seconds, when the algorithm
is almost finished, a task for a robot is added 2 seconds in advance to the
real execution. The algorithm will go back and use the already calculated
trajectories, thus only newly caused conflicts need to be calculated again.
Once more the algorithm gets again far in front of the execution and it
continues without any issue. Some extreme cases might occur, thus it is very
important to cautiously choose the optimal time reserve when adding a task
for a robot.

14000

12000

10000

time [ms]
(@)
o
o
o

6000 |

4000

2000

0 1 1 1
10 20 30 40 50

Number of robots [-]

Figure 4.4: Calculation time of adding one robot to the solution.

36

4.2. Two approaches comparison

Figure [4.4) shows the calculation time of adding one robot for a range of 2
to 50 robots. The calculation time grows significantly with the number of
robots added, however the main influence is the length of the total solution
time, given by the robot with longest trajectories. This can be seen when
comparing the calculation time on Figure with the solution time on Figure
The sudden growth of the solution time cause steeper growth of the
calculation time. In the real world usage, the robots do not have to wait for
the calculation to finish to start execution, not even to add a new task for a
robot. The state of the robots can be immediately shifted back to a desired
time of start of the new robot and the calculation continues from this point.
In case of adding robots in a very short periods (for example 1 robot each
100 ms), the calculation time would be closer to the calculation time of the
standard approach.

B 4.2.3 Solution time comparison

In this part I compare the solution time for 2 to 50 robots for both approaches.
The solution time is the time it takes for all robots to reach their goal nodes
from the beginning of the execution to the end of the execution. The curves in
Figure [4.5/ show that the solution time is almost identical for both approaches.
This is due to the fact that the solution time is highly influenced by the
robot with the longest path. This will most probably be a robot with a
rack, because these robots cannot move trough the storage-location nodes.
They can only move on the road nodes that are most often connected with
directed edges. This may mean that the robot will have to travel on a long
trajectory. This issue could be shorten simply by adding undirected edges
into the warehouse, however that would lead into more conflicts in parts of
the warehouse where avoidance of the robots with rack would be difficult.

5 T T T
T4 |
£,
o 3 i
£
S2¢ '
5
(?J 1L = Standard approach |

= Sequential approach
0 : ' ' '

10 20 30 40 50
Number of robots [-]

Figure 4.5: Comparison of the solution time between the sequential approach
and the standard approach.

37

4. Experiments

When the number of robots exceeds 31, one can see that the robot with
the longest trajectory is being affected differently by the two approaches. In
conclusion, the effect of the sequential approach on the solution time is not
significant.

B 243 cCalculated trajectory length

One of the concerns of the multi-agent path-finding task is the optimality
of the solution. To obtain an optimal solution for example when using the
A* algorithm, would take an unfeasible amount of time or computational
resources. Instead, the optimal trajectories for respective robots were calcu-
lated using the A* algorithm. Each trajectory is optimal to the respective
robot, however the trajectories are not mutually collision-free. This approach
is used as a the lowest threshold for the length of the trajectories. The sum
of their steps in their trajectories is used. In Figure 4.6, the sum of all robot
trajectory steps for an lowest threshold and conflict-free trajectory is shown.
Similarly to the previous experiments, the difference starts to be significant
in the 30 and more robots range and it diverges fast.

x10%

(6]

= | owest threshold trajectory
Calculated trajectory

N

w

N

10 20 30 40 50
Number of robots [-]

Sum of all robots trajectory steps [-]

o

Figure 4.6: Comparison of the sum of the lengths of the lowest threshold
trajectories and the conflict-free trajectories.

In Figure 4.7}, the difference of trajectory lengths is shown as a growth in
percentage. This represents the effect of the operations on the trajectories
with an increasing number of robots. There are no conflicts between the
first 6 robots, thus their cumulative trajectory length is the same as for the
lowest threshold trajectories. The cumulative trajectory length grows with
the increasing number of conflicts. The figure is highly correlated with Figure
which represents the number of the conflicts with increasing number of
the robots. The results from this experiment and the others suggest that the
optimal number of robots for the warehouse of this size is between 30 to 40.

38

4.3. Calculated trajectory length

We suppose that 4 robots will always be charging at maintenance nodes and
that the average time spent by picking things by the human worker from the
rack is 15 seconds. This means that we are left with 36 robots, thus we have
18 robots for each pick-station. That allows each robot to have 270 seconds
or 4.5 minutes to pick up a rack and bring it back to the pick-station. The
solution times shown in Figure 4.5| suggest that the longest trajectory for 40
robots is about 5 minutes. This represents the worst case scenario.

25
20 r
5
C15_
ie
)
S 10}
=
L
5_
O 1 1 1 1

10 20 30 40 50
Number of robots [-]

Figure 4.7: Extension of the sum of the lengths of the trajectories compared to
the sum of the lengths of the lowest threshold trajectories.

39

40

Chapter 5

Conclusion

The goal of this thesis was to design a trajectory planning algorithm for
a large number of robots navigating trough a warehouse. The use of such
algorithm has a high potential as we are now at the beginning of the 4th
industrial revolution and the adoption of automated warehouses is growing.
Such solutions are being developed and used by major companies such as
Amazon, but the spread of such technology in smaller companies did not
yet reach high levels. The goal of this algorithm is to overcome challenges
that come with real environment usage which differs highly from common
multi-agent path-finding algorithms. These do not consider different velocities
of robots, various distances of the nodes in the warehouse graph, and the
delay of the robots which is caused by their on place rotation.

Several multi-agent path-finding algorithms had to be studied to gain the
necessary knowledge. I have studied the Push and Rotate algorithm in detail.
This algorithm was implemented in my colleague’s thesis [LukI6].

The designed algorithm is overcoming all of the above-mentioned challenges.
It allows a continuous movement of the robots on their trajectories instead of a
discrete movement between nodes. It also takes into consideration the rotation
of the robots and their different velocities. One of the main achievements
is that all the robots can move together which was not possible with the
Push and Rotate algorithm. This is achieved by an implemented system of
priorities that assures that the robot with the longest trajectory always moves
towards its final destination. Whenever the robots are involved in a push
operation, the accumulation of priorities overcomes problems with deadlocks.
The computational time for the solution that has to be calculated before the
result can be executed was another challenge. The algorithm solves this issue
inherently by taking the shortest trajectories to destinations. The trajectories
are only modified during the calculation. Thus if the algorithm is faster than
real-time, the solution can be executed before the calculation is finished. This
also allows to add robots during the calculation.

Several experiments to show the properties of the algorithm were executed.
These experiments present the usability of the algorithm in a real warehouse.
Thanks to the solution being generated before the calculation is finished,
robots can execute movement without waiting or with a buffer defined delay.
Then the influence of adding robots one by one is studied to gain insight of

41

5. Conclusion

the performance in the case of tasks being added during the calculation. The
influence on the final computational resources in extreme cases is significant.
It also shows that adding one new robot does not necessarily mean that many
new conflicts will be generated and that it is much faster than it would have
been if all the trajectories had to be calculated from the beginning. Finally,
the calculated trajectories were compared to the lowest threshold trajectories
showing that for up to 50 robots in a smaller warehouse, the trajectories
will prolong less than 25%. However, this result is highly dependent on the
number of conflicts generated by the given task.

The implementation at its current state aims to prove the functionality.
Nevertheless there is still room for improvements and some steps must be done
for a full implementation in the a automated warehouse. From the functional
point of view, the conflict definition must be redone to fit the specifications
of the space needed between the robots. An automated algorithm to generate
this might be proposed, but for a real-world usage in a warehouse with
complicated edges I would rather suggest a manual identification by an expert
who understands the space and algorithm limitations related to the conflicts.

Another thing that might be improved is the complexity of the robot
model. An extension to better represent the dynamics of the robots could be
developed. This improvement would require a reworking of the operations
that modify the trajectories. For example if the robot needs to be stopped
on a node, the preceding trajectory must be modified to stop it on its spot.

Continuous usage and queue parts of the graphs must be implemented for
usage in a real warehouse. The continuous usage should allow the warehouse
manager and assign tasks to the robots. The algorithm can simply calculate
or wait for new tasks. The parts of trajectories that were already executed
by the robots might be deleted to reduce memory usage. The sections of the
graph around pick-stations should be managed separately to sort incoming
robots into a correct order for a pick-station.

42

Chapter 6
Appendix

. 6.1 CD content

’ File/Folder ‘ Content

TomasNovakThesis.pdf | electronic version of this thesis
parallelpush | the C+4 implementation of the proposed algorithm
readme.md | instructions for calculation and replay of tasks
maps | contains the warehouse map
tasks | contains several task files
experiments | video and data recorded during experiments
safelog fleet management_ system | GUI for trajectories replay

43

6. Appendix

B 6.2 Figures

SRR e AR
ity ity (it ity il
(oY e Ve Yo Ve V))
yinnr R i L

Figure 6.1: Map of a real warehouse.

44

6.2. Figures

L4 L 4 L4 4 | L 4 L4 4 | L
== = == = = == = T
L4 L4 J L & | L4 4 L4 J L & | L4 4 L4
== o == = o == = T
L4 L4 J L & | L4 4 L4 J L & | L4 4 L4
== o == = o == = T
5 2 8 3 2 g 2 8 3
kil 3 3 kil kil il 3 il I
L4 L4 J L & | L4 4 L4 J L & | L4 4 L4
== o == = o == = T
L4 L4 J L & | L4 4 L4 J L & | L4 4 L4
== o == = o == = T
L4 L4 J L & | L4 4 L4 J L & | L4 4 L4
== o == = o == = T
L4 L4 J L & | L4 4 L4 J L & | L4 4 L4
== o == = o == = T
[§ g 8 5 8 8 H
L4 L4 J L & | L4 4 L4 J L & | L4 4 L4
== = == = o == = T
5 B g 3 g g g g
L4 L4 J L & | L4 4 L4 J L & | L4 4 L4
== o == = = == = T
H H g H H] H] g g
L4 L4 J L & | Y W S W— L4 J L & | Y W S W— L4
2 o) = A o g 2 ® 5 A 3 2 N w

Figure 6.2: Cutout from the map of a real warehouse.

45

46

Bibliography

[Bee]

[CR]

[AWtMW14]

[eal

[Gom]

[HSS84]

[KMS84]

ILB11]

[Luk16]

Kristopher Beevers, Boost graph library: A* heuristic
search - 1.64.0, http://www.boost.org/doc/1libs/1_64_0/
[libs/graph/doc/astar_search.html, Accessed: May 9, 2017.

TA CR, TACR - Vladimir Marik: Ceskd republika miZe na
Industry 4.0 hodné vydélat, https://goo.gl/85ySQY, Accessed:
May 3, 2017.

Boris de Wilde, Adriaan ter Mors, and Cees Witteveen, Push
and Rotate: a complete multi-agent pathfinding algorithm., J.
Artif. Intell. Res. (JAIR) 51 (2014), 443-492.

Stefan Schindler et al., Github - TankOs/SFGUI: Simple and
fast graphical user interface, https://github.com/Tank0s/

Accessed: May 9, 2017.

Laurent Gomila, SFML, https://www.sfml-dev.org/index|
Accessed: May 19, 2017.

J.E. Hopcroft, J.T. Schwartz, and M. Sharir, On the complexity
of motion planning for multiple independent objects; PSPACE-

hardness of the "warehouseman’s problem”, The International
Journal of Robotics Research 3 (1984), no. 4, 76-88.

D. Kornhauser, G. Miller, and P. Spirakis, Coordinating pebble
motion on graphs, the diameter of permutation groups, and ap-
plications, 25th Annual Symposium onFoundations of Computer
Science, 1984., Oct 1984, pp. 241-250.

Ryan Luna and Kostas E. Bekris, Push and Swap: Fast cooper-
ative path-finding with completeness guarantees, Proceedings of
the Twenty-Second International Joint Conference on Artificial
Intelligence - Volume Volume One, IJCAT'11, AAAT Press, 2011,
pp- 294-300.

Ing. Jakub Lukes, Cooperative path planning for big teams of
robots, Ph.D. thesis, Czech Technical University in Prague,
2016.

47

http://www.boost.org/doc/libs/1_64_0/libs/graph/doc/astar_search.html
http://www.boost.org/doc/libs/1_64_0/libs/graph/doc/astar_search.html
https://goo.gl/85ySQY
https://github.com/TankOs/SFGUI
https://github.com/TankOs/SFGUI
https://www.sfml-dev.org/index.php
https://www.sfml-dev.org/index.php

Bibliography

[saf]

[Sie]

[SSH13]

[tM11]

[Vei]

SafeLog — safe human-robot interaction in logistic applications
for highly flexible warehouses, http://safelog-project.eu/,
Accessed: January 8, 2018.

Jeremy Siek, Dijkstra’s shortest paths, http://www.boost.org/
doc/libs/1_60_0/1libs/graph/doc/dijkstra_shortest_
paths.html, Accessed: December 26, 2017.

Kiril Solovey, Oren Salzman, and Dan Halperin, Finding a
needle in an exponential haystack: Discrete RRT for exploration
of implicit roadmaps in multi-robot motion planning, CoRR
abs/1305.2889 (2013).

A. W. ter Mors, Conflict-free route planning in dynamic environ-
ments, 2011 IEEE/RSJ International Conference on Intelligent
Robots and Systems, Sept 2011, pp. 2166-2171.

Daniel Veillard, The XML C parser and toolkit of Gnome,
http://xmlsoft.org/, Accessed: January 2, 2018.

48

http://safelog-project.eu/
http://www.boost.org/doc/libs/1_60_0/libs/graph/doc/dijkstra_shortest_paths.html
http://www.boost.org/doc/libs/1_60_0/libs/graph/doc/dijkstra_shortest_paths.html
http://www.boost.org/doc/libs/1_60_0/libs/graph/doc/dijkstra_shortest_paths.html
http://xmlsoft.org/

	Introduction
	Problem background
	Problem description
	Multi-agent path-planning problem
	Addressed problem

	Existing approaches
	Push and Rotate

	Proposed algorithm
	Basic definitions
	Warehouse problem requirements
	Non-constant time of movement between nodes
	Node/edge conflicts, mainly at spline edges and complicated junctions
	Parallel movement of robots
	Simplifications
	Runtime requirements

	Algorithm description
	Single robot path planning phase
	Initial trajectory generation phase
	Robot maneuvering phase
	Stop
	Push
	Replan

	Algorithm properties
	Algorithm limitations
	Algorithm advantages

	Algorithm implementation
	Support applications
	Programming language and tools
	Arena representation
	Generated trajectories representation
	Robot model
	Conflicts
	Implementation difficulties

	Experiments
	Execution delay
	Two approaches comparison
	Number of conflicts comparison
	Calculation time comparison
	Solution time comparison

	Calculated trajectory length

	Conclusion
	Appendix
	CD content
	Figures

	Bibliography

