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Abstract

In this thesis, we compare the performance of commonly available plagiarism
detectors to the solution used in the student task submission system used at
CTU FEE, named BRUTE. We identify the limitation of existing detectors and
describe a solution based on enhanced suffix arrays which mitigates them. Along
with the detector, we also present multiple visualization tools built on top of its
output which simplify the task of plagiarism detection.



Chapter 1

Introduction

Automation of plagiarism detection is important not only for education which
prompted the creation of competitions, such as PAN [15], dedicated to test-
ing and development of state-of-the-art detectors. However, these detectors are
usually either proprietary or experimental, although their freely available coun-
terparts rely on techniques not updated since the turn of the millennium. In
this paper we will describe a simple algorithm for a fast universal plagiarism
detector and compare its performance with existing detectors.

1.1 Current Situation at CTU

Currently, the online assignment management system of CTU named BRUTE
(Bundle for Reservation, Uploading, Testing and Evaluation) uses a Perl module
called Text::Similarity for the purposes of plagiarism detection. This module
is, however, not a purpose-built detector and therefore, unlike most plagiarism
detectors, no research paper exists testing its performance for this use-case. Fur-
thermore, it is missing desirable features, such as visualization of the detected
plagiarized sections of code.

1.2 Plagiarism

Plagiarism is usually defined as using another authors work and presenting it
one’s own. It is a case of academic dishonesty and an issue of ethics. As such,
it is not decidable by a completely automated method.

In this thesis we will be using the similar definition of plagiarism detection
to Potthast et al. [15]. We will specifically be dealing with external plagiarism
detection and it’s subtasks source retrieval and text alignment.

The task of text alignment, given a substring ssrc and a corpus C, is to
find a substring splag and a document dplag ∈ C, where splag ∈ dplag and splag
approximates ssrc as closely as possible.

We define the task of source retrieval, given a corpus C and a document
dplag containing plagiarized substrings Sd, as the task of retrieving all documents
Cplag ⊂ C that contain any of the substrings in Sd, or their close approximations.

External plagiarism detection performs the tasks of plagiarism detection by
inspecting other documents in the corpus, in contrast to Intrinsic plagiarism
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detection which does so without inspecting other documents, usually by means
of detecting stylistic changes throughout a document.

1.3 Sections

We explain some of the difficulties of plagiarism detection on concrete examples
in section 2. We then introduce commonly used plagiarism detectors in section
3 and test their performance, along with the current solution used in BRUTE,
on datasets we have specifically created for this purpose (4.1.1) in section 4.4.
Based on the identified issues, we have created fast local and language indepen-
dent algorithm, which could be used as an alternative to Text::Similarity. This
algorithm is presented in section 5.1.1. Finally we implement this algorithm in
F# [18] and test its performance on the same datasets in section 5.3.

2
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Chapter 2

Issues of plagiarism
detection

In this section we will introduce the issues of plagiarism detection on concrete
examples and show the consequences of common limitations of existing detec-
tors. These tests serve partially as proof for the following chapters, and as a
more intuitive explanation of the importance of features such as lexical analysis.

We also show the effects of Unicode normalization on the detection perfor-
mance, and why assuming ASCII input for languages using the Latin script may
not be sufficient.

2.1 Lexical analysis

Lexical analysis is the process of converting data into tokens. These token can
then be processed based on type. For plagiarism detection it is for example
useful to normalize user defined identifiers and to move or completely remove
source comments, as these changes are easy to perform even without under-
standing the subject matter. Simple tokenization by whitespace is not sufficient
for plagiarism detection. Without lexical analysis any reformatting or renaming
will result in widely different similarity scores. Changing array [ x + 1 ] to
array[x+1] results in a similarity score of 0 %. Examples 1 and 2 prove this
point for Sherlock and Text::Similarity :

$ echo "if ( x > 1 )" > long

$ echo "if(x>1)" > short

$ ./sherlock -z 0 -n 1 -t 0 long short

long and short: 0%

Listing 1: Even though Sherlock tokenizes by punctuation, it reports 0% simi-
larity on reformatted code.

Figure 2.1 shows this effect on real data. First, a detector was run on a data
set with no formatting changes. The results are plotted in red. Secondly, one
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$ perl text_similarity.pl \

--type Text::Similarity::Overlaps \

--string "array [ x + 1 ]" "array[x+1]"

0

Listing 2: Text::Similarity does not tokenize programming language correctly,
which results in a 0% similarity between differently formatted code.

file of every detected pair was reformatted using an IDE, and this modified pair
was tested for plagiarism again. The new results are plotted in black.
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Figure 2.1: The result of running Text::Similarity. Incorrect tokenization has
produced noise.

2.2 Unicode

2.2.1 Unicode Normalization

The Unicode Standard allows multiple ways to represent the same abstract char-
acter. Although these representations have different binary values, they are said
to be canonically equivalent. Text must be normalized into one of Unicode Nor-
malization Forms to determine whether any two strings are equivalent. These
forms for example dictate the ordering of combining characters. Canonical De-
composition is one of these forms.

Changing the Unicode Normalization of a file, while recondite, is one of the
easiest ways to influence the result of plagiarism detection. We do not have real
data on which to measure its effect, nor do we know, whether this technique
is actually used, but the following test might serve as a rough estimate of the
seriousness.

Beginning with a Czech dictionary including word frequencies from Czech
National Corpus, we have replicated each word by the natural logarithm of its
actual frequency. The same process was repeated, but with Canonical Decom-
position applied on each word. Similarity of the two files was then computed
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using a detector which does not support Unicode and is position independent
(Text::Similarity in this instance). Normalization was also applied on a book
from the public domain Domáćı kuchařka - Magdalena Dobromila Rettigová
and it’s similarity with the original copy was measured using the same detector.

$./detector.pl kucharka_original kucharka_NFD

kucharka_original,0.554672428428119,kucharka_NFD

$./detector.pl czech_corpus_original czech_corpus_NFD

czech_corpus_original,0.449659546165748,czech_corpus_NFD

Listing 3: Applying normalization reduced file similarity to around 50 %.

After applying Canonical Decomposition on the two files, their similarities
to their original counterparts were reduced to around 50 %. Since the samples
were small, the result is not conclusive and only serves as an example of when
assuming that the input is ASCII encoded may not be sufficient for correct
plagiarism detection.

2.3 Intentionally shared code

Student assignments often contain intentionally shared code. These sections
of code will remain mostly unchanged and, when scaling the similarity by the
length of the matched substring, could comprise a large portion of the similarity
score. If a student changes this shared code, the similarity of the entire file
is immediately reduced and the artificially created baseline similarity of the
assignment could serve to hide the actually plagiarized sections. Other features,
such as idiomatic phrases or obvious parts of the solution, are by definition likely
to appear in multiple files but do not indicate plagiarism.

There should exist a mechanism to exclude these features from comparison.
Labeling shared code sections is also useful for the purposes of manual plagiarism
detection. Since assignment template files are usually preexistent, they may
be used directly in detectors that support this feature. However, code might
be obtained by attending the same lectures or classes. These cases should be
additionally detected and excluded as well.

Figure 2.2 shows an extreme example of the noise on an introductory pro-
gramming assignment where 60 % of the source code was provided as a starting
point. First, JPlag was used to detect similarities between all pairs of files.
Secondly, all pairs were sorted by similarity and plotted in red. Thirdly, the
same detection was performed with the template file used for exclusion and the
new scores were plotted in black in their respective positions along the Y-axis.

2.4 Granularity of detection

Most detectors have an option to customize the granularity of detection, be it
by changing the length of n-grams, minimal number of tokens in a match, or by
modifying its hashing algorithm. This setting is usually called either granularity
(Sherlock), run-length (Sim), or sensitivity (JPlag).
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Figure 2.2: An extreme example of noise induced by the failure to exclude
template code from the comparison. The correct score is plotted in black, while
the score without template code exclusion is plotted in red.

Figure 2.3 shows the difference in optimal granularity between source code
and text. From the figures, we can see that for JPlag the optimal sensitivity for
English is around 3 tokens; for Java it is 10 tokens (excluding identifiers). The
optimal setting depends on the number of distinct tokens, words, or characters
in each language. For simple languages such as C which contains only about
32 keywords and 13 special characters the chance for a single token to appear
in multiple files is higher than for example for Japanese which contains tens of
thousands unique characters, and thus the optimal number of tokens is larger.
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Figure 2.3: Area under the PR curves of JPlag for sensitivity settings from 1 to
30 tokens.
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2.5 Similarity threshold in BRUTE

The plagiarism detection system used in BRUTE can be set to only report
matches with similarity above a certain threshold. The following table shows the
relation between this threshold and the number of reported true positives and
false positives. For this test we used the Corpus of Plagiarised Short Answers.
This corpus contains four plagiarism categories: Near copy, Light revision, Heavy
revision, Non-plagiarism. Each category is composed of 19 submissions.

The tables show that only very few files are correctly reported (true positives)
even in the Near copy category with a threshold of 70 %, and that false positives
do not appear even at the 50 % similarity threshold.

70 % threshold
Correctly reported Incorrectly reported

Near copy 4 0
Light revision 4 0
Heavy revision 2 0
Non-plagiarism 0 0

50 % threshold
Correctly reported Incorrectly reported

Near copy 14 0
Light revision 13 0
Heavy revision 10 0
Non-plagiarism 0 0

30 % threshold (average similarity)
Correctly reported Incorrectly reported

Near copy 18 17
Light revision 18 21
Heavy revision 18 21
Non-plagiarism 0 43

The figure 2.4 shows the similarity distribution of all reported file pairs.
We can se that only very few file pairs reach the similarity threshold of 70 %
(shown in red). In fact only 9 % of plagiarized files have a score higher than
this threshold; their average similarity is only 51,9 %.

2.6 Plagiarism verification

Perhaps the most difficult and the most important issue of plagiarism detection
is verifying, whether detected similar sections of text are in fact plagiarized.
Even sections with 100% similarity, might not be plagiarisms. Such instances
may include obvious parts of a solution to a student assignment, software license
files, code from the public domain with correct attribution in appropriate extent,
or intentionally shared code. Labeling a student a plagiarizer may have serious
ramifications for them. We believe that this step ought not be automated by
tools with no notion of ethics and instead be left to a fair trial.
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Chapter 3

Existing Detectors

To test the performance of our solution and of Text::Similarity we used existing
alternative detectors as a benchmark. For the following tests we are mainly
interested in local source code detectors. We believe the following detectors are
still some of the most commonly used. For example Moss and JPlag can be
used as plugins into Moodle.

3.1 JPlag

JPlag [7] is based on a string tiling algorithm. It performs tokenization and
compares files pairwise to find similarities. Finally, it outputs the result as a
folder of HTML files showing groups of files containing similar token strings.
JPlag no longer offers an online detection service, but a program for local com-
parison is still actively maintained and can be downloaded from their GitHub
page. JPlag can detect plagiarism in Java 1.7, C, C++, C# 1.2, Scheme and
natural language.

3.2 Moss

Moss [17] performs file comparison using a patented local document fingerprint-
ing algorithm called winnowing. It builds a map of selected fingerprints and
file positions. The map is then used to look up all matching fingerprints for
each file. Moss is an online-only tool and requires a free email registration.
Moss supports the following languages: C, C++, Java, C#, Python, Visual Ba-
sic, Javascript, FORTRAN, ML, Haskell, Lisp, Scheme, Pascal, Modula2, Ada,
Perl, TCL, Matlab, VHDL, Verilog, Spice, MIPS assembly, a8086 assembly,
HCL2.

Since Moss is an online-only detector, using this tool as a plagiarism detector
in BRUTE may not be appropriate due to concerns about privacy.

3.3 PMD - CPD

CPD is a Copy/Paste Detector packaged with PMD [14] a cross-language static
code analyzer. The main algorithm behind CPD has been improved multiple
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times. From a variant of Michael Wise’s Greedy String Tiling algorithm to
the Karp-Rabin String Matching Algorithm. CPD performs tokenization using
custom-written extendable tokenizers. It also supports multiple output formats
including XML. CPD currently works with Java, JSP, C, C++, Fortran and
PHP code, but support can be extended to other languages.

3.4 Sherlock

Sherlock [11] uses a digital signature generation scheme to find similarities in
files. It first splits them by punctuation into tokens and then hashes their
n-grams. Many of the hashed values are semi-randomly excluded from the
comparison in order to perform a faster and more reliable detection. Sherlock
finally outputs a plain text result containing a list of percentual pairwise file
overlaps. Sherlock is Language-independent and supports all text files.

3.5 Sim

Sim [5] splits files into tokens using lexical analyzers written in flex [10]. It
encodes these tokens into bytes, puts them into a hash table and uses it to
compare every substring to every other substring. Sim can generate several plain
text output formats as well as an intermediate result from its lexical analyzer.
Sim currently supports the following languages: C++, C, Java, Pascal, Modula-
2, Lisp, Miranda and natural language.

3.6 Other tested detectors

We have previously tested the following two detectors with moderate success,
but had to exclude them from this comparison due to difficulty of use, require-
ments on file structure, and limited language support.

3.6.1 Marble

Marble [6] uses the Unix diff command internally to perform file comparison. It
tokenizes files using a custom written tokenizer and restructures each file in an
attempt to normalize them. Lastly, it uses the diff command to find similarities.
Marble works on Java, C# and similar languages. While we had some success
using this tool for plagiarism detection, we found it difficult to use due to its
requirements on file structure and it’s language support was too limited to be
used in our tests.

3.6.2 Plaggie

Plaggie [1] is based on a Running Karp-Rabin Greedy String Tiling Algorithm.
Since JPlag offered only an online plagiarism detection service, Plaggie intended
to provide the same functionality locally using an open source implementation.
Plaggie supports Java 1.5 only.
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Chapter 4

Analysis of Existing
Detectors

4.1 Source code

4.1.1 Data sets

Even though many datasets have been created for competitions such as PAN
(Potthast et al. [15]) and SOCO(Flores et al. [4]) containing both natural-
language and source code variants, we could not use these, due to them either
not being publicly available anymore or aimed at source retrieval from a large
corpus while minimizing retrieval cost. None of the publicly available detectors
are suitable for such task. The main difference being that standard plagiarism
detectors do not have the luxury of an source code corpus to check against and
instead use only the submitted batch as their corpus. As a result most avail-
able detectors use algorithms which would run out of memory or time, before
finishing such task.

Languages

Due to the similarity of object-oriented languages and the lack of support for
other paradigms, only Python and C/C++ submissions were tested. The re-
sults, however, are applicable to most OOP languages, thanks to the simplicity
of the algorithms underlying plagiarism detection.

Source data sets

The source for our data set generation were 321 real submitted C++ solutions
and 140 Python solutions to student assignments, resulting in 270 viable C++
files and 114 Python files after cleanup.

Rather than using the submitted solutions themselves, new data sets were
generated from them, in order to avoid the almost certainly impossible task of
correctly detecting the directed graphs of plagiarism in the first place. This
method also provides greater control over the performed tests, and more gran-
ular modifications can be used separately to test the sensitivity of detectors.
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Preparation

Each original data set was manually inspected, and all files suspect of being
involved in plagiarism or files which were accidentally too similar were removed.
Additionally, all files shorter than 60 lines were removed along with files which
were not parseable by either Clang or Python. The data sets were finally san-
itized by removing difficult escape sequences and transliterating Unicode char-
acters.

Transformations

The list is limited to only those transformations which could be performed either
automatically, or by somebody with limited programming knowledge. Each
transformation was selected to test the actual worst-case effects of limitations
of existing plagiarism detection algorithms. We do not claim that the list is
exhaustive, or that it contains all the most commonly employed techniques to
avoid plagiarism. Nevertheless, the simpler methods are more likely to be used
over the difficult ones and the detection performance for these transformations
is most important.

We have created tools to automatically apply these following modification to
source code. Each of these modifications resulted in a new data set. Plagiarism
detectors were then tested to measure their sensitivity to each modification
separately.

Simple Transformations on C++

We tested the following transformations. Their complete description is in section
7.1.1 of the appendix.

• Add comments

• Reformat code

• Rename identifiers

• Add assignment template

• Add original code

• Shuffle functions

• Reverse function parameters

• Extract methods

• Invert if-else branches

• Invert binary operations

While some of the transformations may not be completely lossless, the code
will not be far from functional and only a very simple intervention by a human
would be necessary. More capable tools exist and may be able to perform these
changes perfectly. This, however, is not needed, as none of the tested detectors
performs parsing, let alone runs the code. It might, however, be a problem for
very inexperienced programmers, who might not be able to fix the code after the
more complex transformations. Therefore, we leave the judgment of plausibility
of usage of the more difficult obfuscation techniques to the reader.

The examples 4 and 5 show the Extract method transformation in action on
a random snippet from Github Gists.
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#define PAGE_SIZE 0x400

void lfsr_scramble(unsigned seed, unsigned page[PAGE_SIZE]) {

int state = seed;

unsigned int i;

for (i = 0; i < PAGE_SIZE; i++) {

unsigned j;

for (j = 0; j < 8; j++)

state = (state >> 1) | (((state^(state >> 1)) & 1) << 14);

page[i] ^= (unsigned)(state >> 7);

}

}

Listing 4: Original file

#define PAGE_SIZE 0x400

void extract0(unsigned int *page, int state, unsigned int i) {

for (i = 0; i < PAGE_SIZE; i++) {

unsigned j;

for (j = 0; j < 8; j++)

state = (state >> 1) | (((state^(state >> 1)) & 1) << 14);

page[i] ^= (unsigned)(state >> 7);

}

}

void lfsr_scramble(unsigned seed, unsigned page[PAGE_SIZE]) {

int state = seed;

unsigned int i;

extract0(page, state, i);

}

Listing 5: Transformed file

13



Complex Transformations on C++

To test the actual performance of detectors and to understand the likelihood
of successful detection avoidance, we have combined the previous modifications
into complex transformations. The following modifications are supposed to
represent more realistic stories of plagiarism attempts.

Sanity-Check The student copies the whole file.

Primitive The student copies the whole file, adds comments, and renames
identifiers.

Simple The student copies 50 % of the functions but writes the rest himself.
He adds comments and renames identifiers.

Realistic The student copies 50 % of the functions but writes the rest him-
self. He adds comments, renames identifiers, and reformats the code. An
assignment template is provided to the students.

Difficult The student writes 50 % of the code himself but decides to plagiarize
the remainder. He extracts blocks of code into methods and shuffles them.
He then adds comments and renames identifiers to avoid dictionary based
detectors. Finally, to evade string tiling, he reverses function parameter
order. A template is provided for this assignment.

Impossible The student writes 50 % of the code himself but decides to plagia-
rize the remainder. He extracts blocks of code into methods and shuffles
them. He then adds comments and renames identifiers to avoid dictio-
nary based detectors. Finally, to evade string tiling, he reverses function
parameter order, inverts if-else statements, and switches the operands of
binary operations. A template is provided for this assignment.

Transformations on Python

The Python dataset contains transformations partly overlapping those of the
C++ dataset, in order to verify the generality of the effects of refactoring on
plagiarism detectors. However, unlike in the complex C++ dataset, we test the
effects of transformations applied directly to copy-pasted code with no origi-
nal input from the student. We tested the following transformations. Their
complete description is in the appendix in section 7.1.2:

• Copy paste

• Reformatting

• Adding comments

• Renaming

• Reordering parameters

• Extracting functions

• Inverting binary operations

• Extracting constants

• Coding style

• All of the above

The examples 6 and 7 show the Extract constants and Invert binary opera-
tions transformations applied on a snippet from Rosetta Code.
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#!/usr/bin/env python3

import cmath

def quad_discriminating_roots(a, b, c, entier=1e-5):

"""Naive algorithm"""

discriminant = b * b - 4 * a * c

a, b, c, d = complex(a), complex(b), complex(c), complex(discriminant)

root1 = (-b + cmath.sqrt(d)) / 2. / a

root2 = (-b - cmath.sqrt(d)) / 2. / a

if abs(discriminant) < entier:

return "real and equal", abs(root1), abs(root1)

if discriminant > 0:

return "real", root1.real, root2.real

return "complex", root1, root2

Listing 6: Original file

#!/usr/bin/env python3

import cmath

s_real_and_equal = "real and equal"

s_real = "real"

s_complex = "complex"

def quad_discriminating_roots(a, b, c, entier=1e-5):

"""Naive algorithm"""

discriminant = b * b - c * a * 4

a, b, c, d = complex(a), complex(b), complex(c), complex(discriminant)

root1 = (cmath.sqrt(d) + -b) / 2. / a

root2 = (-b - cmath.sqrt(d)) / 2. / a

if entier > abs(discriminant):

return s_real_and_equal, abs(root1), abs(root1)

if 0 < discriminant:

return s_real, root1.real, root2.real

return s_complex, root1, root2

Listing 7: File with extracted constants and inverted binary operations
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Data set generation method

The source data set was partitioned into 3 equal groups and the groups were
assigned one of the following roles: The source of plagiarism, the actual plagia-
rism, and clean submissions. Each group acted as every role exactly once.

The sources of plagiarism were copied as-is and were marked ”source.” The
clean files were also copied and marked ”clean.” The actual plagiarisms were as-
signed one of the source files each and used code from both the file itself and the
provided source file. Transformations were then applied to the plagiarized files
only. The plagiarisms were marked with the source file name and ”plagiarism.”

4.2 Natural language

For testing detector performance on textual assignments, we used an existing
Corpus of Plagiarised Short Answers described in Clough and Stevenson [2].

For the following tests we regarded as plagiarism any pair of files from the
same task with categories for both files different from non, or if one of the files
was the original.

4.3 Evaluation

To describe the performance of detectors we will be using, among others, the
terms precision and recall. Precision, in our case, is the likelihood that a re-
ported case is plagiarized. More specifically, it is the ratio of correctly reported
plagiarized file pairs to the number of all reported file pairs. While recall is the
percentage of plagiarism detected, or more formally, the ratio of the number of
correctly reported plagiarized file pairs to the total number of plagiarized file
pairs contained in the corpus.

In our view, the most important metric of a plagiarism detector is high
precision, especially at low recall values. In other words, at least the highest
scoring documents should actually be plagiarized. Nonetheless, precision is
important throughout the entire recall range. To measure this we will be using
the area under the detectors Precision-Recall (PR) curve (AUC).

We choose the PR curve over the more common Receiver operating charac-
teristic (ROC) due to the large imbalance between the number of plagiarized
file pairs and the number of all file pairs in a corpus. This imbalance could
result in misleading results if the ROC curve were used as shown by Saito and
Rehmsmeier [16].

PR plots (example 4.1) show the relation between precision and recall, with
0% recall on the left and 100% recall on the right, and 0% precision on the
bottom and 100% precision on the top.

4.4 Results

Moss and JPlag are the best performing detectors and we recommend they be
used whenever possible. The third best performing tool is Sim.

Text::Similarity works well for detecting plagiarism in textual assignments,
but it is not suitable for detection in source code. Even the simplest methods
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Figure 4.1: Example Precision Recall plot showing multiple PR curves.

for avoiding detection, such as changing comments and renaming, are likely to
be successful. If Text::Similarity continues to be used, we recommend using a
stopword list and decreasing the detection threshold from 70% to around 50% for
textual assignments. For source code we recommend preforming the following
preprocessing steps:

• Reformatting using tools such as autopep8 or indent.

• Removing comments.

• Removing intentionally shared code.

• Removing user defined identifiers.

The tests have identified the four most serious shortcomings which inhere in
the current methods of plagiarism detection.

Lexical analysis Inappropriate or entirely missing lexical analysis, allows the
simplest methods of disguising plagiarism to influence the detection re-
sults. This step is language dependent, but provides the largest increase
in performance and is thus the most important. We will explain this issue
on a concrete example in section 2.1.

Assignment template Matching and reporting similarity in intentionally shared
parts of code artificially inflates scores, allows plagiarized code to hide
amongst the noise, and might even be harmful as honest short solutions

17

https://pypi.python.org/pypi/autopep8
https://www.gnu.org/software/indent/


will be unfairly scored more aggressively. An extreme example of this
noise will be shown on a real set of real submissions 2.3.

Granularity of detection Setting the sequence length incorrectly will have a
negative effect on the detection performance. Current detectors provide
no indication of the appropriate value or lack this setting entirely resulting
in diminished performance depending on the language complexity.

Languages Support for languages is generally very limited and even the most
popular languages such as python may not be supported. This is partly
related to the issue of language-dependent lexical analysis.

4.4.1 CPD

Simple C++ (Figure 7.1) Most simple transformations had no effect on the
reported similarities. However, due to incorrect lexical analysis, renaming
identifiers resulted in a significant decrease in the number and length of
matched code sections and would be sufficient to avoid detection. This re-
sult is not applicable to Java, where CPD provides an option to completely
ignore identifiers.

Complex C++ (Figure 4.2) CPD was only able to reliably detect copy-pasted
source code. Renaming identifiers and adding an assignment template
resulted in almost no reported similarities.

Python (Figure 7.2) CPD performed well on simple transformations and even
on code with extracted constants, but it performed poorly after renam-
ing identifiers. CPD was unable to detect files with multiple combined
transformations.

Text (Figure 4.3) While CPD does not officially support detection of plagiarism
in natural language, it’s fall-back tokenization option was still able to
provide some useful output. With a longer sequence length of 5 tokens
the area under the curve reached 0.831. CPD was also able to indicate
the locations of duplicated text, but due to the lack of preprocessing, the
matched sequences were sparse and short.

4.4.2 JPlag

Simple C++ (Figure 7.3) All tested simple transformations had no effect on
reported similarities and JPlag was able to detect plagiarized files per-
fectly. Even though inverting binary operations and reversing parameters
could in some instances result in lower scores, it is not a concern in general
and can not alone be used to avoid detection.

Complex C++ (Figure 4.4) JPlag was able to detect a large number of pla-
giarized files even after applying the Impossible transformation. Detection
performance for the more complex transformations could be increased at
the cost of a higher number of false positives in the simpler test cases
by decreasing the minimal length of reported sequences. All cases of in-
tentionally shared code must be explicitly included as an option in the
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Figure 4.2: Precision recall curve of CPD on the Complex C++ corpus
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Figure 4.3: Precision recall curve of CPD on the Corpus of short plagiarized
answers
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query. The assignment template exclusion algorithm performed well after
supplying a hand-written file and was able to highlight such code in its
visual report.

Text (Figure 4.5) JPlag performs very well on plagiarism in natural language
if the minimal reported sequence length is set to around 3 tokens. Even
though JPlag offers no specialized preprocessing features it was able to
reliably match similar sections of text and avoid most false positives until
the end of its output.

The C++ test cases revealed an error in the tokenization stage of detection,
where files containing longer escape sequences inside character literals or un-
usual Unicode characters, were reported as ”non-parseable” and excluded from
comparison. All such files had to be sanitized prior to detection.
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Figure 4.4: Precision recall curve of JPlag on the Complex C++ corpus

4.4.3 Moss

Simple C++ (Figure 7.4) Applying simple transformations had no effect in
most cases and Moss was able to detect all plagiarized files. Inverting
binary operations had only limited effect, and while it could be sufficient
to avoid detection in some special instances, it is not a problem in general.

Complex C++ (Figure 4.6) Moss was able to detect a large percentage of pla-
giarized files with complex transformations. The combination of inverted
If/Else statements, reversed parameters, and inverted binary operations
resulted in modifications over a span of code shorter than the hard-coded
minimal reported sequence length. The basecode exclusion algorithm was
able to automatically remove almost all intentionally shared code from
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Figure 4.5: Precision recall curve of JPlag on the Corpus of short plagiarized
answers

the comparison and providing a hand-written template file had almost no
effect.

Python (Figure 7.5) Moss was able to detect most copy-pasted python files.
Lexical analysis on Python works well and Reformatting, Comments, and
Rename transformations had almost no effect. The more aggressive Ex-
tract method transformation could be sufficient to avoid detection. The
Invert Binary Operations, and Extract Constant transformations were the
most effective and would be sufficient to avoid detection in general.

Text (Figure 4.7) Moss provides no option to set the minimal reported se-
quence length, and the hard-coded value is the same for natural language
as for programming languages. Nearly all items appearing in the result
are correctly identified as a plagiarism. However, Moss is overly cautious
and a large portion of files are not detected. Furthermore, only very few
tokens from each file pair are matched, which might result in additional
cases being dismissed for insufficient similarity. The area under the curve
is 0.64, the median similarity of all reported file pairs is 13.5 %.

4.4.4 Sherlock

Simple C++ (Figure 7.6) Sherlock was able to perfectly deal with more gran-
ular changes to source code, such as inverting if / else statements and
extracting methods. Sherlock is also effective on the more difficult trans-
formations, such as inverting binary statements. However, due to its sim-
ple tokenization algorithm, reformatting had a large negative impact on
its performance. Sherlock forgoes lexical analysis entirely which, coupled
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Figure 4.6: Precision recall curve of Moss on the Complex C++ corpus
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Figure 4.7: Precision recall curve of Moss on the Corpus of short plagiarized
answers
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with the dictionary based nature of its algorithm, has a result of decreasing
the performance for larger n-gram settings in files with renamed identi-
fiers. Renaming therefore had the largest effect on the results and could
be sufficient to avoid detection.

Complex C++ (Figure 4.8) The combination of reformatting and renaming
identifiers contained in all complex transformations resulted in almost no
output for most datasets. Only the fully plagiarized files showed useful
results at small recall values.

Python (Figure 7.7) The results for the python dataset are very similar to the
C++ dataset. Sherlock detected almost every file with the more difficult
transformations, while the performance for reformatting and renaming
was not as good. The combination of renaming and reformatting resulted
in almost no output.

Text (Figure 4.9) Sherlock performed very well on the text dataset. It de-
tected almost every plagiarism while containing only a few false positives
throughout most of it’s output.
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Figure 4.8: Precision recall curve of Sherlock on the Complex C++ corpus

4.4.5 Sim

Simple C++ (Figure 7.8) Sim was able to perfectly detect every file for all
but one dataset. The dataset with inverted binary statements contained
only a few false positives at high recall values. While this transformation
can affect the results, it alone was not sufficient to avoid detection and it
is unlikely that this would be an issue in general.
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Figure 4.9: Precision recall curve of Sherlock on the Corpus of short plagiarized
answers

Complex C++ (Figure 4.10) The partially plagiarized datasets did not score
as highly and the output contained false positives. Sim still detected a
majority of the files. Adding an assignment template resulted in a high
baseline similarity. The ambient noise from applying this transformation
resulted in the output being composed mostly of false positives. If the
intentionally shared code was removed manually, Sim would likely perform
reasonably well.

Text (Figure 4.11) Sim was able to detect most of the plagiarized files while
reporting only a small number of false positives. Sim achieved a larger
AUC at higher n-gram settings.

4.4.6 Text::Similarity

Simple C++ (Figure 7.9) Text::Similarity performed very well on datasets
with simple transformations and was able to detect almost every file with
no false positives. Both renaming identifiers and adding comments had
some effect, but was not sufficient to avoid detection when done separately.

Complex C++ (Figure 4.12) Text::Similarity detected practically no plagia-
rism after applying complex transformations on the C++ dataset, mainly
due to the lack of lexical analysis, incorrect tokenization, and no facility
for excluding intentionally shared code from comparison. A simple com-
bination of changing comments and renaming identifiers is almost certain
to successfully avoid detection. Even with only automatic transforma-
tions being applied the detection performance was not significantly better
than random chance. In this dataset only directly copy-pasted files were
detected.
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Figure 4.10: Precision recall curve of Sim on the Complex C++ corpus
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Python (Figure 7.10) Performance on the python dataset was very similar to
the C++ dataset. Applying transformations separately had only limited
effect, while combining multiple transformations resulted in only a small
number of correctly identified files. Even in the case of completely pla-
giarized files, simply renaming and changing comments will usually be
sufficient to avoid detection.

Text (Figure 4.13) Text::Similarity detected most plagiarism in the natural
language dataset and it’s performance further improved after providing a
stop-word list. Text::Similarity outputs several measures of similarity, but
apart from Lesk and the F1 score other measures serve mostly for debug
purposes. The tests indicated that files, which are high in both of these
measures are more likely to be plagiarisms than those high in only one.
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Figure 4.12: Precision recall curve of Text::Similarity on the Complex C++
corpus
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Chapter 5

Our Solution

Our solution is a fast, local, language independent detector, with improved
performance compared with Text::Similarity on most of our tests.

5.1 Our Solution

Our detector uses enhanced suffix arrays to detect overlaps in a collection of
documents and scores their importance using document frequency. It uses a
simple heuristic approach to exclude comments and user defined identifiers from
source code based on their frequency in the corpus.

5.1.1 The Algorithm

Our algorithm detects matches in documents. For our purposes a document is
synonymous with a string of tokens from a finite alphabet, while a match is a set
of equivalent token substrings. We use the simplification that any two substrings
are equivalent only if all of their tokens are equivalent and in the same order.
We deffer the responsibility of defining tokens, equivalence of tokens, and the
normalization of their order to language-dependent preprocessors. Nevertheless,
even without reordering and using token equality based on their hashes, gives
reasonable results.

With our simplification a set of substrings can form a match only if their
first tokens are equivalent. Therefore, if we lexicographically sort all suffixes of
all documents we need only compare the prefixes of consecutive suffixes to find
every possible match. A data structure called Suffix Array (SA) can perform
exactly this sorting in linear time [12, 13]. This array can be enhanced with
information of the length of the longest prefix of every pair of consecutive suffixes
in linear time [3] as well. Additionally, for source retrieval we need information
about the document of origin of each suffix this is a task of the Document Array
(DA).

For a given match containing substrings {(n1,m1); (n2,m2); . . .} matches
containing (n1,m1 − 1) down to single token matches (n1, n1) also exist. These
token substrings can be divided into sets, named substring classes, based on
the number of documents they occur in (document frequency) [20] in O(n log n)
time.
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We can use the information of document frequency to automatically exclude
common substrings, such as obvious parts of the solutions or assignment tem-
plates (section 2.3). This information is also useful for scaling the importance of
matches, or excluding them completely for speed, since more common substrings
are less likely to be plagiarisms.

Preprocessing

The first stage (listing 8) is a preprocessing step. We use very simple prepro-
cessing based on the hashing trick [19] which should be sufficiently general for
most languages. We simply tokenize all files into words, keeping track of their
offsets, hash their values, and concatenate them.

This step could also be performed based on mutual information and ridf.
Such approach would then be applicable even to Japanese with a technique
similar to Kashioka et al. [8]. The cost for generality would, however, be slower
detection, complex preprocessing, and higher memory requirements.

We recommend the use of more complex preprocessors as this is likely to
greatly improve detection performance. Such preprocessors can for example
reorder binary statements so that constants are on the left-hand side, or use
stemming, or replace words with a synonym with the lowest alphabetical or-
der. Other features, such as stop word exclusion, are to some extent performed
automatically by successive steps of our algorithm.

type Token = { value: int; offset: unsigned int }

let preprocess (files: string array) =

(* Tokenize each file *)

(* Lower-case each token *)

(* Apply NFKC Unicode normalization *)

(* Use the hashing trick *)

(* Join the tokens using a unique token *)

let features =

tokenize files

|> lowercase

|> normalize "NFKC"

|> vectorize (hash mod N)

let concatenated = Join features by unique_token

return concatenated

Listing 8: Pseudocode for preprocessing a corpus.

Exclusion of comments and identifiers

The second stage (listing 9) of preprocessing is used only for programming
languages. We use a simple heuristic based on document frequency of substrings
to determine which parts of files are likely to be names and comments. After

29



this step, the only tokens remaining in the corpus are those that describe the
general structure. These tokens include for loops and return statements.

We use an algorithm for iterating over suffix classes and computing their
document frequencies described by Yamamoto and Church [20]. The general
pseudocode is as follows.

let exclude (tokens: Token array) =

(* Use an enhanced Suffix Array Construction Algorithm *)

(* sa : Suffix Array *)

(* da : Document Array *)

(* lcp: Longest Common Prefix Array *)

let sa, da, lcp = Enhanced.SACA (tokens.values)

(* Substring classes can overlap *)

(* We create a mask array and use it to filter the corpus *)

let mask = Array of false with length of tokens.length

(* Keep only those tokens, that are *)

(* sufficiently frequent to not be comments or identifiers *)

for suffix_class<i, j> in classes of sa

if document frequency of suffix_class > Threshold

then for token in tokens of suffix_class

mask[token.offset] <- true

let tokens_to_keep = keep tokens where mask[index] is true

return tokens_to_keep

Listing 9: Approximate algorithm for heuristically excluding user defined iden-
tifiers and source comments.

An inverse of this step, which would exclude common tokens, could be used
to improve detection speed on natural language by removing likely stop-words.

Detecting matches

In the third stage (listing 10) we recompute the suffix array for the filtered
corpus and iterate over all suffixes. When a suffix occurs in at most Threshold
files we add it to a collection of matches for that file group.

Output

The final step scores the importance of all matched suffixes using length/df2.
Since we have the array containing offsets for each token we can also output
where the matches occur by setting the start = offsets[sa[i]] and setting
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let detect (filtered: Token array) =

(* Use an enhanced Suffix Array Construction Algorithm *)

(* sa : Suffix Array *)

(* da : Document Array *)

(* lcp: Longest Common Prefix Array *)

let sa, da, lcp = Enhanced.SACA (filtered.values)

(* Keep only those matches *)

(* which occur in a small number of files *)

let similarities: dictionary<Document * Document, match> =

dictionary ()

for suffix_class<i, j> in classes sa

if document frequency of suffix_class < Threshold

then similarities[documents i j] += suffix_class

return similarities

Listing 10: Pseudocode for detecting suspicious substrings.

the end = offsets[sa[i] + length] (where offsets is the offset array, sa is
the suffix array, i is the start of the suffix, and length is the length of the suffix).

Used implementations

The implementation of the Suffix Array Construction Algorithm (SACA) for
collections gSACA-K is described in Louza, Gog, and Telles [12]. This imple-
mentation also builds the Document array and the LCP array. But the exact
algorithm is not important and any linear time SACA implementation would
work well. For the purposes of plagiarism detection a fast LCP construction
algorithm is necessary. Fischer [3] shows that while even a naive algorithm is
fast on most types of data, it is slow on texts with long repeated phrases such
as English.

5.2 Our Implementation

Our implementation, along with the visualization interface, can be obtained
from GitLab. It is written in F# [18] and runs on Windows using the .NET
Framework and on GNU/Linux using Mono or .NET Core.

5.3 Our results

Our algorithm finds matches based on document frequency and is able to au-
tomatically exclude intentionally shared code from comparison which largely
obviates the need to provide a hand-written assignment template. Setting the
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appropriate granularity of detection (Section 2.4) is also automatically solved
by scoring matches based on their document frequency. Our solution is thus
mostly invariant to different language complexities. The speed of detection has
also improved greatly compared with Text::Similarity from around 10 minutes
for 300 files to less than 3 seconds.

In spite of the fact that our simple algorithm does not use any prior knowl-
edge about languages, it was able to perform at least as well as purpose built
detectors (Compare JPlag 4.4 versus our 5.2). As a result it also solves the issue
of limited language support.

Simple C++ (Figure 5.1) Our detector performed well on all simple datasets.
This suggests that our heuristic solution for excluding identifiers and
source comments may be a viable alternative to creating bespoke lexical
analyzers for each language.

Complex C++ (Figure 5.2) A large percentage of files was detected in all
complex dataset. Unlike with language-specific detectors, the Primitive
dataset (comprising renaming and adding comments) had some limited
effect.

Python (Figure 5.3) The detection performance for the simple changes was
similar to the simple C++ dataset. The style and full datasets still con-
tained numerous similar substrings which our algorithm was able to detect.

Text (Figure 5.4) Due to the large number of almost exact copies of each file,
we had to turn off the document frequency scaling (We had to set the same
option for Moss). With this setting turned off, our detector performed well
and detected most plagiarized files, with only a few false positives until
high recall values.
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Figure 5.1: Precision recall curve of our detector on the Simple C++ corpus
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Figure 5.2: Precision recall curve of our detector on the Complex C++ corpus
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Figure 5.3: Precision recall curve of our detector on the Python corpus
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Figure 5.4: Precision recall curve of our detector on the Corpus of short plagia-
rized answers

5.4 Visualization

We have built two visualization tools on top of the detection output.

5.4.1 Match plot

This tool plots all matched sequences among two files. It is useful for quickly
judging the validity of detection. Example output is shown in figure 5.5.

5.4.2 Side-by-Side comparison

We have also built an experimental tool to visualize the matches between two
files. The tool shows both of the files side by side and color-codes each of the
matched sequences. These sequences can be double-clicked to scroll into view
the sections in both files. Example output is shown in figure 5.6.

34



Figure 5.5: Overview image showing that the beginning of the two files is pla-
giarized.
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1. In object-oriented programming, inheritance is a way to form new classes (instances

of which are called objects) using classes that have already been defined. The

inheritance concept was invented in 1967 for Simula. The new classes, known as

derived classes, take over (or inherit) attributes and behavior of the pre-existing

classes, which are referred to as base classes (or ancestor classes). It is

intended to help reuse existing code with little or no modification. Inheritance

provides the support for representation by categorization in computer languages.

Categorization is a powerful mechanism number of information processing, crucial to

human learning by means of generalization (what is known about specific entities is

applied to a wider group given a belongs relation can be established) and cognitive

economy (less information needs to be stored about each specific entity, only its

particularities). Inheritance is also sometimes called generalization, because the

is-a relationships represent a hierarchy between classes of objects. For instance,

a "fruit" is a generalization of "apple", "orange", "mango" and many others. One

can consider fruit to be an abstraction of apple, orange, etc. Conversely, since

apples are fruit (i.e., an apple is-a fruit), apples may naturally inherit all the

properties common to all fruit, such as being a fleshy container for the seed of a

plant. An advantage of inheritance is that modules with sufficiently similar

interfaces can share a lot of code, reducing the complexity of the program.

Inheritance therefore has another view, a dual, called polymorphism, which

describes many pieces of code being controlled by shared control code. Inheritance

is typically accomplished either by overriding (replacing) one or more methods

exposed by ancestor, or by adding new methods to those exposed by an ancestor.

Complex inheritance, or inheritance used within a design that is not sufficiently

mature, may lead to the Yo-yo problem.

1. In object-oriented programming, inheritance is a way to form new classes (instances

of which are called objects) using classes that have already been defined.

Inheritance is also sometimes called generalization, because the is-a relationships

represent a hierarchy between classes of objects. For instance, a "fruit" is a

generalization of "apple", "orange", "mango" and many others. One can consider

fruit to be an abstraction of apple, orange, etc. Conversely, since apples are

fruit (i.e., an apple is-a fruit), apples may naturally inherit all the properties

common to all ruit, such as being a fleshy container for the seed of a plant.

Inheritance is typically accomplished either by overriding (replacing) one or more

methods exposed by ancestor, or by adding new methods to those exposed by an

ancestor.

Figure 5.6: Side by side view of plagiarized files including color coded matches.
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Chapter 6

Conclusions

We have created a simple, fast and general algorithm for plagiarism detection
in most programming and natural languages (5.1.1). This algorithm can easily
be modified to improve its performance for specific languages by implementing
custom preprocessors. Additionally, we have implemented the algorithm in F#
[18] and compared its performance to other available detectors in section 5.3.
Compared with the current solution used in BRUTE, its performance is signif-
icantly improved for all our source code datasets, while only slightly worse on
the Corpus of Plagiarised Short Answers. However, in this special case, we had
to turn off document frequency scaling, which is the most powerful feature of
our detector.

6.1 Future work

We believe the performance of our detector can be improved by using more
complex preprocessors, while still remaining general for use on most languages.
Although our results are encouraging, it was tested only on a small dataset and
the results are not comparable to the results from the source retrieval task of
the PAN competition [9]. Extending our software with an algorithm to filter
candidate files, would allow it to work on much larger datasets. This would
enable us to evaluate the performance of our solution in contrast to the state-
of-the art.
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Chapter 7

Appendix - Testing in
Detail

This chapter completes the important details of testing which were too detailed
to be included in the Source code and Results chapters.

7.1 Description of Transformations

7.1.1 Simple Transformations on C++ in detail

Add comments Twenty lines of randomly generated ASCII comments were
interspersed throughout the file. Each line is at most 120 characters long.

Reformat code Every space preceding an operator, a bracket, or a comma,
and spaces appearing inside brackets were removed.

Rename identifiers All user-defined identifiers, including define macros, were
renamed to sanitized versions of random words from the Aspell dictionary.

Add assignment template The same 40 line function and 2 variables were
appended to every file, simulating an assignment template, or a part of
code intentionally shared during a lecture. This code was also saved as a
file and passed to every detector, which supports shared-code exclusion.

Add original code Two roughly equal files were concatenated into one, sim-
ulating a situation where a student finds themselves unable to solve the
assignment completely and decides to plagiarize the remaining code.

Shuffle functions All function definitions were randomly permuted through-
out the file, with no regard to the functional dependency graph.

Reverse function parameters The order of parameters of every user-defined
function was reversed.

Extract methods Every top-level statement which itself contains at least one
compound statement was extracted from a method into a smaller method.
Each of these extracted parts was then placed before the original method.
An attempt was made to infer appropriate function headers.
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Invert if-else branches Branches of if-else statements were switched and an
! operator was prepended to the condition.

Invert binary operations Operands of binary operations were switched and
the operators were replaced to maintain the original behavior.

7.1.2 Transformations on Python in detail

Copy paste The entire solution is copied and pasted.

Reformat Each file was reformatted using autopep8 with the following argu-
ments autopep8 --aggressive --aggressive --in-place file.py

Comments Randomly generated ASCII comments with an average length of
8 lines were added to each file.

Rename All user-defined identifiers were renamed using a Caesar cipher.

Parameters The order of function parameters was reversed and default values
were inserted where necessary.

Extract All For loops, While loops, and If/Else statements were repeatedly
extracted into functions, until further extraction was not possible or all
functions contained fewer than 2 top-level statements.

Invert binary Operands of binary expressions were switched and the operators
were replaced to maintain the original behavior.

Extract constant Every string constant and every numerical constant with
at least 2 characters was extracted into global scope. This refactoring is
usually called Introduce Explaining Variable.

Full All the previous transformations were applied in turn on the copied and
pasted solutions.

Style Combination of the Comments, Rename, Extract constant, and Reformat
transformations.

7.2 Testing - Parameter Setting

The minimal sequence length for the natural-language dataset was set to 3
tokens, while for the source code datasets the length was 10 tokens. The expla-
nation for why this is needed is in section 2.4.

Due to the number of almost exact copies of each file in the natural-language
dataset, detectors would identify the copy-pasted sections as a natural feature of
the dataset and exclude such matches. As a result, any detectors which support
automatic assignment template detection had to have this feature turned off.
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7.2.1 CPD

All tests were performed with the following parameters only changing the lan-
guage and minimum-tokens appropriately.

./run.sh cpd --format xml \

--language text \

--minimum-tokens 3 \

--files Files/*

7.2.2 JPlag

java -jar jplag-2.11.8-SNAPSHOT-jar-with-dependencies.jar \

-l text -t 3 Files/

7.2.3 Moss

Tests on the natural-language dataset were performed setting the maximum
number of times a given passage may appear before it is ignored to 1000000 as
suggested in the usage instructions to keep all matches. This setting was needed
due to the large number of copies of each file. For other datasets this parameter
was not used.

./moss -l ascii -m 1000000 -n 1000 Dataset/*

7.2.4 Sherlock

All tests were performed with the following parameters. Sherlock is language-
independent and only the sequence length needed to be changed for each dataset.

./sherlock -t 0 -z 0 -n 3 Files/*

Sim

./sim_text -p -e -s -T -r3 Files/*

7.2.5 Text::similarity

The sample stopword list included int the downloaded perl module was used for
the natural-language dataset. Stop-word lists available on-line worked just as
well.

perl ./text_similarity.pl --type=Text::Similarity::Overlaps \

--stoplist=../samples/stoplist.txt \

Files/*

7.2.6 Our detector

Source Code

mono detector.exe --data=code --output=scores \

$(find $FILES -type f)
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Text

The same setting of --group and -m for Moss was used. However, in our case,
setting this to around 20 would significantly improve our detection performance
(To around 0.92 AUC).

mono detector.exe --data=text --frequency=false --output=scores \

--group=1000000 $(find $FILES -type f)

7.3 Figures
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Figure 7.1: Precision recall curve of CPD on the Simple C++ corpus
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Figure 7.2: Precision recall curve of CPD on the Python corpus
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Figure 7.3: Precision recall curve of JPlag on the Simple C++ corpus
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Figure 7.4: Precision recall curve of Moss on the Simple C++ corpus
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Figure 7.5: Precision recall curve of Moss on the Python corpus
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Figure 7.6: Precision recall curve of Sherlock on the Simple C++ corpus
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Figure 7.7: Precision recall curve of Sherlock on the Python corpus
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Figure 7.8: Precision recall curve of Sim on the Simple C++ corpus
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Chapter 8

Př́ılohy

Součást́ı této práce je:

Implementace Implementace algoritmu pro detekci plagiarismu.

Zobrazovaćı program Program pro zobrazeńı výstupu detekce plagiarismu.
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