

ii

Czech Technical University in Prague

Faculty of Electrical Engineering

Department of Computer Science and Engineering

Master's Thesis

Localization of visually impaired pedestrians by means of a
dialog system

Bc. Pavel Cerny

Supervisor: Ing. Jan Balata

Study Programme: Open Informatics, Master

Field of Study: Software Engineering

January 9, 2018

iv

v

Aknowledgements

Thanks to my �at-mates for their support especially in the �nal hours. Thanks to my family
for their support during the whole project. And thanks to my supervisor especially for
kickstarting my thinking in the beginning.

vi

vii

Declaration

I declare that I elaborated this thesis on my own and that I mentioned all the information
sources and literature that have been used in accordance with the Guideline for adhering to
ethical principles in the course of elaborating an academic �nal thesis.

In Prague on January 9, 2018 .

viii

Abstract

This diploma thesis deals with the localization of visually impaired pedestrians. The
thesis analyses the GPS signal in the city, available GIS and brie�y analyses the spoken
dialogue interface on mobile devices. After 3 iterations of prototypes, this thesis �nds no
usable strategy for a localization based on the natural description of the user's surroundings.
Instead, it proposes and implements navigation based on the continuous collecting of GPS,
or navigation using IBM Watson Conversation to acquire the information about the POI
in the user's surroundings. This thesis implements and tests these methods. The thesis
demonstrates, the implemented methods, can't be based on standard Geolocation APIs and
open data.

Abstrakt

Tato diplomová práce se zabývá lokalizací nevidomých chodc·. Práce analyzuje chování GPS
signálu ve m¥st¥, dostupné podklady GIS a stru£n¥ analyzuje mluvené dialogové rozhraní
pro slepé na mobilním telefonu. Po 3 iterací prototyp·, práce nenachází ºádnou pouºitel-
nou strategii pro lokalizaci zaloºenou na p°irozeném popisu prost°edí uºivatele a místo toho
navrhuje a implementuje lokalizaci zaloºenou na pr·b¥ºném sb¥ru GPS sou°adnic, nebo
zadání POI. Tyto metody lokalizace, dále testuje a implementuje. Práce ukazuje, ºe imple-
mentované metody nem·ºou pouºívat b¥ºn¥ dostupná API a otev°ená data.

ix

x

Contents

1 Introduction 1

1.1 Motivation . 1
1.2 Goals of the thesis . 2

2 Analysis 3

2.1 GPS localization . 3
2.1.1 GPS in the city . 3
2.1.2 GPS one-time localization . 4
2.1.3 GPS continuous localization . 4

2.2 Interface . 6
2.2.1 IBM Watson Conversation . 6

2.3 Interface of the frontend . 6
2.3.1 Blind texting . 6
2.3.2 Up-to-date chat platforms . 7

2.4 Platform . 8
2.5 Current navigation solutions . 8

2.5.1 How it works for sighted pedestrians 8
2.5.2 Why it doesn't work for blind pedestrians 9
2.5.3 Naviterier . 9
2.5.4 Naviterier API . 10

2.5.4.1 FindRoutes . 10
2.5.4.2 FindSourceData . 10
2.5.4.3 GetPois . 11

2.6 Blind pedestrians . 11
2.7 Navigation principles . 11
2.8 Proposed process . 12

2.8.1 Use-cases . 12
2.8.2 Strategy . 12
2.8.3 Goals for the design . 13

2.8.3.1 Target group . 13

3 Design 15

3.1 Additional Researches . 15
3.1.1 How to enhance the Naviterier's API 15

3.1.1.1 Noise . 15

xi

xii CONTENTS

3.1.1.2 Corners . 16
3.1.2 Blind People's Orientation Points in the City 16
3.1.3 Blind People and the Street Names . 17

3.2 Prototypes . 18
3.3 Prototypes . 18

3.3.1 Describe the Surroundings . 18
3.3.1.1 Describe the Surroundings v1 18
3.3.1.2 Describe the Surroundings v2 20
3.3.1.3 Describe the Surroundings v3 21

3.3.2 Corner of Two Streets . 22
3.3.2.1 Corner of Two Streets v1 . 22

3.3.3 POI (Point of Interest) . 22
3.3.3.1 POI v1 . 22
3.3.3.2 POI v2 . 24
3.3.3.3 POI future work . 25

3.3.4 POI with the Hints . 25
3.3.4.1 POI with the Hints v1 . 25

3.3.5 GPS . 26
3.3.5.1 GPS v1 . 26
3.3.5.2 GPS v2 . 27
3.3.5.3 GPS Future Work . 28

3.3.6 GPS without the Compass . 28
3.3.6.1 GPS without the Compass v1 28

3.3.7 (Reverse Geocoding) . 29
3.3.7.1 Revere geocoding v1 . 29

4 Implementation 31

4.1 Technologies . 31
4.1.1 Django . 31
4.1.2 jQuerry . 32
4.1.3 Bootstrap . 32

4.2 Prototypes implementation . 32
4.2.0.1 Reverse GC . 33
4.2.0.2 POI . 33
4.2.0.3 GPS . 33

4.2.1 Parts of Prototypes . 34
4.2.1.1 Voice Input . 34
4.2.1.2 getAddress(lat, lon, callback) 34
4.2.1.3 getGpsFromTriple(stop, direction, line, callback) . . 35
4.2.1.4 inNaviterierDB(address, callback) 35
4.2.1.5 logExperiment(lat, lon, estAddress, targetAddress, experimentType,

userPath, callback) . 35
4.2.1.6 redirectToNavigation(sourceAddress, targetAddress, currentUrl) 36
4.2.1.7 logging GPS coordinates . 36
4.2.1.8 gpsFromUserPath(userPath, callback) 36
4.2.1.9 getAddressOnSidewalk(lat, lon, callback) 37

CONTENTS xiii

4.2.1.10 Text Watson . 37
4.2.1.11 Determine the direction in the beginning 38
4.2.1.12 Geolocation . 38

4.3 Databases . 38
4.3.1 DPP Database . 38
4.3.2 Addresses Database . 39

4.4 Third-Party APIs . 39
4.4.1 Watson Conversation . 39

4.4.1.1 Intents . 39
4.4.1.2 Detecting the Numbers . 40
4.4.1.3 Detecting the Streets . 40
4.4.1.4 Detecting the Tram Stops . 40
4.4.1.5 Detecting the Tram Lines . 40
4.4.1.6 Detecting the Tram Directions 41
4.4.1.7 Implementation of STEP-BACK 41

4.4.2 FindRoutes API . 41

5 Testing 43

5.1 Participants Pool . 43
5.1.1 Sighted Participants . 43
5.1.2 Blind Participants . 43

5.2 Testing of the Prototypes . 43
5.2.1 1st testing - Map . 43

5.3 2nd testing - Map + Wizard of Oz . 44
5.4 3rd testing - City + Wizard of Oz . 44
5.5 4th testing - Blind: City + Wizard of Oz . 44
5.6 5th testing - Blind: City + Hi-Fi . 44

5.6.1 Procedure order . 45
5.6.2 Starting places . 45
5.6.3 Results . 45

5.6.3.1 General Usability Problems 46
5.6.3.2 Reverse geocoding . 46
5.6.3.3 POI . 46
5.6.3.4 GPS . 47

5.6.4 Follow-ups . 49
5.6.4.1 Reverse Geolocation . 49
5.6.4.2 Google API . 49
5.6.4.3 Here API . 50
5.6.4.4 DPP data . 50

6 Conclusion 51

6.1 Summary . 51
6.2 Goals Accomplishment . 52

A Contents of the SD card 57

xiv CONTENTS

List of Figures

1.1 Google Maps and Apple Maps show the user just the street he should take.
They provide no info about the sidewalks . 1

2.1 GPS in an urban area . 3
2.2 a . 5
2.3 b . 5
2.4 c . 5
2.5 E.g., I walked the pink path and got the Figure 2.2 5
2.6 The �rst participant is typing on a braile keyboard 7
2.7 The second participant struggled to �nd the dictate button on a QWERTY

keyboard . 7
2.8 Example of WhatsApp's and Messenger's screens cluttered with the interac-

tive elements, which the blind users don't need. 8
2.9 The navigation shows this screen. 9
2.10 ...and the user �nds how to do it. 9
2.11 Storyboard of the use-case User got lost . 12

3.1 A map of the city . 15
3.2 On the picture you can see the beveled corners, rounded corners, and regular

corners stored in the underlying map data. 16
3.3 The sharp corner with a hole inside can be as well a beveled corner. Depends

how you ask. 17
3.4 The red arrow is the trajectory, when some blind persons walks around the

corner. If they don't touch the corner, and usually they don't do it, they
would report it as the type of the corer based on the shape of their path. . . . 17

3.5 The map of the user . 18
3.6 The map of the localizator . 18
3.7 A photo from the user testing . 19
3.8 Example of a cluster of the questions, and two questions I chosen as the

representative for this cluster . 20
3.9 The improved map of the user . 20
3.10 The dialogue diagram of the localizator . 20
3.11 A photo from the user testing iteration 2 . 21
3.12 The dialogue diagram of the localizator . 21
3.13 the map of the localizator. Based on the data from FindSourceData API[17] . 21

xv

xvi LIST OF FIGURES

3.14 Google Maps and Apple Maps show the user just the street he should take.
They provide no info about the sidewalks . 21

3.15 Example of a part of the dialogue diagram . 22
3.16 Example of a part of the dialogue diagram of POI v1 23
3.17 Example screens from the POI v2 . 24
3.18 Example of the dialogue diagram of the POI with the Hints v1 25
3.19 Example of the dialogue diagram of the GPS v1 26
3.20 Example showing the green collected path and the gray sidewalks 26
3.21 The incorrect position of the phone . 27
3.22 The correct postion of the phone . 27
3.23 Example screens from the GPS v2 . 28
3.24 Example of the dialogue diagram of the GPS without the Compass v1 28
3.25 Example screens form the Reverse Geocoding v1 29

4.1 Example of a page using the Bootstrap . 32
4.2 Example of a page without the Bootstrap . 32
4.3 Examples of the complete sidewalks. Each complete sidewalk is either depicted

with a green dashed or green solid line . 36
4.4 Example of a projection: the grey lines are the before corner and the after

corner GPS coordinates. The red lines are two adjacent clusters. The red
point is the estimated user's actual GPS position. 37

4.5 Image shows the user's real position, the area estimated by the geolocation
(dashed ring), the target, e.g., Karlovo nám. 13, the azimuth to the target,
and the optimal decision start to left (green arrow) 38

4.6 Example of one original node split into the two new nodes 42

5.1 The tested locations in the city . 44
5.2 The locations and the tested prototypes on those locations 45
5.3 Case 2: The projection matches to the sidewalk across the street 48
5.4 Case 4a: The estimated address is before the corner (grey, user path, red point

estimated position) street . 48
5.5 The user walked to the road instead of staying on the corner. The red arrow

is the trajectory of the user. The white circle is the desired position. 49

Chapter 1

Introduction

1.1 Motivation

The blind and other visually impaired people want to be self-su�cient. However, traveling
from one point in the city to another is very challenging for them. They have to study the
path in advance and memorize it.

Nowadays they can rely on: asking pedestrians on the street, navigations for the sighted
and navigations for the blind. None of these options is perfect. Asking people on the street
is often uncomfortable and the responses lacks the quality[1]. Navigations for sighted pedes-
trians, such as Google Maps[2] and Apple Maps[3], do not o�er sidewalk-based navigation,
which blind users need. Instead, they guide users only through the middle of the street.

Figure 1.1: Google Maps and Apple Maps show the user just the street he should take. They
provide no info about the sidewalks

Tools for blind people such as Blindsquare[4] and NotNav[5] tell the user only the direction
and what points of interest are around. Users still have to somehow �nd, on their own, all the

1

CHAPTER 1. INTRODUCTION

pedestrian crossings and which sidewalks to use. Another tool for the blind, Naviterier[6],
can provide sidewalk-based navigation. However, Naviterier cannot automatically locate the
user and requires them to enter an address as a starting point.

A sidewalk-based navigation would need a very exact initial location. The present GPS
sensors cannot achieve sidewalk precision in urban city areas. With their current accuracy,
it is never clear which side of the street or which corner of a crossing the user is standing
on. Naviterier therefore requires the user to enter an address as a starting point. However,
entering an address can be di�cult. For example, when you have just arrived at a tram stop
or when you are in a place you don't know well.

On the other hand, we know that blind people can e�ciently describe their position over
the phone to another blind person. So well in fact, that the second blind person, familiar
with the area, can determine their precise position and point it out on a tactile map[1].
With the rise of chatbots like Apple's Siri, Amazon's Alexa or Microsoft's Cortana[7, 8, 9]
in recent years it became clear that simple spoken interface could o�er an elegent solution
for this problem.

In this thesis, I will design and implement a mobile navigation application prototype for
the blind. It will correctly localize the person and provide a sidewalk-based navigation to the
target. The initial localization process will take advantage of the ability of blind people to
describe their position over a phone, using a scripted chatbot to determine a precise position
on a sidewalk and to continue sidewalk-based navigation to the target.

In practice this system would grant the blind and other visually impaired more self-
su�ciency, shorten their preparation time for traveling and make it more comfortable.

1.2 Goals of the thesis

1. to enhance the accuracy of localization by a dialogue interface to achieve sidewalk-level
of precision.

2. to design a navigation app with a dialogue interface.
3. to evaluate usability of the app with blind users

2

Chapter 2

Analysis

2.1 GPS localization

Almost every smartphone features the satellite navigation. But the precision of the
phones' navigation is not su�cient to estimate the user's sidewalk and the user's position on
this sidewalk.

A large experiment[10] demonstrated the smartphones have a mean accuracy 4.9 meters.
And 4.9 is a mean value from that experiment. In the urban areas, the inaccuracy de�nitely
exceeds 4.9m.

2.1.1 GPS in the city

The accuracy worsens when close to the buildings. The narrow streets and high buildings
of the city create so-called urban canyons. The walls of these canyons re�ect the signal and
limit the number of visible satellites.

In general, the satellite navigation systems as GPS[11] and GLONASS[12] needs direct
visibility to the satellite. The satellite sends a signal to the phone and measures the time
how long the signal travels[13]. The device collects the signal from 4 or more satellites and
computes the exact position.

Figure 2.1: GPS signal in an urban area. Source: GPS.gov[14]

3

CHAPTER 2. ANALYSIS

As you can see in the �gure 2.1 the re�ected signal travels longer then a blocked signal
should be traveling. This behavior causes the inaccuracy in the calculating of the user's
position. Unfortunately, this behavior can't be detected, and the only possibility to reduce
the error would be using the signal from more satellites. However, the walls of the urban

canyon reduce the number of visible satellites to a minimum.

2.1.2 GPS one-time localization

I was curious about the accuracy in the city. Therefore I decided to run a benchmark. I
walked 1.1km long path around the Charles Square in Prague and nearby surroundings. Two
phones1 logged the GPS position2 and estimated the accuracy every minute of the walk. This
way I collected 23 recordings and compared them with the real position I walked through.
Then I computed the di�erence between the estimated accuracy and the real accuracy.

HTC desire X accuracy BlackBerry Q10 accuracy

estimated (m) real (m) di� (m) estimated (m) real (m) di� (m)
1 48 21 -27 32 91 59
2 37 9 -28 76 46 -30
3 49 170 121 10 10 0
4 45 45 0 56 20 -36
5 51 51 0 58 20 -38
6 25 25 0 10 34 24
7 36 36 0 71 40 -31
8 46 46 0 103 62 -41
9 47 46 -1 62 62 0
10 8 8 0 62 62 0
11 35 8 -27 62 30 -32
12 - - - 50 15 -35

avg 38.8 42.3 54.3 41.0
max 51 170 103 91

This experiment demonstrated

• real average accuracy 42.3m and 41.0m in the city. (cold start)
• It demonstrated we could rely on the estimated accuracy as an upper bound (10 out
of 11 cases) and (10 out of 12).

2.1.3 GPS continuous localization

You are not able to determine user's sidewalk from one GPS coordinate. But when
the user starts moving and walks you can use the advantage of the knowledge that all

1HTC Desire X - Android, BlackBerry Q10 - BB10
2I used GPS Logger[15, 16] app for Android and BlackBerry 10

4

2.1. GPS LOCALIZATION

coordinates belong to one sidewalk. I wanted to see how the recorded data looks for a
continuous movement.

I did an experiment. I walked in 6 locations around the Charles Square in Prague
and nearby surroundings. One the phone3 was running Firefox browser and inside a web
application. The application collects the coordinates and draws it on top of the surrounding
sidewalks4. I always walked around 30m and then went around the corner and another 30m.

I visually noticed, there is a strong correlation between the walked sidewalk and the
shape & position of the recorded path. See �gures 2.2, 2.3 and 2.4. The green dots are the
recorded GPS coordinates. The red strokes are the sidewalks I used.

Figure 2.2: a Figure 2.3: b Figure 2.4: c

Figure 2.5: E.g., I walked the pink path and got the Figure 2.2

It seems, when the user walks around the corner, you can estimate his sidewalk.

3HTC Desire 500 - Android
4The sidewalks are provided by the FindSourceDataAPI[17]

5

CHAPTER 2. ANALYSIS

2.2 Interface

We have chosen the conversational interface. Speaking to a machine and machine speak-
ing back.

A graphical user interface with an accessibility mode on has a lot of overhead. e.g., �Send;
button double tap to activate� or �Address; text �eld, double tap to edit.� Thus it is not
very convenient to use. As well a graphical interface needs to be read aloud by the TTS
accessibility tool.

A headphone based interface such as auditory display [18], providing the 3D position of
the sound needs using of headphones. The blind people don't like using the headphones in
the city. It limits their hearing skills, e.g., incoming car, or tram and limits the auditory
exploration of surroundings.

Dialogue interface. Balata et al.[19] propose using a chatbot. They propose using a
POMDP based dialogue system. Such systems provide bene�ts of dealing with errors in
speech recognition and adapting to users emotional responses[20]. On the other hand,
POMDP system is di�cult to train[21]:

• It needs a lot of training dialogues - 105

• Giving immediate reward while online training
• Computationally expensive training - too many states in the real world.
• Di�cult to build for non-experts

In my thesis, I can't get 105 dialogues. I can't build a user simulator, according to
paper[21] it's very di�cult to build one without biases to certain behavior. In my thesis, I
just need to validate if the chatbot solution is a way to go. I need a quick engineer friendly
solution to validate:

1. we can locate a user this way

2. the prototype is usable for the user

2.2.1 IBM Watson Conversation

I decided to use IBM Watson Conversation[22]. IBM supported using the Watson Con-
versation by o�ering a free student license. The IBM Watson Conversation o�ers simple
API, which allows me to develop the prototype faster.

2.3 Interface of the frontend

2.3.1 Blind texting

Blind texting depends on person to person. I met a person who was typing faster than
me with a braille keyboard. And I met a person writing very clumsy and having troubles to
orient on a QWERTY keyboard. Both persons were using their own iPhone.

6

2.3. INTERFACE OF THE FRONTEND

Figure 2.6: The �rst participant is typing
on a braile keyboard

Figure 2.7: The second participant strug-
gled to �nd the dictate button on a QW-
ERTY keyboard

The �rst one was very comfortable with texting, wrote even using text smileys, e.g. �:)�.
But she needed both hands to type. See the picture 2.6.

The second person tried to use the keyboard, didn't felt comfortable with the writing
and then tried to locate the button dictate on the keyboard. He had to search for a while
until he found the button. See the picture 2.7

Conclusion: The users need very smooth access to dictate, and be allowed to choose
between typing and dictating.

2.3.2 Up-to-date chat platforms

It's always good when you don't have to learn something new. Therefore I considered
implementing the navigation as a chatbot to a WhatsApp[23], or Messenger[24].

I asked 2 blind persons to try to text with me through WhatsApp and Messenger. Par-
ticipant 1 (P1) was very �uent in What's App. P2 had several troubles on Messenger. He
wanted to type, but he opened smileys unintentionally but didn't know about it. He tried to
type, but the smileys lacked accessibility, and the screen reader didn't tell anything to the
user.

The blind people use WhatsApp and Messenger, but neither of them has good accessi-
bility for them. The screen is �lled with a lot of clutter.

WhatsApp: There are 10 interactive elements on a default chat screen.

Messenger: There are 12 interactive elements on the default screen; plus each message in
the chat can be interacted, thus adding even more interactive elements.

The number of elements even increase, when the user unintentionally opens some sub-
menu, e.g., smileys, pictures, and videos. Some of those sections lack accessibility.

7

CHAPTER 2. ANALYSIS

Figure 2.8: Example of WhatsApp's and Messenger's screens cluttered with the interactive
elements, which the blind users don't need.

Conclusion: I propose simple interface. A stand-alone app:

• without smileys

• with simple, accessible Voice recognition

2.4 Platform

I will design a hi-� prototype as a web app running in the web browser. The web browser
will guarantee cross-platform and cross-device compatibility.

I will develop and test on an Android phone. The iPhones, Windows mobile, and Black-
Berry10 phones o�er nowadays similar functionality. Therefore it would be just a matter of
a bit of additional time e�ort to ensure it will work on them.

Nokia Symbian phones do not support Geolocation in the browser[25]. If the �nal pro-
totype is based on GPS localization, they will not be supported. I didn't explore the possi-
bilities of BlackBerry OS 6.0.

2.5 Current navigation solutions

2.5.1 How it works for sighted pedestrians

Navigation apps for sighted pedestrians use pedestrian sight to analysis the surroundings.
They show the user which streets he should walk through. The user has to look around and

8

2.5. CURRENT NAVIGATION SOLUTIONS

compare what he sees on the screen with what he sees in his surroundings. Then he can
decide which path to choose.

Figure 2.9: The navigation shows this screen.Figure 2.10: ...and the user �nds how to do it.

2.5.2 Why it doesn't work for blind pedestrians

The blind pedestrians can't look around and see a sidewalk. They can explore and
describe only a tiny space around them. They need to have much more detailed navigation.
They need to be guided on which pedestrian crossing to cross and what line they should
follow (e.g., follow the house on your right hand).

The well-known ones are Google Maps[26], Apple Maps[3] and others based on the Open
Street Maps[27]. These well-known ones use improper routing strategies and lack the detail.
First, the routing strategies guide the person through the middle of the street, instead of
through the sidewalks. Second, they can't deal with the blind's �inability to cross open
spaces (e.g., large squares)�[19] Third, Balata et al.[19] say their map sources as well lack
the su�cient detail or the quality:

The available description may be imprecise (e.g. missing sidewalks or missing
handrails), or may be ambiguous (e.g., an inadequate description of pedestrian
crossing, meaning that it cannot be localized and identi�ed without visual feed-
back) or it may ignore speci�c navigation cues (e.g., the surface structure of the
sidewalk, acoustic landmarks such as the speci�c sound of a passage, the tra�c
noise of a busy street, or other sensory landmarks, such as the smell of a bakery).

Therefore we can't rely on those maps.

2.5.3 Naviterier

Naviterier[6] according to poslepu.cz[28]:

Naviterier is a navigation system independent of the GPS. It works with an
accurate network of sidewalks, pedestrian crossings, shapes of corners of the
houses and directions of the noise of noisy streets. Naviterier is based on special
map data prepared by company CEDA, a.s.

9

CHAPTER 2. ANALYSIS

I should, therefore, be able to build my localization method based on:

• shapes of the corners
• direction of the noise of the noisy streets
• sidewalks
• pedestrian crossings

2.5.4 Naviterier API

The data and navigation of Naviterier[6], can be accesed through the following APIs:

• FindRoutes[29]
• FindSourceData[17]
• GetAddresses[30]
• GetPois[31]

2.5.4.1 FindRoutes

This API FindRoutes[29] can �nd a route between two address points. It provides an
itinerary of that route.

Conclusion: This API will launch, once the app localizes the pedestrian's position on
the sidewalk. It brings one drawback. The app needs to estimate the nearest address to the
user's estimated position. This way it decreases the accuracy of my localization. But I guess
in further versions of the API it would be possible to navigate from a position on a speci�ed
sidewalk.

2.5.4.2 FindSourceData

This API FindSourceData[17] provides a data for given radius e.g. radius = 50m.
It provides a list of Addresses, GPS coordinates of their entrances, crossways, all paths
(sidewalks, underground paths, roads, stairs, walkways, etc.), points of interest and GPS
coordinates of those.

This API FindSourceData doesn't provide the promised shapes of the corners. Neither I
was able to de-code which streets are considered noisy and the tilt of the sidewalks.

And last, from previous experiments[1] we know, a blind pedestrian can describe the
environment to another blind over a phone call. And the localizator can locate him when he
knows approximately where he can be. But the blind pedestrians in that experiment used
the material of the sidewalk (e.g., cobbles), the material of the doors, parked cars, columns
of tra�c signs. Such data are not available in this API. And probably never will, because
they would be di�cult to collect and maintain.

Conclusion: I am going to add the types of the corners on my own, I am going to
declare the noisy streets on my own. I probably can't use the parked cars, materials of the
sidewalk, doors and neither columns of the tra�c signs.

10

2.6. BLIND PEDESTRIANS

2.5.4.3 GetPois

This API GetPois[31] returns the list of all points of interest in the database. But there
is only some of the POIs listed.

Conclusion: I can't even use the restaurants and POIs. There is only some of them in
the database.

2.6 Blind pedestrians

A couple of notes discovered in the previous researches and I need to pay attention to:

• They answer non-logical

When lost blind people can get under stress. In research[32]:

Q: �Could you provide me with the description of your current position?�
and A: �I would rather go to the start of the track and describe the track
from the beginning.�

• There is no standardized terminology

They call some objects with multiple names or with a metaphoric description [32].

• They may not �nd a point

Vystrcil at al.[32]:

The blind person might not �nd a particular point, but it does not mean
that the navigation point is not there.

• They can be somewhere else than they say[32]
If they are on street A, but they think they are in street B and both places have the
same description, they can't detect it. Then they may keep saying �I am on street B�
to the system.

• They might �nd a di�erent point[32]
Same as previous: e.g., If they �nd a door, the system should verify it's really the one.
e.g., ask about the material.

• They tend to linearize curved paths[33]
I con�rm from my experiments: If the corner of the street had a very obtuse angle,
they might not notice and think the street is straight.

• They code objects relative to their body[33]
Compared to that Ungar[33] says, sighted people code relative to a visually derived
mental map of a room, city.

2.7 Navigation principles

May at al.[34] states it's important to use landmarks for navigations. �Continue to the
tra�c lights� works better than �Go 40m�. Because of that, I should use in my system
objects, which are easily recognized by blind pedestrians, as landmarks.

11

CHAPTER 2. ANALYSIS

When the system localized the pedestrian, the system should provide some information
about the surroundings to the pedestrian. This way the pedestrian will have more con�-
dence and trust in the system. This is similar to providing some clues along the way while
navigating, as May at al.[34] recommends.

2.8 Proposed process

2.8.1 Use-cases

User got lost: User is going to the job, the time pushes him, and he suddenly realizes
he is somewhere else, then he thought he is.

User goals: Move as fast as possible towards the job and get oriented on the way.

Figure 2.11: Storyboard of the use-case User got lost

User exited a tram: User is going to buy a bottle of honey in a store recommended
by his friend. He arrives with a tram, steps out, stands on the platform and needs to know
where to go to reach the store.

User goals: Move as fast as possible towards the shop and get oriented on the way.

2.8.2 Strategy

Balata at al.[1], observed the following strategy when recovering from getting lost: 1)
The user describes the previous path, 2) describes where he is now, 3) together with the
helping person they �nd an unambiguous point and then 4) the helping person navigates the
user to the target.

12

2.8. PROPOSED PROCESS

I am going to use the same strategy just starting directly from the point 2). I won't use
the description of the previous track because the user can get lost earlier than he thinks[32].
And the description of the previous path may be therefore misleading.

2.8.3 Goals for the design

• Localize the pedestrian and guide him where he wants

1. Determine precise sidewalks
2. Launch pedestrian navigation

• runnable on as many phones as possible

1. not GPS based if possible
2. without compass if possible

• dialogue interface

2.8.3.1 Target group

age: no-restrictions

gender: men, women

knowledge: can move independently with a cane

others: smartphone user

13

CHAPTER 2. ANALYSIS

14

Chapter 3

Design

3.1 Additional Researches

I performed some researches during the design process. In this section, I describe mainly
thou outputs of those researches.

3.1.1 How to enhance the Naviterier's API

3.1.1.1 Noise

I wasn't able to decode what routes are considered as noisy in the output from the
FindSourceData API[17]. Therefore I had to decide on my own. I checked the map (Fig.
3.1) at Mapy.cz[35], and I decided to use the yellow streets as noisy.

Figure 3.1: A map of the city

At the Charles Square it is:

• �itná
• Charles square

15

CHAPTER 3. DESIGN

Figure 3.2: On the picture you can see the beveled corners, rounded corners, and regular
corners stored in the underlying map data.

3.1.1.2 Corners

The FindSourceData API[17] doesn't provide any info about the corners of the streets.
Therefore I used reverse engineering. I used the Naviterier Developer interface[36]. I always
asked to �nd a route from some address before the corner to another address just behind
the corner. The route description always mentions the type of the corner. This way I was
able to discover the map data which will probably be available in the future version of the
FindSourceData API.

3.1.2 Blind People's Orientation Points in the City

I conducted a walk through the surroundings of Charles square with 3 visually impaired
people. They described for me, what they could recognize on the street.

The research proved: I can't rely on the reported type of the street's corner. There is a
di�erence if you will ask �What type is this corner?� �Sharp and there is a hole inside� and
if you ask for just con�rmation. �Can this be a beveled corner?� �I think I can agree.� (both
about the same corner; see the Fig. 3.3.)

Further, the research demonstrated; they can report a corner as a di�erent type.
The participants mostly didn't touch the corner during walking, even with the cane. They
just walked close to the wall. And therefore they estimated the corner type based on their
trajectory. See the �gure 3.4.

They switched the slightly-rounded corner with a beveled corner(P1); the rounded corner
with a 90◦ corner (P1,2); the beveled corner with a slightly rounded (P2); and the beveled
corner with two 45◦ corners (P1,3).

16

3.1. ADDITIONAL RESEARCHES

Figure 3.3: The sharp corner with a hole inside can be as well a beveled corner. Depends
how you ask.

Figure 3.4: The red arrow is the trajectory, when some blind persons walks around the
corner. If they don't touch the corner, and usually they don't do it, they would report it as
the type of the corer based on the shape of their path.

I can't rely on detecting mild hill. As a sighted person, I analyze visually a long part
of the sidewalk, and therefore I notice even if the mildest hills. The blind people analyze
only a short segment with their foots and cane. Therefore I noticed of a long very mild
inclination and they didn't (P1,2). On the other hand, they noticed of the transverse tilt of
the sidewalk, which I didn't (P1,2).

I can't rely on the functional markings of the pedestrian crossings, P2 and P3
had several times troubles to �nd them.

3.1.3 Blind People and the Street Names

I took 1 blind person, walked him through the streets close to his job. He works at
Charles Square. I always asked them about the street names.

He was able to describe 4 out of 8 streets. And when he had to ask someone on the
street, it seemed to me the asked person had no troubles to respond. This observing leads
me on the prototype Corner of Two Streets.

The participant pointed out several tram stops when we went around them and pointed
out some buildings �a court,� �a town hall.� This observing led me to try entering a POI

(point of interest) as a localization method.

The participant said about one street: �I am not sure about that street� - This observing
led me to an idea: to provide a list of the nearby streets, and the user would be able

17

CHAPTER 3. DESIGN

to rehearse them, even when you do not remember exactly. I validated this idea in the
prototype POI with the Hints.

3.2 Prototypes

I made 5 iterations of the prototypes.

iteration 1 Describe the surroundings

iteration 2 Describe the surroundings v2

iteration 3 Describe the surroundings v3

iteration 4 POI, POI with the Hints, GPS, GPS without the Compass, Corner of Two
Streets

iteration 5 POI v2, GPS v2, Reverse GC

I implemented and tested them the following way:

iteration 1 dialog with user, a map of the city, 5 sighted users

iteration 2 Wizzard of Oz, a map of the city, 4 sighted users

iteration 3 Wizzard of Oz, in the city, 3 sighted users

iteration 4 Wizzard of Oz, in the city, 5 blind users

iteration 5 implemented Web app, in the city, 5 blind users

3.3 Prototypes

3.3.1 Describe the Surroundings

3.3.1.1 Describe the Surroundings v1

Figure 3.5: The map of the user Figure 3.6: The map of the localizator

18

3.3. PROTOTYPES

Figure 3.7: A photo from the user testing

Prototype For this prototype; I proposed a game for two players. One player was
simulating a blind user walking in the city and the second player was playing the system,
asking questions and trying to localize him.

Goal Observe what strategies will a human use to localize the blind user. I wanted to
discover patterns and strategies, which I could later automatize.

Description The user had a task select a place on the map. He was given a paper with
a cut-out hole representing the narrow area which a blind person can explore with his cane.
The system asks, e.g., �Do you hear the trams, and where?�. The user answers. When he
walks, he draws on an extra piece of paper his direction and the length of the movement
(simulates collecting of GPS). 5 people participated in this study. 2 men, 3 women, age
21-53. Each participant went over 4 maps with increased di�culty.

Results I was able to �nd in: 18 caeses out of 22. I failed in 4 cases. In 2 cases the
experimenter insu�ciently explained the map. In another 2 cases, the experimenter didn't
notice of another possible place on the map, which as well matched the description and
announced the result as the wrong one of the two possible. Participants liked the testing
and did a lot of roleplaying: P4 �My cane is knocking into a grass� or P5 �wait, I have to
walk a little.� I collected all the system's phrases (the questions and the orders I said during
the game). I clustered the phrases with the same meaning and always choose the simplest to
represent the cluster. Based on this questions and orders I made a diagram of the following
prototype.

19

CHAPTER 3. DESIGN

Figure 3.8: Example of a cluster of the questions, and two questions I chosen as the repre-
sentative for this cluster

3.3.1.2 Describe the Surroundings v2

Figure 3.9: The improved map of the user
Figure 3.10: The dialogue diagram of the lo-
calizator

Prototype I built a low �delity prototype of a dialogue system. The prototype was a �ow
diagram and set of pre-recorded texts. When I clicked a diagram �eld, the computer read it
aloud. I used Axure RP[37] to create the diagram and Acapela TTS(text-to-speech)[38] to
read the text aloud.

Goal I wanted to verify the questions and orders from the �rst experiment, if they would
work even when read by a machine voice.

Description I played the game from the �rst experiment, but this time I was asking the
questions based on the diagram logic, and the questions were read aloud by the computer. I
was recording the dialogues to mp3. Then transcribed them as a walk through thorough the
diagrams. 4 people participated in this study. 2 men, 2 women, age 22-25. Each participant
went over 4 maps with increased di�culty.

Results I was able to locate in: 11 cases out of 16. I failed in 5 cases. 2 cases: the user
wrongly understood the arrows marking a hill. 1 case: unclear what one particular order
means. 1 case: the system was missing orders which would di�erentiate some 2 places. 1
case: troubles with the terminology of the 45◦ corner and the beveled corner.

20

3.3. PROTOTYPES

Figure 3.11: A photo from the user testing iteration 2

I collected the usability mistakes and errors in the dialogue structure. And further
improved the logic of the diagram.

3.3.1.3 Describe the Surroundings v3

Figure 3.12: The dialogue diagram of the localizator

Figure 3.13: the map of the
localizator. Based on the
data from FindSourceData
API[17]

Figure 3.14: Google Maps and Apple Maps show the user just the street he should take.
They provide no info about the sidewalks

Prototype I improved the previous prototype, replaced the map for Naviterier GIS map
and tested in the city. Goal Validate the dialogue system would work in the city with the
real map from the GIS.

Description I played the game again, this time the user was in the real city. I had
the map and tried to locate the person on the map. The questions were read aloud by the

21

CHAPTER 3. DESIGN

computer. 3 people participated in this study. 2 women, 1 men, age 22-26. Each participant
went over 4 places in the city.

Results The testing proved the GIS map is insu�ciently speci�c for the dialogue system
and we need to change the strategy. I was able to locate in 8 cases from 13. I had to 4
times ask: What's the name of the 2 streets on that corner. 2 times I hit into the person
replied something the dialog was not prepared for, e.g., �a hot-dog stand,� �a crossing of two
streets.� In 3 cases I located the person on a very long segment and had no idea, where on
that segment he is. I made a quick �x, which helped me to know the person is at the end of
the segment. Still, I was not able to distinguish on which end of that segment.

3.3.2 Corner of Two Streets

3.3.2.1 Corner of Two Streets v1

Figure 3.15: Example of a part of the dialogue diagram

Prototype The prototype asked the user to go to the corner of two street's and enter
their names, which direction he would turn around the corner. This can decide the position
for some crossings. If it can't be decided, he would be sent to another corner and prompted
to enter the name of that street. The Prototypes were talking to blind participants through
TTS in the city.

Goal Validate if this prototype is usable. Decide if I should implement it in next iteration.
Description 5 visually impaired people participated in this study. 4 men, 1 women, age
38-64. 2 born blind, 1 blind since childhood. 1 perceives dark vs. light, 1 point vision.

Results This prototype was very stressful for the users: P1: �This was, of course, the
worst, I have to get too much information�, P5: �I don't have time to stay and wait 4 minutes
till someone helps me�. Therefore I decide to skip this prototype in the next iteration

3.3.3 POI (Point of Interest)

3.3.3.1 POI v1

Prototype This prototype can locate the user at: an address, a POI or on a tram stop.
The prototype was talking to the user through the TTS.

Goal Determine which prototype to implement in the next iteration.

22

3.3. PROTOTYPES

Figure 3.16: Example of a part of the dialogue diagram of POI v1

Description The user had a task �Go for the ice cream to a confectionery at the address
Karlovo nám¥stí 13� (The �rst have Ke Kunratickému lesu 3). The user had a phone in his
hand. He was instructed to speak on the phone, and explained how to control buttons � �when
asked touch either upper part of the screen or the lover part of the screen.� Experimenter
observed where the user touched the screen and analyzed what user says, then he played
the corresponding text of the reply. 5 visually impaired people participated in this study. 4
men, 1 women, age 38-64. 2 born blind, 1 blind since childhood. 1 perceives dark vs. light,
1 point vision.

Results The testing discovered: The users need a possibility to change the target P1.
P1, P2 didn't know the terminal station of the tram. In the next version, the prototype has
to allow any stop on the way in the direction of the tram. When I lead them on a tram stop,
P2,3,4 and 5 had no idea what tram stop is it. P2 couldn't �nd even while using the pager.
Make instructions & questions more user-friendly. The testing con�rmed: the mental model
(to estimate a tram stop: give us the tram number & direction) works

23

CHAPTER 3. DESIGN

3.3.3.2 POI v2

Figure 3.17: Example screens from the POI v2

Prototype Mobile web app. The system asks user as long until it gets the street name
and the land registry number, or a tram stop name, tram line and the direction of the tram
(it's enough when the user mentions any stop along the next route of the tram). User's
answers are sent to Conversation API[22], which understands the context and information
and generates the appropriate response. An example could be:

Wellcome my friend, where are you going? Myslíkova 22 You are going to Mys-
líkova 22. What is your current address or current stop of public transport?
Tram Národní t°ída You are on stop Národní t°ída. Let's determine exact plat-
form. What line and in which direction? (any stop along the route is acceptable)
9 Národní divadlo So you are now leaving from stop Národní t°ída, line 9 in
Direction národní divadlo

And it will extract the parameters:

• targetStreet: Myslíkova

• targetHouseNumber: 22

• sourceLine: 9

• sourceStopName: Národní t°ída

• sourceNextStop: Národní divadlo

24

3.3. PROTOTYPES

Figure 3.18: Example of the dialogue diagram of the POI with the Hints v1

The triplet (sourceLine, sourceStopName, sourceNextStop)is then converted to GPS co-
ordinates(My DPP API) and GPS coordinates to address (HERE API)

Goal Validate the usability of the implemented prototype. Test the voice chat interface;
Test if it is usable to localize based on trams.

Description Tested with 5 visually impaired people. See the chapter Testing for more
details.

Results See the chapter Testing.

3.3.3.3 POI future work

I needed to keep the complexity reduced for the prototyping. The future versions can
utilize all the means of the public transport (buses, metro, trains, etc.).

3.3.4 POI with the Hints

3.3.4.1 POI with the Hints v1

Prototype A dialog system implemented in Axure + Acapela TTS. It contains the POIs
from FindSourceData API[17] in the close surroundings. The prototype asks for target's
address, then asks for the current position and reads aloud the list of nearby streets nearby
and tram stops. The prototype allows localization of the user based on a tram stop, an
address or a name of some POI, e.g., restaurant, shop, etc.

Goal Determine which prototype to implement from iteration 4. In this prototype, I
wanted to learn about the usability of localization by an address or POI.

Description I tested with 5 visually impaired. The user was given the task �Go for
the ice cream to a confectionery at the address Karlovo nám¥stí 13�. The user had a phone
in his hand. He was instructed to speak on the phone, and explained how to control the
buttons � �when asked touch either upper part of screen or lover screen.� The experimentator
observed where the user touched the screen and analyzed what the user says, then he played
the corresponding text of the reply. 5 visually impaired people participated in this study. 4

25

CHAPTER 3. DESIGN

Figure 3.19: Example of the dialogue diagram of the GPS v1

men, 1 women, age 38-64. 2 born blind, 1 blind since childhood. 1 perceives dark vs. light,
1 point vision.

Results Too much information confused all the users, In the next iteration, I had to
reduce the amount of the text. The users had troubles to distinguish between when they are
asked for the target and when for the source, in the POI v2 I improved the wording of those
�elds. 3 users thought the app would �nd them.

3.3.5 GPS

3.3.5.1 GPS v1

Prototype This prototype estimates the direction to the target, and send him in that
direction. The user has to go until he reaches a corner. Then it asks him to turn around
the corner and walk another 30m. Based on this trajectory the prototype should be able to
estimate the sidewalk. I implemented this prototype as a dialogue diagram in Axure with
TTS messages from Acapela Box.

Figure 3.20: Example showing the green collected path and the gray sidewalks

Goal Determine which of the prototypes to implement from iteration 4.

26

3.3. PROTOTYPES

Description Tested with 5 visually impaired people. The user was given a phone and
instructed, when he taps the upper part of the display it means button 1, lower part button
2. In fact, the phone was turned o�. The experimenter stood nearby and determined the
dialogue by clicking on the diagram and the computer read the text aloud with TTS. 5
visually impaired people participated in this study. 4 men, 1 women, age 38-64. 2 born
blind, 1 blind since childhood. 1 perceives dark vs. light, 1 point vision.

Results The participants liked this solution. Still, I discovered some usability problems.
E.g., The device said: �Hold the phone in the horizontal position. The lower part of the
phone should aim to your chest� But 2 users didn't hold the phone correctly. Compare the
�gures 3.21, 3.22. Therefore I skipped the instructions how to hold the phone in the next
iteration.

Figure 3.21: The incorrect position of the
phone

Figure 3.22: The correct postion of the
phone

3.3.5.2 GPS v2

Prototype This prototype asks for the target address. It asks the user to stand with
his backs to the wall. The compass built in the phone tells which direction is the bee-line to
the target. If it' in the interval < −90◦, 90◦ > it sends the user to the right, for (90◦, 270◦) it
sends him left. Then it starts collecting the coordinates; the user walks to the corner of the
street. He marks down he is on the corner. And he walks another 30 meters. Then he hits
�estimate my position.� His log of coordinates is then matched to the map of the sidewalks
in FindSourceData API[17]. The prototype then knows the user's sidewalk and project the
user's last coordinates on the sidewalk. From that position, the prototype �nds the nearest
address on this sidewalk and start the navigation from that address. I implemented this
prototype as a Hi-Fi web app.

Goal Validate the usability of the implemented prototype.

Description Tested with 5 visually impaired people. See the chapter Testing for more
details.

Results See the chapter Testing.

27

CHAPTER 3. DESIGN

Figure 3.23: Example screens from the GPS v2

3.3.5.3 GPS Future Work

In the GPS v2 prototype, to speed up the prototyping cycle, I implemented a very naive
version of the algorithm. The algorithm calculates only the distance; it doesn't utilize the
shape of the collected data.

3.3.6 GPS without the Compass

3.3.6.1 GPS without the Compass v1

Figure 3.24: Example of the dialogue diagram of the GPS without the Compass v1

Prototype This prototype is almost the same as GPS v1, but at the beginning of the
journey asks the user: �Start walking in the direction, you think goes to the target.�

Goal Determine which of the prototypes to implement from iteration 4.
Description 5 visually impaired people participated in this study. 4 men, 1 women, age

38-64. 2 born blind, 1 blind since childhood. 1 perceives dark vs. light, 1 point vision.
Results The users had no idea which direction is the correct one in the beginning.

Therefore I decided not to implement this prototype as the Hi-Fi version.

28

3.3. PROTOTYPES

3.3.7 (Reverse Geocoding)

3.3.7.1 Revere geocoding v1

Figure 3.25: Example screens form the Reverse Geocoding v1

Prototype This prototype represents the State-of-the-Art. The prototype asks the user
about the target address; then it estimates the address using the geolocation of the phone.
I implemented this prototype as a Hi-Fi web app.

Goal -I expect this solution to fail because it can estimate an address on the other side
of the street. But it represents the State-of-the-Art

Description Tested with 5 visually impaired people. See the chapter Testing for more
details.

Results See the chapter Testing.

29

CHAPTER 3. DESIGN

30

Chapter 4

Implementation

I implemented three prototypes as High-Fidelity prototypes. The implemented proto-
types are Point of Interest (POI), GPS, and Reverse Geocoding (Reverse GC).

4.1 Technologies

4.1.1 Django

I implemented all three prototypes by use of Django framework[39]. Django is a Web
framework based on language Python. Django simpli�es the development of the backend,
frontend, and REST API.

Originally, I wanted to write the code in Java framework Springboot 1.4.0[40] (and front
end in templating system Thymeleaf[41]). However, I was very slow with the development.
I was slowed down by the robustness of Java language and the Springboot framework. I
always had to declare an object, whenever I wanted to share any data between frontend and
backend. As well I had to implement getters and setters for all variables of that object. But
I had to modify the transferred data very often.

I was learning how to use the Watson Conversation's dialogue. I was doing experiments
how to control the logic of the program by the Watson Conversation, e.g., turn on the
GPS, launch navigation between two points, etc. Because of those, I had to rewrite both
the frontend and backend very frequently. And that was very slow and uncomfortable.
Compared to that Django framework allows very quick development. The framework itself
and the language Python are very brief.

Let's look at an example: You can write a simple view. The view will display just the
plain text �Hello world�:

def index(request):

return HttpResponse("Hello, world!")

By changing one line, you can instead render a html template:

def index(request):

return render(request, 'index.html', {})

31

CHAPTER 4. IMPLEMENTATION

Or pass some variables to the template:

def index(request):

return render(request, 'index.html', {name="foo", displayGreeting=True})

Doing the same in Java would need much more changes in the code. What I was coding
a month in Java, I built in Django in a week.

I used Django in the version 1.11.1.

4.1.2 jQuerry

The frontend communicates with the backed through jQuerry. jQuery[42] is a JavaScript
library. This library simpli�es the usage of AJAX and accessing of the APIs.

4.1.3 Bootstrap

I needed to display the prototypes comfortably on a mobile phone. Therefore I used
the Bootstrap toolkit[43]. Bootstrap set the CSS styles and makes all the HTML elements,
larger and therefore mobile friendly.

I used Bootstrap in the version 3.3.7.

Figure 4.1: Example of a page using the Boot-
strap

Figure 4.2: Example of a page without the
Bootstrap

4.2 Prototypes implementation

I as stated at the beginning of the chapter. I implemented as hi-�delity prototypes only
the prototypes Reverse Geocoding (Reverse GC), Point of Interest (POI) and GPS.

32

4.2. PROTOTYPES IMPLEMENTATION

4.2.0.1 Reverse GC

This prototype asks for the target T, launch phone's geolocation, estimate the user's
coordinates and �nd the nearest address A. And then the prototype �nd a route from A to
T.

The prototype is using the following parts:

• geolocation - to estimate the users coordinates
• voice input - to �ll in the html input �elds
• getAddress(lat, lon, callback) - to get an Address from the actual GPS coordi-
nates of the phone.

• inNaviterierDB(address, callback) - to validate the user's estimated address &
target address are in the area covered by the navigation

• logExperiment(lat, lon, estAddress, targetAddress, experimentType, userPath,

callback) - to record the experiment for the user testing
• redirectToNavigation(sourceAddress, targetAddress, currentUrl) - �nally nav-
igate the user to the target

4.2.0.2 POI

This prototype has a dialogue with the user. It asks for the target T, then asks for the
starting position S, get the nearest address A of S. And then the prototype �nd a route from
A to T. The starting position S can be a tram stop or an address.

The prototype is using the following parts:

• voice input - to �ll in the HTML input �elds
• getGpsFromTriple(stop, direction, line, callback) - to get GPS coordinates of
a tram stop

• getAddress(lat, lon, callback) - to get an address. The address is the nearest to
the GPS position of the tram stop.

• getEntryGPS(address, callback) - (for the testing) to log, the GPS coordinates, in
case the user entered an address as a starting point

• inNaviterierDB(address, callback) - to validate the user's estimated address &
target address are in the area covered by the navigation

• logExperiment(lat, lon, estAddress, targetAddress, experimentType, userPath,

callback) - to record the experiment for the user testing
• redirectToNavigation(sourceAddress, targetAddress, currentUrl) - �nally nav-
igate the user to the target

• text Watson

4.2.0.3 GPS

This prototype asks for the target T, launch the geolocation and compass and determine
which direction the user should start (left/right). Then it sends the user to the corner of the
street, on the corner the user turns around the corner and walks 30m. Then the prototype

33

CHAPTER 4. IMPLEMENTATION

estimates the sidewalk S position on that sidewalk P. Then it �nds the nearest address A
on the sidewalk S. And then the prototype �nd a route from A to T.

The prototype is using the following parts:

• voice input - to �ll in the HTML input �elds
• geolocation - to estimate the users coordinates C in the beginning
• getGPS(address, callback) - to get the coordinates of the target, so it can determine
the direction from C to T and say the user whether he should start to the left or the
right.

• inNaviterierDB(address, callback) - to validate the user's estimated address &
target address are in the area covered by the navigation

• gpsFromUserPath(userPath, callback) - to project the collected user's path over
the sidewalks and �nd the sidewalk, which match this projection the best. And to
estimate the user's position on that sidewalk.

• getAddressOnSidewalk(lat, lon, callback) - to �nd the nearest address, which
lies on the same sidewalk as is the requested coordinates

• logExperiment(lat, lon, estAddress, targetAddress, experimentType, userPath,

callback) - to record the experiment for the user testing
• redirectToNavigation(sourceAddress, targetAddress, currentUrl) - �nally nav-
igate the user to the target

• determine the direction in the beginning - to send the user in the correct direction,
before it starts to collect the coordinates of his path

• logging GPS coordinates - to log the path of the user before the corner and after the
corner

4.2.1 Parts of Prototypes

The prototypes have a lot of parts in common; some are unique for each prototype.
However, all parts are described in this part.

4.2.1.1 Voice Input

The voice input allows the user to dictate his inputs. It spares the blind users from
clumsy typing, and it allows using the phone with one hand. It transfers the spoken words
to the text. I am using Web Speech API[44]. It's a standardized API for the browsers. And
it allows the developers to write one code and use it in all modern browsers The language is
set to the Czech language by the following piece of code recognition.lang = "cs-CZ";

4.2.1.2 getAddress(lat, lon, callback)

getAddress helps to transform any GPS coordinates to an address. It �nds the address
in pattern streetName houseNumber for any given latitude and longitude. getAddress is
function using jQuerry. It accesses my API, which calls HERE API's reverse geocoding[45].
My API then extracts the streetName and houseNumber from the HERE API's response.

Originally I intended to use the Google reverse geocoding[46]. But Google for same
cases worked �ne, but in some cases, it returned multiple addresses uni�ed together, e.g.,

34

4.2. PROTOTYPES IMPLEMENTATION

Vodi£kova 18-22, instead of expected single address, e.g., Vodi£kova 18. I didn't �gure out
how to turn this feature o�, so I switched to using the HERE API, which seems to behave
more consistently.

4.2.1.3 getGpsFromTriple(stop, direction, line, callback)

getGpsFromTriple �nd the GPS position of the tram stop platform from 3 pieces of
information: the stop name, the number of the tram line and the name of some next stop in
the direction of the tram.

The algorithm works as the following:

1) find all the routes of the given tram LINE

2) find all possible head-signs on those routes

3) for each head-sign

a) find all rides with given head-sign

b) find a ride somewhere in the middle of the day

(probably it will not be modified. E.g., the last ride of the day might go

to a different terminal station to maintain the train during the night)

c) find if the trip goes through the STOP

d) find if the trip goes in the DIRECTION

e) check if STOP proceeds DIRECTION

i) return GPS coordinates of the STOP

getGpsFromTriple is function using jQuerry. It accesses my API, which then uses the
data from the DPP Database.

4.2.1.4 inNaviterierDB(address, callback)

inNaviterierDB helps to verify if the requested address is valid. Let's have an example
address, e.g., Vodi£kova 15. It can �nd if the street name Vodi£kova exists; if the combination
of street name and the house number exists; if the combination of the street name and the
land registry number exists. That way it can say to the user whether he has a typo in the
street name or just in the number. As well as a valid address it's able to say the address is
in the area covered by the navigation.

getAddress is function using jQuerry. It accesses my API. The address is validated
against the Addresses Database described in section ??

4.2.1.5 logExperiment(lat, lon, estAddress, targetAddress, experimentType, userPath,

callback)

logExperiment serves the purpose of the user testing. It logs each experiment to the
database. So I am later able to evaluate the error of each method. E.g., What's the di�erence
between the coordinates estimated by the GPS sensor, the coordinates of the estimated
address and the coordinates, where the user stood in reality during the experiment. (The
experimentator has to enter the last coordinates manually after running the experiment.)
logExperiment is function using jQuerry. It access my API, and it stores it in the database
table user_testing_experiment

35

CHAPTER 4. IMPLEMENTATION

4.2.1.6 redirectToNavigation(sourceAddress, targetAddress, currentUrl)

redirectToNavigation is a standalone web page. It navigates the user between two
addresses. The navigation instructions are provided by the FindRoute API[29].

When you provide the source address and the target address to the FindRoute API, it
will provide you with up to multiple possible paths and their itineraries. In my API, I always
take the �rst path. The possibilities are not important for my prototyping.

When you provide a misspelled, a non-existing address or an address which is still not
covered by navigation, the API will return an empty list of paths. My API tests which
address is wrong and reports it to the user (starting address/target address/both addresses).

redirectToNavigation is a function, which redirects to the page Navigate. The page
Navigate access my API, which access the FindRoute API[29] and collect the navigating
instructions from there.

4.2.1.7 logging GPS coordinates

The logging is split into two parts. The system logs the collected coordinates to an array
beforeCorner, and when the user marks he stands on the corner, the system switches the
array and logs to the afterCorner.

4.2.1.8 gpsFromUserPath(userPath, callback)

The prototype is collecting the coordinates of the user's traveled path. gpsFromUserPath
then tries to �nd a match of the path to the network of sidewalks.

The sidewalks are received through my API. My API loads all map elements from Find-
SourceData API[17]. Then it extracts only sidewalks. All roadways, pedestrian crossings,
etc. are thrown away. Then it merges all sidewalk elements, which belong together, and
yields them as the complete sidewalks. See �gure 4.3

Figure 4.3: Examples of the complete sidewalks. Each complete sidewalk is either depicted
with a green dashed or green solid line

36

4.2. PROTOTYPES IMPLEMENTATION

Each complete sidewalk is then scanned to detect the corners. A corner is de�ned as
a place on a complete sidewalk, which bends for an angle ≥ 140◦. The value 140◦ was
determined experimentally. The complete sidewalks are this way split into clusters.

User's recorded path consists of two parts before corner and after corner.

The gpsFromUserPath then calculate the total distance of the before corner and the
after corner from each two adjecent clusters. gpsFromUserPath then yields the two clusters
with lowest the total distance as the sidewalk, which the user used. And project the last
coordinate of User's recorded path to that sidewalk. That projection coordinates are then
yielded as user's actual GPS position.

Figure 4.4: Example of a projection: the grey lines are the before corner and the after corner
GPS coordinates. The red lines are two adjacent clusters. The red point is the estimated
user's actual GPS position.

4.2.1.9 getAddressOnSidewalk(lat, lon, callback)

getAddressOnSidewalk �nds the used sidewalk. And it �nds all addresses lying on that
sidewalk. And then �nally it �nds the address on that sidewalk, which entrance is the nearest
to the requested latitude and longitude.

getAddressOnSidewalk is a function using jQuery, which access my API. My API then
gets all the necessary information from FindSourceData API[17].

4.2.1.10 Text Watson

Text Watson is implemented in the POI prototype. It sends the user's response to the
Watson Conversation's dialogue. This function as well synchronizes the dialogue with the
state of the app of the POI prototype. All information is passed through object context.
Both the dialogue and the app has access and rights to modify this object.

The dialogue sends through the context, the extracted start position, the target position,
whether the start position is a tram stop or an address and if the dialogue collected all the
required info and the navigation can be launched.

37

CHAPTER 4. IMPLEMENTATION

Figure 4.5: Image shows the user's real position, the area estimated by the geolocation
(dashed ring), the target, e.g., Karlovo nám. 13, the azimuth to the target, and the optimal
decision start to left (green arrow)

4.2.1.11 Determine the direction in the beginning

This serves to advise the user at the beginning whether he should start to the left or the
right.

The app instructs the user to stand with his back to the building. Next, the app �nds
the GPS coordinates of the target and GPS coordinates of the user (from the geolocation).
Then it calculates on what azimuth lies the target. And it compares the azimuth with the
user's heading of the compass. Based on this comparison it determines if it's optimal for the
user to start to the left, or to the right. It should be obvious from �gure 4.5

4.2.1.12 Geolocation

Geolocation launches the W3C Geolocation[47] in the browser. W3C Geolocation is a
standardized API available on all modern browsers. On the mobile devices, it provides the
information about the current GPS coordinates, heading of the compass, and tilts of the
device. In my prototypes, I am using only the GPS coordinates and heading of the compass.

4.3 Databases

My implementation uses data from two databases: DPP Database and Addresses Database.
Both are described further.

4.3.1 DPP Database

I use DPP database to get GPS coordinates of any tram stop. I look for the combination
of 3 elements the tram stop's name, the line of a tram and some stop on the way in the
direction of the tram. These 3 elements determine the exact platform. And this database
knows GPS coordinates for each platform in the city.

38

4.4. THIRD-PARTY APIS

The DPP database contains data about the public transport in Prague. It has info about
the lines of the metro, the trams, the buses, the chairlift and the ferries. Next, there is a
list of all stops with their GPS coordinates, the list of all journeys of all the lines and most
important, the sequence of all stops on a journey of each line.

I downloaded the data Open Data Time Tables of Public Transport from the Prague's
Open Data Portal[48] and uploaded them to the database. The data are valid for 7 days.
The data are quite big; the largest table has around 1.7 millions of entries. Therefore I
imported the data only once. And I didn't implement their update on a regular basis.

4.3.2 Addresses Database

The addresses database contains a list of all addresses. And I use it to validate if the
requested address exists or if it is available in the system. This prevents the user from
entering, e.g., a house number which doesn't exist.

One address consists of the street name, the house number, and the land registry number.

I Every combination of the street name and house number is unique. And every com-
bination of the street name and the land registry number is unique. Therefore it's enough
when the user enters only one of the numbers. Therefore I decided to use the street name
and house number only for the whole implementation.

The addresses were collected only once from the GetAddresses API[30] and stored in
my database. Then, my database was enriched by a �eld street_noaccents. In this �eld,
the street name is striped of any diacritics, spaces or special characters. e.g., �nám¥stí I. P.
Pavlova� is stored as namestiippavlova. And whenever the app is searching in this database,
it compares the stripped versions of the requested street name and striped version stored
in this database. This technique allows the user to write without diacritics and not worry
about the correct spacing.

4.4 Third-Party APIs

4.4.1 Watson Conversation

Watson Conversation[22] is an API, which allows creating a dialogue. Then this API can
process the user's replies and provide him back with appropriate answers.

4.4.1.1 Intents

The documentation says, Watson Conversation can understand the intent of the user,
e.g., User says �Karlovo nám¥stí 13� and Watson should understand. I am now entering
a starting address. And the address="Karlovo nám¥stí 13". It should as well extract
Entities � the important facts, e.g., name of a stop. E.g. User says �Karlovo nám¥stí 13�
street="Karlovo nám¥stí"", houseNumber=13.

I wanted my intents to be:

• enter the target location

39

CHAPTER 4. IMPLEMENTATION

• enter the actual location

• edit the previous

• enter the street, e.g., �Lazarská�

• enter the tram stop, e.g. �tram Lazarská�

In reality, the Intents don't work so well in Czech language (Watson Conversation didn't
support the Czech Language at the time of the implementation). Therefore I decided to
design the structure of the dialogue the way, It splits entering the target location and entering
the start location in two separate steps.

The intention to edit the previous, I replaced by detecting an entity @Back. Whenever
user mentions �back�, �edit�, �change�, or similar. I return him to the previous question.

The intentions to enter the street or the tram stop, I replaced by the entities @Street
and @Stop.

I am using another 7 entities to extract the variables.

• About the start tram stop: @StartLineDirection, @StartLineNumber, @StartStopName,

• About the start address: @StartLandregistryNumber, @StartStreet

• About the target address: @TargetLandregistryNumber, @TargetStreet.

4.4.1.2 Detecting the Numbers

During the implementation of my prototypes, Watson Conversation didn't support de-
tecting the numbers. Therefore I simply pre�lled the @StartLandregistryNumber and
the@TargetLandregistryNumber with numbers 1-500 as the values for the entity.

4.4.1.3 Detecting the Streets

I pre�lled the @StartStreet and the @TargetStreet with the list of streets. I get the
list of all addresses from the GetAddresses API[30]. I �ltered and uploaded only the unique
names of the streets.

4.4.1.4 Detecting the Tram Stops

I pre�lled the @StartStopName with the list of names of the stops. I �ltered those
manually from POIs get through the GetPois API[31].

4.4.1.5 Detecting the Tram Lines

I pre�lled the @StartLineNumber with the list of the names of the lines. I get the list
manually. I searched for all the lines going through the stops using Find a connection[49]
tool at web pages dpp.cz.

40

4.4. THIRD-PARTY APIS

4.4.1.6 Detecting the Tram Directions

I pre�lled @StartLineDirection with a list of tram stops. For each tram line, I �nd the
list of all its stops on the fan page TRAM-BUS.CZ[50]. Then I �ltered and uploaded only
the unique names.

4.4.1.7 Implementation of STEP-BACK

I hit into trouble how to implement, editing the previous response. A node of the dialogue
Originally did the following: 1. it reads the reply of the user, e.g., �Lazarská� 2. it extracts the
variables, e.g.$StartStreet = "Lazarská" 3. text the response, e.g., �You are at Lazarská.
What's the land registry number?� 4. and redirect the input to next node (or nodes).

But, when the user wants to edit the previous information and go back, he needs to hear
the question from step 3) again. And he doesn't want the system to perform the steps 1)
and 2).

To achieve this behavior, I split each node of the original dialog, into two nodes:
Node 1:

1. read the reply

2. extracts variables

3. immediately jump to the Node 2

4. it's skipped

Node 2:

1. do nothing

2. do nothing

3. text the response

4. redirect the input

This way when going back, I can jump directly to the Node 2. This hack behaves as if I
would jump on step 3) in the original node.

4.4.2 FindRoutes API

All the prototypes use the FindRoutes API[29] to get the navigation instructions. Once
the starting address is estimated, this API is asked for the navigation instructions can �nd
a route between two addresses.

This API doesn't allow to use GPS coordinates or a sidewalk ID as a starting point.
Because of that, all the tested prototypes need to determine the nearest address to the user.
FindRoutes API then uses this address to navigate. Such behavior can cause errors. In
the end, all three implemented prototypes rely on some kind of the reverse geocoding. And
di�er only in the precision of the initially estimated GPS coordinates. The reverse geocoding
brings a risk of:

41

CHAPTER 4. IMPLEMENTATION

Figure 4.6: Example of one original node split into the two new nodes

• localizing an address behind the corner
• localizing an address across the street
• localizing an address on a totally di�erent sidewalk (as the one in a parallel street)

42

Chapter 5

Testing

5.1 Participants Pool

I was testing all prototypes with the users. Some of the prototypes (the ones on the
beginning), was tested with people with a regular sight. The prototypes in the later phases
iterations 4 and 5 were tested with the blind people. All the participants received a chocolate
bar of dark chocolate as compensation of their time.

5.1.1 Sighted Participants

For testing with the sighted participants, I used my friends and my family. Some other
friends followed as the e�ect of the snowball method.

5.1.2 Blind Participants

I was collecting the contacts on the blind people just through the snowball method.
As the seeds I used the Invisible exhibition[51], some personal websites I found through the
Google (I am not making citations to their websites, concerning their privacy), a blind friend
of my friend or I approached some of the blind people I met in the city during my errands.
All these people willingly provided me with contacts on themselves and recommended their
friends, who would be interested in trying this new technology.

5.2 Testing of the Prototypes

Some of the information about the testing is already in the Chapter 3 Design. In this
section, I provide additional details to those testings and complete results of testing of the
5th iteration. See section 5.6.

5.2.1 1st testing - Map

participants 5 sighted people, 2 men, 3 women, age 21-53 procedure We showed the
participants a map with the following places in the following order: �t¥pánská street, �itná
street, Lazarská Street and Charles Square.

43

CHAPTER 5. TESTING

Figure 5.1: The tested locations in the city

Before the testing, I taught the participants the objects in the map. I showed the
participants the Google Street View of given location when necessary, so they can better
understand the map.

5.3 2nd testing - Map + Wizard of Oz

No additional info. Check the chapter 3 Design.

5.4 3rd testing - City + Wizard of Oz

No additional info. Check the chapter 3 Design.

5.5 4th testing - Blind: City + Wizard of Oz

Participants: 5 blind. 4 men, 1 women, age 38-64. 2 born blind, 1 blind since childhood.
1 perceive dark vs light, 1 point vision.

Every participant went over locations 1, 2, .., 5. Order of the methods was the following:

participant location 1 location 2 location 3 location 4 location 5

1 POI with hints POI GPS w/o compass GPS corner of 2 streets
2 POI with hints POI GPS corner of 2 streets GPS w/o compass
3 POI with hints POI GPS corner of 2 streets GPS w/o compass
4 POI with hints POI corner of 2 streets GPS w/o compass GPS
5 POI with hints POI corner of 2 streets GPS w/o compass GPS

The position of the locations was the following:

• Location 1 Myslíkova 22

• Location 2 at Lazarská tramstop in direction Národní T°ída

• Location 3 Jungmannova 5

• Location 4 V Jámn¥ 1

• Location 5 Navrátilova 13

5.6 5th testing - Blind: City + Hi-Fi

participants I sent emails and SMS to my contact pool and the �rst 5 available, par-
ticipated in the study. 1 women, 4 men, age 28-63, 4 totally blind, 1 point vision, since
childhood, one of them used a dog. procedure I explained how to control the screen reader

44

5.6. 5TH TESTING - BLIND: CITY + HI-FI

Figure 5.2: The locations and the tested prototypes on those locations

to every participant. For one participant we used his iPhone. I always led the person to the
starting point and told her/him to use the app, to get to a given address. e.g., Vodi£kova
28, �kolská 15. The address was always di�erent for each prototype. The participants were
asked to think aloud.

apparatus All prototypes were interactive websites, running in a Chrome Browser[52] on
the cellphone Honor 7 Lite, 5" screen, Android 7 Nougat. The websites were read aloud
and controlled by screen reader Google TalkBack[53]. I was always standing nearby, writing
notes, taking photos, taking screenshots, when something went wrong. As well, the app
recorded the estimated GPS coordinates and the GPS coordinates of the estimated address
(The address from which the navigation was launched)

5.6.1 Procedure order

The methods were tested in the order given by the following table:

Participant 1st 2nd 3rd

1 POI RG GPS
2 POI RG GPS
3 RG GPS POI
4 GPS POI RG
5 RG GPS POI

This order ensured every method was at least once tested as 1st, 2nd and 3rd method.
This way I tried to eliminate the e�ect of the learning curve.

5.6.2 Starting places

There was no logic in selecting the starting points; they were selected randomly while
walking in the city. For GPS, and reverse GC the place was chosen randomly For POI we
took a tram and the exit the tram on a randomly chosen tram stop. Every session was
started in a unique place.

5.6.3 Results

The method performed during the testing as follows:

• RG successfully navigated the user (0 out of 5).
• POI successfully navigated the user. (2 out of 5).
• GPS successfully navigated the user. (3 out of 6).

The testing discovered following technical issues.

• Google API[46] returns the address in an unexpected pattern (3 out of 6).

• HERE API[45] returns the address without `HouseNumber' (2 out of 10).

45

CHAPTER 5. TESTING

• The method dpp.views.getGpsFromTriple didn't �nd any tram connection for given
combination (1 out of 7).

• The position of the tram stop is misplaced in the DPP Database. (1 out of 7).

• The method getAddressFromProjection didn't return any address (1 out of 6).

5.6.3.1 General Usability Problems

Implementation in the Browser. P2 and 3 opened the cards and had troubles to close
them.

5.6.3.2 Reverse geocoding

participant navigation address technically

1 failed to launch across the street bug Google API
2 failed to launch across the street bug Google API
3 wrong instructions across the street ok
4 wrong instructions across the street ok
5 failed to launch failed to estimate bug HERE API

Case 1, located an address across the street (Vodi£kova 15, instead Vodi£kova 22) plus
apis.google_api.getAddress returned the information in an unexpected order

Case 2, located an address across the street (Vodi£kova 23, instead Vodi£kova 28) plus
apis.google_api.getAddress returned the information in an unexpected order

Case 3, located an address across the street (Vladislava 6 instead Vladislava 5)

Case 4, located an address across the street (Národní 3 instead of Národní 6)

Case 5, apis.here_api.getAddress responded without the �eld `HouseNumber'. It
returned only the street name `Masarykovo náb°eºí'

The reverse geocoding failed to navigate for all 5 cases.

It su�ered from technical issues. The prototype failed to estimate an address in 1 case
because of unexpected behavior of HERE API[45]. In the other 4 cases, the prototype
estimated the address on the side of the street. The prototype managed to launch the
navigation for participants 3 and 4. But both participants su�ered from getting lost during
the navigation, because of the wrong initial address.

Usability mistakes: It doesn't say that the prototype starts to work without the GPS,
once it switched to the navigation. P1 correctly recognized, the navigation goes from another
side of the street, but when it kept saying the wrong orders, he started to believe the
prototype is right and he is must be wrong.

5.6.3.3 POI

46

5.6. 5TH TESTING - BLIND: CITY + HI-FI

participant navigation address technically

1a failed to launch failed to estimate user entered false data
1b failed to launch failed to estimate bug Google API
2 ok ok ok
3a failed to launch failed to estimate bug getAddressfromTriple
3b ok ok ok
4 failed to launch failed to estimate bug HERE API
5 wrong instructions 48m away ok

Case 1a, user inserted a direction of the tram, which the tram never goes. Therefore it
didn't located him.

Case 1b, method apis.google_api.getAddress returned `NovéM¥sto' instead of e.g. Vodi£kova
15.

Case 3a, method dpp.views.getGpsFromTriple didn't �nd any tram connection for
stop Národní T°ída (line 22, direction BÍLÁ HORA)

Case 4, apis.here_api.getAddress responded without the �eld `HouseNumber'. It
returned only the street name `Divadelní'

Case 5, the GPS position of tram stop Myslíkova (line 5, direction Lazarská) in the DPP
database is misplaced.

This prototype again su�ered from the technical problems and problems of the data.

In this prototype, the user P4 had troubles �nd how to go back P4. He was expecting
a button instead texting �back�. The other users didn't need to go back during the testing.
Some of the nodes of the dialogue are too wordy �Your `Narodni Trida'; I can't recognize
whether you thought the stop or the street. Let's try it a di�erent way. . . Did you meant
the street `Národní' or the stop `Národní t°ída'?� P1 entered a combination, which is false,
the system should detect before accepting a value, if the tram goes through the stop, and if
it goes through the stop mentioned as the direction.

5.6.3.4 GPS

participant navigation address technically

1 ok, but must return ok ok
2 wrong instructions wrongly estimated ok
3 ok ok ok
4a wrong instructions wrongly estimated ok
4d failed to launch failed to estimate bug getAddressFromProjection
5 ok, but must return ok ok

Case 1, the user had to return 70m after being localized
Case 2, the projection matches sidewalk on the other side of the street. See the screen-

shot from Václavské nám¥stí (Using the shape for estimation could �x it)
Case 4a, the address was estimated in the street before the corner. But the data

47

CHAPTER 5. TESTING

Figure 5.3: Case 2: The projection matches to the sidewalk across the street

beforeCorner and afterCorner data were imprecisely annotated, but the fault of the interface.
The user thought he is on the corner, marked it, but he was in the middle of the street, he
realized latter. But he had no possibility to �x it.

Figure 5.4: Case 4a: The estimated address is before the corner (grey, user path, red point
estimated position) street

Case 4d, the GPS was correctly estimated. But the gpsLocalization.functions.getAddressFromProjection
returned no address for given coordinates. There is some bug in that function.

Case 5, the user had to return 79m

The participants P2, 3 and 5 had troubles on the initialization, when they executed the
order go to left, the system changed the order to go to the right. This way they started to
in�nitely pivot. As a solution, split the �stand with your backs to the wall and go left/right�
into two separate steps. The users P1, 2, 3 and 5 were annoyed, when the system was
announcing the number of collected coordinates. None of them had any idea, what those
number means. Solution: turn it o�. P4 reached the corner of the house, but it was not the
corner of the street. He realized it later, but he had no possibility to mark the correct corner.
P3 wondered about �Go to the next crossing or corner.� There is a di�erence between those
two. See the image ??

48

5.6. 5TH TESTING - BLIND: CITY + HI-FI

Figure 5.5: The user walked to the road instead of staying on the corner. The red arrow is
the trajectory of the user. The white circle is the desired position.

5.6.4 Follow-ups

5.6.4.1 Reverse Geolocation

5.6.4.2 Google API

The Google reverse Geocoding API[46] returned the data in unexpected pattern for 3
locations (out of 6).

For most of the locations the API returns the data in the pattern HouseNumber, land
registry number, street name: in the code it looks like this:

[

{'long_name': '1', 'short_name': '1', 'types': ['street_number']},

{'long_name': '1012', 'short_name': '1012', 'types': ['premise']},

{'long_name': 'Národní', 'short_name': 'Národní', 'types': ['route']},

...

]

But for some locations it returns multiple house numbers. It shows e.g. Vodi£kova 18-22
instead of just e.g. Vodi£kova 18:

[

{'long_name': '18-22', 'short_name': '18-22', 'types': ['street_number']},

{'long_name': 'Vodi£kova', 'short_name': 'Vodi£kova', 'types': ['route']},

{'long_name': 'Nové M¥sto', 'short_name': 'Nové M¥sto', 'types': ['neighborhood', 'political']},

...

]

Because of this unpredictable behaviour, I switched to HERE API[45]. And tested with
participants 3, 4 and 5 using the HERE API.

The multiple house numbers example is from 50.0800307N, 14.4234307E (tram stop
Vodi£kova, tram 9 direction Václavské nám¥stí).

49

CHAPTER 5. TESTING

5.6.4.3 Here API

The HERE API[45] failed to return the HouseNumber for 2 locations (out of 10). It
returned only the name of the street.

The in�uenced locations are:

50.07673N, 14.4141167E Tram stop Jiráskovo nám¥stí, tram 5, direction And¥l -> re-
turns street `Masarykovo náb°eºí'

50.07673N, 14.4141167E Tram stop Jiráskovo nám¥stí, tram 5, direction And¥l -> re-
turns street `Masarykovo náb°eºí'

50.081449N, 14.413722E Tram stop Národní divadlo, tram 22, direction Malostranská
-> returns street `Divadelní'

I didn't manage to �nd why it happens. Instead of using the estimation of an address. I
propose the following:

1. implement navigation from a sidewalk. (current version of FindRouteAPI[29] can use
only address)

or

2. replace reverse geocoding, with the following algorithm

a. �nd the nearest sidewalk
b. �nd the nearest address on that sidewalk

5.6.4.4 DPP data

The database[48] provided the wrong location of the tram stop Myslíkova (tram 5, direc-
tion Václavské nám¥stí). The position of the stop Myslíkova in the database is wrong. The
coordinates of the stop are cca. 40m away from the real stop.

I noticed of some other miss-placed stops: Lazarská (tram 5, dir. Myslíkova), 27m away,
Jiráskovo nám¥stí (tram 5, dir. Sídli²t¥ Barrandov), 36m, Národní divadlo (tram 22, dir.
Malostranská), 23m.

I further noticed the stops are missplaced in Google Maps[26] : Myslíkova, Lazarská,
Jiráskovo nám., Národní divadlo. And Lazarská is missplaced even in Mapy.cz[35].

I propose to collect the own database of the GPS coordinates of the tram stops and give
it to Dopravní podnik[49]. This way the database[48] would contain actual data and our app
could bene�t if Dopravní Podnik, will make some changes to this database.

50

Chapter 6

Conclusion

The goal of this thesis was to design and implement a prototype of a mobile navigation
application for the visually impaired. The prototype should achieve a sidewalk-precision
level of localization. The application should be based on a dialogue using an existing dia-
logue system with an existing GIS. And the development should be focused on an e�cient
communication with usability in mind.

6.1 Summary

In this thesis, I demonstrated that we could expect the average accuracy of a GPS signal
around 41m in a city. I further demonstrated that we could estimate the precise sidewalk
where the user stands, if the user is instructed to walk about 30m, turn around the corner
and walk ca. 30 meters more. I researched, nowadays, that we can use only Naviterier[6]
GIS for navigation of visually impaired people. I analyzed what data, we can use from this
GIS. I enhanced the output of Naviterier's API[17] by adding types of corners of houses,
types of the tra�c lights and the noise of the streets. I researched how the blind describe
their surroundings in the literature, how to navigate them, and with three visually impaired
I've studied what can they feel and recognize in the city.

Based on that, I did �ve iterations of prototyping. In the �rst three iterations, I tested
how we can localize the user based on the natural description of his surroundings and the
output of the enhanced Naviterier's API. The prototype was based on a dialogue imple-
mented using the method Wizzard-of-Oz with increased �delity in each iteration. I tested
the prototypes with �ve to three sighted people (qualitative testing). Still, I didn't manage
to discover any promising strategy. Therefore in the next two iterations, I introduced �ve
new prototypes based on the three new methods (names of two crossing streets, entering a
point of interest, and collecting the user's path). I implemented the �ve prototypes, �rst as
low �delity prototypes. I prepared dialogue diagrams tested by the method Wizzard-of-Oz
and tested them with �ve visually impaired people (qualitative testing). Then I implemented
the two most promising prototypes as the High-Fidelity prototypes - an accessible web ap-
plication. I implemented the state-of-the-art method - reverse geocoding as well as the Hi-Fi
prototype. I tested this three Hi-Fi prototypes with another �ve visually impaired people
(qualitative testing).

51

CHAPTER 6. CONCLUSION

I discovered in the last testing that we couldn't rely our methods on some of the ex-
ternal data and APIs: Some positions of the stops in the Open Data Time Tables of Pub-

lic Transport [48] (DPP database) are misplaced. The reverse geolocation APIs as Google
Geocoding[46] or HERE API[45] for some locations return the data in an unexpected format
e.g. the house number is missing.

Furthermore, I discovered that some combination of the algorithms and the external
data needs further inspection: The algorithm getGpsFromTriple localizing the tram plat-
form doesn't work in some cases. For example, it might be wrong, or the data have an
unexpected format or the routes of the tram lines are more irregular than I expected them
to be. The algorithm getAddressFromProjection, which �nds the nearest address on the
given sidewalk, doesn't work in some locations.

6.2 Goals Accomplishment

I managed to implement two prototypes and the state-of-the-art Hi-Fi prototypes as
a working web application. The prototypes promise to have the sidewalk-precision level.
However, the technical problems mentioned above caused that I failed to validate if the
prototypes indeed achieve the desired precision. One of the implemented hi-� prototype
features the dialogue interface. For the other two prototypes, I decided the bene�ts of the
implementation of such interface wouldn't pay o� at this level of �delity. I used an existing
dialogue system Watson Conversation[22] and existing GIS[6]. I conducted �ve iterations of
user testing to ensure the perfect usability. And indeed, in the last testing, the prototypes
su�ered mostly from the technical problems than from the problems of the interface.

52

Bibliography

[1] Balata, J.; Mikovec, Z.; Novacek, J. Field Study: How Blind People Communicate While
Recovering from Loss of Orientation. In Cognitive Infocommunications (CogInfoCom),

2013 IEEE 4th International Conference On, IEEE, pp. 313�318.

[2] LLC, G. Maps, Google Android. 5. ledna 2018. Available from: <https://play.
google.com/store/apps/details?id=com.google.android.apps.maps>

[3] iOS - Maps, Apple. Available from: <https://www.apple.com/ios/maps/>

[4] BlindSquare. Available from: <http://www.blindsquare.com>

[5] Smithson, L. NotNav GPS Accessibility. 1. listopadu 2017. Available from: <https:
//play.google.com/store/apps/details?id=com.smithson.notnav&hl=cs>

[6] Naviterier - Naviga£ní Aplikace a Sluºby. Available from: <https://naviterier.cz/>

[7] Amazon Alexa. Available from: <https://developer.amazon.com/alexa>

[8] Apple Siri. Available from: <https://www.apple.com/ios/siri/>

[9] Cortana. Available from: <https://www.microsoft.com/en-us/windows/cortana>

[10] van Diggelen, F.; Enge, P. The World's First GPS MOOC and Worldwide Labora-
tory Using Smartphones,. In Proceedings of the 28th International Technical Meet-

ing of The Satellite Division of the Institute of Navigation (ION GNSS+ 2015), pp.
361 � 369. Available from: <https://www.ion.org/publications/abstract.cfm?
articleID=13079>

[11] Global Positioning System. Page Version ID: 813276537. Available from:
<https://en.wikipedia.org/w/index.php?title=Global_Positioning_System&
oldid=813276537>

[12] GLONASS. Page Version ID: 813158685. Available from: <https://en.wikipedia.
org/w/index.php?title=GLONASS&oldid=813158685>

[13] Satellite Navigation. Page Version ID: 813288262. Available from: <https://en.
wikipedia.org/w/index.php?title=Satellite_navigation&oldid=813288262>

[14] GPS.Gov: GPS Accuracy. Available from: <https://www.gps.gov/systems/gps/
performance/accuracy/>

53

https://play.google.com/store/apps/details?id=com.google.android.apps.maps
https://play.google.com/store/apps/details?id=com.google.android.apps.maps
https://www.apple.com/ios/maps/
http://www.blindsquare.com
https://play.google.com/store/apps/details?id=com.smithson.notnav&hl=cs
https://play.google.com/store/apps/details?id=com.smithson.notnav&hl=cs
https://naviterier.cz/
https://developer.amazon.com/alexa
https://www.apple.com/ios/siri/
https://www.microsoft.com/en-us/windows/cortana
https://www.ion.org/publications/abstract.cfm?articleID=13079
https://www.ion.org/publications/abstract.cfm?articleID=13079
https://en.wikipedia.org/w/index.php?title=Global_Positioning_System&oldid=813276537
https://en.wikipedia.org/w/index.php?title=Global_Positioning_System&oldid=813276537
https://en.wikipedia.org/w/index.php?title=GLONASS&oldid=813158685
https://en.wikipedia.org/w/index.php?title=GLONASS&oldid=813158685
https://en.wikipedia.org/w/index.php?title=Satellite_navigation&oldid=813288262
https://en.wikipedia.org/w/index.php?title=Satellite_navigation&oldid=813288262
https://www.gps.gov/systems/gps/performance/accuracy/
https://www.gps.gov/systems/gps/performance/accuracy/

BIBLIOGRAPHY

[15] GPS Logger for Android. Available from: <https://play.google.com/store/apps/
details?id=com.mendhak.gpslogger>

[16] GPS Logger for BlackBerry 10. Available from: <https://play.google.com/store/
apps/details?id=com.mendhak.gpslogger>

[17] FindSourceData API. Available from: <http://147.32.81.71/NaviTerier.
ProcessingService/json/metadata?op=FindSourceData>

[18] Loomis, J. M.; Golledge, R. G.; Klatzky, R. L. Navigation System for the Blind: Audi-
tory Display Modes and Guidance. volume 7, no. 2.

[19] Balata, J.; Mikovec, Z.; Maly, I. Navigation Problems in Blind-to-Blind Pedestrians
Tele-Assistance Navigation. In Human-Computer Interaction, Springer, pp. 89�109.

[20] Bui, T. H.; Poel, M.; Nijholt, A.; et al. A Pomdp Approach to A�ective Dialogue
Modeling. volume 18: p. 349.

[21] Young, S.; G�asi¢, M.; Thomson, B.; et al. Pomdp-Based Statistical Spoken Dialog
Systems: A Review. volume 101, no. 5: pp. 1160�1179.

[22] IBM Watson Conversation. Available from: <https://www.ibm.com/watson/
services/conversation/>

[23] Inc, W. WhatsApp Messenger. 4. prosince 2017. Available from: <https://play.
google.com/store/apps/details?id=com.whatsapp>

[24] Facebook. Messenger. 6. prosince 2017. Available from: <https://play.google.com/
store/apps/details?id=com.facebook.orca>

[25] Firtman, M. Programming the Mobile Web. "O'Reilly Media, Inc.", ISBN 978-1-4493-
9589-6.

[26] Mapy Google. Available from: <https://www.google.cz/maps/>

[27] OpenStreetMap. Available from: <https://www.openstreetmap.org/>

[28] Naviterier - Poslepu.Cz. Available from: <http://poslepu.cz/tag/naviterier/>

[29] FindRoutes API. Available from: <http://147.32.81.71/NaviTerier.
ProcessingService/json/metadata?op=FindRoutes>

[30] GetAddresses API. Available from: <http://147.32.81.71/NaviTerier.
ProcessingService/json/metadata?op=GetAddresses>

[31] GetPois API. Available from: <http://147.32.81.71/NaviTerier.
ProcessingService/json/metadata?op=GetPois>

[32] Vystrcil, J.; Maly, I.; Balata, J.; et al. Navigation Dialog of Blind People: Recovery
from Getting Lost: p. 58.

[33] Ungar, S. 13 Cognitive Mapping Without. volume 4: p. 221.

54

https://play.google.com/store/apps/details?id=com.mendhak.gpslogger
https://play.google.com/store/apps/details?id=com.mendhak.gpslogger
https://play.google.com/store/apps/details?id=com.mendhak.gpslogger
https://play.google.com/store/apps/details?id=com.mendhak.gpslogger
http://147.32.81.71/NaviTerier.ProcessingService/json/metadata?op=FindSourceData
http://147.32.81.71/NaviTerier.ProcessingService/json/metadata?op=FindSourceData
https://www.ibm.com/watson/services/conversation/
https://www.ibm.com/watson/services/conversation/
https://play.google.com/store/apps/details?id=com.whatsapp
https://play.google.com/store/apps/details?id=com.whatsapp
https://play.google.com/store/apps/details?id=com.facebook.orca
https://play.google.com/store/apps/details?id=com.facebook.orca
https://www.google.cz/maps/
https://www.openstreetmap.org/
http://poslepu.cz/tag/naviterier/
http://147.32.81.71/NaviTerier.ProcessingService/json/metadata?op=FindRoutes
http://147.32.81.71/NaviTerier.ProcessingService/json/metadata?op=FindRoutes
http://147.32.81.71/NaviTerier.ProcessingService/json/metadata?op=GetAddresses
http://147.32.81.71/NaviTerier.ProcessingService/json/metadata?op=GetAddresses
http://147.32.81.71/NaviTerier.ProcessingService/json/metadata?op=GetPois
http://147.32.81.71/NaviTerier.ProcessingService/json/metadata?op=GetPois

BIBLIOGRAPHY

[34] May, A. J.; Ross, T.; Bayer, S. H.; et al. Pedestrian Navigation Aids: Information
Requirements and Design Implications. volume 7, no. 6: pp. 331�338.

[35] Mapy.Cz. Available from: <https://mapy.cz/>

[36] Naviterier - Developer. Available from: <https://naviterier.cz/dev/index.php>

[37] Axure RP. Available from: <https://www.axure.com/>

[38] Acapela Box : Create Your Text to Speech Messages. Available from: <https:
//acapela-box.com/AcaBox/index.php>

[39] The Web Framework for Perfectionists with Deadlines | Django. Available from:
<https://www.djangoproject.com/>

[40] Spring Boot. Available from: <https://projects.spring.io/spring-boot/>

[41] Thymeleaf. Available from: <http://www.thymeleaf.org/>

[42] jquery.org, j. F. jQuery. Available from: <https://jquery.com/>

[43] contributors, J. T.; Bootstrap, M. O. Bootstrap. Available from: <https://
getbootstrap.com/>

[44] Web Speech API Speci�cation. Available from: <https://w3c.github.io/
speech-api/webspeechapi.html>

[45] Reverse Geocode Resource - Geocoder API - HERE API. Available
from: <https://developer.here.com/documentation/geocoder/topics/
resource-reverse-geocode.html>

[46] Getting Started | Google Maps Geocoding API. Available from: <https://
developers.google.com/maps/documentation/geocoding/start>

[47] W3C Geolocation API. Page Version ID: 787950918. Available from: <https://en.
wikipedia.org/w/index.php?title=W3C_Geolocation_API&oldid=787950918>

[48] Jízdní �ády - Opendata Praha. Available from: <http://opendata.praha.eu/
dataset/dpp-jizdni-rady>

[49] Dopravní Podnik Hlavního M¥sta Prahy. Available from: <http://www.dpp.cz/>

[50] Linky Tramvají - TRAM-BUS.Cz. Available from: <https://www.tram-bus.cz/
mhd-praha/tramvaje/linky-tramvaji/>

[51] Neviditelná Výstava. Available from: <http://neviditelna.cz>

[52] LLC, G. Prohlíºe£ Chrome � Google. 15. prosince 2017. Available from: <https://
play.google.com/store/apps/details?id=com.android.chrome>

[53] LLC, G. Google TalkBack. 21. £ervna 2017. Available from: <https://play.google.
com/store/apps/details?id=com.google.android.marvin.talkback>

55

https://mapy.cz/
https://naviterier.cz/dev/index.php
https://www.axure.com/
https://acapela-box.com/AcaBox/index.php
https://acapela-box.com/AcaBox/index.php
https://www.djangoproject.com/
https://projects.spring.io/spring-boot/
http://www.thymeleaf.org/
https://jquery.com/
https://getbootstrap.com/
https://getbootstrap.com/
https://w3c.github.io/speech-api/webspeechapi.html
https://w3c.github.io/speech-api/webspeechapi.html
https://developer.here.com/documentation/geocoder/topics/resource-reverse-geocode.html
https://developer.here.com/documentation/geocoder/topics/resource-reverse-geocode.html
https://developers.google.com/maps/documentation/geocoding/start
https://developers.google.com/maps/documentation/geocoding/start
https://en.wikipedia.org/w/index.php?title=W3C_Geolocation_API&oldid=787950918
https://en.wikipedia.org/w/index.php?title=W3C_Geolocation_API&oldid=787950918
http://opendata.praha.eu/dataset/dpp-jizdni-rady
http://opendata.praha.eu/dataset/dpp-jizdni-rady
http://www.dpp.cz/
https://www.tram-bus.cz/mhd-praha/tramvaje/linky-tramvaji/
https://www.tram-bus.cz/mhd-praha/tramvaje/linky-tramvaji/
http://neviditelna.cz
https://play.google.com/store/apps/details?id=com.android.chrome
https://play.google.com/store/apps/details?id=com.android.chrome
https://play.google.com/store/apps/details?id=com.google.android.marvin.talkback
https://play.google.com/store/apps/details?id=com.google.android.marvin.talkback

BIBLIOGRAPHY

56

Appendix A

Contents of the SD card

readme.md.............................. the instructions how to launch the prototypes
data ... the working data �les directory

dpp_data.........................info about the public transport; see Section 4.3.1
db.sqlite3........Django's database pre�led with the Addresses and the DPP info

src...the directory of source codes
chat_demo Deobfuscator........the source code of the Hi-Fi prototypes in Django
pyhon_virtenv........................the setuped virtual eviroment in Python 3.6
latex..the source code of this thesis

thesis.pdf..this thesis in PDF format

57

	Introduction
	Motivation
	Goals of the thesis

	Analysis
	GPS localization
	GPS in the city
	GPS one-time localization
	GPS continuous localization

	Interface
	IBM Watson Conversation

	Interface of the frontend
	Blind texting
	Up-to-date chat platforms

	Platform
	Current navigation solutions
	How it works for sighted pedestrians
	Why it doesn't work for blind pedestrians
	Naviterier
	Naviterier API
	FindRoutes
	FindSourceData
	GetPois

	Blind pedestrians
	Navigation principles
	Proposed process
	Use-cases
	Strategy
	Goals for the design
	Target group

	Design
	Additional Researches
	How to enhance the Naviterier's API
	Noise
	Corners

	Blind People's Orientation Points in the City
	Blind People and the Street Names

	Prototypes
	Prototypes
	Describe the Surroundings
	Describe the Surroundings v1
	Describe the Surroundings v2
	Describe the Surroundings v3

	Corner of Two Streets
	Corner of Two Streets v1

	POI (Point of Interest)
	POI v1
	POI v2
	POI future work

	POI with the Hints
	POI with the Hints v1

	GPS
	GPS v1
	GPS v2
	GPS Future Work

	GPS without the Compass
	GPS without the Compass v1

	(Reverse Geocoding)
	Revere geocoding v1

	Implementation
	Technologies
	Django
	jQuerry
	Bootstrap

	Prototypes implementation
	Reverse GC
	POI
	GPS

	Parts of Prototypes
	Voice Input
	getAddress(lat, lon, callback)
	getGpsFromTriple(stop, direction, line, callback)
	inNaviterierDB(address, callback)
	logExperiment(lat, lon, estAddress, targetAddress, experimentType, userPath, callback)
	redirectToNavigation(sourceAddress, targetAddress, currentUrl)
	logging GPS coordinates
	gpsFromUserPath(userPath, callback)
	getAddressOnSidewalk(lat, lon, callback)
	Text Watson
	Determine the direction in the beginning
	Geolocation

	Databases
	DPP Database
	Addresses Database

	Third-Party APIs
	Watson Conversation
	Intents
	Detecting the Numbers
	Detecting the Streets
	Detecting the Tram Stops
	Detecting the Tram Lines
	Detecting the Tram Directions
	Implementation of STEP-BACK

	FindRoutes API

	Testing
	Participants Pool
	Sighted Participants
	Blind Participants

	Testing of the Prototypes
	1st testing - Map

	2nd testing - Map + Wizard of Oz
	3rd testing - City + Wizard of Oz
	4th testing - Blind: City + Wizard of Oz
	5th testing - Blind: City + Hi-Fi
	Procedure order
	Starting places
	Results
	General Usability Problems
	Reverse geocoding
	POI
	GPS

	Follow-ups
	Reverse Geolocation
	Google API
	Here API
	DPP data

	Conclusion
	Summary
	Goals Accomplishment

	Contents of the SD card

