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Abstract

Until recent years photography was about two-dimensional image; however, recently there is a
rise of technologies capturing, processing and reproducing more dimensional visual data. Light
field camera is a device, which can sample light field and not only the 2D representation of
the scene. This thesis describes plenoptic (light field) camera principles and mainly focuses on
processing and compression of light field data.

Current state-of-the-art and ad hoc encoders for light field data compression are described.
Objective and subjective quality assessment methods for light field data processing evaluation
are discussed.

Implemented interface for light field data compression allows to apply and analyse compres-
sion schemes with various pre-processing steps and adjusted compression settings. Performance
of implemented compression schemes is evaluated using objective metrics for image quality as-
sessment.

There is no existing standard nor recommendation for light field data compression and quality
evaluation. Existing state-of-the-art video codecs with adjusted setting and pre-processed light
field data can efficiently compress such data; however, further research still needs to be done to
develop standardized compression of multi-dimensional image data.

Keywords: Plenoptic data, light field, image data, compression, Lytro.
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Abstrakt

Až donedávna fotografie představovala pouze dvourozměrný sńımek, ale v posledńıch letech
docháźı k vzestupu technologíı, které zachycuj́ı, zpracovávaj́ı a zobrazuj́ı v́ıcerozměrná obrazová
data. Plenoptická kamera je zař́ızeńı, které umožňuje vzorkovat světelné pole na rozd́ıl od
klasické 2D reprezentace dané scény. Tato diplomová práce popisuje principy plenoptické kamery
(kamery světelného pole) a zaměřuje se předevš́ım na zpracováńı a kompresi plenoptických dat.

Práce popoisuje nejmoderněǰśı technologie a ad hoc řešeńı pro kompresi světelných dat. Dále
jsou popsány objektivńı a subjektivńı metriky pro hodnoceńı kvality algoritmů zpracovávaj́ıćıch
světelná data.

Implementované rozhrańı pro kompresi plenoptických dat umožňuje předzpracováńı dat,
aplikaci a analýzu kompresńıch algoritmů s r̊uzným nastaveńım. Výkon implementovaných
kompresńıch algoritmů je zhodnocen použit́ım objektivńıch metrik pro hodnoceńı kvality obrazu.

V současné době neexistuje standard nebo doporučeńı pro kompresi a hodnoceńı kvality
plenoptických dat. Úpravou stávaj́ıćıch video kodek̊u lze efektivně komprimovat předzpracovaná
světelná data, ale aby byl vyvinut standardizovaný kompresńı algoritmus v́ıcedimenzionálńıch
obrazových dat, je třeba aby výzkum pokračoval.

Kĺıčová slova: Plenoptická data, světelné pole, obrazová data, komprese, Lytro.
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Chapter 1

Introduction

In today’s world, the imaging technology moves forward faster than ever. Imaging technology

industry grows rapidly as there is an increasing demand for capturing the moments in more

realistic ways. From the very beginning till now, the progress in photography was being made

by filling up the missing information in captured data. Analog black and white photography

was replaced by colour photography and now the possibility of taking tens of frames in one

second adds the time information about the captured scene. In traditional photography, light

passes through the optical lens of the camera onto the imaging sensor. Each pixel on imaging

sensor represents an angular integration of incident light at this position. Three pixels with

three different adjacent colour filters give the colour information at this position; however, with

this one image the depth information of the scene cannot be measured. What is obtained is just

a 2D representation of the 3D scene and our brain and experience are what makes us able to

determine the distance between the objects in this 2D representation.

Light field camera can be seen as another step which allows to record the scene information

enriched of angular dimension. One of the possible implementation is placing an array of mi-

croscopic lenses in front of the imaging sensor, light rays are demultiplexed and fall to different

cells on the imaging sensor. This way certain angular information is preserved in terms of differ-

ent viewpoints even though only one scene in one exposition is captured. Light field capturing

technology offers new capabilities in fields such as depth estimation, post-refocus, segmentation

etc. This dimension-enriched data are also more demanding on data processing, compression

and representation.

This thesis first brings a quick explanation of light field and light field data acquisition in

chapters 2 and 3. The main focus is on the plenoptic (light field) camera, which allows to

record angular information of the scene. In the fourth chapter current market light field data

technology is summarized. The fifth chapter brings an overview of available software tools for

Lytro cameras. Chapter 6 analyses Lytro photography and shows different ways how light field

data can be represented, used and processed and explains needed terminology for next chapters.

1



2 CHAPTER 1. INTRODUCTION

Compression of light field data captured by a plenoptic camera, is summarized in the chapter

seven, where several state-of-the-art compression algorithms and novel ad hoc solutions are

described. Next chapter tells about objective and subjective quality assessment of digital image

and light field data.

Chapter 9 is dedicated to the practical implementation of this thesis, where Graphical User

Interface (GUI) of implemented compression tool is explained along with all its functions and

possibilities. Performance analysis of used compression schemes is described in chapter 10.



Chapter 2

Photography and Light Field

Physical properties in photography can be interpreted by simple approaches as geometrical

optics (image formation), diffraction (resolution), polarization and photoelectric effect which is

based on more complex theories [1]. This chapter deals with the fundamentals needed in order

to understand light field data acquisition, representation and light field data processing.

2.1 Photography

Photography is an act of recording light as electromagnetic waves into an image which can be

preserved possibly forever. In analog photography, this image is created by chemical reaction

on light-sensitive photographic film. Now, in the digital era, photography is composed of pixel

intensities measured with image sensor. This light-sensitive sensor collects all the individual

light rays passing through the lens optical system. One pixel in the final image is formed by

the sum of all the light rays that converges at this point. Nevertheless, with this camera design

most of the information about light entering the lens of the camera is lost.

Figure 2.1: Simplified diagram depicting how conventional camera works (left) and ray-space
diagram (right).

From Figure 2.1, which depicts the principle of scene recording with a single lens system, it

is clear that the pixel from image sensor records only the summation of all the incident rays at

3
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this point and therefore the information about the incident light rays angle is irretrievably lost.

This is also the crucial fact behind focus problem of conventional photography. This means that

only one focal plane can be in focus with respect to the rest of the photo.

2.2 Light Field

Light is an electromagnetic radiation within a narrow range of wavelengths from approximately

400 to 800 nm. These wavelength borders are determined by the atmosphere and maximum

solar emission [1]. Here and in photography, light usually refers to visible light, that means the

light which can be perceived by Human Visual System (HVS). Light can be described either as

a wave or as a particle. In the former case, it is described as a superposition of monochromatic

plane-waves characterized by their frequency, phase and direction of propagation [1]. In the

latter case, it is described as a photon, of a certain frequency, which carries very low energy

[1]. Particular light colour is made by one or by a mixture of several wavelengths (spectral

composition) and recording the true colour, is one of the challenges in digital photography.

Described light can be emitted by any light source, for example, sun. Sunlight (directional

rays) coming from the sun, our main light source, is filtered as it comes through the atmosphere

[1]. Filtered sunlight, which as a mixture of the spectral components, appears as white light.

Sunlight is partially absorbed and reflected by an object in the scene of our interest. These

reflected rays of certain energy, frequency composition and direction is what human visual

system measure. Light rays travel in every direction in space to create continuous light field [2].

Plenoptic function was formulated in [3], and is frequently used in literature to fully describe

the complex information about the light filling the space area. A seven-dimensional plenoptic

function can be fully described with an example of elementary pinhole camera P as can be seen

in Figure 2.2.

Figure 2.2: Pinhole diagram showing capturing the scene.
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The intensity distribution of light coming through the pinhole can be described by spherical

coordinates as direction (θ, φ) and its colour can be described by wavelength λ [4]. Now let’s

imagine that the pinhole camera is moved to every position possible in 3D space to coordinates

x, y, z, to get every possible view of the scene. The seventh dimension is a time t considering

that the scene is dynamic. Situation depicted in Figure 2.2 simplifies plenoptic function into 5D

plenoptic function, because wavelength λ and time t are missing. Seven-dimensional plenoptic

function L(θ, φ, λ, x, y, z, t) fully characterizes the scene and this characterization is in practice

significantly sampled, quantized and more especially reduced of dimensions. For example, by

taking a photo with the traditional camera 7D, plenoptic function is reduced into a flat 2D array

of intensities. Another light describing the function, called lumigraph, was introduced later in

[5]. The four-dimensional lumigraph function is a subset of more complex plenoptic function.

In the field of photography and computer graphics lumigraph function is usually mentioned

under the term light field, which in computer graphics is explained as a set of all light rays

in space [2]. Levoy et al. [6] explained that any ray from the light field can be described by

intersections of two 2D planes as two points (u, v) and (x, y) because light rays remain constant

in free transparent space. Such simplification of plenoptic function into 4D light field is shown

in Figure 2.3

Figure 2.3: Light field parametrized by two points as intersection of two 2D planes.

Later Ren Ng in [7] used light field function L(u, v, x, y) to describe the working principle

of his light field camera. First 2D plane (u, v) is at camera plane and the second plane (x, y)

is at focal plane [6]. Technology and methods are capable to obtain the additional information

about the angle of incident light rays are described in 3.

2.3 Ray-Space Diagram

The term ray-space diagram (or Cartesian ray-space diagram) used in [3], needs to be introduced

for further explanation and easier visualization of light field data acquisition. Ray-space diagram

will be probably better explained first on conventional camera as shown in Figure 2.1 (right).

In this figure, two previously mentioned planes are reduced in dimension, therefore rays are
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now described as L(u, x), instead of light field previously described as L(u, v, x, y). Let’s use

the notation of light field used in [2] and let’s call u as a directional axis because it determines

the direction from which rays fall on the image sensor. And let’s x be noted as a spatial axis,

because it holds spatial information. Now any ray (left part of Figure 2.1) can be represented

as a point with coordinates (u, x) in ray-space diagram (right part of Figure 2.1).

As was mentioned before, the classic camera does not record any information about the direction

of incoming rays as it sums energy from all rays falling onto sensor cells. In Figure 2.1 it can be

seen that all green rays are increments in summation that takes place at one sensor cell of image

sensor array. In the ray-space diagram, this is depicted as one (green) vertical bar, because rays

coming from all possible directions u (position on the lens) share the same convergence point

x (sensitive cell in image sensor array). Each bar in the ray-space diagram can be seen as one

sensitive cell in image sensor array which integrates all incident rays at this point. Previously

mentioned only apply if x plane lies in image sensor plane (or convergence point). Vertical bar

with zero slope can change into non zero positive or negative slope if convergence point of the

light rays moves in front or behind x plane respectively [2]. Note that in this case parametrization

plane x stays in position and only convergence point is moving. Moving with convergence point

of rays is what is called focusing (changing the distance between an image sensor and camera

lens). By moving the convergence point further from the camera main lens, the object which is

closer to the camera is getting into focus (focal plane moves closer to the camera). Figure 2.4

shows conversion to ray-space diagram for two different settings - in top image parametrization

plane x is in image sensor plane which corresponds to vertical bar in ray-space. In the bottom

part of Figure 2.4 sensor plane is moved further away from the camera main lens, therefore the

positive slope of vertical bar in the ray-space diagram [2].
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Figure 2.4: Light field depicted in ray-space diagram for two different situations. Figure shows
how slopes in the ray-space depend on distance between convergence point and parametrization
plane x.





Chapter 3

Light Field Acquisition

HVS allows us to distinguish the depth and distance of objects in the observed scene, because

of the brain processing the stereo information coming from our eyes (represents two different

viewpoints) [1]. This side-by-side offset gives us a stereoscopic view of the scene and our brain is

capable to recognize how far or how near the object is. One eye captures the light which comes

through the lens and falls on a retina. Depth information is created by combining sensations

from both eyes. The traditional camera can be very roughly compared to one eye of HVS

as it records the scene from only one viewpoint. The classic camera captures light intensity

and its colour, however, angular information is lost as the light-sensitive cell integrates all the

incidental rays. Brain (experience with real-life scenes) is what enables us to recognize the

depth and estimate distance in a 2D image [1]. In order to sample angular information, rays

from different directions need to be mapped to corresponding sensitive positions/areas (different

cameras/light-sensitive cells on the sensor). First and fundamental method to capture the light

field is to create an array of synchronized cameras, where each camera will record the scene

from the slightly different angle and thus will partially contribute to capturing the light field.

Synchronization, precise measurements and settings are crucial for this system to work properly.

3.1 History of Plenoptics

Barrier method can be considered as one of the first auto-stereoscopic methods (auto, in this

case, means, that observer does not need any additional optical equipment). The first applica-

tion was proposed and demonstrated in 1692 by French painter G.A. Bois-Clair, who used the

so-called parallax-barrier technique to create a 3D sensation to viewer [8]. This method uses at

least two images, sliced into stripes, which are aligned behind opaque bars in the same frequency.

Back in 1692, paintings changed as a viewer was walking around them. This method was later

applied in photography by Frederic Eugene Ives, who in 1903 patented parallax stereogram [9].

His patent used vertical plates to control which part of the image can be viewed by which eye to

create a stereoscopic sensation. Ives came up with the technique which was and still is widely

exploited in various applications as 3D postcards, trade cards, etc.

9
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First principles of capturing light field in photography are dating back to the year 1908, when

Gabriel M. Lippmann introduced the spatially multiplexed technique of light field capturing [10]

by using an array of lenses (called integral photography). The idea was to use an array of small

spherical lenses on top of the picture instead of vertical stripes. Proposed technique can be used

both for recording or displaying the image. This modification allows creating stereo sensation

not only in horizontal direction. Many others developed his idea further during following decades

- Sokolov (1911), Coffey (1935), Ivanov (1948) and Chutjian (1968) with first digital light field

recording device [2]. Some methods of light field data acquisition are described in following

sections of this chapter.

3.2 Single Lens Stereo

First and the most straightforward method of capturing spatial information is by capturing the

scene from two nearby viewpoints, therefore, acquiring two images which are shifted horizontally

or vertically from each other [4]. For simplification let’s assume the camera with the main lens

and an eccentric aperture as shown in Figure 3.1. If the subject to be captured is in focus plane,

its image is focused, but it is composed of only half of the all possible light rays [4]. Then if the

object is out of focus plane, its image is still on image sensor plane, but now its shifted, because

the aperture transmits only the rays coming through the right part of the main lens as shown

in Figure 3.1.

Figure 3.1: Single lens stereo - a) object is located in focus plane and its image is focused, but
it is composed by only half of the light rays, b) object is out of focus plane and its image is
displaced [4].

If the eccentric aperture is positioned in the left or right part, the image projected onto

sensor plane is located on the right or left respectively. This rule obeys only if the captured

object is located between the plane of focus and camera aperture plane. If the captured object is

located behind focus plane, the image projected on the sensor plane is on the left or right if the

location of the eccentric aperture is on the left or right respectively [4]. The rate and direction

of image shift from the centre of sensor plane allow one to estimate the distance of the object

[4].



3.3. CAMERA ARRAY 11

Figure 3.2: Pentax’s (left) and Samsung’s (right) stereo adapter1.

In practice, so-called stereo adapter can be encountered, which is placed before normal lens

as shown in Figure 3.2. Lens adapter consists of mirrors, which are used to direct the rays

coming through two separate holes on to the light-sensitive image sensor. This method creates

side-by-side images, which are typical for stereo image content and thus can be later easily

displayed using stereo displays.

3.3 Camera Array

Another technique, which is also principally simple and widely used to capture light field, is to use

an array of conventional cameras. One of the most mentioned applications of the camera array in

literature is Stanford’s large camera array [11]. The idea exploits the fact that image sensors are

getting cheaper and also the possibility to perform computational photography will be cheaper

and easier in future. With that in mind, an array of 100 cameras with Complementary Metal-

Oxide-Semiconductor (CMOS) sensors was constructed in order to perform various imaging

tasks [11]. The output of this array can be seen as an array of different images taken from

slightly different positions, which are moved in horizontal and/or vertical parallax from each

other. All the image data can be visualized as light field representation in 2D images after some

data processing (computational photography).

3.4 Plenoptic Camera

More elegant way to capture light field with only one exposure at a time is by using a plenoptic

camera. Word plenoptic comes from the composition of two words. First part ”plen” - comes

from the Latin plenus and it means full and the second part, ”optic” (optics) is self-explanatory.

Plenoptic camera (or another term used in literature is light field camera) is a device that

captures part of the optical structure of the light by measuring how does the scene look from all

possible perspectives at the position of the camera’s main lens [4]. There are slightly different

1Source: Ars Technica - The old school tech Samsung used to achieve single lens 3D,
URL: https:
//arstechnica.com/gadgets/2013/01/the-old-school-tech-samsung-used-to-achieve-single-lens-3d/.
Used 22/03/2017.

https://arstechnica.com/gadgets/2013/01/the-old-school-tech-samsung-used-to-achieve-single-lens-3d/
https://arstechnica.com/gadgets/2013/01/the-old-school-tech-samsung-used-to-achieve-single-lens-3d/
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Figure 3.3: Stanford’s multi-camera array [11].

designs of plenoptic cameras for which usually the terms plenoptic 1.0 and 2.0 are being used in

literature and their differences will be described later in this section.

Design of light field camera is similar to a conventional camera as the main difference is made

by placing an array of micro-lenses between the main camera lens and the light-sensitive image

sensor. An inserted array of micro-lenses is the key part, which enables the camera to get the

angular information of incident light rays [2]. This camera design provides required information

on how the captured scene looks from a certain area of potential angles defined by the camera

main lens [4]. Figure 3.4 depicts how micro-lens array is used to preserve information about

angle thanks to the additional separation of converging light rays. Each micro-lens in the lens

array covers a small array of light-sensitive image points (cells) from the whole image sensor.

Area of sensitive cells under each micro-lens records focused image of the main lens aperture [7].

Figure 3.4: Simplified diagram showing working principle of plenoptic camera.

The image sensor thus preserves the sub-images of the main lenses aperture captured by

each micro-lens. This fact, together with additional image data processing, allows revealing the

depth or distance of objects in the scene [2]. With that in mind, it is clear that light field camera

of this design needs to use an image sensor with resolution as high as possible for the purpose

of dense light rays sampling (angular resolution) while achieving high resolution of the final

image (one viewpoint) [2]. Light field camera provides the flexibility to produce photographs

focused at different focal depths. This is made by suitable choice/processing of the sub-images

thanks to the design of the camera. Ray-tracing technology is used in order to obtain the final

image of the recorded light field [2]. Basically, it is about creating the synthetic camera, which
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is configured accordingly to the user needs and then monitoring light rays to the image sensor

plane. The desired image is created by adding up all the light rays in the imaginary image plane

[2]. This technique allows to remove undesired blur (only the blur caused by moving from focal

plane) through manipulation with the convergence of light rays. Light field camera thus allows

users to first capture the scene and then focus, which is a significant difference compared to

conventional cameras. It is clear that the light field camera would not be immune to images

blurred thanks to the movement of the object in the scene or to the blur caused by movement

of the camera itself. The described technique also solves the problem of traditional cameras,

where the Depth of Field (DOF) is determined by the size of the aperture since each pixel is

focused independently by the synthetic composition [2]. Another effect of this construction is

also the possibility to create a number of images, seen from slightly different positions of the

observer, in a single exposure taken from one position. With a conventional camera, one would

have to take a series of pictures with a step that would correspond to a shift in image sensor

plane directions. Among other useful utilization of this design is the fact that single exposure

is enough to measure the horizontal and vertical parallax corresponding to the imaginary shifts

(movements) and thus get estimates for depth measurements of the objects in the captured scene

[4].

3.4.1 Plenoptic 1.0

Plenoptic camera 1.0 is based on Lippmann’s approach of integral photography [10] which was

later developed in [4]. In this design, the micro-lens array with lenses focused at infinity is

placed in the focal plane of the main camera lens and exactly one focal length from the light-

sensitive sensor [12]. Each micro-lens, instead of integrating all the incident rays, split the rays

and directs them onto sensor area under the particular micro-lens. The plenoptic camera 1.0, as

implemented by Ren Ng in [2], samples a set of light rays at a single point in space. Image data

from the light-sensitive sensor is represented in a 2D array of 2D arrays with sampled radiance,

where the position is sampled by micro-lenses and direction is sampled by cells.

Each micro-lens image is defocused with respect to the image created by the main lens and

only one pixel from each micro-lens is used to create one final image. This brings up the main

drawback of plenoptic 1.0, which is the low resolution of the final image. For angular sampling

information in 30× 30 array, 900 pixels needs to be reserved at image sensor (from which only

1 pixel is used for the final image composition)[13]. It is clear, that relatively large number of

sensor cells must be assigned to each microlens in order to achieve sufficient angular resolution,

which results in poor spatial resolution of the final image (resolution of the final image is equal

to the dimensions of microlens array). This trade-off between spatial and angular resolution is

shown in Figure 3.5.

It can be seen that spatial-angular trade-off is defined by the number of lenses in the microlens

array. A large number of pixels under micro-leas means large angular resolution, but with a fixed
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Figure 3.5: Spatio-angular trade-off - constant resolution of image sensor results in inverse
relation between spatial and angular resolution which can be achieved.

number of sensor sensitive cells, it also means low spatial resolution. A high number of small

micro-lenses is needed in order to achieve high spatial resolution. By increasing the number of

micro-lenses thus decreasing the number of pixels under each micro-lens image is getting to the

limit, where noisy results thanks to edge effects of each lens are produced [12].

Figure 3.6: Simplified model of plenoptic camera shows how micro-lens array directs rays onto
image sensor. a) depicts plenoptic camera 1.0 with micro-lens array placed in image plane and
b) depicts plenoptic camera 2.0 with micro-lens array placed in distance n behind image plane.

3.4.2 Plenoptic 2.0

Plenoptic 2.0 design, in literature also often called ”Focused Plenoptic” design, is another ap-

proach to sampling light field. Lumsdaine and Georgiev in [12] solved the major issue of plenoptic

1.0 by reducing the angular resolution in order to gain more spatial resolution. The principal

main difference is in the relative position of the micro-lens array to the main lens and sensor. In

this design, the micro-lens array is no longer located at the focal plane of the main lens, but now

it is positioned at distance m from the image sensor. In this distance, micro-lenses are focused
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on the image plane of the main lens [12]. Now each micro-lens acts as an individual pinhole

camera, which sees only a fraction of a virtual image in the camera. Function of plenoptic 2.0

is shown in Figure 3.6. As can be seen, plenoptic 2.0 is different from plenoptic 1.0 by the fact

that micro-lens is placed at distance m from the sensor and it is focused on the image plane of

the main lens at distance n [14]. Relay system with main lens and designed distances n and m

with focal length f follows the thin lens equation [12]

1

f
=

1

n
+

1

m
. (3.1)

Spatial resolution can be modified by moving the micro-lens array with respect to the image

sensor. Modifying m/n ratio gives the option to choose a position of the trade-off point between

spatial and angular resolution. Resolution is now decoupled from the number of microlenses as

with this approach final image is composed by multiple pixels per micro-lens instead of one per

micro-lens as in plenoptic 1.0 design [12]. Even though this approach reduces angular resolution,

the fact of increased spatial resolution could satisfy some of the modern-day photographers.

3.4.3 Comparison

In plenoptic camera 1.0 micro-lens array is placed at one focal length from the image sensor

while being focused at infinity (defocused with respect to the main lens). On the other hand in

plenoptic 2.0, the micro-lens array is placed in distance m from the image sensor and distance

n from the image plane of main lens image while being focused on the image created by the

main lens [13]. In different words, a small portion of the image projected by the main lens is

transferred onto pixel array under micro-lens with much higher spatial resolution. This means

that images under micro-lenses of plenoptic 2.0 are sharp and inverted. And that images under

micro-lenses of plenoptic 1.0 design appear blurry as they only show one point viewed from

different angles. Difference between those two approaches can be seen better in Figure 3.7.

Figure 3.7: Comparison of micro-images in plenoptic 1.0 (left) and in plenoptic 2.0 (right)2.

Raw sensor data of plenoptic 2.0 approach can be imagined as an array of sharp images of main

lens image plane. While raw sensor data of plenoptic 1.0 can be seen as an array which consists

of small arrays (defined by micro-lens) containing angular information for one point of the scene

[15]. With that in mind it is clear that with same fixed dimensions of imaging sensor (and

2 Source: The Focused Plenoptic Camera - slides of Todor Georgiev,
URL: http://www.tgeorgiev.net/EG10/Focused.pdf. Used 02/04/2017.

http://www.tgeorgiev.net/EG10/Focused.pdf
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no additional interpolating algorithms), plenoptic 1.0 would achieve higher angular resolution

while plenoptic 2.0 would achieve higher spatial resolution. The result difference between the

two methods is in the image resolution of the rendered image because plenoptic 1.0 use one pixel

per micro-lens while plenoptic 2.0 approach use multiple pixels per micro-lens.
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Light Field Technology

4.1 Capturing Technology

Following subsections briefly summarize current market with plenoptic cameras. Focus is on the

main manufacturers and description of their products or prototypes. At the end of this section

several smartphone implementations are mentioned.

4.1.1 Lytro

Lytro, Inc., probably the most publicly known manufacturer of consumer-oriented light field

cameras, was founded in 2006 by scientist Ren Ng. Founder and former Lytro CEO wrote his

dissertation thesis at Standford university with the topic ”Digital Light Field Photography” [2],

which won Standford University’s prize for best thesis in computer science [16]. Ren Ng’s dis-

sertation thesis is used as a main source of information for this thesis. In 2015 Lytro expanded

in the field of cinema, virtual reality, scientific and industrial applications as they successfully

extended usage of the light field across various industries. Lytro had to face a tough challenge

by competing against an established industry with much larger companies, where camera re-

quirements and parameters are already set to certain level and the regular consumer is also used

to certain requirements/specifications.

In 2012 Lytro, Inc. introduced the very first commercially available light field capturing device

of the same name - Lytro [16]. First generation Lytro camera (also referred to as F01) does

not resemble a regular camera at first glance thanks to its unusual shape shown in Figure 4.1.

Inside it consists of regular parts as a set of lenses, CMOS image sensor, processor (in this case

called ”Light Field Engine”) and also the key part, which is the array of micro-lenses placed in

front of the image sensor.

Second generation camera, called Illum, was released two years after the first generation with

significantly enhanced parameters. The outside look changed more to regular camera-like ap-

pearance. Parameters of both Lytro cameras are listed in Table E.1 in appendix E. One of the

main commercially offered advantages is the fact that user can take a photo instantly (camera

tuning on and taking photo should take up less than one-second [18]) and take care about fo-

17
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Figure 4.1: Left - Lytro Illum (2nd generation) released in 2014, right - Lytro Lytro (1st gener-
ation), also called F01, released in 2014. Pictures taken from [17] and [18] respectively.

cusing later. Another claim by Lytro is that their camera can take better pictures in low-light

situations without using flash as it records entire light field in its range of view [18]. It’s capa-

bility to reproduce 3D image by taking a single shot with single lens is also another appealing

feature to the consumers.

In 2015 Lytro presented Lytro Immerge, claiming that it is the first solution for light field cin-

ematic Virtual Reality (VR). Lytro Immerge allows highly configurable and seamless capturing

thanks to camera array in spherical design1. Year later Lytro Cinema was introduced, which

was the first professional light field capturing system for film and TV production [19]. Lytro

Cinema brings a breakthrough for filmmakers with taking the controls and some of the decisions

from the scene to post-production and therefore allows to create a number of various shots [19].

Lytro claims in their press release, that Lytro Cinema has the highest resolution video sensor

ever designed, with 755 RAW megapixels at up to 300 FPS [19]. Lytro Cinema can shoot up to

16 stop of dynamic range and has wide colour gamut.

In 2016 Lytro’s exited from the consumer light field camera business and started to fully focus

on developing the light field VR platform2. During the time this thesis was being written,

Lytro stopped hosting the website where images taken with their cameras were shared3. Their

website allowed users to upload and share their photos within the fully functional interface which

allowed refocusing, 3D depth representation etc.

4.1.2 Adobe Systems prototypes

Adobe Systems Inc. is among other companies which are exploring the possibilities of light field

data and is developing light field capturing devices. Adobe Systems is most widely known as a

specialist for multimedia manipulation and processing software and for several years there have

been few papers about light field camera and their prototypes.

1Source: Lytro - Press Release - Lytro Immerge,
URL: https://goo.gl/osN7aB. Cited 03/04/2017.

2Source: Digital Photography Review - Lytro CEO confirms exit from consumer photography business, focus
on VR,
URL: https://goo.gl/GVhDff. Cited 02/01/2018.

3Source: The Verge - article
URL: https://goo.gl/TdqC5t. Cited 02/01/2018.

https://goo.gl/osN7aB
https://goo.gl/GVhDff
https://goo.gl/TdqC5t
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Between years 2004 and 2006 Adobe developed their first prototype of light field camera, which

was publicly presented in 2007 [20]. The prototype used 100 megapixel sensor and hexagonal

lens array made of 19 small lenses corresponding to 19 different focal points [21]. That means

each sub-image was formed by approximately 5.2 megapixels. Added value to their presentation

was the fact of cooperation between their prototype and software tool Adobe Lightroom, where

they showed the possibility of so-called ”focus-brush” or ”defocus-brush”. This tool would allow

a user to easily focus or defocus certain area of a taken image in post-processing with using

Adobe-like brush tool [20].

Second prototype exploits two ordinary lenses (positive) and rectangular array of 20 negative

lenses (4×5 array) [20] - shown in Figure 4.2. This array design, mounted on top of the standard

lens, showed improvement in terms of lost pixels [21].

The third generation of Adobe’s prototype camera was presented at NVidia’s GPU Con-

ference 2010 [20]. The prototype consisted of Contax 645 camera and micro-lens array which

was placed between main lens and image sensor [20]. With the third prototype, Adobe also

showed an improvement with real-time software allowing for re-focusing in software. Adobe,

which is going in a different direction than Lytro, is developing their light field lens which will

be compatible with traditional Digital Single-Lens Reflex camera (DSLR) cameras and along

with that, they are working on software to process this light field data [20].

Figure 4.2: Second prototype of Adobe’s light field camera (left) and set of 20 images obtained
by this camera [21].

4.1.3 Raytrix

Raytrix4, based and founded in 2008 in Germany, company which also provides light field cam-

eras with specialization in professional industrial and research applications. Their cameras are

for example used in observations and control of fluid mechanism, volumetric velocimetry, opti-

cal inspection, plant analysis, microscopy, robotics etc. Raytrix’s solutions are not aimed at a

regular customer as they are highly specialized on individual industrial applications.

4Raytrix - URL: http://www.raytrix.de.

http://www.raytrix.de
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4.1.4 Smartphone Solutions

Thanks to the constantly increasing popularity and sophisticated optics of smartphone cameras,

some manufacturers are making the first steps of integrating light field technology into the mobile

phones. There is already a list of companies which are pioneering with light field technology

among the smartphones.

Pelican Imaging (acquired by Tessera in 20165), has been researching since 2006 and in 2013

presented their low-cost miniature (3 mm height) camera array6. Their device is capturing 16

images (4 × 4 array) of 16.7 megapixels, which is then processed by their developed software

into one 8 megapixel image in JPEG file format. Also, some other companies like Toshiba

Semiconductors or LinX Imaging (acquired by Apple7) have presented their light field technology

solutions for smartphones. However, lately there was not so many implementations of light field

technologies into smartphones as this industry is massive and it will take some time for this

”new” technology to settle down.

4.2 Presentation Technology

Once light field is captured and processed it needs to be presented as well. The goal of light

field presentation device is to provide a faithful representation of real or synthetic scenes i.e.

life-like view. The true light field displaying would have to be the real reconstruction of light

field as was seen from a natural view. Working principle of light field displays is based on a

reversed principle of light field cameras. In cameras, the light field is described with respect to

a surface-image sensor (described by intersection with the sensor and angle). Light field display

operates on direction selective light emission, which means that light emitting surface enables

to emit different light beams from a point in the desired manner [22]. Light field visualization

technologies need to work without the use of stereoscopic headsets/glasses or some head tracking

devices to provide a full experience of light field visualization for multiple viewers. Most of the

commercially used devices, as 2D screens with special headset/glasses or screens with lenticular

lenses, are basically using the brain for the calculations as these devices provide very limited

number of Point of View (POV). Another problem is the fact that some of these technologies

produce nausea, eye tiredness etc.

4.2.1 Stereoscopy

Probably the most known and exploited kind of system for displaying 3D content is based on

stereoscopy. There is a variety of implementations which all use the same clues to create a 3D

sensation to viewer. Stereoscopy is using the lateral distance between our eyes and different

5Source: BusinessWire - Tessera Technologies Acquires Technology Assets From Pelican Imaging
Corporation, URL: http://goo.gl/WxohGZ. Cited 03/04/2017.

6Source: LightField Forum - Pelican Imaging Array Camera, URL: http://goo.gl/1qCzNN. Cited
03/04/2017.

7Source: TechCrunch - Apple Buys LinX, A Camera Module Maker Promising DSLR-Like Mobile
Performance, URL: https://goo.gl/7ADZ9x. Cited 03/04/2017.

http://goo.gl/WxohGZ
http://goo.gl/1qCzNN
https://goo.gl/7ADZ9x
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images are shown for the left and for the right eye of the viewer. The brain recognizes these

different images and creates the depth/distance perception [23]. Technologies such as passive

polarizers, passive anaglyph (colour filters) or active shutters are being used in stereoscopic

displaying together with some sort of glasses (eyewear) to prevent cross-talk between left and

right eye. Each of those technologies has its advantages and disadvantages over the other, but in

overall stereoscopy has many advantages and is highly exploited especially in the entertainment

industry. The technology is easy to implement, less expensive and usually effective (for some

applications)[23]. However, there are some major setbacks and needs which are calling for more

effective, realistic and less irritating systems to be developed. One of the problems with these

systems is the constant need of eye-wear, which may be still acceptable during 2-3 hour film, but

probably not for other, longer or more frequent applications. Another drawback is the inability

to cope with motion parallax, because as the viewer moves the viewpoint does not change.

This is again acceptable in cinemas where viewers are stationary, but may not be acceptable in

other applications where the viewer would want to look at objects from different perspective.

Motion parallax, could be approached by some head mounted tracking system, but this is only

applicable to one viewer only. The major setback still lays in the fact that stereoscopy is not

very comfortable thanks to the conflict in the brain caused by showing different image for the

different eye. Eye accommodation and vergence conflict is the fact that causes a headache,

nausea and motion sickness. More on about why and how are these problems caused while

using stereoscopic systems is explained in [23]. Stereoscopic systems are acceptable for short

and less frequent usage, but for some other applications there is a need for better technologies

to reproduce the spatial content.

4.2.2 3D displaying

Displaying 3D content is one dimension richer when compared to classical 2D displays and

therefore 3D displays can be exploited in many practical applications. There are several proper-

ties/parameters which are characteristic for spatial reconstruction or 3D displays. Field of View

(FOV) is probably the most important one and the ultimate goal is to have the same FOV as

to which the viewer is used in 2D displays. The angle which determines the angle of the FOV

cone is called emission range. Another important term is independent beam and number of

independent beams, which determines angular resolution/Field of Depth (FOD). Some of the

mentioned parameters are depicted in the Figure 4.3. Usually, the number of independent beams

(angular resolution) is limited in the vertical parallax as the horizontal parallax is more impor-

tant for a viewer and there are systems which handle horizontal and vertical parallax separately

thus having different horizontal and vertical resolution [24]. Combination of those parameters

determines the quality of the reproduced scene.



22 CHAPTER 4. LIGHT FIELD TECHNOLOGY

Figure 4.3: Angular resolution = FOV/Independent beams.

4.2.3 Light Field Display

Toru Iwane designed simple 3D light field display [25], by creating a reverse version of light

field camera, which simply reconstructs (”decode”) 3D volume image near to the lens array

from displayed 2D light field data. The technology consist of lenslet array plate, flat display

(smartphone-sized display) and simple data processing method to reverse perspective of synthetic

or captured scene. Three-dimensional information which is encoded into 2D light field data

(capturing part) is then displayed on a flat screen. This 2D data is symmetrically inverted for

each microlens and decoded by microlens array of the display. View angle of such display is

determined by the parameters of used microlenses [26]. Displaying system presented in [26]

gives observer natural perception of reproduced images and without visual contradictions. The

presented system does not require any adjustment of the lens array because attaching the lens

array to the display panel is enough which was not usually the case with former light field

displays.

4.2.4 HoloVizio

Another system displaying multi-dimensional content, called HoloVizio, was presented in [27] and

patented by Hungarian company called Holografika. This system produces light beams in optical

modules, various light beams hit the points of the screen under various angles of incidence. The

position of given point of the screen with respect to optical modules and geometry determines

exit angle. Light beams are composed into the continuous view by the holographic screen [24].

Working principle of such display can be shown in Figure 4.4.

High FOV of this system can be achieved by modification of arrangement and angles of

optical modules and FOD can be modified by the distance from screen [24]. HoloVizio is one of

the truly 3D displaying systems and Holografika is one of the leaders in 3D display development

as the company already produced a number of successful systems.
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Figure 4.4: Working principle of HoloVizio display [24].





Chapter 5

Software and Tools

Following sections briefly describe tools, which are used for processing and management of light

field data captured by Lytro cameras. Currently, there is one official software tool developed

by Lytro, and several other open-source tools developed by the community from which two are

described here.

5.1 Lytro Desktop

Lytro Inc. provides software called Lytro Desktop to access the files obtained with Lytro cam-

eras. Lytro Desktop enables the user to interactively refocus, shift the perspective and ex-

port LFP in early versions and LFR files in latest versions. First generation Lytro camera

(F01) produces following files for one image: IMG xxxx.lfp and IMG xxxx − stk.lfp file

(where each x is a digit place-holder). Second generation camera (Illum) produces one more

file IMG xxxx − dm.lfp (where dm stands for depth map). There are two types of LFP files,

one has usually size around 16 MB (for F01 camera) and contains raw Bayer data of m × n
pixel sensor with some metadata containing additional information about captured image and

camera itself [28]. The other type of LFP file (usually size of 1-2 MB) is a web-oriented file

(obtained from Lytro Desktop software after importing the pictures from the camera) which is

used to reduce file size and rendering time for display. This file is basically a set of JPEG files,

from which each uniquely represents part of captured light field. The set of files is composed of

visually interesting JPEG files, each showing the scene with different focal depth [28].

As Lytro is a consumer product, information about its file format are not available to the pub-

lic and regular user has to settle down with their software which is available for MacOS and

Windows. In overall, Lytro Desktop does not provide much control over light field data (except

viewing, refocusing and exporting anaglyph) and other tools are being developed so the light

field data can be exploited differently.

25



26 CHAPTER 5. SOFTWARE AND TOOLS

5.2 LFPSplitter

Nirav Patel [28] was first to create an open source tool, called LFPSplitter, which was developed

to work with LFP and LFR raw Lytro file formats. LFPSplitter is command line controlled

tool which can be used to extract plain text metadata, plain text listing of depth look-up table

and component Joint Photographic Experts Group (JPEG) files [28].Using LFPSplitter one can

obtain a greyscale raw data from the sensor, frame metadata, private metadata (contains camera

and sensor serial numbers) and table file (contains array information). Three latter mentioned

files are saved in JavaScript Object Notation (JSON) text format. Frame metadata contains

information about:

• image resolution and orientation

• pixel format - value of black and white

• pixel packing (endian, bits), mosaic array and upper left pixel

• colour transform array, gamma value, white balance gain, ISO, exposition

• time of image acquisition

• shutter, lens parameters (focal length, f-number ...)

• lens, chip temperature

• micro-lens array parameters (tiling, rotation, scale, ...)

• x, y, z from accelerometer

• firmware, camera type, modes of image acquisition

By extracting data from IMG xxxx− stk.LFP (where stk stands for stack) one can obtain

stack of rendered JPEG files, each focused on different focal plane, depth look-up table in text

format and table file in JSON file format. Depth look-up table contains series of flattened m×n
(20× 20 array in first version of Lytro Desktop and 330× 330 for later versions) double values

of depth at which the image should be refocused if viewer wants to focus corresponding area

(first depth value correspond to the top left part and then the values continue in rows). JSON

metadata table file contains metadata version, the reference to the look-up table and references

to all rendered images with its corresponding depth. By using LFPSplitter one can obtain

various information about the data and use obtained files for further processing of light field

photography.

5.3 Light Field Toolbox

Another open source tool to not only extract but also to process light field data is Light Field

Toolbox in Matlab [29] by Donald Dansereau. The first version (v0.1) purely focused on Lytro

imagery and was limited to functions used for loading, decoding, colour correction and visual-

ization of light field data. However, during the time this thesis was written, newer version (v0.4)

was released, which contains more than 35 functions. Functions in this toolbox can be divided

into several groups: decoding/input, filtering, image adjustment, visualization, calibration and
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utility. Decoding and input type contain functions for decoding LFP or raw file and functions

to batch and recursively process light field images. Light Field Toolbox can be used to process

other light field formats than LFP, for example, the gantry-style light fields from [11]. It also

creates grid model of lens array using raw white images extracted from the camera. The second

group of functions is focused on filtering as it contains fully functional and even demo func-

tions to create and apply 2D and 4D filters for linear depth/focus and de-noising. The toolbox

also contains functions for image adjustment such as colour balance, gamma correction and his-

togram equalization. There are several functions which can be used for light field visualization

(not only .LFP format visualization) with a user having the possibility of controlling the content

or with a predefined path of showing the 2D slices of the light field. Light Field toolbox is very

convenient tool to start experimenting with light field data as it contains variety of functions

for multiple applications and as it is still being supported and developed. Author also created a

community on social media Google+, where questions/answers, practical tips and applications

are shared1.

1Light Field Toolbox community,
URL: https://plus.google.com/communities/114934462920613225440. Cited 03/12/2017.

https://plus.google.com/communities/114934462920613225440 




Chapter 6

Light Field Data

This chapter brings an overview of possible data formats of Lytro camera images and its pos-

sible representations/applications. Terminology described in this chapter is further used in the

practical section. Focus is on the light field data gathered from Lytro cameras, because this

type of light field data is widely used in papers for compression and processing. Another, not

negligible, fast is that Lytro Illum datasets are the most frequent in the community.

6.1 Formats and datasets

In this section, several possible data formats are shown in order to better understand the per-

formance of each separate compression scheme. One of the most frequently used datasets in

latest papers is Lytro Illum dataset from École Polytechnique Fédérale De Lausanne (EPFL)

[30]. A dataset of approximate size 55 GB contains 118 light field images captured with Lytro

Illum camera in uncompressed raw format (each LFR file of size around 50-55 MB). Further-

more the dataset contains files which are extracted using Lytro Desktop software, like depth

map, the relative depth of field coordinates, calibration data and image thumbnails [30]. The

dataset also contains 4D light field images, which are obtained by Light Field Matlab Toolbox

[29][31] (toolbox has been already described in chapter 5). Images are divided into 10 different

groups based on its content (ISO and Colour Charts, Buildings, Nature, Grids, People etc.).

Dataset can be used for benchmarking of novel algorithms for light field data image processing,

compression and quality evaluation. Subset of 12 images from this dataset was already used

in International Conference on Multimedia and Expo (ICME) challenge, where it was used to

evaluate performance of submitted papers on light field data compression [32].

Each of the files from dataset has been processed by Light Field Toolbox which resulted

in MAT-file for each image, containing light field data in 5D representation - LF (u, v, x, y, ch).

Where dimensions x = 434, y = 625 (for Lytro Illum camera) represent number of micro-lenses in

horizontal and vertical direction respectively. And u = v = 15 (again for Lytro Illum) represent

number of pixels under each lenslet. From what has been said it is clear that spatial resolution

of Lytro Illum camera is 625× 434 and directional resolution is 15× 15.

When all 15 × 15 pixels (image data from sensor under each lenslet) are taken and formed

29
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Figure 6.1: Light Field image data shown in raw lenslet structure.

into 625 × 434 ”lenslet” array, where the raw sensor lenslet information is aligned as can be

seen in Figure 6.1. The lenslet image was cropped so the lenslet structure can be seen in print

as well. It can be seen how the image under each microlens is reversed. Note the image shape

under each lenslet, where corner pixels have no information. However, some methods exist for

filling in these regions [31] to extrapolate for outside views which has not been even recorded.

Figure 6.2: Light Field image data shown in array of sub-aperture images.

If one pixel value is taken at the same position under each lenslet one sub-aperture image is

obtained. Therefore 15 × 15 individual sub-aperture images can be obtained. All sub-aperture

images are shown in Figure 6.2 also with close-up to one sub-aperture image. The array contains

image data in circular shape, that is because the micro-lenses are also circular.

Another way to represent light field data can be through epipolar images [2]. In this case

v and y stays fixed and u and x varies (in LF (u, v, x, y, ch)). Set of several epipolar images is

shown in Figure 6.3 together with one sub-aperture view for reference. In each epipolar image, u

varies horizontally and x vertically with spatial resolution 434 pixels and directional resolution

15 pixels. Depth of objects within the scene can be estimated based on the slopes of lines in

epipolar images. The greater the slope is the further distance from world focal plane [2]. Note



6.1. FORMATS AND DATASETS 31

that there is three-sided pyramid in background and cube in foreground (on the right). As can

be seen, the blue line of the pyramid has negative slope in each epipolar image (as well as two

red lines). Lines of the cubes have almost zero slope (vertical lines). This corresponds to the

fact that pyramid is in further distance.

Figure 6.3: Light Field image data shown as epipolar images.

Fifth dimension ch has four components, where first three are RGB coordinates and fourth

is pixel confidence weight channel [31]. The confidence channel represents confidence related

to each pixel. Weight values are highest in the middle of each lens and equal to zero in dark

corners where no information is recorded. Confidence weight channel can be used for example

in filtering or histogram equalization applications [31]. Typical light field data structure which

is obtained from a 5D LF array can be reorganized and imaged as example in Figure 6.4.

Figure 6.4: Light Field data structure of sub-aperture images stacked into 2D array.
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Sub-aperture images (in literature sometimes called all views) are easily obtained from LF

(in Matlab convention LF (1 : 15, 1 : 15, :, :, 1 : 3)) and then can be stacked in 15 × 15 matrix

as shown in Figure 6.2. From the image and it’s closeup it is once again clear that there is

significant spatial redundancy between neighbouring views/images.

Difference of each view and mean average image of all views is depicted in Figure 6.5. The

first difference of all views with a mean image is computed, then a sum of all pixel values in

residual image is calculated. The relative difference (blue = 0, yellow = 1) is depicted Figure 6.5.

It can be seen that the most views close to the mean are located in the centre of all views struc-

ture. Around the edges images are more different from the mean image. This is caused by the

position of the view itself, but also the fact that boundary sub-aperture images contain artefacts

and are colour-distorted.

Figure 6.5: Relative difference of each view when compared to mean view - blue = 0 (no
difference), yellow = 1 (maximum difference).

6.2 Data representation

Light field data can be represented in various ways as is also briefly mentioned in chapters 5 and

9. Based on the whole idea of light field data, this type of data can be used and approached in

different manners.

6.2.1 Depth Estimation

Depth estimation in light field data is more convenient, robust and accurate (thanks to its

multiple views) in contrast to stereo capturing systems, which needs to be calibrated [22]. Depth

estimation can be based on the slope of lines in epipolar images [2] which was described previously

in this chapter. Built-in algorithm for depth estimation is also available in Lytro Desktop

software which comes together with Lytro cameras. Also several other improved algorithms are
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developed and are mentioned in comprehensive overview [22]. In Figure 6.6, examples of two

depth estimates are shown (images used are from [33], but the algorithm itself is not relevant

for this thesis).

Figure 6.6: Example of depth estimation representation of Lytro Illum data. Left - input image,
Middle - algorithm from [33], Right - Lytro Desktop depth estimation. Source [33].

6.2.2 Change of Perspective

Change of perspective is the underlying idea behind the angular-information recording device

such as light field cameras. As was shown and explained in previous sections, sub-aperture images

can be obtained from raw plenoptic data when the lenslet structure is known beforehand. After

Figure 6.7: Example of perspective change - four sub-aperture images were generated (two
furthermost in vertical parallax and two in horizontal) by the method described in chapter 6.1.

that individual sub-aperture images can be reorganized into required structure so it can be used

for interactive user navigation within light field data. This perspective navigation is also included

in Lytro Desktop and also one simple implementation can be found in Light Field Toolbox [29].

The core of this same implementation was used in the compression tool implemented within

scope of this thesis and modified accordingly to meet the requirements.
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6.2.3 Refocusing

Light field data allows to refocus photographs after exposure therefore to overcome the so called

focus problem [2]. In Figure 6.8 it can be seen that one-exposure raw light field image can be

refocused to new arbitrary individual planes in the captured scene.

Figure 6.8: Example of digital refocusing - A - all in focus center sub-aperture view, B to F -
focus plane is moving from camera to background of the scene.

First demonstration of light field digital refocusing was proposed in light field rendering paper

[6]. After that several implementation papers were published since year 2000 until now about

digital refocusing, also called synthetic aperture photography. Extensive overview of refocusing

algorithms can be found in Ren Ng’s dissertation thesis [2]. Digital refocusing can be imagined

as a ray-tracing method, where recorded light rays are traced to the point where they would

have finished in virtual and simulating imaging sensor, which sums the light at each point in

virtual plane [2]. It is possible to utilize the recorded angular information to define new image

focused on focal plane at some distance.

Digital refocusing can be implemented as basically summation of dilated and shifted copies

of sub-aperture images over the whole aperture as described in [2]. This same principal (among

others) is used in Light Field Toolbox and was used for generation of images in Figure 6.8. More

sophisticated algorithms are described in [2], [34] (with Fourier Slice Theorem), [7], [35] and also

in the Light Field Toolbox [29].
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Compression

In this chapter, lossy and lossless compression techniques for light field data are described. The

number of different captured views during light field data acquisition is high (varies on the type

of capturing technique) and therefore the amount of light field data to be processed is immense.

For example in Lytro cameras, where the acquisition type is based on spatial multiplexing, it

is crucial to have a huge number of sensitive cells and therefore the amount of data has to be

large. This calls for efficient and fast compression techniques which are necessary for fast data

transmission and storage [36]. On the other hand, light field acquisition with Lytro cameras is

basically about recording the same scene from different and close viewpoints, therefore there is

a spatial data redundancy which has be exploited in order to achieve high compression ratios

[6].

The increase of various devices capturing approximation of plenoptic function calls for a

unified standard for formatting and compression of plenoptic data. A number of commercial op-

tions to capture omnidirectional, depth-enhanced, point cloud, holography or light field content

have emerged recently, from which all have different ways of data creation, format conversion,

encoding, decoding, rendering and displaying. JPEG committee put themselves a task to de-

velop a standardized framework to facilitate capturing, representation and exchange between

different modalities [36]. JPEG Pleno was launched in 2015, work item has officially started

in 2016 and a first working draft should be produced in second half of 2017 (with an aim to

produce a first international standard in 2018). JPEG initiative aims to create file format with

plenty of interesting features and potential applications [36]. JPEG Pleno will have the ability to

change the field depth after capture, change the focus (refocus on objects) after capture, change

the lightning in already captured (or synthesized) scene, change the perspective and viewpoint

position and allow analysis and manipulation of objects within a scene [36]. But for now, there

is no such standard for captured light field data and each manufacturer or developer creates its

own file format, structure or compression technique.

In July 2016 another initiative, called ICME 2016 Grand Challenge, has launched with a

goal to achieve efficient image compression techniques, visual quality assessment methodologies

35
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State-of-the-art compression schemes

Still Image

JPEG2000 - [44], [45], [46]

JPEG XR - [47], [48]

SPIHT - [46], [49]

Video
AVC/x264/H.264 - [46], [50]

HEVC/x265/H.265 - [51], [52], [53]

Ad hoc solutions for light field data compression

Transform Coding [54], [55], [56], [57], [58]

Predictive Coding [58], [39], [43], [42], [40]

Pseudo-sequence
Coding

Sub-aperture Images Sequence Coding - [59]

Data Formats for High Efficiency Coding of Lytro-Illum Light
Fields - [60]

High Efficiency Coding of Light Field Images Based on Tiling and
Pseudo-temporal Data Arrangement - [38], [61], [62]

Pseudo-sequence-based Light Field Image Compression - [39]

Interpreting Plenoptic Images as Multi-views Sequences For Im-
proved Compression - [43]

Other - [63], [64], [65], [66], [67], [41]

Table 7.1: Overview of compression schemes (groups) described in following subsections and
respective references to literature.

and test materials for light field images [37]. This challenge summoned for contributions to find

effective compression of light field image data [38]. Authors of the ICME Grand Challenge in-

formed its contributors in detail on the call and evaluation procedure to be used for assessment

of proposed algorithms. Several response articles ([38], [39], [40], [41], [42]) from this challenge

are also mentioned in this thesis. Another challenge call for proposals took place in Septem-

ber 2017, called International Conference on Image Processing (ICIP) Grand Challenge 2017 -

Light Field Image Coding. However during period of this thesis, only one paper [43] has been

published online and is mentioned later pseudo-sequence coding section.

During recent years there has been a large number of papers presenting about this topic. It is

important to say that currently there is no standard in compression of light field data and there

is a long way to go to achieve such unified compression scheme. Especially when the compression

algorithms are divided also by the type of light field data acquisition. Compression schemes can

be divided into three main groups - progressive/transform coding, predictive coding and pseudo-

sequence coding [22]. As will be seen in this paper, the challenge of light field compression can

be addressed in different ways. Table 7 shows an overview of compression schemes described in

following subsections. Note that some of the references fall under more groups as the definition

is not always straightforward.
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7.1 State-Of-The-Art Compression Schemes For Conventional

Image Data

Several state-of-the-art compression schemes will be discussed in this chapter as these are being

exploited in plenoptic content compression (for Lytro cameras). Several works were dedicated to

analysis of their performance when applied directly to the raw data or some other modification

of the plenoptic content.

7.1.1 JPEG2000

JPEG2000 is a wavelet based standard for digital still image compression, published by JPEG

as International Organization for Standardization (ISO)/International Electrotechnical Com-

mission (IEC) standard and International Telecommunication Union - Telecommunication Stan-

dardization Sector (ITU-T) recommendation [44]. The standard was initially meant for com-

pressing different types of image data (bi-level, multicomponent, ...), different applications (sci-

entific, natural, text, synthetic, ...) and different imaging technologies. Its most known pre-

decessor, JPEG, was used for more than a decade by the time JPEG2000 was standardized,

so there was need for new compression algorithm as the demand for small file sizes and high

image quality and size is still increasing. Figure 7.1 shows generalized JPEG2000 engine. This

simplified diagram may look similar to classical JPEG encoder/decoder with the exception of

Discrete Wavelet Transform (DWT) instead of Discrete Cosine Transform (DCT), but there are

differences along the whole process. The performance of the compression scheme itself and all of

its features is well analysed and explained in [45], [46], [44] and only the basics are summarized

in the following sections.

Figure 7.1: Generalized block diagram of JPEG2000 encoder/decoder.

Compression scheme

Firstly, in pre-processing part, the input image is tiled - partitioned into rectangular, non-

overlapping tiles which are further processed independently [46]. Tile size can vary and equal to
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the dimensions of the input image (one tile). Tiling process makes the compression engine less

memory dependent and it is also found useful for Region Of Interest (ROI) compression. ROI

is used in JPEG2000 when part of an image is more important than the rest and therefore it is

to be transmitted in better quality. It has been shown that size of the tiles affects the quality

of reconstructed image both objectively and subjectively [46].

Next step in pre-processing is DC level shifting. Before the tile is processed by DWT, all

samples of the tile are subtracted by the same value to get DC level shifted. The values (only

unsigned) are subtracted from 2(n−1), where n is bit depth of the colour component. DC level

shifting ensures that the values stay within the range −2047 to 2048 for 12-bit depth content.

After tiling and DC level shifting is done, component transformation comes in place. Irre-

versible/reversible (for lossy/lossless compression) component transform matrices are applied to

individual components in order to achieve colour decorrelation. For example colour components

RGB are being transferred into luminance and chrominance components Y CrCb. In JPEG,

chrominance components were subsampled (4:2:0 or 4:2:2), but in JPEG2000 the format stays

4:4:4 as the subsampling if happening later in wavelet transform in encoding process.

DCT was used in preceding still image compression scheme, JPEG, but there have been

several reasons to use DWT in JPEG2000 in order to achieve set goals, described more in detail

in [46]. The wavelet transform is applied to tiles components after the pre-processing is done.

Discrete wavelet transformation provides different decomposition levels, which contain coefficient

of vertical and horizontal frequency characteristics of an input image (tile). Two types of filters

are used in JPEG2000, Daubechies 9-tap/7-tap filter for irreversible transform and Le Gall and

Tabatabai’s 5-tap/3-tap with integer coefficients for reversible transform [46].

After the DWT, quantization takes place. Quantization is a process during which samples

are reduced in precision. All coefficients are linearly quantized by dead band zone quantizer [46].

This process is usually lossy unless the quantization step is 1 and the coefficients are integers

(case of reversible transform). Quantization step can vary across tiles and across bands, but one

step is allowed for one sub-band in each tile [46]. Size of quantization step is decided based on

perceptual importance of particular band HVS or by some other aspect like bit rate availability

[46].

Quantized coefficients are entropy coded in order to achieve a compressed stream of bits.

JPEG2000 uses Embedded Block Coding with Optimized Truncation (EBCOT), which was also

selected in order to meet the set goals [46]. In the EBCOT process, sub-bands are partitioned

into rectangular non-overlapping code blocks and these code blocks are independently encoded.

Features

JPEG2000 comes with several very useful features which should be mentioned. One of the most

significant features is the option to select ROI in the input image. This is found to be useful in

applications where some parts of the image are more important than the others. Let’s say that

in medicine, X-ray image may have important part with a fracture that requires attention and
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the rest are not or less important. This region is then compressed at higher quality and during

the transmission is transferred with higher priority or simply first. JPEG2000 uses MAXSHIFT

method, which does not need to have shape information about ROI at decoder [45]. This is

because all coefficients which are in ROI are scaled (shifted) above the background in a way

that their bits are at higher level [46]. Experiments in [45] have shown that for an image with

resolution of approximately 2000× 2000 with ROI of 25% relative size of the image, the method

increases bit-rate by approximately 1%.

Next interesting feature is the scalability in the spatial domain and in Signal-to-Noise Ratio

(SNR). In spatial scalability, images with several resolutions can be rendered from single com-

pression, single bit-stream [45]. At least two resolutions/layers are required. The lower layer

is coded simply as a low-resolution image to provide the basis. Then any other higher resolu-

tion is coded like enhancement layer, which makes use of the lower layer by interpolating into

full/higher resolution [45]. This is done easily thanks to the principles of DWT by prioritizing

lower bands before higher bands on bit plane level.

The SNR scalability, similar to spatial scalability, produces at least two quality different versions

of the same image with same resolution from a single bitstream. And again, the lowest quality

image (with acceptable SNR) is considered to be a base layer and the remaining parts of the

bitstream are called enhancement layers as they are used to enhance the base layer to produce

multiple images with increasing SNR. JPEG2000 supports also the combination of spatial and

SNR scalability [45].

Other features include several error resilience tools to cope with channel/transmission errors,

visual frequency weighting which weights frequency bands based on HVS and new file format

(JP2) with intellectual property rights information [45].

7.1.2 JPEG XR

JPEG XR, block-based compression scheme, can be seen as a follower of JPEG not only for

the High Dynamic Range (HDR) photography. The lossy and lossless compression scheme was

originally developed and patented by Microsoft under the name HDPhoto in 2006 [47]. Later

in 2007, JPEG together with Microsoft announced that HDPhoto will be considered as JPEG

standard under the name JPEG XR. And in 2009 JPEG XR was announced to be ITU-T rec-

ommendation and ISO/IEC standard [47].

The objectives of JPEG XR were to produce new compression format which supports HDR

photography formats, web imaging, interactive applications, better compression for enhanced

quality, cost-effective computational performance and new progressive coding schemes for pow-

erful image access and manipulation [47]. Classic JPEG supports bit depth from 8 to 12 bit

maximum, however, JPEG XR is constructed to support up to 32 bits per pixel. It outperforms

original JPEG as it can achieve the same perceivable quality with up to twice higher compression

ratio [47].

JPEG XR coding process is very similar to traditional JPEG and it shares principles with other
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image compression schemes [48]. The input image is deprived of redundancies by using linear

decorrelation matrix, similar as in JPEG2000, and transferred into luma-chrominance colour

space. JPEG XR then applies 4 × 4 orthogonal overlapped block transform unlike JPEG2000,

which is using DWT. Coefficients are quantized by dead zone band quantizer and quantization

parameters can vary by blocks [48]. Quantized data are then entropy coded in a very similar

way as it is done in JPEG, with some differences more described in [48].

JPEG XR supports tile structure as the image is partitioned into tiles and each tile is processed

separately [47]. During decoding, the tiles can be accessed separately, therefore, the regions of

our interest can be accessed selectively without needing to decode the whole image. JPEG XR

also supports more colour accuracy with higher bit depth and also by supporting multiple colour

spaces (CMYK, grayscale, multi-channel).

7.1.3 SPIHT

Another, wavelet-based, powerful tool in the field of still image compression is Set Partitioning

in Hierarchical Trees (SPIHT). SPIHT, which was introduced in 1995, is also based on DWT and

it is efficient extension of Embedded Zero Tree Wavelet (EZW) [46]. Both of these techniques

exploit the fact that there is certain magnitude correlation between the decomposed bands.

Algorithms use a tree structure to detect and exploit similarities across subbands. It can be

said that SPIHT exploits characteristics of the wavelet transformed images to increase coding

efficiency [46]. The uniqueness is in the fact that SPIHT does not transfer pixel values or its

coordinates, but decisions which have been made in each step of the trees that define the image

structure [49]. And because only decisions are transferred and if the encoder and decoder will

have an identical algorithm, the identical image can be reproduced. Whole compression scheme

is well described in [46] and [49].

SPIHT allows such a features like scalability or progressive image transmission, which is impor-

tant in web applications, when a low detailed image is loaded first and its quality is enhanced

with a number of bits received [46].

7.1.4 AVC/x264/H.264

Advanced Video Coding (AVC) (x264/H.264) is probably the currently most used video codec,

which was formally introduced in 2003 [46]. It is still being used in high number of applications.

x264 uses Macro Block (MB) of size 16 × 16 as a basic coding unit, where each MB can be

further divided into smaller blocks if necessary to obtain higher compression gain [46]. These

smaller blocks are either intra or inter coded. Group of MBs is called slice - there are no

limitations in slice sizes (one slice can contain one MB or whole frame). Introduction of slices

within the frame was novelty between video compression mechanisms. Slices can be fixed with

number of MBs (different sizes of packets) or fixed with bytes (almost same byte sizes of packets,

different number of MBs). Predecessors of x264 were using coding tools applied on frame types

(I,P,B), however here are applied to frame slices [46] and each slice type is coded differently.
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Residual pixels after inter/intra prediction are zig-zag scanned, quantized and entropy-coded

(together with motion vectors and addressing information) [46]. Whole compression mechanism

is thoroughly described in [46].

Figure 7.2: Generalized block diagram of x264 encoder.

7.1.5 HEVC/x265/H.265

High Efficiency Video Coding (HEVC) [51] is the latest coding standard for video. It will be

shown later that compression standard which is initially intended for the video can be used for

coding of static plenoptic content. First version of HEVC, also known as x265, H.265 or MPEG-

H Part 2, was developed by joint of groups from ISO/IEC Moving Picture Experts Group

(MPEG) and ITU-T Video Coding Experts Group (VCEG) [51]. The scheme was developed in

2013 and then in years from 2014-16 several versions were released containing extensions for 3D

video, multi-view, range extensions, scalability, screen content coding etc. The main goal was

to developed new coding mechanism which will in future replace x264 (AVC) with addition to

efficiently encode high resolution content together with the use of parallel processing techniques

[51].

In general, the coding scheme is as follows. The input picture is partitioned into Coding Tree

Blocks (CTBs) (which can vary in dimensions in contrast with HEVC predecessor, x264, which

is strictly using 16× 16 dimensions of MB). The possibility to change size of CTBs can be cho-

sen based on the image content or if there are computational or memory restrictions [52]. One

Coding Tree Unit (CTU) is formed by luma CTB and two chroma CTBs, each chroma CTB

contains half of the samples of luma CTB. CTU is basic unit of HEVC - can be seen as MB in

previous standards. CTBs can be further partitioned into smaller blocks, called Coding Blocks

(CBs), of variable sizes based on the content and characteristics of the content under the par-

ticular CTB [52]. Smallest CB can be size of 8× 8 and can go up to the size of CTB. Luma CB

and chroma CBs together form Coding Unit (CU). Intra and inter-picture is computed for each

CU, where luma and chroma CB can be formed by one to four blocks called Prediction Block

(PB) [52]. PBs under each CB can have the same size of can have asymmetric sizes. Prediction

signals are generated and encoded for all partitioned sample locations. Explaining all princi-
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ples of mechanisms used in HEVC is beyond scope of this thesis and are described in [51] and [52].

7.2 Transform Coding

Techniques in this group of compression schemes are mainly based on some type of transform. In

recent years there is an increasing number of scientific papers, exploring the borders of current

compression algorithms and proposing novel compression ad hoc algorithms for light field data

[38].

Study on how current state-of-the-art algorithms perform on light field data was addressed

in [54]. Light field data structure is significantly different from classic image data, therefore

authors main goal was to answer two questions - first, if existing compression schemes can be

used for plenoptic images and second, what effect do they have on rendered images. Three, well-

known, image coding standards JPEG, JPEG2000 and SPIHT were subjectively compared. The

analysis was made not on plenoptic image reconstruction, but on rendered views. Compression

analysis framework was following: first, the plenoptic image was processed by compression algo-

rithms. After that reconstructed plenoptic image was acquired after lossy decoding and multiple

views were rendered. Quality of these rendered views was then evaluated by objective metrics

- Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM). Rendered views

directly from a plenoptic image (without being processed by any compression scheme) were used

as a reference for objective assessment. In general JPEG2000 and JPEG outperformed SPIHT

scheme and JPEG2000 was preforming a bit better than classic JPEG compression. This holds

true for both metrics - PSNR and SSIM. JPEG2000 was found to be best compression scheme

when it comes to compression of common still images [54] and this was found to be true even

with plenoptic images. SPIHT was found to be most effective for lower bitrates, therefore, it can

be useful in remote applications where lower bandwidth is typical and where its lower complexity

(compared to JPEG2000) can be found useful too. One of the disadvantages when compressing

with standards used for common images were blocking artefacts when the compression block

does not match the size of micro-images [54].

In order to understand and develop new algorithms specially tailored for plenoptic raw

data, it is necessary to evaluate and explore the performance of the state-of-the-art compression

algorithms and also to research statistical properties of raw plenoptic data [55]. In [55], the per-

formance of state-of-the-art lossless and lossy compression schemes was analysed when applied

to plenoptic raw images. Another goal of the paper was the evaluation of quantization effects

to the quality of final reconstructed views. A dataset of raw plenoptic images taken with the

first generation of Lytro camera was used for experimental analysis [55]. As dataset contained

images with resolution 3280× 3280, 12 bits per pixel, compression schemes which are capable of

compressing this bit depth had to be used (JPEG2000 and JPEG XR). Performance of compres-
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sion schemes was evaluated by measuring the PSNR and SSIM between original extended focus

image and decoded extended focus image [55]. Reference approach was formed by quantization

and entropy encoding (7zip). JPEG2000 and JPEG XR outperformed the reference in both used

metrics. It has been shown that compression (both JPEG formats) gives almost same results

at 4.36 bits per pixel (bpp) when compared to a lossless version of JPEG2000 (8.80 bpp). Both

compression schemes started to show visible artefacts around 2 bpp which was confirmed by ob-

jective metrics as well. JPEG2000 performed slightly better than JPEG XR, but the difference

is nearly negligible. Results proved that it is possible to use current state-of-the-art compression

standards to raw plenoptic data with no perceivable difference [55].

Later in 2017, the same author used again JPEG2000 compression scheme in [56]. In this

case, JPEG2000 encoder was applied not directly to raw light field data format, but now on

rendered views. Performed experiment showed that this change of steps performs better than

applying JPEG2000 or JPEG XR directly to 2D raw light field data format [56].

3D DCT compression algorithm was presented in [57]. This algorithm exploits the intra sub-

image correlation. First, three-dimensional DCT is applied to achieve the coefficients. Then,

three-dimensional quantization array is applied to obtain quantized coefficients which are entropy

coded by hybrid run-length/Huffman coding. Input data are sequences of N images placed after

each other along the third dimension and 3D DCT then produce a de-correlated group of sub-

images. Groups of N = 4; 8 sub-images were tested in two different grouping methods (1 by 8

or 2 by 4 for N = 8), where each sub-image was 8× 8 pixels. Results showed that this method

outperforms baseline JPEG drastically. It was also shown that the scheme performs differently

on different grouping methods.

7.3 Predictive Coding

In this group of coders, prediction algorithms are applied to some form of plenoptic content.

It should be mentioned that it is not easy to unambiguously divide compression schemes into

individual groups as they may contain coding tools from each group in some form. For ex-

ample, authors in [58] presented prediction based algorithm with wavelet packet. The whole

scheme is more of a combination of predictive and transform coding. Firstly the images are

decomposed into sub-bands using wavelet packet transform. These wavelet packets are divided

into predictable and not predictable bases. This selection is based on several criteria - relative

energy, relative amplitude, correlation. One group of sub-bands with significant coefficients has

large relative energies and are highly correlated, the second group contains information which

is isolated for each image [58]. The first group is called predictable and the second group un-

predictable. The disparity map is estimated based on symmetrical neighbouring images, this

map is used afterwards in coding. Images decomposed into sub-bands and partitioned into a

group of basis are then coded by DCT and Huffman coding. Group of images is reconstructed
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by first predictable basis (maximum relative energy). If the reconstructed images meet wanted

quality (which was determined prior to the coding), no more information needs to be added.

If no, another predictable basis is added (second maximum relative energy) until reconstructed

images meet the criteria. Center image is then predicted from these four corner images. The

precise order of prediction is more described in [58]. However, algorithm was evaluated on two

images only with no other reference method.

7.4 Pseudo-sequence Coding

Another group of coding methods for plenoptic content is called pseudo-sequence coding, because

these methods are using current state-of-the-art video compression schemes. As can be seen, in

Figure 6.2 and as have been already mentioned, individual rendered views are highly correlated.

Therefore it is straightforward to exploit spatial redundancy in plenoptic content. A typical

sequence of light field data formats can be seen in Figure 7.3. Of course, most of these algorithms

could be also mentioned in the previous group (predictive coding) as these algorithms such as

HEVC are using prediction motion.

7.4.1 Sub-aperture Images Sequence Coding

One of the first proposed method to code views rendered from plenoptic raw data as pseudo-

video sequence was presented in [59]. Authors extracted sub-aperture images directly from light

field obtained by Lytro Illum camera (an example of sub-aperture images arranged in an array

can be seen in Figure 6.2). Images were then rearranged by line or rotation scan mapping into

the sequence of images which can be thought of as a video stream. Authors used x264 video

compression algorithm without any modifications to the standard video encoder to compress

the video stream made of rendered views [59]. Two ordering types were evaluated - standard

line and rotation scan mapping to rearrange images from a 2D array (Figure 6.2) into a video

stream. Results have shown that rotational scan mapping outperforms the later in terms of

PSNR. In addition, a performance of x264 on multiple rendered views was also analysed in

contrast with classic JPEG encoder applied either on the rendered views as well as on plenoptic

raw image data. Obviously, the proposed method with x264 encoder outperformed conventional

JPEG compression scheme used directly on lenslet image and on sub-aperture images in terms

of PSNR. It was again confirmed that JPEG applied on sub-aperture images showed superior

performance when compared to JPEG applied on lenslet raw image data.

7.4.2 Data Formats for High Efficiency Coding of Lytro-Illum Light Fields

Another approach to encoding Lytro Illum camera light fields is presented in [60]. In this case

authors used HEVC/x265 on five different light field data formats. Two of the formats were

sequences of views from sub-aperture views matrix shown in Figure 6.2. Sequence formation
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was used exactly the same as in previously mentioned paper - line scan mapping (here called

raster), where views are gathered from top to bottom and from left to right to produce pseudo-

video sequence. The second one was again rotation scan mapping (here called spiral), where

views are gathered from the centre of all views matrix and going outwards [60]. Remaining

three formats were following - lenslet image (same as previous work), sub-aperture views matrix

(Figure 6.2) and again lenslet image, but in this case corners of each micro-lens were filled in by

neighbouring pixels. Three latter light field data formats were compressed as a still image using

the HEVC Still Image Profile and the former two were compressed by HEVC video encoder

with following configurations: Random Access, Low Delay P, Low Delay B, All Intra. This work

proved that even though only still images are used for compression, their format/arrangement

can have a significant impact on coding performance [60]. By exploiting different format and

different HEVC configurations an improvement of 10 dB in PSNR can be obtained. Coding of

the lenslet image proved to perform the worst of all selected scenarios on average. This is due

to the high-frequency content made by micro images structure (small repetitive images, dark

corners) [60]. The poorest performance of light field data format compression was in cases where

even the image had a higher frequency content. Nevertheless; in cases, where an image does

not contain much high-frequency content, All Intra HEVC configuration achieved worse results.

HEVC video coding scheme performed much better than still image compression as it could be

expected. In contrast with [59], it was shown that there is no significant difference between spiral

and line scan mapping in terms of coding performance when HEVC is used. The conclusion of

the paper is that there are not negligible differences of coding performance between different

light field data formats and therefore further research is needed in order to develop a coding

scheme which would perform more consistently across various configurations and light field data

formats with various content [60].

7.4.3 High Efficiency Coding of Light Field Images Based on Tiling and

Pseudo-temporal Data Arrangement

Another approach which can be included in the category of pseudo-sequence compression was

presented in [38], from group of authors with previously mentioned work [55], [68], [60]. This

work was also a response paper to the call for proposals of ICME Grand Challenge 2016 men-

tioned before.

This low-complexity method is preprocessing raw light field data structure into a pseudo-

temporal sequence of frames which are compressed by standard HEVC [38]. The proposed

method is trying to exploit the data structure by form of reorganization of source data. The

first step lays in partitioning raw light field data (shown in Figure 6.1) into non-overlapping

tiles with resolution TW × TH . Authors empirically found dimensions (TW , TH) = (464, 320)

to provide sufficient correlation between tiles which are further encoded. Tiles are reordered in

raster/line scan mapping (same as in previous work, but here applied to different light field data

format). This reordering scheme is based on assumption that adjacent tiles are more correlated
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than non-adjacent tiles. The last step of whole compression scheme is HEVC encoder, which in

this case can make use of both spatial and angular information redundancy. Spatial redundancy

is exploited by the inter-frame prediction and angular redundancy is exploited by intra-frame

prediction as motion displacements. The proposed method performed better when compared to

a reference JPEG compression applied to the whole lenslet image, especially at lower bitrates.

For lower compression ratio (bpp = 1) the difference between scheme which exploits spatial and

angular data redundancy (proposed) and scheme which only exploits spatial dimension (JPEG)

seems to vanish [38].

In [61] authors went a little bit further and tested what effect does the tile has on the coding

performance of the same method. In contrast to previous work (rectangular shaped size), square

shaped tiles of following sizes were chosen: (TW , TH) = {(64, 64), (256, 256), (512, 512), (768, 768)}.
However, analysis performed showed that changing the tile size has almost zero impact on cod-

ing performance.

Same authors evaluated proposed compression scheme against JPEG2000 in [62]. The procedure

was the same - light field raw data partitioned into tiles and then encoded as pseudo-sequence.

JPEG2000 compression scheme applied directly to light field raw image data. JPEG2000 out-

performed HEVC in the experiment in terms of objective metrics (PSNR, SSIM).

Figure 7.3: Sequence of light field data formats which is typical for pseudo-sequence based coding
schemes.

7.4.4 Pseudo-sequence-based Light Field Image Compression

Another pseudo-sequence coding scheme was presented in [39], which was also a response paper

to ICME Grand Challenge 2016 call. In this scheme, the raw light field image data are trans-

ferred into multiple views, which are more natural to us and also to current state-of-the-art

coding schemes. Coding order is tailored in a way that high correlation between adjacent views

is exploited, both vertically and horizontally. More image similarity can be found within the

images in the centre area as has been also shown in this thesis in Figure 6.5. With this in mind, a

centre view can be used for better prediction of other views. In the proposed scheme, the centre

views are encoded as I frame (in 2D structure as shown in Figure 6.2). The remaining frames

partitioned into different layers and are encoded as P and B frames in a symmetric 2D hierar-

chical structure [39]. Higher layer images are predicted by images from lower layers. Therefore

lowest quantization parameters are assigned to I frame and higher quantization parameters to
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higher layer images. Two reference video coding mechanisms, HEVC and JEM, were used and

compared with two still image coders, HEVC Intra frame coder and JPEG. JEM is novel coding

scheme which is based on HEVC and can be seen as its follower. Both video schemes proved

consistently better performance on all tested images. However, there were some exceptions,

where still image HEVC Intra compression showed better coding gain for same objective qual-

ity. The reason was not explained and is under exploration [39]. Also, it was shown that HEVC

with different quantization parameter performed better over HEVC with constant quantization

parameter for all images - this proves necessity of rate allocation between views in order to

achieve better compression [39].

7.4.5 Interpreting Plenoptic Images as Multi-views Sequences For Improved

Compression

Novelty between compression schemes using HEVC coding algorithm was proposed in [43], where

Multi View (MV) extension of HEVC is being used. The proposed scheme, which is a response

to ICIP 2017 Grand Challenge, represents two-dimensional prediction and rate allocation within

the multi-views structure. Proposed method (same as the previous method) is only using central

13× 13 out of 15× 15 sub-aperture images which are obtained from Lytro Illum cameras. The

reason was not explained, however it could be because of the edge images are often variously

distorted. HEVC-MV extension allows this scheme to use intra and inter-frame (view) predic-

tion and thus exploit correlation which within each image and between different view images

[43]. Two-dimensional prediction scheme starts from an initial base image which is quantized

with base quantization parameter. Then level 1 and level 2 images are defined, where level 1

images are predicted mainly from base frame and level 2 images use level 1 of base frame for

prediction. All other frames are named as leaf frames and are predicted from all previously

mentioned frames, but cannot be used for further prediction. The advantage is that leaf frames

are efficiently coded because the neighbour frames are already coded [43]. Level of predictor

frames is taken into account in rate allocation, where quantization parameters are distributed

in a way that better quality is obtained by compression. Quantization parameter is dependent

on both two dimensions of prediction scheme which is more described in [43].





Chapter 8

Light Field Image Quality Evaluation

Level of quality, both objective and subjective, is the most important factor regarding image

compression in most of the applications. Few published papers were focused mainly on compar-

ison of several plenoptic content-compressing techniques such as [54], [69], [70] and [71]. Most of

them used mainly PSNR and also SSIM objective metrics and later two also performed a sub-

jective assessment. Some of the used objective and subjective techniques are briefly described

in following sections.

8.1 Subjective assessment

Quality of user experience is the utmost importance in light field data acquisition, compression,

rendering and displaying technologies. Not many publications dealt with subjective and objec-

tive metrics targeted for light field data quality assessment. In [69] and [70] objective assessment,

but more importantly also subjective evaluation was performed. Subjective assessment in [69]

was performed on five rendered sub-aperture views from sub-set of images from EPFL light field

image dataset [30]. The evaluation was performed by subjective tests based on Double Stimulus

Continuous Quality Scale (DSCQS), where two images (reference and compressed with com-

pression rate under test) were presented side-by-side. Subjects rated image quality by marking

from 1 to 5 (Bad to Excellent). The position of reference and compression was randomized and

not shared with subjects. Subjective tests were performed using Quality Crowd framework [69],

a crowd-sourcing approach which moves a testing effort to the internet community making the

subjective test more affordable, available and less time-consuming. However, this method only

evaluates pairs of rendered views (still images) in a traditional way. Therefore this approach

does not measure subjective perception of light field data in initially intended enriched format,

where user can interact with the content [72].

In [72] new methodology for subjective tests and assessment was proposed. This approach

takes into account the fact that light field content should be viewed interactively and not as the

pair of rendered views only. In this, completely new approach, it is not easy to determine how

many and which of multiple possible rendered views (made by refocusing, change of perspective,

49
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...) are to be tested. Therefore the user is free to interact with the light field content using user

interface. Several stimuli-comparison methods are used to obtain measured data from a subject

for respective test material [72]. Data gathered from subjects were then calculated by Mean

Opinion Score (MOS) using following equation:

MOSi =
1

N

N∑
j=1

mji (8.1)

where N is number of subjects performing the test, j participant under test, i showed stimulus,

mji score for i and j.

Another approach was presented in [71], where authors made 3D dense light field dataset

(made of 9 synthetic and 5 real scenes to cover a large variation of scene types and lightning

conditions) together with various distortions and subjective scaling [71]. And because there

are different light field processing methods, different artefacts were simulated. Transmission

(HEVC encoder), reconstruction (several interpolation techniques to obtain dense light field

form sparse views) and display (crosstalk between adjacent views) sources of distortion were

modelled for every scene from dataset. After that, large subjective assessment experiment was

performed, where 40 participants compared presented light field data (each participant compared

around 120-180 pairs) in pair-wise based rating method and subjective results were analysed in

terms of Just Objectionable Difference (JOD) [71]. Subjective scores gathered from interactive

3D light field viewing layout were used to evaluate seven different objective quality metrics

(popular image, video, stereo and multi-view metrics). Mentioned paper [71] was published

during the time this thesis was being written and it was not possible to implement the objective

metrics which performed well with subjective tests. However, Gradient Magnitude Similarity

(GMSD) performed reasonably well and is mentioned in following sections and also implemented

in compression tool which is described later in chapter 9.

8.2 Objective assessment

Numerous papers which were mentioned in chapter 7, proposed some kind of compression scheme

and also performed some preliminary performance evaluation of proposed scheme. What all the

papers had in common is that only objective metrics were used and most frequently the used

metric was PSNR sometimes followed by SSIM. It should be mentioned, that currently there is

no standardized or by researchers agreed objective metric which would be used for assessment

of light field content.
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8.2.1 Peak Signal-to-Noise Ratio and Mean Squared Error

Peak Signal-to-Noise Ratio, PSNR, is the ratio between the maximum possible signal power

and the power of the noise signal. In compression, a noise signal is considered to be a residual

signal between original image and image reconstructed using compression decoder. PSNR for

two-dimensional signal (one channel) is computed as follows:

PSNR(x, y) = 10 log10
MAX2

MSE(x, y)
[dB] (8.2)

(x, y) are indices of each image in sub-aperture structured matrix (example in Figure 6.4),

MAX = 255 for 8 bit depth image, MSE is Mean Squared Error (MSE), which is calculated

followingly:

MSE(x, y) =
1

mn

m∑
i=1

n∑
j=1

[IM(i, j)−REF (i, j)]2 (8.3)

where (m,n) are dimensions of one view (m = 434;n = 625). For example in Figure 6.4,

IM(i, j) is the image under test image and REF (i, j) is reference, original image pixel value at

corresponding pixel coordinates (i, j).

This means that higher PSNR value means higher image quality and vice versa. PSNR is the

most elementary and most popular full reference image quality assessment metric together with

MSE. The main reason of their popularity is their simplicity and apparent interpretation [73].

On the other hand these two metrics does not follows the principles of how human visual system

perceives quality. It is known fact that PSNR and MSE achieved bad results when compared

to structural based metrics since some types of distortions applied to the same image can result

in same values of MSE and therefore PSNR (this was also demonstrated in [73]). In [74] it

was found that PSNR is more sensitive to additive Gaussian noise when compared to structural

based metric (SSIM).

8.2.2 Structural Similarity Index

SSIM, in contrast to PSNR, is image quality assessment model based on assumption that HVS is

adjusted on extracting structural information from observed scene as it measures degradation of

structural information [73]. SSIM is not calculated directly as the numerical difference between

images, but as a combination of three factors - luminance comparison, contrast comparison and

structure comparison.

Luminance of each of the two input signals is computed as mean intensity, then the mean

intensity is subtracted from each. Contrast component is calculated as standard deviation

(also for both input signals). After that the standard deviations are used for normalization of

input signals which leads to structure component. Subsequently after these steps, 6 components

are compared by using three comparison functions described more in detail in [73]. Three

results of comparisons are finally combined (multiplication) into SSIM index, where all three
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components can be importance-adjusted with their respective parameters. SSIM performs better

and brings more usable information when performed locally rather then globally [73]. Authors

used it initially with 11×11 circular-symmetric Gaussian weighting function to prevent blocking

artefacts in SSIM index map. To obtain one number which tells about image quality, mean value

of SSIM index map is calculated. Local evaluation can be also exploited when there is ROI and

values in SSIM index map can be weighted accordingly [73]. The main drawback of SSIM when

compared to PSNR or MSE is its higher computational complexity. In [74] it appears that

values of SSIM can be predicted from values of PSNR and the other way around. SSIM is more

sensitive to artefacts made by JPEG compression, but in overall it was discovered that PSNR

and SSIM mainly differ on their degree of sensitivity to image degeneration [74].

8.2.3 Multi-Scale Structural Similarity Index

Multi-Scale Structural Similarity Index (MS-SSIM) was derived from its predecessor and can be

seen as extension in terms of scalability. SSIM performs on single scale, but subjective evaluation

of given images happens with different observation settings - display resolution, distance between

image plane and observer [75]. This multi-scale method includes image at different resolutions

into index calculation. First, contrast and structural comparison is calculated like in SSIM.

Then, low-pass filter (down-sampling by factor of 2) is applied on distorted and reference image

N -times to achieve N−th scale. After each iteration of low-pass filtering, contrast and structural

comparison is calculated. At the last iteration, N− th scale, luminance comparison is calculated

as well. The overall SSIM index is estimated from combination of obtained values at different

scales similarly to SSIM. MS-SSIM was shown to outperform SSIM for all objective criteria

evaluated in [75] when properly calibrated.

8.2.4 Gradient Magnitude Similarity Deviation

GMSD is a novel FR-IQA (Full Reference (FR), Image Quality Assessment (IQA)) metric, pro-

posed in 2014 [76] and later found to perform reasonably well on light field data [71]. First, in

GMSD, local quality map is computed by locally comparing gradient magnitude maps of the

reference and compressed (distorted) image. Two Prewitt filters (horizontal and vertical direc-

tions) are convolved with the distorted and reference images to obtain horizontal and vertical

gradient images of both. Gradient magnitudes are calculated from the results of convolution

with kernels for vertical and horizontal lines. Gradient magnitude similarity map (local qual-

ity map) is pixel-wise calculated from the individual magnitudes. It was shown that gradient

magnitude similarity map is highly sensitive to distortions like blocking artefacts in mostly flat

areas, which is in line with the HVS [76].

Another step is to calculate average of gradient magnitude similarity map. This averaging as-

sumes that each pixel is equally important in the objective estimation. Other similarity-based

algorithms are using weighted pooling instead of average pooling, which does not every time

get better results and it also increases computational time [76]. JPEG2000 compression intro-
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duces usually two types of artefacts - blurring and blocking. Blurring is causing more damage

in textured areas and less in flat areas. On the other hand, blocking cause more perceivable

degradation in flat areas rather than in textured areas. These facts are however ignored by

average pooling as it does not reflect local variations in local quality map [76]. GMSD calcu-

lates standard deviation of gradient magnitude similarity map, which takes into account that

variation of local quality is correlated with the subjective quality [76].

Image distortions, which can be encountered in digital photography, lead to noticeable and

visible structural changes, which are highlighted in gradient domain [76]. Authors found that

using magnitude of gradient alone can be very efficient in contrast with other gradient based

image quality assessment models, where additional information is being computed from gradi-

ents. This additional information can be computationally expensive with no eminent profit [76].

GMSD was found to be more efficient and accurate when compared to other state-of-the-art full

reference image quality assessment models.





Chapter 9

Compression Tool

This chapter is dedicated to the practical part of this thesis. Goal of the practical part is to

implement a plenoptic data compressing tool, which can be further used for finding the ways

how to effectively compress light field data.

A tool which enables the use of several different compression schemes applied to various types

of light field data formats is implemented. Several pre-processing techniques, state-of-the-art

compression schemes and objective metrics (which are mentioned in 6, 7 and 8 respectively) are

implemented. The tool is created in a form of GUI in program environment Matlab. Video

codecs used in compression schemes were implemented utilizing open source build of FFmpeg

tool, which is described later.

Figure 9.1: Block diagram of implemented compression tool.

9.1 Overview

All individual parts of the implementation are grouped within one GUI, where user is allowed to

load light field data, apply compression schemes, modify compression parameters, use different

light field data formats, bulk compress with various settings, compute objective metrics, save

55
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Figure 9.2: Graphical User Interface of compression tool

(load) previously compressed data, plot objective metrics and subjectively compare light field

data. Generalized block diagram of implemented compression tool is shown in Figure 9.1.

Structure of implemented GUI can be seen in Figure 9.2 and individual blocks/parts and its

possibilities are described in following sections.

9.1.1 Input Data

The first step is to load light field data which are to be further processed. This tool was im-

plemented to work with the datasets which appeared the most in current literature. EPFL

dataset [30] which was used in Grand Challenges focused on Light Field Image Coding in 2016

and in 2017 by Institute of Electrical and Electronics Engineers (IEEE) (the challenge in 2017

was ongoing during the time this thesis was created). Most of the current light field datasets

contain data captured by using the two consumer Lytro cameras. Lytro camera images, which

are usually stored in LFP, LFR or RAW format, are transferred into 5D light field data format
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using Light Field Toolbox, mentioned in chapter 5.3, and are stored in MAT-files (the file for-

mat used for storing data from Matlab environment). Each MAT-file contains the light field,

camera metadata, calibration data, white images and also thumbnail image of center view of

the particular light field.

Lytro F01 and Illum camera images were primarily tested during the implementation of

this tool because the vast amount of freely available light field data is coming from these two

cameras. Any photograph coming from those two cameras can be processed by Light Field

Toolbox to obtain MAT-file containing mentioned 5D light field data which can be loaded into

the implemented compression tool.

Lytro F01 (1st gen.) light field data is stored in the 9×9×381×383×4 array as it contains

9 × 9 sub-aperture images/views each with resolution 383 × 381 and 4 channels (3 for colour

components RGB and 1 for pixel confident weight). The size of MAT-file containing F01 light

field data is around 50 MB. Lytro Illum (2nd gen.) light field data is stored in the same manner

in 15 × 15 × 434 × 625 × 4 array and the size of MAT-file containing Illum light field data is

around 500 MB.

Figure 9.3: Graphical User Interface - data input

After the MAT-file with light field data is loaded, a thumbnail image of centre view and basic

information about input light field file (camera type, dimensions of RAW lenslet data, light field

dimensions) are displayed. Also several options how to inspect input data more closely are

available - lenslet raw data (”Lenslet image”), video sequence showing all sub-aperture images

in horizontal line scanning (”Subaperture views”) or interactive perspective view (”Perspective

view”), where user can navigate between individual sub-aperture images via mouse click and

drag control.

9.1.2 Compression Possibilities

The main part of the implemented tool, compression scheme settings, allows the user to choose

between several current state-of-the-art still and video image codecs and compression schemes

which were proposed in the literature (combinations of different existing compression codecs and
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different light field data formats to which the codecs are applied).

The user is able to use and analyse the performance of three video codecs (x265, x264 and

VP9) and one still image codec (JPEG2000). All three mentioned video codecs were utilized

through cross-platform tool FFmpeg [77]. FFmpeg is a free software project, that encapsulates

libraries and tools for recording, converting and streaming of audio and video data. The tool is

licensed under the GNU Lesser General Public License 2.1 (or later) and several other optional

optimization parts are covered by GNU General Public License 2 (or later) [77]. All three codecs

are covered by their codec libraries, which needs to be installed (libraries libx265, libx264 and

libvpx). FFmpeg’s individual tools are controlled from command line - thorough documentation

can be found in [77].

Video codec x265 (HEVC) was selected because it was used in the majority of implementations

presented in current literature dealing with pseudo-sequence-like coding of light field data ([60],

[38], [61], [62], [39], [43], [40], [41], [42], [65], [67]) and it’s predecessor, x264 (AVC), was also

implemented in several proposed coding schemes ([59], [63], [64]).

VP9 codec was selected thanks to the fact of an easy extension (another FFmpeg library) to

the previously selected video codecs. Another reason was the fact that, to my knowledge, the

performance of VP9 coder has not been analysed on light field data yet. However, in [78] x265

was found to be significantly more efficient over VP9 in terms of natural image content, but

VP9 can perform very similar to x265 when it comes to synthetic data. Also, computational

times of VP9 are much higher when compared to x265 or x264 [79].

Compression Parameters

Several compression parameters are in place to be tuned to achieve the best possible quality.

Two rate control modes, which are the same for all three video codecs, are used - Constant Rate

Factor (CRF) and Quantization Parameter (QP). CRF is the default rate control mechanism

for x264 and x265 encoders. This rate control mechanism keeps output quality at a certain

level and varies QP between single frames where needed. This is allowed thanks to the motion

between frames, where CRF applies higher QP to frames where motion appears and lower QP

to frames with less or no motion. The second control mechanism, QP, simply applies the same

quantization parameter to all frames. Benefits of CRF over QP are clear, especially in the scenes

with fast movement. CRF can be set from 0 to 51, where 0 is perceivably lossless and 51 is the

worst possible quality.

Several options can be modified for both x264 and x265 encoders (these options were selected

so they can be set in both encoders, except framerate which can be set for VP9 as well):

• Framerate - framerate can be selected for all three video codecs.

Range from 1 to 100 (integer).

• I frames - sets maximum period between Intra (key) frames in Group of Pictures (GOP).

If this parameter equals 1, x265/x264 All Intra configuration is set. Intra frame acts as a
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Figure 9.4: Graphical User Interface - compression settings panel

stream partition, no frame can reference to the frames from other side of its I frame. For

regular video compression is it usually set to 1×FPS.

Range from 0 to 1000 (integer).

Default is 250 for x264 and x265.

• Max. CU size - sets maximum size of CU. Low number means more possibilities for

parallelism. High numbers can encode flat large areas more efficiently. Faster presets of

x265 usually use lower CU size.

Range 16× 16, 32× 32, 64× 64 (not limited) for x265. x264 only works with 16× 16.

Default is 16× 16 for x264 and 64× 64 for x265.

• Reference frames - sets maximum allowed number of L0 (List 0) past frame references.

It means that size of Decoded Picture Buffer (DPB) can be controlled, i.e. the number

of previous frames that P-frames can be referenced to [46]. Higher number increase the

computational time, but it can reduce distortion and compression artefacts.

Range from 1 to 16 (integer) for x264 and from 1 to 6 (integer) for x265.

Default is 3 for x264 and x265.

• Max. consecutive B frames - sets maximum number of consecutive B frames in GOP.

When set to 0, P/I frames are forced (low latency mode). This parameter also affects
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computational time.

Range from 0 to 16 (integer).

Default is 3 for x264 and 4 for x265.

• AQ strength - sets the strength of Adaptive Quantization (AQ) offsets. Setting the AQ

strength to 0 disables AQ completely. Higher values are taking more bits from complex

areas (edges, structures) and reallocates them to simple (flat) areas to maintain detail

there.

Range from 0.0 to 3.0 (float).

Default is 1.0 for x264 and x265.

Documentation of x264 and x265 encoder settings can be found in [50] and [53] respectively.

All above mentioned parameters can be set back to default settings by clicking on button ”Set

back to default”. Tune parameter is a group of other individual parameters set in a way that can

be found useful when encoding the certain type of video data. For x264 the tuning parameter

can be set to film, animation, zerolatency, ssim, psnr, grain, stillimage and fastdecode. For x265

the list is tighter - zerolatency, ssim, psnr, grain, fastdecode. Following list explains each tune’s

purpose:

• film - lower deblocking, used for high quality content

• animation - higher deblocking (for large flat areas), more reference frames

• grain - preserve grain structure in grainy material, tries to keep minimal QP fluctuation

QP between frames

• stillimage - lower deblocking, for slideshow-like content, still images

• psnr and ssim - are used for codec debugging, basically disable all psycho-visual optimiza-

tions (optimizations which prioritize perceived visual quality before metric scores)

• fastdecode - disables several bottlenecks such as loop filters, weighted prediction and intra

prediction in B frames for faster decoding on low computational power devices (also aimed

for 4K with high bitrate)

• zerolatency - removes the latency both at encoder and decoder site, used for low latency

streaming

Note that some of the preset tunes already includes some of the settings which can be set

above the tune menu. Setting of any individual tune preset will for encoding overwrite previously

selected settings, therefore it should be used carefully.

For a JPEG2000 compression only classic compression ratio and tile size can be set.

Light Field Data Formats

Light Field data comes in a 5D array, which can be reorganized into several data formats. For

example, pseudo-sequence-like compression schemes are using separate sub-aperture views as

an input sequence of frames into video codec and JPEG2000 can be for example applied to

lenslet image (raw demosaiced data from imaging sensor). Another approach, which appeared
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in literature, is to apply video compression to lenslet image which was partitioned into non-

overlapping blocks. All these approaches are included in the options of this compression tool

and user can experiment to find better combination.

Once the input light field is reorganized into individual 15 × 15 sub-aperture views (for Lytro

Illum), JPEG2000 compression can be applied directly. However more interesting is to look at

the sub-aperture views as a sequence of correlated frames (video sequence), therefore a pseudo-

sequence. This pseudo-sequence can be compressed by using one of the used video codecs

mentioned above. In order to increase compression efficiency, several preset order settings were

implemented as can be seen in Figure 9.5. Input sequence of images can be reordered based

on one of the selected order schemes and this reordered sequence is used as an input for video

codec.

Figure 9.5: Input sequence reordering/scan possibilities for Lytro Illum camera - a) horizontal
lines b) vertical lines, c) horizontal meander, d) vertical meander, e) hybrid, f) inward spiral, g)
outward spiral.

Figures above are examples only applicable to Lytro Illum camera images, where corner

views are completely black and are not included in the pseudo-sequence. After the compression,

corner black images are automatically generated only to fill into the 5D array so the data can

be used in interactive subjective analysis tool (which is described later in this chapter). Once

this reordering was implemented, it could be easily applied for preprocessing of another light

field data format - non-overlapping blocks of raw lenslet image. Same scan orders can be seen

in Figure 9.6, when applied to square matrix of sub-aperture views of Lytro F01 camera.

Another possible light field data format is the lenslet image. Possible structures of light field

data were described in 6. Whole lenslet image can be compressed by JPEG2000 compression as

a regular still image and reorganized into the light field after decoding. This approach was used

in [55], [59] and [38] in different forms. Here, JPEG200 was selected from still image codecs as

it was proved to be the best solution among still image codecs [54] on individual sub-aperture

images. Another approach is to partition lenslet image into non-overlapping blocks of required
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Figure 9.6: Input sequence reordering/scan possibilities for Lytro F01 camera or any rectangular
shaped image matrix - a) horizontal lines b) vertical lines, c) horizontal meander, d) horizontal
meander, e) hybrid, f) inward spiral, g) outward spiral.

sizes as was shown in [38]. Size of blocks can be chosen, but is automatically precomputed for

the user to pick from. The dimensions are calculated so the overall resolution can be divided

by selected block resolution to get integer number of blocks in row/columns (so there are no

remaining blocks of various dimensions left). After the lenslet raw data is partitioned into blocks,

same ordering schemes (as in Figure 9.6) can be applied. The number of available order settings

is limited to the options a, b, c and d because these ordering schemes can be implemented easily

for any possible dimensions of the matrix (partitioned blocks of whole lenslet image). During

implementation, it was found that in this compression scheme scan order does not significantly

influence this type of data format (lenslet blocks) therefore implementation of other ordering

schemes was found to be unnecessary.

9.1.3 Objective Metrics

While input data is being compressed and decompressed with selected compression settings, ob-

jective metrics in form of PSNR, SSIM, MS-SSIM and GMSD can be calculated for Y component

from YCbCr colourspace. First two metrics were selected because they are the most frequently

used in literature, where some image processing algorithm performance is being analysed. To my

knowledge, so far only few papers were devoted to objective and subjective quality assessment

of light field data [69], [70], [72] where PSNR and SSIM were applied to YCbCr colourspace as

objective metrics. This is probably due to their stabilized position in image processing objective

assessment and the fact that no other objective metric targeted for light field data was devel-

oped yet. In [71] GMSD and MS-SSIM were applied and GMSD was found to perform well on

light field data. In [70] it was shown, that objective and subjective metrics do not have to show

the same trend for certain coding approaches. Description of each used metric can be found in

chapter 8.

As can be seen in Figure 9.7 user has the option to choose the number N which says that
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Figure 9.7: Graphical User Interface - objective metrics

chosen objective metric(s) will be calculated for each N − th sub-aperture view (this was used

mostly during implementation period to save computational time and still obtain some rough

results). YCbCr colourspace is the most frequently selected colourspace in terms of objective

assessment of light field coding techniques, primarily the Y component. It is easy to implement

calculations in other colourspaces, but it was found to be unnecessary for the scope of this thesis.

Calculated metrics are also included in MAT-file which can be saved after each session or can

be compared with other compression schemes by plotting them in the data management section

(which is described in the following section of this chapter).

Interesting objective metric for further analysis is GMSD and its Gradient Magnitude Similarity

Deviation (GMS) Index Map (results of GMSD as well as other metrics are described in chapter

10). GMS Index Map can be computed together with objective metrics during bulk processing

(GMSD is derived from GMS), but GMS needs to be calculated for all sub-aperture views so it

can be interactively analysed later in ”Data Management” section/panel.

9.1.4 Data Management

This area in GUI serves for data management. Currently, compressed data can be saved under

the required tag or previously compressed datasets can be loaded. Datasets can be renamed

and moved in the list - this may be useful for plotting the objective metrics as the name of each

dataset also serves as its name in the legend plotted charts. Most importantly objective and

subjective comparison of selected datasets is available within this section.

When the user clicks on ”Plot metrics” all computed metrics for selected datasets are plotted

in form of Rate-Distortion (R-D) charts. One set of graphs is plotted for mean average (if it was

selected and computed) and one set for the median (again if selected and computed). Each set

shows charts for PSNR, SSIM, MS-SSIM and GMSD (if selected and computed). This allows the

user to immediately carry out an objective analysis of performed data compressions with different

settings. All charts shown in chapter 10 are directly saved from charts plotted by using this tool.

Subjective comparison is available by clicking on ”Perspective view”, which opens new figure

showing side-by-side comparison of input light field data with compressed light field data as



64 CHAPTER 9. COMPRESSION TOOL

Figure 9.8: Graphical User Interface - data management panel.

shown in Figure 9.9. Initially, the data for first compression ratio/factor (first in bulk processing)

is displayed, but the user has the option to navigate through the compression ratios which were

selected for bulk processing. Also the centre sub-aperture image is shown initially, but same as

in the input data section, the user can navigate through the sub-aperture views by mouse click

and drag control over one of light field images. Navigation between both figures is linked, so by

controlling the perspective in the left image, perspective on the right changes as well. Therefore

the user can check light field images more easily for example for visible compression artefacts.

The exact same controls are available, when the user clicks on ”GMS Map View”. Here, the

user can change the perspective within sub-aperture views for compressed light field data in the

right window and corresponding GMS Index Map is shown on the left side (again the navigation

is enabled on both figures). GMS Index Maps were rearranged into light field data structure so

it can be used in this interactive visualization. Example of this feature is shown in Figure 9.10
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Figure 9.9: Graphical User Interface - interactive subjective comparison, where user can control
the perspective.

Figure 9.10: Graphical User Interface - interactive GMS Index Map analysis, where user can
control the perspective together with corresponding GMS Index Map.





Chapter 10

Performance Analysis

In order to analyse performance of used compression techniques and also the effects of individual

parameters, multiple tests were conducted using light field dataset. EPFL dataset [30] contains in

total 118 images, which are divided into 10 different categories based on their content. Selection

of 12 images (shown in Figure 10.1) from this dataset was used for performance analysis. Images

were selected in a way that different content is represented and were also selected based on

varying distance between the camera and the object(s) in captured scene.

Figure 10.1: Subset of 12 images used for performance analysis - a) Ankylosaurus, b) Bikes, c)
Bush, d) Car dashboard, e) Friends, f) Gravel Garden, g) Palais du Luxembourg, h) Railway
lines, i) Reeds, j) Spear Fence, k) Sphynx, l) Vespa.

First, comparison of all included compression techniques for four different light field images

can be seen in Figure 10.2, Figure 10.3, Figure 10.4 and Figure 10.5.

In Figure 10.2, JPEG2000 applied on sub-aperture views performed surprisingly well when

compared to its performance on other light field images. The number of bits per pixel was

computed as the file size of the final image divided by the total number of pixels for the used

format of light field data. This may be caused by uniformly coloured background covering

roughly half of the whole image which can increase the compression efficiency. Otherwise it

performed badly as there is more structural content in all the other tested images.

As can be seen x264 slightly outperforms x265 in most of the tested light field images. The

reason may be that x265 (as well as VP9) were designed to best suit for high and ultra high

67
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Figure 10.2: MS-SSIM and GMSD for all compression schemes - Ankylosaurus.

resolution content [80]. Resolution of one Lytro Illum view (one frame) is 625×434 pixels which

is even below SD resolution. x265 is using variable size of coding blocks (16 × 16, 32 × 32,

64× 64) based on the content and its predecessor x264 is using only 16× 16 size of basic coding

blocks. In [52] it was shown that forcing smaller size of coding blocks can change the overall

quality and that using higher coding blocks is being more effective on high resolution content.

Performance of x265 encoder with different sizes of basic CTU was also tested; however, there

was zero difference between the obtained results.

Figure 10.3: MS-SSIM and GMSD for all compression schemes - Friends.

It can be shown that x265 outperforms x264 at small bitrates (high compression ratios).

This fact is more visible in the cases where data input was in form of lenslet blocks rather than

individual views (x265 and x264 - lenslet blocks corresponds to yellow and cyan R-D curves

respectively). Among video codecs, VP9 was outperformed in all cases and in some cases it was

performing worse than still image codec. VP9 was found to be the most time expensive (ap-

proximately 10 times more than x265/x264), which can be caused by lower effectiveness of VP9

build in the used version of FFmpeg (3.3.1), but it was also shown in [79]. With one exception,

JPEG2000 was found to perform better when applied on individual sub-aperture images rather
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Figure 10.4: MS-SSIM and GMSD for all compression schemes - Gravel Garden.

Figure 10.5: MS-SSIM and GMSD for all compression schemes - Railway.

than lenslet image. Mention worthy is the fact that JPEG2000 lenslet technique shows better

results with GMSD than with PSNR, SSIM or MS-SSIM. JPEG2000 lenslet compression tends

to produce compression artifacts as shown in Figure 10.6. These artifacts starts to be visible

already when compression ratio is around 30, which corresponds to values around 0.8 bpp (file

size of around 9 MB). The possible solution could be to use the algorithm to fill in the dark

pixels in lenslet image.

10.1 Pseudo-sequences

As is mentioned in 7, pre-processed light field data into pseudo-sequence of individual views can

be compressed using video codecs. Performance of state-of-the-art codecs and their settings on

pre-processed light field data is evaluated in following subsections.



70 CHAPTER 10. PERFORMANCE ANALYSIS

Figure 10.6: Illustration of JPEG2000 lenslet compression artifacts - Pillars (cropped).

Table 10.1: Comparison of different ordering schemes - BD-PSNR - average difference between
R-D curves. Scheme lines horizontal was used as a reference (0 values). Left - x265, right - x264

10.1.1 Sub-aperture views sequence

Array of sub-aperture images can be reordered into pseudo-sequence and encoded by video codec.

Seven different ordering schemes which are shown in Figure 9.5, were evaluated on all twelve

images using x265 and x264 video encoders. Differences between the individual R-D curves were

evaluated using Bjøntegaard metric (BD-PSNR), which computes average difference between

two R-D curves [81]. Experiment results for all twelve images and all schemes are shown in 10.1.

In overall, schemes spiral outwards, hybrid and meander horizontal performed better than

other schemes. Hybrid consistently outperformed the rest of the schemes in case of x264 encoder

and spiral outwards was consistently better for x265 encoder. Line scanning schemes and spiral

inwards scheme performed badly for all tested images and for both encoders. All four lines and

meander-like ordering schemes shows the same trend for both video encoders.

Because PSNR does not correspond well to how HVS perceives quality, MS-SSIM R-D curves

(only for x265 encoder) were also evaluated using Bjøntegaard metric (Table 10.2).

In terms of MS-SSIM (Table 10.2), hybrid scheme outperformed other schemes on pictures

g) Palais du Luxembourg and j) Spear fence (Figure 10.1), which both have similar content -
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Table 10.2: Comparison of different ordering schemes - Bjøntegaard metric calculated for MS-
SSIM R-D curves. Scheme lines horizontal was used as a reference (0 values).

object (fence) in the near distance from the camera lens. All further tests with pseudo-sequence

of sub-aperture views are using spiral outwards ordering scheme if not mentioned otherwise.

In terms of preset tune settings for x264, it was found that tune animation outperformed all

other tunes in all tested images. Animation tune, which is initially intended for compression of

cartoons, is using more reference frames (B frames and L0 past reference frames), strength of

deblocking filter is raised (less detail is preserved) and strength of AQ is lowered (more bits are

allocated for complex areas). Results of different tune settings are shown in Figure 10.7.

Figure 10.7: Different preset tunes for x264.

Based on this result, parameters such as number of used reference frames or AQ strength

were evaluated more thoroughly. AQ strength can be set from 0 (turned off) to 3.0. The

higher the number is, the more bits are allocated for compression of flat areas; therefore, bits

are taken from areas with structural details. It was found that between 0.4 and 1.0 (default)

performs the best for all objective metrics. The results can be seen in Figure A.1 in Appendix A.

Demonstration of the AQ strength value effect on flat and detailed areas is shown in Figure A.2

in Appendix A.

Another tested parameter is the maximum number of reference frames. By default the
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number is set to 3 for both encoders. As is shown in Figure 10.8, compression can achieve better

results when maximum number of reference frames is set to 16. Measured computational time

was within the same range for all frame reference settings of x264 encoder; however, this could

be a subject for further testing. For x265 encoder only numbers within the range from 1 to 6 can

be set. Nevertheless, it seems that this does not have any effect (or very little) on compression

performance of x265 applied to spiral outwards-ordered pseudo-sequence of sub-aperture views.

Also the computational time for x265 with maximum number of reference frames set to 6 was

higher.

Figure 10.8: Performance of x264 encoder with different maximum number of reference frames.
Left - PSNR, right - GMSD.

It is demonstrated that forcing more maximum consecutive B-frames can improve compres-

sion efficiency. Figure 10.9 shows that highest possible number of consecutive B-frames in x264

encoder settings is beneficial when encoding sub-aperture views as pseudo-sequence.

Figure 10.9: Performance of x264 encoder with different maximum number of B-frames. Left -
MS-SSIM, right - GMSD.

Two previous results show that compression efficiency is increasing with higher number of

reference frames. This is confirmed in Figure A.3 in Appendix A, where more I-frames were
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forced to be used in compressed sequence. The number in legend indicates the period with which

I-frame occurs. For x264 and x265 in FFmpeg this is, by default, set to 250. It is clear that

forcing more I-frames is unnecessary as there are no significant changes between consecutive

frames.

Comparison of x264 encoding with default settings against x264 with increased number of

B-frames and reference frames can be seen in Figure A.4 in Appendix A. Computed BD-PSNR

indicates improvement of 1.04 dB over the x264 encoder with default settings.

10.1.2 Lenslet block sequence

Another possibility to encode light field data as pseudo-sequence is to partition lenslet raw data

into non-overlapping blocks of certain width and height, sort them and use as input to any of

included video codecs. In Figure 10.10, partitioning of lenslet raw data into individual blocks

can be seen (the tool offers tiling into M ×N non-overlapping blocks as was described in 9.1.2).

The sequence of blocks/tiles can be then sorted using several ordering schemes. Effect of block

size and order of the blocks in sequence was analysed.

Figure 10.10: Example of lenslet image tiling into blocks - a) lenslet raw image with depicted
partition into small (black) and larger (yellow) blocks, b) sequence of small blocks (tiling 31×25),
c) sequence of larger (yellow) blocks (tiling 5× 5).

Five different dimensions of blocks were tested using horizontal meander ordering. Lytro

Illum lenslet image was tiled into 3 × 3, 5 × 5, 14 × 5, 31 × 15 and 31 × 25 blocks (number of

blocks corresponds to block resolutions 2170 × 3125, 1302 × 1875, 465 × 1875, 625 × 210 and

375 × 210 pixels respectively). Using any video codec it was empirically found that tiling into

smaller block sizes performs better over larger blocks. Results of only MS-SSIM and GMSD can

be seen in Figure 10.11; however, all used objective metrics without difference demonstrated

that smaller blocks outperforms larger blocks as was also found out in [38]. This fact can be

explained and seen in Figure 10.10, where sequence of smaller blocks tend to be more correlated

with contrast to larger blocks which usually have very different content in sequence, therefore

the frame prediction is less exploited.

Effect of different ordering schemes was also evaluated by testing four basic ordering schemes
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Figure 10.11: Charts - Performance of lenslet image partitioned into pseudo-sequence of blocks
with varying size in terms of MS-SSIM and GMSD metrics.

- horizontal and vertical lines, horizontal and vertical meander (depicted in Figure 9.6). In this

case differences between individual ordering schemes were smaller than between different block

sizes. Figure 10.12 demonstrates that meander-like ordering schemes tend to perform little

better over classic ”line by line” ordering. This is due to the fact that there are bigger inter

frames differences when sequence-neighbouring blocks (frames) are situated on the edges (left-

right for horizontal ordering and top-bottom for vertical ordering) of the lenslet image. For

tiling 31×25, the number of these edge transitions is not that high, 29 (for horizontal meander)

when the overall number of blocks is 775.

Figure 10.12: Charts - Performance of lenslet image partitioned into pseudo-sequence of blocks
with varying ordering in terms of PSNR and GMSD metrics.

Same test was evaluated for block tiling 31× 5 for vertical and horizontal meander ordering

(1875×210 px). With these dimensions, lenslet image is practically sliced into thin wide blocks.

This is depicted in Figure A.5 in Appendix A together with GMSD metric plotted. Vertically

oriented meander-like ordering performs slightly better than horizontally oriented. That because

there is also more correlation between the slices when they are ordered in columns rather then

in rows. Performance of this kind of pre-processing is definitely content dependent, but it is
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clear that smaller blocks should for common images perform better over larger blocks.





Chapter 11

Conclusion

This thesis brings an insight into the novel light field technology with main focus on light field

data compression. Chapters two till eight are dedicated to the theoretical part, which goal is

to bring an overview of light field data capturing, representation, processing, compression and

objective and subjective quality evaluation. In second chapter the fundamentals are described

in order to understand the process of light field data acquisition. Third chapter is dedicated to

explanation of different technologies used for obtaining the light field data. Light field technology

allows to capture the scene with a single camera, single lens system, single exposure. Then in

post-processing one is able to achieve depth map, different points of view, refocus or perform

object manipulation within the scene. All these features are attractive for research, professional

applications as well as for regular consumers.

The current light field technology situation is described focusing mainly on consumer de-

vices for light field data acquisition and reconstruction. The main drawbacks of the consumer

plenoptic cameras are considered to be the already established market of consumer cameras and

the resolution of the final image. That is because of the ease and quality of photos from smart-

phone cameras is increasing and the conventional photographers still prefer regular DSLRs with

high-resolution images rather than the option to focus after taking a photo with SD resolution.

The fifth chapter brings an overview of available software tools for processing and manage-

ment of Lytro camera files. Nowadays, there is one official software tool, produced directly by

Lytro Inc., which is consumer-oriented and offers basic data manipulation. Several free and

open platform tools were developed for more advanced processing and manipulation with light

field data captured not only with Lytro cameras. The sixth chapter describes more in detail

the structure and possible representations of plenoptic data while focusing on Lytro data files.

Light field data captured as a raw lenslet demosaiced image can be reorganized into different

data formats, which may be useful for different applications and representations.

Chapter seven summarizes several state-of-the-art compression schemes, which are used for

light field data encoding. Moreover, three groups of coding techniques are presented with the

description of some compression schemes that were proposed in the current literature. The

attention is on pseudo-sequence coding mechanisms, which usually exploits already developed
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video codecs. It was found that light field data can be effectively compressed with existing video

codecs after some data preprocessing or by codec modifications. However, deeper research still

needs to be done in this direction.

Next chapter explains subjective and objective quality assessment methods, which are used

for evaluation of light field data processing algorithms. Usually only common objective metrics

for digital image quality assessment are used for evaluation of reconstructed light field data. In

one case, a more ad hoc interactive subjective test was performed for quality assessment. How-

ever, at this time there is no standard or recommendation for subjective nor objective quality

assessment of plenoptic-data-processing techniques.

Chapters nine and ten are dedicated to processing of theory into practical implementation.

The goal of the practical part is to implement a GUI, which enables to apply compression

schemes to pre-processed light field data and allows to objectively and subjectively compare

different compression approaches. Another goal is to perform objective quality assessment of

light field data reconstructed after various compression schemes and its settings. Chapter nine

can be regarded as a form of documentation for implemented compression tool. Implemented

GUI allows to compress light field data with different compression schemes, with varying pre-

processing methods and compression settings. Reconstructed light field data can be objectively

and subjectively evaluated within the same interface. The implemented tool allows user to

effortlessly adjust the compression settings and analyse obtained results.

The last chapter is dedicated to performance assessment of the individual compression scheme

implementations. First, general evaluation of compression approaches is performed. Existing

video codecs x264 and x265 applied on pseudo-sequence are found to be the two most effective

approaches within the implemented tool. Moreover, their performance is content-consistent,

which is not always the case with the other, low-performing, compression schemes. It is demon-

strated that pre-processing of light field data into reordered pseudo-sequence of sub-aperture

images can increase the encoding performance. Another demonstrated approach on how to en-

hance compression performance is to adjust the encoder settings to be more suited for light field

data. It is shown that current, state-of-the-art encoders can be efficiently used for light field

data compression, nevertheless, there is still a room for improvement and further research.



Appendix A

Additional charts and examples

archive

Charts and examples in this appendix are referred to from chapter 10, but are placed here due

to space saving.

Figure A.1: Performance of x264 encoder with different AQ strength values. Left - PSNR, right
- GMSD.
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Figure A.2: Example of flat and detailed areas after processing with x264 with different AQ
strength. Left - AQ = 0.4, right - AQ = 3.

Figure A.3: Performance of x265 encoder with different number of I-frames in the pseudo-
sequence. The number indicates the period of I-frame and sequence contains 193 frames. Left -
MS-SSIM, right - GMSD.

Figure A.4: Performance of x264 encoder with default settings against adjusted numbers of
reference frames. BD-PSNR = 1.04 dB (the adjustments show improvement over the default
settings). Left - PSNR, right - MS-SSIM.
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Figure A.5: Left - partitioning of lenslet image into thin blocks, right - performance of horizontal
and vertical meander ordering in terms of GMSD metric.





Appendix B

Structure of folders in appendix

archive

/Implementation/... Folder containing all the functions needed for functional running of imple-

mented compression tool. Individual functions are described in Appendix C. Folder

also contains README file explaining files in this folder and how to use them.

/Measurements/... Folder containing MAT-files with some of the performed tests from chapter

10. MAT-files contain the information about current settings, bitrate and objective

metrics. Compressed and input light field data were excluded for limited storage pur-

poses. Folder also contains README file explaining each sub-folder, its files and how

to use them.
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Appendix C

Overview of functions in Matlab

implementation

calcMetrics.m Calculates selected objective metrics for reconstructed light field data.

compressFFMPEG.m Compress input light field data using any video codec from FFmpeg tool.

Controls FFmpeg pipeline using the command line.

compressJP2.m Function that is using Matlab implementation of JPEG2000 compression based

on compression parameters.

compressTool.m GUI file that encapsulates all functions into one functional box.

compressTool.fig Figure file for compressTool.m.

GMSD.m Function that calculates Gradient Magnitude Similarity Deviation - implementation

used from [76].

LFDispMousePan.m Function for interactive displaying light field data, which allows a user to

change perspective using click-and-drag mouse controls. Implementation used from LF

Toolbox v0.4 [29].

LFDispSetup.m Gelper function for LFDispMousePan.m used for setting up light field display.

Implementation used from LF Toolbox v0.4 [29].

LFDispMousePan2.m Function for interactive displaying two light field data images at the same

time. Core code used from LF Toolbox v0.4 [29]. Improved to show two light field

data images at the same time (or GMS map) and to navigate through more sequence

of differently compressed light field data (with different compression ratio etc.).

LFDispSetup2.m Helper function for LFDispMousePan2.m used for setting up light field dis-

play. Core code used from LF Toolbox v0.4 [29]. Modified for the needs of function

LFDispMousePan2.m.
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msssim.m Function that calculates Multi Scale-Structural Similarity Index - implementation

used from [75].

ssim index new.m Helper function for msssim.m.

plotMetrics.m Helper function used for plotting gathered objective metrics.

processLF.m Loads new MAT-file which contains light field data, process LF data into different

data formats.

reorder.m Helper function that is reordering light field data sequences accordingly to wanted

order. Adding/removing dark corner images.

scanSequence.m Displaying function that reorders input light field data into video sequence

which can be played as video.

ssimOpt.m Calculates SSIM. Implementation used from [73] is more computationally efficient

than Matlab implementation of SSIM.



This README file was created as instructions for compression tool, which was implemented 
as a part of master’s thesis.

Title:            Methods for plenoptic image data processing
Author:        Jan Svihalek
Year:           2017/18
University:       Czech Technical University in Prague
Faculty:          Faculty of Electrical Engineering
Dept.:            Department of Radioelectronics
Study program:    Communications, Multimedia, Electronics
Branch of study:  Multimedia Technology
________________________________________________________________

README before running Compression Tool
1) Please make sure you are running Matlab R2015a or at least newer version (it cannot be 
guaranteed that all scripts will work perfectly using older or newer versions).

2) All Matlab functions needs to be added in one folder, which has to be included in Matlab 
working paths.

3) Please make sure that the same folder (folder in which Matlab will be running while using 
this GUI) also contains FFmpeg build (version 3.3.x or newer) which includes x264, x265 
and VP9 codecs.

- More information on how to start and enable FFmpeg tool can be found here http://
ffmpeg.org/download.html.

- Without working FFmpeg build you will be limited to JPEG 2000 compression or only 
to viewing already measured data.

4) Please make sure that you have at least one MAT-file containing LF, otherwise you will 
not be able to explore the compression tool.

- You can download light field images (or whole dataset) on following website: 
https://mmspg.epfl.ch/EPFL-light-field-image-dataset

- You can download all image files from the following FTP (please use dedicated 
FTP clients, such as FileZilla or FireFTP):

FTP address: ftp://tremplin.epfl.ch
User name: LytroIllum@grebvm2.epfl.ch
Password: 48HMd6tm4SxC6s3z

a) After connecting to the FTP server, go to “4D_LF” folder
b) Pick one dataset and download it to your computer
c) Unzip after downloading
d) Move at least one MAT-file into Matlab folder (for easier manipulation)

4) Run compression tool, by typing compressTool into Matlab Command Window. After that, 
Compression Tool GUI will show up.

5) Press Load LF to load input light field. Please note that button “Load datasets from MAT-
file” is for loading already processed LF files only (with measured data, compressed LF etc.).

6) After successfully loading LF file, you will be able to use the GUI without any constraints.

Appendix D

Implementation README file
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Shown README file serves as brief instructions for users. It is also included in the attached

appendix folder functions in *.txt and *.pdf file formats. In these versions it also contains

description of individual functions which is described in C.



Appendix E

Comparison of Lytro F01 and Illum

cameras

Table E.1: Specification comparison of Lytro 1st and 2nd generation cameras
Lytro F01 (1st gen.) Lytro Illum (2nd gen.)

Optics
Focal length 43 - 344mm 30 - 250 mm
Zoom 8× 8×
Aperture Constant f/2.0 Constant f/2.0

Image sensor
Type CMOS CMOS
Light field resolution 11 megaray 40 megaray
Active area (4.6× 4.6) mm (10.82× 7.52) mm

Image
Format .lfp (Light Field Picture) .lfp or .lfr (Light Field Raw)
Size ratio 1:1 3:2
2D resolution 1080× 1080 2450× 1634

File size approx. 16 MB
approx. 20 MB (.lfp),
50 MB (.lfr)

Others
Size 41 mm ×41 mm ×112 mm 86 mm ×145 mm ×166 mm
Weight 214 g 940 g

Release price
400 USD (8 GB version),
500 USD (16 GB version)

1600 USD
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