
January 2018 Author: Lazaros Stamatiadis

Supervisor: Ing. Tomáš Zitta

CZECH TECHNICAL UNIVERCITY IN PRAGUE

Faculty of Electrical Engineering

Department of Telecommunications Engineering

Mobile Application for Controlling the Embedded

System

B.c. Programme: Communication, Multimedia & Electronics

 Specialization: Communications and Electronics

 I hereby declare that this bachelor thesis is completely my own work and that I used only

the cited sources in accordance with the Methodical instruction about observance of ethical

principles of preparation of university final projects.

Prague, January 9, 2018

 .

 Signature

Acknowledgements

I would like to sincerely thank my supervision, Ing. Tomáš Zitta, for his support and

guidance throughout the thesis. My special thanks also belong to my family, for their

encouragement and love.

v

Abstract

Moving towards the era of IoT, where many different types of devices can interact with each

other remotely, smartphones are required to further expand their capabilities in areas that a

few years back were unheard of. This advance in the communications and devices’ hardware,

increases the need for software development that can take advantage of what IoT has to

offer.

In this thesis, the author attempts to create a mobile application based on Android Operating

System, which will access and control a remote embedded system device, over a Secure

Shell connection via Wi-Fi and Bluetooth. In addition this thesis includes an evaluation and

comparison of each communication technology based on achieved throughput and latency.

Key words: Android, IoT, Wi-Fi, Bluetooth, Raspberry Pi, Wireless Communications, Java,

NFC, SSH

Abstrakt

Přesouváme-li se k éře IoT, kde mnoha různých typů zařízení mohou na sebe

působitvzájemně vzdáleně, je nutné aby u chytrých telefónů došlo k dalšímu rozšíření svých

schopností v oblastech, o kterých se před několika lety ještě neslýchalo. Tento pokrok v

oblasti komunikací a hardwaru zařízení, zvyšuje potřebu vývoje softwaru, který může využít

výhod, které loT nabízí.

V této práci se autor pokouší vytvořit mobilní aplikaci založenou na operačním systému

Android, která bude mít přístup a bude moci ovládat na dálku vestavěné systémové zařízení

přes připojení Secure Shell přes Wi-Fi a Bluetooth. Dále tato práce obsahuje hodnocení a

porovnání každé komunikační technologie založené na dosažené propustnosti a latenci.

Klíčová slova: Android, IoT, Wi-Fi, Bluetooth, Rasberry Pi, Bezdrátové komunikace, Java,

NFC, SSH

vi

Content

Introduction .. 1

1.1. Motivation .. 1

1.2. Outline of Thesis .. 1

Android Operating System .. 2

2.1. History of Android OS ... 2

2.2. Android OS Architecture ... 6

2.2.1. Linux Kernel ... 7

2.2.2. Libraries and runtime layer ... 7

2.2.3. Application Framework .. 9

2.2.4. Application layer ... 9

2.3. Limitations and Security .. 9

Communication between the Mobile Application and the embedded system 11

3.1. Communication Technologies.. 11

3.1.1. Wi-Fi ... 11

3.1.2. Bluetooth ... 13

3.1.3. NFC ... 14

3.2. Security Parameters .. 15

3.2.1. Secure Shell ... 15

Implementation of the Android Application ... 18

4.1. Environment and devices ... 18

4.1.1. Android Studio IDE .. 18

4.1.2. HTC Desire C .. 20

4.1.3. Raspberry Pi 3B .. 21

4.2. User Interface and Functionality of the Application .. 22

4.3. Communication Scenario ... 34

4.3.1. Communication of the Application and Raspberry Pi ... 34

4.3.2. Secure Shell over Wi-Fi .. 39

4.3.3. Secure Shell over Bluetooth .. 40

vii

Tests & Results ... 41

5.1. Communication Comparison.. 41

5.1.1. Throughput .. 41

5.1.2. Latency .. 42

5.2. Security Comparison .. 43

Conclusion ... 44

viii

List of figures

Figure 1. Architecture of Android Operating System .. 6

Figure 2. Dalvik Virtual machine and comparison with Java Virtual machine 8

Figure 3. WLAN diagram ... 12

Figure 4. Bluetooth protocol stack ... 14

Figure 5. The Secure Shell connection model ... 17

Figure 6. Android Studio Workplace ... 19

Figure 7. HTC Desire C ... 21

Figure 8. Raspberry Pi 3B .. 22

Figure 9. Lifecycle of the Application ... 23

Figure 10. SplashScreen.java - Launcher Display of the Application .. 24

Figure 11. ChooseConnection.java activity's UI ... 25

Figure 17. LoginActivity.java - UI screen ... 30

Figure 18. Activity_main.xml - This is the layout which includes the command buttons 32

Figure 19. Activity_super.xml - Supervisor commands layout .. 33

Figure 20. WLAN Protocol Stack .. 39

Figure 21. Bluetooth Protocol Stack ... 40

ix

List of Tables

Table 1. Java Code Snippet - Input of SSH Session credentials .. 35

Table 2. Java Code Snippet - Initiation of connection with the SSH server .. 36

Table 3. Java Code Snippet - Instantiation of channel object ... 37

Table 4. Java Code Snippet - onClick() event handler ... 37

Table 5. Java Code Snippet - User exiting supervisor command set.. 38

Table 6. Java Code Snippet - Disconnection from SSH server .. 39

Table 7. Wi-Fi Throughput Measurement Results ... 41

Table 8. Bluetooth Throughput Measurement Results... 42

Table 9. Wi-Fi Latency Measurements Results ... 42

Table 10. Bluetooth Latency Measurements Results ... 42

x

List of Acronyms

IoT – Internet of Things

OS – Operating System

IEEE – Institute of Electrical and Electronics Engineering

OHA – Open Handset Alliance

Wi-Fi – Wireless Fidelity

MPEGG4 – Motion Picture Experts Group Layer-4

CDMA/EVDO – Code-division multiple access/Evolution Data Optimized

VPV – Virtual Private Network

HMLT5 – Hypertext Markup Language 5

UI – User Interface

PPI – Pixels per inch

NFC – Near Field Communications

CPU – Central processing unit

BSD – Berkeley Software Distribution

JPG – Join Photographic Group

API – Application Programming Interface

HTTPS – Hypertext Transfer Protocol (Secure)

SHA – Secure Hash Algorithms

RFID – Radio Frequency Identification

GSMA – Global System Mobile Association

TCP/IP – Transmission Control Protocol

XML – Extensible Markup Language

WLAN – Wireless Local Area Network

xi

PAN – Personal Area Network

UDP – User Datagram Protocol

SSH – Secure Shell

RFCOMM – Radio Frequency Communications

Mbits – Mega bits

kbits – kilo bits

DOS – Disc Operating Systems

ICMP – Internet Control Message Protocol

DVM – Dalvik Virtual Machine

JVM – Java Virtual Machine

L2CAP – Logical Link Control and Adaptation Protocol

LMP – Link Management Protocol

SDP – Service Discovery Protocol

1

Introduction

1.1. Motivation

In the later years smartphones have become the central control station of our everyday lives

used in a wide spectrum of areas, from communications to entertainment and online shopping

to healthcare and security, the use of smartphones is an essential to our lives. Moving towards

the era of IoT, where many different types of devices can interact with each other remotely,

smartphones are required to further expand their capabilities in areas that a few years back

were unheard of. This advance in the communications and devices’ hardware, increases the

need for software development that can take advantage of what IoT has to offer.

One area that has seen significant contribution from developers across the world is the home

automation, where nowadays a person can control their home appliances from their

smartphones. From controlling home appliances to regulating thermostats and setting up

home surveillance systems, user obtains control to almost every electronic device inside their

homes and everything is controlled from within their smartphones.

Therefore, the idea of contributing to this rapidly developing world of mobile application

development and gain more experience on the current technological advancement and trends

while working on this thesis, was the main source of motivation.

1.2. Outline of Thesis
The thesis is constructed in the following way: Firstly, in Chapter 2. Android Operating

System, the author introduces the reader to the basics of Android Operating System, with a

brief explanation of the history of Android OS versions and an introduction to Android OS

Architecture. Concluding Chapter 2., the author refers to some limitations and security issues

of the Operating system.

Following are Chapters 3. Communication between the Mobile Application and the

embedded system, and Chapter 4. Implementation of the Android Application, where the

author briefly describes the communication scenario between the mobile application and the

selected embedded system, and the actual implementation and functionality of the mobile

application respectively.

The final chapter of the thesis is Chapter 5. Tests & Results, documents the procedure

followed for the evaluation of each of the selected communication technologies and the

outcome of the results considering the achieved throughput and the latency. Moreover,

Chapter 5 included security comparison of each of the selected communication technologies.

2

The Conclusion of the thesis includes the outcome of the evaluation and few suggestions on

feature developments of the application.

Android Operating System

According to the latest statistics on smartphone’s Operating Systems Market Share, Android

holds a well-established strong position with over 64% of the market share[1]. Google, not

only holds the leading position on market share for operating systems, but also in similar

charts about number of applications on online store and active developers[2]. These statistics

show that Android not only is the preferred OS among end users but also among the

developers.

Given the fact that Android is an open-source operating system and uses Java as the main

programming language, it makes it easier for developers and manufacturers to access all the

features available and manipulate the operating system to much their needs.

2.1. History of Android OS
Since the public release of Android’s Beta version on November 5, 2007 Google have

continued with regular updates on their operating system. The first commercial version of the

Android OS, was released on September 2008 under the codename Android 1.0 but since then

Google and OHA have decided to give a confectionery-themed codenames to every new

version of Android that is released.

 Android 1.0 (API 1)

Initially released on September 23, 2008 and added some more features to the already existing

Android Beta. Some of these features were support of Bluetooth and Wi-Fi, Google Talk

instant messages and Google Sync, allowing management over-the-air synchronization of

Gmail, Calendar and other Google apps. Also with this version of Android some more

applications where introduced such as YouTube video player, Android Market and Google

maps with Street View for mobiles. [3]

 Android 1.1 (API 2)

Initially released on February 9, 2009 this version was the first one to release with a

codename and was known as “Petit Four”, though this name was not used officially. It added

some extra features to the ones existing in version 1.0, such as ability to save attachment in

messages and support for marquee in system layouts. [3]

3

 Android 1.5 (API 3)

On April 27, 2009 the Android 1.5 was released under the codename Cupcake, a theme which

follow all version releases henceforth. In this version a lot of new features where introduced,

such as support for third-party keyboards, Widgets, support of MPEG4 video recording and

playback, ability to upload videos on YouTube, Auto-pairing and stereo support for Bluetooth

and many more. [4]

 Android 1.6 (API 4)

This version was released on September 15, 2009 under the codename Donut and it was based

on Linux 2.6.29. In this update among other new features, updated technology support for

CDMA/EVDO, 802.1x, VPNs and text-to-speech engine were included. In addition to that

support for WVGA screen resolution was also introduced with this version. [5]

 Android 2.0 (API 5) – 2.1 (API 7)

On October 26.2009 the Android 2.0 SDK was released, known as the Éclair. The Google

account synchronization was further expanded and users now can synchronize multiple

accounts on the same device. Bluetooth 2.1 support, support of HTML5 for web-browser,

optimization on hardware and revamped UI there a few of the new features brought to users

with this version update. Also there numerous new camera features, further developing

camera performance and support of extra camera related hardware. Android 2.1 version was

just an update for API and some bug fixes. [6],[7],[8]

 Android 2.2 – 2.2.3 (API 8)

On May 20, 2010 the new update for Android OS was released under the codename Froyo,

this time based on Linux kernel 2.6.32. This version included Android Cloud to Device

Messaging (C2DM) service, USB tethering and Wi-Fi hotspot functionality, support for high-

PPI displays, Adobe Flash support, etc. The 2.2.3 update further included two security

updates and minor bug fixes. [9]

 Android 2.3 (API 9) – 2.3.7 (API 10)

Android 2.3 Gingerbread was released on December 6, 2010. This update increased the

simplicity and speed of the UI and further added some new features to the user’s experience.

Some of which were native support of SIP VoIP internet telephony, faster and more intuitive

keyboard, support for Near Field Communication (NFC), Download Manager, as well as

native support for more sensors such as gyroscope and barometers. For the update 2.3.3 a new

API was implemented (API 10). [10], [11]

4

 Android 3.0 (API 11) – 3.2.6 (API 13)

Android 3.0 version was released on February 22, 2011 with the codename Honeycomb and it

was the first tablet-only Android update. This update optimized the tablet support and added

some new features to tablet user’s experience. [12],[13],[14]

 Android 4.0 (API 14) – 4.0.4 (API 15)

On October 18, 2011 the new Android Ice-Cream Sandwich was released this time based on a

Linux kernel 3.0.1. The Ice-Cream Sandwich was the last version of Android to support

Adobe Systems’ Flash player. However, as all previous updates this update also brought new

features to Android OS. The 4.0.3 version of Android also included a new API update (API

15). Some of the new features of this update were Android VPN Framework (AVF) and Face

Unlock which allowed users to unlock their devices using facial recognition software.

Another new and important feature was the Android Beam, a near-field communication

feature that allowed the rapid short-range exchange of data. [15], [16]

 Android 4.1 (API 16) – 4.3.1 (API 18)

Android 4.1, also known as Jelly Bean, was released on July 9, 2012. It was mainly aimed to

improve the functionality and performance of the user interface. This version was based on

Linux kernel 3.0.31 and among many other new features it brought Bluetooth data transfer for

Android Beam and enhanced accessibility. Releases of Android 4.2 and 4.3 followed, with the

first version (4.2) adding new stacks for Bluetooth and NFC technologies and SELinux and

the second version bringing Bluetooth low energy support, Bluetooth Audio/Video Remote

Control Profile (AVRCP), OpenGL ES 3.0 support, 4K resolution support and numerous

security updates and performance enhancements. [17],[18],[19]

 Android 4.4 – 4.4.4 (API 19)

Google released Android 4.4 KitKat on October 31, 2013 with a refreshed interface and many

new features enabling further usability and customization on the user interface. Later updates

of the 4.4 KitKat version extended the improvement in UI, both in its appearance as well as in

its accessibility. The update 4.4.4 included a security fix, eliminating an OpenSSL man-in-

the-middle vulnerability.

As part of the KitKat version, Google released 4.4W KitKat on June 24, 2014 which was an

exclusive version of the Android OS for wearables. [20]

5

 Android 5.0 (API 21) – 5.1.1 (API 22)

Android 5.0 Lollipop was released on November 12, 2014 as an over-the-air (OTA) update

for selected devices. Lollipop featured a redesigned UI built around a responsive design

language referred to as material design. It brought numerous improvements in the

notifications process and it replaced Dalvik with Android Runtime (ART), which improved

application performance. Also this update included support for 64-bit CPUs and a new

technology named by Google as Project Volta for battery life improvements.

On March 9, 2015 Android 5.0 further updated to Android 5.1 remain under the same

codename (Lollipop), which among other features and improvements it included support for

multiple SIM cards, Device protection which was a security feature allowing the device to

remain lock until the user sings into their Google account, in case the device was stolen or

lost. – [21],[22]

 Android 6.0 – 6.0.1 (API 23)

Google released Android 6.0 Marshmallow on October 5, 2015 and with it, it introduced some

new features to the users. Some of the most important ones were the introduction of Doze

mode, which reduces CPU speed while display is off to save battery life. Also the

Marshmallow update included native fingerprint reader support, USB Type-C support, and an

experimental version of the multi-window feature. – [23]

 Android 7.0 (API 24) – 7.1.2 (API 25)

Android 7.0 Nougat was commercially released on August 22, 2016. This version of Android

OS added more UI characteristics allowing the user to further expand the capabilities of their

devices, as well as few new technologies and improvements on previously established

technologies. For instance, Android Nougat introduced Daydream virtual reality platform,

improvement on Doze functionality aimed to prolong battery life, finalized multi-window

support etc. Also with Nougat, Google introduced a new Just in Time (JIT) compiler with

code profiling to ART, which makes for 75 percent faster app installation and 50 percent

reduction in compiled code size, as well as improving the performance of Android apps as

they run.

On October 19, 2016 Google released Android 7.1 which mainly improved user’s Android

experience and brought some more improvements to the UI. It also included minor bug fixes

and improvements for Google’s Pixel smartphone. – [24],[25]

 Android 8.0 (API 26)

The most recent version of the Android OS is the Android 8.0 Oreo which was released by

Google on August 21, 2017. The biggest change that this update brought to the Android world

6

was the introduction of Project Treble, a modular architecture which allowed hardware

manufactures to deliver Android updates on their devices, easier and faster. A few of the rest

features included to this update are Sony LDAC codec support, 2 times faster boot time,

Google Play Project, Wi-Fi Assistant and Android Go which is a optional more lightweight

version of Android for “low-end” devices with less than 1GB RAM. – [26]

2.2. Android OS Architecture

The Android OS is an open-source operating system, with the resource code released publicly

by Google on every new update of the OS, under the Apache 2.0 license.

The software stack of Android is divided into four layers: Kernel layer, Libraries and runtime

layer, application framework layer and application layer.

Figure 1. Architecture of Android Operating System [27]

7

2.2.1. Linux Kernel

Android kernel is based on Linux 2.6 kernel, with some modification added by Google and it

is regularly updated, whenever a new version of Android OS is released. This layer is the core

of android architecture, as it provides the main services for the operating system. It acts as the

abstraction level between the hardware of the device and the upper levels of the software

stack. The kernel includes drivers for different hardware components of the device, and it

provides system services such as the power management and memory management. In

addition it provides network stack and some security services. [27],[28]

2.2.2. Libraries and runtime layer

On the top of the Linux kernel layer is the native libraries of Android. This layer enables the

device to handle different types of data related to the hardware.

These libraries are written in C or C++ programming language and they are accessed through

Java interface. Google’s specifically designed C/C++ library for Android, so called Bionic, is

a derivation of standard BSD’s and system C library (libc). The Java libraries used by

Android are based on OpenJDK.[27] Some of the native libraries included are:

 Surface Manager: used for managing the display of the device and the composition of

windows on screen.

 SQLite: SQLite is the database used from Android, for data storage.

 WebKit: it is the browser engine used to display HTML content.

 Media framework: It is used to provide playbacks and recording of various audio,

video and image formats, such as MP3, AMR, JPG, MPEG4 etc.

 OpenGL|ES: it is used to render 2D and 3D graphics content on the screen.

The Android runtime consists of the Dalvik Virtual machine (DVM) and core Java libraries.

The Dalvik Virtual machine was specifically designed for Android and it was mainly

developed for mobile devices. It is similar with the Java Virtual machine (JVM), although

there are differences and DVM is optimized for Android.

8

Figure 2. Dalvik Virtual machine and comparison with Java Virtual machine [58]

In Dalvik Virtual machine, every application runs in its own process. Dalvik uses its own 16

bit instruction set in comparison with Java’s 8 bit stack instruction, thus reducing instruction

count and increasing its interpreted speed. In Figure 2, we can see the execution of the code

by the DVM. The source code is written at first in Java and with the help of a java compiler

(javac), is compiled to Java byte code (.class files). Then, DEX compiler compiles the .class

files to Dalvik Byte code, or .dex files, which is the format that can be finally executed by

Dalvik virtual machine.

The Dalvik Virtual machine is optimized by Google, for low processing power and low

memory environments and allows multiple instances of VM running simultaneously,

providing security, isolation and memory management. [27],[28]

9

2.2.3. Application Framework

The Application framework is the layer that provides many higher-layer services and major

APIs to the mobile application in the form of Java classes. Developers are allowed to make

use of these libraries and include some of their provided services into their applications. Some

of the most important blocks included in the Application framework layer are:

 Activity Manager: It is responsible to manage the application’s life-cycle.

 Content Provider: Content Provider is used to manage the data sharing between

applications and it manages how this data is accessed from other applications.

 Telephony Framework: It manages all voice call related functionalities.

 Location Manager: Allows access to location related services using GPS or cell tower.

 Resource Manager: It manages various resources used by the application and provides

access to non-code embedded resources such as strings, color settings and user

interface layouts.

 Notifications Manager: Allows the application to display alerts and notifications to the

user.

The blocks included in Application framework are the blocks with which the application

directly interacts and can be manipulated by developers and manufacturers to meet the needs

of any application. [27],[28]

2.2.4. Application layer

The Application layer is the top layer of the Android stack. It is the layer with which the end

user will interact mostly. This layer includes pre-installed applications by Google, as email

client, calendar, browser, maps and contacts which are all written in Java programming

language. However, a lot of manufacturers manipulate this layer and its pre-installed

application to match their signature features or better serve and match their user interface

esthetics. [27]

2.3. Limitations and Security
As mentioned earlier, Android OS runs on a Linux Kernel and so Android’s security model

takes advantage of the security features that the Linux Kernel provides. Due to Linux being a

multi-user operating system, the kernel can isolate user resources in similar fashion as it

isolates processes. [29],[30]

10

Android OS follows similar approaches for the internal security, however there are a few

differences compared to those of a traditional Linux OS. In Android OS, a user-ID is assigned

automatically to each application at installation and is later used to run that application in a

dedicated process. In addition to that, each application is given a dedicated data directory to

which only the application itself has permission to read or write. Thus, by running each

application in a dedicated process and by assigning to each application a dedicated directory,

the applications are isolated. This isolation is also known as sandboxing. [31]

Moreover, Android OS uses a user-based permission model. By default, an application can

access only a limited range of system resources. This limitation can prevent application to

maliciously use the system’s internal API’s. If an application needs to access internal

resources, it has to request permission from the user and if the user accepts the request, the

application can then access the internal API’s. For this reason it is more than wise to check

permission requests of an application, before we install it, and to download trusted

applications only from Google official PlayStore. [31]

In addition to Application Sandboxing and user-based permissions, Google’s Android OS

implements cryptographic API’s to allow secure information transfers between application

and OS. These API’s include basic cryptographic standards such as RSA, DSA and SHA keys

as well as higher level protocols such as SSL and HTTPS. [30]

11

Communication between the Mobile Application and

the embedded system

In this Chapter the author introduces the reader to the consideration that had to be taken for

the selection of the communication technologies and briefly introduces the concept of each of

the selected communication technologies. In addition, the Chapter includes a short

introduction to required security parameters of the communication channels and further

explanation of the Secure Shell Protocol, used for the secure communication of the devices.

3.1. Communication Technologies

Before we started designing the application and the ways via which it will communicate with

the embedded system, we had to make a few considerations.

Firstly, the goal of the thesis was to be able to establish a communication remotely and so we

had to discard technologies such as Ethernet or USB connectivity. The system simulates a

home automation scenario where the user can access the embedded device from anywhere

within the home residence, however the use of cabled communication technologies would

limit the mobility of the user and the need of extra cables would increase the value of the end

product. Therefore we focused strictly on wireless communication technologies.

In addition to increasing user’s mobility and minimizing installation costs, we also had to

consider wireless communication technologies that are broadly used and are supported by

most of the Android devices and embedded systems. As a result we came up with the four

mostly used wireless communication technologies, which are Wi-Fi, Bluetooth, NFC and

Cellular Mobile Data.

3.1.1. Wi-Fi
Wireless Fidelity, or as it is widely known Wi-Fi, is a technology used for wireless local area

networking (WLAN). It is the most common and widely used method for internet networks

and it can be found nowadays anywhere, from homes and offices to airports and restaurants,

even to some public transportation. A simple diagram of such a network is shown in the

Figure 3.

Within such a wireless LAN, a user can connect and exchange information with any other

device within the network. Such connections can be achieved in two different fashions, the

one being through an access point or router and the other one as a peer-to-peer connection.

12

Figure 3. WLAN diagram [57]

Wi-Fi technology covers the IEEE 802.11 standards for radio communications, which is a

broader set of standards of wireless communication themselves, as well as security aspects,

quality of service and the like. The standards are categorized as 802.11 with a letter suffix.

Few of the most widely known standards are:

 802.11a – Wireless network bearer operating in the 5 GHz ISM band with data rates

up to 54Mbps.

 802.11b – Wireless network bearer operating in the 2.4GHz ISM band with data rates

up to 11Mbps.

 802.11g – Wireless network bearer operating in the 2.4GHz ISM band with data rates

up to 54Mbps.

 802.11n – Wireless network bearer operating in the 2.4and 5GHz ISM bands with data

rate up to 600Mbps.

 802.11ac – Wireless network bearer operating below 6GHz to provide data rates of at

least 1Gbps for multi-station operation and 500Mbps on a single link.

13

 802.11ad – Wireless network bearer providing very high throughput at frequencies up

to 60GHz.

Security-wise however, Wi-Fi networks perform poorly. Security standards used for the

protection of Wi-Fi networks are, WEP, WPA/WPA2 and 820.1X or also known as RADIUS.

WEP, is the first security standard used by Wi-Fi technology and it is widely used even

nowadays, however its limited security protection makes a choice only for home networks or

older devices that don’t support newer security standards. WPA, was designed to replaces the

WEP standard and thus is mostly used for home networking and small businesses. WPA2 is a

more secure version of WPA and is the security standard used from every newer wireless

device. The 802.01X standard on the other hand, is the most secure standard of all the Wi-Fi

standards, however it requires additional expertise to set up and maintain. Thus, 802.1X is

intended to be used by larger businesses. All these security standards are based on utilization

of wireless encryption key mechanisms, where the user who requests access to the network is

authenticated with the use of a long sequence of hexadecimal numbers. [32],[33]

3.1.2. Bluetooth
Bluetooth is another wireless technology standard, used for the exchange of data between

devices over short distances. Like, Wi-Fi technology, Bluetooth is used to form networks to,

however in much shorter ranges than Wi-Fi. These networks are known as WPANs, which

stands for Wireless Personal Area Networks.

The IEEE standardized Bluetooth as IEEE 802.15.1, but no longer maintains the standard.

The Bluetooth standard is maintained by Bluetooth SIG which oversees development of the

specification and manages the qualification program. [35]

Bluetooth operates in same radio frequencies with Wi-Fi and other radio communications;

however they differ in the communication schemes. Bluetooth form a network, also referred

to as piconet, and establishes connection between devices in a master-slave relation. There is

a master device, which at an instance can be connected with up to seven slave devices

simultaneously. The slave devices on the other hand, cannot be connected with more than one

master device at a time. The master device chooses which slave device to address typically in

a round-robin fashion. Device can change roles upon agreement and a slave device can

become master device and vice versa.

Bluetooth technology differs from other wireless technology also in the layer protocol

architecture. The Bluetooth’s protocol stack consists of core protocols, cable replacement protocols,

telephony control protocols and adopted protocols. The mandatory protocols, for all Bluetooth stacks

are LMP, L2CAP and SDP. The Link Management Protocol (LMP) is the logical layer of the

Bluetooth protocol stack and it is used for set-up and control of the radio link between two devices.

[34]

14

Figure 4. Bluetooth protocol stack [25]

The L2CAP is used to multiplex multiple logical connections between two devices, using different

upper level protocols. The SDP allows a device to discover services provided by other devices, and

their associated parameters. SDP then determines which Bluetooth profile the device can use and the

protocol multiplexer settings needed.

Another mandatory protocol is Bluetooth Network Encapsulation Protocol. BNEP is used for

transferring another protocol stack’s data via an L2CAP channel. Its main Purpose is to transmit IP

packets in the PAN profile. BNEP performs a similar function to SNAP in WLAN.

For the secure communication of devices, Bluetooth technology uses a PIN authentication and key

derivation with custom algorithms. Bluetooth key generation is based on a PIN, which must be entered

to the devices upon pairing of devices. [34].[35].[36]

3.1.3. NFC
The NFC, or Near-Field Communication, is a set of communication protocols that allow

devices to communicate, by bridging them within a very short distance. NFC employs

electromagnetic induction between two loop antennas when NFC-enabled devices exchange

information. It operates within the unlicensed radio frequency ISM band of 13.56 MHz on

ISO/IEC 18000-3 air interface at rates ranging from 106 to 424 kbit/s.

15

The NFC technology has many applications, such contactless payment systems, or transfer or

media files between devices, however NFC offers a low-speed connection and thus is not

optimal choice for transfer of big files.

NFC standards cover communication protocols and data exchange formats and are based on

existing RFID standards, including ISO/IEC 14443 and FeliCa. Many different organizations

try to standardize the NFC technology with NFC Forum being the major one. Other

organizations such as GSMA, StoLPaN and ISO/IEC standardized NFC technology, however

their standards are not universally accepted. [37],[38]

3.2. Security Parameters
So far, we have dealt with the security of the operating system itself and the security

mechanisms that each of the communication technologies under our scope provide, for the

secure transfer of data within a network. However, since the goal of the thesis is the remote

control of the embedded system and execution of some security related commands with the

use of the mobile application, we were required to use an additional security protocol. For

that matter, we have chosen the Secure Shell protocol, or else known as SSH.

3.2.1. Secure Shell
The SSH protocol is a method for secure remote login from one computer to another, and it is

a secure alternative to the non-protected login protocol Telnet.[41] The SSH protocol finds

use in many application due to its capabilities to provide secure access for users in automated

processes, capabilities for remote issuing of commands and secure file transfers.

The Secure Shell protocol is based on a client-server communication model and it consists of

three major components:

 The Transport Layer Protocol

 The User Authentication Protocol

 The Connection Protocol

The Transport Layer Protocol is typically being run over a TCP/IP connection, although it

might also be used on top of other reliable data streams. In this layer the server-side

authentication takes place. For this procedure the server generates a pair of public-private

keys which will be used by the client to authenticate the server. The public key is shared with

the client, and is referred to as the host key. The client must have knowledge of the host key

in advance, for the authentication to be possible. According to [44], there are two alternative

trust models that can be used from the client to acknowledge the host key. Either the client

should maintain a local database that associates each host name with the corresponding public

16

host key or a Certification Authority (CA) technique has to be used for the host name-to-key

association. In the latter, the client knows only the CA root key and can verify the validity of

all host keys certified by the accepted CAs [40]. [41],[42]

After the successful exchange of public key and the acknowledgement of the host key from

the client, the public key is used to match the private key maintained in the server. If the

match is successful, the server authentication process is completed successfully.

Following the Transport Layer Protocol is the User Authentication Protocol. As its name

reveals, this protocol is responsible for the authentication of the client-side from the server. In

[46], the author suggests that there are three methods for the user authentication process, those

are Public Key Authentication, Password Authentication and Host-based Authentication.

From all three methods, the Public Key Authentication is the safest one and thus is strongly

suggested for any client authentication process. This method works by having the client send

a signature created with its private key. The server then checks if the key is valid for the client

and the validity of the signature. If both hold the authentication request is accepted. The

generation of the signature associated with the client’s private key is achieved by the user

supplying a passphrase.

Despite Public Key Authentication method being the most secure option, not all SSH

connections require this method for authentication. A simpler alternative is the Password

Authentication method, which requires the user to supply a password on the client-side, which

is then used to the server-side, for authentication.[42], [43]

The least used method from the above mentioned methods is the host-based. The

authentication is based on the hostname of the client and the username of the server. For this

authentication method, the client send a signature associated with its private key, which then

the server checks with that client’s public key. Once the client’s identity is established,

authorization is performed based on the username stored on the server and the one supplied by

the client’s side and the hostname of the client. [43]

The last component of SSH’s protocol stack, is the Connection protocol. This protocol runs

on top of the Transport Layer Protocol and the User Authentication Protocol and it provides

interactive login sessions, remote execution of commands as well as TCP/IP and X11

forwarding [47]. The Connection Protocol uses the prior secure authentication connection

established from the previous two protocols, to multiplex a number of logical channels. The

lifecycle of these channels is divided in three stages, Opening a channel, Data transfer and

Closing a channel. The side that initiates a channels request sends a message containing the

channel type, sender channel, initial window size and maximum packet size. The channel type

identifies the application that the channel is going to be used for, whereas the sender channel

corresponds to the local channel number. At this point it is useful to mention that each side of

the connection may run multiple channels simultaneously. Thus each side, associates a unique

17

channel number to each one of the channel to distinguish one channel from the others. The

rest of the parameters specify the number of bytes of channel data that can be sent to the

sender without adjusting the channel window, and the maximum size of an individual data

packet that can be sent to the sender, respectively. If the remote side is able to open the

channel, the data transfer is performed. Otherwise the remote side sends a message back to the

sender including a reason code indicating the reason of failure. [44]

During the data transfer phase of the channel, data is transmitted from client to server and

vice-versa. If each of the two side wishes to close the channel, it has to send a “close”

message to the other side, informing that the channel will close.

In [47], there are four channel types recognized. Namely they are, Session, X11 forwarding,

Forwarded-TCP/IP and Direct-TCP/IP. The session channel type is used for the remote

execution of a program. The program may be a shell or an application or a system command.

The X11 refers to the X Window System, which is a computer software system and network

protocol, which allows application to run on a network server but be displayed on a desktop

machine [40]. The rest two of the four channel types are used for global and local port

forwarding respectively.

Following is Figure 5, which depicts a visual representation of an SSH connection between a

client device and a server device, as well as the information the two sides exchange to set-up a

connection authenticate each other and transfer data.

Figure 5. The Secure Shell connection model. [41]

Since one of the goals of this thesis is to remotely access an embedded system and execute

some commands, the implementation of SSH protocol was essential. A deeper dive into the

implementation of the SSH protocol is provided in the following chapter under the subsection

4.3 Communication Scenario, where we also included programmatic implementation of

some of the procedures mentioned above.

18

Implementation of the Android Application
The initial goal of the thesis is to create a simple, user friendly application to test device’s

available communication technology and to remotely access and control and embedded

system device. In order to implement our ideas and create the actual application we had to

follow the standard procedure that every developer follows: we choose a development

environment, our devices needed to achieve our goal and we began implementing.

4.1. Environment and devices

For the development of the application and the followed communication of the device itself

with the selected embedded system, the required tools and devices we had to use are the

developer environment for the implementation of the application, a smartphone device to run

and test the application and the embedded system.

4.1.1. Android Studio IDE

The environment used for the implementation of the application, was Google’s Android

Studio IDE. We used the latest version of the software which is version 3.0.1. This IDE is

based on JetBrains’ IntelliJ IDEA software and it is designed specifically for Android

development. Google provides a lot of features within this platform with some of the most

important being [49]:

 Gradle-based built support

 Built-in support for Google Cloud Platform

 Android Virtual Device (Emulator)

 A rich layout editor

 Support for building Android Wear applications

 Code templates and GitHub integration

 Extensive testing tools and frameworks

 Lint tools to catch performance, usability, version compatibility and other problems

When building an Android project using Android studio, the developer will come across with

a screen like the one depicted in Figure 6. By default, on the left side of the screen there is a

drop-down list which contains all the source files of the project. The list is divided into two

main categories. The first of the two is the Application category, which contains all the source

files of the project, such as the AndroidManifest.xml file, the Java classes used in the project

and the resource files which include the layout of the project, string values, menus and others.

19

The second category of the list is the Gradle Scripts which contains all the Gradle related

files, such as the build.gradle, settings.gradle and some property files. Android studio uses

Gradle as the foundation of the build system. This build system runs as an integrated tool

from the Android studio menu. It is used to customize, configure and extend the build

process, to create multiple APKs for the application and reuse code and resources across

source-sets [49].

Figure 6. Android Studio Workplace

As we have mentioned above, the Application category contains all the source files of the

project. The first source file that falls under this category is the AndroidManifest.xml file.

This file is responsible to provide the Android system with the essential information of the

application, which they have to be known before the system can run the application’s code. In

addition to providing the system with the needed essential information, AndroidManifest.xml

file is responsible for other processes also:

 It names the Java package for the application.

 It describes all the components of the application, such as the activities, services,

broadcast receivers and content providers. These declarations inform the Android

system of the components and the conditions in which activities can be launched.

 It declares permissions which the application must have in order to access protected

parts of the API and interact with other applications or access device’s features.

 It lists the libraries that the application must be linked against.

20

 It lists the Instrumentation classes that provide profiling and other information as the

application runs.

 It declares the minimum level of the Android API that the application requires.

As its indexing reveals, AndroidManifest file is written in the XML programing language.[50]

The second group of source files under the Application category is the Java classes. The Java

classes define the functionality of the application as a whole. Generally, the Java classes

include the functionality of each of the activities of the application and define the

corresponding layout file which will be attached to any of the activities. The Java classes is

where the developer will implement the functionality of the application and he will include all

the necessary functions and features of the application.

The final group of the Application category is the Resource files. In this group of files the

resources of the application are stored. Resources such as string values, menus and layouts are

the main component of the Resource files group. The layout files are responsible for the

design of the UI of the application. They are written in XML language and they are attached

to some Java class for their functionality. The values resources contain different values set by

the developer, for visual features of the application. Also under the resource files falls the

drawable files, where they contain built-in icon or custom ones where they can be used for

aesthetical purposes in the UI of the application.[53],[54],[55]

4.1.2. HTC Desire C
The smartphone device selected to run and test the functionality of the application, was

HTC’s Desire C. The device was selected because it fulfilled the basic requirement given by

the functionality of the application.

HTC’s Desire C runs on Android Ice-Cream 4.0.3 MR1, which is based on Linux’s modified

Kernel 3.0.16. The device fulfilled also all of the required communication capabilities, as it is

Bluetooth and NFC enabled and its hardware included both cellular and Wi-Fi antennas.

21

Figure 7. HTC Desire C [51]

However, due to the fact that HTC Desire C runs on a relatively old version of Android’s

Operating System, we had to make several compromises during the development of the

application, since many required functionalities are not supported on older OS verisons.

4.1.3. Raspberry Pi 3B
For our embedded system we have selected the Raspberry Pi 3B, which is the latest version of

the well-known Raspberry Pi system. Since our goal is to test and evaluate wireless

communication means, we needed a device with the respective capabilities. This version of

the Raspberry Pi includes an on board wireless LAN adapter and a Bluetooth Low Energy

(BLE) module, and there was no further need of extra adapter or dongles in order to match

our requirements.

22

Figure 8. Raspberry Pi 3B [52]

This was our embedded system of choice due to the fact that from all other available

embedded system devices used for similar project, Raspberry Pi 3B was the one that required

the less set-up and configurations out of the box, to match our needs.

4.2. User Interface and Functionality of the Application
The application is an implementation of an SSH client and a connectivity manager infused

together. It included three main activity classes, where the function and the logic of the

application take place, and five layouts files responsible to create the UI of the application.

Following in Figure 9, is a representation of the Lifecycle of the activity and the transition

from one activity to another within the application.

23

Figure 9. Lifecycle of the Application

When the user launches the application for the first time, the onStart() process takes place and

the systems starts the application. While the OS loads the components of the application, the

24

user is introduced to a splash screen, which serves as a time window for the set-up of the

application. This is the SplashScreen.java class and is depicted in Figure 10.

Figure 10. SplashScreen.java - Launcher Display of the Application

After the loading of the application is finished, ChooseConnection.java activity starts, with its

respective layout being displayed on the screen for the user to interact with. It contains four

buttons, and one TextView field, as shown in Figure 16. However, as depicted in Figure 11,

initially they are only three of the buttons displayed on the screen. The fourth button, which is

labeled “NEXT”, will be displayed only after the user is connected to a network either vie

Bluetooth connectivity or via Wi-Fi.

25

Figure 11. ChooseConnection.java activity's UI

Each button is labeled with its corresponding functionality and the TextView field suggests

the user to click one of the three grey buttons, in order to choose connectivity type. When the

user clicks on the “Bluetooth” button, the device’s Wireless setting screen is displayed as

shown in Figure 12. While on the Wireless settings screen, the user can turn on or off the

26

Bluetooth connectivity of the device and also enable Bluetooth Tethering capabilities on the

device.

Figure 12. Wireless setting screen

If Bluetooth connectivity is enabled, the user is capable to see the paired devices that has

previously paired the phone with and can choose to scan for new devices available in the area.

By clicking on one of the devices listed in this view, the user initiates a connection with that

device, over Bluetooth. Figure 13 illustrates the device’s Bluetooth functionality.

27

Figure 13. Bluetooth Settings screen - Paired Devices (left) Bluetooth Tethering (right)

In similar fashion, the user can access the Wi-Fi connectivity settings, by clicking on the “Wi-

Fi” button. Once, the “Wi-Fi” button is clicked, the device’s Wi-Fi settings are displayed on

the screen. A list of available networks is displayed and the user can choose to which network

he wishes to connect to. Once he clicks on a network item from the list, if the network is not

secured, the device will connect to that network without the need of any credentials. However,

if the user chooses to connect to a network, which is secured by a password a dialog window

will prompt the user to type a password for authentication. After the authentication is finished

the device will be connected to the corresponding network. Figure 15 displays the User

Interface of the device’s Wi-Fi setting.

28

Figure 15. Wi-Fi Settings screen

Finally, once the device is connected to some network, the user is returned to the

ChooseConnection.java activity, where now the “NEXT” button is available for the user to

click and proceed to the next activity of the application. Figure 16 shows the

ChooseConnection.java activity, after the device is connected to a network.

29

Figure 16. ChooseConnection.java - Display of connected device.

In this instance of the ChooseConnection.java activity, the user is allowed to click the

“NEXT” button and trigger the onCreate() and onStart() methods of the LoginActivity.java

activity. Moreover, the UI of the application changes with a new layout being applied on the

screen and the corresponding LoginActivity.java activity is instantiated. In this activity, a

connection to the internet is already established by the ChooseConnection.java activity and

now the user is able to communicate with the remote embedded system, over an SSH

connection.

30

As mentioned earlier in the subsection 3.2 of Chapter 3, the SSH connection follow a client-

server model. In our case our application is the client and thus the side which needs to provide

some credentials for the authentication process from the server. For this reason, the UI of the

LoginActivity.java includes four EditText Views, where they are going to be used for the user

to input the required credentials, as well as a button which will be clicked to initiate the

connection.

Figure 127. LoginActivity.java - UI screen

31

In Figure 17 we can see the UI of the LoginActivity.java screen. It consists of four EditTexts

which are labeled according to the value that they pass in the java code, and a button labled

“CONNECT” which the user clicks to start a connection. The first EditText, labeled as

”Host/IP Address” requires the user to input the hostname of the server he wants to access, or

the IP Address of that server. The “Username” and “Password” EditTexts require the

username of the client and the password with which he is trying to access the server. These

two values, will be used on the server side for authentication and if they are correct they will

grant access to the client. Finally, the “Port” EditText passes an integer value in the java

source code of the application and is the number value of the server’s port which is listening

for connection requests.

After all credentials are filled in, the user can click on the “CONNECT” button and trigger the

connection process. However, if one or more of the EditText fields were left empty by the

user or the input was incorrect, the connection will be declined by the server and the

application will print out a Toast Message to inform the user about the error that occurred.

Table 1, in subsection 4.3.1 shows a snippet of the source code which is responsible to handle

this error.

Therefore if the credentials are incorrect or empty, the authentication procedure on the server

side will fail and thus the connection will return false. That is, the application will not be able

to proceed further and the user will be informed that an error occurred while trying to connect

to the server. However, in case the credentials are correct and the authentication procedure is

successful, a connection will be established between the application and the remote embedded

system, this will grand the user with the ability to proceed on controlling the embedded

system and run commands from within the application.

To do so, the application has to check if a connection is currently open and listening for data

streams. If so, the application will chance its UI to another layout which will populate the

screen with a few new buttons in a ScrollView. In Figure 18, we can see what this new layout

will look like and what are the buttons that it includes.

32

Figure 138. Activity_main.xml - This is the layout which includes the command buttons

In the activity_main.xml layout we have included numerous buttons, which are responsive to

the user’s click. Each button is responsible to send a command to be executed on the server,

when the user clicks on it. We have labeled each button with the corresponding command that

is being send to the server in order to smoothen the user experience. Moreover, we have

preferred to execute commands with button clicks instead of user’s input type approach since

it adds more simplicity and usability to our application.

The UI of the activity_main.xml layout is encapsulated inside a ScrollView, which allows the

user to scroll on the screen and choose the command he wants to execute. It is easily noticed

from Figure 18, that there are two slightly different buttons included inside the layout. The

one is the “DISCONNECT” button and the other one is the “SUDO SUPERVISORCTL”

button. In the case of the “DISCONNECT” button, when the user clicks on it, the application

disconnects the channel which runs the commands as well as the session which is currently

connected. That is, the application will terminate the SSH communication between the device

and the embedded system and it will return the user to the activity_login.xml, which is the

layout responsible for credential inputs. For the “SUDO SUPERVISORCTL” button, if the

user clicks on this button a new process will be triggered. This button is responsible to start

the supervisor set of commands, which is a different set of commands that the user has access

to right now. This will result in a new layout being instantiated and displayed on the screen.

33

This new layout is of similar fashion with the activity_main.xml layout. That is, is a layout

encapsulated inside a ScrollView, which contains buttons responsible to execute supervisor

commands on the server end. The design of the new layout is depicted in Figure 19.

Figure 149. Activity_super.xml - Supervisor commands layout

This layout contains only the buttons that run supervisor commands, and there is not

functionality implemented that affects the application directly. If the user wishes to exit the

supervisor commands and go back to the main command thread, he has to click on the button

“EXIT”, which will exit the supervisor command set and bring back on screen the

activity_main.xml layout.

The whole application is terminated once the user totally exits the application. This can

happen as a response to the user’s click on on-screen home button or the user exiting and then

killing the app. Nevertheless, if the user remains inactive during a session for longer time

interval than 83 minutes, the session automatically will disconnect which will result to the

channel termination and the application returning on the credential input screen

activity_login.xml layout. If the user wishes to reconnect to the server again, he should

instantiate a new connection following the same procedure, with passing credentials and

authenticating, from the beginning.

34

4.3. Communication Scenario
In earlier chapters, we have mentioned that our main goal of our application is to be able to

access and control an embedded system device remotely. We have talk so far about the

application user interface, the functionality of the application as well as the application

lifecycle. The following chapters will describe the programmatic approach to achieve a secure

communication, over the selected communication technologies and an insight explanation of

how our application handles these processes.

4.3.1. Communication of the Application and Raspberry Pi
As we have mentioned before, for the remote control of the Raspberry Pi we need to

implement an SSH connection, between the Android Application and the Raspberry Pi. Since

the SSH communication is a client-server based communication, we had to establish the roles

of each device for our communication scenario. Therefore in our communication scenario, the

android device is the client requesting connection and the Raspberry Pi serves as the server

responsible to grand access to the client.

In order to add SSH client capabilities to our application, we used the open-source Java

Library JSch, implemented by JCraft development company, and we implemented a clients to

match our requirements for the SSH connection. This library includes all the required

elements for the client-end of our communication, such as SSH protocol, User Authentication,

SFTP channels and remote control capabilities.

Since we need to remotely control the Raspberry Pi system, we had to instantiate the

following parameters in our application:

 JSch – Is a java Object which acts as the main repository to extract all required

features for our application’s functionality

 Session – Is a java Object derived from the JSch Object which is responsible to handle

a session for the connection of our app with the Raspberry Pi

 ChannelExec – Is one of numerous types of channels supported by JSch SSH

implementation and is mandatory for the execution of commands on the remote server

 OutputStream – Is the output data stream of our device, which will contain the

commands to be executed on the server side in the form of bits

 InputStream – Is the input data stream of out device, which will contain the response

of the server after we execute a command

As we have mentioned earlier, the user needs to input the credentials required from the server

side in order to set-up a connection. This process takes place in the LoginActivity.java

activity. The user fills out the EditTexts presented on the UI, with the requested information

for each EditText. Table 1 shows the programmatic implementation of this process.

35

@Override

protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_login);

 Host_ip = findViewById(R.id.Host__ip); // IPAddress or Hostname of the

server

 Password = findViewById(R.id.Password); // Password used for the

authentication of client

 Username = findViewById(R.id.Username); // Username of client to

associate with password for future connection

 Port = findViewById(R.id.Port); //Port number to which communication

socket will be created (default value: 22)

 Connect_btn = findViewById(R.id.Connect_btn);

 Host_ip.setOnClickListener(new View.OnClickListener(){

 @Override

 public void onClick(View v) {

 strHost_ip = Host_ip.getText().toString();

 if(TextUtils.isEmpty(strHost_ip)){

 Host_ip.setError("Please enter a valid ID Address.");

 }

 }

 });

 Username.setOnClickListener(new View.OnClickListener(){

 @Override

 public void onClick(View v) {

 strUsername = Username.getText().toString();

 if(TextUtils.isEmpty(strUsername)){

 Username.setError("Please enter a valid Username.");

 }

 }

 });

 Password.setOnClickListener(new View.OnClickListener(){

 @Override

 public void onClick(View v) {

 strPassword = Password.getText().toString();

 if(TextUtils.isEmpty(strPassword)){

 Password.setError("Please enter a valid Password.");

 }

 }

 });

 Port.setOnClickListener(new View.OnClickListener(){

 @Override

 public void onClick(View v) {

 strPort = Port.getText().toString();

 if(TextUtils.isEmpty(strPort)){

 Port.setError("Please enter a valid Port.");

 }

 }

 });

Table 1. Java Code Snippet - Input of SSH Session credentials

After all EditTexts are filled out the user presses the “CONNECT” button to initiate a

connection. If all credentials are filled in the corresponding EditText and are correct, the

36

application will attempt to connect with the server. Instances of the JSch object and all its

derived object are created and the attempt for connection is triggered, as shown in the snippet

of Table 2.

Connect_btn.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View v) {

 //Create new Thread to avoid Application Crashing on execution

 new Thread(new Runnable() {

 @Override

 public void run() {

 //Initiation of SSH connection using JSch SSH client library

 //Authentication procedure and establishment of session connection

 strPort = Port.getText().toString();

 int port = Integer.parseInt(strPort);

 strHost_ip = Host_ip.getText().toString();

 strUsername = Username.getText().toString();

 strPassword = Password.getText().toString();

 try {

 jsch = new JSch();

 session = jsch.getSession(strUsername,

strHost_ip, port);

 session.setPassword(strPassword);

 // Avoid asking for key confirmation

 Properties prop = new Properties();

 prop.put("StrictHostKeyChecking", "no");

 prop.put("PreferredAuthentications",

"publickey,keyboard-interctive,password");

 session.setConfig(prop);

 session.connect(100000);

 }catch (JSchException e){

 e.printStackTrace();

 Toast.makeText(LoginActivity.this, "There was

something wrong with the connection.", Toast.LENGTH_LONG).show();

 }

 }

 }).start();

Table 2. Java Code Snippet - Initiation of connection with the SSH server

At this point, the application has tries to initiate a connection passing all the credentials as

parameters of the session object. If the connection is established successfully the application

will continue with instantiating a Channel object, which is required for the remote execution

of commands. On the other hand, if the connection to the server was not established, the

application will print out a Toast Message to inform the user about the error occurred.

Following in the Table 3, is a snippet of the source code for the above stated procedure.

37

if(session.isConnected()){

 setContentView(R.layout.activity_main); //Change the layout of the

Activity to enable command execution

 //Declare the buttons present on this activity layout

 button1 = findViewById(R.id.button1);

//This part of code includes additional buttons

 DisConnect_btn = findViewById(R.id.DisConnect_btn);

 //Initiate a channel for passing the commands to the server

 try {

 channel.getSession();

 channel = (ChannelExec) session.openChannel("exec");

 channel.connect();

 channel.setInputStream(bais);

 channel.setOutputStream(baos);

 } catch (JSchException e) {

 e.printStackTrace();

 }

Table 3. Java Code Snippet - Instantiation of channel object

Once the channel is created, as mentioned in subsection 4.2, the user is able to pass

commands to the remote server for their execution. This is achieved by on-button clicks

which in return will pass the corresponding command to the server. The onClick() events of

the button are managed as described in the snippet of Table 4.

button1.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View v) {

 if (channel.isConnected()){

 channel.setInputStream(bais);

 channel.setOutputStream(baos);

 channel.setCommand("sudo supervisorctl");

 channel.disconnect();

 //Change the layout of the Activity to enable Supervisor

commands execution

 setContentView(R.layout.activity_super);

 //Declare buttons present on this activity layout

 button13 = findViewById(R.id.button13);

//This part of code includes additional buttons

 button22 = findViewById(R.id.button22);

Table 4. Java Code Snippet - onClick() event handler

In our code, “button1” represent the supervisor command, thus, when clicked it calls for the

initiation of the activity_super.xlm which hold the UI and logic of the supervisor command

set. This can be seen on Table 4, where the onClick() method initiates a change to the

ContentView() of the application.

38

Following this call, the UI of the application is changed and the user can now execute

commands from the supervisor command set. If the user wishes to exit the supervisor

command set, then he should click the “EXIT” labeled button and the application will initiate

a return to the previous layout, for the execution of system commands. This procedure is

programmatically described on Table 5.

button20.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View v) {

 if (channel.isConnected()){

 channel.setInputStream(bais);

 channel.setOutputStream(baos);

 channel.setCommand("exit");

 channel.disconnect();

 setContentView(R.layout.activity_main);

 }else {

 try {

 channel.connect();

 channel.setInputStream(bais);

 channel.setOutputStream(baos);

 channel.setCommand("exit");

 channel.disconnect();

 setContentView(R.layout.activity_main);

 } catch (JSchException e) {

 e.printStackTrace();

 }

 }

 }

});

Table 5. Java Code Snippet - User exiting supervisor command set

Generally all onClick() events of the application, for the execution of commands are handled

in the same manner. Every button checks is a channel is connected, if so it passes the

command to the server, else the application will try to create again a new channel, and follow

the same procedure to execute the command.

Finally, if the user wishes to exit the command execution completely and to close the session

too, this can be achieved by clicking the “DISCONNECT” button on the activity_main.xml.

The application will disconnect any active channel and will proceed to disconnect from the

session. Once the session is disconnected the application will return to activity_login.xml and

the user will have to re-enter its credentials to the corresponding fields is he wishes to

reconnect to the server. Table 6 illustrates the process of disconnection from the server.

39

DisConnect_btn.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View v) {

 if (channel.isConnected()) {

 channel.disconnect();

 session.disconnect();

 setContentView(R.layout.activity_login);

 }else {

 session.disconnect();

 setContentView(R.layout.activity_login);

}

 }

});

Table 6. Java Code Snippet - Disconnection from SSH server

4.3.2. Secure Shell over Wi-Fi
Before analyzing the results of the measurements of this thesis, it is worth mentioning the

procedure that each communication technology required in order to allow our application to

connect to the remote embedded system over SSH.

The Wi-Fi communication technology required a rather simple implementation. The server’s

port is set to listen for TCP/IP connection requests. Thus trying to connect to the embedded

system from within a WLAN was pretty straight forward since the Wi-Fi protocol contains a

TCP/UDP Transport Layer.

Figure 215. WLAN Protocol Stack []

As we can see in Figure 15, the Transport Layer Protocol runs on-top of the Wi-Fi Physical

layer protocol and so the initiation of a TCP/UDP connection is the standardized way of

transmitting data over a WLAN network.

40

4.3.3. Secure Shell over Bluetooth
On previous subsection we saw how the WLAN protocol stack is constructed and that the

Transport Layer of it is the TCP/UPD protocol. However, in the case of the Bluetooth

technology the protocol architecture is a bit different. While Bluetooth protocol stack doesn’t

provide exactly the same transport layer as the WLAN protocol stack, it provides alternative

protocols that can offer similar functionality with a TCP/UDP protocol. The equivalent

protocol of Bluetooth stack for TCP is the RFCOMM protocol. Although it was designed to

emulate an RS-232 serial port, RFCOMM can be used in similar manner as the TCP protocol.

However, RFCOMM cannot connect to a TCP/IP port and thus it requires the set-up of

another non-TCP/IP port or the port forwarding method. Moreover, there are several available

software which allow TCP/IP ports to listen for RFCOMM connections.

Figure 216. Bluetooth Protocol Stack []
In Figure 16, we can see a description of the Bluetooth protocol stack. In this stack we its

visible that the TCP/UDP Transport Layer can be accessed, but not from an IP socket as in

WLAN protocol stack, but rather an RFCOMM socket.

41

Tests & Results

Since we have shown already how our application is working and how it handles all the

required tasks for the achievement of our main goals, it is now wise to present the evaluations

of the actual communication between our device and the remote embedded system.

In this Chapter we discuss the procedures we followed to evaluate each communication

technology and the parameters that our evaluation tests were based on. Moreover, we present

statistical results of the individual measurement that took place and we compare the two

communication technologies according to their performance.

5.1. Communication Comparison
So far we have seen how we have constructed the application itself and all the consideration

we had to make in order to achieve a secure communication and control of out remote

embedded system. However, we our goal is to evaluate the methods and technologies we used

and from the outcome of the results to decide the optimum solution for connecting to a remote

system over a wireless communication technology. Therefore we have run some test

considering the latency of each of the selected communication technologies as well as the

achieved throughput.

5.1.1. Throughput
For the evaluation of the throughput of each of the communication technologies we used the

iPerf3 bandwidth measurement tool. We ran three consecutive measurements for both Wi-Fi

and Bluetooth technologies. The measurement time interval for each measurement was set to

60 seconds. Tables 7 and 8 show the results of the measurements for Wi-Fi and Bluetooth

communication respectively.

Number of

Measurement

Time Interval

[seconds]

Data Transmitted

[MBytes]

Throughput

[Mbits/sec]

1 60.4 31.2 4.33

2 65.5 30.2 3.87

3 60.6 29.1 4.02

Table 7. Wi-Fi Throughput Measurement Results

42

Number of

Measurement

Time Interval

[seconds]

Data Transmitted

[MBytes]

Throughput

[kbits/sec]

1 80.2 3.88 406

2 60.9 4.24 585

3 72.2 4.32 501

Table 8. Bluetooth Throughput Measurement Results

The results of the two individual measurement show that the achieved throughput values of

the Bluetooth connection are significantly lower than the ones for the Wi-Fi connection. On

average, Bluetooth achieved throughput value is 497.33 kbits/sec where for the Wi-Fi the

average value is 4.07 Mbits/sec. These results show that throughput-wise the Wi-Fi

connection is the optimum solution as a choice for communication between devices.

5.1.2. Latency
For the latency tests we used the ping networking utility, which simply sends some ICMP

echo request packets to the targeted host and waits for ICMP echo replies. We ran the ping

utility 100 consecutive times for each of the communication technologies, sending a packet of

64 bytes each time. Tables 9 and 10 show the results of these measurements, both for Wi-Fi

and Bluetooth respectively.

Packets

Transmitted

Packets

Received

Packet Loss

[%]

Minimum

Latency

[ms]

Average

Latency

[ms]

Maximum

Latency

[ms]

100 99 1 48.256 434.349 1563.954

Table 9. Wi-Fi Latency Measurements Results

Packets

Transmitted

Packets

Received

Packet Loss

[%]

Minimum

Latency

[ms]

Average

Latency

[ms]

Maximum

Latency

[ms]

100 88 12 2.452 99.728 1769.504

Table 10. Bluetooth Latency Measurements Results

As we can see from the tables above, latency-wise Bluetooth seems to perform significantly

better than the Wi-Fi technology. The average latency for Bluetooth is almost four times

lower than it is for Wi-Fi. However, the packet loss of Wi-Fi is twelve times lower than that

of the Bluetooth. This mean that while the Bluetooth can may transmit data with lower

latency, the total amount of data received can be significantly less than the amount of data

transmitted.

43

5.2. Security Comparison
Considering the security of the two communication technologies under tests in this thesis,

there is no optimal solution to choose from between the two. Both of the two communication

technologies support security protocols and security mechanisms; however both of them are

vulnerable to malicious attacks like man-in-the-middle, DOS attacks and other ways of

surpassing the security provided by each protocol.

Nevertheless, Bluetooth might be a safer solution due to the fact that it is a short range

wireless communication, which means that the potential malicious action has to take place in

an area close to the targeted device, thus excluding attacks from a global wider area and

reducing the number of threats a device connecting over Bluetooth can face.

Another argument to support the above stated suggestion is that due to Bluetooth’s nature and

low data rates, Bluetooth is not yet used for transferring data or setting up connections where

important and big amounts of data need to be transmitted, thus making it less intimidating for

hackers to develop methods and software to maliciously affect a Bluetooth connection.

However, as technology progresses and Bluetooth data rates increase, the implementation of

this technology as a medium of wireless communication will find use in a wider area of

application and that may attract hackers to invest more on creating malicious software and

techniques to surpass security mechanisms of the Bluetooth protocol.

On the other hand, with Wi-Fi being the most common wireless communication technology it

is more than expected that there will be higher interest from malicious developers, to create

software and methods to surpass the security protocols provided with the technology.

However, it is worth mentioning that there is also bigger contribution from the

telecommunication community, to constantly develop new security mechanisms that add extra

protection to wireless network and extend their security. IEEE, which is responsible to

manage the Wi-Fi standards constantly included new authentication schemes and encryption

mechanisms with each new release of the Wi-Fi technology’s standards, in an effort to

continuously provide secure wireless networks.

44

Conclusion

This thesis is an attempt to evaluate the three wireless communication technologies supported

by almost any modern smartphone device nowadays, and compare their performance while

using them to securely connect and control a remote embedded system. We were able to

create an application that’s can use Wi-Fi and Bluetooth connectivity to establish a Secure

Shell connection with our remote server and control it by running several commands. In

addition to that, we were able to test the quality of each communication technology by

measuring their throughput values and latency. We have proved that Wi-Fi perform better in

data rates, but Bluetooth shows significantly less latency during data transmission. The

outcome of the measurement fulfilled our initial expectations for the performance of each

technology.

However, the implementation of the NFC connectivity used to run an SSH connection was not

achieved. Due to the fact that NFC is not a TCP/UDP wireless communication technology,

there is no standard method to implement an SSH connection over NFC. This scenario would

require unorthodox means to achieve an SSH connection, which we were not available to

implement during the time interval that this thesis was written in.

In the future, we would like to extend the functionality of this application by adding extra

features considering accessing remote devices and work on implementing an approach to

allow an SSH connection over NFC. This would allow the application to be used in home

automation application as well as other types of application where secure remote access is

required.

45

Bibliography & References

[1] MOVR. “Mobile Overview”. Report, January-March,2017

[2] Statista. "Number of application available in leading app stores". Statista: The Statistics

Portal, 2017, March, 2017.

https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-

stores/

[3] Android Team, “Android 1.1 Version Notes”. Google’s Official Android Developer

Webpage, December, 2011.

https://developer.android.com/about/versions/android-1.1.html

[4] Android Team, “Android 1.5 Platform”. Google’s Official Android Developer Webpage,

December, 2011.

https://developer.android.com/about/versions/android-1.5.html

 [5] Android Team, “Android 1.6 Platform”. Google’s Official Android Developer Webpage,

December, 2011.

https://developer.android.com/about/versions/android-1.6.html

[6] Android Team, “Android 2.0, Release 1”. Google’s Official Android Developer

Webpage, December, 2011.

https://developer.android.com/about/versions/android-2.0.html

[7] Android Team, “Android 2.0.1, Release 1”. Google’s Official Android Developer

Webpage, December, 2011.

https://developer.android.com/about/versions/android-2.0.1.html

[8] Android Team, “Android 2.1 Platform”. Google’s Official Android Developer Webpage,

December, 2011.

https://developer.android.com/about/versions/android-2.1.html

[9] Android Team, “Android 2.2 Platform”. Google’s Official Android Developer Webpage,

December, 2011.

https://developer.android.com/about/versions/android-2.2.html

https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
https://developer.android.com/about/versions/android-1.1.html
https://developer.android.com/about/versions/android-1.5.html
https://developer.android.com/about/versions/android-1.6.html
https://developer.android.com/about/versions/android-2.0.html
https://developer.android.com/about/versions/android-2.0.1.html
https://developer.android.com/about/versions/android-2.1.html
https://developer.android.com/about/versions/android-2.2.html

46

[10] Android Team, “Android 2.3 APIs”. Google’s Official Android Developer Webpage,

December, 2011.

https://developer.android.com/about/versions/android-2.3.html

[11] Android Team, “Android 2.3.3 APIs”. Google’s Official Android Developer Webpage,

December, 2011.

https://developer.android.com/about/versions/android-2.3.3.html

[12] Android Team, “Android 3.0 APIs”. Google’s Official Android Developer Webpage,

December, 2011.

https://developer.android.com/about/versions/android-3.0.html

[13] Android Team, “Android 3.1 APIs”. Google’s Official Android Developer Webpage,

December, 2011.

https://developer.android.com/about/versions/android-3.1.html

[14] Android Team, “Android 3.2 APIs”. Google’s Official Android Developer Webpage,

December, 2011.

https://developer.android.com/about/versions/android-3.2.html

[15] Android Team, “Android 4.0 APIs”. Google’s Official Android Developer Webpage,

December, 2011.

https://developer.android.com/about/versions/android-4.0.html

[16] Android Team, “Android 4.0.3 APIs”. Google’s Official Android Developer Webpage,

December, 2011.

https://developer.android.com/about/versions/android-4.0.3.html

[17] Android Team, “Android 4.1 APIs”. Google’s Official Android Developer Webpage,

December, 2011.

https://developer.android.com/about/versions/android-4.1.html

[18] Android Team, “Android 4.2 APIs”. Google’s Official Android Developer Webpage,

December, 2011.

https://developer.android.com/about/versions/android-4.2.html

[19] Android Team, “Android 4.3 APIs”. Google’s Official Android Developer Webpage,

December, 2011.

https://developer.android.com/about/versions/android-2.3.html
https://developer.android.com/about/versions/android-2.3.3.html
https://developer.android.com/about/versions/android-3.0.html
https://developer.android.com/about/versions/android-3.1.html
https://developer.android.com/about/versions/android-3.2.html
https://developer.android.com/about/versions/android-4.0.html
https://developer.android.com/about/versions/android-4.0.3.html
https://developer.android.com/about/versions/android-4.1.html
https://developer.android.com/about/versions/android-4.2.html

47

https://developer.android.com/about/versions/android-4.3.html

[20] Android Team, “Android 4.4 APIs”. Google’s Official Android Developer Webpage,

December, 2011.

https://developer.android.com/about/versions/android-4.4.html

[21] Android Team, “Android 5.0 APIs”. Google’s Official Android Developer Webpage,

December, 2011.

https://developer.android.com/about/versions/android-5.0.html

[22] Android Team, “Android 5.1 APIs”. Google’s Official Android Developer Webpage,

December, 2011.

https://developer.android.com/about/versions/android-5.1.html

[23] Android Team, “Android 6.0 APIs”. Google’s Official Android Developer Webpage,

December, 2011.

https://developer.android.com/about/versions/marshmallow/android-6.0.html

[24] Android Team, “Android 7.0 for Developers”. Google’s Official Android Developer

Webpage, December, 2011.

https://developer.android.com/about/versions/nougat/android-7.0.html

[25] Android Team, “Android 7.1 for Developers”. Google’s Official Android Developer

Webpage, December, 2011.

https://developer.android.com/about/versions/nougat/android-7.1.html

[26] Android Team, “Android Oreo – Introducing Android 8.0 Oreo”. Google’s Official

Android Developer Webpage, December, 2011.

https://developer.android.com/about/versions/oreo/index.html

[27] Michalis Katsarakis. “An Introduction to Android”, Electronic Presentation,

October,2012

http://www.csd.uoc.gr/~hy439/labs/hy539AndroidIntro2012.pdf

[28] Prabhaker Mateli. “Android OS”. Electronic Presentation, June,2013

http://gauss.ececs.uc.edu/Courses/C653/lectures/PDF/android.pdf

https://developer.android.com/about/versions/android-4.3.html
https://developer.android.com/about/versions/android-4.4.html
https://developer.android.com/about/versions/android-5.0.html
https://developer.android.com/about/versions/android-5.1.html
https://developer.android.com/about/versions/marshmallow/android-6.0.html
https://developer.android.com/about/versions/nougat/android-7.0.html
https://developer.android.com/about/versions/oreo/index.html
http://www.csd.uoc.gr/~hy439/labs/hy539AndroidIntro2012.pdf
http://gauss.ececs.uc.edu/Courses/C653/lectures/PDF/android.pdf

48

[29] Christoph Krauss, Volker Fusenig, Rafael Fedler and Christian Banse. "Android OS

Security: Risks and Limitations". Fraunhofer Research Institution for Applied and

Integrated Security, May, 2012.

[30] Android Security Team. "Android Kernel Security". Google’s Official Android

Developer Webpage, December, 2011.

https://source.android.com/security/overview/kernel-security

[31] Android Security Team. ”Android Application Security”. Google’s Official Android

Developer Webpage, December, 2011.

https://source.android.com/security/overview/app-security

[32] Ian Poole. “IEEE 802.11 Wi-Fi Standards”. Radio-Electronics.com, 2014

http://www.radio-electronics.com/info/wireless/wi-fi/ieee-802-11-standards-tutorial.php

[33] Bradley Mitchell. “Wireless Standards 802.11a, 802.11b/g/n, and 802.11ac”.

Limewire.com, January,2018

https://www.lifewire.com/wireless-standards-802-11a-802-11b-g-n-and-802-11ac-

816553

[34] T.Shidhar. “Wi-Fi, Bluetooth and WiMAX”. The Internet Protocol Journal, Volume 11,

No. 4, December,2008

https://www.cisco.com/c/en/us/about/press/internet-protocol-journal/back-issues/table-

contents-42/114-wifi.html

[35] IEEE Computer Society. “IEEE Standard for Local and metropolitan area networks”.

Part 15.4,September,2011

http://ecee.colorado.edu/~liue/teaching/comm_standards/2015S_zigbee/802.15.4-

2011.pdf

[36] Majid Abarghooei. “Milti-Purpose Permission-Base Bluetooth Advertising System

Based on SDP, RFCCOMM, and OBEX”. ResearchGate Wepage,January,2015

https://www.researchgate.net/publication/283246318_Multi-Purpose_Permission-

Based_Bluetooth_Advertising_System_Based_on_SDP_RFCOMM_and_OBEX

[37] NFC Forum. “NFC - Protocol Technical Specifications”. Nfcforum.com, 2015

https://nfc-forum.org/our-work/specifications-and-application-documents/

https://source.android.com/security/overview/kernel-security
https://source.android.com/security/overview/app-security
http://www.radio-electronics.com/info/wireless/wi-fi/ieee-802-11-standards-tutorial.php
https://www.lifewire.com/wireless-standards-802-11a-802-11b-g-n-and-802-11ac-816553
https://www.lifewire.com/wireless-standards-802-11a-802-11b-g-n-and-802-11ac-816553
https://www.cisco.com/c/en/us/about/press/internet-protocol-journal/back-issues/table-contents-42/114-wifi.html
https://www.cisco.com/c/en/us/about/press/internet-protocol-journal/back-issues/table-contents-42/114-wifi.html
http://ecee.colorado.edu/~liue/teaching/comm_standards/2015S_zigbee/802.15.4-2011.pdf
http://ecee.colorado.edu/~liue/teaching/comm_standards/2015S_zigbee/802.15.4-2011.pdf
https://www.researchgate.net/publication/283246318_Multi-Purpose_Permission-Based_Bluetooth_Advertising_System_Based_on_SDP_RFCOMM_and_OBEX
https://www.researchgate.net/publication/283246318_Multi-Purpose_Permission-Based_Bluetooth_Advertising_System_Based_on_SDP_RFCOMM_and_OBEX
https://nfc-forum.org/our-work/specifications-and-application-documents/

49

[38] Nokia. “Introduction to NFC”. Version 1.0, April,2011

[39] William Stallings. "Protocol Basics: Secure Shell Protocol". The Internet Protocol

Journal, Volume 12, No.4, December 4, 2009.

https://www.cisco.com/c/en/us/about/press/internet-protocol-journal/back-issues/table-

contents-46/124-ssh.html

[40] SSH Communications Security Team. “SSH Protocol”. SSH Communications Security,

August 29, 2017.

https://www.ssh.com/ssh/protocol/

[41] . Lehtinen. “The Secure Shell (SSH) Protocol Assigned Numbers”. RFC 4250, January,

2006.

ftp://ftp.rfc-editor.org/in-notes/rfc4250.txt

[42] T. Ylonen. “The Secure Shell (SSH) Protocol Architecture”. RFC 4251, January, 2006.

ftp://ftp.rfc-editor.org/in-notes/rfc4251.txt

[43] T. Ylonen. “The Secure Shell (SSH) Authentication Protocol”. RFC 4252, January,

2006.

ftp://ftp.rfc-editor.org/in-notes/rfc4252.txt

[44] T. Ylonen. “The Secure Shell (SSH) Transport Layer Protocol”. RFC 4253, January,

2006.

ftp://ftp.rfc-editor.org/in-notes/rfc4253.txt

[45] T. Ylonen. “The Secure Shell (SSH) Connection Protocol”. RFC 4254, January, 2006.

ftp://ftp.rfc-editor.org/in-notes/rfc4254.txt

[46] T.Ylonen. “Using DNS to Securely Publish Secure Shell (SSH) Key Fingerprints”. RFC

4255, January, 2006.

ftp://ftp.rfc-editor.org/in-notes/rfc4255.txt

[47] F. Cusack. “Generic Message Exchange Authentication for the Secure Shell Protocol

(SSH)”. RFC 4256, January, 2006.

ftp://ftp.rfc-editor.org/in-notes/rfc4256.txt

[48] SSH Communications Security Team. “SSH Key”. SSH Communications Security,

September 2, 2017.

https://www.ssh.com/ssh/key/

https://www.cisco.com/c/en/us/about/press/internet-protocol-journal/back-issues/table-contents-46/124-ssh.html
https://www.cisco.com/c/en/us/about/press/internet-protocol-journal/back-issues/table-contents-46/124-ssh.html
https://www.ssh.com/ssh/protocol/
ftp://ftp.rfc-editor.org/in-notes/rfc4250.txt
ftp://ftp.rfc-editor.org/in-notes/rfc4251.txt
ftp://ftp.rfc-editor.org/in-notes/rfc4252.txt
ftp://ftp.rfc-editor.org/in-notes/rfc4253.txt
ftp://ftp.rfc-editor.org/in-notes/rfc4254.txt
ftp://ftp.rfc-editor.org/in-notes/rfc4255.txt
ftp://ftp.rfc-editor.org/in-notes/rfc4256.txt
https://www.ssh.com/ssh/key/

50

[49] Android Team. “Meet Android Studio”. Google’s Official Android Developer Webpage,

December, 2011.

https://developer.android.com/studio/intro/index.html

[50] Android Team. “App Manifest”. Google’s Official Android Developer Webpage,

December, 2011.

https://developer.android.com/guide/topics/manifest/manifest-intro.html

[51] HTC. “HTC Desire C”. HTC Czech Republic Webpage

http://www.htc.com/cz/smartphones/htc-desire-c/

[52] Raspberry Pi. “Raspberry Pi 3 Model B”. Raspberry Pi Official Website

https://www.raspberrypi.org/products/raspberry-pi-3-model-b/

[53] Android Team. “Layouts”. Google’s Official Android Developer Webpage, December,

2011.

https://developer.android.com/guide/topics/ui/declaring-layout.html

[54] Android Team. “Introduction to Activities”. Google’s Official Android Developer

Webpage, December, 2011.

https://developer.android.com/guide/components/activities/intro-activities.html

[55] Android Team. “Activity”. Google’s Official Android Developer Webpage, December,

2011.

https://developer.android.com/reference/android/app/Activity.html

[56] Martin Sauter. “From GSM to LTE: An Introduction to Mobile Networks and Mobile

Broadband”. John Wiley & Sons, March, 2011

[57] TECHLEDGER. “Networking 101”. Techledger Webpage,March,2011.

https://techledger.wordpress.com/2011/03/01/networking-101/

[58] Ankit Sinhal. “Closer Look At Android Runtime: DVM vs ART”. AndroidPub Blogspot,

April,2017.

https://android.jlelse.eu/closer-look-at-android-runtime-dvm-vs-art-1dc5240c3924

https://developer.android.com/studio/intro/index.html
https://developer.android.com/guide/topics/manifest/manifest-intro.html
http://www.htc.com/cz/smartphones/htc-desire-c/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://developer.android.com/guide/topics/ui/declaring-layout.html
https://developer.android.com/guide/components/activities/intro-activities.html
https://developer.android.com/reference/android/app/Activity.html
https://techledger.wordpress.com/2011/03/01/networking-101/
https://android.jlelse.eu/closer-look-at-android-runtime-dvm-vs-art-1dc5240c3924

