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Abstract

In this thesis, we use graph based methods in conjunction with behavioral modeling to uncover
hidden malicious communities and peer-to-peer traffic.

The nature of malicious traffic, and its tendency to rally in order to communicate with
its owner opens a possibility to detect malicious traffic by revealing hidden sub-structures of
network traffic. In fact, besides discovering the presence of an infection, analyzing network
traffic also enables inference of valuable context information about the malicious campaign
as a whole, often leading to a more precise attribution than is possible using only a host-
based solution. In this work, we focus on the detection approaches that observe the hidden
structures and exploit them to uncover malicious command & control (C&C) servers.

Peer-to-peer (P2P) protocol is a popular choice with malware authors to be used as a C&C
channel. Therefore, we propose a unified solution to identify P2P communities operating in a
monitored network. We propose an algorithm that is able to 1) progressively discover hosts in
the monitored network that cooperate in a P2P network and to 2) identify that P2P network.
Starting from a single known host, other hosts participating in the P2P network are identified
through the analysis of widely available and standardized IPFIX (NetFlow) data. It is able
to identify a large range of both legitimate and malicious P2P networks, is highly scalable
and the use of standard meta-data without access to traffic content makes it easy to deploy
and justify from privacy protection perspective.

Even malware families that do not rely on a P2P-based C&C channels resort to highly
dynamic C&C structures to counter security industry approaches based on blacklisting known
malicious domains. It is therefore important to automatically follow the migration of C&C
servers. We propose to use a well-known Probability Threat Propagation (PTP) with a novel
graph representation capturing connections from clients to servers. The proposed graph
representation is highly condensed, preserves privacy, allows us to find malicious domains
that cannot be found using existing graph representations and is harder to evade by malware
authors.

We propose two behavioral models for HTTP traffic together with kernel-based similarity
and distance functions that can be conveniently used to extend the findings of PTP. For
any domain marked as malicious by PTP we can find other domains with identical or similar
behavior, which are likely also malicious. This significantly increases the number of discovered
malicious domains.

All proposed algorithms and representations are verified using extensive data sets spanning
hundreds of independent networks. The validity of proposed approaches was further verified
in a large-scale deployment within the Cisco Cognitive Threat Analytics.





Abstrakt

V tejto práci využ́ıvame grafové metódy v spojeńı s behaviorálnym modelovańım na odhalenie
skrytých spoločenstiev škodlivých serverov a škodlivých peer-to-peer (P2P) siet́ı.

Povaha siet’ovej komunikácie malwaru a jeho tendencia koordinovane sa napájat’ na kon-
trolné servery s ciel’om komunikovat’ s jeho vlastńıkom otvára možnost’ odhalit’ siet’ovú ko-
munikácia malwaru odhaleńım skrytých subštruktúr siet’ovej prevádzky. Analýza siet’ovej
prevádzky okrem zistenia pŕıtomnosti infekcie malwarom umožňuje odvodenie hodnotných
kontextových informácíı o kampaniach malwaru ako celku, čo často vedie k presneǰsiemu
určeniu pôvodu malwaru, než je možné len na základe antiv́ırového riešenia. V tejto práci sa
zameriavame na pŕıstupy detekcie, ktoré pozorujú tieto skryté štruktúry a využ́ıvajú ich na
detekciu serverov slúžiacich na koordináciu malwaru.

Autori malwaru často použ́ıvajú P2P siete ako prostriedok komunikácie s malwarom.
Preto navrhujeme jednotné riešenie na identifikáciu P2P komuńıt pôsobiacich v monitorovanej
sieti. Navrhujeme algoritmus, ktorý je schopný 1) postupne objavovat’ zariadenia v sledovanej
sieti, ktoré spolupracujú v P2P sieti a 2) identifikovat’ danú P2P siet’. Toto riešenie je schopné
na základe znalosti jedného zariadenia s využit́ım analýzy siet’ovej komunikácie v štandardnom
formáte IPFIX (NetFlow) dohl’adat’ d’aľsie zariadenia, ktoré s ńım spolupracujú v rovnakej
P2P sieti. Navrhnutý algoritmus je schopný identifikovat’ vel’ký rozsah legit́ımnych aj škodlivých
P2P siet́ı a je vysoko škálovatel’ný. Použ́ıvanie štandardných formátov bez pŕıstupu k vlastnému
obsahu siet’ovej komunikácie umožňuje jednoduché nasadenie a ochranu súkromia už́ıvatel’ov.

Skupiny malwaru/škodlivého softvéru, ktoré sa nepouž́ıvajú P2P siete na komunikáciu
so svoj́ım autorom, využ́ıvajú často sa meniace sady serverov aby sa vyhli detekcii pomocou
blacklistov – zoznamov známych škodlivých serverov. Je preto dôležité sledovat’ automaticky
migráciu serverov škodlivých serverov. Navrhujeme použit’ známy algoritmus Probabilistic
Threat Propagation (PTP) v spojitosti s novým grafom, ktorý popisuje siet’ové spojenia
medzi klientami a servermi. Navrhovaný graf zachytáva relevantné informácie o siet’ovej ko-
munikácii v komprimovanej forme, ktorá zachováva súkromie už́ıvatel’ov zariadeńı, umožňuje
nájst’ škodlivé servre, ktoré nie je možno nájst’ pomocou existujúcich grafových reprezentácíı
a obmedzuje možnosti autorov malwaru vyhnút’ sa detekcii.

Navrhujeme dve techniky modelovania HTTP siet’ovej komunikácie, spolu s funkciami
podobnosti a vzdialenosti založenými na kernel funkcii. Tie sa dajú použit’ na nájdenie
dodatočných škodlivých serverov na základe serverov nájdených použit́ım algoritmu PTP.
Použit́ım modelovania siet’ovej komunikácie, nájdeme pre každý server označený ako škodlivý
algoritmom PTP d’aľsie servery s rovnakým alebo podobným správańım, ktoré sú pravde-
podobne taktiež škodlivé. To výrazne zvyšuje počet nájdených škodlivých serverov.

Všetky navrhované algoritmy boli overené na rozsiahlych množinách dát, ktoré pokrývajú
stovky nezávislých siet́ı. Úspešnost’ navrhovaných pŕıstupov bola d’alej overená vo vel’kom
meradle v rámci produktu Cisco Cognitive Threat Analytics.
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Chapter 1

Introduction

Malware is a shortcut for malicious software. It is designed to infect a device and either
provide profit to its author or cause harm to the owner of the device. In the past, malware
was created mostly as a prank or to demonstrate skill. Nowadays, it is mostly used to create
profit for its authors, steal information, or attack specific organizations or nation states with
the goal of causing harm.

Malware thus became an umbrella term for a whole family of software with malicious
intents. In fact, whether a software is considered to be a malware is based on the intent of
its author, not on the actual harm/profit made by the software. Malware can be categorized
into several groups, either according to its purpose or means of spread. Distinguishing by
purpose, there are four common groups of malware:

• adware which makes profit to its owner by click fraud,

• spyware whose goal is to steal personal information such as credit card numbers, or
industrial and/or state secrets

• ransomware which encrypts the files on infected devices and demands ransom to decrypt
them, and

• spamware that makes profit by sending spam emails from the infected devices.

When distinguishing malware by spreading mechanism, there are basically two types of mal-
ware – one can spread without user interaction, for example by exploiting known or not yet
disclosed device or network vulnerabilities; the other spreads by tricking a human user into
thinking that the given malware actually has a legitimate purpose.

Two main strategies [122] exist to protect devices from infection by malware. The classi-
cal, host-based approach is an anti-virus software installed on a device, that scans in real time
all executed files. If a file is found to be malicious, its execution is blocked and it is removed
from the system. A more recent approach is to protect devices on the network level. Private
companies and governmental organizations employ firewalls that check all traffic coming to
a network from the Internet. Such solutions block downloads of malicious binaries or con-
nections to/from sites that serve exploit kits. However, malware with infection vectors other
than the network is not covered by this solution.

Host-based and network-based strategies of infection prevention are based on fundamen-
tally different observations. First, during and after infection, any malware needs to embed

1



Our P2P Identification Method (Chapter 3)

Client Domain IP (server/peer)

Figure 1.1: Scope of the peer-to-peer discovery algorithm.

itself into the device’s system, e.g. by installing code and/or making changes in registries so
that the instance of malware is started every time the device is rebooted. Second, malware
needs to communicate over Internet to bring economic benefit to its owner. The communi-
cation may be either to receive new commands or monetize the infected machine in any way,
e.g. ex-filtrate data.

Host-based and network-based detection approaches are thus complementary. Malware
authors can avoid detection by either, but evading both approaches working in unison poses
new challenges to malware authors.

Another important distinction is whether the protection system is set-up for prevention or
detection. Intrusion prevention systems (IPS) attempt to prevent the infection itself – firewall
blocks download of a malicious file and anti-virus blocks its execution. But prevention is not
always effective. First, IPS is often biased to prefer precision over recall. This prevents false
alarms, but weakens the coverage of rapidly developing new threats. Second, malware can
exploit an infection vector that is not covered by the installed IPSs. Malware thus can infect
a system despite IPS being in place. On the other hand, Intrusion detection systems (IDS)
passively monitor what is happening either in the network or on the infected hosts in order
to uncover successful infections.

Many detection approaches focus on statistical properties of malicious network communi-
cation. The nature of malicious traffic and its tendency to rally in order to communicate with
its owner opens a possibility to detect malware activity by revealing hidden sub-structures
of network traffic. In fact, besides merely discovering the presence of an infection, analyzing
network traffic on global scale also enables inference of valuable context information about the
malicious campaign as a whole. This often leads to a more precise attribution than is possible
using only a host-based solution. Our work specifically focuses on the detection of malicious
communication structures in network traffic and uses them to uncover malicious command
& control (C&C) servers that manage the botnets. Once discovered, the C&C servers are
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Client Domain IP (server/peer)

Probabilistic Threat Propagation (as published)
Our Method (Chapters 4,5,6)

Figure 1.2: Scope of our method when compared to Probabilistic Threat Propagation.

used by other methods (not discussed in this thesis) to associate threat intelligence and other
analytical results to a specific botnet.

Malicious C&C channels can have many shapes and forms. In recent years, C&C channels
of several major botnets, i.e. virtual networks of cooperating infected hosts, were based on
peer-to-peer (P2P) networks. P2P networks are an ideal choice for botnet owners – P2P
networks do not have a central point of failure, which was typical for botnets with centralized
C&C architecture. At the same time, any computer infected by a P2P-based malware can
disseminate new commands to the rest of the botnet, protecting the identity of the botnet
master. Accordingly, we will also address the problem of malicious P2P discovery. The scope
of the proposed P2P discovery algorithm is depicted in Figure 1.1.

Our approach to the problem differs from the prevailing approach (Probabilistic Threat
Propagation) in the domain. Instead of using the information contained in the relationship
between a domain name and the associated IP address(es), we rely on the analysis of network
metadata associated with the host. A comparison of the scopes of the two approaches is
depiceted in Figure 1.2. The distinction is important mainly from security perspective, as
it allows us to find a different set of malware when compared to the traditional approach.
Traditional methods excel in identification of malware that heavily relies on changing set
of DNS records on a limited set of server hosts. This case is typical, as it avoids domain-
based blocking on host and network prevention devices and does not force the attackers to
laboriously migrate the infrastructure. However, a growing proportion of diverse malware
deviates from this scheme and avoids the detection by domain-based analytics completely.
Our approach has been designed to be robust w.r.t. this evasion technique and therefore
detects a different, novel set of malware.

The input metadata is typically available in standardized formats, such as Netflow/IPFIX
records and/or HTTP access logs. When collected on a perimeter device, such as a router,
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a firewall or a proxy, it contains full information about network connections between the
monitored host and Internet. Following main elements can be extracted from each flow or
request record: client host (internal IP, username and device ID), server domain and server
IP address. Additional information can be extracted from some records (such as HTTP(S)
header elements).

Our work builds a graph (or, rather, several graphs) that represents a set of connections
between one monitored network and Internet. Then we use the analysis techniques discussed
below to identify peer-to-peer activity and infected hosts in the network. Compared to tra-
ditional IDS systems or anomaly detectors, this approach is harder due to the huge data
volumes (our system processes more than 10 billion flows every day) and associated compu-
tational cost. Therefore, our techniques need to be meticulously optimized for efficiency and
scalability and many of the design choices have been driven by efficiency constraints.

1.1 Research problems

The main topic of this dissertation is identification of collaboration structures from
client-server connection information, with particular emphasis on discovery of malicious
communities. This can be decomposed to two specific research problems:

• RP1: How to detect all P2P networks in a monitored physical network?

P2P protocol is a popular choice with malware authors to be used as a C&C channel.
Several of the biggest botnets observed recently used P2P as their C&C channel [117].
Malicious P2P networks aside, even legitimate P2P networks may have a detrimental
effect on the existing anomaly detection approaches [53]. Therefore, traffic related to
P2P traffic should be identified and processed separately. Categorization of detected
P2P traffic is then needed to enable a proper response of network administrators.

• RP2: How can we use connection information to reveal C&C structures of malicious
botnets?

Malware C&C structures are becoming increasingly dynamic, as the malware operators
counter security industry approaches based on blacklisting known malicious domains.
It is therefore important to automatically follow the migration of C&C servers. Connec-
tion information between infected hosts and external domains can be mined to discover
the identity of migrated malicious servers and should be robust w.r.t. adversary manip-
ulation. Intuitively, when a thousand infected hosts visit a single domain, this domain
should be considered suspicious - unless it is called google.com. The real research prob-
lem is to identify the malicious domains between the millions of legitimate servers, given
the immense variety of network communication patterns.

1.2 Key contributions

In the following we propose solutions to the outlined research problems.

1. Detection of all P2P networks active in a monitored network and their clas-
sification [65] (Chapter 3) We present a unified solution to identify Peer-to-Peer (P2P)
communities operating in the monitored network. We propose an algorithm that is able
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to 1) progressively discover hosts in the monitored network that cooperate in a P2P
network and to 2) identify that P2P network. Starting from a single known host, other
hosts participating in the P2P network are identified through the analysis of widely
available and standardized IPFIX (NetFlow) data. Instead of relying on the analysis
of content characteristics or packet properties, we monitor connections of hosts that
are known to participate in a P2P network and then progressively discover other hosts
through the analysis of their shared contacts outside of the monitored network. The
algorithm presented in Chapter 3 is able to identify a large range of both legitimate and
malicious P2P networks. It is highly scalable and the use of standard meta-data with-
out access to traffic content makes it easy to deploy and justify from privacy protection
perspective.

2. Identification of additional malicious domains based on the information about
known malicious domains [66] (Chapter 5) Probabilistic Threat propagation is one
of the leading algorithms to discover malicious communities in positive-unlabeled data.
So far, it has not been used on the data capturing connections between clients and
servers. Our contribution is the application of Probabilistic Threat Propagation to a
unipartite graph that we have designed to capture the connection data in a highly con-
densed and privacy-sensitive form. The use of connection data instead of ip-domain
hosting information used in prior art [19] allows us to find different malicious domains
using the same algorithm. At the same time, our focus on the connection data makes
the detector harder to evade.

3. Definition of similarity for HTTP servers [66] (Chapter 6) We propose two distinct
behavioral models to represent domains based on the HTTP request towards them.
We also propose corresponding kernel functions that can be used to calculate either
similarity, distance or can be used directly in the kernelized versions of classifiers or
clustering algorithms. Behavior similarity can be used to extend the information about
the maliciousness of a domain inferred using the algorithm from Chapter 5. Behavior
similarity can therefore find other domains used for C&C of a specific botnet even
without a single mutual connection on the set of monitored hosts. This significantly
increases the number of malicious domains discovered by our algorithm from Chapter 5.
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Chapter 2

Related work

In this chapter, we provide overview of

• peer-to-peer (P2P) networks,

• P2P-base command & control channels (C&C),

• methods to detect P2P networks,

• guilt by association approaches and

• behavioral modeling of HTTP traffic.

Each section should provide a comprehensive overview of prior art.

2.1 Basic graph notation

In this section, we introduce basic graph notation used throughout the thesis. It can be read
prior the following chapters, as well as used as a reference if necessary.

Weighted undirected graph is defined as

G = (V,E,w) (2.1)

where V is a set of nodes, w : E → R is an edge weight function and E ⊆ {{u, v}|u, v ∈ V }
is a set of edges.

A graph with a specific layout, a bipartite graph, can be defined as

B = (U ∪ V,E,w) (2.2)

where U and V are set of nodes called partitions, U ∩ V = ∅, E ⊆ {{u, v}|u ∈ U, v ∈ V }
is a set of edges and w : E → R is an edge weight function. Bipartite graph can be further
generalized in n-partite graph:

N = (
⋃
i

Vi, E, w) (2.3)

where Ui are partitions, Ui ∩ Uj = ∅,∀i, j, E ⊆ {{u, v}|u ∈ Ui, v ∈ Uj , i 6= j} is a set of edges
and w : E → R is an edge weight function.
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For any graph G we can define a node neighborhood function

N (u) = {v|{u, v} ∈ E},∀u ∈ V (2.4)

that returns neighbors, i.e. adjacent vertices, of u in the graph G.
Weight function w can be also specified using an adjacency matrix W ∈ R|V |×|V | where

Wij = w(vi, vj). (2.5)

The adjacency matrix is always symmetric for undirected graphs. The same does not hold
for directed graphs.

Closely related to the adjacency is the degree matrix D ∈ R|V |×|V |. Its elements are
defined as

Dii =
∑
j

Wij

Dij = 0, ∀i, j; i 6= j.

(2.6)

D is thus a diagonal matrix.

2.2 P2P networks

In this section we explore various peer-to-peer network architectures that serve as a basis for
all P2P applications, including botnets with P2P-based C&C. In this work, we distinguish
three types of peer-to-peer architectures [81]:

• structured,

• unstructured,

• hybrid.

2.2.1 Structured Architectures

Structured P2P networks have a known structure and it is undeniably easier to quantify their
network performance. Among the most noted structured architectures are the classic DHT
(distributed hash tables) designs: Chord, CAN, Pastry and Tapestry.

Chord Chord, introduced in [130], is among the first attempts to design a robust P2P
architecture for data storage and lookup. Chord uses a consistent hash function (SHA-1) to
describe data that is shared within the overlay. Every piece of data (e.g. file) shared is assigned
an m-bit identifier. The hash function of choice should distribute hashes uniformly since it
is critical for chord performance. Every node in the Chord network is also assigned an m-bit
identifier, and the node is responsible for providing files whose identifiers are closest to his own.
The identifier space is organized in a ring — a circular list of numbers from 0 to 2m− 1. It is
only very rare that the Chord network contains as many nodes as there are available identifiers,
therefore we define successor(i) to be the node with closest higher identifier than i. In this
ring, every node maintains a small routing table, called finger table, which contains O(logN)
items. Specifically, a node with identifier n has nodes si = successor((n + 2i−1) mod 2m),
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1 ≤ i ≤ m in its finger table. The i-th entry contains interval [si, si+1) thus it is easy for node
n to determine which peer is responsible for a given range of identifiers. With this setting,
the Chord requires each node to keep O(log n) other nodes in the finger table; the lookup
complexity is also O(logN) and node joining or leaving a network entails only O(log2N)
messages.

CAN CAN, which stands for Content Addressable Network was first presented in [116]. In
CAN, nodes are spread into a d-dimensional Cartesian space and each node is responsible
for a part of the space. For each data with key K, the key is hashed into d values and is
then represented by a point in the coordinate space. The data is stored by the node that is
responsible for the portion of the coordinate space in which the point resides. In the CAN
architecture, each node needs to keep record of addresses of its neighboring nodes. In this d-
dimensional space, two nodes are neighbors if their regions of responsibility overlap in exactly
d − 1 dimensions. It follows, that each node keeps record of 2d neighbors. Routing in this
architecture is straightforward — node just forwards the request for a specific resource to the
neighbor that is closer (in terms of Cartesian distance) to the requested resources coordinates.
If all the regions belonging to the N nodes in the network are same, the mean routing path
length is (d/4)(n1/d). This architecture is also resilient to random node failures, since there
is more than one pathway between any two points in the coordinate space.

Pastry & Tapestry The remaining two prominent DHT designs are Pastry [118] and
Tapestry [150]. In Pastry, each node identifier is a 128-bit number from a circular space.
Every node keeps a routing table with logbN rows, with b being a system specific integer
value. In each row there are addresses of other nodes matching prefix one bit longer than
those in the previous row. Routing is done by searching for nodes in the routing table that
have the largest common prefix with the requested resource. Message routing in Pastry is
O(logbN). The same routing complexity holds for Tapestry.

Interconnection of Structured Architecture There have also been attempts to inter-
connect these networks. For example, one may use nodes that are capable of communicating
using two or more protocols and use those as a proxy between two networks [44]. This requires
introduction of supernodes that have enhanced capabilities compared to other nodes in the
network. Another option is to use so-called truncated pyramid where different P2P overlays
are interconnected by trees [102].

2.2.2 Unstructured Architectures

In unstructured P2P networking architecture, nodes simply choose their peers randomly. The
prominent examples of unstructured P2P networks are Gnutella or BitTorrent. These two are
also examples of two different approaches to the unstructured overlay network construction
— Gnutella is purely random without any central authorities and BitTorrent utilizes a cen-
tralized tracker (which is not necessary in the latest protocol versions). The two protocols are
further described in Section 2.2.3. Overall, the unstructured P2P networks offer several good
characteristics, like low diameter and network resilience to node churn and random failures.
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Hybrid Architectures

Hybrid architectures try to bring the best from both worlds. We do not deal with them
later in the text, but just to give one example we may refer reader to [101]. In it, a DHT
ring of smaller unstructured networks called load balancing clusters is proposed. It is a two-
layer network, with supernodes in the upper layer. Each supernode participates in the DHT
network and manages a smaller unstructured network. This load balancing cluster shares the
workload put on the managing supernode.

2.2.3 Popular peer-to-peer networks

In this section, we shortly describe the following P2P protocols:

• Skype,

• BitTorrent,

• Gnutella,

• Kademlia.

One can find studies of BitTorrent in [98], BitTorrent’s DHT [37], KAD (which is based on
Kademlia) in [127, 86] and Gnutella in [84, 3, 92]. In the following we provide their short
description.

Skype Skype protocol is proprietary and has not been publicly described yet. Moreover,
Skype encrypts all its communication, it is thus difficult or even impossible to reverse en-
gineer it. It is believed that Skype P2P protocol is based on the FastTrack P2P protocol
and closely related to KaZaa [49]. While this has not been proven directly, there are stark
similarities between them, e.g. both FastTrack and Skype use two layer overlay architecture
with supernodes in one layer and ordinary nodes in the other.

A basic description of Skype architecture and an analysis of the message workflow can
be found in [34]. Authors have also created several signatures to detect Skype traffic based
on their findings. Detection using signatures requires packet payload inspection, which is
processor intensive and introduces significant latency. Therefore, it is not suitable for high-
bandwidth networks. Another analysis of Skype can be found in [49]. In this work, the
authors also provide an analysis of user-behavior and estimate network workload generated
by Skype.

Another approach to detect Skype was proposed in [15]. Two detection methods are
offered – one based on Pearson’s Chi Square test and the other using Naive Bayes Classifiers.
Both methods require packet payload inspection and therefore their deployment on backbone
networks can be problematic. These two methods were further modified and their performance
analyzed in [121]. Packet inspection and flow properties are also used for detection in [148].
Another approach, introduced in [139], is based solely on the flow data from the network.

An interesting Skype detection method designed specifically for 3G networks can be found
in [134]. The authors exploit a specific property of 3G networks whereby every packet is
associated with a specific mobile device (and thus user). However, it is still necessary to
inspect packet payloads in order to detect active Skype node in the network.

Skype is analyzed from a rather different perspective in [138] where two Skype outages
are analyzed and compared. One of the interesting observations of this work is that Skype
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temporarily centralized its topology by the introduction of so-called mega-supernodes, conse-
quently speeding up the network recovery.

BitTorrent Bittorrent is a popular file sharing solution nowadays. It differs from another
P2P network in that it joins a particular overlay only when it wants to download a file.
This overlay is called a swarm and has form of a mesh. Before a node joins a swarm, it
must retrieve set of already participating nodes from a tracker to bootsrap. This might
be considered a single point of failure; as a countermeasure distributer tracker functionality
over DHT (actually Kademlia-based) was added to the later versions of Bittorrent protocol.
To enable multi-source downloads, the shared file is split into segments and chunks. Each
participating node can download different chunks from different users. They key mechanisms
of Bittorrent are choke algorithm and chunk selection algorithm. Choke algorithm is an
incentive algorithm to promote fair usage of the network. In basics, every 10 seconds the peer
decides to which of its neighbors it will send data. These neighbors are selected based on they
willingness to share and speed of download from them. Chunk selection algorithm controls in
what order are the chunks downloaded. Since the nodes exchange information about already
downloaded parts, each node has an information about rarity of particular chunks. Then it
chooses to download the rarest chunks first to ensure it will be able download the whole file.
This was of course only a very short introduction, but since it is not the main aim of our
work, we will not go any further. An interested reader may find more detailed information
in [83].

Bittorrent from the point of view of an ISP was described in [124]. According to their anal-
yses, flashcrowds (which are often the reason for the scalability studies in Bittorrent) appear
always around midnight. Another interesting observation is that Bittorrent DHT dominates
the BitTorrent traffic, even compared to data transfers. This suggests that BitTorrent has a
high overhead when using distributed trackers.

The distributed tracker functionality over DHT is studied in [63]. They investigate why
the real deployment of distributed trackers is not as successful and optimal as simulations
suggest. According to their results, it seems that majority of Bittorrent nodes using DHT
are behind NAT, therefore are unreachable by external hosts which severly disrupts the DHT
overlay.

Last but not least, a detailed analysis of Bittorrent traffic on the both application- and
flow- level in a broadband network can be found in [98]

Gnutella Gnutella is an unstructured P2P network used for file sharing. In its first version,
it used purely random peer selection. Upon start of the node, it flooded the network sending
ping messages. If it contacted another Gnutella host, it received a pong response. Searching
in Gnutella network is done by flooding the overlay network with TTL-aware (time to live)
query messages, where each query is forwarded to all known peers unless the TTL is 0 in
which case it is discarded. A node usually had 4 to 5 peers. With the introduction of a new
version of the protocol, so-called supernodes were introduced. Supernodes maintain many
more connections to other supernodes. Gnutella overlay these days has a tree-like structures.

Many studies of Gnutella have been published to this day. A study concerned with
structural properties of Gnutella overlay can be found in [132]. This study contradicts many
other studies of Gnutella by claiming that its overlay in fact does not follow a power-law
degree distribution. It also states that Gnutella forms a small-world network.
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Another work focused on Gnutella focuses on its messages inter-arrival times [97]. It argues
that although many previous works assume that Gnutella has inter-arrival times following the
Poisson distribution, it is in fact not true. They show that inter-arrival times are much better
approximated by bi-modal Poisson distribution.

Observations from a 15-months long study of the two-tier Gnutella overlay network are
described in [115]. They made an interesting observation, that while locality is not enforced
in Gnutella, most of the connections exhibit a strong bias towards the intra-continent connec-
tivity. Besides that, they observed that the architecture was starting to lose balance during
its evolution and rapid increase in the number of nodes. However, changes in the client
application managed to reverse the effect and the network regained its stability.

Kademlia Kademlia is a DHT P2P network algorithm, first introduced in [93]. It commu-
nicates over UDP. We will not describe internals of the Kademlia implementation, however
we point out to several interesting works dealing with Kademlia.

An implementation of Kademlia called KAD was monitored for over a year in [128]. One
of the key observations is that user session times in the network are Weibull distributed,
exploiting which may improve the publishing mechanism in KAD. Also, the measurements
imply that KAD ID, assigned to each user is not static for all users (as was originally assumed).
Some users change their KAD ID as often as once a day.

Kademlia is also known to be implemented as an overlay for several P2P botnets. Two
articles dealing with Kademlia and its advantages and/or disadvantages for botmasters are
considered in Section 2.3.2.

2.2.4 Peer Selection in P2P Networks

Peer selection in P2P networks is a broad and complex topic and we are interested only on a
small practical implication of the chosen peer selection strategy. Therefore, we provide only
a brief overview of the topic. Peer selection strategy can be either uniform random or biased
(random). In case of a uniform random peer selection, node selects several peers randomly
using uniform sampling. Such peer selection is used for example in BitTorrent to obtain the
first set of peers from a tracker when joining a swarm. The goal of biased peer selection
strategies is either to improve data locality [137, 123, 145], minimize delay in multimedia
streaming [143], adapt to heterogeneous bandwitdhs within the population [143, 11] or solve
scalability issues of existing networks [23].

2.3 P2P as a botnet C&C

2.3.1 Viability of P2P networks for C&C

In this section we review related work that analyze the ability of various P2P architectures
to be used as a C&C channel. The focus lies mainly in the ability of the P2P protocols to
disseminate new commands, update malicious binaries, and to withstand targeted attacks
and enumeration attempts.

Researchers do not have direct global access to the P2P overlay networks used by bot-
nets, therefore, when studying properties, mitigation strategies, and potential improvements
of P2P-based botnets, they turn to theoretical models that approximate real P2P overlay
networks. Structured P2P networks are commonly represented by the Erdös-Rényi random
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graph model and unstructured P2P networks are represented as Barabási-Albert scale free
network model. This choice is based on the observed degree distributions of nodes in graph
representations of P2P networks. Structured P2P networks tend to keep uniform degree dis-
tribution of its nodes, which is typical the case of the Erdös-Rényi model. On the other
hand, unstructured networks typically have scale-free degree distribution, which is typical for
Barabási-Albert scale free model. Published works sometimes also analyze Watts-Strogatz
small world model, despite the fact that overlay networks with the similar structure are
extremely rare; one example of such network is Zindos [27].

Research community is understandably interested in strategies to disrupt botnets. Across
the literature, three disinfection strategies are considered when evaluating resilience of a P2P
overlay:

• random disinfection,

• tree-like disinfection,

• globally-optimal disinfection.

Random disinfection is equivalent to a random node failure in the study of resiliency of general
peer-to-peer networks. In such a case, an infected computer is cleaned once a malware is
detected without using any knowledge that can be gained from the malware instance. In the
tree-like disinfection, all the peers known to the already cleaned instance are also cleaned and
so on. Globally optimal disinfection assumes knowledge of the whole overlay and picks nodes
to be disinfected in the order of their importance to the network, e.g. highly connected nodes
first.

To what extent a disinfection strategy disrupts a peer-to-peer overlay is determined by
various metrics. For example, effectiveness, efficiency and resilience of P2P overlay network
were evaluated in [27]. By effectiveness of a botnet, the authors understand an estimate
of overall utility to accomplish a given purpose. By efficiency the authors understand the
communication efficiency within the overlay network. Finally, robustness represents to ability
of the overlay network to withstand the removal of peers. Effectiveness is measured by two
metrics – size of the largest connected component and average bandwidth of the infected
clients; efficiency is measured by the inverse geodesic length [55], and robustness is measured
by the local clustering coefficient. The authors evaluate these properties of three theoretical
models:

• Erdös-Rényi random graph model,

• Barabási-Albert free scale network model and

• Watts-Strogatz small world model.

The conclusion is that the Erdös-Rényi and Watts-Strogatz behave similarly if the targeted
disinfection is being performed, outperforming the Barabási-Albert model. On the other
hand, the Barabási-Albert model is more resilient to the random disinfection. As a conclusion,
Erdös-Rényi is considered as a good choice for overlay network.

In [28] a similar study is performed on a mix of theoretical models and existing peer-to-peer
overlays:

• Overnet (Kademlia/DHT),

13



• Gnutella,

• Erdös-Rényi random graph model,

• Barabási-Albert scale free network model

using different performance measures – reachability from a given node, shortest path length
sets and diameter of the network graph and the three disinfection strategies. Experiments
in the paper suggest that Gnutella, as an unstructured peer-to-peer network can be can be
very well approximated by the Barabási-Albert model. On the other hand, Overnet, as a
structured peer-to-peer network is not approximated correctly by the Erdös-Rényi model,
mainly due to the degree restriction in the Overnet, which is not present in the theoretical
model. The conclusions of the paper seem to be consistent with [27]: Gnutella & Barabási-
Albert model are more resilient to the random disinfection, while Overnet and Erdös-Rényi
model are more resilient to targeted and tree-like disinfection. However, Overnet is even more
resilient than the Erdös-Rényi model. Similar observations were made in [6].

Another types of attacks on P2P botnets do not rely on node removal, but rather try to
shut down the overlay itself. They were analyzed on an example of Kademlia in [50]. In it,
several measures to identify important nodes in the overlay are proposed, among them

• degree centrality,

• eigenvector centrality [17],

• betweenness centrality,

• closeness centrality,

• routing–based centrality.

According to the experiments, none of the proposed measures fared particularly well in identi-
fying nodes in the overlay that see most of the P2P network’s traffic. Even for the betweenness
centrality, which appears to be the best metric for choosing the nodes that see the most traffic,
this metric achieved only around 13% overlap of top 1000 nodes with respect to the portion
of observed traffic with top 1000 nodes chosen by the measure. When comparing top 2000
nodes, this number jumps to around 22%.

Further on, betweenness centrality was used as a measure to identify the most important
nodes in the overlay for the three mitigation techniques:

• poisoning attack [56],

• Sybil attack [32],

• eclipse attack [20].

In the poisoning attack, several nodes controlled by an attacker join the P2P network and
publish keys belonging to the content being attack. Nodes controlled by the attacker provide
fake content under those keys. In the case of Peacomm botnet, the attacker would publish
keys corresponding to the URL for download of a new malware binary with an empty string.
Other nodes in the network that do not belong to the attacker would slowly rewrite the original
keys with the fake content. In the experiment, several poisoning attacks were conducted for
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various numbers of poisoned nodes. It is shown that while betweenness centrality is not a
good criterion for traffic observation, it does fairly well in choosing nodes for the poisoning
attack. Even with only 10 initial bots, the authors were able to poison 25% of the population
(of 2000); with 100 initial bots, they were able to poison half of the population. However, with
400 of the initially infected nodes, the poisoning hits the plateau and adding more poisoned
nodes makes almost no difference.

In the Sybil attack, several fake nodes with various IDs are added to the node population.
These nodes behave differently than the legitimate nodes. In the Sybil attack, the Sybil nodes
are passive, thus do not forward any messages routed to them. The results of their experiment
suggest that only a small fraction of traffic is forwarded to the Sybil nodes, thus these are
not particularly effective in disturbing the operation. On the other hand, when intercepting
traffic, the Sybil nodes learn the identity of other bots which suggests that this approach of
enumerating botnet can be quite successful. It has also been shown, that it is more efficient
to insert addresses of a few Sybil nodes into routing tables of many legitimate nodes, rather
than inject addresses of many Sybil nodes into routing tables of only a few legitimate nodes.

In the eclipse attack, the attacker tries to use his attack nodes to isolate particular nodes
from the rest of the node population; this attack was not successful at all in [50].

Formal models of P2P overlays and attacks on them were described in [117]. Two main
types of attacks on P2P-based botnets were considered:

• intelligence gathering,

• disruption and destruction.

Intelligence gathering represents the enumeration attacks, goal of which is to reconstruct
the graph representation of the overlay network (crawling) or at least identify IP addresses
of machines participating in the P2P network (injecting sensor nodes). Attacks classified as
disruption and destruction are partitioning, sinkholing and poisoning. Goal of the partitioning
attack is to split the overlay into several disconnected parts, which is similar to the eclipse
attack. The goal of sinkholing is to replace peer list of all participating peers in the P2P
overlay with sinkholed hosts, and thus effectively destroying the overlay. Poisoning attack is
basically the Sybil attack described above. In the article, enumeration attacks are attempted
on all active P2P-based botnets. Disruption attacks are modeled theoretically using the
formal models proposed in the paper. Authors observed that in the enumeration attack,
using sensor nodes in addition to crawling considerably increased number of observed peers.
It was also observed that while Zeus and Sality are highly resilient botnets, Kelihos and
ZeroAccess contain weaknesses that can be used to disrupt them.

2.3.2 Peer-to-peer as a botnet C&C channel

Botnets have been utilizing P2P overlay as their C&C for almost two decades now. A list of
early botnets accompanied by the history of peer-to-peer and their introduction as the C&C
channel can be found in [48]. In short, one of the first P2P botnets was Sinit that appeared
in 2003 and used random scanning to find peers. In 2004 another botnet, Phatbot, emerged
whose C&C was based on WASTE [2]. Two P2P botnets appeared in 2006, SpamThru and
Nugache. SpamThru used a custom P2P protocol; and we mention Nugache in a bit more
detail later in this section. More recent botnets that use peer-to-peer networks are described
in [117]. Figure 2.1 provides the information about the life span of the modern P2P botnets.
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Figure 2: Lifespans of P2P botnet variants.

of the longest surviving P2P botnet families, is in principle
relatively straightforward to sinkhole.

Table I shows the communication protocol, message prop-
agation method, communication direction, C&C architec-
ture, and the purpose of each P2P botnet. Note that all
recent P2P botnets have unstructured P2P protocols, that
is, they use message gossiping to propagate information. To
date, most academic work on P2P botnets has focused on
structured architectures [22, 31, 32, 10]. Bots in structured
P2P botnets typically maintain a distributed hash table that
is used to store and route commands. Unstructured networks
are not susceptible to many of the mitigation strategies for
structured networks discussed in the literature. Motivated
by the large number of unstructured P2P botnets that are
used in the wild today, we propose attacks that are generally
applicable to structured and unstructured P2P botnets.

The P2P botnets listed in Table I are used for a variety
of purposes, including malware distribution, spam, credential
theft, and Distributed Denial-of-Service (DDoS) attacks. The
table also shows the C&C architectures of all P2P botnets.
Nugache, Sality and ZeroAccess are purely P2P based. The
other botnets rely on hybrid architectures, which incorpo-
rate centralized servers, for instance to collect stolen data.
Unfortunately, shutting down these centralized components
usually has a minimal effect, as the P2P layer can easily be
used to redirect bots to alternative servers. Thus, we focus
specifically on the resilience of the P2P layer itself.

Family Protocol Prop. Dir. C&C Purpose

Kelihos custom gossip pull hybrid C,D,M,N,S
Miner custom gossip pull hybrid D,M,P
Nugache custom gossip pull P2P D,T
Sality custom gossip pull P2P D,N,P
Storm Overnet1 routing pull hybrid D,S,T
Waledac custom gossip pull hybrid D,S,T
ZeroAccess custom gossip pull2 P2P P
Zeus custom gossip both hybrid D,P,T

Table I: Overview of P2P botnet families showing their protocol,
message propagation method, communication direction, C&C ar-
chitecture, and purpose. The main purpose is highlighted in bold.
C = Click Fraud, D = DDoS, M = Bitcoin Mining, N = Network
Services, P = Pay-Per-Install, S = Spam, T = Credential Theft.

B. Botnet Descriptions

In this section, we describe the P2P botnets that we study
in this paper, ordered by the date of their introduction.

1) Nugache: Nugache was a P2P botnet based on a cus-
tom protocol, which first appeared in the beginning of 2006
[25]. Its main purpose was DDoS attacks. Earlier versions
used IRC for C&C, but over time the C&C infrastructure
was migrated to a P2P-based protocol. The Nugache botnet
was one of the first to use strong cryptography to protect its
communication. Some messages were signed with a 4096-
bit RSA key to prevent unauthorized control. Parts of the
inter-peer communication were encrypted using a hybrid
RSA/Rijndael scheme.

2) Storm: Storm (a.k.a. Peacomm) was a structured P2P
botnet based on Overnet, a Kademlia implementation. Storm
appeared in the wild in January 2007. The first version of
Storm was built upon an existing Overnet network used
for file sharing, which the Storm bots shared with benign
clients. Storm bots retrieved commands by using a time-
based algorithm to compute the IDs under which new
commands would be published by the botmaster, and then
searching for these IDs in the DHT. Holz et al. [9] showed
that in principle Storm could be mitigated by overwriting
the command IDs in the DHT.

3) Sality P2P: The P2P version of Sality first appeared in
early 2008 and is a variant of the centralized Sality malware
downloader. Sality uses a pull-based unstructured P2P net-
work to spread URLs where payloads are to be downloaded.
Peers regularly contact their neighbors to exchange new
URLs. We distinguish two disjoint Sality botnets, denoted
as version three and version four. Both networks share the
same P2P protocol, but version four of Sality fixes a critical
vulnerability in the file downloading mechanism [7].

4) Waledac: Waledac originated in December 2008, and
is assumed to be the successor of Storm [23]. The Waledac
network used a tiered infrastructure, with an upper layer of
centralized nodes providing commands and spam templates
to a middle layer of router nodes. Nodes at the router

1A later added XOR encryption separated the Storm botnet from Overnet.
2Bots can trigger pulls at other peers, which are effectively pushes.

99

Figure 2.1: Visualization of life span of known P2P-based botnets. Adapted from [117].

All identified peer-to-peer based botnets were studied by the research community; for
example, one can find studies of Nugache [31], Peacomm/Storm [68], ZeroAccess [144], Sal-
ity [38], Waledac [129], Kelihos [71] and Miner [107]. In the following, we provide a short
overview of several peer-to-peer based botnets. Their life span is visualized in Figure 2.1.

Nugache

Nugache first appeared in 2006 and was easily identified by AV software because of several
known signatures it contained and use of port 8/tcp to listen for incoming connections [31].
However, Nugache became much more elusive after it was updated to a newer version which
ceased to use port 8 and moved to a randomly chosen high port. Nugache first used a
combination of P2P and centralized C&C architecture and all connection within the P2P
overlay were encrypted. With time, the malware shifted completely to P2P, abandoning its
IRC channels. At the time, the two C&C architectures were used together, the P2P overlay
was used only for rallying bots to visit the botmaster’s IRC server when he needed them [31].

Another interesting thing is that when taking snapshots of peers of the one particular bot
in different points in time, the sets overlap only marginally. This might be due to the churn
in the network (new bots appearing, old bots being eliminated) or due to the use of dynamic
IP addresses. Also, there is only a very small overlap between set of bots communicating
with the particular observed bot over P2P and those encountered on the IRC channel. It is
suspected, that the P2P network was designed in such a way, that upon observing a bot and
monitoring its connection, one would not see more than a 10% of all bots in the botnet [31].
Also, connections within the P2P network are lightweight to avoid detection.

While monitoring a Nugache bot, the authors also witnessed several DDoS attacks and
commands to infect other machines. The bot also received several commands to scan for
vulnerabilities on hosts in the reserved ranges (reserved IP ranges containing non-routable IP
addresses). It is interesting though, that scanning and propagation commands were received
through the IRC channel, and command to perform DDoS was received over the P2P overlay.

Storm (Peacomm)

Peacomm, more commonly known as Storm Worm, uses two-step injection. In the primary
injection, the base binary with the capability to join a P2P network is installed after the
user runs an infected application. The bot then connects to the P2P network and downloads
a secondary injection, that gives him the actual malicious capabilities (SPAM campaigns,
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DDoS campaigns, ...). Peacomm employed two distinct P2P overlays. First from January to
October 2007 — this network co-opted Overnet (based on Kademlia), shared the same ID
space, message types and semantics as Overnet but employed a different Routing algorithm.
This network was followed by new, encrypted network which run separate from Overnet [68].
Interesting thing about Peacomm is that it uses P2P network only to search for the URL
from which it can download a new version. In comparison to Nugache, where bots kept low
profile and did not heavily communicate within the P2P network, Peacomm bot contacted
or was contacted by enormous number of peers as can be seen in Figure 2.2. At some point,
Peacomm created a layered P2P overlay, with bots in possession of public IP addresses being
considered more valuable and placed in the upper layer. The lower layer contained bots
behind NAT that were used for example for spamming campaigns [68].

Sality

Sality is a file infector that appeared in several versions. Since 2008 it uses P2P to distribute
URL of malware payloads to be downloaded and executed by infected hosts. Upon infection,
infected binaries join Sality P2P overlay using the 1000 bootstrap peers embedded in the
binary. There are two parallel versions of Sality that use P2P overlay for their C&C – v3
& v4; v4 fixes a critical vulnerability of v3 where files downloaded by the malware are not
digitally signed and thus can be tampered with. P2P overlays of these two versions are not
interconnected [117].

Waledac

Waledac appeared in 2008 and used a combination of centralized and P2P architecture.
Waledac C&C architecture was split into three layers. The lowest layer contained spam-
mers, that were infected machines with no public IP address and which, as the name suggest,
sent out spam. The fact that these were hidden behind NAT complicated their identification.
In the next layer were repeaters, which were the entry point for newly infected machines as
well as a place where spammers went to receive instructions. Repeaters also hosted fast-
fluxing domains used by the botnet. While spammers and repeaters formed an actual P2P
network, the highest layer containing backend servers was centralized and only repeaters had
access to it [129].

Kelihos (Hlux)

Kelihos existed in three variants. The first variant was used for spamming and ID theft. It
was blackholed in September 2011. The second version of Kelihos appeared shortly after, with
mostly the same structure but new capabilities, such as performing DDoS attacks, stealing
bitcoin wallets, intercepting passwords. This version of Kelihos was blackholed in March
2012. The third version was sinkholed in 2013. Kelihos has the same structure of P2P
overlay as Waledac, therefore it is sometimes considered to be its successor. It was spread by
social networks, especially by Facebook worm which lured victims into downloading a photo
album [109, 71].
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Figure 2.2: Number of contacted peers along with time for a Peacomm (Storm Worm) malware
instance. We can see that Peacomm is very active and within 100 minutes it contacted or
was contacted by more than 4000 peers. [68]

ZeroAccess

Existence of ZeroAccess was first reported in 2011. Its size was estimated to around 1 million
of infected machines [144]. It is a malware dropper and uses P2P network for its C&C channel.
Thanks to its P2P-based C&C, it survived a takedown attempt by Microsoft in 2011 [111].
It exists in 2 variants and has 7 separate P2P overlays for its various minor versions – i.e.
32 bit and 64 bit versions use different overlay networks [117]. It has been estimated that
ZeroAccess can bring up to $100, 000 of profit to its owners daily [144].

Miner

Miner was a botnet using unstructured P2P overlay for its C&C and operated between August
2011 and March 2012 [117]. It was split into two disjoint networks consisting around 38, 000
nodes [107]. One of its purposes was to mine bitcoins [142].

Zeus

Zeus has existed in several variants. Its first variants used centralized architecture and were
target of many studies and take-down attempts. One of the variants switched to an unstruc-
tured P2P overlay in September 2011. Zeus uses its overlay to relay commands, stolen data,
configuration and binary updates. One of the monetization techniques of Zeus is theft of
online banking credentials [117].

2.4 Botnet detection

In this section, we provide an overview of related work dealing with botnet detection. Two
specific approaches that are the closest to our contribution are discussed in Sections 2.4.1
and 2.4.2. We then follow with the overview with other related work in the field. Categoriza-
tion of related work can be found in Table 2.1.

2.4.1 Monitoring mutual contacts

A method how to identify local members of a botnet that uses unstructured random P2P
network for its overlay if one bot from the botnet is already known was proposed in [26].
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Table 2.1: Overview of methods and goals of the related work.

goals

P2P
properties

P2P-based
C&C

properties

P2P
detection

botnet
detection
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s

empirical studies [3, 37, 78,
84, 86, 92,

98, 108, 127]

[48, 117] - -

theoretical analysis - [27, 28, 50,
117]

- -

thresholding - - [10] -
graph methods [58, 59] - [26, 42, 57,

58, 59, 61,
73, 99, 42,

149]

-

statistical approaches - - [100, 151,
10]

[42]

persistence - - - [46]

Identification is done by post-mortem analysis of the network traffic. Once one bot is dis-
covered in the network, the traffic preceding its discovery is collected (say 24 hours) and
analyzed. The detection of other hosts is centered around the term mutual contact. We say
two hosts in the network have a mutual contact if they both exchange traffic with the same
host from outside of that network.

Before we move on, let us define a mutual contacts graph. It is a graph G = (V,E,w)
where vertices V in the graph represent hosts in the protected network (for example identified
by an IP address) and E is a set of weighted undirected edges; w is a weighting function which
assigns each edge weight equal to the number of mutual contacts of the two incident nodes.
When creating the graph, only mutual contacts are that were contacted by at most k local
hosts are considered. This removes nodes representing popular servers that create a lot of
edges in the graph and do not bring any valuable information.

Given the identity of the first infected host, referred to as seed node further on, mutual
contacts graph is created and on it so called dye-pumping algorithm is applied. Dye-pumping
algorithm calculates the likelihood of belonging to the same P2P network as the seed node,
for all nodes in the graph. It is an iterative algorithm that can be illustrated as pumping dye
into the graph through the seed node. From the seed node, the dye distributes to the other
nodes in the graph proportionally to dye-attraction coefficient γji. γji specifies what portion
of the dye arriving to node j will be distributed to node i in the next iteration. Its value is
determined as

γji =
Eji

(Di)β

where Eji is weight of the edge connecting nodes j and i, Di is degree of node i (number

19



of adjacent vertices) and β is node degree sensitivity coefficient. This coefficient limits the
amount of dye arriving to highly connected nodes, since it is unlikely that these nodes are
parts of the botnet (which authors assume has only few bots in the protected network).

The algorithm has three inputs:

• matrix E = (Eji) representing all edge weights,

• index s of the seed node Ns,

• i — the maximum number of iterations of the algorithm.

With these inputs at hand, the algorithm first computes the dye-attraction coefficients and
forms the transition matrix T such that:

T(i, j) = γj,i =
Eji

(Di)β

where i, j ∈ 1, ..., v and i 6= j. We set T (i, i) = 0 and finally v is number of nodes in the
graph. This matrix is further normalized so that all columns sum to 1. The algorithm further
needs dye-level vector L, where L(i) specifies how much dye has accumulated in the i-th node.
Before the first iteration, all the dye is in the seed node and other nodes have no dye in them,
therefore:

L(i) =

{
1, when s = i

0, otherwise

At each iteration, dye from nodes that have it is diffused to their neighborhoods. Amount of
dye at each node can be calculated as

L(i) =

v∑
j=1

T(j, i)L(j)

which is equivalent to L = TL. After each iteration, L is updated, such that L(s) = L(s) + 1
and then normalized. After i iterations, L indicates the confidence for each node that it
belongs to the same P2P network as the seed. We can define some threshold thr and nodes
with confidence exceeding this threshold are returned by the algorithm as the nodes in the
same P2P botnet as the seed node. The algorithm summary can be found in Algorithm 1.
While this algorithm has cubic complexity, matrix T and vector L are usually sparse and one
can take advantage of this.

The paper also discusses theoretical grounds on which the detection method is based. It is
shown that for P2P networks where each peer selects its neighbors using uniform random peer
selection, the probability that two hosts in the network share a mutual contact is surprisingly
high. At the same time, any biased peer selection strategy increases this probability. It is
also shown that assuming uniform random peer selection, edge probability pe between any
two nodes can be computed using hypergeometric distribution, so that

pe = 1−
(
C
0

)(
B−1−C

C

)(
B−1
C

)
This probability rises quickly as the number of contacted nodes increases. Besides the proba-
bility of edge, its weight is also important for the algorithm to work correctly. In the random
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Algorithm 1 Dye-pumping algorithm.

1: function Dye Pumping(E, s, maxIter)
2: T← computeTransitionMatrix(E)
3: ¯textbfT ← normalize(T)
4: L← [0, 0, ..., 0]tr initialize L as a zero vector
5: for iter = 1 : maxIter do
6: L(s)← L(s) + 1 Pump dye from the seed node
7: L← L∑

L(i) Normalize dye level vector

8: L← ¯textbfTL Distribute dye in network for one iteration
9: end for

10: output L
11: end function

peer selection model, the probability of a peer to be contacted by two other peers is

(
C

B
)2

and since there are B peers at total, we can write the expected capacity of edges E[Cp] as

E[Cp] = (
C

B
)2B =

C2

B
.

The expected edge weight increases as the number of contacted peers increases regardless of
the botnet size. Overall, these two observations suggest that bot will be closely connected by
high weight edges. Since we assume random graph model with edge probability being same
for each pair of nodes, we are in fact considering Erdös-Rényi model [35, 36]. It has been
shown that there is a sharp threshold of pe exceeding which results in the disappearance of
isolated vertices in the graph [36]. In particular this threshold has value of

ln v

v

where v is number of nodes in the graph. This implies, that increase in the number of infected
hosts in the network eases the detection of those hosts by this algorithm.

We would like to note, that while in [26] it is suggested that Erdös-Rényi model is used to
model random unstructured P2P network, in other related work [27, 28], Erdös-Rényi model
is used to model structured P2P networks. The reasoning in [26] is that peers choose their
neighbors uniformly at random, therefore there is no “intentional” structure and such P2P
network can be approximated by random graph model. In contrast to that, reasoning of
[27, 28] is based on the similarity of degree distributions seen in the random graphs and real-
world structured P2P networks. This discrepancy however does not compromise the analysis
of the probability of having a mutual contact provided in [26].

Authors evaluated the detection performance using the Nugache botnet. Nugache can be
crawled since its protocol supports querying for the known and recently contacted peers. For
the experiment, authors performed several crawls over the Nugache network and based on
the data about recently contacted peers they created mutual contacts graph. This graph was
overlaid with mutual contacts graph created from background traffic collected for 9 days at
the border of NYU network. They overlay was created in such a way that hosts from the
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Figure 2.3: Precision and recall as function of various number of Nugache peers in the network
and thresholds to select the suspicious peers. [26]

NYU network were randomly mapped to the Nugache peers. In result, those hosts appeared
as being infected by Nugache. For the completeness, we note that before the mutual contacts
graph for the background traffic was created, all external IP addresses that did not exchange
at least 256 bytes in both directions with at least one internal IP were removed. This way
they were able to get rid of scans of the network. Also, all DNS servers were removed from
the background mutual contacts graph. It was observed, that the final mutual contact graph
is more clustered than comparable random graph (in number of nodes end edges).

For the evaluation, the number of iterations was set to 5, the privacy threshold was set
to 2 and β = 2. The measured values of precision and recall can be found in Figure 2.3.
Precision is set to be the ratio of the number of returned Nugache peers to the overall list
length and recall is ratio of the returned Nugache peers to all present Nugache peers. In
accordance with the random graph theory, both precision and recall rise as the number of
Nugache peers in the network increases.

Overall, monitoring mutual contacts is an interesting idea, which we use ourselves in
our work. However, the method as presented cannot be used as an automated P2P botnet
classification system due to low values of precision and recall. We believe this is caused by
the fact that the algorithm works with IP addresses. We present an improvement in this
matter in Section 3. Moreover, the graph as presented can be only created offline, therefore it
is useful only for post-mortem analysis. If the graph were to be constructed on-line it would
have to keep track of contacted nodes, in which case a more convenient way of representing
mutual contacts is in question. We present our improvements in this matter in Section 3 as
well.

2.4.2 Persistence analysis

In this section we describe a method that was designed to reveal infected but yet dormant
hosts in the network. The method measures persistence of connections, which will be properly
defined later, but intuitively we can consider it a measure of longevity or periodicity of the
given connection. The method was proposed with centralized botnets in mind, however, as
will be shown in the review of the paper, it managed to detect several instances of a P2P
based botnet. The method was originally proposed in [46].

Detection algorithm is designed to be deployed on a host machine. It records all outgoing
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connections from the host. The endpoint of an outgoing connection is called a Destination
Atom (referred to as DA further on) and is defined as a vector (service, port, protocol) where
port and protocol are properties of the outgoing connection and service is determined as
follows:

• if source IP and destination IP belong to different domains, service is defined as a
second-level domain,

• if source IP and destination IP belong to the same domain, service is defined as a
third-level domain,

• for higher layer protocols that use ephemeral ports, such as FTP, only one DA is created.
This DA covers all ephemeral ports,

• if IP cannot be resolved to a host name, it is used as a service name.

The regularity of the connection to a given DA is observed by sliding window W , which is
split into n bins. This window is called observation window and bins are called measurement
windows. We can write W = [b1, b2, b3, ..., bn] where bi are bins of size W

n . To quantify the
”regularity” of the DAs, a metric called persistence is defined as follows:

p(d,W ) =
1

n

n∑
i=1

1d,bi

where d is the DA, W is the observation window and function 1d,bi is equal to 1 if at least one
connection from the host to the DA d occurred during the measurement window bi, otherwise
the function is equal to 0. If we take a look at the definition of the persistence, we see it is
just the portion of bins in the observation window that had any connection to the DA. This
measure gives the same weight to the lightweight connections as it gives to the heavy traffic
connections. Thanks to this one can discover ”regular” but at the same time lightweight
communication. A DA is considered to be persistent, if its persistence exceeds the persistence
threshold, which is set by means of a prior knowledge or experiments. In [46] authors show on
statistics from their experimental data, that less than 20% of all DAs has persistence higher
than 0.2. This is in accordance with the assumption that most of the endpoints are connected
to very sporadically or only once. The data also show, that persistence threshold should be
chosen somewhere between 0.5 and 0.8. Authors choose 0.6 as their threshold value.

There are many different types of botnets from different authors with different C&C setup.
As a result, one can’t expect all of them to follow the same pattern of connections to its master.
Choosing only a single measurement window size might lead to good results detecting one
type of botnets, but other botnet families might evade detection. For example, measurement
window size of 1 hour cannot detect a bot that contacts its master only once in a day, this
C&C connection never becomes persistent and raises any suspicion. For this reason, several
observation window and measurement window sizes are usually used. These ensure that the
detection method can detect more types of botnets. When utilizing different observation
window and measurement window sizes, vector (W, b) where W is the observation window
and b is the size of measurement window is called a time scale. Persistence is calculated
for each time scale and the total persistence is the maximum of all persistence values for
individual time scales:

p(d,W ) = max
j
p(j)(d,W ).
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Table 2.2: List of sampled botnet binaries with clear identifiable C&C traffic

AV Signature C&C Type # of C&C Atoms

Trojan.Aimbot-25 port 22 1

Trojan.Wootbot-247 IRC port 12347 4
Trojan.Godbot.T IRC port 66659 1
Trojan.Godbot-14 IRC port 6667 2
Trojan.Aimbot-5 IRC via HTTP proxy 3

Trojan.IRCBot-776 HTTP 16
Trojan.VB-666 IRC port 6667 1

Trojan.IRC-Script-50 IRC ports 6662 — 6669, 9999, 7000 8
Trojan.Spybot-248 port 9305 4
Trojan.MyBot-8926 IRC port 7007 1

Trojan.IRC.Zapchast-11 IRC ports 6666, 6667 9
Trojan.Peed-69 [Storm] P2P/Overnet 19672

The detection algorithm uses whitelist and requires a learning phase. Before the detection
phase we need to run the algorithm in a learning phase. In the learning phase, the detection
algorithm processes clean traffic and every DA that exceeds the persistence threshold (there-
fore is persistent) is added to the whitelist. DAs detected in the learning phase are assumed
to represent legitimate destinations regularly visited by the user. After the learning phase
and creation of the whitelist, the algorithm can start the detection phase. In this phase,
every DA that is persistent and is not included in the whitelist rises alarm to the network
administrator.

To evaluate the detection performance, authors collected traffic for four weeks from 350
users. Only 157 were active during the whole period and thus the algorithm was evaluated
on their respective network traces. To gather malicious traffic from bots the C&C server they
manually executed 55 botnet samples in a virtual machine. Out of them, only 12 generated
enough traffic to be included in the experiment. Overview of the used malware can be found
in Table 2.2. Since the method requires a learning period, the 4 weeks were divided into
halves, first half serving for the learning phase and second half (intermixed with the traffic
traces of malware instances) to evaluate the performance.

The algorithm was run with measurement window sizes s ∈ {1, 4, 8, 16, 20, 24} and having
10 bins in the observation window. Persistence threshold was chosen to be 0.6. With these
setting, all bot instances in the experiment were detected. Specific time windows that raised
an alarm for particular bot samples can be found in Table 2.3. Based on the ROC curve in
Figure 2.4 we can say that 0.6 is indeed the optimal choice for the persistence threshold. The
authors also advertise low number of false alarms — on average, any user receives less than
one false alarm every two days.

Surprisingly, despite the fact that persistence monitoring was designed to work with cen-
tralized botnets, it was also able to detect STORM bots in the network, which is a P2P
botnet. We believe it is due to the fact that STORM might keep its peer list stable thus
resulting into persistent connections.

We believe that monitoring temporal persistence as it is proposed in [46] can be considered
an anomaly detection — all whitelisted destinations are ”normal“ persistent destinations and
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Table 2.3: C&C detection performance

Botnet Persistence Timescale # of DA

Trojan.IRCBot-776 1.0 (10,1) 1

Trojan.IRCBot-776 0.8 (200,20) 2
Trojan.Aimbot-5 1.0 (10,1) 1
Trojan.Aimbot-5 1.0 (40,4) 1
Trojan.Aimbot-5 1.0 (160,16) 1

Trojan.MyBot-8926 0.6 (160,16) 1
Trojan.IRC.Zapchast-11 1.0 (40,4) 3

Trojan.Spybot-248 1.0 (10,1) 2
Trojan.IRC-Script-50 1.0 (10.1) 7

Trojan.VB-666 0.7 (10,1) 1
Trojan.Godbot-14 1.0 (10,1) 1
Trojan.Godbot.T 1.0 (10,1) 1

Trojan.Wootbot-247 1.0 (10,1) 3
Trojan.IRC.Zapchast-11 1.0 (10,1) 6

Trojan.Aimbot-25 1.0 (10,1) 1
Trojan.Peed-69 [Storm] 1.0 (10,1) � 1
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Figure 2.4: ROC curve of the detection performance of persistence measurement method. [46]

any other is an anomaly that rises an alarm. Definition of Destination Atom also brings
several challenges. P2P applications, for example, contact their peers by IP address and not
by a host name. Of course, Destination Atom can work with IP addresses, but only as a
fallback mechanism. Also, a P2P application may connect to plethora of peers, some of them
persistently. And at each start of such application, the peers tend to change. This might
result in dramatic increase in false alarm rate since the method was only evaluated only on a
corporate network, where users are generally well-behaved.

2.4.3 Other methods

A method using a graph of flows was proposed in [73]. It is a two step detection mechanism
where in first step they identify several P2P flows and in the second step, using this several P2P
flows identify the remaining flows. While the method is presented using a graph formalism, it
is in fact a collection of simple rules that are called recursively over the set of flows. In the first
step several P2P flows are identified based on their statistical properties. For example, flows
originating from a host that has high in- and out-degree (that is, it connect to many peers
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and many peers connect to it). The other possibility is to identify these flows by monitoring
ports that are known to be used by P2P applications. Once an initial set of P2P flows Fi
from the observed flows F is found, it is extended by moving flows from F \ Fi:

• any flow in F \ Fi, that has same source and destination hosts as some flow already in
Fi, it is added to Fi (it has been shown that any any traffic exchanged between two
hosts belong to the same application with 99.5% probability [64]),

• any flow in F \ Fi that target the same destination IP and port as the any of the flows
in the Fi is added to Fi,

• flows from F \ Fi that originated from the same IP as any flow in Fi within one second
form it are added to Fi.

These rules are applied iteratively until the set converges and Fi is also the output of the
algorithm. These rules can be also formalized as a graph algorithm, that creates edges between
flows based on the same rules. According to the experiments, 90% of all detected P2P flows
were within one giant connected component. Evaluation was done as a comparison to the
signature-based detection. Since they had signatures only for several P2P networks, they
were only able to determine false negatives. Altogether, they were able to identify 99% of
all flows labeled by the packet-based classifier. This approach is an alternative to established
methods that use hosts as vertices in the graphs, and puts flows in the center point of interest.
According to the presented results, this algorithm is unable to distinguish between various
P2P networks, since several hosts are “super-clients” that support more than one network
and inter-connect various P2P networks. We also must object to the third rule used in the
iterative extension of the flow set. We believe that false-positive rate might be unnecessarily
increased this way, especially if the are several streams active on the host (for example, while
downloading files, one might be also listening to online radio stream, etc.).

An unified framework that combines structural and statistical based detection of P2P
networks was proposed in [99]. It first creates graph G based on the observed communication
in the network. Nodes of such graphs are IP addresses that are endpoints of communications,
and edges represent network flows. Each edge is assigned a feature vector that is based on the
properties of network communication that the edge represents. Graph G is then converted to
a dual graph, where edges from G are represented as nodes, and two nodes (formerly edges)
are connected by an edge if they

• share a common node in G,

• have similar feature vectors; similarity of feature vectors is determined using euclidean
distance between them.

Such dual graph is then clustered and clusters containing malicious flows are evaluated for
precision and recall. Intriguing property of this approach is the conversion of the original
graph to the dual graph. This way, the actual clustering is done to partition connection
according to their behavior, as well as their structural properties. On the other hand, the size
of the dual graph may be considerable, which can be countered by thresholding edge weights
in the dual graph. In comparison to our algorithm, there are two conceptual differences:

• graphs represent different entities,
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• our proposed algorithm is on-line.

While the graphs we propose to be used for P2P detection in Chapter 3 and graph proposed
in [99] are conceptually different, they both address and unspoken limitation of the graphs
with IP addresses as nodes, commonly used in the field – one client or device can participate
in multiple P2P overlays at the same time and these graphs cannot distinguish between them.

P2P detection method using directed communication graphs and PageRank was proposed
in [42]. In the communication graph, node represent IP addresses and a directed edge between
the nodes signifies the existence and the specific direction of communication between them.
PageRank, which identifies “important” nodes is run on the communication graph twice; in
the second run the direction of the edges is reversed. It was shown that if IP addresses are
represented in a two-dimensional space with coordinates specified by the two PageRank runs,
IP addresses participating in a P2P are in dense, but disjoint clusters. The precision and recall
of the method can be influenced by the quality of information the PageRank is initialized with.
Its personalized version can be used to detect a specific P2P network. We are curious whether
the fact that PageRank score is higly correlated with in-degrees of nodes [8, 41] can be used to
simplify this method – instead of running the PageRank twice, only in/out-degrees of nodes
would be used as two dimensions to which the IP addresses are projected. This would align
with the intuition that IP addresses participating in P2P network have a high number of
communication partners with both incoming and outgoing connections.

Another approach to classify communication between IP addresses, instead of addresses
themselves was proposed in [100]. Specifically, in this approach conversations are classified.
Conversation is a sequence of packets between two hosts, where conversation ends after the
communication stopped for at least some time period. Four features are calculated for each
conversation - duration, number of exchanged packets, volume of data and median of inter-
arrival times of packets. A Bayesian network, decision trees and boosted REP tress are
trained. These classifiers are then able to classify conversation as belonging to any of the
P2P networks used in training. In contrast to our work, it classifies conversations instead of
endpoints (i.e. ip addresses). It is a supervised approach, therefore for each new P2P network
the classifier needs to be retrained to detect it. Surprisingly, no background traffic was used
in evaluation of the classifier. Therefore, even though the capability of the trained classifier
to distinguish the P2P networks in the training set was demonstrated, it is unclear the true
precision in the presence of background (non-P2P) traffic.

A multi-layer system for detection of P2P networks was proposed in [149]. The system is
based on several observations about P2P traffic:

• P2P applications mostly connect to IP addresses directly, without resolving them using
DNS request first,

• P2P applications create unusually high number of failed connections,

• P2P-based malware is active as soon as the infected device starts, whereas legitimate
applications need to be started by a user who also shuts them down after he/she is done
using them,

• flows are similar for nodes in the same P2P network, and vary depending on the P2P
protocol and network in use

• nodes that are part of a malware P2P overlay are more likely to share remote peers
than nodes participating in a legitimate P2P network.
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Description of the whole system is out of scope of this overview; therefore we refer the inter-
ested reader to [149]. In principle, the authors solve the same problem as do we in Chapter 3,
however focus mostly on different inherent properties of P2P overlay networks and peers
participating in them. Also, in our approach we avoid clustering or any other graph-based
algorithms, in favor of carefully designing a graph construction and manipulation algorithm
that directly describes the overlay of a P2P network.

A detector of P2P flows based on two heuristics about properties of P2P traffic was
proposed in [69]. The heuristics used were:

• many P2P networks tend to use both TCP and UDP connections between two same
endpoints specified by IP address and port,

• due to port randomization in the latest P2P networks, when an endpoint specified by
IP address and port is contacted by other peers in the network, each unique IP address
also uses a unique port.

Using these two heuristics in a rule-based system, authors were able to identify 99% of P2P
network flows, while limiting false positives to less than 10%.

Graph based detection of P2P networks, that is agnostic of any specific peer-to-peer
protocol features is proposed in [25]. It creates a connection graph of communication seen in
a network for each specific port and protocol. Based on the graph diameter and number of
hosts that function as both client and server, the method determines whether they constitute
a peer-to-peer network. Assumption of this method is that all (or at least many) peers in
P2P networks listen to incoming communication on the same port which is in stark contrast
to [69].

A supervised approach to detect flows originating from P2P-based botnets was proposed
in [151]. Flow(s) between two IP addresses captured within a 5-minute interval are repre-
sented by 12 statistical features. Two classifiers are trained to classify conversations as either
malicious or legitimate. This is an approach based purely on supervised learning, therefore is
not closely related to our approach.

A flow-based method to detect peers using inherent properties of peer-to-peer networks
is introduced in [10]. The method itself does not use any protocol-specific features and thus,
in theory, might be used for any peer-to-peer network. The authors validate the method on
BitTorrent and Gnutella networks.

In the detection of P2P networks, and thus P2P botnets, a lot of attention is given to Traf-
fic Dispersion Graphs (TDG). A TDG is a graphical representation of various interactions of
a group of nodes [59]. In IP networks, nodes in TDG represent hosts in the network identified
by their IP address. However, definition of an edge in such a graph is more complicated —
to give variability to TDG to describe various forms of interactions, the edges can be defined
arbitrarily. They can be either directed or undirected. Edge between two nodes can represent
various form of behaviors, eg. two nodes can have an edge between them i.f.f. when they
exchange at least 100 kB of data; or if there was an ICMP communication between the two
hosts. Clearly, we can not provide an exact definition for TDGs in the general discussion, but
every time we present specific experimental results, we explicitly state the particular TDG
definition.

Static properties of various TDG were first analyzed in [59]. A network classification sys-
tem Graption is based on these properties [57]. In the further work, Ilifotou et al. investigate
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also dynamic properties of traffic dispersion graphs [58]. TDGs were also used to evaluate
the limits of local approaches in the P2P botnet detection [61].

Static metrics on TDGs (which were used in Graption) are good to distinguish between
collaborative (includes protocols where hosts are required to communicate with large num-
ber of other hosts and have interchangeable roles of client and server) and non-collaborative
(client-server) applications, but it is harder to distinguish P2P applications from the rest of
collaborative applications (SMTP, DNS, NTP). Graption performance for such distinction
was not evaluated. Improvement in the distinction between P2P and non-P2P collaborative
applications is provided by dynamic metrics. These describe how TDGs evolve with time.

2.5 Guilt by association methods

Guilt by association approach can be loosely defined as: Given the graph with several nodes
labeled as either positive or negative and assuming that neighbors influence each other, find
class memberships for all remaining nodes in the graph [77]. The strength of the influence
is specified by the edge weights. Two types of influence are distinguished in the literature –
homophily and heterophily. Homophily implies that nearby nodes connected with edges with
high weights should have the same label. Heterophily, on the other hand, implies that the
neighboring nodes connected by an edge should have different labels.

A number of algorithms belong to the family of guilt by association methods, among
them belief propagation (BP), semi-supervised learning (SSL), random walks with restart
(RWR) and probabilistic threat propagation. With the exception of belief propagation, which
addresses both homophily and heterophily, all mentioned algorithms can be used only with
homophilic relationships. RWR is used as a basis of Google’s famous PageRank algorithm [17].

BP [104] is an inference algorithm for graphical models such as Random Markov Fields
and Bayesian networks. Given the observations of some nodes, it calculates the marginal
distributions for unobserved nodes. BP or its generalization - Generalized Belief Propaga-
tion [146] were used in a number of fields, such as error-correcting codes [79], stereo imaging
in computer vision [39], fraud detection [94, 103] and malware detection [22].

SSL has grown into a large topic and SSL methods now can be divided into three groups,
depending on assumption about the data they make [21]. These assumptions are necessary for
the semi-supervised learning to make sense and provide more accurate predictions compared
to the supervised setting. Of the three groups - generative models, low-density separation,
and graph methods, the most relevant for this work are the graph-based approaches. Their
interesting property is that they are transductive in nature, meaning that labels can be only
predicted for examples present in the time of training.

It was shown in [77] that SSL is equivalent to Gaussian BP; and it can even produce
identical results to RWR given a specific choice of parameters. This correspondence illustrates
that while the three methods are not identical, their rationales are very similar.

BP was used to improve detection rate of malicious binaries [22]. The method was built
on an intuition that:

• malicious binaries can be found on infected computers,

• malicious binaries are not present on computers that are not infected,

• legitimate binaries are more common across the user base than malicious binaries.
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Using a bipartite graph and belief propagation, the authors were able to identify additional
malicious binaries given the knowledge of some malicious and legitimate binaries with fairly
high precision. In this case, the domain knowledge was encoded in both the graph and the
method – a specific potential functions were chosen to reflect the domain knowledge. Bipartite
graph used in that work has a strong resemblance to the bipartite graph from which we derive
our proposed graphs. The links between executables (nodes of interest) are created through
machines where they reside, whereas in the graph used in Chapter 5 the domains (nodes of
interest) are made through clients (possibly machines) that connect to them.

Same task is solved in [136]. The authors propose to use an unipartite graph where nodes
are files/binaries for which they want to infer whether they’re legitimate or malicious. They
propose an edge weight function based on Jaccard index, which is identical to one of the edge
weight functions we propose to use. However, the intention to create an unipartite graph fails
due to tremendous memory requirements for its storage. This is a topic that we slightly touch
in Section 5.6. Therefore, the authors settle to using a bipartite graph that is identical to the
one used in [77]. In spite of giving up on using an unipartite graph, the authors propose an
efficient approximation to the edge weight function based on Jaccard index using MinHashing.
In our approach, we do not resort to approximate calculation of the edge weights, since we
are able to calculate the exact version of the edge weight thanks to the specialized algorithms
and graph pruning.

A bipartite graphs with “custom” algorithm is used in [140] to find file hosting servers
spreading malicious binaries. In the bipartite graph, one partition contains file hosting servers
and the other partition contains websites that point to these file hosting servers. There is
an edge between a website and a file hosting server iff the given website points to the given
file hoster. These edges are asymmetrically weighted, i.e. weight of an edge depends on
the direction it is traversed and the specific weights are determined by the actual number of
downloaded files. The iterative algorithm in each iteration sets the malwareness of a node
as an weighted average of malwareness of its neighbors. While the algorithm is described
without any reference to prior art, it is basically an iterative approximation of the harmonic
minimal function of the Gaussian field for a specific choice of energy function [153]. This
harmonic function also has an analytical solution and is a basis of semi-supervised learning
in graphs [153].

Problem of identification additional malicious domains given the knowledge of some mali-
cious domains is addressed in [85]. Authors propose to use an inference in a bipartite graph.
In the bipartite graph, one partition contains domains and the other partition contains clients
that connect to these domains. Weighted edges are used to connect the clients with domains.
Anomaly value of a network connection from client to domain, determined by an arbitrary
anomaly detection engine, is used as an edge weight between the given client and domain.
The inference algorithm used on top of this graph was adopted from [152] which was inspired
by [153]. The used edge weight is intriguing in that it should restrict spread of the probability
of being malicious along the legitimate edges (as deemed by the anomaly detection engine).
One would assume that threat should stay localized in a small part of the graph. On the
other hand, consider a situation in which a few infected clients created an anomalous con-
nection towards a well-known and legitimate site. If other users connect to it via normal (i.e.
not anomalous) connections the most of the weight mass of incident edges of the well-known
legitimate site would connect it to the infected users and consequently malicious domains.
Then the probability of being malicious would be rather high. Usage of such edge weight
function can thus have both positive and negative effects. Conceptually, by using such edge

30



weight function authors lean away from the idea that the edge weight should be proportional
to the similarity of the two nodes or to some other relationship between them. As a final
remark, we note that not all sources of data may contain information about anomaly of con-
nections. Another issue may arise when the data is aggregated from various systems. Even if
all connections had an anomaly value, there would be a question of correspondence between
anomaly values produced by various systems; which is something that was not addressed in
the paper.

Identical problem was also addressed in [89]. Just like in the previous case, a bipartite
graph was used, this time unweighted. On top of the bipartite graph, a BP was used to
infer the probability of being malicious for unlabeled nodes. The difference to our work is
in the ground truth – examples from both malicious and legitimate classes are available.
Additionally, we consider pruning of the graph in order to increase precision, which is not
discussed in [89].

Unweighted bipartite graph mapping clients to domains was used to find additional mali-
cious domains also in [62]. In this work, it was constructed based on the failed DNS requests.
According to observations made in [62], failed DNS requests are usually caused by malware
trying to reach old, now defunct, domains that were used as C&C servers. Three types of
dense subgraph were observed in the graph – near-star structure with a few clients in the
center (client-star), near-star structure with a few domains in the center (domain-star) or
bi-mesh, a heavily connected subgraph with many users and domains. It was theorized that
client-star subgraph may contain clients infected by a malware using domain-fluxing C&C
together with malicious domains; domain-star contains a spread-out malware with several
C&C domains some of which might be already blocked. Instead of graph inference, graph
partitioning is used to identify dense subgraphs that likely represent malware infrastructure.

In [112], DNS data is used to construct a bipartite graph with clients and domains. How-
ever, no graph-based inference algorithm is used. Instead, graph is used merely to calculate
features of domains in the graph. Features are then used to train a classifier. Advantage of
such approach is that the trained classifier can be used for new, unseen data as well. This
goes in contrast with the transductive nature of the graph-based inference algorithms. This
is the only related work that considers removing low-prevalence domains, albeit without any
detailed analysis of the impacts of such pruning.

Guilt by association was used in other fields as well. As an example we can mention
identification of gold miners in online games [5]. Another example may be an identification
of top k items an user is most likely buy next, based on his reviews of previous items he
bought [51]. In the following section we deal extensively with Probability Threat Propagation,
which we use in Chapter 5.

2.5.1 Probabilistic threat propagation

Probability Threat Propagation (PTP) is a graph-based community discovery algorithm used
for tasks such as blacklist extension and discovery of peers in P2P networks [19]. The algo-
rithm assumes existence of two communities of interest – malicious and legitimate. It uses the
knowledge of some members of these communities to calculate the probability of other nodes
belonging to either them. It can be thus also considered to be a guilt by association approach.
In further text, we refer to the known members of the communities as seeds. The probability
of being a member of the malicious community is denoted P (x) and is also referred to as
threat. Accordingly, the probability of belonging to the legitimate community is 1− P (x).
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All instances considered in the inference are nodes in a weighted graph

G = (V,E,w). (2.7)

The weight of an edge is expected to be proportional to the strength of the relationship. The
weight function does not necessarily need to be symmetric, that is w(xi, xj) 6= w(xj , xi).

Threat of the seeds is fixed; and is specified by the user. Let S ⊂ V be set of seeds, then
P (xi) = αi, ∀xi ∈ S. Threat of all other nodes in the graph is calculated recursively as

P (xi;G) =
∑

xj∈N(xi)

wij
di
P (xj |xi = 0;G), (2.8)

which describes the rationale of the method, that the threat of a node in the graph is equal
to the weighted average of threats of its neighbors. Note the conditional probability, which
means that the threat of the neighbors was calculated in the absence of xi. Point of this is
to prohibit xi from increasing its own threat.

There is a closed-form exact solution for trees with only a single seed which is equivalent
to the well-known Belief Propagation. Tree can be always rearranged in such a way that the
seed poses as the root. Then, for each node xi in the tree, there is a path

Pi = {x(1), x(2), ..., x(m)} (2.9)

to the root, where x(1) = xi and x(m) denotes the root (seed). The exact formula for threat
of xi is:

P (xi) = P (x(m))
m∏
j=2

w(j−1)(j)

dj−i
. (2.10)

On the other hand, exact inference is infeasible on large graphs, since one would need
to calculate P (xj |xi = 0) for all pairs of nodes, which is a O(n2) operation. Hence an
approximate solution to Equation 2.8 is proposed in [19]. The approximate threat is calculated
iteratively. Instead of conditional probabilities it uses marginal probabilities calculated at
previous iteration and subtracts the threat transferred in the opposite direction in the previous
iteration. Let P k(xi) the threat of a node xi at iteration k and Ck(xi, xj) be a threat
transferred from xi to xj in k-th iteration, then P k can be calculated as

P k(xi) =
∑

xj∈N(xi)

wij(P
k−1(xj)− Ck−1(xi, xj)), (2.11)

Ck(xi, xj) = wji(P
k−1(xi)− Ck−1(xj , xi)), (2.12)

(2.13)

with P and C initialized as

P 0(xi) = αi; ∀xi ∈ S, (2.14)

P 0(xi) = 0; ∀xi ∈ V \ S, (2.15)

C0(xi, xj) = 0; ∀xi, xj ∈ V. (2.16)

Ck(xi, xj) tracks the threat passed between two nodes. Subtracting it in the threat calculation
guarantees that threat of xi is not increased by the threat that xi itself transferred to its
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neighbors in the previous iteration. In other words, xi does not increase its own threat. This
is an approximation to the calculation of P (xj |xi = 0).

It can be also expressed via matrix operation as

C = W.D−1.diag(P )− (W.D−1) ◦ CT , (2.17)

P = C.1. (2.18)

where ◦ denotes a Hadamard product of two matrices and D is the degree matrix defined in
Equation 2.6.

Graph used for blacklist extension

When designing graph for the task of blacklist extension, three observations were considered:

• it is common for a malicious domain to be hosted on several IP addresses [19],

• it is common for several malicious domains to be hosted at the same IP address [19],

• IP addresses hosting malicious domains tend to concentrate in the IP ranges belonging to
hosting providers that are oblivious to the malicious activities in their networks [24, 147]

These three observations lead to a proposal of a bipartite graph, with one partition containing
domains and the other partition containing IP addresses on which these domains are hosted.
There is an edge between a domain and an IP iff the given domain was hosted on the given
IP address. Formally, a bipartite graph is defined as

D = (V = C ∪ S,E)

where set S contains domains, and C contains IP addresses on which the domains are hosted.
We refer to this graph as ip-domain graph.

2.6 Behavioral modeling of HTTP traffic

First notable work using behavioral modeling based on HTTP traffic is [106]. It aims to
use modeling of HTTP traffic to cluster malware samples from the same malware family
and generate reliable network signatures for that malware family. Each malicious sample is
represented by a set of HTTP requests it issued while executed in a sandboxed environment.
Malware samples are grouped using two-stage clustering. In the first stage, malware samples
are clustered according several simple statistical properties, such as number of HTTP requests,
average number of query parameters, etc. HTTP behavioral similarity was used in the second
stage of the clustering. For that, authors propose a distance function between two HTTP
requests and define distance between malware samples as the average minimum distance
between sequences of HTTP requests from the two samples. The distance between two
HTTP requests is calculated as a weighted average of distances based on HTTP method used,
path, parameter names and parameter values. Clustering of malware samples is proposed as
a two-stage clustering because calculating distance between two samples is very expensive.
Performance optimization to the proposed method were later introduced in [105].

HTTP traffic modeling and clustering was used for classification of malware samples also
in [72]. Input data used for this approach are again HTTP request made by malware samples
while executed in a sandboxed environment. The method even uses a two-stage clustering
just like the previous one. The differences between the two methods are two-fold:
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• in the first stage of the clustering, three concatenated character distributions, one for
paths, one for query parameter names and one for their values, are used instead of a
short vector containing simple statistics like length of the path,

• clustering is done on HTTP requests, instead of malware samples.

While no exact definition of the similarity function between two HTTP requests is provided,
it is clear that the algorithm tries to infer the type of values being sent as a query parameter.
This is approach very similar to one we propose in 6.1.1. In addition to the types of parameters
used in this work, the query similarity function we propose also tries to distinguish basic types
of query parameter values, such as string or integer. In our experience, several flows might
be needed to infer the basic type of a parameter correctly, thus we find better to cluster the
entities that are represented by HTTP requests, rather than requests themselves.

A more general approach towards generating network signatures to detect malware families
was proposed in [110]. Besides HTTP, they also consider network communication over other
protocols. In this case, the clustering is not multi-stage, even though specific traffic types,
among them HTTP, are clustered separately from other network protocols. In clustering of
HTTP traffic, the requests are clustered based on path, query parameter names and selected
HTTP header values. Instead of clustering, connected components of the HTTP-requests
graph pose as clusters. In such graph, two HTTP requests are connected by an edge if

• they target the same path,

• Jaccard index of the query parameters name is > 0.4,

• headers of specific types are identical in both requests (e.g. User-Agent).

Found clusters are again used to generate signatures to detect malicious traffic.
Signatures for pay-per-install malware samples are created based on the traffic they gen-

erate when run in a sandboxed environment in [18]. Similarly to [110], all traffic regardless
of the protocol is used for clustering and consequent signature generation. Instead of a ded-
icated clustering for selected protocols, all communication is grouped in a single run. In the
grouping, each malware sample is represented by a feature vector that has features such as
list protocols used, list of query parameters seen in HTTP requests, and so on. Path part
of the URL is ignored, due to the authors’ observation that it changes frequently even for
a single malware family. There is no clustering algorithm used per-se. First, samples with
identical feature vectors are grouped into initial clusters. Further merging of clusters is done
manually. Using the proposed method, authors were able to map market of pay-per-install
providers and were able to detect 12 out of 20 known pay-per-install families.

Viability of the behavioral clustering of malware samples, regardless of the used behavioral
representation is investigated in [12]. They consider a case where attacker attempts to bias the
results of the used clustering algorithm by inserting samples with poisoning behavior. They
demonstrate a poisoning attack on a single linkage hierarchical clustering (SLINK) [126] used
for example in [106]. They show that only a few poisoning samples need to be inserted to
destroy the recovery of malware families.

Classifiers for malicious HTTP requests using behavioral features are proposed in [88].
Behavioral features are based on the path and query paths of the URL. In general, the
URL is tokenized using special symbols, such as . and / and bag of words model is used
to create a feature vector. Besides behavioral-based features, the authors use other features
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based on information from DNS & WHOIS, geographic properties and information from
blacklists. Constructed feature vectors are tested with SVM, logistic regression and naive
Bayes. According to their experiments, using host-based information from WHOIS, DNS and
various blacklists reduces false positives.
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Chapter 3

P2P networks detection

3.1 Introduction

Although Peer-to-Peer networks are mostly known for file sharing applications, they are also
used for VoIP applications (Skype), malware’s Command & Control (C&C) channel and
media streaming (Spotify). Interestingly, there is also an online currency that relies on P2P
architecture for its ecosystem — BitCoin [1]. Last but not least, P2P networks might be
used for military purposes [141]. Since VoIP applications, media streaming and especially file
sharing applications generate large amount of network traffic, the P2P networks generate a
significant amount of traffic in today’s Internet.

For the sake of both network management and network security, it is important to be able
to identify the network traffic generated by P2P networks. With the knowledge what network
traffic is generated by specific P2P application, one can more effectively manage networks and
provide a better quality of service. From the security standpoint, blocking P2P based C&C
is very effective for disrupting botnet activity. In addition to these two points, it was also
shown that peer-to-peer traffic can degrade the performance of anomaly detection techniques.
The detection rate can decrease by up to 30% and false positive rate can increase by up to
45% [53].

This chapter deals with the issue of finding P2P peers in the network for all P2P protocols
in general, without focus on any particular protocol. That is thanks to exploiting the intrinsic
properties that are common for all P2P protocols and which cannot be effectively avoided by
any P2P network. Specifically, we are looking for answers to the following questions:

1. Having one peer in an unknown P2P network, are we able to find other peers in the
respective network?

2. Can we determine what particular P2P network it is?

3. Can we enumerate all P2P networks and their peers that are active in the monitored
network?

Answers to these questions are presented in Sections 3.2, 3.3 and 3.4. As a result, we get
a detector that provides information about all active P2P networks in the network. The
detector utilizes NetFlow data and uses only information about communication endpoints
without using any flow-based statistics. This shows to be an advantage since such statistics

37



(e.g. flow duration) could be distorted for example in the case of a DDoS attack on the
monitored network [119].

In our evaluation, we show that the proposed detector is able to link hosts cooperating in
the usual peer-to-peer networks such as KAD, Gnutella, BitTorrent and Skype P2P network
as well as hosts infected by the same malware using peer-to-peer as its C&C channel. Besides
knowledge about the cooperating hosts, the detector is capable of identifying detected P2P
networks if they are of a known type.

3.2 Finding cooperating hosts

Even if an Intrusion prevention system (IPS) is deployed in the network and host machines
are protected by an anti-virus, hosts can get infected — be it because of the zero-day attack
or because of the infection vector that is not covered by the security solution. When such
compromised host is found, it is a good practice to look for other hosts in the network that
exhibit similar behavior to find other potential victims of the infection.

One way to do this is to look at what hosts the infected machine communicates with,
because these would include the perpetrator. And if any other machine shares a similar set
of peers1, it might be infected as well. If two machines share a remote peer, we say they are
cooperating in at least one P2P network. In some cases, the shared P2P network is benign,
like Skype, whereas in other cases, the shared P2P network will be malicious.

Comparing the hosts’ peers can be viewed as looking for sets intersection — for each host
we keep a set of IP addresses of communication peers and look for pairwise intersections. The
shortcoming of this method is that it does not acknowledge that one host might participate
in several P2P networks at the same time. For a host that is being infected by a P2P-
based malware and running Skype at the same time, looking just at the intersections of sets
containing IP addresses we end up marking all other hosts in the network using Skype as
suspicious, and we cannot distinguish between the two. Another issue with this approach is
that this analysis is done offline, after the incident occurs. If we chose to do it in the real
time, the definition of sets would have to be extended, e.g. to allow forgetting of peers. It
also brings the requirement of some algorithm extension, such as definition of a time window
in which the two hosts must have an intersection of the peer sets.

Both issues can be addressed by graph-based models. Graphs are commonly used to
represent a P2P network and graph formalism has been used before in the task of P2P
network detection; please refer to Section 2 for more details. However, the proposed graph
formalism brings two novelties — different node representation and graph dynamicity.

Most graph methods in the state of the art used nodes to represent hosts or IP addresses.
We move from this definition towards using nodes to represent tuples (IP, port) which we
call endpoints. This mitigates the first shortcoming of the “intersection” method. If a host is
participating in several P2P networks, its IP is the same, but the ports used for communication
in different networks are different. Therefore, a single host can be represented by several
endpoints, each associated with a specific network. One host can certainly use several ports
for communication within one P2P network, but there always needs to be one port listening
for incoming connections that does not change (often) so that other peers in the P2P network
can contact it. Therefore, one endpoint should be dominant among all endpoints associated
with a single host and P2P network.

1by peers we refer to other hosts on the Internet communicating with the host in question
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Additionally, to enable real-time detection we employ a graph algorithm that not only
constructs the graph, but also modifies it with time, thus assuring that the graph describes
the current state of the part of the P2P network that we can observe. The notion of time
which is necessary for such graph dynamicity is captured by edge weights.

To detect endpoints participating in a P2P network within our network we use a 3-partite
weighted graph

G = (V,E,w)

where

V = Vc ∪ Vs ∪ Vr.

Vc is a set of endpoints from our network we believe are participating in a P2P network, Vs is a
set of endpoints from our network that we suspect are participating in a P2P network and Vr
is a set of endpoints from outside of our network communicating with nodes from Vc ∪ Vs. E
is a set of edges, where edge connects two endpoints iff we observed a communication between
them. Function w assigns each edge a weight — a value equal to time when the edge was
added to the graph.

We ignore all intra-network communication2 and cannot see communication between the
endpoints that are outside of our network. Therefore, the defined graph is indeed a 3-partite
weighted graph. This also implies that G = ((Vc ∪ Vs) ∪ Vr, E) can be viewed as a bipartite
graph.

3.2.1 The graph algorithm

Since P2P networks are dynamically changing, so should the graph that represents a P2P
network. The detection algorithm monitors network traffic and constructs (modifies) the
graph based on the observed network activity in the following way:

1. the graph starts with only the seed node n ∈ Vc,

2. when a network connection occurs between any node n ∈ Vc and some node m outside
of our network then there are two options:

(a) m ∈ Vr; in this case we just update w({m,n}) = current time(),

(b) m /∈ Vr; in this case we add m to Vr and {m,n} to E and set w({m,n}) =
current time(),

3. when a network connection occurs between any local node not yet in the graph and some
node m ∈ Vr, we add n to Vs, add {m,n} to E and set w({m,n}) = current time(),

4. any edge e ∈ E for which tnow − w(e) > m is removed from the graph,

5. any node n ∈ V is removed from the graph when it does not have any incident edge (it
has a zero degree),

6. for l ∈ {m ∈ Vs|∃n ∈ Vc :| N (m) ∩N (n) |> o} we move l from Vs to Vc; where N (n) is
a neighborhood function defined in Equation 2.4.

2Based on the deployment location of the NetFlow probes, the intra-network communication may or may
not be available. We chose not to use this information to avoid susceptibility of the algorithm to the probe
deployment location.
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Figure 3.1: Algorithm illustration. We start with a seed node A with 3 recorded contacts. In
the second time interval, another node, B, is observed, sharing two mutual contacts with A.
If we consider K = 2, then in the third step, node B is already moved to the Vc. Moreover,
the algorithm detected yet another node, which has only one mutual contact with a node from
Vc. Note that the weights of the edges in the graph are determined by the time step in which
they occurred most recently.

There are two parameters used in this algorithm:

• a memory limit, m, which specifies how long a recorded connection (an edge in the
graph) is kept in memory,

• a mutual contacts overlap threshold, o, which specifies how many mutual adjacent ver-
tices a node from Vs needs to have with any node from Vc to be moved to Vc.

The first three steps of the algorithm with a simple example graph are depicted in Figure 3.1.
The set Vc, at any given moment, contains a list of active P2P nodes in the local network
participating in the same P2P network.

There is, of course, a possibility that the graph algorithm will not be able to find any
cooperating hosts for certain seed. This might happen when the seed is the only peer of the
respective P2P network in the network, or when the seed node around which we tried to
construct a graph was not participating in any P2P network.

A discussion about the practical implications of the parameter choice for the graph model
can be found in Section 3.7.1. In the following we analyze the optimal choice of o.

On the theoretical bounds of o and m

Choice of o should reflect properties of the P2P networks that are to be detected by the
proposed algorithm. Specifically, the choice of o affects the probability with which suspicious
nodes are promoted in the graph module – which is in fact equal to the probability of two
hosts participating in the same P2P network having o mutual contacts.

This probability depends on three properties of a P2P network:

• size of the P2P network,

• number of neighbors (peers to select) and
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• peer selection strategy.

Clearly, these properties are P2P network specific and can even change in time for any given
P2P network. Size of the network is determined by the popularity of a P2P application
(or infection success rate of P2P-based botnet). Number of peers kept in the neighborhood
list is a parameter specified by the P2P network’s authors/owners and can be identified by
for example reverse engineering. Peer selection strategy specifies how peers participating in
the P2P network select their neighbors, i.e. other peers they communicate with. It can be
either uniform random or biased (random). We reference several contributions discussing peer
selection in Section 2.2.4.

Uniform random peer selection can be modeled as a sampling without replacement from
an uniform distribution. It was shown [67] that intersection sizes of two sets created by
sampling without replacement from uniform distribution can be described as a hypergeometric
distribution. Same observation was used in [26] to analyze the probability of two nodes in
the peer-to-peer network to have a mutual contact. It was shown that this probability is
surprisingly high.

On the other hand, biased peer selection is basically sampling without replacement from
non-uniform distribution which can be modeled by multivariate Wallenius’ noncentral hyper-
geometric distribution [40]. To our knowledge, no probability distribution has been shown
to model intersection sizes of two draws from identical non-uniform distributions. Therefore,
we resort to Monte Carlo methods to estimate the intersection probabilities under the biased
peer selection.

In the following we perform a simple experiment to get insight into possible choices and
optimal ranges of o. We compare three selection strategies:

• uniform random,

• biased random from identical geometric distribution,

• biased random from identical mixture of uniform distributions.

Sampling from geometric distribution approximates P2P networks that have a few nodes
whose degree is considerably higher than those in the rest of the network. This is the case for
ZeroAccess botnet [52]. On the other hand, in the Sality’s P2P network, there exist two groups
of (super) nodes that can be selected as peers. The two groups have different popularity, one
being considerably more popular than the other [52]. This setup is approximated by mixture
of uniform distributions; an example of mixture of uniform distributions can be found in
Figure 3.2.

Figure 3.3 and Figure 3.4 plot probabilities of having 1, 3, 5 or 7 mutual peers using the
three selections strategies with varying P2P network sizes and numbers of selected peers. The
results are in line with [26], which states that the probability of having mutual contacts is
the lowest when using the uniform random peer selection scheme. In general, the probability
of having mutual contacts (any amount) is positively correlated with number of neighbors
and negatively correlated with the size of the P2P network. In other words, fixing all other
parameters, the probability of having a mutual contact increases with increasing the number
of neighbors; and decreases with increasing the P2P network size.

The estimated probabilities of having mutual contacts and their impact on the proposed
algorithm assume that a node communicates with all its selected peers at least once within
the time frame specified by m. The period within which a node contacts all its neighbors
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Figure 3.2: Example of a mixture of uniform distributions.

varies depending on the specific P2P network. An overview of communication periods can be
found in [117] or in a Table 3.1 adapted from the same paper. This communication period
can be also taken as a guideline for the choice of m.

It would be incorrect to assume that a node in a P2P network communicates only with
peers in its neighborhood list. Any node can also appear in the neighborhood list of other
peers, with which it also communicates. Also, any node can also replace peers in its neighbor-
hood list with other peers. If it does so frequently, it leads to an effective increase of number
of neighbors in the communication graph. That increases the probability of having mutual
neighbors with other participating peers. Therefore, the estimated probabilities found in this
section can be taken as a lower bound, provided that m was chosen such that it respects the
communication period of the P2P network(s) it is intended to detect.

Since the probability of having mutual contacts depends on P2P-network specific factors,
we cannot determine the globally optimal choice of the o based on these theoretical esti-
mates. Instead, we choose the parameter based on the empirical results, which we provide in
Section 3.6.

3.3 Identifying the revealed P2P network

Assuming we revealed a P2P network, the next step is to determine what particular P2P
network it is. Most of the P2P network identification methods rely on deep packet inspection
or on flow-based statistics as we point out in Section 2. The proposed method is able to
identify the P2P protocol solely based on the information available in the created graphs.

We propose to identify P2P network based on port distribution of peers participating in
the P2P network. The port distribution is defined as an empirical probability distribution
of ports used by peers that can be represented by a normalized vector with 65535 elements.
While it is often argued that port-based P2P protocol identification is useless due to the
port randomization [69, 100], the port distribution for the whole P2P network is surprisingly
stable.

The proposed detector does not have the full knowledge of the whole P2P network, but we
argue that even the partial knowledge is sufficient to identify the P2P network using the port

42



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  500  1000  1500  2000

p
ro

b
a

b
ili

ty
 o

f 
h

a
v
in

g
 1

 m
u

tu
a

l 
p

e
e

rs

number of mutual peers

Uniform peer selection
Supernodes peer selection

Geometric peer selection

(a) 50 000 users, 1 mutual contact

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  500  1000  1500  2000

p
ro

b
a

b
ili

ty
 o

f 
h

a
v
in

g
 3

 m
u

tu
a

l 
p

e
e

rs

number of mutual peers

Uniform peer selection
Supernodes peer selection

Geometric peer selection

(b) 50 000 users, 3 mutual contacts
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(c) 250 000 users, 1 mutual contact
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(d) 250 000 users, 3 mutual contacts
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(e) 500 000 users, 1 mutual contact
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Figure 3.3: Probability of having 1 and 3 mutual contacts for various sizes of peer-to-peer
networks and various numbers of selected peers.
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(a) 50 000 users, 5 mutual contact
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(b) 50 000 users, 7 mutual contact
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(c) 250 000 users, 5 mutual contact
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(d) 250 000 users, 7 mutual contact
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(e) 500 000 users, 5 mutual contact
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Figure 3.4: Probability of having 5 and 7 mutual contacts for various sizes of peer-to-peer
networks and various numbers of selected peers.
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Table 3.1: Period within which a node exchanges communication with all its peers for selected
peer-to-peer botnets. Note that Nugache’s period is random, and can be up to 4.5 hours, which
is considerably longer than any other botnet in the list. Adapted from [117].

botnet period

Kelihos v1 10m
Kelihos v2 10m
Kelihos v3 10m
Miner 30m
Nugache random
Sality v3 40m
Sality v4 40m
Storm 10m
Waledac 30s
ZeroAccess v1 15m
ZeroAccess v2 256s
Zeus 30m

distribution of known remote peers communicating with confirmed nodes. Once
the cooperating peers in the network are found, a port distribution over their remote peers is
captured and matched against the port distributions of known P2P networks. The graph is
considered to represent the P2P network that has the most similar port distribution to the
port distribution created over a subset of Vr. As of now, we have defined port distributions
for a few major P2P networks — Skype, BitTorrent, KAD (Kademlia) and Gnutella. Their
respective distributions can be found in Figure 3.5.

The algorithms can be formalized as a multinomial classification with rejection option [33]
— a classifier decides whether the graph represents one of the several known P2P networks
and if none of the known P2P networks is similar enough it does not make a decision. The
classifier is using one-vs-all strategy, where for each class there is a binary classifier fi(·) that
classifies elements in the respective class. The overall classifier can be defined as

f(x) = arg max
i

fi(x).

In our case, each binary classifier is represented by a class prototype – a port distribution of
peers participating in a known network. Classifier score of each binary classifier is calculated
as a dot product of the captured port distribution and the class prototype. One can easily see
that the classifier score attains value between [0, 1] with the value increasing with the higher
similarity of two port distributions. Since we do not have prototype vectors for all existing
P2P networks and we never will, it is crucial that the classifier has the rejection option.

The classification of graph G = (Vc ∪ Vs ∪ Vr, E, w) proceeds as follows:

1. we create port distribution vector d:

(a) we instantiate an vector d where

di =| {n|n ∈ Vr ∧ port(n) = i ∧ ∃m ∈ Vc, n ∈ N (m)} |, i ∈ [1, 65535] (3.1)

45



 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0  10000  20000  30000  40000  50000  60000

R
e

la
ti

v
e

 F
re

q
u

e
n

cy

Port

6881

51413

(a) BitTorrent

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0  10000  20000  30000  40000  50000  60000

R
e

la
ti

v
e

 F
re

q
u

e
n

cy

Port

40000 - 40100

33033

(b) Skype

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0  10000  20000  30000  40000  50000  60000

R
e

la
ti

v
e

 F
re

q
u

e
n

cy

Port

27016

(c) Gnutella

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0  10000  20000  30000  40000  50000  60000

R
e

la
ti

v
e

 F
re

q
u

e
n

cy

Port

4672

(d) KAD

Figure 3.5: Port distributions of some of the major P2P networks. These distributions are
distinctively different. For example, port distribution for Skype has strong peaks on port 33033
which is the legacy control port. Ports around 40000 are the new control ports that have been
introduced after the Microsoft’s acquisition of Skype. On the other hand, the BitTorrent port
distribution has peaks at 6881 and 51413 which are default ports for several BitTorrent client
applications.

i.e. each element of the vector contains the value equal to the number of remote
peers of confirmed nodes whose port is equal to the element index,

(b) we normalize d,

2. for each known class C we define fi = 〈d, ec〉 where eC is the class prototype; 〈·, ·〉 denotes
a dot product of the two vectors; then the overall classifier is defined as arg maxC〈d, eC〉

3. we select class C for which 〈d, ec〉 is maximized as a possible match,

4. the maximal score fmax = maxi fi is compared with the rejection threshold T , if fmax >
T the classifiers identifies the graph as representing class C, otherwise no decision is
made.

The rejection option from step 4 is crucial. One of the dot products will always have the
maximal value. This value might be very low which signals that the classifier is not very
sure what P2P network is represented by the graph. In such case it is undesirable to make
a decision. In our implementation, we set rejection threshold to 0.3. According to our
observation, this value is high enough to avoid “accidental” classification because vectors in
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high dimensions are typically orthogonal to each other. On the other hand, it is low enough
to allow variances of captured port distributions caused by a sampling of peers in the P2P
network. Graph has only a partial visibility of the P2P network, therefore the captured port
distribution may vary from the true distribution to some extent.

3.3.1 P2P prototype stability

The classification approach requires that the port distributions are stable in time. To show
that, we reconstructed P2P networks of BitTorrent and Skype using the graph algorithm
described in Section 3.2.1 on two different networks at different points in time and compared
their port distributions. The capture times were approximately 9 months apart. For Bit-
Torrent the dot product of the vectors consisting of the port relative frequencies of the two
distributions yielded a value of 0.93. This indicates that BitTorrent peers’ port distribution
is stable both in time and across various network environments.

For Skype the dot product of the vectors created the same way yielded only a value of
0.4 indicating that Skype peers’ port distribution is less stable. This can be explained by a
major Skype network architecture change that took place between the two points at which
we reconstructed the Skype network. A large number of Skype supernodes were moved to
the Microsoft’s own data centers, relying less on nodes running on users’ computers. New
supernodes usually listen on ports between 40000 and 40100. Also, the port 33033 which was
associated with supernodes owned by the Skype itself, is less prominent after the architecture
change. Even after such major architectural change, the proposed peer-to-peer identifica-
tion method would produce correct classification with the specified choice of the rejection
threshold.

The remaining two P2P networks shown in Figure 3.5 were not detected in one of the
networks, therefore the comparison cannot be made.

3.4 Enumerating all active peer-to-peer networks

The previous two sections enable us to find a P2P networks given the knowledge of one peer
in the P2P network and possibly identify it, if it is of a known type. To find and enumerate
all active P2P networks in the monitored network using the same technique, one needs a seed
node for each of the active P2P networks. If we were to find one seed node for each active
P2P network in the network, we would need to know

• what P2P networks are active in the network,

• how to pinpoint a node participating in a given P2P network.

This is a rather recursive problem. To find the seed nodes we need the knowledge that
is sufficient to solve the original problem at hand — to find an enumerate all active P2P
networks. To circumvent this issue, we can select all endpoints likely to be peers in some P2P
network and grow graphs around them. If any of the chosen endpoints is an active peer, the
graph would represent the P2P network it belongs to. The guidelines for selecting seeds as
likely peers are based on two intrinsic properties of all P2P networks that always hold:

1. all peers need to listen for incoming connections on an arbitrary but stable port,

2. every peer communicates with at least two other peers.
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Figure 3.6: Schema of the detector. As an input it takes flows from the network which are
processed by the Persistence Module (denoted PM) that provides seeds. The set of seed end-
points is then transferred to the Graph module which processes the flows induced by persistent
endpoints and merges and deletes graphs as needed. Sets of cooperating peers are sent to the
Identification Module (denoted IM). The output of the detector are sets of endpoints that ap-
pear to be cooperating in peer-to-peer networks with identification of the peer-to-peer network
if available.

The first property emerges from the observation that each peer both receives and initiates
connections to other peers, otherwise it would defer to the client/server paradigm. In other
words, each peer behaves like both the client and the server, thus it has to keep a port
open for incoming connections. Also, this port cannot be changed often because it produces
overhead in the exchanged messages and decreases the effectiveness of the P2P network. In
structured P2P networks, each change of listening port is equivalent to leaving and rejoining
network with different address, which for example in Chord overlay [130] requires O(log2 n)
messages [81]. In an unstructured network, changing the listening port is also functionally
equivalent to leaving and rejoining network. This does not require any update to the routing
table, but former peers of the rejoining peer will not be able to contact it any more. A new
search in the network has to take place to reestablish the connection. Therefore, the peers
try to avoid changing the listening port while being part of the P2P network.

Moreover, it is not sufficient and/or desirable for peers in a P2P network to be in touch
with only one other peer. In the worst-case scenario, where each peer knows address of only
one other peer, we effectively end up with centralized or poorly connected network, such as
star or round robin. Star is effectively a centralized structure and we can no longer talk about
peer-to-peer network. Round robin is inferior in terms of search within the P2P network since
the data transfers would often have to pass many unrelated nodes that are not interested in the
transferred data and/or information. Thus, we expect nodes participating in a P2P network
to have at least two other peers.

3.5 Joint detector design

The two properties discussed in Section 3.4, joined together with information from Section 3.2
and Section 3.3 are used to construct the proposed detector with three modules. Architec-
ture of the detector is depicted in Figure 3.6. The Graph Module revolves around the graph
algorithm described in Section 3.2.1, maintaining several graphs simultaneously. The Iden-
tification module represents the classifier described in Section 3.3. Finally, the Persistence
Module brings the ability to select seeds around which the graphs are constructed based on
the intrinsic properties of P2P networks.
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Figure 3.7: The histogram shows that majority of endpoints are active only one or two time
intervals. Then we can see only a marginal number of endpoints being active between three
and nine time steps. All services that run steadily and are regularly used are active all 10
time windows.

3.5.1 Persistence module

The graph algorithm used in the graph module to be discussed in Section 3.5.2 needs a seed
node around which it constructs the connection graph. The sole purpose of persistence module
is to find such nodes. We utilize two criteria described recently that are based on basic P2P
networks’ properties — the persistence criterion and the peers count criterion to select such
seeds.

Persistence criterion Peers need to communicate continually with each other to keep the
P2P network functional. They exchange messages for the purpose of routing table updates,
searches, data exchanges etc. The criterion states that we choose endpoints that are persistent,
i.e. are sending or receiving data for a longer period of time. During normal network activity,
a single host uses many ports to communicate. Most of these ports are used only for a short
period of time, these are called ephemeral ports. However, there are some ports that are kept
open — these are usually used for listening for incoming connections.

To illustrate this, we performed a small experiment on a CTU University network, in which
we were monitoring network traffic in ten 5-minute intervals. In the first time interval, we
recorded all active endpoints in our network. In the following nine time intervals, we recorded
whether the given endpoints were reused. This way, we were able to create a histogram
showing the number of endpoints used in either one, two or up to ten time intervals. The
histogram can be found in Figure 3.7. We can see that most endpoints were used only in one
time interval during the experiment. Then the trend is declining with exception of endpoints
that were used during all time intervals. These are, among others, the endpoints that represent
services (such as web servers or IMAP servers) or active peers of P2P networks.

To define persistence of endpoints formally, we use simplified method of measuring per-
sistence introduced in [46] and described in detail in Section 2.4.2. The original method
was focused on revealing hidden C&C channels. We are interested only in persistence of
endpoints, no matter where they connect to. Also, we are not trying to detect exact period-
icity of connections, but an ongoing character of a connection. The regularity of endpoint’s
activity is observed by a sliding window W , which is split into n bins b1, ..., bn. This win-
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dow is called observation window and bins are called measurement windows. We can write
W = [b1, b2, b3, ..., bn]. We then define persistence of an endpoint as:

p(e,W ) =
1

n

n∑
i=1

1e,bi

where e is the endpoint for which the persistence is calculated, W is the observation window
and function 1e,bi is equal to 1 if at least one connection to or from the endpoint e occurred
during the measurement window bi, otherwise it is 0.

The persistence calculation itself depends on three parameters — measurement window
size, which states how long the connections are recorded into one bin before proceeding
to another, observation window size n, which determines how many bins there are in the
observation window and the threshold persistence p, which determines what persistence must
an endpoint reach to be considered for seed selection.

Peer count criterion To keep the P2P network running, peers need to communicate with
at least two other peers. Therefore, all endpoints that had at least two distinct peers in
the current observation window pass this criterion. This removes long lasting connections
between two peers on static ports such as clients downloading large files from the Internet,
users connecting to other computers via Remote Desktop or SSH or any application keeping
open and active connection to a dedicated server.

Each time the module is queried for seeds, it calculates persistence for all recorded end-
points and selects those with persistence exceeding the persistence threshold p. Those selected
are then checked against the second criterion, which is the number of contacted peers during
the last observation window.

Of course, not all selected seeds represent active peers in some P2P network. However,
we argue that all active peers should be selected as seeds.

3.5.2 Graph module

The graph module

• constructs graphs around the seed endpoints received from the persistence module,

• merges similar graphs,

• removes graphs that failed to find any cooperating host for the given seed endpoint.

Graph module uses the graph algorithm presented in Section 3.2.1. Knowing that all
active peers should be represented by an endpoint that is persistent, we can also reduce
number of flows we process in each graph. This reduction is attained by removing all flows
that do not originate from or are not directed towards a persistent endpoint since this traffic
should not be part of the P2P network. Clearly, by increasing p we reduce the number of
flows that are processed. As can be seen in Figure 3.7, even using p as low as 0.3 leads to
a significant reduction of number of processed flows. In fact, persistence requirement on the
local endpoints of flows processed in the graph module can be independent of p. We can
require seeds to have persistence of 0.8 to be used as a seed and at the same time in the
graph module process all flows whose local endpoint’s persistence is higher than 0.3. We
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denote persistence threshold enforced in the graph module as pg. Impact of splitting the two
is demonstrated in the evaluation.

However, before the module can construct any graph, it first needs to receive seed end-
points from the persistence module. The persistence module feeds seed endpoints to the graph
module periodically. When the module receives the first set of seed endpoints it creates a
graph for each of them. For every subsequent set of received seed endpoints it checks whether
given seed endpoints are already recorded in any of the graphs. For those that are not, it
creates new graphs. This way we prevent the creation of unnecessary duplicate graphs.

We expect that graph algorithm finds cooperating endpoints of the provided seeds, and
that the persistence module selects all seeds participating in a P2P network. As a consequence,
the graph module should after some time contain several graph models that are very similar
and describe the same P2P network, despite starting from different seed endpoint. There is
no point in keeping such graphs separate, therefore the module joins them together. It raises
a question how to define “similarity” of two graphs.

Two graphs that represent the same P2P network should have similar sets Vc, but since
both graphs were iteratively constructed from different seed nodes, they do not necessarily
contain similar sets of edges or set Vr. Therefore, we define similarity of two graphs G1 and
G2 as

s(G1, G2) =
| V G1

c ∩ V G2
c |

min(| V G1
c |, | V G2

c |)

where V G1
c resp. V G2

c represents Vc of graph G1 resp. G2. This is also known as meet/min
similarity measure [47]. Meet/min ensures that similarity of two graphs G1, G2 is high (in fact
equal to 1) if V G1

c ⊂ V G2
c and | V G1

c |�| V G2
c |. This is a case of two graphs that represent

the same P2P network but one of them is much smaller (either because it was created later or
because the seed was not as “active” as the seed of the bigger graph). We merge two graphs
if their similarity is greater than the merge overlap threshold, r , which is another algorithm
parameter. Note that meet/min is similar to the Jaccard index. The principal difference
of the two similarity measures is that for two sets with highly imbalanced sizes, meet/min
typically assigns larger values than Jaccard Index.

There is a possibility that the graph algorithm will not be able to find any cooperating
hosts for certain seed. This might happen when the seed is the only peer of the respective
P2P network in the network, or when the seed node around which we tried to construct a
graph was a service, e.g. an email server. If any graph fails to find at least one cooperating
endpoint in the network after certain period of time called the tryout period it is removed
from the module. Even though we remove the graph, it might be recreated next time the seed
nodes are received from the persistence module, because the endpoint might be active despite
the fact it has no cooperating nodes. Therefore we define another time parameter, the ignore
period, that determines how long after removing a graph with a specific seed, this seed may
not be used to construct another graph. We do not want to ignore the given seed endpoint
forever, because service using the port may change or cooperating peers might appear later.

3.5.3 Identification module

Identification Module simply accepts graphs from Graph Module, extracts port distribution
for the remote peers and performs protocol identification as described in Section 3.3.
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Table 3.2: List of peer-to-peer networks with their respective clients installed on the client hosts
in the control set. Last column specifies how many hosts are running given client application.

network client application hosts

Skype official client 18
BitTorrent µTorrent 26
KAD eMule 15
Gnutella Phex 18

3.6 Evaluation

We evaluate both detection and computational performance of the proposed detector. For
each evaluation part, we use a different data set. On both of them the traffic was collected in
form of NetFlow data by a network probe. Flows were always collected for five minutes and
then sent in a batch to the detector. Favoring flow batch processing over stream processing and
batch size are settings of the anomaly detection engine in which the detector was deployed.
However, the detector can process flows in a streaming fashion or work with batches of a
different size.

The computational performance is evaluated on a relatively large telco provider network
to test the detector under a heavy load. Since we could not tamper with the network in any
way, the detection performance evaluation was done on a much smaller university network.
In this network, we could deploy our own P2P nodes and thus establish the ground truth.

Several parameters can be set for the detector. In our experiments, we fixed the value of
tryout period to 1 hour. Ignore period was set to 1 hour as well, and it increases by 1 hour for
the given seed every consecutive time the graph around that seed is removed because it failed
to find any cooperating peers. Measurement window size is set to 5 minutes. Each observation
window is composed of 10 bins, which we believe offers a good granularity of information.
Persistence requirement on the local endpoints of flows processed in the graph module, pg, is
set to 0.3. Settings of other parameters that we experimented with in evaluation to find the
best combination can be found in Table 3.3.

3.6.1 Data sets description

The University data set was collected in the University network consisting of approximately
1000 hosts. The network traffic was collected for 20 hours during a working day. Since we
did not have access to all the computers and could not establish the ground truth concerning
the overall network activity, i.e. what service did every endpoint in the local network belong
to, we chose 155 hosts from two subnets as a small control set.

The first subnet contains 36 hosts of which 18 are running either Windows or Linux. We
refer to these hosts as client hosts. The client hosts were engaged in casual Internet activity,
such as browsing the web, working with email, listening to music, watching videos, etc. Client
hosts can have one or more P2P client applications installed on them, and thus participate
in several peer-to-peer networks. The list of installed client applications can be found in
Table 3.2.

To examine whether the algorithm is capable of linking hosts participating in a botnet, we
infected three computers with ZeroAccess botnet, which uses a P2P network for its C&C [95,
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Table 3.3: Parameters and their values used in the experiment. Parameter values used in the
final evaluation are printed in bold face.

symbol parameter values

p persistence threshold 0.5,0.8
o mutual contacts overlap threshold 3, 4,5, 6
m memory limit 60,90, 120 minutes
r merge overlap threshold 0.3, 0.5, 0.7

Table 3.4: Properties of P2P networks, adapted from [52]. Please note that Sality snapshot
contains only supernodes, while ZeroAccess snapshot contains both supernodes and ordinary
nodes.

Sality (supernodes) ZeroAccess (all nodes)

date created 24.02.16 03:34 24.02.16 13:52
nodes 1 422 4 805
edges 592 646 900 527
average node degree 834 375
in-degree 0/ 44 / 1 244 0/ 55 /4 562
in-degree 0/ 457/ 537 0/ 212/ 233
diameter 3 4

117, 144]. We set all client applications belonging to the same peer-to-peer network to use
the same port to ease up evaluation of the results. This has no effect on detection capabilities
of our algorithm.

The second subnet contains servers – we refer to this hosts as server hosts. None of the
them is running any of the aforementioned applications. They run many services, such as
web servers, IMAP/POP services and other.

The TelCo data set contains traces mainly of homes with DSL uplink. The network
encompasses tens of thousands of users and has throughput of 40 Gbps with number of flows
per 5 minutes ranging from 2 million to 11 million. The data set spans 3 days in November
2011. For the computational performance evaluation, we are only interested in size of the
network, therefore we do not provide any additional information about the network.

The Overlay data set contains P2P network snapshots of two recent peer-to-peer botnets
- Sality [38] and ZeroAccess [117, 144]. The P2P network snapshots were produced by an
enumeration attack in [52]. The properties of the two P2P network snapshots can be found
in Table 3.4. Both P2P networks networks are represented as a directed graph, where edge
originating from node A targeting node B signifies that that node B is in the neighborhood
set of node A. Let us note that in this data set, the nodes are linked to the peers according
to their neighborhood lists, in contrast to the linking according to the observed network
connection. The distinction is further described in Section 3.2.1.
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Figure 3.8: Stacked plots of processing time and memory footprint as function of time (and
thus number of flows). The graph algorithm takes most of the processing time required by
the detector. Strong trends are visible in the data that are caused by the users usually using
computers in the evening / at night.

3.6.2 Computation performance evaluation

For the sake of performance evaluation, the detector was deployed on a 24-core Intel Xeon
computer (24 virtual on 12 physical cores) and tested on the TelCo data set. We were
monitoring processing times of the three modules and retained memory as a function of time
(and thus number of flows in the network).

In Figure 3.8a, we can see a stacked plot of the processing times of the three modules.
It is obvious that the graph algorithm takes most of the time, whereas seed selection and
P2P identification take only a fraction of time. There is also a clear relationship between
number of flows and the processing time. One can see trends in the traffic as the users use
their computers most in the evening / at night. The computation time peaks at around 300
seconds, which is actually the time span of the processed batch of flows. The detector is
reaching its limits when dealing with 10M+ flows (approximately 34k+ flows per second),
at this throughput it is still capable of “real-time” processing of data. While is is partially
parallelized, it could certainly be optimized to allow for bigger throughput.

As for memory consumption that is shown in Figure 3.8b, it exhibits the same dependence
on number of flows. One more thing can be noted from the plot — the memory footprint
is slightly lower in the third peak, which is caused by blacklisting of seeds. The memory
footprint ranges from 3 GB to 15 GB during the peak hours.

3.6.3 Detection performance evaluation

Detection rate:

Since the algorithm runs continually and modifies the graphs according to the changes in the
network we measure detection rate in time. This way we can see how much time the detector
needs to detect a P2P network since start of the client application.

After every batch of flows (every 5 minutes) we query the Identification Module for the list
of recognized P2P networks and nodes that participate in them. As can be seen in Figure 3.9a,
the algorithm was able to find all hosts participating in Skype, BitTorrent, Kademlia and
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Figure 3.9: Detection rate of the proposed detector.

ZeroAccess peer-to-peer networks. Detection rate for Gnutella was considerably lower —
44%.

Figure 3.9a also shows that detection of P2P nodes is not immediate and the algorithm
needs some time before it detects them. All P2P networks except Gnutella were at least
partially detected within an hour since the client applications were started. One can also
notice that some Skype nodes were identified even earlier than endpoints representing them
reached the required p. This happens thanks to pg being set only to 0.3 and the other Skype
nodes commonly running in the University network. The graph for Skype was already present
when we started the Skype clients in the control set and endpoints belonging to these clients
were simply added to the graph without the need of becoming a graph seed. This illustrates
an important property of the detector — peers that join the P2P network for which a graph
already exists are detected much faster than the first peer(s) of a P2P network that does not
have corresponding graph yet.

False positive rate:

For various P2P networks we use different methodologies for evaluation of false positives.
For KAD, Gnutella, BitTorrent and ZeroAccess, we consider every detected endpoint not
associated with the host from the control set and the respective listening port of the client
application to be a false positive. Since these peer-to-peer networks are used only rarely at
the University, such approach is viable. Using this approach, we determine the upper bound
of the false positives detected by our algorithm. We cannot do the same with Skype since it
is very popular at the University. Instead, we evaluate false and true positives only on the
control set.

There were no false positives for four of the P2P networks — namely Skype, KAD,
Gnutella and ZeroAccess. Only one false positive was found when linking cooperating hosts
in the BitTorrent network. We refrain from calculating the false positive rate, since it would
only have a negligible value due to the low number of false positives.
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3.6.4 Recall on the P2P network snapshots

The Overlay data set provides us with the opportunity to estimate the recall achieved by the
proposed method for the Sality and ZeroAccess P2P botnets. We cannot estimate precision
of the method since the data set does not contain any negative examples. This data is
fundamentally different to the data used by the proposed algorithm, thus we need to make
several assumptions and consequently convert the P2P overlay network graph to network
communication graph.

Presence of a node in the neighborhood list of another node does not say anything about
the intensity of their communications. Therefore, in the evaluation we assume that all peers
participating in the P2P network fulfill the selection criteria of the persistence module (i.e.
long-term activity and at least two peers within 5 minutes) and are therefore added to the
graph module. There are two parameters used by the graph module – m and o. Since the P2P
network snapshot was created within a short period of time, we assume that communication
between all peers linked by an edge occurs within the memory span of the graph module;
according to discussion in Section 3.2.1 and data in Table 3.1 this assumption is likely to
be met. We evaluate recall for various values of the mutual contacts threshold, to see what
impact its choice has for the two botnets.

Data containing the P2P network snapshot, including the participating peers, is anonymized
to the extent that we are not able to group peers by the network they belong to. However,
the proposed algorithm assumes that we are able to identify the network boundary and thus
split observed communication endpoints into local and remote endpoints. Instead, we choose
a random number of randomly selected peers to represent the local peers, and consider all
remaining peers to be remote. For each of the local peers we create a graph model and ob-
serve how many of the local peers are added to the model and promoted to confirmed nodes.
We use the most successful model to determine recall. The attained recall depends on the
connectivity of the chosen peers, and consequently the choice of the “local” peers influences
the attained recall. Therefore, we perform several random local peers selections and present
the reader with the average attained recall.

The results, which can be found in Table 3.5, suggest that the proposed method should
be able to successfully reconstruct the P2P network. For Sality this estimate may be actually
far from real performance, since the snapshot contains only supernodes that are very well
connected. Ordinary nodes that are behind NATs may exhibit completely different connec-
tivity. Unfortunately, Sality’s ordinary nodes behind NATs cannot be found an enumeration
attack on its P2P network and therefore are not available in the data set.

3.7 Discussion

To explain the inferior detection performance for Gnutella, we need to investigate how nodes
in various P2P networks communicate. Some P2P networks use UDP-based communication
while other use TCP-based communication or combination of the two. If the P2P network is
UDP-based, both incoming and outgoing connections use the main port on which our detector
focuses. On the other hand, if the P2P network is TCP-based, the main port is used only by
incoming connections. Outgoing connections use ephemeral ports assigned by the operating
system which change frequently3. Therefore, for TCP-based P2P networks, our detector can

3Endpoints representing ephemeral ports might occasionally appear in the graph of the P2P network. In a
rigorous understanding, these endpoints are true positives because they are used for the communication in the
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Table 3.5: Estimate of the attained recall of the proposed algorithm on the two P2P networks
of Sality and ZeroAccess.

o Sality ZeroAccess

2 0.999 0.997
3 0.998 0.995
4 0.997 0.994
5 0.996 0.994
6 0.996 0.993
7 0.995 0.993
8 0.995 0.993
9 0.995 0.993

10 0.995 0.991

only take advantage of node’s incoming connections (because those target the main port). Of
the P2P networks we do our experiments with, Kademlia and ZeroAccess both use UDP for
their P2P network, Gnutella uses TCP for its P2P network, and Skype and BitTorrent use
combination of the two. Therefore, in order to detect Gnutella there needs to be a reasonable
number of incoming connections from remote peers to increase the chance of having mutual
contacts with other local nodes in the Gnutella network. Gnutella has two types of peers, leaf
nodes and ultrapeers. Leaf nodes only connect to ultrapeers and ultrapeers connect to both
ultrapeers and leaf nodes. Also, ultrapeers have higher frequency of connections with other
peers. Therefore it is much more probable to detect and link together Gnutella ultrapeers than
ordinary peers. And indeed, most of the cooperating hosts found for the Gnutella network
were in fact ultrapeers. The longer ramp-up period for Gnutella is due to the fact that it
took time until the detected nodes became ultrapeers.

We mentioned that Skype and BitTorrent use both TCP and UDP. Skype uses both proto-
cols in a single P2P network and exchanges them as necessary. On the other hand, BitTorrent
keeps separate P2P network on TCP and UDP. TCP is used in the original BitTorrent proto-
col for downloading files in the swarm where the first set of peers is received from a tracker.
UDP is used in the newest implementations for distributed tracker functionality to avoid us-
ing centralized trackers when it is not necessary. This P2P network uses BitTorrent’s own
Distributed Hash Tables (DHT) implementation. Therefore, there are two possibilities how
to detect BitTorrent clients — via DHT-based P2P network or via the original BitTorrent
P2P network. Our experiments show that the detector is capable of linking BitTorrent clients
using either protocol.

Here we need to realize the difference between the original BitTorrent protocol and other
P2P protocols in this evaluation. While other P2P applications are participating in the P2P
network at all times, the BitTorrent is intermittent. The client joins the P2P network only
when it wants to download a file and joins a swarm (unless it is using DHT). Therefore, when
we talk about detecting cooperating hosts for BitTorrent using only the BitTorrent protocol,
we mean hosts that are members of the same swarm not all BitTorrent clients in the network.

We mentioned that our detector is able to identify both P2P networks run by the BitTor-

P2P network. On the other hand, they are present in the same graph as endpoint representing main listening
port on the same host. We have therefore ignored these ephemeral endpoints in the evaluation.
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rent client. Of the two, detection of the UDP-based DHT implementation is faster because
communication in this P2P network starts as soon as the client application is launched without
any user activity. In fact, all P2P networks in our experiment with the exception of BitTor-
rent’s original protocol were detected without any user activity. The original BitTorrent P2P
network can be observed only after user initiates a file download.

3.7.1 Parameters and their impact

Persistence module and Graph module can be tuned using several parameters that were
introduced throughout the text; see Table 3.3.

Parameters of the Persistence module impact mainly computational performance, but they
can also effect the detection performance if chosen improperly. Tryout period and ignore period
affect only computation performance and have no impact on the detection or false positive
rate. Measurement window size and observation window size determine which endpoints are
selected as seeds. As the measurement window size increases, endpoints need to be active
for a longer period of time to be selected. Observation window size impacts the granularity
of persistence values. For example, using only two bins, an endpoint can have only one of
the three values of persistence — 0, 0.5 or 1. Making the measurement window too small,
even ephemeral ports can have high persistence which would increase the number of graphs
to be processed by the Graph module. The last parameter used by the Persistence module
is p. Choice of its value impacts the computational performance — the higher the value, the
less models are created in the graph module and thus less resources are needed to process
the graphs. Another important impact of this parameter is on the duration of the ramp-up
period in detection. The higher the value, the longer it takes for the detector to find nodes
participating in new P2P networks since the client application is started. Each endpoint
needs to be active for a specified time before a graph is created for the given endpoint. As p
increases, the time required gets longer.

Graph module uses three parameters — r , o and m. Graph module is responsible for
merging graphs that represent the same P2P network and r is the parameter that states how
strict the module is when deciding whether two graphs represent the same P2P network. In
our experiments, we used three values of this parameter without any impact on the detection
results. However, the value of this parameter cannot be arbitrary as choosing it very low
could cause even unrelated graphs to be merged. On the other hand, choosing its value too
high could have performance penalty because the Graph module would keep working with
several very similar graphs. Both o and m have significant impact on the detection rate and
some impact on false positive rate. Having m fixed, increasing the o decreases the detection
rate and false positive rate. Similarly, having o fixed, increasing m increases the detection
rate and false positive rate. Impact on the false positive rate is usually only marginal, but
setting o to a very low value can rapidly increase the false positive rate. For example, if we
set o to 1 and the network is target of a scan then all scanned endpoints are added to the
graph, increasing the false positive rate considerably. As can be seen in Figure 3.9b, these
two parameters can compensate for each other. Increase in o decreases the detection rate
unless m is increased appropriately as well.

58



3.8 Conclusion

In this chapter, we presented a detector that is able to link hosts cooperating in the same
P2P network and identify this P2P network if it is of a known type. The detector uses only
inherent properties of P2P networks. It reconstructs the P2P network based on the observed
connection in the network. Since the method uses neither packet payloads nor flow statistics,
it is a viable option for deployment on the backbone network where computationally expensive
models are not an option. Identification of the P2P network is based on port distributions
which we show are stable in time.

In the process of designing the detector we address the following questions:

1. Having one peer in an unknown P2P network, are we able to find other peers in the
respective network?

2. Can we determine what particular P2P network it is?

3. Can we enumerate all P2P networks together with peers participating in them in the
monitored network?

In Section 3.2 we show how the proposed graph algorithm can find other hosts participating
in the same P2P network as the first peer. The algorithm is based on monitoring mutual
peers of hosts. The next logical step is to identify the observed P2P network; and we present
a simple classification method based on remote peers port distribution in Section 3.3. Finally,
in Section 3.4 we show how to select peers that are likely participating in a P2P network and
which are used as an input to the graph algorithm.

The method managed to detect all cooperating peers in most of the P2P networks and
attained almost zero false positive rate in the controlled experiment.

We believe that this method presents a viable approach to detecting peers in P2P networks,
both well-known file sharing networks and specialized peer-to-peer networks used by botnets
as a C&C channel. It has been used as a part of anomaly detection engine for several years
now.
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Chapter 4

Probabilistic threat propagation
analysis

In the following we analyze PTP presented in Section 2.5.1 in order to gain a better under-
standing of requirements on graphs to be used with PTP. As we demonstrate in the evaluation,
the analysis enables us to define a graph that improves the performance of PTP, compared
to the originally proposed graph.

The approximate solution to PTP presented in Equation 2.11 gives little insight to what
values the threat of nodes actually converge. To better illustrate the process, in the following
we derive exact formulas for calculating threat of a node in the first three iterations. We
assume that PTP is run on a general graph G, with nodes of the graph denoted as xi and
edge weight of an edge between two nodes xi and xj denoted wij .

The value of threat of seeds is fixed to some arbitrary values in [0, 1] and remains the same
in all iterations. Threat of the remaining nodes is recalculated in every iteration. Before the
beginning, the 0-th iteration, threat of all non-seed nodes is 0:

P 0(xi) =

{
αi, ∀xi ∈ S
0, ∀xi ∈ V \ S.

(4.1)

In the first iteration, threat of the non-seed nodes is

P 1(xi) =
∑

xj∈N (xi)∩S

wij
di
P 0(xj) (4.2)

which is an average threat of seeds neighboring with node xi. Nevertheless, it can be also
interpreted as a sum of probabilities of all paths of length 1 that end in a seed multiplied by
threat of that seed. Similarly, P 2 can be expressed as

P 2(xi) = P 1(xi) +
∑

xj∈N (xi)\S

wij
di

(
∑

xk∈N (xj)∩S

wjk
dj

P 0(xk)) (4.3)

which is equal to sum of path probabilities of all paths with length at most 2 that end in a
seed multiplied by threat of that seed. Finally, P 3 is calculated as

P 3(xi) = P 2(xi) +
∑

xj∈N (xi)\S

wij
di

(
∑

xk∈N (xj)\(S∪xi)

wjk
dj

(
∑

xl∈N (xk)∩S

wkl
dk

P 0(xl))) (4.4)
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Figure 4.1: A simple bipartite graph that shows how quickly the threat of a node decreases
with increasing distance from the seed.

which is basically a sum of path probabilities of all paths with length at most 3 that end in
a seed multiplied by threat of that seed, with the exception of paths with cycles of length 2.
Ignoring such paths is equivalent to subtracting Ck(xi, xj) in Equation 2.11. More detailed
derivation of P 2(·) and P 2(·) can be found in Section 4.1.

The limitation to paths that do not have cycles of length 2 is an artifact of the approximate
solution. Exact solution considers only simple paths - those without any cycles. The exact
solution for a threat of a node can be then expressed as:

P (x) =
∑
s∈S

P (s)
∑

R∈R(s)

p(R) (4.5)

where R(s) is a set of simple paths from x to s. For a cycle-free graph with only a single
seed, we get back to the exact solution from Equation 2.8.

Interestingly, ∑
R∈R

p(R) (4.6)

is also known as cycle-free escape probability used for calculation of cycle-free effective con-
ductance proposed as a measure of proximity in networks [75].

It was pointed out in [75] that the path probability decreases exponentially with the length
of the path. A simple example can be found in Figure 4.1. This observation has implications
on the choice of the graph representation used with Probabilistic Threat Propagation, which
is discussed in Chapter 5.

4.1 Full equations

P 0(xi) =

{
αi, ∀xi ∈ S
0, ∀xi ∈ V \ S.

(4.7)

(4.8)
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Threat of seed nodes does not change

P k(xi) = P 0(xi), ∀k ∈ N, ∀xi ∈ S. (4.9)

The following holds for ∀xi ∈ V \ S:

P 1(xi) =
∑

xj∈N (xi)∩S

wij
di
P 0(xj), (4.10)

P 2(xi) =
∑

xj∈N (xi)

wij
di

(P 1(xj)−
wji
dj

P 0(xi)︸ ︷︷ ︸
= 0

), (4.11)

=
∑

xj∈N (xi)∩S

wij
di

P 1(xj)︸ ︷︷ ︸
=P 0(xj)

+
∑

xj∈N (xi)\S

wij
di

(P 1(xj)) (4.12)

=
∑

xj∈N (xi)∩S

wij
di
P 0(xj) +

∑
xj∈N (xi)\S

wij
di

(
∑

xk∈N (xj)∩S

wjk
dj

P 0(xk)) (4.13)

P 3(xi) =
∑

xj∈N (xi)∩S

wij
di
P 0(xj) +

∑
xj∈N (xi)\S

wij
di

(
∑

xk∈N (xj)∩S

wjk
dj

P 0(xk)) (4.14)

+
∑

xj∈N (xi)\S

wij
di

(
∑

xk∈N (xj)\(S∪xi)

wjk
dj

(
∑

xl∈N (xk)∩S

wkl
dk

P 0(xl))). (4.15)

63



64



Chapter 5

Identification of malicious domains
using graph inference

Blocking communication with known malicious domains is a common approach to block ma-
licious traffic adopted by many Network Intrusion Prevention Systems (NIPSs). Malicious
domains are collected into blacklists that are then shared among providers of NIPS solutions.
Blacklists are however known to suffer from very low recall [80]. There is a considerable
delay between the time a malicious domain becomes active and the time it is added to a
blacklist. Many malicious domains are never added to blacklists, simply due to their large
amount. Some malware families are even known to actively avoid having their active domains
blacklisted by frequent transitions to new domains [9].

Malicious domains are traditionally identified by methods that can be split into two fam-
ilies – classification based and anomaly detection based. Both groups of techniques have
different roles. Classification identifies malicious behavior which we have already seen and
trained a classifier for; anomaly detection points to traffic that somewhat differs from “nor-
mal” in the given environment. Recently, a third family of techniques – guilt by association
– has seen an adoption in the field of network security.

Classifiers and anomaly detectors differ conceptually. While classifiers excel at identifying
behaviors similar to those they were trained for, they (by design) fail to identify new classes
of malicious behaviors that are fundamentally different from those in the training set. On the
other hand, anomaly detectors are able to detect anomalous behavior, however one cannot
guarantee any correspondence between anomalous and malicious behaviors [45]. Guilt by
association methods can be used with advantage to bridge the difference between anomaly
detection and classification techniques, in that they use prior knowledge, unlike anomaly
detection and at the same time can find principally new threats, unlike classifiers.

Guilt by association approach can be loosely defined as: Given the graph with several
nodes labeled as either positive or negative and assuming that neighbors influence each other,
find class memberships for all remaining nodes in the graph [77]. The strength of the influence
is specified by the edge weights. Two types of influence are distinguished in the literature –
homophily and heterophily. Homophily implies that nearby nodes connected with edges with
high weights should have the same label. Heterophily, on the other hand, implies that the
nearby nodes connected by edges should have different labels.

In the field of network security, guilt by association approach was used with graph captur-
ing homophilic relationships to improve recall of blacklists [19]. However, the graph proposed
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in [19] and described in Section 2.5.1 is susceptible to relatively easy evasion by malware
authors. Therefore, we propose an alternative view of the network communication that can
be used for the same task and makes it harder to evade detection.

In the field of network security, it is common to have only positive-unlabeled data available.
This forces the choice of the guilt-by-association algorithm to those that can be used in such
setting. We use Probabilistic Threat Propagation which has been used for the same task
before [19].

In this Chapter we solve the following problem: given the knowledge of some malicious
domain, find additional malicious domains using the guilt-by-association approach. We pro-
pose new graphs that can be used with any existing guilt by association algorithm. These
graphs are based on intrinsic properties of malware communication making it harder to avoid
than the existing graphs used in the field.

The main contributions of this chapter are

• analysis of the existing graphs used with guilt by association methods in the field of
network security,

• proposal of novel graphs to be used with guilt by association approaches that makes
evasion of detection much harder.

Finally, we demonstrate that the proposed graphs can offer roughly comparable detection
performance to the existing graphs used in the field, while making it considerably harder to
evade detection by malware authors.

5.1 The ip-domain graph

Guilt by association approaches have already been used to detect malicious domains. In [19]
authors proposed to use a graph that maps domains to the IP addresses they are hosted on.
Therefore we refer to it as an ip-domain graph. It is formally defined as

Dip = (C, S,E), (5.1)

where C is the set of IP addresses, S is the set of domains and E is the set of edges. An edge
links an IP address to a domain if the domain was hosted on that IP address. Application of
the ip-domain graph is based on the observation that it is common for a malicious domain
to be hosted on several IP addresses and several malicious domains to be hosted on the same
IP address. At the same time, it was observed that IP addresses hosting malicious domains
tend to concentrate in the IP ranges belonging to hosting providers that are oblivious to the
malicious activities in their networks [24, 147].

However, our observations suggest, that the approach to hosting malicious domains is
shifting. Hosting providers catering to malicious actors are withdrawing due to the easy
blackholing of their ranges and reluctance of others to peer with them [7]. Nowadays, we
observe a number of malicious domains hosted in public clouds where they often share IP
addresses with legitimate sites. Frequent sharing of infrastructure by malicious and legitimate
domains leads to false edges in the graph and possibly false alarms. We are aware of a
number of malicious campaigns that do not host more than one malicious domain per server
IP address.
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Furthermore, analyses of black markets [43, 154] suggest that infected clients are often
resold to new perpetrators that can utilize them for additional monetization activities. Other
reports [16] suggest that modern malware is modular and can be equipped with various
monetization capabilities, possibly owned by different actors. Any new monetization activity
from a different actor yields communication to previously unseen malicious domains. Contrary
to the assumption of the ip-domain graph, these likely do not share the same infrastructure.

5.2 The client-domain graph

To avoid issues described above, we propose to monitor connections between clients and
domains. Such connections are independent of specific hosting infrastructure used by malware
authors. The proposal is based on the properties typical for many malicious domains and
infected clients:

• malicious domains are visited predominantly by infected clients,

• infected client usually visits multiple malicious domains,

• typical malicious domain is visited by several infected clients.

Analogous observations were also used in [89, 112, 85]. Admittedly, not all malicious domains
have these properties, but based on the results reported in [89, 112], many of them have.

In [112, 89, 85] connections between clients and domains are represented by a bipartite
graph

Dclient = (C, S,E) (5.2)

where C is the set of clients connecting to domains in set S. Set E contains edges that link
clients with domains they connect to. We refer to this graph as client-domain graph. We have
identified several issues with using a bipartite representation of these connections, especially
when used with Probabilistic Threat Propagation (PTP). In the following text we describe
three types of issues we have identified.

5.2.1 Interpretation issues

Definition of the guilt by association problem states that the graph contains nodes for which
we want to infer the class membership and edges encode the strength of influence between
those nodes. Therefore, edge weights encode pairwise similarities of nodes or some other
form of their direct relationship. Weights are assumed to be proportional to the similarity or
strength of the relationship.

Specifically, in the solved problem, nodes of the graph should be domains and edge weights
should encode their similarity or some other form of relationship. That is not true for the
client-domain graph, since one of the partitions contains clients. PTP does not discriminate
between node types and calculates probabilities of belonging to the malicious community
even for clients, even though they are not subject of the community discovery task. Clearly,
neither [89] considers clients to be part of the inference task, since the calculated probability
of being malicious for clients is ignored in the evaluation.
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5.2.2 Practical issues

There is a plethora of work covering the task of inference and/or community detection in
bipartite graphs, e.g. [87, 133]. In these, there is a specific purpose to use a bipartite graph.
PTP can be naturally applied to a bipartite graph, under an assumption that nodes from
both partitions belong to one of the classes. However, in the case of the bipartite graphs in
question, the partition of clients is used merely to encode similarities of domains in the other
partition of the graph. Partition of IP addresses in the ip-domains has the same purpose.

There are also practical implications of using a bipartite graph to encode similarities
of nodes from one of the partitions. For this comparison we assume there is a unipartite
graph G = (S,E,w) containing only domains with edge weight between any two domains
proportional to their similarity and/or relation. Exact edge weight function is not important,
the only restriction on the edge weight function is that two domains have an edge between
them iff they have a mutual neighbor in Dclient. Clearly, any path between two domains is
twice as long in Dclient as it is in G. In Section 4 we show that the calculated threat of a
domain (its probability of being malicious) is proportional to the probabilities of a random
walks taking paths starting in the domain in question and reaching a known malicious node.
Knowing that probability of taking a specific path between any two nodes in the ip-domain
graph decreases exponentially with path’s length (number of hops) [75], it is clear that the
probabilities calculated by PTP using bipartite graph are lower than those calculated using
an unipartite graph.

This skew of probabilities towards zero undermines one of the claimed advantages of PTP
– resulting threats are probabilities of being malicious, as opposed to other methods that
produce a score without a probabilistic interpretation [26]. The calculated probability score
can be then used as a prior to the consequent classification, or decision making in general,
including automated alarms and incidents [19]. While this is also true for a bipartite graph,
the skew of calculated probabilities towards zero renders any automated post-processing based
on the calculated probability impractical. Note that the scale of the skew towards 0 depends
also on the degree of nodes in the partition that encodes similarities. Therefore, the skew
towards 0 is more pronounced in the client-domain graph than in ip-domain graph, which is
caused by overall higher degree of clients.

Using PTP with a bipartite graph can also lead to counter-intuitive results. As an example,
consider two domains hosted on the same ip address or visited by the same user, with no other
domains in the graph as depicted in Figure 5.1. Domain2.com is a known malicious domain,
therefore its threat is equal to 1. If we run PTP on the two graphs, calculated threat of
domain1.com in G is 1. However, calculated threat of the same domain in Dclient is always
less than 1. If both edges in D would have the same weight, the threat score of domain1.com
would be 1

2 . In this case, we find the threat score of 1 be a more intuitive result.

5.2.3 Leaking personally identifiable information

Computer network owners have various policies for providing network traffic logs, which are
needed to construct graphs, to third parties. They may not allow the data to leave their
premises, and some countries impose strict geographic restrictions on data location, retention
and processing.

The client-domain graph potentially contains user names or some other identification of
client devices. If the guilt by association inference is to be done globally to improve the
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domain1.com
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(a) bipartite graph

domain1.com
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p = 1
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Figure 5.1: Comparison of calculated values of threat for domain1.com using PTP seeded
with domain2.com. In the bipartite graph, threat is calculated for the client as well. In the
end, domain1.com attains threat of 0.5. On the other hand, in the general graph, threat of
domain2.com is 1, which in our opinion better reflects the situation.

coverage of the inference algorithm, the participating network owners need to share their
data.

Of course, the client-domain can be anonymized before leaving the network boundary. The
anonymization at the network level is certainly possible. Global graph is then constructed
from partial anonymized graphs. If we assume that no client can be present in two networks,
lossless reconstruction of the global graph is possible. However, the communication patterns of
specific clients are still visible, and an attacker might attempt to de-anonymize the graph [76,
82].

5.3 From bipartite to unipartite graphs

In the previous section, we show that bipartite graphs are not a natural graph format to
be used with PTP. This results into uncharacteristically skewed distribution of calculated
probabilities towards 0. At the same time, explicit capture of the communication in the
network poses a threat of de-anonymization attack. None of these issues are relevant for the
unipartite graph.

Clearly, there is a merit to converting graph D = (C∪S,ED) to graph G = (S,EG, w) with
properly chosen edge weight function w. In a way, conversion from D to G is a compression
of information, and some of it is inherently lost. Therefore, the edge weight function needs
to be carefully chosen to preserve as much information as possible.

The systematic study of similarity functions used in the graph construction, and their
impact on the graph-based algorithms is lacking, especially in the field of network security.
To our knowledge, specific edge weight function was considered only in one prior work - [85].
In it, weight of an edge in the client-domain bipartite graph is defined as a maximal anomaly
of any flow originating from given client and targeting the given domain. Anomaly score can
be calculated by an arbitrary anomaly-based NIDS. In this case, the edge weight is not used
to enumerate similarity of nodes in the graph, that is done by the bipartite form of the graph.
Rather, it is used to limit the spread of threat along the edges that are deemed legitimate.
The obvious drawback of this approach is the need to have anomaly values available, which
many of the data sets may not have.

In graph D, threat can pass from one node in S to another node from S only through their
neighbors in C. Also, no threat is passed between two nodes from S if they do not share a
mutual neighbor. These two observations inspire us to consider only edge weight functions
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that:

• depend on the neighborhoods of nodes from S to calculate their similarity,

• assign positive edge weight only to pairs of nodes from S that share a mutual neighbor.

5.3.1 Edge weight functions

The following discussion of similarity functions extends the previous works [96, 131] and puts
them into context of network security. All edge weight functions are explained on an example
of the client-domain bipartite graph and can be calculated solely based on the information
contained in that graph. One can therefore say that we are converting the bipartite graph
into an unipartite graph.

Please note that not all edge weight functions presented are true similarities in the sense
of its proper mathematical definition. Nevertheless, the PTP does not pose such requirement
on edge weights of the underlying graph.

Basic edge weight function

The simplest edge weight function can be defined as:

wb(s, t) =

{
1 if any client connects to both s and t,

0 otherwise.

By using this function one claims that two servers visited by the same user are related thus
the weight of an edge between them is 1.

Jaccard index

Jaccard index [60] is a statistic used for comparing the similarity of sample sets. It is defined
as the size of the intersection divided by the size of the union of the sample sets:

JI(A,B) =
|A ∩B|
|A ∪B|

, where A, B are sets. (5.3)

In turn, the edge weight function is defined as:

wji(s, t) = JI(N (s),N (t)) =
|N (s) ∩N (t)|
|N (s) ∪N (t)|

, (5.4)

with N (s) is the neighborhood function defined in Equation 2.4.
The wji can also be calculated using vector formalism:

wji(s, t) =
xᵀs · xt

‖xs‖22 + ‖xt‖22 − x
ᵀ
s · xt

, s, t ∈ S, (5.5)

where xs ∈ {0, 1}|C|, each dimension of the vector representing one client in C and

x(i)s =

{
1 if client represented by dimension i visited server s,

0 otherwise,
(5.6)

Jaccard index attains values in [0, 1] thus offering a finer resolution of “similarity”, compared
to the basic edge weight function.
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Meet/min

Meet/Min [47] is defined similarly to Jaccard index, with the exception that the denominator
is defined as the size of the smaller of the two sets:

MM(A,B) =
|A ∩B|

min(|A|, |B|)
, where A, B are sets., (5.7)

and the edge weight function itself is defined as

wmm(s, t) = MM(N (s),N (t)) =
|N (s) ∩N (t)|

min(|N (s)|, |N (t)|)
, (5.8)

and wmm attains values in [0, 1].

Jaccard index and Meet/Min have a different behavior, especially when the sizes of two
sets are highly imbalanced. Clearly, Meet/Min does not punish the the set size imbalance
nearly as much as Jaccard index, which is to be expected based on their definition.

Weighted Jaccard similarity

We might not want all clients to have the same impact when determining similarity of domains.
More importance should be given to clients that connect only to a few domains, in contrast
to those that connect to a large number of domains. This is a key distinction, since a client
that connects to almost all domains can be hardly used to infer relationships among those
domains.

By decreasing importance of very active users, we simulate the effect of threat diffusion
in the bipartite graph, where less threat is allowed to pass through nodes from C with high
degree. Any path between two domains passing through a high degree client has a lower
probability than a path passing through a low degree client. Such paths with high degree
clients thus allow less threat to pass through and therefore contribute less to the overall threat
passed between two domains.

Similar intuition motivates Term frequency - Inverse Document Frequency (TF-IDF) [113]
used in text mining. We propose the weighted jaccard edge weight function, which can be de-
fined using inner product and TF-IDF framework. The definition of the edge weight function
remains the same as with the Jaccard index

wwji(s, t) =
x̄ᵀs · x̄t

‖x̄s‖22 + ‖x̄t‖22 − x̄
ᵀ
s · x̄t

(5.9)

however, the definition of the vector changes. As with TF-IDF, each element of x̄s is defined
as

x̄(i)s = tf(s, i) · idf(s, i, S). (5.10)

Term frequency and inverse document frequency are defined as:

tf(s, i) = x(i)s , (5.11)

idf(s, i, S) =
1

|N (ci)|
. (5.12)

where ci is a client represented by the i-th dimension of the vector.
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Alternatively, in the set notation weighted jaccard edge weight function can be defined as:

wwji(s, t) =

∑
c∈N (s)∩N (t)

1
|N (c)|∑

c∈N (s)∪N (t)

1
|N (c)|

, s, t ∈ S. (5.13)

Please note that we define weighted version of the edge weight function, and not weighted
version of Jaccard index itself. Jaccard index does not have information about the popularity
of elements in the sets. We draw this information from bipartite graph D.

Weighted meet/min

We use the same logic as in the case of weighted jaccard edge weight function to propose
weighted meet/min edge weight function, which is defines as

wwmm(s, t) =

∑
c∈N (s)∩N (t)

1
|N (c)|

min(
∑

c∈N (s)

1
|N (c)| ,

∑
c∈N (t)

1
|N (c)|)

, s, t ∈ S. (5.14)

Binomial test

Instead of a continuous similarity value, one might want to create only edges between servers
that have some statistically significant overlap of clients.

A client connecting to both servers in question can be considered a success outcome of a
Bernoulli trial. Hence the number of clients in the network connecting to both servers can be
modeled using a binomial distribution. Number of trials is equal to the number of clients in
the network. Existence of an edge is then conditioned on the rejection of the null hypothesis,
that two servers are unrelated, using the binomial statistical test. The probability of a client
connecting to two unrelated servers is a product of probabilities of the client connecting to
either.

We denote probability of a user connecting to server s as ps and probability of a client
connecting to two servers s and t is denoted pst. If the servers are unrelated, then

pst = ps · pt. (5.15)

Binomial statistical test computes p value as

pval(s,t) = 1− CDF(|N (s) ∩N (t)| − 1, |C|, pst). (5.16)

and similarity function is defined as

wbt(s, t) =

{
1 if pval(s,t) < 0.05

0 otherwise.
(5.17)

The probability of any user connecting to a specific server s, ps, can be estimated from
the observed connections. Simple maximum likelihood estimate can perform poorly for the
rare events (i.e. servers to which only a few users connect) therefore we apply smoothing
to estimate empirical probabilities of connecting to a server closer to true the probabilities.
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Number of users connecting to a server can be also modeled by a binomial distribution. To
estimate ps we use Bayesian inference using Binomial distribution with Beta distribution prior.
Beta distribution parameters are set to α = β = 1. With this choice of Beta distribution
parameters, the estimate of ps has a closed form solution:

ps =
|N (s)|+ 1

|C|+ 2
. (5.18)

This is equivalent to maximum likelihood estimate of ps from Binomial distribution with
Laplace Smoothing [4] (also known as additive smoothing or Lidstone smoothing) with k = 1.

5.3.2 Distributed construction of unipartite graphs

The proposed unipartite graphs contain no information about communication patterns of
specific clients. Still, if such graph were to be constructed globally for a number of networks,
communication patterns of individual users would need to be shared globally as well.

Instead, we propose to build the unipartite graph in a distributed matter, which is possible
for all edge weight functions described in Section 5.3.1. In the following, we denote

Dn = (Cn ∪ Sn, En)

to be a bipartite client-domain graph specific for network n. The global client-domain graph
then would be an union of these network-specific client-domain graphs.

D =
⋃
n

Dn. (5.19)

Distributed construction of the unipartite graph using basic edge weight function is the
easiest. To do so, all network-specific graphs are first converted to unipartite graphs Gn.
Final global unipartite graphs is simply an union of the network-specific unipartite graphs:

G =
⋃
n

Gn. (5.20)

Next, we describe how to construct an global unipartite graph using Jaccard index as edge
weight function, which is not as straightforward. As was noted in Section 5.3.1, edge weight
based on Jaccard index is calculated as:

JI(s, t) =
|N (s) ∩N (t)|
|N (s) ∪N (t)|

=
num(s, t)

den(s, t)
(5.21)

where N(·) is the neighborhood function defined in Equation 2.4. This formula assumes the
global view of the data. Assuming that networks have disjoint client sets we can define

Nn(s) = N (s) ∩ Cn. (5.22)

Then the following holds:

num(s, t) = |N (s) ∩N (t)| =
∑
n

|Nn(s) ∩Nn(t)| =
∑
n

numn(s, t) (5.23)
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where n goes over all networks. numn(·, ·) can be calculated locally using solely data origi-
nating from network n. Accordingly for denominator:

den(s, t) = |N (s) ∪N (t)| = |N (s)|+ |N (t)| − num(s, t)

=
∑
n

Nn(s) +
∑
n

Nn(t)− num(s, t). (5.24)

The final edge weight can be then calculated globally as

JI(s, t) =
num(s, t)∑

nNn(s) +
∑

nNn(t)− num(s, t)
. (5.25)

Therefore, to calculate the proposed unipartite graph using weight function based on Jaccard
index, one needs to first calculate numn(s, t), |Nn(s)| and |Nn(t)| for each network and send
this information to a global processor. There the global graph can be reconstructed. None of
the information sent to the global processor contains any personally identifiable information.

Similarly, we can show how to create unipartite graph in a distributed fashion for weighted
jaccard edge weight function, meet/min edge weight function and weighted meet/min edge
weight function.

In order to construct a unipartite graph using the edge weight function based on bino-
mial test in a distributed fashion, each network needs to report its size, |Cn|, as well as all
the information needed above. To construct the global graph, we need to determine global
probability of a client connecting to domain s. This can be calculated as:

ps =

∑
n |Nn(s)|+ 1∑
n |Cn|+ 2

. (5.26)

Formula for calculation of pst remains the same. Finally, p value of the binomial statistical
test is calculated as

pval(s,t) = 1− CDF(
∑
n

|Nn(s) ∩Nn(t)| − 1,
∑
n

|Cn|, pst). (5.27)

5.4 Pruning of client-based graphs

The fact that two domains are visited by the same user gives less evidence of the relationship
of the two domains, in comparison to the fact that the two domains are hosted on the same IP
address. This can be explained by the fact that a client in the client-domain graph actually
encompasses several entities – user himself, operating system, any installed applications and
malicious binary, if present. All of these initiate network connections, often independently of
each other. As a result, probability of being malicious calculated for domains that are visited
by only a single user, or by a small group of users are not reliable, and in turn can cause
many false positives.

Therefore, we propose to remove domains with low popularity from the graph. By popu-
larity of a domain we understand number of clients connecting to it. We investigate impact
of the graph pruning in Section 5.5.5 and Section 5.5.6.
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Table 5.1: Examples of second-level domain and public suffix of a fully qualified domain name
(FQDN) for various FQDNs.

FQDN second-level domain public suffix of FQDN

www.google.com google.com google.com
www.amazon.co.uk amazon.co.uk amazon.co.uk

africlz26.dyndns.info dyndns.info africlz26.dyndns.info

Table 5.2: A summary of properties of data sets used in evaluation.

networks domains clients IP addresses malicious domains

2016-10 336 5, 971, 233 3, 301, 905 3, 926, 293 3, 253
2016-11 739 6, 651, 490 4, 148, 226 4, 177, 737 3, 340
2016-12 615 6, 250, 316 3, 728, 613 3, 993, 840 3, 567

5.5 Experiments & evaluation

In this section, we demonstrate the performance of the Probabilistic Threat Propagation
applied to the proposed graphs.

Throughout the text we were using the term domain without specific explanation what is
meant by that. In fact, the graphs can be used with various specific definitions of a domain,
i.e. second level domain or fully qualified domain name. In this evaluation, by term domain
we understand the public suffix of the fully qualified domain name. Such choice avoids graph
size explosion due to the extensive number of fully qualified domain names, and at the same
time it acknowledges that some second level domains, e.g. dyndns[.]info are public domains,
where anyone can register a sub-domain. Differences in mentioned exact domain definitions
are demonstrated on real examples in Table 5.1.

5.5.1 Data set description

In the evaluation we rely on three data sets, denoted 2016-10, 2016-11 and 2016-12. The
2016-10 data set was collected in October 2016 and contains proxy logs of 3, 301, 905 users
from 336 networks. There is 5, 971, 233 domains and 3, 926, 293 server IP addresses present
in the data set. The 2016-11 data set was collected in November 2016, contains proxy logs
of 4, 148, 226 users from 739 networks. It contains 6, 651, 490 domains and 4, 177, 737 server
IP addresses. The 2016-12 data set was collected in December 2016, contains proxy logs of
3, 728, 613 users from 615 networks. It contains 6, 250, 316 domains an 3, 993, 840 server IP
addresses. The properties of the data sets are also summarized in Table 5.2.

The ip-sld and user-sld graphs are constructed from these data sets by identifying unique
pairs of ip addresses/users and second level domains and storing the information in the form
of a bipartite graph. Unipartite graphs are extracted from the client-domain graph.

5.5.2 Source of labels

As a source of labels, we use the knowledge of malicious campaigns currently being tracked by
Cisco CTA [135]. Malicious campaign is represented by a collection of second level domains
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Table 5.3: Precision@K achieved by PTP using ip-domain and client-domain graphs in two
considered use cases.

general specific

ip-domain bipartite 0.88 0
user-domain bipartite 0.54 0.33

that participate to achieve a common goal, or generally serve the same purpose. At the time
of the experiment, 279 malicious campaigns were tracked, representing various threat types,
including ransomware, information stealers, banking trojans, exploit kits, ad injectors, click
frauds and others. Not all of the known malicious campaigns exhibit themselves in the data
sets, since the intelligence used as a source of labels is more recent than the used data sets.
We allow for a longer time gap between the data capture and intelligence version (date at
which it is valid) to let security community catch up; that is give them time to identify as
many malicious domains as possible.

Malicious domains from these campaigns are the sole domains used to seed PTP; no
legitimate domains were used to seed the PTP.

An important distinction of our experimental setup, as compared to the experimental
setup used in related work is the amount and form of the labeled data available. We consider
a use case in which we only have labels for a few malicious domains and no legitimate labels
whatsoever. For comparison, for the 2016-10 data set we only have labels for 3, 258 (0.055%)
domains (all of them malicious), which is in stark contrast to [89], in which 1.45% of domains
were labeled.

5.5.3 Evaluation criteria

The output of PTP can be considered a classifier score in a binary class decision problem,
and thus can be evaluated as such. As an evaluation criteria, we are using precision@K which
measures precision for the K elements with the highest classification score. It aligns well
with our use case where domains identified as malicious by PTP are further investigated by
an analyst. An analyst usually has a limited time frame to go over the results of PTP. We
choose K to be 100, which in our experience is a realistic estimate of the number of domains
an analyst is able to evaluate within a single session.

Evaluation of domains found by PTP was done manually by domain experts. No hard
criteria were used to determine whether a specific domain is malicious, it was solely at the
discretion of the analysts. We recognize the possible bias in the labeling introduced by
the domain experts. On the other hand, all domains were evaluated together, without any
indication as to which graph was used to detect any particular domain. Therefore, there is
no bias towards any specific evaluated graph.

5.5.4 Bipartite graphs

In this section, we aim to compare the detection performance of ip-domain and client-domain
graphs. Evaluation is performend on the 2016-10 data set. Precision achieved using PTP
with the client-domain and ip-domain is compared for two uses cases - general and specific.
We use specific use case to demonstrate how a specific evasion technique can render the
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Table 5.4: Achieved precision@K for various edge weight function and domain popularity
thresholds.

1 2 3 4 5

ip-domain bipartite 0.88 0.90 0.86 0.86 0.81
user-domain bipartite 0.54 0.57 0.69 0.77 0.77

basic 0.54 0.37 0.35 0.47 0.44
jaccard index 0.44 0.48 0.63 0.69 0.78

meet/min 0.55 0.50 0.51 0.69 0.76
weighted jaccard 0.45 0.54 0.72 0.72 0.79

weighted meet/min 0.55 0.60 0.73 0.81 0.83
statistical test 0.48 0.31 0.23 0.32 0.36

ip-client graph useless while client-domain graph is still able to find additional malicious
domains. In this use case, we seed PTP only with domains from the malicious campaigns
that intentionally avoid hosting two or more domains on the same IP address. In contrast to
that, with the general use case we want to show how the two graphs behave in general, when
all known malicious domains are used as seeds by PTP.

Results for all combinations of the used graphs and use cases can be found in Table 5.3. In
the specific case, no additional malicious domains were found by PTP when using ip-domain
graph, while the client-domain graph still achieved a reasonable precision. In the general
case, the ip-domain graph offers superior performance compared to the client-domain graph.

The results suggest that monitoring connections between clients and domains is harder
to evade. On the other hand, it offers inferior performance to the ip-domain graph, at
least when represented by a bipartite graph. Therefore, to make client-domain-based graphs
a viable alternative to the ip-domain graph, increasing precision is crucial. The precision
can be improved by either pruning of the graph or using an unipartite graph, as shown in
Section 5.5.5.

5.5.5 Improving precision of client-domain-based graphs

In Section 5.4 we hypothesized that precision of PTP run on graphs based on monitoring
connections between clients and domains can be improved by removing domains with low
popularity.

In order to verify this hypothesis, we create five versions of all bipartite and unipartite
graphs. Each version is pruned using a different domain popularity threshold. Used popularity
thresholds are 1, 2, 3, 4 or 5. Note that for the sake of fairness of comparison, in the experiment
we also used five pruned versions of the ip-domain graph. In this specific case, the criteria
for removing domains from the graph was number of IP addresses on which the domains
are hosted. In the experiment, we utilize the 2016-10 data set, and use all known malicious
domains to seed PTP.

The precision achieved with various graphs and domain popularity thresholds can be
found in Table 5.4. The results confirm that the precision achieved by all graphs based on
client - domain connections depend heavily on pruning. The impact of the domain popularity
threshold is however not consistent across all proposed unipartite graphs. For example, graph
using binomial statistical test as an edge weight function offers better precision when no
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Table 5.5: Precision@K achieved by edge weight function and their optimized domain popu-
larity thresholds on testing data sets.

2016-11 2016-12

ip-domain bipartite 0.95 0.95
user-domain bipartite 0.78 0.80

basic 0.70 0.75
jaccard index 0.88 0.82

meet/min 0.87 0.84
weighted jaccard 0.90 0.89

weighted meet/min 0.85 0.90
statistical test 0.46 0.42

threshold is used, while graph using Jaccard index as an edge weight function performs best
with the highest domain popularity threshold tested.

It is therefore appropriate to consider domain popularity threshold to be a hyper-parameter
of the algorithm that needs to be optimized for each specific unipartite graph. To that end, in
the following we consider the 2016-10 data set to be a training data set on which we optimize
the value of the hyper-parameter. The optimal domain popularity threshold choice for each
proposed edge weight function, which is further used in the evaluation, is clear from Table 5.4.

Precision achieved by PTP run on the proposed pruned graphs is then compared on two
testing sets, 2016-11 and 2016-12. Results of experiments on testing data sets can be found in
Table 5.5. Results suggest that both weighted and unweighted versions of Jaccard index and
meet/min edge weight functions outperform the bipartite graph, basic edge weight function
and the edge weight function based on the binomial statistical test. While the precision
achieved by the ip-domain graph is still the best, precision of the best performing proposed
unipartite graphs is not far behind.

5.5.6 Impact of graph pruning

Graph pruning removes domains and thus possibly reduces recall. We cannot evaluate impact
on recall directly, because we do not have ground truth for all domains in the data set. Instead,
we measure how many domains are removed by pruning given various thresholds of domain
popularity and then what is the impact on the number of detected users if malicious domains
in the data set were used as an indicator of compromise (IOC).

Each domain has a true, global popularity which cannot be observed directly, unless one
has access to the global network logs. Popularity of a domain within a data set is always lower
than the global popularity, increases with the increase of size of the data set, and eventually
should converge to the global popularity.

In order to provide insight into proportions of domains with various popularities and its
dependence on the number of networks (and hence users) in the data set we use data from
5, 000 separate networks. We determine the portion of domains with popularity equal to 1, 2,
3, 4 and 5 or more for increasing number of networks. Results can be found in Figure 5.2a for
all domains and in Figure 5.2b for malicious domains only. The plot in Figure 5.2a suggests
that overwhelming number of domains is visited by only a single user. Portion of such domains
decreases with increasing size of the data set, nevertheless even with 5, 000 networks in the
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Figure 5.2: Portions domains with selected probabilities displayed as a function of size of
the data set. Portion of domains with low popularity decreases with the increase of the data
set size. Interestingly, even on data sat containing thousands of networks and millions of
users, around 60% is still visited by only a single client (figure left, solid line). This is
less pronounced for malicious domains, where on the same full data set only around 30%
of domains are visited by only a single user (figure right, solid line). The difference in the
number of networks in the two plots is caused by the fact that 2000 networks had no hit on
any of the malicious domains used in evaluation.

data set, almost 60% of domains are unique to a single client.

The situation is slightly different with malicious domains, depicted in Figure 5.2b. The
general trend is identical to the previous case – portion of domains visited by only a single
user decreases with increase in the data set size. However, portion of domains visited by only
a single client drops to around 30%. Note that plot in Figure 5.2b ends for 3, 000 networks.
This is caused by the fact that in the remaining networks there is no communication to any
of the malicious domain used in this evaluation.

If malicious domains are used as indicators of compromise (IOCs) to detect infected users,
pruning of graph can have adverse effect on the number of detected infected users. Therefore,
we investigate how does the number of detected users change, if we ignore known malicious
domains with low popularity. The impact is depicted in Figure 5.3.

The drop in number of detected users is negligible – ignoring malicious domains with only
one client, 99.46% of infected users would be still detected. If malicious domains with five
or less clients are ignored, 98.19% of infected users is still detected. Whether such drop in
recall (of infected users) is acceptable depends on the specific application, nevertheless drop
in recall is negligible compared to the drop in numbed of considered domains and thus drop
in computation requirements.

In conclusion, it has been shown earlier that graph pruning improves precision of client-
domain-based graphs. In this section, we have shown that the impact on number of detected
users is marginal and since at least half of the domains are removed (in the available data
set), also the graph is considerably smaller and runtime of PTP shorter. Graph pruning is
therefore a viable solution to low-precision problem of client-domain-based graphs.
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Figure 5.3: Number of detected users if malicious domains with low popularity are ignored.
If malicious domains were used as an IOC to detect infected users, pruning graph would only
have a marginal impact on the number of detected infected users.
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Figure 5.4: Histogram of achieved probabilities of being malicious using two graph represen-
tations. Using the user-domain graph one gets probabilities that are very low, which is caused
by the structure of the data. Please note the logarithmic scale.

5.5.7 Distribution of calculated probabilities

Next, we analyze the distribution of probabilities calculated by PTP to confirm skew of these
probabilities towards 0 caused by the use of a bipartite graph. We then analyze probabilities
calculated by PTP when run on the proposed unipartite graphs to determine whether the
change in the underlying graph improved the distribution.

Distribution of calculated threats for bipartite graphs can be found in Figure 5.4. The
distribution is skewed especially for the client-domain graph. In fact, from the 100 domains
with the highest threat score from the general experiment, of which 52 were true positives,
only one had score higher than 0.4. On the other hand, distribution of the ip-domain graph
does not seem to be ill-formed.

Skew towards 0 is more pronounced in the user-domain graphs due to the higher degree
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Figure 5.5: Histogram of achieved probabilities of being malicious for various edge weight
functions. Please note the logarithmic scale.
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of users, as compared to the degree of IP addresses in the ip-domain graph. In the iterative
calculation of PTP, threat (probability of being malicious) of each node is approximately
calculated as an average of threats of its neighbors. Given the high number of domains visited
by a client, and the fact that only negligible number of them are known malicious, threat
of clients is generally very low. Consequently, only small threat is calculated for unlabeled
domains, which is again calculated as an average threat of its neighbors. This skew towards
0 can be also explained using the random walk formalism of PTP - high degree nodes in the
path between an unlabeled and a labeled domain considerably decrease the probability of this
path and consequently also the calculated threat.

However, skew towards 0 can be also observed for unipartite graphs, with the exception of
those based on Jaccard index, as can be seen in Figure 5.5. The difference in the distribution
is the consequence of a fundamental difference of how the edge weight is calculated for two
domains with considerably different popularities. There are dozens of domains with very high
popularity – they are visited by almost every client and their probability of being malicious
is low due to their degree. In the case of (weighted) Jaccard index, an edge weight between a
domain with low popularity (which malicious domains typically are) and a domain with high
popularity is very low. For the remaining edge weight functions the similarity is 1 or very
close to 1. Since almost all infected clients frequently visit the legitimate domains as well,
malicious domains are joined by an edge to the legitimate and popular domains. If weights
of these edges are high, threat of the (unknown) malicious domains is also kept low. On the
other hand, if edge weights are low, such as in case of (weigted) Jaccard index, the threat of
a node is not impacted much by the threat level of such popular domains.

5.5.8 Differences in findings

In this section, we analyze the similarity of sets of domains detected by the PTP when using
the bipartite graphs and the proposed unipartite graphs. Table 5.6 contains Jaccard index
of detected domains for each combination of graphs used with PTP. The most notable is
the observation that PTP using ip-domain graph found different malicious domains than
PTP using any other graph. This suggests that different concepts behind the graphs lead to
considerably different findings. The ip-domain graph excels in identification of malware that
heavily relies on frequent migration between domains on a limited set of server hosts. This
case is typical, as it avoids domain-based blocking on host and network prevention devices and
does not force the attackers to laboriously migrate the infrastructure. However, a growing
proportion of diverse malware deviates from this scheme and avoids the detection by the
ip-domain graph completely. Such evasion techniques is ineffective with the proposed graphs.

There are also differences in sets of detected domains between the proposed graphs. These
are not as pronounced as in the previous case and are caused by the behavior of edge weight
functions that also impacts the distribution of calculated probabilities.

5.5.9 Correlation

In order to determine whether the proposed edge weight functions capture the same important
properties of network communication, we analyze correlation between edge weight functions.
Table 5.7 contains Person’s correlation coefficients for the described edge weight functions.
We can see that Jaccard Index and weighted Jaccard index are highly correlated, and so
are Meet/Min and weighted Meet/Min. On the other hand, there is only a weak correlation
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Table 5.6: JI of detected domains for the bipartite graphs and unipartite graphs using proposed edge weight functions.

ip-domain user-domain basic jaccard index meet/min weighted jaccard weighted meet/min statistical test

ip-domain bipartite 1 0 0.0081 0 0.0129 0 0.0123 0
user-domain bipartite 0 1 0.1635 0.3478 0.3784 0.4579 0.7391 0.2021

basic 0.0081 0.1635 1 0.1296 0.3043 0.1081 0.1545 0.6327
jaccard index 0 0.3478 0.1296 1 0.2727 0.7253 0.3306 0.1515

meet/min 0.0129 0.3784 0.3043 0.2727 1 0.2917 0.4722 0.3333
weighted jaccard 0 0.4579 0.1081 0.7253 0.2917 1 0.4336 0.1386

weighted meet/min 0.0123 0.7391 0.1545 0.3306 0.4722 0.4336 1 0.807018
statistical test 0 0.2021 0.6327 0.1515 0.3333 0.1386 0.807018 1



Table 5.7: Pearson’s correlation coefficient between edge weights calculated by the proposed
functions.

wji wmm wwji wwmm wbt

wji 1 0.24 0.98 0.24 0.21
wmm 0.24 1 0.23 0.98 0.05
wwji 0.98 0.23 1 0.24 0.18

wwmm 0.24 0.98 0.24 1 0.03
wbt 0.21 0.05 0.18 0.03 1

between Jaccard index and Meet/Min, either weighted or unweighted. Similarly, there is a
weak correlation between the statistical test and the (weighted) Jaccard index. In contrast,
there is no correlation between statistical test and (weighted) Meet/Min.

Additionally, to show relationships between selected edge weight functions, in Figure 5.6
we present a scatter plot of edges in the coordinates calculated by the edge wight functions.
Unsurprisingly, Meet/Min assigns higher edge weights than Jaccard index; and weighted
Meet/Min generally assigns higher edge weights compared to weighted Jaccard index.

5.6 Discussion & remarks

Results in Table 5.5 suggest that four edge weight functions - wji, wwji, wmm and wwmm
outperform the two remaining edge weight functions – wb and wbt as well as the client-
domain graph. Of the four, neither is clearly the best across all available data sets. Based on
the degree distribution of the calculated probabilities we lean towards choosing either wji or
wwji as the best option.

The reason why we do not use cross-validation to evaluate the proposed edge weight
functions lies in the labels we have available. In our experiments, we use relatively small list
of malicious domains and have no legitimate labels available. Altogether, we have labels for
only 0.055% of domains that are present in the data set. An option would be to consider all
unlabeled domains to be legitimate. This, however, goes against the claim that blacklists have
small recall which implies that there are many malicious domains that would be considered
legitimate in the evaluation. In such case, the method would identify many domains that
are truly malicious but due to the lack of labels would be marked as false positives. For
comparison, evaluation in [89] was done using cross-validation. However, only labeled domains
were used to determine true positive and false positive rates. Having labels for only 1.45%
of domains means that the true performance of the evaluated method can be considerably
different.

We assume that the reason for adoption of bipartite graphs instead of unipartite graphs
is their lower memory complexity. Bipartite graphs have more nodes, but considerably less
edges than their unipartite counterparts, at least when converted using the proposed edge
weight functions. This was also observed in [136] and stated as a reason to use the bipartite
graph. In fact, all domains visited by an user form a clique, and thus there are as many
cliques in the unipartite graph as there are clients in the data used to construct the graph.

A natural solution would be to use the thresholding. Due to the properties of the edge
weight functions, thresholding is a reasonable choice only for the wji and wwji. Other edge
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Figure 5.6: Scatter plot of edges, each point in the plot is an edge with coordinates determined
by two selected edge weight function. Color intensity is proportional to the number of edges
with the given coordinates and is log scaled. As can be seen in (a), wmm consistently attains
higher values than wji, as is expected. (b) shows a visual clue that wji and wwji are correlated.
Finally, in (c) one can see that wmm usually attains higher values than wwji.

weight functions have the tendency to keep the edge weight high or even 1, which is also the
reason for the skew in the distribution probabilities towards 0. In our approach we avoided
thresholding, since we have already pruned the tree – removed domains removed domains
with low popularity. Proposed pruning strategy not only improves precision of the graphs
based on monitoring client - domains connections but also solves the issues with memory
requirements.

Finally, we would like to address the question of the quality of data. Data used for
construction of the ip-domain graph are less prone to containing unwanted artifacts. The
only artifact we were able to identify was the presence of blackholing IP addresses. These
were easily identified in the data, due to their high degree and the fact that only malicious
domains are hosted on them. In contrast, data we used to construct the client-domain graph
have many artifacts. Since we have no control over the networks, network administrators
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are free to use any network setup they wish. Therefore, in our data we see devices posing
as clients that are in fact internal proxy servers. These can appear to visit overwhelming
number of domains, which also has implications for the memory required to store the graph
– size of the edges in the clique rises quadratically with the number of nodes in the clique.
Another artifact commonly seen in the data is a single device changing identity, for example
an IP address. In our experiments, we removed 1500 most active clients from the data. This
number was chosen based on the degree distribution of clients in the client-domain graph. We
are certain many proxy servers posing as clients remained in the data, therefore we suggest
to use a proper proxy detector, such as [74] to identify proxies posing as clients. We did
not attempt to merge clients that represented a single physical device. As a consequence, the
precision achieved using the client-domain based graph representation can be likely improved,
given the data can be properly sanitized.

5.7 Conclusion

In this chapter, we addressed the task of identifying additional malicious domains given
the knowledge of some of them, specifically using Probabilistic Threat Propagation. The
contribution of this chapter is three-fold:

1. We use data about client-domain connections to infer maliciousness of domains, instead
ip-domain hosting information used in prior art [19]. Using two complementary views of
the network data leads to identification of different malicious domains in each case. The
data about client-domain connections should be therefore used alongside the original
ip-domain hosting information to achieve better coverage of detected threats. It is
also harder for attackers to avoid detection by PTP used with the graph based on the
client-domain connections, as opposed to the graph based on ip-domain hosting data.

2. We propose to use unipartite graph format to use instead of a bipartite graph format.
We show in evaluation that using unipartite graphs leads to better precision of PTP.
Unipartite graph is a compressed representation of network communication which better
protects privacy of the clients whose connections were used to construct the graph.
Additionally, we propose three novel edge weight function – weighted versions of jaccard
index and meet/min and edge weight based on binomial statistical test.

3. We propose graph pruning that considerably improves precision achieved by PTP and
at the same time has only marginal impact on the number of detected users, if the
identified malicious domains were to be used as indicators of compromise.

All proposed graphs and methods were evaluated on a large corpus of data, containing
network traffic from hundreds of separate networks and millions of clients.

86



Chapter 6

Behavioral modeling of domains

In the previous chapter, we have shown the power of guilt by association approaches to dis-
cover cooperating malicious domains in a graph structure, modeled on top of HTTP telemetry
data. In this chapter, we introduce an orthogonal technique allowing discovery of malicious
campaigns using similarity of patterns in HTTP communication.

HTTP communication to various targets (in telemetry identified either by domain names
or IPs) can be analyzed on multiple levels of granularity. In search of patterns in HTTP
communication, it is possible to analyze HTTP communication at the level of individual
HTTP requests, or alternatively analyze group of thereof. In both cases the idea is to discover
and utilize potentially discriminative characteristics of such patterns w.r.t. individual targets.
However, our goal here will not be the discovery of specific patterns, instead we will utilize
their existence implicitly to consequently evaluate behavioral similarity of communication
targets, such as domains.

The core of this chapter therefore lies in the definition of two kernel function suitable for
analysis of HTTP telemetry. Kernel function can be considered as a measure of similarity
and can be also used to define distance. With the kernel, similarity function and distance
function define, we enable three principal use cases, all of which have been now implemented
in Cognitive Threat Analytics [135] and verified on large industrial scale:

1. Classification (or anomaly detection). Classifying HTTP telemetry using standard tech-
niques is principally difficult due to data structure that makes transformation to vector
form hard. Definition of kernels allows to bypass the representation problem; the pro-
posed kernels can be used in kernelized classifiers for a straightforward solution of the
classification problem.

2. Clustering, i.e., campaign discovery in unsupervised setting. One of principal network
security problems is the discovery of previously unseen infections. Assuming a big
enough snapshot of telemetry is available, we can make use of the fact that malicious
campaigns need to actively communicate and that their communication often exhibits
similar patterns. Measure of similarity can thus be used to discover groups of similarly
communicating nework nodes. There is no guarantee that each discovered group/cluster
is malicious, but in concert with additional techniques allowing prioritization of cluster-
ing results, the proposed metrics become the basis of a powerful technique for malicious
campaign discovery.

3. Finally, the impact of our proposed measures of similarity can be multiplied by combin-
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Figure 6.1: Visualization of different parts of URL.

ing the clustering technique (use case 2) with the guilt by association approach described
in the previous chapter. A recurrent loop of two repeating steps - new cluster discovery
followed by threat propagation - leads to solid and extensive discovery of malicious cam-
paigns whose performance has been verified on industrial scale. The key advantage here
is the combination of multiple principally different ways to discover concealed relations
between infected network nodes.

6.1 Behavioral models & kernels

Behavior of a server can be characterized in many ways. We propose two distinctive “views”
on behavior of servers based on features extracted from HTTP traffic (further denoted as W),
namely

1. behavior represented by the HTTP GET query parameters sent to the server (query-
based similarity),

2. behavior represented by the paths visited on the server (path-based similarity).

Query parameter and path can be both parsed from the URL. Example of an URL with
highlighted path and query parameters can be found in Figure 6.1.

These behavioral models capture two different aspects of the behavior of domains. It is
therefore advantageous to use them in combination to get a broader description of a domains
behavior. Some domains may exhibit no behavior from the perspective of the individual
behavioral models. These can be domains that accept only encrypted connections and for
which we do not see neither path not query parameters. For such domains, the kernel and
consequently similarity to any other domain under the given model is 0.

6.1.1 Query-based behavioral modeling

A query string is a part of the URL that carries information from client to a specific function
or resource on the server in a form of key-value pairs without hierarchical structure or specific
order. We assume that servers serving the same application also receive the same parameters
via the query string. Values themselves are not that important, since they can differ from
client to client but their types (number, string, e-mail address, etc.) are typically bundled
with the parameters. Therefore, we extract all query parameter keys from W and augment
every key k with the type of corresponding value (see Table 6.1).

To define similarity between two servers, we adopt bag-of-words [90] model, which is widely
used in text mining. The vocabulary V is formed by all keys extracted from W enriched with
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Table 6.1: An example of URL with query string and extracted keys augmented with type of
corresponding types of values.

http://www.abc.com/av?sv=1&v=3.0.5&e=651af&u=http%3A%2F%2Fxyz.com%2F&if=0

sv number v version e string u url if number

userdata

images css upload

/

www.domain.com/images/header.jpg
www.domain.com/css/style.css
www.domain.com/upload/userdata

Figure 6.2: Three URLs and a path tree constructed from them. Each path is first separated
to path fragments and tree is built from top to bottom, representing the directory structure.

the value type. The server s is then represented as sparse vector defined as

qs = (k1, k2, . . . , kv) (6.1)

where kj is equal to the number of occurrences of key kj in set of flows from W targeting
server s, denoted Ws. However, some query parameter names are very common and do not
discriminate between servers (id, ver, etc.). To address this, we use term frequency–inverse
document frequency scaling (TF-IDF) [91].

Finally, we employ cosine similarity on vectors qs to determine similarity of two servers.
Only servers that receive at least one query parameter are considered in the similarity calcu-
lation. It can be shown that cosine similarity is a valid kernel function.

6.1.2 Path-based behavioral modeling

The idea behind using paths in HTTP requests to determine similarity between servers is
based on the assumption that two servers providing the same service, likely provide it at the
same location specified by path.

Representation To reflect this assumption, we propose a representation that captures the
directory structure of all paths ever visited on servers. Specifically, each server is represented
by a tree, whose root is denoted “/” and each path from root to a leaf represents one particular
path observed in URL where each node in the tree specifies one directory in the hierarchy.

Construction of path trees is simple. Paths from each URL are split by the directory sep-
arator and a tree is built from top to bottom, representing the directory structure. Figure 6.2
shows an example of several paths and the associated tree.
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eyJjbGllbnQiOiJhYWEiLCAiYnJvd3NlciI6Im1vemlsbGEifQ==
({"client":"}aaa", "browser":"mozilla"})

/

eyJjbGllbnQiOiJjZGRlIiwgImJyb3dzZXIiOiJJRTkifQ==
({“client":"}cdde", "browser":"IE9”})

/

Figure 6.3: One of the options to tunnel data from client to server is to send base64 encoded
json files. Figure shows an example of the path and data being sent.

The importance of ordering path elements is also the reason why we do not use the bag-
of-words representation in this case.

Path in the URL does not always serve only as a pointer to the resource requested by the
client. Both legitimate and malicious applications may use URL to tunnel (or exfiltrate) data
from client to the server. Figure 6.3 shows an example of an URL tunneling of a Base64-
encoded JSON. In this case, the corresponding part of the path cannot be considered a pointer
to the resource, but rather looked at as data. To capture information about the tunneled
data, we define new type of a node in the tree – the data node. In the rest of the text we
refer to the nodes representing directories as simple nodes. Data node keeps description of
the data being tunneled. The exfiltrated information is not constant and changes in time.
Therefore, the encoded strings are not exactly the same. On the other hand, because the
structure of the data is always the same for the same malware, we can see some regularities in
the encoded strings. The data node keeps track of parts of the data strings that are constant
across all requests. In the case of URLs in Figure 6.3, the constant positions are emphasized
in bold. Specifically, each data node is represented by a set of such positions. In the case
depicted in Figure 6.3, the respective data node contains numbers between 1 and 15.

There is one more typical URL pattern that poses challenges to the proposed represen-
tation. Usually, parameters are specified in the query string, e.g. after the “?” symbol.
However, in some applications the parameters are transferred using the path, for example
it is often used in streaming media. An example of the parameter tunneling is depicted in
Figure 6.4a. As you can see, the trees grow to large sizes and children nodes of the parameter
values are redundant because most of them have the same value. Therefore, when we detect
that parameters are being sent via the path, we join nodes representing parameter values into
a single node with special value <*>. Figure 6.4b shows the same tree after compression.

Kernel function While there are measures of (dis)similarity for trees [54, 29], such as edit
distance [13], we propose a similarity function tailored to our specific domain where ordering
of the path elements is crucial but at the same time, ordering of children of any node is not.
We take advantage of the kernel formalism [125] that allows us to define dot product of two
trees in a transformed space. We define kernel

K(n,m) = L(n,m) · (1 + C ·
∑

u∈sub(n)
v∈sub(m)

K(u, v)), (6.2)
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seed

/

30 511 34 8973

end end end … end

54 56 67 6432

(a) original

seed

/

<*>

end

<*>

(b) compressed

Figure 6.4: Original and compressed tree that represents domain that uses path to tunnel
parameters.

where n and m are two nodes, sub(·) returns all children of the node, C determines how
quickly the importance of deeper tree levels increases or decreases, and L(n,m) is defined as

L(n,m) =


I{n=m} if n,m are both ordinary nodes,

JI(n,m) if n,m are both data nodes,

0 otherwise,

(6.3)

where I{n=m} is equal to 1 if m and n represent the same directory (name), otherwise it is
equal to 0. Data nodes are represented as sets of integers, and JI(n,m) of two data nodes is
Jaccard index of these sets.

It can be shown that K is a valid kernel function and can be used to quantify similarity
of two trees.

Not all HTTP request specify path, part of them can target the root directory itself. Such
domains are not considered in the model, and their similarity to other domains from the point
of view of the path-based model is 0.

6.2 Evaluation

In this section we compare the proposed similarity measures to the distance measure intro-
duced in [106] and also described in Section 2.6. It is advantageous to use the proposed
similarity measures in combination, since they capture different aspects of behavior. There-
fore, for the purpose of evaluation we define similarity of two domains sp to be an average
of the two proposed similarities. We denote baseline distance function defined in [106] as db.
Performance of similarity/distance functions is compared in a real-world scenario – unsuper-
vised clustering of domains, which should group together malicious domains from the same
malware campaigns.
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6.2.1 Data Set Description

The comparison is done on a data set collected for 30 days in June and July 2017. It contains
all HTTP requests that targeted a domain that participates in any of the monitored malicious
campaigns described in Section 6.2.2. Altogether, it contains HTTP requests targeting 1267
unique malicious domains belonging to 150 malicious campaigns.

6.2.2 Source of Labels

As a source of labels we use the knowledge of malicious campaigns currently being tracked by
Cisco CTA [135]. Malicious campaign is represented by a collection of second level domains
that participate to achieve a common goal, or generally serve the same purpose. At the time
of the experiment, 279 malicious campaigns were tracked, representing various threat types,
including ransomware, information stealers, banking trojans, exploit kits, ad injectors, click
frauds and others. Not all malicious campaigns are necessarily present in the data set.

6.2.3 Evaluation methodology

We compare the measures of similarity/distance based on the quality of clustering provided
by a clustering algorithm. Various clustering algorithms offer different quality of results,
often depending on the data. Therefore we do not evaluate similarity/distance functions in
isolation, but rather in combination with a clustering algorithm. We chose five well established
clustering algorithms to be used in this evaluation:

• hierarchical clustering with complete linkage (CLINK) [30],

• hierarchical clustering with single linkage (SLINK) [126],

• generalized density-based clustering (GDBSCAN) [120],

• K-Medoids [70],

• greedy modularity based (Louvian) [14] .

Clustering algorithms have various parameters that need to be tuned. Specifically, CLINK
and SLINK are parametrized by distance threshold, GDBscan is parametrized by distance
threshold and minimal cluster size, K-medoids is parametrized by number of clusters. Louvain
does not have any tunable parameters, but we noticed strong dependence of the quality of
produced clustering on the used edge weight threshold (edges with weight lower than the
threshold are removed), therefore we optimize it as an algorithm parameter.

In order to optimize parameters of the clustering algorithms, we split the data into a
training and testing sets. The split is done at the granularity of domains; therefore no
domain is present in both the training and testing data set and HTTP requests targeting a
single domain are all either in the training or in testing set. No other rules were enforced
while splitting the data, therefore it is possible that some clusters might be missing in either
training or testing set. Information about the training and testing sets are summarized in
Table 6.2 Parameters of the clustering algorithms are optimized for each pair of metric and
clustering algorithm.

92



Table 6.2: Description of the training and testing data set.

domains campaigns

training set 790 124
testing set 477 108

total 1267 150

While Louvain is a similarity-based algorithm, all remaining algorithms are distance-based.
Therefore, we define the following conversion function to convert the similarity and distance
functions in the required form.

sb = 1− db
22

(6.4)

dp = 1− sp (6.5)

where 22 is the maximal value of db. sb is thus the similarity function defined based on
the baseline distance function and dp is distance function based on the proposed similarity
function.

The baseline similarity does not use a single entity to represent a domain. Distance of two
domains is calculated using an aggregation function over pairwise similarities of all HTTP
requests targeting those domains. Calculating the distance between two domains is therefore
expensive. Because of that, in the comparison we use only version of the baseline where at
most 1, 2 and 5 HTTP requests per domain are used to calculate pairwise distances. When
the actual number of HTTP requests targeting a domain is higher than that, the requests
used in distance calculation are chosen randomly.

6.2.4 Quality of clustering

Quality of clustering is evaluated using Adjusted Rand Index [114] (ARI), a well-known mea-
sure of similarity between two clusterings. ARI can attain values in the interval [−1, 1] – value
of 1 suggesting that the two clusterings are identical and negative value of ARI suggesting
that agreement between two clusterings is less than what is expected from a random result.
For each clustering produced by any clustering method and similarity or distance measure we
calculate ARI to the true clustering of the data. The true clustering is constructed based on
the malicious campaigns contained in the ground truth. Domains from single malicious cam-
paign always form a cluster. True clustering in this case contains 150 clusters. Louvain and
K-medoids clustering algorithms depend either on a random initialization or random order of
calculation. Both are therefore re-run 5 times and an average ARI is calculated for them.

Measured ARIs can be found in Table 6.3. The overall best clustering is produced by
the Louvain method using the proposed similarity functions. The second-best result is again
attained by the proposed similarity functions, used with CLINK clustering algorithm.

6.2.5 Computational Performance

We further compare computational requirements of the proposed similarity functions and
the baseline. Time needed to construct a graph encoding pairwise similarities of domains is
measured. The baseline distance function does not use a single entity to represent a domain.
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Table 6.3: ARI for the compared metrics using 5 well established clustering algorithms.

CLINK SLINK GDBSCAN K-Medoids Louvain

Perdisci (n=1) 0.350 0.562 0.562 0.534 0.599
Perdisci (n=2) 0.524 0.497 0.497 0.604 0.603
Perdisci (n=5) 0.462 0.424 0.472 0.605 0.610

proposed 0.668 0.495 0.417 0.412 0.708

Table 6.4: Time required to calculate pairwise similarities of domains present in the experi-
ment (in seconds).

avg std

Perdisci (n=1) 26.85 0.62
Perdisci (n=2) 78.59 0.35
Perdisci (n=5) 323.86 1.57
Perdisci (n=7) 556.10 11.53
Perdisci (n=9) 795.95 6.57

Perdisci (n=11) 1,053.46 7.36
proposed 29.18 1.53

Distance of two domains is calculated using an aggregation function over pairwise similarities
of all HTTP requests targeting those domains. Calculating the distance between two domains
is therefore expensive, and the actual computation time depends on the number of HTTP
requests targeting domains in question. To capture such dependence, we evaluate several
version of the baseline distance, where the maximal number of HTTP requests per domain
used to calculate the distance is denoted in the parentheses. The dependence on the number
of HTTP requests can be clearly seen in Table 6.4. It is also clear from the table, that the
proposed representations and calculation of similarities can be computed in a comparable
time to the baseline distance using only a single HTTP request. Despite the similar run time,
the proposed metric uses information from all HTTP requests and can thus better determine
the similarity/distance of/between domains.

6.3 Conclusion

In this chapter we proposed a novel behavioral representation of domains and related kernel
function and similarity measures s that can be used

• in a supervised setting to detect known threats,

• in an unsupervised setting to help analysts find hidden patterns of network traffic,

• in combination with guilt-by-association approach to progressively find new classes ma-
licious behaviors and enumerate all domains participating in it.

In evaluation, we demonstrated that the proposed representation used together with the
proposed kernel function offer superior performance compared to the state of the art. Using
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the proposed kernel functions and associated similarity functions we were able to achieve
better clustering of domains – ARI of the resulting clustering was improved by 0.1, which
is an increase by 17%. At the same time, calculation of pairwise similarities/distances of
domains using the proposed similarity function is much faster than state of the art.
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Chapter 7

Conclusion

This thesis has answered two very specific research questions presented in the introduction.
The first question was: ”How to detect all P2P networks in a monitored physical network?”.

To answer this question, we have designed a method for peer-to-peer network discovery
presented in Chapter 3. The method recorded remote peers of known local hosts participating
in a P2P network. The remote hosts were then used to further identify other internal hosts
that are participating in the same P2P network, thus iteratively building a full picture of the
peer-to-peer infrastructure. The method works with near-zero false positives (except for a
single BitTorrent case) and nearly a 100% recall for most networks with a particular exception
of Gnutella. This result has been presented as a journal paper [65] and constitutes one of the
main contributions of the thesis.

To answer the second question: ”How can we use connection information to reveal C&C
structures of malicious botnets?”, we had to rely on a combination of techniques. This was
due to a broader variety of malware command & control techniques and approaches. On the
other hand, this problem has been increasingly important, as a majority of malware has opted
for the use of HTTP as the C&C protocol.

In Chapter 5, we have laid the groundwork needed for the discovery of C&C servers by
means of extended Probabilistic Threat Propagation. Instead of relying on the relationship
between the domain names and their hosting servers, we have decided to exploit the commu-
nication patterns between client hosts and domains, some of which were used as C&C servers.
Information about the communication patterns was represented in a form of unipartite graph.
This graph, while still huge, significantly compressed the volume of data needed to represent
the structure of communication. The application of the PTP algorithm on this graph has
yielded completely new malware servers, previously undetectable by the PTP. The proposed
graph used with PTP is more resilient to evasion attempts by malware authors. In fact,
if they wanted to evade detection by the proposed method they would be to abandon the
already infected botnet hosts together with all the C&C servers and build a new botnet from
scratch.

We recognize that malicious domains can be also identified by behavior which tends to
be similar for all domains participating in a single malicious campaign, and different across
the malicious campaigns. In Chapter 6 we therefore propose similarity measures based on
behavioral modeling of domains. Similarity measures are based on kernel functions, therefore
can be used with ease with any kernelized classifier or clustering algorithm.

Individual contributions from Chapter 5 and Chapter 6 reinforce each other. Two methods

97



can be used together with various goals in mind. First, behavioral modeling can be used to
cluster together domains that exhibit the same behavior and results of PTP can be used to
score such clusters. High-score clusters are likely to represent a set of malicious domains with
similar behavior. Second, behavioral modeling can be used to extend results of PTP. We
showed that pruning the unipartite graph based on client-domain connections improves the
precision of PTP. On the other hand, it also lowers the recall. Behavioral modeling can be
thus used to find domains pruned from the graph that have behavior similar to those of found
malicious domains. Third, behavioral modeling can be used to extend the set of seeds used
by PTP, which was the subject of a journal paper [66].

Besides scholarly publications that include two articles in impacted journals, the work on
the thesis also resulted in 3 US patents already issued by USPTO and 2 patent submissions
still pending USPTO approval.

All proposed methods are critical components of CTA, an on-line malware detection
security-as-a-service product delivered by Cisco Systems [135]. CTA analyzes more than
10 billion web requests and other network communication generated by millions of users from
a number of large enterprise networks. The system finds daily tens of thousands of network
threats that evaded previously installed security measures, which positions the system as the
last line of network defense.

7.1 List of author’s publications

Articles in Journals with Impact Factor (2)

1. Ján Jusko, Martin Rehák, Jan Stiborek, Jan Kohout, Tomáš Pevný. Using Behavioral
Similarity for Botnet Command-and-Control Discovery. In: IEEE Intelligent Systems.
2016, 31(5), pages 16–22. Impact factor 2.37 (50%)

2. Ján Jusko, Martin Rehák, Identifying peer-to-peer communities in the network by
connection graph analysis. In: International Journal of Network Management. 2014,
24, pages 235–252. Impact factor 1.118 (80%)

Peer-reviewed Journal Articles (1)

1. Jan Stiborek, Martin Grill, Martin Rehák, Karel Bartoš and Ján Jusko. Game Theo-
retical Model for Adaptive Intrusion Detection System. In: Lecture Notes in Computer
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2014. (20%)

Patents (3)
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