
Czech Technical University
Faculty of Electrotechnics

Bachelor Thesis

Localization system for a multi-robot
platform

Author:

David Kolečkář

Program: Open Informatics

Specialization: Computer Systems

Prague, summer 2017

Advisor:

Ing. Jan Chudoba

Department of Cybernetics

česxÉ wsoxÉ učeníTEcHNlcxÉ v PRAZE
Faku lta elektrotech nická
Katedra měření

Student:

ZADÁNí gaxnlÁŘsxÉ pnÁce

David Kolečkář

Akademický rok 2016.17

Prof. lng. Pavel Ripka, CSc.
děkan

Studijníprogram: otevřená informatika
obor: Počítačové systémy

Název tématu česky: Lokalizační systém pro multi-robotickou platformu

Název tématu ang|icky: Localization System for a Multi.robot System

Pokyny pro vypracování:

Úkolem práce je návrh a imp|ementace systému pro |okalizaci mobi|ních robotů, pohybujících se
v omezené ob|asti, metodami zpracování obrazu něko|ika kamer snímajících pracovní ob|ast za
předpok|adu, Že roboty budou vybaveny vizuálnímivzory umoŽňujícímijejich identifikaci.
Seznamte se Se zák|ady 3D počítačového vidění a metodami pro robustní vyh|edávání předem
definovaných vizuá|ních vzorů v obraze' Po konzu|taci s vedoucím práce zvo|te vhodnou metodu
detekce vizuálních vzorů. Imp|ementujte systém pro současné zpracovánÍ obrazu z něko|ika kamer,
výpočet po|oh rozpoznaných robotů a poskytování informací o po|oze da|ším aplikacím. Navrhněte
proceduru ka|ibrace ce|ého systému. Vytvofte prototyp systému s něko|ika kamerami a vyhodnot'te
dosaŽitelnou přesnost IokaIizace.

Seznam odborné literatury:
t1] Šonka, M., H|aváč, V.: Počítačové vidění. Grada, Praha '1992

121 Olson, Edwin, Tag, April: A robust and flexible visual fiducial system, in Proceedings of the IEEE
lnternational Conference on Robotics and Automation (ICRA), p. 3400-3407,IEEE,2011

t3] Krajník' T., Nitsche, M., Faig|, Vaněk, Saska, Přeuči|, Duckett, Mejai|: A practica| multirobot
localization system, Journal of Intelligent and Robotic Systems, Heidelberg, Springer (2014).

Vedoucí baka|ářské práce: |ng. Jan Chudoba (K 13133)

Datum zadání baka|ářské práce: 17 . února 2017

P|atnost zadáni do1 30. září 2018

L. S.

Prof. lng. Jan Holub, Ph.D.
vedoucí katedry

Y Praze dne 17. 2.2017

l Platnost zadání je omezena na dobu tří následuj ících semestrů.

Declaration

Thereby I declare that all work was done on my own and all sources used are cited.
Prague 22.5.2017

Acknowledgements

I would like to thank mr. Chudoba for his time and for introducing me to this interesting subject,
I have never before dealt with. To my family for all the support and last not least to Liška for all
the happiness and love.

Thesis Abstract

This work aims at learning the basics of 3D computer vision and object tracking. Models used for
representing the geometry of the scene and theorems used for projecting the object to the image
are described. This work also gives overview over popular camera calibration methods and over
the popular robust tag tracking methods. The process of forming 2 dimension camera image from
three dimensional object in front of the camera is described, with respect of different coordination
systems used during the process. This work aims also to get familiar with the popular software
tools, applications and libraries used in computer vision.

Abstrakt práce

Cílem této práce je seznámit se základy počítačového vidění , robustního vyhledávání vzorů z obrazu.
Je popsána geometrie a základy teorie potřebné k pochopení vytvoření obrazu kamerou. Dále je pop-
sán využitý software a nástroje při tvorbě aplikace. Na závěr jsou poznatky z teorie implementovany
kódem.

Key words

computer vision, camera calibration, AprilTag, camera pose detection, OpenCV

Klíčová slova

strojové vidění, kalibrace kamery, AprilTag, určení pozice kamery, OpenCV

Contents

1 Introduction 1

2 Introduction to theory basis 2

2.1 Introduction to Camera and Single View Geometry 2

2.2 Homogeneous coordinates . 2

2.3 Four coordinate systems . 3

2.4 Camera Representation . 3

2.5 Transformations between coordinate systems . 5

2.5.1 Extrinsic parameters . 5

2.5.2 Intrinsic parameters . 7

2.5.3 Camera matrix . 9

2.6 Planar Geometry . 9

2.6.1 Homography . 9

2.7 Camera resectioning . 9

3 Used Software 11

3.1 OpenCV . 11

3.1.1 OpenCV interface . 11

3.2 AprilTag . 13

3.2.1 Tags description . 13

3.2.2 AprilTag software . 15

4 Implementing solution 15

4.1 Finding Camera Intrinsic Parameters . 15

4.2 Aplication description . 18

4.2.1 Build - CMake . 20

4.2.2 Input - Configuration file . 22

4.2.3 Encountered problems during the application implementation 23

4.3 Building the model . 23

5 Results 25

1 Introduction

First task was to get familiar with robust pattern recognition software and techniques that could be
used for solving the task. During this part of research also learn the basics of computer vision, which
comprises from several separate but related topics as projective geometry, camera and single view
geometry and multiple view geometry. It is also necessary to be familiar with linear algebra, matrix
operations and optimization methods. While I had no previous experience with computer vision
as subject of study from before I had been expecting that this goal will be altogether difficult, as
some basic solution could be found after grasping the basics but to get more reasonable and precise
results the theoretical and mathematical machinery could be very complex.

Second goal was to do proper research and find out possible candidate for software that will be
used, to choose one or two – for comparison – and install the software. As I have recalled the robotics
and computer vision software and tools are becoming more widespread today and some are open-
source, so I was expecting that there will be some base I could work with, even though I have never
worked with such a software before. Next to read the documentation of the chosen software and
to get familiar with the libraries that would be used, possibly to find different ports and to choose
the most suitable one for the application and programming language. I have been expecting that
this goal also could be a bit demanding, while getting hands on new software usually takes some time.

Third goal was - after getting the theoretical basics and having the overview of the problem
and with found sufficient software – to try figuring out possible solutions for the final application
structure, needed tools and equipment, also as researching how the similar problems are usually
solved.

Final goal was implementing the solution with knowledge of previously learned theory and ac-
quired computer vision and robust pattern recognition software tools. Building the real world model
and experimenting with robust pattern recognition with data from multiple camera system.

1

2 Introduction to theory basis

In this chapter I try to introduce the necessary knowledge base in order to understand the building
blocks, concepts and algortihms used for creating logic behind the camera platform. I start by
geometry of camera and how image is made by it, all the theory mentioned is afterwards used in the
software solution.

2.1 Introduction to Camera and Single View Geometry

During the process of forming the 2-dimensional images of the 3-dimensional world objects with
camera, four different changes in coordinate system must be taken into count. 2D image point coor-
dinates are in most literature denoted by lower-case bold letters x and 3D object point coordinates
are written in upper-case bold letters X . Coordinates could be expressed either in
inhomogeneous coordinates : x = [x, y]T , X = [X, Y, Z]T

or in homogeneous coordinates x = [x, y, 1]T , X = [X, Y, Z, 1]T .

2.2 Homogeneous coordinates

In computer vision tasks and projection geometry is often very convenient or even necessary to
compute the solution - to express coordinates of points in so called homogeneous coordinates. In
homogeneous coordinates (x, y, 1) and (3x, 3y, 3) and (kx, ky, k) for k 6= 0 represent the same point,
or in other words the points that differ in common multiple represent the same equivalence class.
Converting inhomogeneous coordinates of two dimensional point to homogeneous coordinates is
done by [u, v]T → [ku, kv, k]T the inversion back to inhomogeneous from homogeneous coordinates
is achieved by u = u/k and v = v/k . When converting from inhomogeneous coordinates to
homogenous the k is often choose as k = 1, because it could by seen like scaling. Thus scaling by 1
is the same. [u, v]T → [u, v, 1]T . Some important reasons for usage of homogeneous coordinates are

• enables non-linear mapping such as perspective projection to be represented by linear matrix
equations

• to express points in infinity more easily without using limits

• intersection of lines express as cross product of two vectors

The topic of geometrical entities in infity is more complex so for further information see [3] or [1]

Degrees of Freedom (DOF) It is also important to refer about degrees of freedom abr.DOF
. x = [x, y]T representing a 2D point in R2 has in homogeneous coordinates three entries but it
has only two parameters that can vary independently x and y. So the degrees of freedom could be
defined as the number of parameters that can vary independently. [1]

2

2.3 Four coordinate systems

World coordinate system First coordinate system is the 3-dimensional Euclidean coordinate
system of the world. Any world 3D object could be expressed in arbitrary coordinate system.
Consider a room with two pins lying on the ground. Observer could say that origin of this world
coordinate system is exactly where the pinhead of the first pin is. So could the observer say that
the origin will be at the head of the second pin. Or the origin could be choosen to be anywhere else.
So long as coordinate system in arbitrary space is human abstract, up to this point – while referring
about arbitrary world objects, it is entirely up to observer, where will be the origin placed and how
will be the axes directed.

Camera coordinate system Second coordinate system is the 3-dimensional Euclidean coordinate
system of the camera. This coordinate system expresses world objects related to the frame of the
camera. Origin is located at the optical center O. The coordinate axis Z lies on the optical axis and
its positive direction is pointing from the camera to the scene in front of the camera. Not always
but usually it is said that Y axes points from up to down in its positive direction. The anatomy and
geometry of camera is described later.

Image plane coordinate system Third coordinate system is the 2-dimensional Euclidean co-
ordinate system of the image plane. This coordinate system has its axes aligned with the camera
coordinate system, axis lying in the image plane corresponding to Camera coordinate system axis
X will be denoted ui and second image plane axis lying in this plane and corresponding to Camera
coordinate system axis Y will be denoted vi .

Pixel coordinate system also called image affine coordinate system (see paragraph Intrinsic
camera parameters as 2D transformations). It represents the coordinate system of the pixels on the
chip.

[1]

2.4 Camera Representation

Introduction The most simple Camera model we can consider - a camera which has no lens
to focus light and has a small aperture that could be considered as a single point is called pinhole
camera. This point is denoted as optical center O(in some literature also called center of projection).
In the means of geometrical optics we could describe a ray of light by a single line. The light rays
passing through the pinhole camera form behind the camera a 2 dimensional inverted image of the
3D world in front of the pinhole camera, this plane where the world scene is projected is called image
plane. The axis perpendicular to the image plane and passing through the optical center is called
optical axis.

3

Pinhole Camera Model Pinhole Camera Model describes geometry and the mathematical model
of relations between a world – three dimensional - objects and their two dimensional projections onto
a image plane using a pinhole camera. By virtual image plane is meant a virtual plane in front of
the pinhole camera containing the upright image of the scene. Since pinhole camera is considered to
have no lenses, this model does not include geometric distortions – aberrations - of image created
by light passing through real lenses, while no lens is perfect. Using this model is considered suitable
for most computer vision tasks .

We could further consider that our camera have a thin lens, which offers still good approximation
to pinhole camera. More parameters to our model can be added, since the lenses have some inherent
parameters. Rays parallel with optical axis after passing through the thin lens bends (in case of
convex lenses - such as the lens in human eye- after passing through lens towards the optical axis)
and intersect behind the lens with optical axis in point called focal point. Focal length is than the
distance of the focal point from the optical center. Image plane is located at from the optical center
in the focal length.

Aberations For this topic we could consider few common lens aberrations. Spherical aberration
occurs when light beam coming into lens is too wide, making paraxial rays bend more than those
on the edges of the lens.

Figure 1: Simple pinhole camera geometry. Fc is the center of projection = optical center, f is the
focal length. (Image courtesy of OpenCV documentation)

central projection Let be the optical center of the camera the center of projection of 3D scene
to its 2D image in in the image plane. Rays passing through the centre of projection intersects with
the image plane. This intersection could be seen as a image of the ray thus all the points lying on

4

this ray. This geometricaly describes the idea of equivalence classes in homogeneous vectors. While
by choosing different scales represents moving on the ray.

2.5 Transformations between coordinate systems

To project 3-dimensional world object in metres in front of the camera on the 2 dimensional image
on the camera’s chip in pixels, we have to make three transformations between these previous four
coordinate system. In the end I will show that all these transformations can be described as one 3x4
homogeneous matrix P.

2.5.1 Extrinsic parameters

This section describes transformation between arbitrary world coordinate system and camera coor-
dinate system. This transformation is composed of rotation and translation which relates those two
coordinate systems. These parameters can be expressed as extrinsic matrix.

Extrinsic camera matrix It is rotation-translation matrix composed of a 3x3 rotation matrix R
and by translation 3x1 vector t . Columns of R expresses rotations along the X , Y and Z coordinate
axes and the vector t represents translations in X, Y and Z axis directions. The translation could be
geometricaly seen as aligning origins of these two coordinate systems and rotation represents aligning
the axes. Both rotation R and translation t have the property of isometry - rigid transformation -
with the property of preserving distances between every pair of points.

Expressing point Xw in world coordinates as point Xc in camera coordinate system represents
following equation in inhomogeneous coordinates. Both points represent the same 3D point but in
different coordinate systems.

Xc = R(Xw −C) (1)

Where C is camera center in the world coordinate system and Rc describes orientation of the camera
frame in it. [3] .
So to express point from world coordinate system in camera relative coordinate system you must
perform this operation but C itself represents optical center(camera coordinate system) in world
coordinate system. This often causes a confusion. To join R and t in one matrix it is necessary to
express elements of this equation in homogeneous form (in order to match matrix dimension). So
for this equation the extrinsic matrix would have form of

Xc =

[
R −RC
0 1

]
X (2)

It makes it also square, wich is useful for following formulations of excintric matrix and compu-
tations.

5

I would like to show here two differences that are not clear from many literature and can cause
lot of confusion, since the notation is not always the same.

Substitution In the equation (1) we can substitute −RC = t which represents the position of
the world origin in camera coordinates. So now the equation is

Xc = RXw + t (3)

and the matrix can be written as

Xc

Yc
Zc
1

 =

r11 r12 r13 0
r21 r22 r23 0
r31 r32 r33 0
0 0 0 1

1 0 0 t1
0 1 0 t2
0 0 1 t3
0 0 0 1

X
Y
Z
1

 (4)

Or to see it other way around when we need to find out the camera center in world coordinates

C = −RT t

During these operation is used the fact that inverse of rotation matrix is equal to its transpose
and the inverse of translation vector is its negation.

To derive previous equations is very important, while this could be on of the key parts in under-
standing relationships in task of finding 3D position of visual pattern. [3] , [2]

Rodrigues formula Rodrigues rotation formula computes the 3 dimensional rotation matrix cor-
responding to a rotation by an angle θ about a fixed axes specified by a unit vector r ∈ R3 [4]

Many OpenCV functions accepts rotation matrices represented by the rotation vector, since
any rotation matrix has 3 degrees of freedom. OpenCV uses the Rodrigues rotation formula for the
computation of rotation 3x3 matrix from the 3x1 vector .The rotation vector r could be transformed
to rotation matrix R by OpenCV function cv::Rodrigues() which transforms r to R and vice versa
by following (Rodrigues) formula. For input vector v Angle of rotataion θ equals to θ = |v|2 =√
v21 + v22 + v23

Axis of rotation r is normalized input vector v

r = v
θ = v√

v21+v
2
2+v

2
3

R = I + sin θw + (1− cos θ)w2 where w is antisymmetric matrix

 0 −rz ry
rz 0 −rx
−ry rx 0

See [5] for full documentation.

6

2.5.2 Intrinsic parameters

The intrinsic camera parameters could be seen as affine 2D transformation or as parameters of
camera’s internal geometry.

Object to image In this part the transformation between the camera frame coordinate system
and the camera image coordinate system will be described. This is the part when comes to significant
information loss as we express three dimensional objects in just two dimensions. Thus it is R3 → R2

projection. The following expressions are derived from trigonometry, from triangle similarities.

Figure 2: triangle similarities. (Image courtesy of OpenCV documentation)

Included image description: f is the focal length u could be one of the image plane coordinates
and the X1 represents the corresponding camera frame 3D coordinate. Z axis is denoted as X3 . O
is the optical center of camera and image plane is denoted here as Q . Image depicts lookin in up
direction of Y coordinate of the camera coordinate system. From the triangle similarities comes the
following equations

u1
f

=
x1
z1

v1
f

=
y1
z1

(2)

The triangle similarity for axes v of image plane and Y of camera frame can be easily derived as
previous equation just by lookin on the same picture but just from to X camera axis this time.

from these equations it is now possible to derive relation between camera and image coordinates
systems. ui = Xcf

Zc
and vi = Ycf

Zc

transformation of a point written in homogeneous notation

ui =

 f 0 0 0
0 f 0 0
0 0 1 0

Xc (3)

Offset of principial point The camera’s "principal axis" is the line perpendicular to the image
plane that passes through the pinhole. Its itersection with the image plane is referred to as the
"principal point,". Nevertheles due to imperfections this principial point can be offset. It can be

7

imagined as when increasing or decreasing these parameters shifts the pinhole to the left or right or
up and down respectively.

Intrinsic Matrix

K =

 fx 0 u0
0 fy v0
0 0 1

 (4)

K =

 αx s x0
0 αy y0
0 0 1

 (5)

Intrinsic matix parametrized in pixel coordinatex by [3]

Each of these parameters represent geometric property of the camera.

• Focal length fx , fy , is distance of the focal point from the optical center and represents the
scaling along u and v image axes respectively.

• Principial point offset u0 v0

• Axis skew s, in representation of pinhole camera there would be no skew, while it is the
property of cameras where film, or photosensitive chip is placed off-perpendicular to optical
axes. It is often omited.

• for parameters in pixels αx = pixel_sizex ∗ fx , similarly for the rest of parameters

Intrinsic camera parameters as 2D transformations Intrinsic camera matrix can be view
as a set of affine 2D transformations. Matrix K can now be decomposed as a sequence of scaling,
shear and translation transformations. We could view Intrinsic camera transformations like as they
occur “post-projection” from the world scene to image plane, while it is performed within the image
plane.

fx s u0
0 fy v0
0 0 1

K

=

1 0 u0
0 1 v0
0 0 1

2DTranslation

×

fx 0 0
0 fy 0
0 0 1

2Dscaling

*shear is omitted.

8

2.5.3 Camera matrix

Now with both intrinsic and extrinsic parameters we can define the Camera matrix P which repre-
sents complete projection of 3D scene point X into its image x.

x = PX = KR[I| −C]X (6)

2.6 Planar Geometry

2.6.1 Homography

Also called projective transformation because it represents the transformation of plane projected
(the central projection) by camera or collineation because lines are mapped to lines - which is one
of the geometric properties that projective transformation preserves.

It is defined as mapping : P 2→ P 2 and it is a homography only if there exists a non-singular
3x3 matrix H such that for any point x in P 2 h(x) = Hx. By stating that matrix H is non-singular
is expressed that it has inverse H-1 thus the mapping is invertible. [3]

This is one of the most important concepts for solving this task , because it provides mathematical
instrument to express relation between original plane and its image (planar AprilTag and its image
projected by camera).

Finding H from x’ = Hx is solved by point correspondences from world and image. Each such
correspondence gives two equations, which are linear in elements of H. Thus 4 point correspondences
are needed to solve H up to multiplicative factor. The points must be in general position = no three
point are collinear.

here x′ = Hx

 x′1
x′2
x′3

 =

 h11 h12 h13
h21 h22 h23
h31 h32 h33

 ∗
 x1
x2
x3

2.7 Camera resectioning

(or in some literature also know as camera calibration)
The problem is the approximation of the camera projection matrix P from 3D object – 2D image
correspondences. The simplest such correspondences are 3D points X and their 2D images x We
want to find Psuch that

x = PX (7)

where the P is 3x4 projection matrix, x = (x, y, 1) is the image homogeneous point and X =
(X, Y, Z, 1) is the object homegeneous point. The basic solution is using the DLT algorithm
similarly as for the homography in planar projection (where was x’ = Hx). The difference here
comes from different dimensions of points, H is 3x3 , P is 3x4. While P could be computed by DLT

9

and intrinsic and extrinsic matrices can be decomposed by e.g. SVD and QR, more precise solutions
exist.

10

3 Used Software

Research introduction From research on current methods and popular solutions for robust pat-
tern tracking and recognition I have decided - after reading [6] - that choosing AprilTag could be the
best software option for creating the most precise and solid solution. It is also very popular solution
in the field of robotics and computre vision. Using AprilTag library toolkit with OpenCV seems to
me like the best option, while OpenCV offers a lot of possibilities and tools for usage with other
libraries and and has a very active developer-user base. OpenCV does not only mediates image
acquisition from camera for the application software but also provides a whole collection of useful
methods and algorithm implementation that could be also used for solving tag detection tasks and
following manipulation with matrices and vectors.

Used Libraries This application uses standard C/C++ libraries, OpenCV , ApriTag C++ port
by [7]

3.1 OpenCV

is a widely used library for computer vision image manipulation and processing. It is multi-platform
– supporting Linux, Windows, iOS and Android - and free software developed under BSD license.
The library offers multiple language interface, supporting C, C++, Python and Java. OpenCV
is focusing on real-time applications, so it usage is also - besides many other fields of interest -
popular in robotics. The library suits perfectly my task for its wide variety of functions designed for
computational efficiency and multi-core processing. Besides OpenCV is very well documented and
has a big active user-developer community.

3.1.1 OpenCV interface

For anyone who would wish to master her or his skills with using the OpenCV library I recommend
visiting a OpenCV official sites and look for the tutorials, which I found very useful and helping.
[8]. I would still like to present some of OpenCV structures and methods used in my application.

• cv ::Mat A basic image continer in OpenCV - a pixel image matrix - is represented by this
class. It is not just a matrix nevertheless. It has multiple specifications such as number of
color channels. The operation with cv ::Mat are very similar to operating with matrices in
e.g. Octave or Matlab, but the unexperienced user could encounter some difficulties. While
performing matices operations one must not forget, that cv ::Mat object has more properties
than just rows and columns, but also the number of color channels and specified data type
as OpenCV constants CV_64F representing 64bit float value or CV_64D representing 64bit double
value. In my case it have been often reason of various errors which were harder to identify in
the code.

11

• cv ::Point Another class I have widely used is, representing a point in chosen dimension and data
format. For example creating three dimensional point in double values would be following:
cv ::Point3d z(0, 0, 0); , where ‘3’ after Point represents 3 dimensions and the letter ‘d’, that
data will be doubles. Elements of cv ::Point could be accessed as following. Accessing x coordi-
nate of point z is simple double xCoordinate = z.x

It is often necessary to represent a cv::Point object as a cv::Mat object, in order to pass it as
a argument to some OpenCV function. This could be achieved as demonstrated on following
example. Create 4x1 cv ::Mat of 3D points of doubles when having an array of 3D points of
doubles

1 cv : : Point3d points [4] = {cv : : Point3d (−1 , −1, 0) , cv : : Point3d (1 , −1, 0) ,
2 cv : : Point3d (1 , 1 , 0) , cv : : Point3d (−1 , 1 , 0) }
3 cv : : Mat_<cv : : Point3d> pointsMat (4 , 1 , points) ;

Then I found important to mention how to access such matrix, while it caused me some trou-
ble during developing the application. For example x coordinate of second point of matrix
pointsMat could be accessed by two ways pointsMat[1] −>x; or by tpointsMat.at<double>(1,0);

• cv ::VideoCapture class enables reading data from buffer in memory,
by calling open(dev.device_number) method on cv ::VideoCapture object. In my case as argument
is passed a camera device path.

• cv ::waitKey(x) function does two things. 1. It handles any windowing events such as showing
images with cv ::imshow(). If this function wasn’t called after cv ::imshow() highgui is never given
time to process the draw requests, thus nothing would diplay on the screen. 2.It waits for x
milliseconds.

12

3.2 AprilTag

is called both software library used for detection of robust visual patterns – tags - and these tags
themselves. This library is based on research described in papers [6]. The tags are similar to more
known QR Codes - 2D bar codes – in sense of planar black and white images divided into squares
with information coded in these patterns. AprilTags instead of QR carry much less information, just
from 4- to 36 bits (as for the Tag36h11 family) making their detection easier and more robust and
possible even from larger distances and narrower angles. From these characteristics arise multiple
usages of AprilTag in robotics from camera calibration to determination of 3D position of the tag.
The standard AprilTag library has implementations in both C and Java(now deprecated) . AprilTag
software is also open-source and sufficiently well documented. Also algorithms used by this software
are described in detail in AprilRoboticsLaboratory papers.

3.2.1 Tags description

By “tag” I further mean the AprilTag. The tags generations are called as tag families. The name of
the family is made of number of bits encoded in the tag and the hamming distance. For example
the last released family is Tag36h11 which encodes 36 bits with hamming distance of 11 between
any two codewords (tags) .
The tags can be either downloaded from official AprilTag website or created with AprilTag library
software on user’s computer, in png format, which can be used in simulation software like Blender
or code using OpenGL, or can be home-printed, it is preferable to stick printed tags to e.g. solid
cardboard so they stay flat - planar. The software tool used for creating AprilTag png images is
present in included software for this thesis.

Figure 3: Example of 3 tag families. The different number of encoded bits in each family could be
clearly seen.(Image courtesy of April Robotics Laboratory)

13

AprilTag detection algorithm As far as this work does not aim at further understanding how
the image recognition works, I would still like to briefly describe how the AprilTag recognition
algorithm works described in following 9 successive steps. It tries to introduce how algorithm works
even to a reader with few or any knowledge from pattern recognition. For fully described algorithm
read [6] for less complex description see [9] .

1. The pixel values of the image being processed are converted into floating point grayscale (pixel
values from 0.0 to 1.0) and Gaussian blur is applied.

2. At every pixel is calculated local gradient – magnitude and direction.

3. Generate list of edges. First, neighbouring pixels with similar direction are grouped together.
If the magnitude of the gradient of both pixels is significantly above zero, it is considered to
be an edge.

4. From edges create clusters.

5. Loop over clusters, fitting lines called Segments.

6. For each Segment, find segments on its ends.

7. Search all connected segments. Find Quads = segment loops of length 4, representin the black
border around a tag candidate.

8. Decode the quads. Inspect the pixels inside the border to see if they represent a valid tag code
and from valid tags generate a list of TagDetections.

9. Search for overlapping TagDetections and take the best ones (lowest Hamming distance or
largest perimeter); discard the rest.

These steps are described in [6] and [9].

I found important to briefly introduce this algorithm because even AprilTag still could be more or
less used as a black box, the interface it provides – created by its objects and functions - includes for
example the TagDetector class, representing the tags found in the image, with which I subsequently
worke in the application.

Homography One of the parameters which TagDetection object contains is the homography. This
parameter is computed during the recognition of the tag itself in the core of the software (TagDetec-
tor.cpp). For theoretical basis of planar projection represented by 3x3 matrixH see Planar Geometry
. This fact is very useful for solving x = PX - calibrating camera, where x is image point, P is
camera and X is object point. P = K[R|t] Whether approximating intrinsic parameters matrix K
or extrinsic parameters R and t(finding camera pose) it is often necessary to estimate H between
object plane and image, which is often made by DLT, ML(Maximum Likelihood estimation) and
other algorithms. AprilTag is allowing full 6 DOF localization of features from a single image.

14

3.2.2 AprilTag software

The other part of AprilTag library is the detection software itself. The library implementation in
C language has no dependencies so there arises the need for image acquisition software. In my case
– and based on [7] – OpenCV is used to acquire images from camera. The AprilTag Swatbotics
C++ port library contains 10 source files, implementing the geometry and the tag detection of the
system. One of the most important parts of this system is located in TagDetector.cpp (see included
Software), implementing the tag detection algorithm from the image, about which talks previous
section.

Various ports of AprilTag library I have found about three different versions of original April-
Tag library which was created by prof. Edwin Olson. The one I have found most suitable for usage
- as long as I decided to use C++ language in developing the application – was the AprilTag library
C++ port by Swatbotics , created by author Matt Zucker [7]. In this implementation of AprilTag
is used one dependency – OpenCV.

4 Implementing solution

4.1 Finding Camera Intrinsic Parameters

This part of the task solves the problem how to most accurately determine the intrinsic parameters of
the camera. The calibration of the whole system while solving my task - in means of approximating
both camera internal parameters and also its position towards the scene - could be divided into more
successive steps. One of these steps is to determine the very parameters which every real camera
has, thus finding the intrinsic camera matrix, see Camera and Single View chapter of this thesis. In
the ideal camera the optical center would be right in the middle of the lens but in real cameras –
and especially in low-cost cameras I have been using for this task – is not, rather it is slightly moved
aside. The same goes for the focal length while focal length of x coordinate fx slightly differs from
fy the y coordinate. E.g. from AprilTag Camera suite calibration application was the fx = 1107.77
pixels and fy = 1113.75 pixels. In ideal pinhole camera the fx = fy. This distortion could be caused
by various reasons:

• Flaws in the digital camera sensor

• The camera’s lens causes distortion

• Errors in camera calibration

As result the image pixels has non-square shape they are skewed.
[2]
In equations I have used is considered restricted camera matrix P where is assumed that pixels are
square thus map from 3D to image is linear. [3] In some applications and simplified models I have
been reading through is often used an approximation such: Optical center is approximated by the

15

center of the image, so for values of image frame (in pixels) 1280x720 would be the optical center
cx = 640 and cy = 360 , and the focal length by the width of the image so following previous example
f = 1280 (in pixels) and radial distortion is not taken to count.
While this could be sufficient in most cases but I was trying to achieve maximal precision. In order
to do so, I had to find out most plausible way to determine the camera intrinsic parameters. I have
encountered more possible ways how to determine the intrinsic parameters. Such process of deter-
mining intrinsic parameters could be based on various camera models and various approximation
and optimization algorithms, but the common characteristics for camera calibration is that often
planar object - black and white pattern, such as chessboard, is used. There are some important
reasons for using such thing as calibration tool.

• The black and white square pattern could be very good recognized during the image processing
and can be thus more precise.

• The size of the pattern and its proportions are known, which is important for later geometry
computation of e.g. point correspondences.

• Used for creating world-image point-point correspondences.

(either by DLT or with more complex algorithms) it is planar we could use homography .
I will denote in homogeneous coordinates image point x = (x, y, 1)T and object point e.g. corner of
chessboard/tag X = (X, Y, Z, 1)T .

[x y 1]T = K[r1 r2 r3 t][X Y Z 1]T (1)

Equation 1 represents projection of 3D point to image point. r1 r2 r3 are the columns of rotation
matrix R and represent rotations along x y and z axes respectively, these columns are orthogonal.
The vector t represents Further I will assume that tag is at Z = 0 in world coordinate system -
coordinates for all points on tag are Z = 0, so X = (X, Y, 0, 1)T . So equation 1 is now

[x y 1]T = K[r1 r2 t][X Y 1]T (2)

From this equation a constraints can be expressed and later used in analytical solution, which
can be later optimized e.g. by Maximum Likelihood estimation. Full such algorithm can be found
in [10].

It would be possible to implement such a camera system where intrinsic parameters would be
calculated from one static tag detection. This would be however very not optimal because more
correspondences are acquired the more precise is the result. In standard camera calibration process,
such offers OpenCV with black and white chessboard, plays a great role how experienced is the
person in such process, because to get good results is important know how to position a calibration
object to create as many as possible different correspondences. After considering that finding most
precise intrinsic camera parameters can be quite hard task, I have decided that best way is to
determine these parameters before the main application starts.

16

April Camera Suite In order to minimize error caused by human factor during camera calibra-
tion, the April platform created a very useful tool for achieving so. April Camera Suite is a part
of April Robotics Toolkit. It is interactive Java application using augmented reality - game-like -
when user tries to position AprilTag, which is holding in front of the camera, to required position.
The positions where user tries to move and rotate the tag are generated during the run of the appli-
cation to ensure the best result. As [9] states this ensures the minimization of human error during
calibration.

April Robotics Toolkit To use April Camera Suite for camera calibration, download the April
Robotics Toolkit, because it is one of its parts. This toolkit is a Java library (now deprecated,
but still very useful, with majority ported to C/C++) which was created in early development of
ApriTag. I refer about this toolkit because it was quite demanding to install it on my computer.
Before few years it would have been an easy task, but nowdays most of the dependencies are obsolete
and are not located in any packages. It also uses Java 6 which is harder to download. First problem
encountered was due to javac1.8 installed. After installing java7 with javac7 the build was successful.
Before the build must be installed JOGL - OpenGL interface for Java.
April Robotic Toolkit Dependencies:

• Java 7

• OpenJDK 7

• Apache Ant 1.9

• JOGL

While it is very hard to find all dependencies for just one Linux distribution, I found it quite
impossible to include this toolkit to included software for all the distributions and OSs. It is left
up to user to decide how to obtain the intrinsic parameters. Using April Camera Suite or OpenCV
calibration tools is recommended.

17

4.2 Aplication description

This application is using the [7] port of AprilTag library and is based on learning materials from
OpenCV and Swatbotics port of AprilTag.

Brief description User places in sight of camera system the “calibration” AprilTag, of which
middle represents the origin of world coordinate system. When application is started it firstly
computes the approximation of world coordinate system given by the axes of the calibration AprilTag.
While AprilTag detection is quite precise, it still has some variance of the detection values. In order
to set a fixed origin of a world coordinates it is necessary to make appropriate approximation. While
calculating average of measured values does not by far give the most satisfying result, this solution
was implemented at first. By this step is determined a fixed world origin with some error. After this
calibration step is completed the following tag detections are expressed in respect to this origin.

Run description When application is started two input configuration files are passed to appli-
cation as command line arguments. These configuration files are then parsed by calling function
parseDeviceParametersFromXML(fs1); with input parameter cv ::FileStorage object, which provides inter-
face for handling xml files. The configuration parameters are then stored in struct DeviceParameters.
This is done for both camera devices. Two instances of std ::thread are started. Both threads execute
the same function, which is processing images from the given camera device. First are set width and
height of the image frame and objects representing matrices and other mathematical entities used
in algorithm are created. For example the matrix of intrinsic parameters K as cv ::Mat object and
optical center as cv ::Point object. The distortion coefficients are set to zero.
The calibration part follows, in means of determining the fixed world origin represented in scene
by calibration tag. While loop is executed for given count, each loop represent processing of one
single image represented by cv ::Mat object called frame. First the frame is inspected for any tag
detections and next is every detection further processed. The detections are processed by method
CameraUtil::homographyToPoseCV from AprilTag library which computes the the tags pose in respect to
camera. This method does following:

This method uses a OpenCV function cv ::solvePnP which computes from 3D-2D point correspon-
dences and camera’s intrinsic matrix the rotation and translation vectors. The input for cv ::←↩
solvePnP are 3D and 2D points so the four points in general position are chosen – the corners of
the tag – and are projected by inherently computed homography which every AprilTag detection
contains. These are created by in CameraUtil::homographyToPose method by projecting 3D points rep-
resenting tag corners ([−1,−1, 0], [1,−1, 0], [1, 1, 0], [−1, 1, 0]) and projecting them with detection
homography to 2D corresponding points. By such action, the origin of world coordinate system is
set to be the middle of the calibration tag. The projection can be represented as:

the vector x′ = (x′1, x
′
2, x

′
3) represents the homogeneous coordinates of point in the image and

vector x = (x, y, 1) the coordinates of point in the world

18

x′ =
x′1
x′3

=
h11 ∗ x1 + h12 ∗+h13 ∗ 1
h31 ∗ x+ h32 ∗ y + h33 ∗ 1

(8)

The result is in inhomogeneous coordinates

So output are two vectors r, t which represent the rotation and translation of object -tag - in
camera coordinate system. The Rotation matrix R is made by function Rodrigues and is inverted
so camera origin in world coordinates could be computed such as C = −RT t

After loop ends the extrinsic parameters are averaged and from this extrinsic matrix representing
estimated world origin defined by calibration tag. After world origin is approximated the detection
loop continues calculating positions of tag detections relative to chosen world origin.

note: If the duration of loops was higher than 1/25 which is minimal time interval which can
human eye register as two different consecutive event, video stream of augmented scene would not
be running smoothly I have calculated that duration of the loop is less then this number.

19

4.2.1 Build - CMake

CMake is open-source software tool used for software compilation process. It is platform and compiler
independent and it uses quite simple format of configuration files with which you can generate native
makefiles for Make (as this project was build on Ubuntu 16.04) . The configuration file for CMake
must be named "CMakeLists.txt". In this file you specify how your project will be build. From choosing
compiler and creating executables, creating and linking libraries and so on. Among many others, the
OpenCV uses CMake and so does IDE Intelij CLion, which I was using during this project. I will
describe the basic commands, so even user without any experience with CMake could understand
the CMake configuration files. For complete documentation look at CMake documentation [11].
CMake has quite easy syntax, can use if statements, but some functions are not that intuitive. One
of the CMakeFiles is presented.

add_library(AprilTags
CameraUtil.cpp
DebugImage.cpp
Geometry.cpp
GrayModel.cpp
MathUtil.cpp
Refine.cpp
TagDetector.cpp
TagFamily.cpp
TagFamilies.cpp
UnionFindSimple.cpp

)

set(AT_LIBS AprilTags ${OPENCV_LDFLAGS})

set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++11 -pthread")

add_executable(main main.cpp)
target_link_libraries(main ${AT_LIBS})

if (CAIRO_FOUND)
add_executable(maketags maketags.cpp)
target_link_libraries(maketags ${CAIRO_LIBRARIES} ${AT_LIBS} ${CAIRO_LIBS})

endif()

Figure 4: CMakeList.txt snippet

• add_library([library_name] source_files(file1.cpp,..)) creates static library with
chosen name and from given source files.

• set(AT_LIBS AprilTags ${OPENCV_LDFLAGS}) now the varaible AT_LIBS refers to library
AprilTags plus what was in variable ${OPENCV_LDFLAGS}, which is variable defined in OpenCV
cmake – internal OpenCV CMake variable. In the OpenCV CMake configuration file are

20

various variables used such as $OpenCV_INCLUDE_DIRS - the OpenCV include directories,
which are than used in other CMake files

• add_executable(main main.cpp) declares that after cmake creates makefile and after you
make, there will be executable named “main” build from source file named “main.cpp“

• target_link_libraries(main ${AT_LIBS}) During the linking, target named “main” will be
linked with libraries specified in CMake variable ${AT_LIBS}

• set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++11 -pthread")
CMake variable CMAKE_CXX_FLAGS containes flags for cpp compiler, you can pass pa-
rameters as shown, telling compiler to compile as c++11 standard

21

4.2.2 Input - Configuration file

I had also implemented a in the application input of various parameters from command line by
using getopt_long function, but as the number of parameters grew and two cameras were added it
became unmaintainable. Henceforth I decided using input from file. Finally only parameters passed
by command line are paths to configuration file.

Configuration file "dev#.xml" Firstly I was considering how camera parameters could be
passed to application. Passing through command line is very unsuitable, while there could be
multiple cameras and tags. I decided that parameters will by passed by simply structured XML
files, one for each camera. I could have either used lightweight .XML parser library or wrote my own
one.The OpenCV framework offers ‘cv ::FileStorage’ class which handles input and output of XML
and YAML files. Accessing parameters is then very straightforward. So as was said, the application
needs two arguments - so far as we are using two camera.- paths to XML configuration files where
user define camera parameters. For each camera there must be one XML file. These files must
contain following parameters.

Code 1: Snippet of configuration file "dev.xml"
1
2 <?xml ve r s i on=" 1 .0 "?>
3 <opencv_storage>
4 <dev_n>0</dev_n>
5 <tag_cal ib_id>0</ tag_cal ib_id>
6 <tag_ca l ib_s ize>0.128</ tag_ca l ib_s ize>
7 <tag_1_id>1</tag_1_id>
8 <tag_1_size>0.157</tag_1_size>
9 <he ight>720</ he ight>

10 <width>1280</width>
11 <fx>1107.773799</ fx>
12 <fy>1113.757253</ fy>
13 <cx>639.402972</cx>
14 <cy>376.813597</cy>
15 <tag_family>Tag36h11</tag_family>
16 </opencv_storage>

1. dev_n, device number - that is number under your usb device is mounted, since usb-lowcost
cameras were used. This could be find out by command (Ubuntu) −ltr /dev/video∗ .

2. tag_#_id, tag own unique id number in its AprilTag family

3. tag_#_size, length of tag side in metres
: calib for tag used for user defined origin and 1 for tracked target.

4. height, width, camera image frame in pixels eg. 1280x720

5. fx, fy,cx, cy, camera intrinsic parameters all in pixels: fx – focal length by x-axis , fy – focal
length by y-axis, cx – x coordinate of optical center , cy – y coordinate of optical center.

6. tag_family, see AprilTag description

22

4.2.3 Encountered problems during the application implementation

Thread problems When I was creating the thread part of my application I have encounter strange
behavior of threads not running as they should be. In each thread cv ::Mat frame object representing
the image that was get by camera by cv ::VideoCapture object was processed. After the image was
processed thread was put to sleep so the second thread could do the same. However each thread
also displayed the processed frame by

1 cv : : imshow (frame_name , frame) ;
2 cv : : waitKey (milliseconds) .

I have found that cv ::waitKey() caused the wrong running of threads, while it waits for given mil-
liseconds. In the end I found as the only solution to use this method instead of std :: this_thread_::←↩
sleep_for(std::chrono::milliseconds(s));.

4.3 Building the model

Using simulations software for camera viewing scene is very useful, while it is precise in measurement
object distances from virtual cameras, and could be much quicker than prototyping from scratch new
real-world model suitable for solving the task. To make it possible to go from software simulations
of cameras viewing scene just on my computer to building the real-world model of camera system for
this task, there was need for a middle software between camera drivers and my application. Besides
many other functions OpenCV provides image acquisition from camera devices. For building the
camera acquisition system for this project I decided to use low-cost web-cameras. One reason was
low – or rather no budget, the second reason was that many literature about calibrating cameras
and robust visual pattern recognition states, that developed algorithms are suitable for the low-cost
camera, performing well and precise, so I have decided to put it to a test. While I had no superior-
quality camera I cannot make comparison from measured values on both low-cost and good-quality
cameras, but the results could still be valuable.

I tried to build as sufficient model for cameras as I could in home conditions. In the beginning
of building this camera model I was using just one camera. Firstly it was the built-in webcam
in my laptop. This was quite useful in the beginning for the testing if image acquisition software
was correctly installed and for basic experimentation with augmented reality – such one OpenCV
offers - and tag detection software. However later when I wanted to build a scene to be observed
by cameras in order to experiment with tag detection software it was necessary to start using an
external camera. Firstly I had at hand an old web-camera, which wasn’t serving well, so it was
replaced by two – relatively new – web-cameras. In order to observe the scene from above and get
necessary perspective I acquired a 5m USB cables , so I would be able to position the cameras in
the distance from my laptop. While It would be more convenient to transmit data from cameras
differently for example using a network connection and client-server model for gathering the image
data from the cameras, this was the most cheapest way to gather some useful information. For
creating a model with greater distances between the cameras using USB cables could be a problem
while USB standard has defined maximal cable length.

23

Operating System Difficulties I was using Linux operating system – namely distribution
Ubuntu 16.04 - for working on this task. I have undergone few difficulties I had to solve. While most
of new webcams have drivers and support for various Linux distribution, even though when searching
for official camera documentation , Linux is rarely found in supported OS, I had encountered a serious
problems to run older web-cameras on my Ubuntu 16.04 because drivers became in 5,6 years obsolete
and are no longer parts of packages. Before I have obtained two new cameras I was using 7 years old
“Logitech QC 3000 for Business” , which was causing constant troubles. So advice for Linux users
trying to run older web-cameras on their system, I would consider it not worth the trouble.

Possible improvements Using such averiging as is now used is very non-optimal. For getting
better results the triangulation should be implemented , I have worked on such improvement but
I didn’t make to finish it. I have also made research on Kalman filters and other filters (such as
median filter etc.) which could rasantly help with obtaining the images from camera while they can
contain quite amount of noice etc.

experiments The [6] also states that AprilTag detection software is robust to lightning conditions.
While AprilTag is considered as one of the best tag detection systems I have encountered some
problems with tag recognition with various light conditions. This could be also due to usage of
low-cost cameras. For example during experiments of detection of the tag with my built model with
low-cost cameras in the room, when tag was placed on border of sunlight and shade, the recognition
became poor or even sometimes not possible. I found out that tag detection by ApriTag with extreme
light conditions were not beneficial either.

precision I have been measuring the distances in real world with distance laser measuring device
with precision on unints of millimeters. While it is possible with such device with reasonable presision
determine even the angles, due to lack of time and ill conditions the measurements were solely
informational. The measured distances given by the application were from fraction of centimeters
up to 10 centimeters, depending on distance from cameras, light conditions and angles of cameras.
As I stated the angles of cameras during measurements were not computed with enough precision
so I can only make assumptions of real precision.

24

5 Results

I consider the first task to be achieved quite well, while I was coming to this topic with very little
knowledge from this fsubject. I made the research and learned the basics from computer vision and
camera calibration. The first goal was maybe even harder than I have expected taking me quite
considerable amount of little time I had. I also found that second goal which was to search for
suitable software was quite successful. I have installed the suitable software and learned how to
work with it. I also had to understand the code of AprilTag ports to be able to work with it and
further improve it for my needs. Besides I got familiar with build software CMake and OpenCV
platform which was very usefull. This task took also long time as it consisted of reading lot of
documentation and - at the time – non familiar code. It was also sometime precarious to install
and run necessary software tools, either they were not that user friendly or deprecated. Third goal
to figure out possible solutions and designed the model was in my opinion quite successful too. I
managed to build even in home conditions low-cost but quite worthy camera system and experiment
with it in real time with installed software and printed tags. Even though the application gives quite
reasonable result and implements usage of multiple cameras the finish wasn’t that successful as I run
out of time and cannot finish the triangulation and further improvements. Also more measurements
should be done, for example on software measuremnt tools because as I found building real world
model is quite demanding.

25

References

[1] M. Sonka, V. Hlavac, and R. Boyle, Image processing, analysis, and machine vision. Thomson,
2008.

[2] K. Simek, “Reading about topics on camera parameters.” http://ksimek.github.io/.

[3] R. I. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision. Cambridge
University Press, ISBN: 0521540518, second ed., 2004.

[4] “Wolfram mathematical references.” http://mathworld.wolfram.com/
RodriguesRotationFormula.html.

[5] “Opencv official documention.” http://docs.opencv.org/3.2.0.

[6] E. Olson, “AprilTag: A robust and flexible visual fiducial system,” in Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), pp. 3400–3407, IEEE, May
2011.

[7] M. Zucker, “Swatbotics apriltag library c++ port.” https://github.com/swatbotics/
apriltags-cpp.

[8] O. developers, “Opencv 3.2.0 official tutorials.” http://docs.opencv.org/trunk/d9/df8/
tutorial_root.html.

[9] A. Richardson, J. Strom, and E. Olson, “AprilCal: Assisted and repeatable camera calibration,”
in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), November 2013.

[10] Z. Zhang, “A flexible new technique for camera calibration,” December 2000.

[11] “Cmake documentation.” https://cmake.org/cmake/help/v3.9/.

26

http://ksimek.github.io/
http://mathworld.wolfram.com/RodriguesRotationFormula.html
http://mathworld.wolfram.com/RodriguesRotationFormula.html
http://docs.opencv.org/3.2.0
https://github.com/swatbotics/apriltags-cpp
https://github.com/swatbotics/apriltags-cpp
http://docs.opencv.org/trunk/d9/df8/tutorial_root.html
http://docs.opencv.org/trunk/d9/df8/tutorial_root.html
https://cmake.org/cmake/help/v3.9/

	Introduction
	Introduction to theory basis
	Introduction to Camera and Single View Geometry
	Homogeneous coordinates
	Four coordinate systems
	Camera Representation
	Transformations between coordinate systems
	Extrinsic parameters
	Intrinsic parameters
	Camera matrix

	Planar Geometry
	Homography

	Camera resectioning

	Used Software
	OpenCV
	OpenCV interface

	AprilTag
	Tags description
	AprilTag software

	Implementing solution
	Finding Camera Intrinsic Parameters
	Aplication description
	Build - CMake
	Input - Configuration file
	Encountered problems during the application implementation

	Building the model

	Results

