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Abstract

The thesis deals with the Traveling Sales-
man Problem in a polygonal domain using
Self Organizing Maps. The task is trans-
formed to the Traveling Salesman Prob-
lem in the Euclidean space of a higher
dimension by the technique of the mul-
tidimensional scaling. Then it is solved
using Self Organizing Maps procedures.
Another method is based on the new non-
Euclidean form of Self Organizing Maps,
which was derived theoretically and im-
plemented subsequently. Both methods
were numerically compared concerning
the speed of computation and the qual-
ity of solutions with various settings of
parameters.
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Glimmer, TSP, MDS, CAN, SOM
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Ph.D.

Abstrakt

Tato práce se zabývá řešením problému
obchodního cestujícího v polygonální do-
méně s využitím samoorganizujících se
map. Pomocí muldimenzionálního škálo-
vání je úloha převedena na problém ob-
chodního cestujícího v Euklidovském pro-
storu vyšší dimenze. Poté jsou k řešení vy-
užity standardní postupy samoorganizují-
cích se map. Další metoda je založena na
nové neeuklidovské formě samoorganizují-
cích se map, jež byla nejprve odvozena te-
oreticky a následně implementována. Oba
postupy byly numericky porovnány z hle-
diska rychlosti výpočtu a kvality řešení
při různých nastaveních parametrů.

Klíčová slova: Samoorganizující se
mapy, multidimenzionální škálování,
problém obchodního cestujícího,
polygonální doména, ko-adaptivní síť,
neeuklidovský SOM, Glimmer, TSP,
MDS, CAN, SOM

Překlad názvu: Aplikace neuronových
sítí ve směrovacích problémech

vi



Contents

1 Introduction 1

2 State of the art 3

2.1 Basic SOM algorithm in Euclidean
domain . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Co-adaptive net algorithm (CAN)
in Euclidean domain . . . . . . . . . . . . . 5

2.3 Polygonal domain . . . . . . . . . . . . . . 8

2.3.1 Multidimensional scaling (MDS)
for TSP . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.2 Method of geodetic distances
and movements (Fa-SOM) . . . . . . 10

3 Own work 11

3.1 Glimmer algorithm and its use in
TSP . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1.1 Glimmer algorithm . . . . . . . . . 11

3.1.2 Glimmer algorithm
modifications . . . . . . . . . . . . . . . . . 16

3.2 Non-Euclidean SOM (NESOM) . 19

3.2.1 Basic principles . . . . . . . . . . . . 19

3.2.2 Representation of neurons . . . 20

3.2.3 Movement of neurons . . . . . . . 21

3.2.4 Distances . . . . . . . . . . . . . . . . . 22

3.2.5 Speedup of neuron movement
and normalization . . . . . . . . . . . . . 24

3.2.6 Distance caching . . . . . . . . . . . 25

3.2.7 Non-Euclidean distances and
negative squares of distances . . . . 28

3.2.8 Numerical stability . . . . . . . . . 30

3.2.9 Initial position of neurons . . . 31

3.2.10 Path construction . . . . . . . . . 34

3.2.11 Path optimization
by swapping . . . . . . . . . . . . . . . . . . 36

3.2.12 Basic SOM in non-Euclidean
domain (NE-Basic SOM) . . . . . . . 41

4 Experiments 47

4.1 Implementation notes . . . . . . . . . 47

4.2 Tests of Glimmer algorithm . . . . 49

4.3 Tests of NE-Basic SOM algorithm 53

4.4 Other tests . . . . . . . . . . . . . . . . . . 54

4.5 Overall comparison . . . . . . . . . . . 55

vii



5 Extensions for other routing
problems 61

6 Conclusions 63

A Bibliography 65

B CD Content 67

viii



Figures

2.1 Winner–guard(city) geodesic path 10

3.1 Glimmer algorithm v–cycle . . . . 12

3.2 Problems with simple distance
function . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 How negative value of d2 can
occur . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 Simple swap . . . . . . . . . . . . . . . . . 37

3.5 Reconnection . . . . . . . . . . . . . . . . . 39

4.1 PDM for l2 and l∞ norm, ω = 6,
various ε . . . . . . . . . . . . . . . . . . . . . . . 51

Tables

2.1 Basic SOM – parameters . . . . . . . 4

2.2 CAN – parameters . . . . . . . . . . . . . 7

3.1 Glimmer – parameters . . . . . . . . . 15

3.2 Asymptotic complexity of basic
operations . . . . . . . . . . . . . . . . . . . . . 28

3.3 NE-Basic SOM – parameters . . . 46

4.1 Maps and “optimal” path length 48

4.2 Glimmer: wspring versus
wspring-alt. . . . . . . . . . . . . . . . . . . . . . . 49

4.3 Glimmer: speed and quality
of different lp norms in comparison
with l2. . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4 NE-Basic SOM – neuron
reinitialization test . . . . . . . . . . . . . . 53

4.5 Overall comparison – PDM . . . . 58

4.6 Overall comparison – PDB . . . . . 59

4.7 Overall comparison – CPU time
consumed . . . . . . . . . . . . . . . . . . . . . . 60

ix



Algorithms

1 Basic SOM . . . . . . . . . 4

2 Co-adaptive net algorithm
(CAN) . . . . . . . . . . . . 6

3 Overall algorithm . . . . . 9

4 Glimmer – v–cycle . . . . . 13

5 Glimmer . . . . . . . . . . 13

6 Glimmer – stochastic force 14

7 Initialization of neurons using
centroid (centroid_init) . . 31

8 FastTSP . . . . . . . . . . 32

9 Initialization of neurons using
FastTSP (FastTSP_init) . 33

10 Do simple swap (do_swap1) 38

11 Do reconnection (do_swap2) 40

12 Swap optimization algorithm
(do_swaps) . . . . . . . . . . 41

13 Non-Euclidean Basic SOM 43

14 Non-Euclidean Basic SOM sub-
routine move_neurons . . . 44

15 Non-Euclidean Basic SOM sub-
routine process_path . . . . 45

x



Chapter 1

Introduction

The Traveling Salesman Problem (TSP) is the problem from the graph theory
to find the shortest path through given guards (cities). Every guard has
to be visited just once. In the general case, the guards are represented by
vertices of some graph and distances between the guards are equivalent to the
length of edges. When the guards are points in the Euclidean space, and their
distances are defined as the Euclidean distances between these points, the
problem is called the Euclidean Traveling Salesman Problem or the Traveling
Salesman Problem in the Euclidean domain.

The TSP is the NP-hard problem, therefore it cannot be exactly solved in
polynomial time. Many methods exist to solve the problem – some of them
are exact, and the others try to quickly find just an approximate solution.
The combinatorial heuristics, which are very popular now, are among them.
Last but not least, some techniques are based on the usage of the Hopfield
neural networks or the Self organizing maps.

The ordinary techniques based on the Self organizing maps work in the
Euclidean space only. The objective of this thesis is to develop, implement, test
and compare methods to solve the TSP in a space with polygonal boundaries
and obstacles. The existing methods to solve the TSP in the Euclidean
or the polygonal domain are described in chapter 2. The Glimmer MDS
algorithm and the non-Euclidean SOM method are described in chapter 3.
The numerical experiments are covered by chapter 4. Possible extensions to
other routing problems are shortly discussed in chapter 5. Chapter 6 is the
conclusion.
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Chapter 2

State of the art

In sections 2.1 and 2.2 two classical methods to solve the Traveling Salesman
Problem in the Euclidean domain using Self organizing maps (SOM) will be
recalled. In the last section (2.3), the polygonal domain will be defined and
two approaches to solve the TSP in the polygonal domain will be shortly
discussed.

2.1 Basic SOM algorithm in Euclidean domain

A technique to use SOM to solve the TSP problem in the Euclidean domain
was introduced in [10]. This method will be referred as Basic SOM in the
following text. It uses the iterative process of moving neurons in the space of
the guards from initial position to the final position when every neuron is
near to some guard. The neurons are connected by a string in such a way,
that string forms a loop. At the end of the iterative process, the order of
neurons on the string determines the order of the guards in the path.

Consider the TSP task in the Euclidean domain. Denote the number of
guards n, and denote these guards G1, . . . ,Gn. To use the Basic SOM method
(for the pseudocode see Alg. 1), neurons have to be created first (lines 1–2).
The number of the neurons used is set: m = 3n (value 3n from [11]). Denote
these neurons N1, . . . ,Nm. Their initial positions are equidistant points on
a small circle around the centroid of the guards (C =

∑
k Gk/n). Other

3



2. State of the art....................................
Algorithm 1: Basic SOM
Input: Guards G1, . . . ,Gn in Euclidean space
Output: Solution of TSP

1 m← 3n // number of neurons = 3*number of guards
2 initialize neuron positions
3 while true do
4 error← 0
5 inhibited← ∅ // empty set of inhibited neurons
6 permutation← random permutation of sequence (1, . . . , n)
7 for k ← 1 to n do
8 l← permutation[k]
9 for Gl find winning not inhibited neuron Ni

10 error← max(error, distance(Gl,Ni))
11 inhibited← inhibited ∪ {i}
12 move neuron Ni and its neighbours towards Gl
13 end
14 if error ≤ max_error then break
15 update parameters: G← G(1− α)
16 end
17 construct path
18 return path

Parameter Value

Initial value of gain G 10
Learning rate µ 0.6
Neighbourhood size d∗ 0.2m
Gain change parameter α 0.03
Termination threshold max_error 0.1

Table 2.1: Basic SOM – parameters and proposed values [10], [11]

parameters of the algorithm are set – see Table 2.1, proposed values are
from [10] and [11].

The main part of the algorithm is the loop (lines 3–16). At the beginning
of every iteration, the set of inhibited neurons is emptied (line 5) and the
guards are randomly permuted (line 6). The winning not inhibited neuron,
i.e. the neuron with the shortest distance to the guard Gl among all not
inhibited neurons, is found for the selected guard Gl (line 9). Then, the
winning neuron Ni is added to the set of inhibited neurons (line 11), and the
neuron Ni and neighbouring neurons are moved towards the guard Gl using
the following equation:

Nnew
j = Nj + µ exp

(
−d2

card(Ni,Nj)
G2

)
(Gl − Nj) , (2.1)

4



.................. 2.2. Co-adaptive net algorithm (CAN) in Euclidean domain

where Nj is the position of the neuron Nj before the movement, and Nnew
j is

the position of the neuron after the movement.1 Cardinal distance between
the neurons Ni and Nj is denoted as dcard(Ni,Nj), and it is the minimal
number of hops on the neural string to get from Ni to Nj :

dcard(Ni,Nj) = min(|i− j| ,m− |i− j|). (2.2)

The ratio of the movement, i.e. µ exp(d2
card(Ni,Nj)/G2), is the highest for the

winning neuron Ni (the cardinal distance is zero), and the other neurons from
the neighbourhood have this ratio smaller and smaller as they lie further on
the string. The usual size of the neighbourhood d∗ is 0.2m (using cardinal
distance) thus the neuron Nj is moved only if dcard(Ni,Nj) < 0.2m. The
previous steps are repeated for every guard in the inner loop (lines 7–13).

Before the next iteration of the main loop, the parameter G is updated:
G = G(1 − α) (line 15). Moreover, an error (the maximum of distances
between the guards and their winning neurons) is calculated in every iteration
(lines 4 and 10). If this error is less than the threshold max_error, the main
loop is terminated (line 14). At this moment, the neurons are close to the
guards, and the only step left to be done is to construct a path as a sequence
of indices of the guards. The following procedure is used: find the winning
neuron for the guard and save the index of the guard into the winning neuron.
Repeat this for every guard. Then, the order of the neurons on the string
determines the order of the guards in the route thus it can be constructed.
If there are more guards than one with the same winning neuron (so their
order is not exactly known), random order or some heuristics can be used.

2.2 Co-adaptive net algorithm (CAN)
in Euclidean domain

Another approach that uses SOM to solve the TSP problem in the Euclidean
domain is the Co-adaptive net algorithm (CAN). It was introduced in [2].
The CAN technique is similar to Basic SOM (see section 2.1).

For the pseudocode see Alg. 2. At the beginning, the input data (positions
of the guards) are scaled to lie in the unit sized square ([0, 1]× [0, 1]) (line 1).
Scaling factor has to be the same in both dimensions not to distort relative
distances between guards. Then parameters of the algorithm are set – see
Table 2.2, proposed values are from [2]. The number of the neurons used is

1This notation is used on multiple places in this thesis to distinguish the original value
of some variable and the new value of the same variable.

5



2. State of the art....................................

Algorithm 2: Co-adaptive net algorithm (CAN)
Input: Guards G1, . . . ,Gn in Euclidean space
Output: Solution of TSP

1 scale guard positions to lie in [0, 1]× [0, 1] square
2 m← 2.5n // number of neurons = 2.5*number of guards
3 initialize neuron positions
4 path_best← (∞) // path with infinite length
5 while true do
6 competition_phase← (G ≥ G#)
7 error← 0
8 ∀i : wi ← 0 // reset neuron-won counters
9 neur_moved← false

10 permutation← random permutation of sequence (1, . . . , n)
11 for k ← 1 to n do
12 l← permutation[k]
13 for Gl find winning neuron Ni

14 error← error + distance(Gl,Ni)
15 wi ← wi + 1 // increment neuron-won counter
16 if wi = 1 then
17 move neuron Ni and its neighbours towards Gl
18 end
19 if (wi = 2) ∧ competition_phase then
20 move neighbours of neuron Ni towards Gl
21 end
22 end
23 w1count← |{i : wi = 1}| // number of wi that are equal to 1
24 if w1count ≥ min(0.98n, n− 100) then
25 construct path to path_temp
26 if ‖path_temp‖ < ‖path_best‖ then path_best← path_temp
27 end
28 if (error ≤ max_error) ∨ (G ≤ 0.01) ∨ (not neur_moved) then

break
29 if G > G#/2 then
30 G← G(1− 2α) // update parameters
31 else
32 G← G(1− α) // update parameters
33 end
34 end
35 if path was not constructed in the last iteration then
36 construct path to path_temp
37 if ‖path_temp‖ < ‖path_best‖ then path_best← path_temp
38 end
39 return path_best

6



.................. 2.2. Co-adaptive net algorithm (CAN) in Euclidean domain

m = 2.5n (line 2). The initial position of the neurons is the same as in the
Basic SOM (points on the small circle around the centroid) (line 3).

Parameter Value

Initial value of gain G n/3
Learning rate µ = 1/R, where R is learning rate from [2] 0.625
Maximal cardinal distance to search for a winning neuron C∗ 250
Parameter β determining how often the full search will be applied 10
Maximal neighbourhood size D∗ 200
Gain change parameter α 0.02
Competition to cooperation phase threshold G# 10
Termination threshold max_error 10−10

Table 2.2: CAN – parameters and proposed values [2]

The main part of the algorithm is the loop (lines 5–34). At the beginning
of every iteration, the guards are randomly permuted (line 10) and the
counter wi showing how many times the neuron Ni has won is set to zero
(line 8) for every neuron. Then, the algorithm continues by the inner loop
(lines 11–22): for every guard (Gl) find the winning neuron Ni (line 13), i.e.
the neuron with the shortest distance to the guard Gl among all neurons
with the cardinal distance smaller than C∗ from the previous winner of the
guard Gl. Every β-th iteration the full search among all neurons is used.
Increment the counter wi of the winner (Alg. 2, line 15). If the neuron Ni has
won for the first time (wi = 1) move it and neighbouring neurons towards
the guard Gl using the equations (2.3) and (2.4). If the neuron Ni has won
for the second time (wi = 2) and if the algorithm is in the competition phase
(i.e. G ≥ G#) move the neighbours of the neuron Ni towards the guard Gl
using the same equations, the neuron Ni is not moved in this case (Alg. 2,
lines 16–21). The equations defining the neuron movement are:

Nnew
j =Nj + µ exp

(
−dcard(Ni,Nj)2

g2
j

)
(Gl − Nj) , (2.3)

where

gj =G
(
1− d(Nj ,Gl)/

√
2
)
, (2.4)

and d(Nj ,Gl) is the cardinal distance between Nj and Gl. The neighbourhood
of the neuron Ni is defined as:

S ={Nj : 0 < dcard(Ni,Nj) < d∗} (2.5)
d∗ = min(2G+ 1, D∗,m/2), (2.6)

where G means its actual value (not the initial one).

7



2. State of the art....................................
Error – the sum of distances between the guards and their winning neurons

– is calculated in every iteration (Alg. 2, lines 7 and 14). If this error is less
than some threshold, the main loop is terminated. If the actual value of G is
smaller than 0.01 or no neurons were moved in the last iteration the main
loop is terminated too (line 28). In the case the main loop was not terminated,
the parameter G is updated (lines 29–33):

Gnew =
{
G(1− 2α) for G > G#/2,
G(1− α) otherwise,

(2.7)

where Gnew is the new value of variable G.

Whereas in the Basic SOM, the path is constructed only once at the end of
the algorithm, in the CAN, paths are constructed in many iterations and join
the competition for the shortest final path (Alg. 2, line 4 and lines 25 – 26
and 35 – 38). Because the path construction is not negligible in terms of
computational difficulty, the condition that w1count (the number of neurons
that has won exactly once in the last iteration) is at least min(0.98n, n− 100)
must be met before the algorithm constructs the path (lines 23–24). The
process of path construction itself begins with pairing the winning neurons
whose counter wi is equal to one to their guards. These neurons are inhibited
for further use. Then, the closest neuron is found for the first unpaired guard,
they are paired and the neuron is inhibited. This step is repeated for every
unpaired guard. At the end, the order of the neurons on the string determines
the order of the guards in the path.

2.3 Polygonal domain

The polygonal domain is defined as a part of two-dimensional Euclidean space
surrounded by polygonal boundaries and containing polygonal obstacles. The
guards are represented by points in this space. The methods solving the TSP
in Euclidean domain must be modified to be usable in the polygonal domain.
In section 2.3.1, the approach that incorporates the Multidimensional scaling
(MDS) to convert the TSP task from the polygonal domain to the Euclidean
domain will be recalled. The technique using geodesic distances and geodesic
moves is mentioned in section 2.3.2.

8



.................................. 2.3. Polygonal domain

2.3.1 Multidimensional scaling (MDS) for TSP

The method used in [11] to solve the TSP problem in the polygonal domain
will be shortly discussed in this section. For the pseudocode of the overall
algorithm see Alg. 3. The procedure consist of calculation of the geodesic
distances E between the guards – i.e. the lengths of the shortest paths from
one guard to another which avoid the obstacles – (line 1) using the VisiLibity
library [9] to calculate graph of visibility. Then the MDS algorithm (Stochas-
tic forces or SMACOF) transforms these distances to positions of points
(guards) in some higher-dimensional Euclidean space trying to approximate
the specified distances E as much as possible (line 4). Recall that normal
usage of the MDS algorithms is to transform data from some high-dimensional
space to the one with lesser dimensions, whether in the approach [11] the MDS
is used to transform in the opposite direction. The final step is to use ordinary
SOM based methods (e.g. Basic SOM [10], CAN [2] or ORCSOM [12]) to
solve the TSP in the Euclidean domain (line 5).

Some experiments with modifying the MDS and SOM algorithms to use
other lp norms than the l2 norm were done in [11]. The main disadvantage of
previous approach is that the MDS using Stochastic forces as implemented
in [11] is slow and the SMACOF based MDS is unable to work with other
norm than l2 and is relatively slow too [11], [8].

Algorithm 3: Overall algorithm.
Input: Map composed of polygons
Input: Coordinates of guards
Output: Solution of the TSP problem

1 compute geodesic distances E between guards
2 switch config do
3 case 1 do
4 use MDS algorithm (SMACOF, Stochastic forces, Glimmer) to

place the guards to some Euclidean space according to E
5 use SOM algorithm (Basic SOM, CAN, . . . ) to solve the TSP in

the Euclidean space
6 return path
7 end
8 case 2 do
9 use NESOM algorithm to solve the TSP in the non-Euclidean

domain
10 return path
11 end
12 end

9



2. State of the art....................................

5. Modifications used and proposed

5.1. Approximation of the shortest path

Three variants of the refinement procedure of the approximate shortest path described in Section 4.3 have been consid-
ered in the experimental evaluation of the modified SOM algorithms. The refinement using only one vertex of the primary
path over the vertex of the node cell is denoted as the va-1 variant. Two additional variants are va-0, which does not use the
refinement procedure, and pa, which represents the complete refinement of all vertices on the primary path.

Based on the results presented in [18], the va-1 variant provides the best trade-off between the quality of the solutions
and the required computational time. The va-0 variant is faster, but the network does not converge in some cases due to
imprecise approximations.

5.2. Select winner procedure

A path among obstacles inW has to be found to determine the winner node of the current presented city to the network,
which means m node–city distance queries have to be performed for each presented city. However, the required computa-
tional time can be reduced if the Euclidean distance of the node to the city is considered before the node–city distance is
queried. If the Euclidean node–city distance is longer than the Euclidean distance of the current winner candidate, it is
not necessary to determine the path among obstacles. This Euclidean pre-selection is denoted as the euclid-pre select winner
method in the experimental part of this paper.

Moreover, after several adaptation steps, the winners are preserved over the steps. Thus, the previous winner to the
city can be used as the initial winning candidate. Such an initial selection of the winner candidate can avoid unnecessary
computations of the shortest path. In the final adaptation steps, winners are very close to cities, and a city and its winner
node are typically in the same cell; in other cases, the shortest path can be just a straight line segment. Therefore, the
determination of node–city distance can be very fast, and the Euclidean distance is sufficient to confirm that the previous
winner is really the closest node to the city. This winner selection method with the Euclidean distance pre-selection is
denoted as informed.

These improvements can be considered technical, because they do not affect the quality of the solution found and only
decrease the required computational time at the cost of a more complex algorithm.

5.3. Adaptation rule

The adapt procedure is more complex than the select winner procedure because a path has to be retrieved in the
node–city path query and the adapted node is moved towards the city, i.e., a particular straight line segment of the path
has to be determined. The node m is moved closer to the city c proportionally to the node–city distance D(m,c), learning rate,
and neighboring function. The distance of m to c is decreased about bD(m,c), where b has the form b = lexp(�l2/G2). The value
of b decreases with the increasing distance of the neighboring node. It also decreases with each adaptation step, as the learn-
ing gain G decreases. If b is very small, the movement can be negligible; therefore, once the b is under a given threshold, the
adaptation of neighboring nodes can be omitted. This modification of the adaptation rule is called b-condition in this paper,
and it can be used for rules without decreasing the neighborhood size. The influence of this modification has been experi-
mentally examined for the SME and Co-adaptive net algorithms.

An additional speed improvement of the adapt procedure can be based on the usage of the winner path to the city c
for the neighboring nodes. If nodes are close to each other, and if a path contains a map vertex (avoiding an obstacle), a
path from the neighboring nodes will likely pass the same vertex. Thus, the neighboring node m can be moved along the
same path as the winner node mq, while the distance is decreased by the Euclidean distance between mq and m, i.e., m is
placed at the position of mq before its movement and adaptation toward c. The situation is schematically shown in
Fig. 3. This modification of the adaptation rule is called approx. adapt, and it is combined with the b-condition
modification.
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for the neighboring nodes. If nodes are close to each other, and if a path contains a map vertex (avoiding an obstacle), a
path from the neighboring nodes will likely pass the same vertex. Thus, the neighboring node m can be moved along the
same path as the winner node mq, while the distance is decreased by the Euclidean distance between mq and m, i.e., m is
placed at the position of mq before its movement and adaptation toward c. The situation is schematically shown in
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Figure 2.1: Winner–guard(city) geodesic path – taken from [5].

2.3.2 Method of geodetic distances and movements
(Fa-SOM)

Two methods to solve the TSP in the polygonal domain using the geodetic
paths and distances are introduced in [5]: modified Basic SOM (referred to
as modified SME or mSME in [5]) and modified CAN. To be used in the
polygonal domain instead of the Euclidean domain some of the fundamental
operations of the SOM methods has to be modified. Because the centroid of
the guards can lie inside the obstacle, the initialization procedure is changed
to use small circle around the first guard, around the guard nearest to the
centroid or around the guard which has the smallest standard deviation of
geodetic distances to the other guards. The convex hull of the guards can be
used as the initial position of the neurons too. The neuron-guard distance
computation is modified to return the length of the geodesic path – three
variants with varying degree of accuracy are listed. Finally, the neuron
movement procedure is changed to move the neurons using the geodesic path
(see Fig. 2.1). Many optimization techniques are involved which leads to
a great speedup of the algorithm.
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Chapter 3

Own work

In the first part (section 3.1), the Glimmer algorithm and its use in the TSP
will be showed. In the second part (section 3.2), the Non-Euclidean SOM
method will be introduced.

3.1 Glimmer algorithm and its use in TSP

In section 3.1.1, the Glimmer algorithm will be described in the form as
it was published in [8]. Incorporating of the algorithm to the TSP and its
modifications to be able to calculate distances by the lp norm instead of
l2 norm will be introduced in section 3.1.2.

3.1.1 Glimmer algorithm

The main principle of the Glimmer algorithm [8] is the usage of so called
v-cycle (for pseudocode see Alg. 4). It is based on the fact that it is rather
difficult to optimize positions of a high number of points when no information
of appropriate initial position is known. In the first phase, the set of points
is randomly restricted (lines 4–5) by some factor so long (line 1) that only
a small number of points remain. This is the lowest level of the v–cycle (see
Fig. 3.1), no previous information of the appropriate initial position is known.
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3

These arguments do not imply that MDS algorithms cannot
employ subsampling strategies for sparse iterations. For example,
the stochastic force algorithm uses a different random sampling
of distances at each iteration. We further discuss the advantages
of the constant-size random selection strategy in section IV-B.

E. GPU Layout Approaches

GPUs have been shown to improve the speed of many general
purpose algorithms including graph layout and classical scaling,
but have not been previously applied to minimizing the stress
function directly.

Reina and Ertl [21] proposed a GPU version of the FastMap
algorithm, a classical scaling approximation algorithm, achieving
considerable speedup over a CPU implementation. However, the
technique only accelerates the mapping into low dimensional
space. The initial computation of the high dimensional distances,
the costliest part of the Nyström algorithms, is not sped up.

Frishman and Tal [9], [8] take advantage of GPU parallelism to in-
crease the speed of graph layout algorithms. As mentioned above,
force-directed graph layout does have deep similarities to force-
directed MDS. However both algorithms’ acceleration strategies
break down in the case of weighted complete graphs. In the
dynamic algorithm, an edge collapsing step requires computing
O(N2) edge weights. In the static algorithm their initial partition-
ing strategy uses graph Laplacian which is O(N2) in the case of
a complete graph. As with other fast graph algorithms, they are
able to make productive use of graph-topology assumptions that
may not hold for the full MDS problem. Furthermore, the energy
function they minimize on the GPU ignores pairwise distances,
and thus does not minimize stress. Finally, they use the CPU for
initial placement and for spatial partitioning, whereas Glimmer
runs all stages entirely on the GPU.

We further discuss the suitability of previous algorithms for
speedup using GPU parallelism in Section IV-A.

III. GLIMMER MULTILEVEL ALGORITHM

Glimmer is a force-based MDS algorithm which uses a recursive
hierarchical framework to improve accuracy and to reduce com-
putation. Unlike other hierarchical MDS algorithms, Glimmer is
specifically designed to exploit GPU parallelism at every stage of
the algorithm. We use the multigrid vocabulary, because we were
inspired by those methods, but we call our algorithm multilevel
because our final formulation differs from the strict definition of
multigrid algorithms. Simliarly, our multilevel heuristic is justified
empirically, rather than analytically.

A. Multigrid/Multilevel Terminology

In our description of the multilevel hierarchy, we consider the
highest level to be the input data, with lower levels being nested
subsets of that data reduced in size by a fixed decimation factor.
Multigrid methods use three operators at each level: restriction,
relaxation, and interpolation, as shown in Figure 1. Loosely
speaking, restriction performs the decimation to build the hier-
archy, relaxation is the core computation operator that reduces

Restrict

Interpolate

Relax

(a) Multigrid algorithms

Reuse
GPU-SF

Restrict
Relax

Relax

Interpolate

(b) Glimmer algorithm

Fig. 1. a) The multigrid v-cycle. b) The Glimmer multilevel algorithm. The
restriction operator builds the hierarchy by sampling points. GPU-SF is used
as the relaxation operator at each level, with all points allowed to move, and
as the interpolation operator, with only new points allowed to move. Lower
levels untwist complex layouts while higher levels converge quickly because
of computation at the lower levels.

the error at a specific level, and interpolation passes the benefit
of the latest relaxation computation up to the next level. In typical
multigrid methods, a so-called v-cycle of restriction, relaxation,
and interpolation is repeated several times. However, the Glimmer
operators were designed to converge in a single cycle.

B. Multilevel Algorithm

Figure 1 shows a diagram of the Glimmer multilevel algorithm
as a single v-cycle. The pseudocode is given in Figure 3. The
restriction operator we use to construct the multilevel hierarchy
simply extracts a random subset of points from the current level.
In Glimmer, we use a decimation factor of 8 between each level,
and stop when the size of the lowest level is less than 1000
points. These parameter choices were empirically chosen after
analyzing the speed/quality behavior for decimation factors of
several powers of 2 and a variety of minimum set sizes above
and below our final choices. Then, we traverse upwards to the
top, alternating runs of the relaxer for the current level with
interpolating the results up to the next level. In this traversal,
we use stochastic force as our relaxation operator; that is, we
perform iterations of a stochastic force MDS algorithm (GPU-SF)
for all the points at a particular level until the system converges.
Perhaps surprisingly, we also use the stochastic force algorithm
as our interpolation operator. We fix the locations of previously
relaxed points, moving just the newly added points to fit the
current configuration. Again, we stop the interpolation step when
the stochastic force subsystem converges. We continue with the
traversal, freeing the formerly fixed points for the relaxation step.
We halt after running the relaxation operator on the highest level
that contains all points.

At the low levels, only a small subset of the points are involved
in the computation, so the system converges quickly. The higher
levels converge in few iterations because the points placed at
lower levels are likely to be close to their final positions. In
particular, although the relaxation step at the highest level involves
running stochastic force on all the points in the input dataset, the
system converges more quickly than it would if the stochastic
force algorithm were run with the points at random initial
positions.

The major difference between Glimmer and the GPU-SF sub-
system alone is accuracy and convergence. Figure 2 illustrates
the convergence problems of GPU-SF compared to Glimmer.
After a threshold of approximately 12,000 points, the gray GPU-
SF algorithm consistently converges to a much higher stress
configuration than the purple Glimmer line. The existence of

(a) : v–cycle as a whole
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These arguments do not imply that MDS algorithms cannot
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the stochastic force algorithm uses a different random sampling
of distances at each iteration. We further discuss the advantages
of the constant-size random selection strategy in section IV-B.
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purpose algorithms including graph layout and classical scaling,
but have not been previously applied to minimizing the stress
function directly.

Reina and Ertl [21] proposed a GPU version of the FastMap
algorithm, a classical scaling approximation algorithm, achieving
considerable speedup over a CPU implementation. However, the
technique only accelerates the mapping into low dimensional
space. The initial computation of the high dimensional distances,
the costliest part of the Nyström algorithms, is not sped up.

Frishman and Tal [9], [8] take advantage of GPU parallelism to in-
crease the speed of graph layout algorithms. As mentioned above,
force-directed graph layout does have deep similarities to force-
directed MDS. However both algorithms’ acceleration strategies
break down in the case of weighted complete graphs. In the
dynamic algorithm, an edge collapsing step requires computing
O(N2) edge weights. In the static algorithm their initial partition-
ing strategy uses graph Laplacian which is O(N2) in the case of
a complete graph. As with other fast graph algorithms, they are
able to make productive use of graph-topology assumptions that
may not hold for the full MDS problem. Furthermore, the energy
function they minimize on the GPU ignores pairwise distances,
and thus does not minimize stress. Finally, they use the CPU for
initial placement and for spatial partitioning, whereas Glimmer
runs all stages entirely on the GPU.

We further discuss the suitability of previous algorithms for
speedup using GPU parallelism in Section IV-A.

III. GLIMMER MULTILEVEL ALGORITHM

Glimmer is a force-based MDS algorithm which uses a recursive
hierarchical framework to improve accuracy and to reduce com-
putation. Unlike other hierarchical MDS algorithms, Glimmer is
specifically designed to exploit GPU parallelism at every stage of
the algorithm. We use the multigrid vocabulary, because we were
inspired by those methods, but we call our algorithm multilevel
because our final formulation differs from the strict definition of
multigrid algorithms. Simliarly, our multilevel heuristic is justified
empirically, rather than analytically.

A. Multigrid/Multilevel Terminology

In our description of the multilevel hierarchy, we consider the
highest level to be the input data, with lower levels being nested
subsets of that data reduced in size by a fixed decimation factor.
Multigrid methods use three operators at each level: restriction,
relaxation, and interpolation, as shown in Figure 1. Loosely
speaking, restriction performs the decimation to build the hier-
archy, relaxation is the core computation operator that reduces
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as the relaxation operator at each level, with all points allowed to move, and
as the interpolation operator, with only new points allowed to move. Lower
levels untwist complex layouts while higher levels converge quickly because
of computation at the lower levels.

the error at a specific level, and interpolation passes the benefit
of the latest relaxation computation up to the next level. In typical
multigrid methods, a so-called v-cycle of restriction, relaxation,
and interpolation is repeated several times. However, the Glimmer
operators were designed to converge in a single cycle.

B. Multilevel Algorithm

Figure 1 shows a diagram of the Glimmer multilevel algorithm
as a single v-cycle. The pseudocode is given in Figure 3. The
restriction operator we use to construct the multilevel hierarchy
simply extracts a random subset of points from the current level.
In Glimmer, we use a decimation factor of 8 between each level,
and stop when the size of the lowest level is less than 1000
points. These parameter choices were empirically chosen after
analyzing the speed/quality behavior for decimation factors of
several powers of 2 and a variety of minimum set sizes above
and below our final choices. Then, we traverse upwards to the
top, alternating runs of the relaxer for the current level with
interpolating the results up to the next level. In this traversal,
we use stochastic force as our relaxation operator; that is, we
perform iterations of a stochastic force MDS algorithm (GPU-SF)
for all the points at a particular level until the system converges.
Perhaps surprisingly, we also use the stochastic force algorithm
as our interpolation operator. We fix the locations of previously
relaxed points, moving just the newly added points to fit the
current configuration. Again, we stop the interpolation step when
the stochastic force subsystem converges. We continue with the
traversal, freeing the formerly fixed points for the relaxation step.
We halt after running the relaxation operator on the highest level
that contains all points.

At the low levels, only a small subset of the points are involved
in the computation, so the system converges quickly. The higher
levels converge in few iterations because the points placed at
lower levels are likely to be close to their final positions. In
particular, although the relaxation step at the highest level involves
running stochastic force on all the points in the input dataset, the
system converges more quickly than it would if the stochastic
force algorithm were run with the points at random initial
positions.

The major difference between Glimmer and the GPU-SF sub-
system alone is accuracy and convergence. Figure 2 illustrates
the convergence problems of GPU-SF compared to Glimmer.
After a threshold of approximately 12,000 points, the gray GPU-
SF algorithm consistently converges to a much higher stress
configuration than the purple Glimmer line. The existence of

(b) : v–cycle – one step in detail

Figure 3.1: The Glimmer algorithm v–cycle – taken from [8].

However, the number of points is low, so the process optimizing the positions
of points trying to approximate the specified distances E as much as possible
will take place relatively easily. After the optimization of this small subset
using the Stochastic force technique (Alg. 4, line 2), the points are gradually
returned. At the higher levels, the number of points is higher and higher,
but the information of the appropriate point position from lower lever can be
used – the “initial” position of the newly returned points must be, of course,
interpolated from the positions of the points optimized at the previous level.
This is done by the Stochastic force technique too with the exception that
points optimized previously are fixed so that their positions are not messed
up by the returned points (Alg. 4, line 6). Then the fixed points are relaxed,
and the Stochastic force optimization performs again with all points on this
level (Alg. 4, line 7).

At the beginning of the Glimmer algorithm (Alg. 5), the parameters must
be set – see Table 3.1, proposed values are from [8]. The input distances are
scaled (divided) so that the maximal distance in the distance matrix is one
(Alg. 5, line 1). All points are randomly placed to the unit size hypercube
(0, 1)× (0, 1)× · · · × (0, 1) = (0, 1)ω, where ω is the number of the dimensions
(line 2). The main part of the algorithm, the v-cycle, is runned at line 3.
Finally, the point positions are unscaled by the same factor as used at line 1.

The Stochastic force optimization process [8] is inspired by the behaviour
of the physical system with n particles. The difference is that each parti-
cle interacts with few neighbours only instead of all other particles. The
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..........................3.1. Glimmer algorithm and its use in TSP

Algorithm 4: Glimmer – v–cycle
Input: Points
Input: Matrix of distances E
Output: Modified points

1 if |points| ≤ MIN_SET_SIZE then // Lowest level?
2 stoch_force (∅, points, E)
3 else
4 subset← restrict (points) // Restrict
5 vcycle (subset, E) // Process lower levels
6 stoch_force (subset, points \ subset, E) // Interpolate
7 stoch_force (∅, points, E) // Relax
8 end
9 return points

Algorithm 5: Glimmer – the overall algorithm
Input: Matrix of distances between points (guards) E
Input: Number of dimensions ω of Euclidean space to place points into
Output: Points (in the Euclidean space)

1 scale distances so that maximum of cell values of the matrix E is 1
2 place points randomly to unit hypercube
3 vcycle (points, E) // Process v-cycle
4 unscale points by the same factor as in line 1
5 return points

neighbourhood of every point Pi is represented by two sets – the set of near
points Vi and the set of random points Si. The algorithm is based on the
iterative process (Alg. 6, lines 3–34). In each iteration, the set Si is randomly
generated, and then the points from the set (Vi ∪ Si) nearest to Pi are placed
to Vi and the rest to Si. This is done for every point Pi (lines 4–9). After
it, the force is calculated for each point (lines 10–23). The force consists of
two components. The spring force is repulsive if two points are too close,
i.e. closer than the required distance E[i,j], and attractive if they are too far.
The damping force is repulsive if two points are approaching one another
too fast and attractive if they are moving away two fast. This improves
the stabilization of the system. The velocity (lines 24–28) and the position
(lines 29–31) of each point is updated using the Euler integration formula
finally. The speed of points are reduced and limited(lines 26–27) for better
stabilization of the system.
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Algorithm 6: Glimmer – stochastic force
Input: Fixed points Pfixed (coordinates of point Pk denoted xk)
Input: Free points Pfree (coordinates of point Pl denoted xl)
Input: Matrix of distances E
Output: Modified free points Pfree

1 ∀i : vi ← 0 // clear velocities of points
2 ∀i : Vi ← set of V_SET_SIZE randomly selected points // near set
3 while true do
4 foreach Pi ∈ Pfree do
5 Si ← set of S_SET_SIZE randomly selected points

// random set
6 Q ← Vi ∪ Si
7 Vi ← V_SET_SIZE points from Q with the smallest original

distances (see matrix E) to Pi
8 Si ← Q \ Vi
9 end

10 ∀i : Fi ← 0 // clear forces
11 foreach Pi ∈ Pfree do
12 foreach Pj ∈ (Vi ∪ Si) do
13 wspring ← (xj − xi) / ‖xj − xi‖ // direction vector
14 Fspring ← (‖xj − xi‖ −E[i,j]) · SPRINGFORCE // force size
15 Fi ← Fi + Fspring ·wspring // accumulate force
16

17 wdamping ← (xj − xi) / ‖xj − xi‖ // direction vector
18 ϕ← ∠(wdamping , vj − vi) // angle formed by vectors
19 Fdamping = ‖vj − vi‖ · cos(ϕ) · DAMPING // force size
20 Fi ← Fi + Fdamping ·wdamping // accumulate force
21 end
22 Fi ← Fi / |Vi ∪ Si| // scale force by size of (Vi ∪ Si)
23 end
24 foreach Pi ∈ Pfree do
25 vi ← vi + ∆time · Fi

26 vi ← vi · FREENESS // reduce speed
27 limit vi to specified maximal speed
28 end
29 foreach Pi ∈ Pfree do
30 xi ← xi + ∆time · vi // new position of Pi
31 end
32 ∆stress← calculate ∆ of smoothed sparse stress
33 if ∆stress < ε then break
34 end
35 return Pfree
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Parameter Value

Decimation factor DEC_FACTOR 8
Recursion termination condition MIN_SET_SIZE 100
Number of close neighbours V_SET_SIZE 14
Number of randomly chosen neighbours S_SET_SIZE 10
Spring force constant SPRINGFORCE 0.7
Damping force constant DAMPING 0.3
Freedom of movement constant FREENESS 0.85
Maximal speed limit (separately in each coordinate) 2.0
Time step size ∆time 0.3
Termination threshold ε 10−4

Which lp norm to use (modified version of algorithm only) 2

Table 3.1: Glimmer – parameters and proposed values [8]

The naive approach to test whether to terminate the main loop (Alg. 6,
lines 3–34) would be to calculate the value of the stress function defined as:

stress2(points P,E) =

∑
Pi∈P

∑
Pj∈P

(
‖xi − xj‖ − E[i,j]

)2

∑
Pi∈P

∑
Pj∈P

(
E[i,j]

)2 , (3.1)

and then test the difference of the actual value and the value from previous
iteration to some threshold. However, the asymptotic complexity of the stress
calculation is O(n2), so it would be much slower then the rest of the iteration
step. That is why, the sparse stress function is used (see [8]):

sparse_stress2(points P,E) =

∑
Pi∈P

∑
Pj∈Vi∪Si

(
‖xi − xj‖ − E[i,j]

)2

∑
Pi∈P

∑
Pj∈Vi∪Si

(
E[i,j]

)2 ,

(3.2)
where xk denotes coordinates of Pk.

As stated in [8], the sparse stress value is so noisy, that it is inapplicable
as the input to the termination threshold condition. Authors in [8] have been
solved the problem so that they look at the sparse stress function value as it
would be signal with a noise. They apply low-pass convolution filter of order
50 to smooth the behaviour of the function. Then, if the difference of the
actual value and the previous value of the smoothed sparse stress is lesser
than the parameter ε, the main loop is terminated (Alg. 6, lines 32–33).
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3.1.2 Glimmer algorithm modifications

Usage of the Glimmer algorithm to solve the TSP in the polygonal domain is
analogical to the approach shown in section 2.3.1. It is another MDS algorithm
to choose in the middle step of the overall algorithm (Alg. 3, line 4).

In the previous text, the usage of the Glimmer algorithm with the l2 norm
was described. But former work [11] indicates that usage of other norms,
especially l∞, could bring some benefits. To run the Glimmer algorithm
with other norms, the modifications listed below must be done. Recall the
definition of the lp norm:

‖z‖p =
(

ω∑
k=1
|zk|p

) 1
p

. (3.3)

The first modification to cope with lp norm is straightforward – the used
norm in the sparse stress definition, see (3.2), is altered from ‖xj − xj‖2 to
‖xj − xj‖p:

sparse_stress2(points P,E) =

∑
Pi∈P

∑
Pj∈Vi∪Si

(
‖xi − xj‖p − E[i,j]

)2

∑
Pi∈P

∑
Pj∈Vi∪Si

(
E[i,j]

)2 ,

(3.4)
where xk denotes the coordinates of Pk. This will ensure, that the points Pi
and Pj will have zero contribution to summation in the numerator of the
sparse stress if and only if the distance between them, measured by the lp
norm, is equal to the demanded original distance E[i,j].

The second modification is similar norm replacement in the calculation
of Fspring (Alg. 6, line 14):

Fspring = (‖xj − xi‖p − E[i,j]) · SPRINGFORCE. (3.5)

This will ensure, that the spring force between two points Pi and Pj will be
attractive if and only if the distance between them, measured by the lp norm,
is greater than the demanded original distance E[i,j], and it will be repulsive
if the distance is smaller.

The third modification changes the wspring direction vector definition
(Alg. 6, line 13). The simplest approach is to change the norm used in the
vector normalization:

wspring = xj − xi

‖xj − xi‖p
. (3.6)
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The second way to set the direction vector (wspring-alt) is described below.
Suppose that value of some function Np(z) should be reduced by the small
movement of the vector z. The usual way is to move the vector z in the
direction of gradient of this function. So the normalized direction vector w is:

w = gradNp(z)
‖gradNp(z)‖p

. (3.7)

In the case of the Glimmer algorithm, the distance between points Pi and Pj
measured by the norm lp, i.e. ‖xj − xi‖p, should be lowered. Therefore the
function Np(z) will be defined as:

Np(z) = ‖z‖p. (3.8)

The same formula written in another notation is:

Np(xj − xi) = ‖xj − xi‖p, (3.9)

where xj − xi ≡ z. It follows from the definition of the gradient, that

gradNp(z) =
(

dNp(z)
d z1

,
dNp(z)

d z2
, . . . ,

dNp(z)
d zω

)
= (3.10)

=
(

ω∑
k=1
|zk|p

) 1
p
−1(
|z1|p−1 sgn z1 , |z2|p−1 sgn z2 , . . .

)
. (3.11)

Further from (3.3) and (3.11):

‖gradNp(z)‖p =
(

ω∑
k=1
|zk|p

) 1
p
−1( ω∑

k=1
|zk|p(p−1)

) 1
p

(3.12)

and from (3.7), (3.11) and (3.12):

wspring-alt = gradNp(z)
‖gradNp(z)‖p

= (3.13)

=
(

ω∑
k=1
|zk|p(p−1)

)− 1
p
(
|z1|p−1 sgn z1 , |z2|p−1 sgn z2 , . . .

)
.

(3.14)

This alternative normalized direction vector wspring-alt can be used instead of
wspring (Alg. 6, line 13).

17



3. Own work ......................................
Discuss two special cases. First suppose that p = 2. We get:

wspring-alt =
(

ω∑
k=1
|zk|2

)− 1
2
(
|z1| sgn z1 , |z2| sgn z2 , . . .

)
= (3.15)

=
(

ω∑
k=1
|zk|2

)− 1
2

(z1, z2, . . . ) = (3.16)

= z

‖z‖2
= (3.17)

= xj − xi

‖xj − xi‖p
= (3.18)

=wspring. (3.19)

It is obvious that for p = 2 there is no difference between choosing wspring
and wspring-alt.

For p =∞, the limit has to be calculated (assume without loss of generity
that |z1| > |zk| , k 6= 1):

wspring-alt = lim
p→∞

gradNp(z)
‖gradNp(z)‖p

= (3.20)

= lim
p→∞

(
ω∑
k=1
|zk|p(p−1)

)− 1
p
(
|z1|p−1 sgn z1 , |z2|p−1 sgn z2 , . . .

)
= (3.21)

= lim
p→∞

((
ω∑
k=1
|zk|p(p−1)

)− 1
p

|zi|p−1 sgn zi
)
i=1,...,ω

= (3.22)

= lim
p→∞

((
|zi|−p(p−1)

ω∑
k=1
|zk|p(p−1)

)− 1
p

sgn zi
)
i=1,...,ω

= (3.23)

= lim
p→∞

((
|zi|−p(p−1) |z1|p(p−1)

)− 1
p

sgn zi
)
i=1,...,ω

= (3.24)

= lim
p→∞

((
|zi|
|z1|

)(p−1)

sgn zi
)
i=1,...,ω

= (3.25)

=
(

sgn z1, 0, 0, . . . , 0
)
. (3.26)

Thus for p =∞ we obtain:

wspring-alt = gradN∞(xj − xi)
‖gradN∞(xj − xi)‖∞

= (3.27)

=
(

0, . . . , 0, sgn
(
(xj − xi)[k]

)
, 0, . . . , 0

)
, (3.28)
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where (xj − xi)[k] is the element of the vector xj − xi with the highest
absolute value.

The Glimmer algorithm was modified to be able to use the lp norm – both
variants, i.e. the one using wspring and the other using wspring-alt, will be
tested and compared in chapter 4.

3.2 Non-Euclidean SOM (NESOM)

The Basic SOM and the CAN in the Euclidean domain (see sections 2.1
and 2.2) have representation of the guards and the neurons (using their
Euclidean coordinates) and fundamental operations: initialization of neuron
positions, the neuron movement towards the selected guard, the distance
calculating, the path construction, etc. To create the non-Euclidean version
of the algorithm, the non-Euclidean analogies of the representation and the
fundamental operations have to be found.

The basic principle of the non-Euclidean SOM algorithm is introduced in
section 3.2.1. The new representation of neurons is described in section 3.2.2.
In the following sections, it is showed how to move a neuron (3.2.3), how to
calculate distance (3.2.4) and how to speed up neuron movement (3.2.5) and
the distance calculation (3.2.6). The transition from the Euclidean domain to
the non-Euclidean domain is done in section 3.2.7, and the numerical stability
of the proposed method is discussed in section 3.2.8. In later sections, it is
shown how to initialize neuron positions (3.2.9) and how to construct a path
(3.2.10). The path optimization by swapping is described in section 3.2.11.
Finally, the overall non-Euclidean algorithm is introduced in section 3.2.12.

3.2.1 Basic principles

The proposed non-Euclidean algorithm is based on two principles. The first
one is that when the TSP problem is solved (on a graph) the solution depends
on the edge lengths (the distances between vertices) only. Also, when solving
the TSP problem in the polygonal domain, the final solution should rely on
the distances between guards only. It should not depend on the distance of
an arbitrary point on the map to any other point on the map. The proposed
algorithm should have the distance matrix only (the matrix of distances
between guards) as the input.
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The second principle takes an inspiration in the representation used in

the Hopfield’s network solution of TSP – it uses a matrix of size n× n for
a problem containing n guards [7]. It starts with the matrix containing 1/n
(plus small random disturbance) in every element, and it tries to end with
the matrix containing just one value 1 in each column (and in each row).
The first column specifies which guard will be visited as the first one, the sec-
ond column specifies which guard will be visited as the second one, and so
on. If elements of each column (with possible normalization of this columns
to 1) are interpreted as coefficients of a linear combination of guards, we get
that there are n points starting in the centroid of guards (with small random
disturbance) and finishing each one of those n points at one guard. The Basic
SOM and CAN networks behave very similarly [10], [2]. The difference is that
every element of the matrix belongs to one neuron in the Hopfield’s network,
while every column of the matrix corresponds to one point (or neuron) in our
interpretation. This way any state of the Hopfield’s network containing n2

neurons could be converted to the state of the SOM network comprising n
neurons and vice versa. (In practice, the SOM network containing 2.5n or 3n
neurons instead of n will be used, but it is not important now.)

3.2.2 Representation of neurons

The proposed new representation of neurons is described in this section.
Consider solving of the TSP problem in the Euclidean domain. Guards
are marked G1, . . . ,Gn. Each of them lies in the ω-dimensional Euclidean
space, and each has coordinates – denote them gk = (gk,1, gk,2, . . . , gk,ω)T (for
guard Gk). The neurons N1, . . . ,Nm used in the neural network are also located
in this Euclidean space. However, they will not be tracked by their coordinates.
Instead, they will be expressed as a linear combination of individual guards.
The coefficients of the linear combination are labelled pi,l, and only such
combinations that the sum of the coefficients of every combination will be
equal to one are allowed:

Ni = pi,1G1 + pi,2G2 + · · ·+ pi,nGn, where
n∑
l=1

pi,l = 1. (3.29)

For coordinates, we get:

ni = Gpi, (3.30)

where ni are coordinates of neuron Ni, pi = (pi,1, . . . , pi,n)T , and columns
of the matrix G are made up of the vectors g.
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3.2.3 Movement of neurons

The movement of a neuron is one of the fundamental operations that has to
be described in the proposed new representation. Common kind of neuronal
movement among the SOM algorithms is to take some neuron (e.g. Ni) and
move it towards the chosen guard (e.g. Gk) by a certain fraction of the distance
between Ni and Gk. Denote this fraction γ. It must be fulfilled that 0 < γ < 1.
This movement can be characterized by the equation:

Nnew
i =Ni + γ(Gk − Ni) =

=(1− γ)Ni + γGk, (3.31)

where Ni means the position of the neuron Ni before the movement, and Nnew
i

denotes the position of the neuron after the movement (similarly for other
variables: pi,l for the value of the variable pi,l before the movement and pnew

i,l

for the value after it, and so on). Rewrite (3.31) to our notation: assume that

Ni =
n∑
l=1

pi,lGl (3.32)

Nnew
i =

n∑
l=1

pnew
i,l Gl, (3.33)

from the equations (3.31), (3.32) and (3.33) we get

n∑
l=1

pnew
i,l Gl =

n∑
l=1

(1− γ)pi,lGl + γGk. (3.34)

To meet the above equation for an arbitrary position of guards the following
rule must hold true:

pnew
i,l =

{
(1− γ)pi,l for l 6= k

(1− γ)pi,l + γ for l = k
. (3.35)

The same formula written using vector notation is

pnew
i = (1− γ)pi + γ(0, . . . , 0, 1, 0, . . . , 0), (3.36)

where the value 1 is in the k-th element.
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G1 G2

G3

N1

100 101

200.9

d

Figure 3.2: Problems with the simple distance function (see equation (3.37)):
d = 100.5, but the real Euclidean distance is approx. 3.2. N1 = (G1 + G2)/2.

3.2.4 Distances

The calculation of the distance is another fundamental operation. Suppose
the distance between neuron Ni and guard Gk is needed. The naive approach
is to use the distance defined as

d(Ni,Gk) =
n∑
l=1

pi,ldk,l, (3.37)

where dk,l is the distance between Gk and Gl.

The first disadvantage is that such distance function is distorted too much.
Imagine three guards with distances d1,2 = 200.9, d1,3 = 100, d2,3 = 101 and
a neuron with the linear combination coefficients p1 = (1/2, 1/2, 0)T . See
Fig. 3.2. From the equation (3.37), we obtain d = 0.5d1,3 + 0.5d2,3 = 100.5
as the distance between the neuron and the guard G3. However, the real
Euclidean distance is approximately 3.2. This distortion caused significant
problems with running the algorithm.

The second disadvantage is that some more advanced algorithms use
the neuron–neuron distance too. Such distance function is not straightfor-
wardly definable in a similar way as in the equation (3.37) if we want to
maintain reasonable properties (for example, the distance between the neuron
and the same neuron should be equal to zero). That is why more sophisticated
approach is needed.

For the distance between two points in the Euclidean space holds true that:

d2 = (x− y)T (x− y), (3.38)
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where x = (x1, x2, . . . )T and y = (y1, y2, . . . )T are coordinates of those two
points. Thus the distance between two neurons Ni and Nj is

d2(Ni,Nj) = (ni − nj)T (ni − nj) =
= (pi − pj)TGTG(pi − pj). (3.39)

From the fundamental assumptions

n∑
l=1

pi,l = 1 (3.40)

n∑
l=1

pj,l = 1 (3.41)

we obtain
n∑
l=1

(pi,l − pj,l) = 0, (3.42)

and so we can write:
H(pi − pj) = 0, (3.43)

where the matrix H is defined as:

H =


g1

Tg1 g1
Tg1 . . . g1

Tg1
g2

Tg2 g2
Tg2 . . . g2

Tg2
...

...
...

...
gn

Tgn gn
Tgn . . . gn

Tgn

 . (3.44)

Hence

d2(Ni,Nj) =(pi − pj)TGTG(pi − pj) =

=(pi − pj)TGTG(pi − pj)− 1
2(pi − pj)TH(pi − pj)−

− 1
2(pi − pj)THT (pi − pj) =

=− 1
2(pi − pj)T (−2GTG + H + HT )(pi − pj). (3.45)

Look at the matrix (−2GTG + H + HT ) in detail: the element on the k-th
row and the l-th column is:(

−2GTG + H + HT
)

[k,l]
=− 2gk

Tgl + gk
Tgk + gl

Tgl =

=(gk − gl)
T (gk − gl) =

=d2
k,l. (3.46)

Denote the matrix (−2GTG + H + HT ) as the matrix D. It is the ma-
trix of squares of distances between guards, it is symmetrical, and it has
dimensions n× n.
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Finally, we see that the square of the distance between the neuron Ni and

the neuron Nj is

d2(Ni,Nj) = −1
2(pi − pj)TD(pi − pj). (3.47)

Note that d2(Ni,Nj) is always non-negative (when squares of the distances in
the matrix D originate from Euclidean distances).

When the distance between the neuron Ni and the guard Gk is needed, the
following method is used: create a virtual neuron with the linear combination
coefficients pGk = (0, . . . , 0, 1, 0, . . . , 0)T (the value 1 is in the k-th element).
Substitute pj with pGk in the equation (3.47). We obtain

d2(Ni,Gk) =− 1
2(pi − pGk)TD(pi − pGk) =

=− 1
2pi

TDpi + pGk

TDpi −
1
2pGk

TDpGk =

=− 1
2pi

TDpi + (Dpi)[k] −
1
2D[k,k] =

=− 1
2pi

TDpi + (Dpi)[k], (3.48)

as the square of the distance between the neuron Ni and the guard Gk.

3.2.5 Speedup of neuron movement and normalization

It follows from the equation (3.36) that every move of the neuron Ni leads
to changing the entire vector pi (which has n elements). The method for
speeding up the neuron movement will be described in this section. First,
a new variable fi (neuron’s factor) and a new vector p̃i will be introduced in
such a way that the following equation applies:

pi = fip̃i. (3.49)

At the beginning, the variables fi and the vectors p̃i will be set as follows:
fi = 1 and p̃i = pi (for every neuron). The variables fi and the vectors p̃i

will be used instead of the vectors pi from then on.

When the movement of the neuron Ni towards the guard Gk is needed (see
the equations (3.31), (3.35) and (3.36)), the following equations will be used:

fnew
i =(1− γ)fi (3.50)

p̃new
i,l =

pnew
i,l

fnew
i

=


(1−γ)
fnew

i
pi,l = p̃i,l for l 6= k

(1−γ)
fnew

i
pi,l + γ

fnew
i

= p̃i,l + γ
fnew

i
for l = k,

(3.51)
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where fi denotes the value of the variable fi before the movement and fnew
i

after it (similarly for p̃i,l and pi,l). This way, the whole vector pi containing n
elements needs not to be changed, changing two values in memory (fi and p̃ik)
is enough.

As the algorithm runs and the neurons are moving, the values of fi are
getting lower and lower, and the values of p̃i,l are getting higher and higher.
However, common numerical types used in computers (e.g. double , float )
have a limited range. Therefore at some moment, normalization is needed
– the threshold condition used is: fi < 10−30. When this condition is met
for some neuron (e.g. Ni), the values of the variables will be changed according
to the following rules:

p̃i
ren =forig

i p̃i
orig (3.52)

f ren
i =1, (3.53)

where p̃i
orig denotes the vector p̃i before normalization and p̃i

ren after it
(similarly for fi). Soon, these rules will be expanded by normalizing the cache
of distances.

3.2.6 Distance caching

Because the SOM algorithm (e.g. Basic SOM) searches for the neuron nearest
to each guard, it needs to compute nm distances in every step of the main
iterative process. If the distances were calculated using the equation (3.47),
they would have the asymptotic complexity O(n2) for computation of every
distance and thus O(n3m) for every iteration. The algorithm would be too
slow in such a case. Therefore two caching variables are introduced to speed
up the distance computation – the matrices CDP and CPDP. Their relevance
will be apparent from the following text.

The matrix CDP has dimensions n×m and is defined by:

CDP = DP̃, (3.54)

where columns of the matrix P̃ are made up of the vectors p̃i. (The matrix P̃
has dimensions n×m.)

The second caching matrix – the matrix CPDP has dimensions m×m and
is defined by:

CPDP = P̃TDP̃ = P̃TCDP. (3.55)
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Note that the matrix CPDP is symmetrical, that is why the algorithm does not
have to compute and store the part of the matrix below the main diagonal.

When the distance between two neurons Ni and Nj is needed, we obtain
from the equation (3.47):

d2(Ni,Nj) =− 1
2(pi − pj)TD(pi − pj) =

=− 1
2pi

TDpi −
1
2pj

TDpj + pjDpi =

=− 1
2f

2
i p̃i

TDp̃i −
1
2f

2
j p̃j

TDp̃j + fifjp̃jDp̃i =

=− 1
2f

2
i CPDP[i,i] −

1
2f

2
j CPDP[j,j] + fifjCPDP[i,j]. (3.56)

The calculation according to the previous formula has the asymptotic com-
plexity O(1).

When the neuron Ni moves towards the guard Gk, the cache has to be
updated accordingly. Consider the equations (3.50) and (3.51) characterizing
the movement of the neuron. The first one will not affect the cache at all.
Denote δ = γ/fnew

i , thus:

p̃new
i,l =

{
p̃i,l for l 6= k

p̃i,l + δ for l = k.
(3.57)

Let the matrix ∆ be the matrix of dimensions n ×m having zeroes at all
cells with one exception – the element in the k-th row and the i-th column
will be δ. Thus

P̃new =P̃ + ∆ (3.58)

Cnew
DP =DP̃new = DP̃ + D∆ = CDP + D∆ (3.59)

Cnew
PDP =(P̃new)

T
DP̃new =

=(P̃ + ∆)TD(P̃ + ∆) =

=P̃TDP̃ + P̃TD∆ + ∆TDP̃ + ∆TD∆ =

=CPDP +
(

∆TDP̃
)T

+ ∆TDP̃ + ∆TD∆ =

=CPDP +
(

∆TCDP
)T

+ ∆TCDP + ∆TD∆. (3.60)

In other words, the i-th column and the i-th row of the matrix CPDP have to
be updated this way:

Cnew
PDP[i,i] =CPDP[i,i] + 2δCDP[k,i] + δ2D[k,k] =

=CPDP[i,i] + 2δCDP[k,i]

Cnew
PDP[j,i] =CPDP[j,i] + δCDP[k,j] for ∀j ∈ {1, . . . , i− 1}

Cnew
PDP[i,j] =CPDP[i,j] + δCDP[k,j] for ∀j ∈ {i+ 1, . . . ,m}. (3.61)
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This change has the asymptotic complexity O(m). Moreover, the i-th column
of the matrix CDP has to be updated in this manner:

Cnew
DP [l,i] = CDP[l,i] + δD[l,k] for ∀l ∈ {1, . . . , n}. (3.62)

This update has the asymptotic complexity O(n).

If some algorithms need to know distances between neurons and guards
only (as the basic ones do), the equation (3.48) will be used for the dis-
tance calculation instead of (3.47), so the caching will become more simple.
From (3.48) we obtain:

d2(Ni,Gk) =− 1
2pi

TDpi + (Dpi)[k] −
1
2D[k,k]

=− 1
2f

2
i p̃i

TDp̃i + fi(Dp̃i)[k]

=− 1
2f

2
i CPDP[i,i] + fiCDP[k,i]. (3.63)

In such situation, the algorithm has to calculate and store the main diagonal
of the matrix CPDP only, and the asymptotic complexity of the matrix CPDP
update will become O(1).

Finally, the previously established rules for normalization, see the equa-
tions (3.52) and (3.53), have to be extended. Applying (3.52) to the equa-
tions (3.54) and (3.55), we get:

P̃ren
[l,i] =forig

i P̃orig
[l,i] for ∀l ∈ {1, . . . , n}

Cren
DP[l,i] =forig

i Corig
DP [l,i] for ∀l ∈ {1, . . . , n}

Cren
PDP[i,i] =(forig

i )2Corig
PDP[i,i]

Cren
PDP[j,i] =forig

i Corig
PDP[j,i] for ∀j ∈ {1, . . . , i− 1}

Cren
PDP[i,j] =forig

i Corig
PDP[i,j] for ∀j ∈ {i+ 1, . . . ,m}

f ren
i =1 (3.64)

as the normalization rules for the neuron Ni.

For the asymptotic complexity of basic operations see Table 3.2. It is
obvious from the third and the fourth row that the neuron movement is much
more demanding in terms of computational complexity than the distance
calculating.
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Variant Neuron Neuron Neuron move Norma-

–neuron –guard incl. cache lization
distance distance update

no move speed-up
no cache

O(n2) O(n2) O(n) –

move speed-up
no cache

O(n2) O(n2) O(1) O(n)

move speed-up
full cache

O(1) O(1) O(n+m) O(n+m)

move speed-up
CPDP diag. only

– O(1) O(n) O(n)

Table 3.2: Asymptotic complexity of basic operations.

3.2.7 Non-Euclidean distances and negative squares
of distances

Until now, we assumed that the TSP problem in some hypothetical Euclidean
space is being solved. However, the task is to solve the problem in the non-
Euclidean domain. So a transition from the Euclidean domain to the non-
Euclidean domain must be made.

This transition is simply done by assignment of squares of non-Euclidean
distances to the matrix D. (This distances can be obtained from the first
part of the overall algorithm for example – see Alg. 3, line 1.) We expect
the distances to meet the triangular inequality:

∀i, j, k : di,j ≤ di,k + dk,j . (3.65)

Consider whether the square of the distances (d2) as defined in section 3.2.4
will always be non-negative. Imagine three arbitrary distances respecting
the triangular inequality. Such distances are always Euclidean (a triangle can
be constructed in some Euclidean space so that the lengths of the sides are
equal to the specified distances). Therefore in situations, where only three
individual distances from the matrix D has an effect in the computation of d2

from the equation (3.47), the resulting d2 will always be non-negative (because
the calculation behaves like it were in the Euclidean space). Taking into
account that the matrix D is symmetrical and has zeroes on the main diagonal,
the previous eventualities correspond to the situations when at most three
elements of the vector (pi − pj) are non-zero. It can be the trivial TSP
task with n ≤ 3 for example. Furthermore, it may be the case of calculating
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G1

G2

G3

G4

Figure 3.3: How a negative value of d2 can occur. The hatched areas are
obstacles. N1 = (G1 + G2 + G3)/3. Value d2 is square of the distance between N1
and G4.

the distance between a neuron combined from three guards (the neuron
which has three non-zero coefficients in its linear combination and the other
coefficients are equal to zero) and one of those guards. Alternatively, it can
be the situation of calculating the distance between a neuron with only two
non-zero coefficients in its linear combination and arbitrary guard. (This
may be the case in the late stage of the algorithm run when the neurons are
very close to the guards, or they are near lines joining two guards. Then the
negative values of d2 occur sporadically.)

Several situations where can be proven that d2 is always non-negative were
discussed. However, in general, it is not guaranteed that d2 is non-negative.
See the situation in Fig. 3.3. There are four guards and one neuron in this
arrangement. The hatched areas are obstacles, the distance between Gi and G4
is 1 (for i = 1, . . . , 3) and N1 = (G1 + G2 + G3)/3. The matrix of the squared
distances D will be:

D =


0 4 4 1
4 0 4 1
4 4 0 1
1 1 1 0

 . (3.66)

Consider the distance between the neuron N1 and the guard G4. From
the equation (3.47), we get:

d2(N1,G4) = −1
2

(1
3 ,

1
3 ,

1
3 ,−1

)T
D
(1

3 ,
1
3 ,

1
3 ,−1

)
= −1

3 . (3.67)
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Thus d2 can be negative in some cases. (Recall that the used distances
meet the triangular inequality.) If the sqrt function is called somewhere in
the algorithm to get d from d2, the algorithm will crash.

There are two approaches how to deal with the situation. The first one is
to detect the negative value and replace it with the zero value. The second
option is the following technique. When the algorithm searches for the nearest
neuron for some guard, it looks for the neuron with the minimal distance d
between the neuron and the guard. This step can be equivalently replaced by
looking for the neuron with the minimal square of distance d2. Now, if there
is any negative value between the values of d2, it will be left, and it will win
over non-negative values in the search for the minimum. However, none of
the previous options gives much better results than the other.

3.2.8 Numerical stability

The numerical stability of the proposed method will be briefly discussed
in this section. One of the fundamental assumptions is that the sum of
the coefficients pi,l of every neuron is equal to one:

n∑
l=1

pi,l = 1. (3.68)

However, as the algorithm runs and the neurons are moving, the values of pi,l
are repeatedly changed. These changes are designed in such a way that
the equation (3.68) is still valid – see (3.31) and (3.35). Nevertheless, this
is only met theoretically. Running the algorithm on a real computer using
data types like double and float rounding errors arise in each operation.
If these rounding errors cumulated, the algorithm might crash. Consider
whether this situation can occur. Assume that the equation (3.68) is not fully
met:

n∑
l=1

pi,l = 1 + ε. (3.69)

Explore what happens after the neuron Ni moves. (Suppose it moves towards
the guard Gk.) From (3.35) we obtain:

n∑
l=1

pnew
i,l = (1− γ)

n∑
l=1

pi,l + γ = (1− γ)(1 + ε) + γ = 1 + (1− γ)ε. (3.70)

It follows from 0 < γ < 1 that the rate of violation of the equation (3.68)
after the move (which is (1−γ)ε) is smaller than the rate before the move (ε).
Fortunately, earlier errors naturally disappear as the neuron moves thus the
algorithm is numerically stable. The same is true when fi and p̃i are used (see
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the equations (3.50) and (3.51)) instead of pi. Moreover, a similar principle
applies to the calculation of the distances using cache in the equations (3.56)
and (3.63).

3.2.9 Initial position of neurons

Before the SOM network is ready to run, the neurons have to be initialized.
Two methods will be described in this section – the first places neurons near
the centroid of the guards and the second one uses the FastTSP algorithm.

Algorithm 7: Initialization of neurons using the centroid of the guards
(centroid_init)
Input: Matrix of distances between guards E
Output: Initial position of neurons including prepared distance cache

1 set all neurons to the centroid (∀i ∀l : p̃i,l ← 1/n and ∀i : fi ← 1)
2 compute cache for one neuron
3 copy the previous result to the rest of the cache

// all neurons are equal
4 permutation← random permutation of sequence (1, . . . ,m)
5 for k ← 1 to n do
6 i← permutation[k]
7 move neuron Ni by 1% towards guard Gk // see sect.3.2.5
8 update cache accordingly // see sect.3.2.6
9 end

10 run one iteration of SOM algorithm with special parameter settings (very
small µ, very high G)

11 return neurons, cache

One way to initialize neurons in the SOM network in the Euclidean space
is to place them on a small circle formed around the centre of gravity
of the guards – see sections 2.1 and 2.2. Because in our representation,
it would be hard to form a circle around some point another procedure will
be used. (For the pseudocode of the entire initialization procedure see Alg. 7).
First, all neurons are placed to the centroid (fi = 1 and p̃i,l = 1/n for every i
and every l, see Alg. 7, lines 1–3). Then randomly selected n neurons (note
that the total number of the neurons is m) are moved by 1% (γ = 0.01)
towards the guards G1, . . . ,Gn (always one neuron towards one guard). Ran-
dom choose without repetition is used thus no neuron will move more than
once, and every guard will be used just once (Alg. 7, lines 4–9).

The position of the neurons from the previous paragraph could be used
as an initial position of the SOM run. However, the string of neurons (its
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projection to the original polygonal space respectively) intersects itself many
times. As the SOM network has difficulties to get rid of some intersections
of the neural string, passing these imperfections to the final route, it would
be worthwhile to solve the problem another way. It can be fixed by running
the first iteration of the SOM algorithm with special settings of the algorithm
constants: very small µ (µc-init = 0.04) and very high G (Gc-init = 500).
Thanks to the large value of the parameter G, each winning neuron has
big neighbourhood and this victorious neuron is moving to the selected
guard with many of his neighbours. Because the value of the parameter µ is
small, neurons change their position only a little in every move. Therefore
resulting movement is smooth, and as individual guards are picked at random
from different parts of the map, a string with no (or at worst with a few)
self-intersections is created near the centroid (Alg. 7, line 10).

Algorithm 8: FastTSP
Input: Matrix E (dimensions n× n) of distances between guards
Output: Solution of TSP as a sequence of indices of individual guards

in the route
1 distances← () // empty vector
2 for i← 1 to n do
3 for j ← i+ 1 to n do
4 append triplet (i, j,E[i, j]) to the end of distances
5 end
6 end
7 sort distances by the third element of triplet (distance) from the shortest

one to the longest one
8 edges← ∅ // empty set of edges
9 k ← 0 // number of edges

10 l← 1 // index
11 while k < n do
12 edge← (distances[l].i, distances[l].j)
13 if (adding edge to edges will not create cycle ∨ k = n− 1) ∧ (adding

edge to edges will not create vertex with three or more incident
edges) then

14 edges← edges ∪ {edge}
15 k ← k + 1
16 end
17 l← l + 1 // go to the next triplet
18 end
19 convert the set of edges to a sequence of indices of individual guards in

the route
20 return route (as the sequence of indices)

Another way to initialize neurons uses the FastTSP algorithm[6] (greedy
algorithm over the edge lengths). For the pseudocode of the FastTSP
algorithm see Alg. 8 and for the pseudocode of entire initialization procedure
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see Alg. 9. At the beginning of the FastTSP algorithm, it sorts all distances
between guards from the shortest one to the longest one (Alg. 8, lines 1–7).
Then it starts with the empty set of edges, takes the shortest edge and joins
this edge to the set. After this, the algorithm takes such shortest edge, which
has not been used yet and whose adding to the set will create neither cycle
nor vertex with three or more edges incident (with the exception that n-th
edge can create a cycle). The previous step is repeated until there are n edges
in the set (Alg. 8, lines 8–18). This set forms the path through all guards,
each of them visited just once.

Algorithm 9: Initialization of neurons using the FastTSP algorithm
(FastTSP_init)
Input: Matrix E of distances between guards
Output: Initial position of neurons including prepared distance cache

1 path← FastTSP(E) // see Alg. 8
2 do swap optimization: do_swaps(path) // see Alg. 12
3 set all neurons to the centroid (∀i ∀l : p̃i,l ← 1/n and ∀i : fi ← 1)
4 compute cache for one neuron
5 copy the previous result to the rest of the cache

// all neurons are equal
6 for i← 1 to m do
7 l← d(n/m)ie // index in path, notice ceil function
8 k ← path[l]
9 move neuron Ni by 99.99% towards guard Gk // see sect.3.2.5

10 update cache accordingly // see sect.3.2.6
11 end
12 return neurons, cache

The FastTSP algorithm is done now (Alg. 9, line 1), and the path obtained
is optimized by swapping – see section 3.2.11 (Alg. 9, line 2). This could
shorten the path by removing some imperfections that the FastTSP leaves
in the path (intersections with itself for example). Then, all neurons are
placed to the centroid of the guards (Alg. 9, lines 3–5). Finally, the first m/n
neurons are moved (i.e. the first three neurons for the case when m = 3n,
etc.) by 99.99% (γ = 0.9999) to the first guard in the path, next m/n neurons
to the second guard in the path and so on (Alg. 9, lines 6–11). It is the initial
location of the neurons obtained by the FastTSP_init method.

The naive approach in the previous method would be to place the neurons
straight at the positions of the selected guards. The reason to do it differ-
ently is that creating of the distance cache will be much faster. Filling up
the cache of m different neurons means to compute the matrix CDP from
the equation (3.54) and the matrix CPDP from (3.55). The first computation
has the asymptotic complexity O(n2m) and the second one has O(nm2).
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Therefore calculating the cache of m different neurons has the asymptotic
complexity O (nm(n+m)).

To fill up the cache of m same neurons, the matrix CDP has to be calculated
from the equation (3.54) first. This time, the fact that the matrix P̃ has the
same columns can be used thus the matrix CDP will have identical columns
too. It takes O(n2) to compute the first column of CDP and O(nm) to copy
this column to the other columns. Then, the matrix CPDP has to be calculated
from the equation (3.55). The matrix CPDP has all elements equal to each
other because the matrix CDP has identical columns and that the matrix P̃T

has identical rows. It takes O(n) to compute one cell of CPDP and O(m2)
to copy this cell to the rest of the matrix. After preparing the cache of m
equal neurons, all m neurons have to be moved to the desired positions. From
the previous results (see Table 3.2) we know that movement of the neuron
has the asymptotic complexity O(n+m). So the total asymptotic complexity
will be:

O(n2) +O(nm) +O(n) +O(m2) +mO(n+m) =
=O(n2 + nm+m2) +O(nm+m2) =
=O(n2 + 2nm+ 2m2) =

=O
(
(n+m)2

)
, (3.71)

in the case the full caching is being used (otherwise it will be even lesser). It
is evident that this procedure has the smaller asymptotic complexity than
the preparation of the distance cache of m different neurons.

3.2.10 Path construction

One of the fundamental operations of SOM network methods to solve TSP
is to construct the path through all guards from the actual position of the
neurons (some of them are close to guards, and some of them are not). First,
the method of the SOM networks will be modified to be used in the non-
Euclidean domain ( construct_path ), and then two new methods will be
showed ( construct_path_alt and construct_path_alt_rand ).

The procedure used in the Euclidean domain has been described in the
sections 2.1 and 2.2. In the non-Euclidean domain, the same procedure can
be used with the exception that the square of distances will be minimised
instead of the distances – it is better to cope with possibly negative d2 (see
section 3.2.7), and it is even faster (the sqrt function needs not to be
called). Because this method consists of the finding the minimal distance
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amongm neurons repeatedly for n guards and because one distance calculation
has the asymptotic complexity O(1) (see Table 3.2), the construct_path
procedure has the asymptotic complexity O(nm).

However, in our representation, there are two other methods to construct
a tour. The first of these methods ( construct_path_alt ) is to find the max-
imum of each row of the matrix P (its columns are made up of the vectors pi).
It means to find and select the neuron Ni with the maximal value pi,k for every
guard Gk. Then save the index of the guard into the selected neuron. Repeat
this for every guard. The rest of the procedure is the same as in the Eu-
clidean domain (i.e. the order of the neurons in the string determines the
order of guards in the path). The construct_path_alt has the asymptotic
complexity O(nm) (the matrix P has dimensions n×m).

To see the principle behind the second new method, consider 0 ≤ pi,l ≤ 1
holds through the entire algorithm run (for every cell of the matrix P).
Moreover, the sum of every column of the matrix P is equal to one through
the algorithm run. (The previous statement can be proven using the fact, that
at the beginning, the neurons are placed to the centroid (∀i∀l : pi,l = 1/n),
and after it, they are moved the way specified in section 3.2.3. Last but not
least, the computation is numerically stable – see section 3.2.8.) Therefore
the columns of the matrix P look similar to a probabilistic distribution.

When some neuron (e.g. Ni) is the winning neuron for some guard (e.g. Gk),
it is very close to Gk in most cases (at least in the late stage of the algorithm
run), thus pi,k is equal to one approximately, and the rest of the vector pi

has the elements nearly zeroed. Another neuron, which is close to another
guard, has approximately zero in the k-th row, and so on. So, it makes sense
to see other probability distribution in the rows of the matrix P (of course,
the normalization of the rows must be done first). Look at examples in (3.72):
at the beginning (P1), nothing is known, while at the end (P2), the order of
the guards is known exactly: (G2, G3, G1, . . . )

P1 =


1/n 1/n 1/n . . .
1/n 1/n 1/n . . .
1/n 1/n 1/n . . .
...

...
... . . .

 P2 =


0 0 1 . . .
1 0 0 . . .
0 1 0 . . .
...

...
... . . .

 (3.72)

See other examples in (3.73): more than one possible neurons (N2,N3) can be
selected for the guard G3 – the third row of the matrix P3, but the order of
the guards is still known exactly (G2, G3, G1, . . . ). For P4 there is uncertainty
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in the order: (G2, G3, G1, . . . ) versus (G2, G1, G3, . . . ).

P3 =


0 0 0 1 . . .
1 0 0 0 . . .
0 1 1 0 . . .
...

...
...

... . . .

 P4 =


0 0 1 0 . . .
1 0 0 0 . . .
0 1 0 1 . . .
...

...
...

... . . .

 (3.73)

The matrices P2,. . . ,P4 are theoretical examples only. In practice, the value
of their cells will be somewhere between zero and one.

To summarize the previous paragraphs, the second new method to construct
a tour ( construct_path_alt_rand ) is to normalize the sum of every row
of the matrix P to one. Then select a random neuron using the first row
as the probabilistic distribution for the guard G1 and save the index of the
guard into the selected neuron. Repeat this for every guard. The rest of the
procedure is the same as in the Euclidean domain.

The method construct_path_alt_rand has an advantage over the method
construct_path_alt when the order of the guards is not exactly determined,
see the example matrix P4 above. If the method construct_path_alt_rand
is called multiple times with the same (or similar) matrix P (e.g. it is called
in the current iteration with some matrix P, and it was also called in the pre-
vious iterations with the similar values in the matrix P), it returns paths with
different order of the guards probably. All these paths join the competition for
the final shortest route – see section 3.2.12. On the contrary, the procedure
construct_path_alt always returns the same route when it is repeatedly
called with the same matrix P. However, the construct_path_alt method
has these advantages: it is more simple, faster, and in the late stage of the
algorithm run, it has fewer situations with more than one guard with the same
selected neuron. Finally, the benefits of the construct_path_alt procedure
have shown to outweigh advantages of the construct_path_alt_rand pro-
cedure (the situation when the order of the guards is not exactly determined
as in the P4 example is not so often, especially in the late stages) thus only
construct_path and construct_path_alt methods are used in the NESOM
algorithm.

3.2.11 Path optimization by swapping

The route constructed by one of the previously described methods (FastTSP,
construct_path, construct_path_alt or construct_path_alt_rand) can
contain some imperfections. To get rid of some of these defects, two optimiza-
tion methods (do_swap1 and do_swap2) are introduced. At the end of this
section, the overall optimization procedure is described.
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Gk

Gsucck

Gl

Gsuccl

Gk

Gsucck

Gl

Gsuccl

Figure 3.4: Simple swap. The upper half is the route before the swap, the lower
half after the swap.

The first optimization method (do_swap1) uses simple swaps to eliminate
the intersections in the route. For the pseudocode see Alg. 10. The method
goes through all pairs of edges in the route (lines 5–8). Inside this loop,
selected two edges form the swap (see Fig. 3.4), the path length difference of
this swap is calculated (line 9), and the swap with the minimal difference is
found (lines 10–14). If this swap shortens the route (i.e. the difference is less
than zero, line 17), the swap is realized (lines 18–21).

Implementation note for comparing of the difference between the path
length before the swap and the path length after the swap with zero (see
Alg. 10, line 17): when zero is used as the threshold, there will appear
an infinite loop of swaps there and back on some platforms. This problem is
caused by rounding imprecision of double ( float ) type. It is necessary to
use the threshold slightly smaller than zero (e.g. −10−5).

While the first swap method uses only one swap, the second method
(do_swap2) utilizes a pair of swaps to try to reconnect part of the path
to shorten it (see Fig. 3.5b). Notice that the swap used is of a different
type than the swap in do_swap1. This swap disconnects the route into two
independent cycles (see Fig. 3.5a), whereas the one in do_swap1 does not.
For the pseudocode see Alg. 11. In the first part of the algorithm, the list of
all appropriate swaps is created (Alg. 11, lines 2–12). Note that the method
demands the cardinal distance between edges to be at least two (line 4), and
that even some swaps with positive route length difference (which would
lengthen the path) are stored (line 8). Next, the list of swaps is sorted from
the lowest length difference to the highest one (line 13).

After it, the procedure goes though all pairs of swaps (Alg. 11, lines 16
and 18). Swaps in the pair are tested to have no common edges (i.e.
Ga 6= Gc ∧ Ga 6= Gd ∧ Gb 6= Gc ∧ Gb 6= Gd) (line 21) – any
common edge would complicate further steps. Then, the right order of

37



3. Own work ......................................

Algorithm 10: Do simple swap (do_swap1)
Input: Path through all guards (path) as a sequence of indices of

individual guards
Input: Matrix of distances between guards E
Output: Boolean value indicating whether a swap was done
Output: Possibly modified path

1 was_modified← false
2 min_diff← 1
3 min_k ← 0
4 min_l← 0
5 for i← 1 to n do
6 for j ← i+ 1 to n do
7 k ← path[i] // index
8 l← path[j] // index
9 diff← difference of the route length after changing of Gk − Gsucck ,

Gl − Gsuccl edges to Gk − Gl, Gsucck − Gsuccl edges – see Fig. 3.4
10 if diff < min_diff then
11 min_diff← diff
12 min_k ← k
13 min_l← l

14 end
15 end
16 end
17 if min_diff < −10−5 then

// see implementation note in text on page 37
18 was_modified← true
19 k ← min_k
20 l← min_l
21 do swap (Gk − Gsucck , Gl − Gsuccl edges to Gk − Gl, Gsucck − Gsuccl edges,

see Fig. 3.4) in the path
22 end
23 return was_modified, path
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Gk Gsucck

GlGsuccl

Gk Gsucck

GlGsuccl

Gk Gsucck

GlGsuccl

Gk Gsucck

GlGsuccl

(a) : One half of reconnection (one swap). The left half is the route before
the swap, the right half after the swap.
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Gsuccc
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(b) : Reconnection – the correct case. The left half is the route before the re-
connection, the right half after the reconnection.
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Gd

GsuccdGa Gsucca
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Gc
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Gd
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(c) : Reconnection – the wrong case. The left half is the route before the recon-
nection, the right half after the reconnection.

Figure 3.5: Reconnection
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Algorithm 11: Do reconnection (do_swap2)
Input: Path through all guards (path) as a sequence of indices of

individual guards
Input: Matrix of distances between guards E
Output: Boolean value indicating whether a reconnection was done
Output: Possibly modified path

1 was_modified← false
2 swaps← () // empty vector
3 for i← 1 to n do
4 for j ← i+ 3 to min(n, n− 3 + i) do
5 k ← path[i] // index
6 l← path[j] // index
7 diff← difference of the route length after changing of Gk − Gsucck ,

Gl − Gsuccl edges to Gk − Gsuccl , Gl − Gsucck edges – see Fig. 3.5a
8 if diff < SWAP2_THRESH then // SWAP2_THRESH = 0.1
9 append triplet (diff, k, l) to the end of swaps

10 end
11 end
12 end
13 sort swaps by the first element of triplet (diff ) from the lowest one
14

15 min_diff← 0, min_i← 0, min_j ← 0
16 for i← 1 to swaps.size do
17 if 2 · swaps[i].diff ≥ min_diff then break
18 for j ← i+ 1 to swaps.size do
19 diff← swaps[i].diff + swaps[j].diff // diff for both swaps
20 if diff ≥ min_diff then break
21 if swaps[i].k = swaps[j].k ∨ swaps[i].k = swaps[j].l ∨ swaps[i].l

= swaps[j].k ∨ swaps[i].l = swaps[j].l then continue
22 between_1← (swaps[i].k < swaps[j].k < swaps[i].l)
23 between_2← (swaps[i].k < swaps[j].l < swaps[i].l)
24 if between_1 6= between_2 ∧ diff < min_diff then
25 min_diff← diff
26 min_i← i
27 min_j ← j

28 end
29 end
30 end
31 if min_diff < −10−5 then

// see implementation note in text on page 37
32 was_modified← true
33 do reconnection according to swaps[min_i] and swaps[min_j] (see

Fig.3.5b)
34 end
35 return was_modified, path
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the guards Ga, . . . ,Gd in the route is verified to distinguish the correct case
from the wrong case (lines 22–24). The correct case has one swap locked into
the other one, so the order of the guards could be Ga,Gc,Gb,Gd for example.
See Fig. 3.5b. The wrong case has one complete swap (both of its edges) first
and the other swap after it. The order of guards could be Ga,Gb,Gc,Gd for
example. The reconnection in the wrong case would disconnect the path into
three independent cycles, see Fig. 3.5c. The previous steps are repeated for
all pairs and the pair with the minimal sum of the differences (line 19) is
found (lines 24–28). Thanks to the fact that the list of swaps is sorted from
the lowest difference to the highest one, the cycles can be broken prematurely,
when it is clear the present candidate for minimum will not be changed
(lines 17 and 19). At the end, if the pair of swaps with the minimal sum of
the differences shortens the route (i.e. the sum is less than zero, line 31), the
reconnection is realized (Alg. 11, lines 32–33).

Algorithm 12: Swap optimization algorithm (do_swaps)
Input: Path through all guards as a sequence of indices of individual

guards
Output: Boolean value indicating whether a swap or a reconnection was

done
Output: Possibly modified path

1 was_modified← false
2 while do_swap1(path) do was_modified← true
3 while do_swap2(path) do
4 was_modified← true
5 while do_swap1(path) do
6 end
7 end
8 return was_modified, path

The overall route optimization procedure (do_swaps) using do_swap1 and
do_swap2 methods (for the pseudocode see Alg. 12) removes all intersections
in the route first (Alg. 12, line 2)). Then it repeatedly tries to find and realize
a reconnection, that can shorten the path (lines 3–7). If any intersection
emerges during the loop, it is removed immediately (line 5).

3.2.12 Basic SOM in non-Euclidean domain
(NE-Basic SOM)

The fundamental operations of the SOM network in the non-Euclidean domain
have been described in the previous sections. Now, the overall non-Euclidean
Basic SOM algorithm can be introduced. It is based on the Basic SOM
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replacing the Euclidean representation and operations by their non-Euclidean
analogies and adding several more advanced techniques (some of them inspired
by the CAN).

For the pseudocode see Alg. 13. At the beginning, the input distances are
scaled(divided) so that the maximal distance in the distance matrix is

√
2

(line 1). Scaling is generally good practice because it eases tuning of the
algorithm parameters to various input data. The value

√
2 is inspired by

the CAN that scales input data to fit the unit square and thus it allows
the maximal distance of

√
2 after scaling. Next step is the initialization

(lines 2–8). Whether to perform centroid_init or FastTSP_init (Alg. 13,
line 4) depends on user’s decision.

The main part of the algorithm is the loop of the iterative process (Alg. 13,
lines 9–32). The permuting of the guards (lines 12 and 14), the neuron
inhibiting (lines 11 and 17) and search for the winning neuron (line 15) is the
same as in the Euclidean Basic SOM (see section 2.1) with the exception that
the winning neuron is the neuron with the smallest square of the distance, not
the distance itself (the square of the distance can have negative value in some
cases, trying to calculate the square root of it would result in problems – see
section 3.2.7). Movement of the neurons (Alg. 13, line 18) will be described
later (Alg. 14).

Depending on user’s decision (cfg_running_findpath and cfg_running_
findpath_alt), the path can be constructed at the end of the algorithm run
only (lines 33–34) as in the Basic SOM or during the iterative process as in
the CAN (lines 20–27). Because in the earlier stages of the iterative process
the neuron positions do not produce quality paths the threshold condition
(iteration_count > 50) must be met before the algorithm tries to produce
a path (the purpose is to speed up the algorithm). Path construction itself
has been described in section 3.2.10. Because the path construction has the
asymptotic complexity O(nm) (see section 3.2.10) which is less than the
asymptotic complexity of the neuron movements O(n2m) (see the following
text) and because the shortest path competition during the iterative process
avoids the loss of quality solutions it shows to set cfg_running_findpath =
= cfg_running_findpath_alt = true to be a good practice.

The error calculation (Alg. 13, lines 10 and 16) is similar to the Euclidean
Basic SOM (section 2.1). Because the square of the distance can be negative
(see section 3.2.7), we maximize the square of the distance instead of the
distance itself (and the initial value is not zero, but it is −∞). The main
iterative loop termination condition is modified correspondingly (line 28).
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Algorithm 13: Non-Euclidean Basic SOM
Input: Matrix of distances between guards E
Output: Solution of TSP

1 scale distances so that maximum of cell values of the matrix E is
√

2
2 compute squares of the distances (the matrix D)
3 m← 3n // number of neurons = 3*number of guards
4 initialize neuron positions (centroid_init or FastTSP_init)

// see sect.3.2.9
5 clear cache of small postponed moves (∀j ∀l : cjl ← 0) // see Alg. 14
6 iteration_count← 0
7 path_best← (∞) // path with infinite length
8 path_best_len_before_swaps←∞ // see Alg. 15
9 while true do

10 error_sq← −∞
11 inhibited← ∅ // empty set of inhibited neurons
12 permutation← random permutation of sequence (1, . . . , n)
13 for k ← 1 to n do
14 l← permutation[k]
15 for Gl find winning not inhibited neuron Ni

16 error_sq← max(error_sq, distance_squared(Gl,Ni))
17 inhibited← inhibited ∪ {i}
18 move_neurons (Ni, Gl) // see Alg. 14
19 end
20 if cfg_running_findpath ∧ (iteration_count > 50) then
21 path_temp← construct_path() // see sect.3.2.10
22 process_path (path_temp) // see Alg. 15
23 end
24 if cfg_running_findpath_alt ∧ (iteration_count > 50) then
25 path_temp← construct_path_alt() // see sect.3.2.10
26 process_path (path_temp) // see Alg. 15
27 end
28 if (error_sq ≤ max_error2) ∧ (error_sq ≥ 0) then break
29 if iteration_count ≥ max_iterations then break
30 iteration_count← iteration_count + 1
31 update parameters: G← G(1− α)
32 end
33 path_temp← construct_path() // see sect.3.2.10
34 process_path (path_temp) // see Alg. 15
35 if cfg_final_swaps then do_swaps(path_best) // see sect.3.2.11
36 return path_best
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3. Own work ......................................
Updating the gain parameter G (Alg. 13, line 31) is the same as in the Eu-

clidean Basic SOM. Depending on user’s decision (cfg_final_swaps), the final
swap optimization by do_swaps (see Alg. 12) is possibly performed (Alg. 13,
line 35).

Algorithm 14: Non-Euclidean Basic SOM subroutine move_neurons
Input: Winning neuron Ni

Input: Guard Gl
1 for d_cardinal← −d∗ to d∗ do // go through neighbourhood
2 j ← i− d_cardinal // index of neuron from neighbourhood
3 if j < 1 then j ← j +m
4 if j > m then j ← j −m
5 if fj < 10−30 then normalize neuron j // see eq.(3.64)
6 γ ← µ exp(−d_cardinal 2/G2)
7 if γ < IGNORE_MICROMOVE_THRESH then
8 continue // IGNORE_MICROMOVE_THRESH = 1e-6
9 end

10 γ ← γ + cjl // add postponed moves from the past
11 if γ < SMALLMOVE_THRESH then // SMALLMOVE_THRESH = 1e-2
12 cjl ← γ // postpone move
13 continue
14 end
15 cjl ← 0 // clear postponed moves
16 move neuron Nj towards guard Gl by γ // see sect.3.2.5
17 update cache accordingly // see sect.3.2.6
18 end
19 return

The movement of the winning neuron and its neighbourhood towards the
guard (see Alg. 14) is similar to the Euclidean Basic SOM (section 2.1): it goes
through the neighbourhood (Alg. 14, lines 1–4), it calculates γ (line 6, compare
with the equation (2.1)) and it moves the individual neurons (lines 16–17).
There are two differences. The first one is that the normalization of the
neuron is performed when the threshold condition (fi < 10−30) is met (line 5,
see the equation (3.64)). The second difference is based on the fact, that the
movement of the neurons is the most computationally demanding place in
the algorithm: the move of one neuron has asymptotic complexity O(n) (see
Table 3.2, the last row). If it is called for all neurons from the neighbourhood
(its size is 2d∗ + 1 = 0.4m), the asymptotic complexity of move_neurons
subroutine is O(nm) and the complexity of one adaptation step of the main it-
erative loop (Alg. 13, lines 13–19) is O(n2m). For lowering the computational
difficulty, the moves with γ smaller than IGNORE_MICROMOVE_THRESH thresh-
old are ignored completely (Alg. 14, lines 7–9). The moves with γ greater
than IGNORE_MICROMOVE_THRESH but smaller than SMALLMOVE_THRESH thresh-
old are postponed, and their γ are summed up in the variable cjl (for the
movement of the neuron Nj towards the guard Gl). When the sum exceeds
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SMALLMOVE_THRESH threshold, the move is performed, and the cjl variable is
cleared (Alg. 14, lines 10–15). (Further speedup is achieved by caching the
values of the µ exp(−d_cardinal 2/G2) function (line 6)).

Algorithm 15: Non-Euclidean Basic SOM subroutine process_path
Input: path_temp

1 was_swaps← false
2 path_temp_len_before_swaps← ‖path_temp‖

// save length of path_temp without swap optimization
3 if cfg_running_swaps_always ∨ (cfg_running_swaps ∧

(path_temp_len_before_swaps < path_best_len_before_swaps)) then
4 was_swaps← do_swaps (path_temp) // see sect.3.2.11
5 end
6 if ‖path_temp‖ < ‖path_best‖ then
7 path_best← path_temp
8 path_best_len_before_swaps← path_temp_len_before_swaps
9 if was_swaps ∧ cfg_reinitialize_neurons then

10 reinitialize_neurons (path_temp)
// run Alg. 9 from line 3

11 end
12 end
13 return

The process_path subroutine (Alg. 15) consists of three main steps.
The first one is the swap optimization of just created path (path_temp)
(Alg. 15, lines 3–4). Depending on user’s decision (cfg_running_swaps and
cfg_running_swaps_always), the swap optimization could be done always,
never or when the constructed path (path_temp) without swap optimization
is shorter than the actual best path found (without swap optimization too).
The second step is competition for the shortest final route (lines 6–8).

Consider the situation that the neural string (its projection to the orig-
inal polygonal space respectively) has some self-intersection and the path
constructed from the neuron positions has an intersection with itself too.
Swap optimization removes the intersections from the path only, not from
the string. In the next iteration, the neural string produces a new path
with intersections again and so on. To transfer benefits of the path swap
optimization to the neural string the last step of process_path subrou-
tine was added (Alg. 15, lines 9–11). It reinitializes the neuron positions
when enabled (cfg_reinitialize_neurons = true) and some swaps were done
during the previous swap optimization process (of the new shortest path
competition winner). To reinitialize neuron positions according to some
path (reinitialize_neurons(path)) means to run Alg. 9 from line 3. It
places the neural string so that it copies the specified path (compare with the
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Parameter Value

Initial value of gain G 40
Learning rate µ 0.6
Neighbourhood size d∗ 0.2m
Gain change parameter α 0.03
Termination threshold max_error 10−3

Maximum number of iterations max_iterations 180
Threshold of ignored moves IGNORE_MICROMOVE_THRESH 10−6

Threshold of postponed moves SMALLMOVE_THRESH 0.01
Normalization threshold 10−30

Threshold of stored swaps SWAP2_THRESH (do_swap2 subroutine) 0.1
centroid_init first iteration gain Gc-init 500
centroid_init first iteration learning rate µc-init 0.04

Table 3.3: NE-Basic SOM – parameters and proposed values

FastTSP_init method in section 3.2.9). The optimized path is transformed
back to the neuron positions and the neural string shape this way.

During the development of the NE-Basic SOM algorithm, the proposed
values of parameters of the algorithm were set – see Table 3.3. Some of
parameter values were taken from the Basic SOM setting (see Table 2.1),
some of them were developed using a large number of numerical tests.
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Chapter 4

Experiments

The general arrangement of numerical experiments will be described in section
4.1. The specific settings of experiments and their results will be described in
section 4.2 for the Glimmer algorithm, in section 4.3 for the NE-Basic SOM
algorithm, and in section 4.4 for other algorithms. The overall comparison of
selected algorithms will be discussed in section 4.5.

4.1 Implementation notes

The algorithms from previous chapters are implemented in C++. The source
code is based on previous work of Roman Sushkov [11], Miroslav Kulich,
Jan Faigl, Stephen Ingram [8] and others. The Concorde library [3] (version
03.12.19) is used to perform Chained Lin–Kernighan heuristic for purposes of
evaluation and comparison (also referred to as L.K. in the following text). The
Visrottree library developed in Intelligent and Mobile Robotics Group, Czech
Technical University in Prague, is used to compute the graph of visibility.

The experiments were done on two different computational platforms:

. the local computer equipped with Intel(R) Core(TM) i7–6700HQ CPU
running at 2.6GHz, 16GB DRAM (with speed 21GB/s), 32kB of L1 cache
(169GB/s), 256kB of L2 cache (73GB/s) and 6MB of L3 cache (47GB/s)
(speed measured by Memtest86 5.01). Operating system was Ubuntu
Linux 16.04, kernel 4.10.0. The source code was compiled by G++
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Map name Number Min. path Min. path Used as

of guards length from length from Lopt for
n 1000x L.K. article [5] PDM,PDB

map 17 2653 2650 2650
dense 53 17912 17910 17910
potholes 68 15455 15450 15450
jh2 80 20194 20190 20190
pb4 104 65459 65460 65459
ta_2 141 32801 32800 32800
h2_5 168 94595 94300 94300
jari 200 30476 – 30476
potholes 200 22525 – 22525
var_density 200 22330 – 22330
potholes 282 27734 27730 27730
pb_15 415 84184 83960 83960
h2_2 568 132943 131620 131620
ta_1 574 54348 54110 54110

Table 4.1: Maps and “optimal” path length

version 5.4 with the “-O3 -ffast-math -march=native” compiler settings.
The experiments were done on one core of the CPU. Total consumed
CPU time is: 163 hours, 254, 000 runs.

. The cluster for parallel computing of the National Grid Infrastructure
MetaCentrum (https://www.metacentrum.cz). Because it is heteroge-
neous platform, the results are comparable in terms of quality but not
speed (the speed of individual computational nodes differs). The source
code was compiled by G++ version 4.9.2 with the “-O3 -ffast-math
-march=native” compiler settings. Total consumed CPU time is: 426
days, 4, 259, 000 runs.

Several working environments were employed as TSP tasks to measure
quality and speed of individual algorithms and their parameter settings. To
allow comparison with [5] and [11], the same environments were tested – see
Table 4.1: the name of polygonal map and the number of guards are stated
in the first two columns. The shortest route length obtained by the Concorde
library (using L.K. heuristic) is shown in the third column. The procedure
was ran 1000 times for every environment. The analogous value that was
collected in [5] is in the fourth column. The smaller value from the third and
the fourth column is stated in the last column and it is used as “optimal”
path length Lopt for PDM and PDB calculations – see (4.1) and (4.2).

The quality of results is reported as the percentage deviation of the mean
solution length to the optimal path length (PDM) and as the deviation of
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Map n ∆PDM
l∞ l∞ l2 l2 l3 l3 l8 l8
6 10 6 10 6 10 6 10

map 17 -1.9 -0.8 0.0 0.0 1,7 0,8 17,7 7,2
dense 53 -3.1 -3.0 0.0 0.0 3,1 0,0 173,2 37,3
potholes 68 -1.0 -0.9 0.0 0.0 5,7 1,4 238,6 57,1
jh2 80 -0.5 -1.2 -0.1 0.0 8,4 0,7 280,0 75,8
pb4 104 -0.4 -0.6 0.0 0.0 3,7 1,5 322,8 101,1
ta_2 141 -0.9 -1.9 -0.3 0.0 13,6 5,7 309,4 152,5
h2_5 168 1.0 -0.2 0.2 0.0 17,8 4,2 264,1 126,9
jari 200 -0.6 -1.8 -0.2 0.0 21,7 3,8 309,4 167,4
potholes 200 -1.1 -0.9 0.0 0.0 19,5 2,7 309,0 176,4
var_density 200 -1.4 -0.9 0.0 0.0 20,8 2,7 354,5 190,3
potholes 282 -1.2 -1.0 0.0 0.0 30,1 3,9 390,6 247,5
pb_15 415 -2.8 -3.1 0.0 -0.1 26,3 6,2 791,8 517,7
h2_2 568 -0.8 -3.3 0.0 0.2 53,4 10,3 569,7 487,6
ta_1 574 -1.6 -1.7 0.0 -0.1 74,1 14,1 590,5 540,1

min -3.1 -3.3 -0.3 -0.1 1,7 0,0 17,7 7,2
max 1.0 -0.2 0.2 0.2 74,1 14,1 791,8 540,1

Table 4.2: Glimmer: wspring versus wspring-alt direction vector usage.
Stated ∆PDM = PDM(wspring-alt used)−PDM(wspring used) for l∞, l2, l3 and
l8 norms and for number of dimensions ω = 6 and 10.

the best solution length to the optimal path length (PDB):

PDM =100(Lmean − Lopt)/Lopt, (4.1)
PDB =100(Lbest − Lopt)/Lopt. (4.2)

To express the difference between the results of two different algorithms
on the same environment, the ∆PDM = PDM2 − PDM1 value is used. The
ratio of the CPU time consumed λ = t2/t1 is used to evaluate how many
times one algorithm is faster than the other one.

4.2 Tests of Glimmer algorithm

The purpose of the first test is to decide when use the wspring direction
vector and when use the wspring-alt direction vector – for these two variants
of the Glimmer algorithm modification see section 3.1.2. To eliminate any
influence of possibly different behaviour of the sparse stress function with
different lp norms that would affect the number of iterations, the algorithm
was modified to run exactly 3000 iterations in every step of the Glimmer
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4. Experiments .....................................
v-cycle. The parameters of the Glimmer algorithm were set as in Table 3.1.
The lp norm was sequentially set to l∞, l2, l3 and l8. For each of these
settings, the number of dimensions ω was set to 6 and 10. Both variants of
the algorithm, i.e. using wspring or wspring-alt respectively, were run on all
environments (Table 4.1) 30 times.

The quality of output of the MDS algorithm Glimmer is evaluated this
way: the output of Glimmer is passed as an input to the Concorde library.
The length of the path found is measured using the original undistorted
distances E. The previous steps are performed for each of the 30 runs of the
test run and the Lmean value is calculated. Finally the PDM is computed
from the equation (4.1).

The differences between PDM when wspring-alt vector was used and PDM
when wspring was used for various combinations of the lp norm and ω settings
are stated in Table 4.2. From the last columns follows, that for the l3 and the
l8 norms it is much better to use the wspring algorithm variant whether for
ω = 10 or ω = 6. For the l∞ norm, the results are opposite – it is better to
use wspring-alt variant. For the l2 norm, there is no difference between wspring
and wspring-alt variants which is in the agreement with the theoretical results
(see section 3.1.2). Therefore, the direction vector wspring will be used with
the l3 and the l8 norms and the vector wspring-alt with the l∞ norm in all
following tests.

The purpose of the second test is the comparison of speed and quality of
the Glimmer algorithm for different lp norms. To eliminate any influence of
possibly different behaviour of the sparse stress function with different lp norms
that would affect the number of iterations, the algorithm was modified to run
exactly 400 iterations in every step of the Glimmer v-cycle. The parameters of
the Glimmer algorithm were set as in Table 3.1. The lp norm was sequentially
set to l2, l3, l8 and l∞ and the number of dimensions ω was set to 6 and 10.
The algorithm was run on all environments (Table 4.1) 30 times. The CPU
time consumed was measured from the start of the Glimmer algorithm to the
end – i.e. geodetic distances E and L.K. computations were excluded. The
quality of output was evaluated by L.K. as in the previous test.

The differences between PDM(lp used) and PDM(l2 used) and the ratios
of CPU time consumed tp/t2 for l3, l8 and l∞ norms and ω = 10 are stated
in Table 4.3. The results for ω = 6 are similar. The table shows that the
Glimmer algorithm using l3 or l8 norm is approximately 5 times slower than
the variant using l2, while the l∞ norm is about 10% slower than l2. There
are no benefits in engaging either l3 or l8 norms – the differences of PDM are
close to zero. Therefore, the l3 and l8 will be excluded from the following
tests.
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Figure 4.1: PDM for l2 and l∞ norm, ω = 6, various ε, selected environments.
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Map n ∆PDM tp/t2 ∆PDM tp/t2 ∆PDM tp/t2

l3 l3 l8 l8 l∞ l∞

map 17 -0.4 3.9 0.1 3.9 1.3 1.1
dense 53 0.0 4.9 1.1 4.9 -0.8 1.1
potholes 68 0.1 5.1 0.5 5.1 0.9 1.1
jh2 80 -0.2 5.2 -0.6 5.2 -0.7 1.1
pb4 104 0.0 4.7 0.2 4.6 0.1 1.1
ta_2 141 0.0 4.8 -0.3 4.8 -0.9 1.1
h2_5 168 -0.3 4.9 -0.5 4.9 1.9 1.1
jari 200 0.2 5.1 0.5 5.1 0.9 1.1
potholes 200 0.1 5.1 0.7 5.1 0.2 1.1
var_density 200 0.0 5.0 0.5 5.1 0.1 1.1
potholes 282 0.1 5.1 0.6 5.1 0.3 1.1
pb_15 415 0.2 5.3 0.7 5.3 -1.2 1.1
h2_2 568 -0.2 5.4 -1.6 5.3 -2.2 1.1
ta_1 574 0.1 5.4 0.4 5.3 -0.6 1.1

min -0.4 3.9 -1.6 3.9 -2.2 1.1
max 0.2 5.4 1.1 5.3 1.9 1.1

Table 4.3: Glimmer: speed and quality of different lp norms in comparison
with l2. Stated ∆PDM = PDM(lp used) − PDM(l2 used) and ratios of CPU
time consumed λ = tp/t2 for l3, l8 and l∞ norms and for number of dimensions
ω = 10.

The purpose of the third test is to set appropriate value of the Glimmer
algorithm termination threshold ε. The parameters of the Glimmer algorithm
were set as in Table 3.1. The ε was sequentially set to 10−4, 10−5, 10−6 and
10−7. The lp norm was set to l∞ and l2 and the number of dimensions ω
was set to 6 and 10. The algorithm was run on all environments (Table 4.1)
100 times. The quality of output was evaluated by L.K. as in the first test.

The resulting values of PDM for ω = 6 for selected environments are shown
at Fig. 4.1. The values for ω = 10 are similar. It follows from the results,
that the value proposed in [8] (10−4) is too high for the purpose of solving
the TSP task. The significant decrease of PDM is achieved by changing ε
from 10−4 to 10−5. For l2 norm, further reduction of ε brings only a small
improvement to the PDM. Thus appropriate value will be ε = 10−5 when
using l2 norm. For l∞ norm, the situation is more complicated: the setting
of ε to 10−6 instead of 10−5 should be considered. But decreasing of the ε
threshold increases the number of iterations and thus it slows down the whole
algorithm. Moreover, other tests showed that changing ε to 10−6 improves
the quality of solution only negligibly when the Glimmer MDS algorithm is
used with Basic SOM or CAN. The ε threshold will be set to 10−5 for all
further tests unless stated otherwise.
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Map n PDM PDM ∆PDM t t λ
false true false true

map 17 0.1 0.1 0.0 0.001 0.001 0.989
dense 53 4.9 4.2 -0.7 0.013 0.013 0.979
potholes 68 2.5 2.5 -0.1 0.021 0.020 0.967
jh2 80 0.9 1.0 0.1 0.027 0.027 0.990
pb4 104 0.0 0.1 0.0 0.051 0.050 0.986
ta_2 141 2.0 1.7 -0.3 0.093 0.086 0.920
h2_5 168 0.3 0.3 0.0 0.179 0.142 0.797
jari 200 0.7 0.6 -0.1 0.204 0.169 0.829
potholes 200 4.1 3.4 -0.7 0.256 0.176 0.688
var_density 200 3.4 3.2 -0.3 0.178 0.156 0.873
potholes 282 4.2 3.6 -0.6 0.459 0.342 0.746
pb_15 415 0.8 0.9 0.1 1.545 0.944 0.611
h2_2 568 1.2 0.8 -0.3 2.739 1.608 0.587
ta_1 574 3.8 3.4 -0.4 3.227 1.650 0.511

min 0.0 0.1 -0.7 0.001 0.001
max 4.9 4.2 0.1 3.227 1.650

Table 4.4: NE-Basic SOM – neuron reinitialization test.
Stated PDMfalse, PDMtrue, ∆PDM = PDMtrue − PDMfalse,
the CPU time consumed tfalse, ttrue and their ratio λ = ttrue/tfalse.

4.3 Tests of NE-Basic SOM algorithm

To decide whether to use the reinitialization of neuron positions (see sec-
tion 3.2.12 and Alg. 15, line 9), i.e. wheter to set the value of parameter
cfg_reinitialize_neurons to true, the numerical experiment was done. The
NE-Basic SOM algorithm was used with the parameters set according to
Table 3.3, with the initialization procedure centroid_init and with this
configuration:
cfg_running_findpath = true
cfg_running_findpath_alt = true
cfg_running_swaps = true
cfg_running_swaps_always = false
cfg_final_swaps = true.
The parameter cfg_reinitialize_neurons was set to false and true respectively.
The test was run on all environments (Table 4.1) 100 times. The CPU time
consumed was measured from the start of the NE-Basic SOM algorithm to
the end. The quality of output was evaluated by PDM.

The PDMfalse values, the PDMtrue values and their difference ∆PDM =
= PDMtrue − PDMfalse are stated in Table 4.4. The CPU time consumed
tfalse, ttrue and their ratio λ = ttrue/tfalse are stated too.
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It follows from the fifth column of the table, that setting the parameter

cfg_reinitialize_neurons to true will improve the quality of solutions only
slightly. However, the main change is obvious from the last column – the
algorithm runs faster. This speedup is negligible for n small, but the algorithm
runs almost twice faster for n large. It confirms our assumption from section
3.2.12 that the benefits of swap optimization of path can be transferred to
the neuron string by the procedure of neuron reinitialization and that this
method can work in practice.

4.4 Other tests

Besides the tests already described, other test were done too. The test (l2 and
l∞ used, ω = 6 and 10, ε = 10−6, the CAN termination threshold max_error
sequentially increased from 10−10, the other parameters set as in Tables 3.1
and 2.2, 100 runs on all environments with the Glimmer & CAN algorithms)
showed that the appropriate value of max_error threshold is 10−3. The
progress of experiment was observed not only by the PDM of solutions, but
mainly by monitoring the difference between the number of CAN iterations
realized and the iteration number, when the winning path was discovered. This
is made possible by the fact, that the CAN algorithm finds shortest solutions
in the first part of iteration process only. For example, the winning path is
found at the latest in the 155-th iteration even if the CAN runs 397 iterations
total for ta_1 environment, ω = 10, l2 norm. It fundamentally simplifies the
process of max_error threshold setting. The max_error threshold will be set
to 10−3 for all further tests.

Another test (l2 and l∞ used, ω = 6 and 10, ε = 10−5 and 10−6, the CAN
termination threshold max_error = 10−3, the other parameters as in Ta-
bles 3.1, 2.1 and 2.2, 100 runs on all environments with the Glimmer & Ba-
sic SOM algorithms and the Glimmer & CAN algorithms, evaluated by PDM)
showed that it is sufficient to set number of dimensions ω to 6. Changing ω
to 10 brings very small decrease of PDM of solutions only. Moreover, it
follows from the results that the Glimmer & Basic SOM combined algorithm
is significantly outperformed with the combination of the Glimmer & CAN
both in speed and quality.
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4.5 Overall comparison

Based on the results of preliminary experiments, the following numerical
tests were selected for the overall comparison of speed and solution quality of
individual algorithms:

. the Glimmer & CAN combined algorithm test with the following settings:
l2 norm used, the number of dimensions ω = 6, the Glimmer termination
threshold ε = 10−5, the CAN termination threshold max_error = 10−3,
the other parameters set as in Tables 3.1 and 2.2.. The Glimmer & CAN combined algorithm test using l∞ norm. The rest
of the settings as in the previous experiment.. The SMACOF & CAN combined algorithm test with the following
settings: the SMACOF as implemented in [11], the number of dimensions
ω = 6, the Glimmer termination threshold ε = 10−5, the other parameters
set as in Table 3.1.. The NE-Basic SOM algorithm with the Gain change parameter α set
to 0.06, the other parameters set as in Table 3.3, centroid_init used.
cfg_running_findpath = false
cfg_running_findpath_alt = false
cfg_running_swaps = false
cfg_running_swaps_always = false
cfg_reinitialize_neurons = false
cfg_final_swaps = true.
This variant should be the fastest one among three selected NE-Basic
SOM variants. It will be referred to as the Fast.. The NE-Basic SOM algorithm with the Gain change parameter α set
to 0.03, the other parameters set as in Table 3.3, centroid_init used.
cfg_running_findpath = true
cfg_running_findpath_alt = true
cfg_running_swaps = false
cfg_running_swaps_always = false
cfg_reinitialize_neurons = false
cfg_final_swaps = false.
This variant does not use any swap optimization, therefore it will be
referred to as the Pure variant.. The NE-Basic SOM algorithm with the Gain change parameter α set
to 0.03, the other parameters set as in Table 3.3, centroid_init used.
cfg_running_findpath = true
cfg_running_findpath_alt = true
cfg_running_swaps = true
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cfg_running_swaps_always = false
cfg_reinitialize_neurons = true
cfg_final_swaps = true.
This variant should give the best results among the three selected NE-
Basic SOM variants. It will be referred to as the Best.

. The Chained Lin–Kernighan heuristic using the Concorde library was
run for purposes of comparison.

Each test was run on all environments (Table 4.1) 100 times. The CPU
time consumed was measured from the end of the initial computation of the
geodetic distances E to the end of the whole algorithm. The quality of output
was evaluated by PDM and PDB – see equations (4.1) and (4.2).

The results are stated in Table 4.5 (PDM values), 4.6 (PDB values) and 4.7
(the CPU time consumed). To allow the comparison with [5], the resulting
values of the mSME algorithm are attached in the last column. The values
of PDM are directly comparable because the experiments were done in the
same environments as in [5]. When comparing the PDB values, attention
must be paid to the fact that the PDB values in this work are based on 100
runs while the PDB values from [5] are base on 20 runs only.

The values of the CPU time consumed can not be directly compared,
because the speed of computer used in [5] differs from the speed of the local
computer which was used in this thesis. For approximate comparison, the
CPU times consumed by the Concorde library runs on the same environments
were evaluated and the estimate was made, that the computer used in [5] was
3.5 to 4.5 times slower. Therefore, the value tadapt/4, i.e. the time consumed
by the algorithm with the exclusion of the initialization part divided by 4,
was stated in the last column of Table 4.7.

The results show that the Glimmer & CAN combined algorithm with the
l2 norm outperforms the same algorithm with the l∞ norm both in quality
and speed: ∆PDM = PDM∞ − PDM2 equals 1.8 to 13.1 for individual
environments and λ = t∞/t2 equals 1.2 to 2. The SMACOF & CAN combined
algorithm is similar to the Glimmer & CAN l2 combined algorithm in quality
of solutions on nine environments, but is worse (∆PDM = 1.6 to 3.6) on
other four environments and significantly worse on h2_5: ∆PDM = 9.6. The
SMACOF & CAN algorithm is three times faster on the environment with the
least guards (map), the speeds are similar on two other environments, dense
and pb4, and the SMACOF & CAN is 2 to 9 times slower on the remaining
eleven environments. The PDM of the Glimmer & CAN l2 ranges from 2.1
to 16.2, which may be acceptable. The PDM of the Glimmer & CAN l∞ and
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the SMACOF & CAN reach up to 25.0, and worse the run of the SMACOF
& CAN can take up to 22 seconds.

The Fast variant of NE-Basic SOM is faster (λ = 2.2 to 3.6) than the Best
variant. On the other side, the Best variant has better result ∆PDM = 3.0
for the dense environment and slightly better results ∆PDM = 0.1 to 1.6 for
the others. The Pure variant works slower than the Fast variant (λ = 2.1
to 2.5), and the quality of its results is similar (∆PDM = −1.2 to 1.2). It
shows that even variant with no swap optimizations can work well but slower.
The Fast variant has PDM equal 0.1 to 7.1 and the Best variant 0.1 to 4.2
which should be acceptable.

The speed ratio λ varies when comparing the mSME algorithm with the Fast
variant. It shows that mSME is 7.4 to 13 times slower for the environments
with the lowest number of guards, 2.9 to 7.5 times slower for the middle
environments and 1.1 to 2.4 times slower for the environments with the highest
number of guards. The Fast variant returns significantly better results for the
map (∆PDM = 9.0) and for the dense (∆PDM = 5.0) environments. It get
slightly better results for the others: ∆PDM = 0.5 to 1.9. The comparison of
the mSME with the Best variant shows similar behaviour: λ = tadapt/4/tbest
decreases from 4.6 to 0.3 as n increases. The Best variant returns better
results: ∆PDM = 10.2 for map, ∆PDM = 8.0 for dense and ∆PDM = 0.6 to
3.1 for the others.

The Glimmer & CAN l2 algorithm is slower than the Fast variant for the
tested environments: λ decreases from 23 for the smallest n to 4 for the
highest n. It returns significantly worse solutions: ∆PDM = 14.9 for h2_2
and ∆PDM = 0.3 to 8.6 for the others.

To summarize the previous results, it can be stated that the Fast variant
of the NE-Basic SOM algorithm outperforms the mSME algorithm [5] when
the number of guards n is smaller, i.e. n is lesser than approximately 500.
Their performance will be similar for higher n and better performance of the
mSME algorithm can be expected for even higher n.
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Map n Glimmer Glimmer SMACOF NE-Basic NE-Basic NE-Basic Lin.Kern. Fa-SOM
CAN CAN CAN SOM SOM SOM mSME

l2, ω = 6 l∞, ω = 6 ω = 6 Fast Pure Best

map 17 5.6 17.8 6.3 1.3 0.1 0.1 0.1 10.3
dense 53 9.5 14.9 10.2 7.1 7.7 4.2 0.0 12.1
potholes 68 4.2 6.0 4.0 3.9 4.0 2.5 0.0 5.6
jh2 80 2.8 7.6 3.2 1.2 1.3 1.0 0.0 1.8
pb4 104 2.1 5.7 2.1 0.1 0.2 0.1 0.0 0.7
ta_2 141 11.1 21.7 11.7 2.5 2.6 1.7 1.2 3.3
h2_5 168 7.0 14.7 10.8 0.6 1.2 0.3 0.7 2.3
jari 200 5.7 13.0 9.3 1.1 1.5 0.6 0.6 –
potholes 200 6.1 9.0 6.3 5.0 6.2 3.4 0.0 –
var_density 200 5.8 8.8 6.3 4.1 4.0 3.2 0.0 –
potholes 282 5.4 8.1 5.4 4.6 5.2 3.6 0.1 6.6
pb_15 415 5.5 11.4 7.3 1.4 1.6 0.9 0.4 1.8
h2_2 568 16.2 25.1 25.8 1.4 2.1 0.8 2.4 2.8
ta_1 574 10.5 23.6 12.2 4.3 5.0 3.4 0.5 6.0

min 2.1 5.7 2.1 0.1 0.1 0.1 0.0 0.7
max 16.2 25.1 25.8 7.1 7.7 4.2 2.4 12.1

Table 4.5: The overall comparison – PDM
PDM values of the mSME algorithm taken from [5].

58



..................................
4.5.O

verallcom
parison

Map n Glimmer Glimmer SMACOF NE-Basic NE-Basic NE-Basic Lin.Kern. Fa-SOM
CAN CAN CAN SOM SOM SOM mSME

l2, ω = 6 l∞, ω = 6 ω = 6 Fast Pure Best

map 17 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0
dense 53 5.7 5.6 5.9 2.0 4.6 1.3 0.0 7.3
potholes 68 1.8 2.3 1.8 1.7 2.2 0.3 0.0 3.5
jh2 80 0.5 3.4 0.5 0.1 0.1 0.1 0.0 0.4
pb4 104 0.3 1.4 0.7 0.0 0.0 0.0 0.0 0.0
ta_2 141 7.9 15.5 7.4 1.2 1.5 1.0 0.0 2.4
h2_5 168 4.4 8.7 7.9 0.1 0.2 0.0 0.3 1.2
jari 200 3.1 8.1 7.5 0.4 0.6 0.1 0.1 –
potholes 200 4.3 4.9 4.3 2.8 4.5 1.6 0.0 –
var_density 200 2.3 4.9 2.9 1.8 1.7 1.1 0.0 –
potholes 282 3.8 4.8 3.6 2.7 2.8 1.7 0.0 4.0
pb_15 415 3.7 6.7 5.4 0.6 1.2 0.4 0.3 1.4
h2_2 568 13.1 19.4 20.6 0.7 1.5 0.3 1.3 1.7
ta_1 574 6.5 13.4 8.2 3.2 4.1 2.4 0.4 4.9

min 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0
max 13.1 19.4 20.6 3.2 4.6 2.4 1.3 7.3

Table 4.6: The overall comparison – PDB
PDB values of the mSME algorithm taken from [5].
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Map n tMDS + tCAN tMDS + tCAN tMDS + tCAN t t t t tadapt/4
Glimmer Glimmer SMACOF NE-Basic NE-Basic NE-Basic Lin.Kern. Fa-SOM
CAN CAN CAN SOM SOM SOM mSME

l2, ω = 6 l∞, ω = 6 ω = 6 Fast Pure Best

map 17 0.015 0.030 0.005 0.001 0.001 0.001 0.001 0.005
dense 53 0.052 0.092 0.042 0.004 0.011 0.013 0.006 0.059
potholes 68 0.087 0.131 0.370 0.007 0.017 0.020 0.009 0.074
jh2 80 0.094 0.151 0.194 0.009 0.023 0.027 0.015 0.082
pb4 104 0.213 0.366 0.186 0.017 0.040 0.050 0.044 0.074
ta_2 141 0.309 0.480 0.659 0.032 0.072 0.086 0.089 0.092
h2_5 168 0.477 0.724 1.754 0.043 0.097 0.142 0.138 0.320
jari 200 0.510 0.788 1.742 0.059 0.138 0.169 0.098 –
potholes 200 0.499 0.783 2.581 0.058 0.136 0.176 0.054 –
var_density 200 0.510 0.786 1.452 0.059 0.139 0.156 0.058 –
potholes 282 0.794 1.211 5.611 0.118 0.277 0.342 0.084 0.286
pb_15 415 1.520 1.905 3.101 0.262 0.576 0.944 0.405 0.365
h2_2 568 2.529 3.387 22.250 0.487 1.095 1.608 0.631 1.070
ta_1 574 2.103 2.701 12.043 0.516 1.145 1.650 0.415 0.550

max 2.529 3.387 22.250 0.516 1.145 1.650 0.631 1.070

Table 4.7: The overall comparison – CPU time consumed [s]
tadapt values of the mSME algorithm taken from [5].
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Chapter 5

Extensions for other routing problems

The extensions of the proposed solutions to other routing problems in a polyg-
onal domain will be discussed in this chapter.

The multi-robotic scenario or Multiple Traveling Salesman Problem (mTSP)
is the first one, and it differs from the standard TSP by engaging more than
one salesman. Moreover, the path of every salesman must begin and finish at
the special point called depot [4]. It can be solved by Self Organizing Maps
involving more than one neuron string. Some of fundamental operations
must be modified, e.g. when the winning neurons are searched those ones
from shorter strings are preferred [4]. Both methods mentioned in chapter 3
can be used to solve the mTSP in the polygonal domain. The method
using the Glimmer algorithm is straightforward – the task is transformed by
multidimensional scaling from the polygonal domain to the Euclidean domain,
and then it is solved by ordinary Euclidean SOM procedure for mTSP. The
non-Euclidean SOM (NESOM) technique can be used too. However, it should
be noted that to calculate the actual lengths of individual neuron strings,
the neuron-neuron distances are demanded, which is something the NE-Basic
SOM does not need. Therefore, the caching of the matrix CPDP must be
extended to the complete version (see section 3.2.6).

The zookeeper problem can be described as the task to find the shortest
path to visit the specified parts of frontier of polygonal obstacles instead of
guards with some simplification [4]. The NESOM technique must be modified
to be able to find such a point on the specified line which is closest to specified
neuron. Moreover, it must be modified to be able to move the neuron toward
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5. Extensions for other routing problems ..........................
arbitrary point on the line. The former can be effectively done using the CDP
and CPDP cache, the latter can be done by composing two basic moves.

For the other problems, e.g. the Watchman route problem or the Safari
routing problem, possible solution by methods used in this thesis are not
straightforward.
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Chapter 6

Conclusions

Two methods for solving the traveling salesman problem in the polygonal
domain were described in this thesis. The method using multidimensional
scaling – the Glimmer algorithm – to transform the TSP task in the polygonal
domain to the TSP task in the Euclidean domain to be used with SOM
methods afterwards was described and implemented. The Glimmer algorithm
was modified to run with norms other than l2. Two variants with different
direction vectors were introduced. The Glimmer algorithm was successfully
used with the Basic SOM and CAN algorithms and it outperforms the
previously used MDS procedure SMACOF, with a few exceptions. However,
the expected profit from the use of other norms has not been achieved.

The completely new non-Euclidean form of SOM technique was introduced.
It was implemented for the Basic SOM algorithm, but it can by implemented
for the CAN algorithm easily. The main disadvantage of the NE-Basic SOM
method could be its higher asymptotical complexity in comparison with the
other algorithms.

The results of numerical experiments were compared with the result from [5]
and it has been shown that for the number of guards smaller (n is lesser than
500 approximately) the other SOM based methods are outperformed by the
NE-Basic SOM algorithm. It is expected that the mSME algorithm would
outperform the others for higher n, but it was not tested experimentally.

The methods mentioned above could be improved in various ways. The
non-Euclidean version of CAN algorithm (NECAN) could be completed,
tuned up and tested. The efficiency and the speed of the swap optimization
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6. Conclusions .....................................
routines could be increased – e.g. by storing the list of previously found swaps
or by using some heuristic instead of searching for the best swap possible.
The changes of the µ parameter while running the algorithm as in [1] could be
tested. The combined method Glimmer & Basic SOM & NE-Basic SOM using
the non-Euclidean method for the distance corrections only and working with
the sparse matrix of the distance corrections ∆D could be completed and
tested for lowering the asymptotic complexity, i.e. to make method usable
for even higher values of n.
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Appendix B

CD Content

Directory name Description
data Output of numerical experiments
maps Maps used for testing
progs Source code
scr_local Auxiliary scripts
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