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Abstract and Contributions 

 

This doctoral thesis deals with the design and optimization of optical networks. The two 

main research areas are optimization of network capacity and transmission rate. The primary 

goal of the research in network capacity is to investigate all possibilities of utilizing in the 

most efficient way the available bandwidth without any major network hardware upgrade and 

to propose new solutions that significantly increase the potential number of subscribers in a 

given transmission system. The goal of the second part of this thesis is to achieve the highest 

possible transmission rates. Research in optical transceiver design was done primarily in 

terms of modulation formats, which play the most significant role in signal transmission over 

optical media and have a direct impact on transmission rates. Both topics are closely related 

to each other and they represent the key components of optimizing optical networks. In 

particular, the main contributions of the doctoral thesis are as follows: 

 Optimization of the existing solutions in DWDM systems in terms of their transmission 

rate, network capacity and physical reach. 

 Investigation of the most promising modulation formats for transponders operating at 

100 Gbps and beyond. 

 Design of dynamic solutions which are capable of supporting different bit rates and 

channel upgrades from a long-term perspective. 

 Shrink of the gap between revenues and implementation cost. Maximal utilization of 

the fiber capacity while minimizing the cost per transmitted data. 

 Research on network transparency and potential convergence of networks at the 

physical layer. 

 Optimization of passive optical network component, such as splitters. 

 Systematic design of optical networks based on the topology, number of channels, most 

effective modulation and highest possible throughput. 
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Abstrakt 

 

Tato disertační práce se zabývá návrhem a optimalizací optických přenosových sítí. Dvě 

hlavní oblasti výzkumu jsou optimalizace kapacity sítě a přenosové rychlosti. Primárním 

cílem výzkumu síťové kapacity je prozkoumat všechny možnosti využití dostupné šířky 

pásma co nejefektivnějším způsobem bez velkých síťových změn a navrhnout nová řešení, 

která výrazně zvyšují počet účastníků v daném přenosovém systému. Cílem druhé části práce 

je dosáhnout co nejvyšší možnou přenosovou rychlost. Výzkum v oblasti konstrukce 

optických přijímačů a vysílačů byl proveden především z hlediska modulačních formátů, 

které hrají nejvýznamnější roli v přenosu signálu v optických médiích a mají přímý vliv na 

přenosové rychlosti. Obě témata úzce navazují a představují klíčové prvky optimalizace 

optických sítí. Hlavní přínosy disertační práce jsou: 

 Optimalizace stávajících řešení v DWDM systémech z hlediska jejich přenosové 

rychlosti, kapacity sítě a fyzického dosahu. 

 Výzkum modulačních formátů pro transpondery pracující na rychlosti 100 Gbps a 

výšší. 

 Návrh dynamických řešení, která jsou schopna podporovat různé přenosové rychlosti a 

optické kanály z dlouhodobého hlediska. 

 Snižování rozdílu mezi příjmy a náklady implementace. Maximální využití kapacity 

vlákna při současné minimalizaci nákladů ve vztahu k objemu přenášených dat. 

 Výzkum v oblasti transparentnosti sítě a potenciální konvergence sítí na fyzické vrstvě. 

 Optimalizace pasivních komponent optické sítě, jako jsou rozbočovače. 

 Systematický návrh optických sítí založených na topologii, počtu kanálů, 

nejefektivnější modulaci a nejvyšší možnou průchodnost. 

 

 

 

 

 

Klíčová slova: 

 

Návrh optických sítí, optické komunikační systémy, hybridní TDM/WDM sítě, modulační 

formáty, OptSim. 
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Chapter 1 

Introduction 

 

1.1 Motivation 

This doctoral thesis summarizes the research work, which was done by the author from 

September 2013 until March 2017. Research was funded by the Czech Technical University 

grant projects SGS13/201/OHK3/3T/13 and SGS16/227/OHK3/3T/13, which were focused 

on photonic transmission media and components for optical telecommunication networks. 

Nowadays, the common optical transmission rates can vary from 100 Mbps to 100 Gbps 

per optical channel. This has been achieved by designing transceivers from the simplest 

intensity modulated to those very complex ones, which combine simultaneously several 

techniques, in order to fully utilize the transmission media capabilities. 

Current optical networks deal with increasing bandwidth demands for higher transmission 

rates and capacities due to the growth in data traffic. The emerging services, including 

Internet Protocol Telephony (IPT), video conferencing, ultra-high-definition television, cloud 

services and 4
th

/5
th

 Generation mobile Xhaul are gradually consuming the available 

bandwidth in the existing networks and driving capacity demands beyond any expectation. 

Providers, which are planning the deployment of new networks or their expansion, need to 

evaluate both the required new network investment, i.e. capital expenditure (CAPEX) such as 

optical infrastructure, network devices or replacement of all residential gateways at 

subscribers‟ premises, as well as the potential operational expenditure (OPEX) saving such as 

lower energy consumption, more efficient service provisioning or better fault management 

and maintenance. Indeed, one of the reasons that providers are willing to deploy new network 

solutions is the achievement of Total Cost of Ownership savings by reducing OPEX. 

Network technologies have been significantly and continuously improved during the last 

20 years, however, besides modern equipment we can find interconnected to them an old 

infrastructure which is still in use due to the upgrade cost and Return on Investment in the 

short term. The simplest example can be optical cables which have been installed in the past 

and need to be reused despite the fact that new enhanced fiber standards have been launched 

into the market, even if material cost is lower than the original cables. 
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1.2 Problem Statement 

The selection of an efficient modulation format is a key step in the design of optical 

systems and their future upgrades, which affects not only the transmission rate, but also the 

overall implementation cost and system output. The design requires detailed knowledge on 

performance efficiency of modulation formats, as well as clear specification of shortcomings 

which need to be solved while proposing new solutions. 

The upgrade of fiber optic telecommunication systems from transmission rate 10 Gbps to 

40 Gbps, 100 Gbps and above, in many cases requires to converge optical systems, such that 

their frequency channels do not interfere or limit each other, which often requires the use of 

sophisticated modulation formats and system transparency. Some modulations cannot operate 

at higher bit rates because of hardware limitations, lower amount of information bits included 

in a symbol or because of their lower immunity to dispersion and other physical properties 

that degrade signal quality [1]. 

Transition to higher bit rates very often requires solving the problem of Polarization Mode 

Dispersion (PMD) and nonlinear effects, such as Four Wave Mixing (FWM), which can 

strongly affect system functionality at 10 Gbps and above, and cause increase in Bit Error 

Rate (BER). For transmission rates higher than 40 Gbps per optical channel, the use of more 

complex formats is necessary and the design of new modulations is expected, which 

effectively utilize the available bandwidth, reduce the symbol rate, are more immune to 

dispersion, and solve at the same time the problem of FWM. The margin created a few years 

ago for so-called future use, in many cases appears as not sufficient at present. In practice, 

there is a will to maximize the use of existing infrastructure, installed fibers; mostly Single 

Mode Fibers (SMF) exhibiting undesired dispersion or Dispersion Shifted Fibers (DSF) 

causing the origination of FWM at the C band. The upgrade can also require running a new 

system over an existing frequency grid by using another modulation format.  

Transmission schemes for high-density optical systems operating at 40 and 100 Gbps 

wavelength channels can use phase modulation combined with Polarization Division 

Multiplexing (PDM), coherent detection and Digital Signal Processing (DSP). PDM halves 

the symbol rate, introducing higher bit rates, cheaper components and fitting into a proper 

channel grid at the cost of an increased transceiver complexity [2]. The research on 

modulation formats above 100 Gbps is usually more important for backbone networks. While 

moving closer to subscribers‟ equipment, lower transmission rates per optical channel can be 
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sufficient and the main focus are multiplexing techniques that accommodate more users 

within the same shared bandwidth. 

Passive Optical Networks (PON), especially those based on Time-Division Multiplexing 

(TDM), have been extensively deployed in practice as an advantageous scheme for 

minimizing implementation and operational costs. Despite of trends to increase the total bit 

rate to 10 Gbits
-1 

such as 10 Gbit/s Ethernet PON (10GEPON) or 10-Gigabit-capable PON 

(XG-PON), TDM-PONs cannot cope with the expected extensive bandwidth requirements of 

future networks. Wavelength Division Multiplexing (WDM) PONs can solve this problem. 

TDM and WDM techniques can be also combined, resulting in enhanced scalability. 

Longer physical reaches can be obtained by installing active Network Elements (NE) 

within the transmission path, which leads to Active Optical Network (AON) schemes. I 

investigate all of the above mentioned technologies and options by considering also their 

potential coexistence at the physical layer to find out new solutions that utilize maximum of 

the fiber capacity. Simulations are done in the OptSim Software Environment version 5.2 

from the RSOFT Design Group based on the Time Domain Split-Step (TDSS) method. 

 

1.3 Aims and Contribution of the Thesis 

Several topics attract our attention with the goal to investigate and resolve them. Despite of 

the goal to maximize the use of existing infrastructure, completely new solutions could lead 

to substantial profits in the long term. Many topics presented challenges during the research. 

This doctoral thesis deals with scientific problems related to optimization of optical networks 

and it contributes mainly to the areas of photonics and telecommunication. 

The principal contributions of this thesis are the followings: 

 Optimization of the capacity and physical reach of Coarse WDM (CWDM) and Dense 

WDM (DWDM) systems. 

 Investigation of transmission rates at 100 Gbps and beyond per optical channel. 

 Design of dynamic solutions, capable of supporting simultaneously different bit rates 

and channel upgrades from a long-term point of view. 

 Proposals on how to maximally utilize the fiber capacity meanwhile minimize the cost 

per transmitted data. 

 Investigation of network transparency and potential convergence of network access 

solutions at the physical layer. 
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 Optimization of passive optical network component, such as splitters (bilateral 

cooperation with FHV Vorarlberg University of Applied Sciences, Research Centre for 

Microtechnology, Austria). 

 Recommendation of systematic optical network designs based on topology, number of 

channels, most effective modulation and highest possible throughput. 

In order to experiment, the OptSim platform can be used as a test environment, as well as 

other software tools available at the Department of Telecommunication Engineering at the 

Czech Technical University in Prague. Results discussed in this thesis summarize the main 

scientific achievements from the research, which was done during the first three years of my 

doctoral studies and published in [1]-[5]. 

Modulation formats represent a significant research area in this thesis, due to their 

importance in network design, nevertheless I also analysed many other aspects of optimizing 

optical transmission networks starting from the negative phenomena, which affect the 

transmission of optical signals such as dispersion, attenuation and optical nonlinearities e.g. 

FWM, Cross-Phase Modulation (XPM), to optimal channel spacing, transmission rate, 

network topology being used and physical reach. Optical Access Networks (OAN) are 

simulated based on Gigabit PON (GPON) and XG-PON recommendations with triple-play 

services, i.e. data, voice and video, in terms of optical reach, number of subscribers, 

transceiver design and modulation, among others. 

This thesis addresses also issues from the perspective of signal regeneration. The 

convergence of multiple systems at the physical layer is simulated and discussed as well. It 

provides a detailed report on how the existing fiber infrastructures could be combined and 

maximally utilized regardless of the data traffic. 

Simulations in OptiBPM photonic tool deal with optical splitter construction and their 

optimization. Investigation was done in cooperation with the Research Centre for 

Microtechnology, part of Vorarlberg University of Applied Sciences in Austria. 

Having collected the research from all these different topics in terms of optimizing the 

optical systems, this doctoral thesis offers not only a new systematic network design in a 

broader context, but it also introduces new solutions and innovations on the way how optical 

systems could efficiently increase their performance. 
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1.4 Structure of the Thesis 

A significant part of the thesis is based on the author's articles and conference papers. 

Thesis contains only the basic mathematical relations in order to be as readable as possible. 

The rest of network designs, parameters and mathematical equations can be found in the 

references listed in the end. The thesis is organized in four chapters as follows: 

 Chapter 1 – Introduction: in this chapter, the core research problems are stated and then 

the aim and contribution of the thesis are listed. 

 Chapter 2 – State of the Art: the theoretical background and the general overview on the 

current state of the art are presented.  

 Chapter 3 – Methods: design principles, simulation schemes and numerical methods are 

described in this chapter. 

 Chapter 4 – Results and Discussion: the most important results are presented and 

discussed. 

The overview of accomplishments and scientific achievements together with future 

improvement research ideas is summarized in the last section entitled "Conclusions". 
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Chapter 2 

State of the Art 

 

2.1 Components of Fiber Optic Systems 

Figure 1 shows a typical OAN which consists of one Optical Line Termination (OLT), the 

Optical Distribution Network (ODN) and Optical Network Units (ONU) followed optionally 

by Network Termination (NT) equipment, as specified in [6]. Optical NT (ONT) generally 

defines a special, single-user case of ONU. 

 

 

 

Figure 1: Typical Optical Access Network layout [7] 

 

The current generation of PONs consists of passive NEs in ODN such as fibers, splitters, 

filters, connectors, couplings, splices etc. PONs are extensively used in practice primarily due 

their cost effectiveness while satisfying network design parameters to achieve the required 

quality of service. From the infrastructure point of view, design of such networks is mainly 

focused on the ODN layout and boundary parameter fulfilment, especially on the attenuation 

of individual segments. A limiting factor is the optical power budget, which can be overcome 

by using different techniques, such as Forward Error Correction (FEC) or by deploying 

optical amplifiers (OA) leading to AONs, which can extend the physical reach between OLT 

and ONUs and use larger split ratios in the distribution points. 
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AONs represent the basis of hybrid networks as they form a common platform for other 

access systems. The disadvantage is their need to ensure power supply for active NEs within 

ODN. Moving towards the backbone network at providers‟ premises, a variety of other 

optical devices can be found such as mux/demux, optical add/drop multiplexers including 

those reconfigurable ones, optical switches, etc. A detailed description of these devices can be 

found in [8]. 

 

2.2 Optimization of Optical Network Capacity 

2.2.1 Wavelength Division Multiplexing 

CWDM technique enables simultaneous transmission of several wavelength channels over 

a single fiber. Wavelength allocation is specified by the Telecommunication Standardization 

Sector of the International Telecommunications Union (ITU-T) under recommendation 

G.694.2 [9] for the range between 1270 and 1610 nm [10]. DWDM is characterized by 

narrower channel spacing, therefore it allows accommodating into the same bandwidth a 

larger number of wavelength channels than CWDM does. Nevertheless, this comes at the cost 

of much more expensive devices such as actively cooled optical sources, mainly Distributed 

Feedback lasers (DFB). Figure 2 graphically summarizes the key differences between 

CWDM and DWDM. 

 

 

Figure 2: CWDM vs DWDM technique [11]  
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The 20 nm channel spacing with a tolerance of ± 6-7 nm is specified between CWDM 

channels in the first place due to the emitted wavelength dependence on temperature of cheap 

optical sources with low quality. Such dependence can widely vary according to the ambient 

temperature. CWDM interfaces are specified in the ITU-T G.695 in accordance with various 

network designs, topologies and fiber types. Table 1 gives a general overview of the common 

WDM technologies which we find heavily applied in practice. 

 

Table 1: Typically implemented WDM technologies [10] 

Technology 
CWDM 

Access/MAN 

DWDM 

MAN/WAN 

DWDM 

wide range 

Channels per fiber 4-16 32-80 80-160 

Bands O, E, S, C, L C, L C, L, S 

Channel spacing 20 nm (2500 GHz) 0.8 nm (100 GHz) 0.4 nm (50 GHz) 

Transmission capacity per 

wavelength 
2.5 Gbps

 
10 Gbps 10-40 Gbps 

Fiber transmission capacity 20 – 40 Gbps 100  – 1000 Gbps > 1 Tbits
-1

 

Laser type Uncooled DFB Cooled DFB Cooled DFB 

Reach Up to 80 km Hundreds of km Thousands of km 

Cost Low High Highest 

 

Further information can be found in [6][10][12]-[14]. Research works in this area are 

primarily focused on achieving higher transmission rates per wavelength and narrower 

channel spacing [15][16]. 

 

2.2.2 Physical Topology Optimization 

Many topologies are suitable for access networks, including tree, tree-and-branch, ring or 

bus [16]. Redundancy can be achieved by applying double rings, double trees, and so forth. A 

novel algorithm is introduced in [17] by combining a clustering technique and Steiner tree for 

optimal deployment of optical cables in ODNs under realistic conditions. Authors in [17] 

propose an optimized solution for connecting ONUs to OLT through splitters in such a way 

that the sum of fiber length is close to the shortest possible value for given positions of central 

offices, subscribers and set of fiber paths. 

Proposals for new generation of PONs combine TDM with WDM, leading to hybrid 

TDM/WDM-PONs. Authors in [18] present a ring-tree ODN, which consists of a WDM 
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bidirectional ring with cascadable passive “Add&Drop” nodes connected to the TDM access 

trees. Several benefits come from this topology such as enhanced scalability and granularity. 

The length of rings may cover longer physical reaches towards a metropolitan range. 

For large-scale optical networks, star topology or mesh can be used apart from rings. Mesh 

offers the highest possible network transmission capacity and a strong redundancy scheme 

however this comes at the cost of more complex routing algorithms and higher investment 

cost. The star topology can be more suitable, nevertheless it requires special attention on the 

proper functionality of the central node. The ring topology has been mostly chosen as an 

optimal generic solution due to its simpler and cheaper installation although it enables a lower 

capacity than mesh and star. Its reliability can be increased by applying connected rings.  

Each topology optimization relies on good transmission quality at the physical layer 

between all nodes, hence in this thesis I primarily investigate point to point links which are 

crucial for any given topology. Star topology is investigated as well since it is a common 

scheme for OANs. 

 

2.2.3 Recommendations on Optical Access Networks 

Figure 3 summarizes the main recommendations of OANs [19]. 

 

 

 

Figure 3: Optical Access Network recommendations 

 

The two main TDM-PONs which have been widely deployed are: GPON mainly in US 

and Europe; and Ethernet PON (EPON) mainly in Japan and Korea. From users‟ perspective, 
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GPON offers higher bandwidth [13]. From providers‟ perspective, EPON takes advantage of 

Ethernet as the most relevant access protocol. 

Despite of the newly published standards for 10 Gbps, i.e. 10GEPON [20] and XG-PON 

[21], TDM-PONs cannot cope with future network evolution due to higher bandwidth and 

power budget requirements [13]. WDM-PON can utilize more efficiently the available 

bandwidth by separating ONUs via physical wavelengths. As it will be shown later in this 

thesis, the most promising solution for next generation optical networks is the combination of 

both TDM and WDM techniques.  

 

2.2.4 APON/BPON 

APON stands for Asynchronous Transfer Mode (ATM) PON. It is described in ITU-T 

recommendation G.983 [22]. APON consists of the transmission based on ATM cells at 

155.52 Mbps in case of symmetric design or 622.08 Mbps of download speed in case of the 

asymmetric system. On the other hand, for Broadband PON (BPON) were defined the 622.04 

Mbps for symmetric systems and downstream line rate of 1244.16 Mbps for the asymmetric 

ones. Physical and logical reach can be up to 20 km. 

 

2.2.5 GPON 

GPON is an evolution of the BPON standard. Table 2 gives an overview of the main 

GPON parameters, specified in ITU-T recommendation G.984.1 (2008) [23]. 

 

Table 2: The main GPON transmission parameters [23] 

Downstream 1.244 Gbps, 2.488 Gbps 

Upstream 
155.52 Mbps, 622.08 Mbps, 

1.244 Gbps, 2.488 Gbps 

Maximum physical reach 20 km 

Maximum logical reach 60 km 

Wavelength allocation for downstream 1480 – 1500 nm 

Wavelength allocation for upstream 
(Originally: 1260 – 1360 nm) 

1290 – 1330 nm [24][25] 

Maximal mean signal transfer delay 1.5 ms 

Max. split ratio 1:64, perspective: 1:128 

Data encapsulation mode GEM/ATM 
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Besides Gbps speeds, GPON supports also lower data rates like 155.52 Mbps and 622.08 

Mbps due to the backward compatibility with earlier PON generations. The common 

combination is 1.25 Gbps for upstream and 2.5 Gbps for downstream [23]. GPON 

Encapsulation Method (GEM) protocol is newly introduced in GPON to enable ATM, 

Ethernet and TDM data transport [23][26]. 

 

2.2.6 EPON 

Ethernet for access networks is described in [27]. It is known also as Ethernet in the First 

Mile (EFM). EFM over Copper uses metallic transmission media based on very-high-bit-rate 

or symmetrical high-speed digital subscriber lines, meanwhile EFM over point-to-point Fiber 

is aimed for point-to-point fiber connectivity with Ethernet at 100 Mbps (100BASE-BX10-

D/U, 100BASE-LX10) and 1 Gbps (1000BASE-BX10-D/U, 1000BASE-LX10). In [27] it is 

introduced also the concept of EPONs. Its main parameters are summarized in Table 3. 

 

Table 3: The main EPON transmission parameters [19][27] 

Transmission rate variants 1G/1G symmetric 

Transmission rate at the physical layer 1.25 Gbps 

Attenuation classes PX10, PX20 

Wavelength allocation for downstream traffic 1480-1500 nm 

Wavelength allocation for upstream traffic 1260-1360 nm 

Physical reach ≤10, ≤20 km 

Max. split ratio 1:16, 1:32 

 

2.2.7 10GEPON and XG-PON 

Recommendation 802.3av [20] from the Institute of Electrical and Electronics Engineers 

(IEEE) extends the operating speed of EPONs to 10 Gbps, either in symmetric systems with 

both downstream and upstream at 10 Gbps or asymmetric version with 10 Gbps downstream 

and 1 Gbps upstream. This recommendation specifies the typical physical reaches and split 

ratios, however, if the maximum acceptable loss within ODN is satisfied, it is possible to 

increase a parameter‟s value at the cost of another one. As an example, if a lower split ratio is 

applied, it is feasible to extend the physical reach and vice versa. 10GEPON is fully backward 

compatible with EPON; hence they may run within the same ODN, which benefits in upgrade 

cost reduction. 
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In a similar way, ITU-T published a recommendation for a 10 Gigabit capable PON [21], 

which is backward compatible to its predecessor, i.e. GPON. First world field trial results of 

XG-PON have been published in [28]. Table 4 compares the main parameters of 10GEPON 

and XG-PON. 

Table 4: Comparison between 10GEPON and XG-PON [20][21][25][27] 

 10GEPON – IEEE 802.3av (2009) XG-PON – ITU-T G.987.1 (2010) 

Transmission rate 

variants 

10G/10G symmetric 10G/2.5G (XG-PON1) 

10G/10G (XG-PON2) 10G/1G asymmetric 

Transmission rates in 

physical layer 

10.3125 Gbps 9.95328 Gbps 

1.25 Gbps 2.48832 Gbps 

Wavelength 

allocation 

Downstream 1575-1580 nm Downstream 1575-1580 nm 

Upstream 1260-1280 nm or 1260-1360 

nm 
Upstream 1260-1280 nm 

Attenuation classes 

PR10, PRX10 
Nominal 1 

Nominal 2 

PR20, PRX20 Extended 1 

PR30, PRX30 Extended 2 

Physical reach ≤10, ≤20 km ≤20 km (perspective: ≤40 km) 

Max. split ratio 
1:16, 1:32 (considered higher ratios 1:64, 

1:128) 
1:64 (1:256 in the logical layer) 

 

2.2.8 Reach Extended GPON 

The original specification of GPON in ITU-T G.984 limits the maximum physical reach to 

20 km and the split ratio to 1:64. G.984.2 specifies three attenuation ranges (A, B and C), 

which differ from each other by optical sources and detectors that are being used [29][30]). 

G.984.2 Amendment 1 [31] defines class B+, which fills the space between B and C classes 

and Amendment 2 [32] defines class C+. Both B+ and C+ classes work only for the 

asymmetric version of GPON, i.e. 2.448 Gbps of downstream and 1.244 Gbps of upstream. 

A further enhancement of the ODN‟s attenuation range over class C+ is not possible 

without using active NEs. For this purpose ITU-T published two amendments, which specify 

additional modifications such as new attenuation classes and possibility of deploying active 

NEs to improve GPON limits, named as Reach Extended or Long Reach GPON, specifically: 

G.984.6 for physical layer parameters [33] and G.984.7 for protocol characteristics [34]. 
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2.2.9 Hybrid PON 

Design and deployment activities for OANs are growing to support the exponentially 

increasing demands and delivery of new multimedia services to the customer premises such 

as faster internet connectivity, interactive video and voice services. 

Fiber to the X (FTTx), where x stands for home, building, office, node, cabinet, etc., 

employing PON is a standard architecture to deliver triple-play services (data, voice and 

video) from service providers to subscribers [45]. Both PON standards in FTTx solution area, 

i.e. GPON and EPON, as well as their 10 Gbps enhanced recommendations are based on 

TDM [35], which has its limitations. Authors in [36] experimentally demonstrate the 10 Gbps 

OAN with 256 subscribers and downstream transmission at 1550 nm using a commercial 

Erbium Doped Fiber Amplifier (EDFA) to reach the maximum distance of 62 km over 

Standard SMF (SSMF). Besides the deployment of EDFA, modulation formats play also a 

key factor, which can significantly improve the transmission system. As an example, while 

comparing Return to Zero (RZ) and Non Return to Zero (NRZ) modulation formats in a co-

existing GPON and XG-PON system, the physical reach is greater in case of RZ deployment 

due to its better immunity to fiber non-linearities [37]. Some solutions beyond 

10GEPON/XG-PON are reviewed in [38]. 

WDM technology is always required as a basis for scalable, future-proof systems, e.g. 100 

km x 1000 users x 1000 Mbps. WDM-PON is considered to be the most practical solution for 

PON capacity expansion. However the 10 Gbps ONUs in pure WDM-PONs are too excessive 

for next 10 year [39]. Authors in [38] state that there are three options to address 1000 users 

with a single system: multiple feeder fibers, multi-user wavelength sharing and ultra-dense 

WDM. The new vision of combining both TDM and WDM techniques seems to be more 

promising. Authors in [40] propose a hybrid architecture which merges together TDM and 

WDM capabilities to enable longer optical reach and higher scalability. The main reasons 

behind the deployment of such networks are to satisfy increasing capacity demand and user 

density requirements, while ensuring that the cost per unit bandwidth is minimized [41]. 

TDM/WDM-PON has been recently approved by ITU-T as the primary technology for the 

second next generation passive optical network (NG-PON2) standard [42]. 

The most natural combination of TDM and WDM is by cascading them [43]. If each of the 

wavelength channels operates independently from other ones, then there is no need for any 

additional medium access control protocol besides the original one from TDM-PON, however 

this may not utilize the bandwidth efficiently [43]. Dynamic Wavelength Allocation (DWA) 
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algorithm [43] can be applied to increase the throughput, which in coordination with the 

Dynamic Bandwidth Allocation (DBA) algorithm enables ONUs to have assigned not only 

certain times slots, but also specific wavelengths. This combination of DWA and DBA is an 

important research area in hybrid PONs. 

Authors in [13] compare the overall network performance of WDM-PONs and hybrid 

TDM/WDM-PONs. The lowest ONU link cost of hybrid networks is obtained by combining 

CWDM and TDM access. On the other hand, DWDM systems require significantly more 

complex transceivers, among others. The cost and performance of different types of WDM-

PONs, including TDM/WDM-PONs, are compared in [44]. In [46] authors evaluate the cost 

of network migrations starting from GPON to TDM/WDM-PONs. Migration to TDM/WDM-

PON turns up as the best solution because of its high bandwidth sharing rate while providing 

high bandwidth on a per-user basis [47]. Authors in [44]-[46] indicate the cost advantages of 

network node consolidation due to the more efficient utilization of aggregation networks. 

Additional physical reach to ONUs can be achieved by using optical amplification as 

described in [48]-[50].  

In this thesis I investigate PONs with triple-play services in terms of optical reach, number 

of subscribers, transceiver construction, modulation and implementation cost. I search for 

new solutions to enhance the bandwidth efficiency meanwhile investigating the coexistence 

of OAN solutions at the physical layer. I consider GPON and XG-PON due to their wider 

deployment in Europe. GPON and XG-PON are intended to coexist together by applying 

identical colourless ONUs [51], which brings cost savings, easier network planning and its 

maintenance. Allocation of the wavelengths is recommended by ITU-T [21] in order to avoid 

cross-talks between GPON and XG-PON signals, as shown in Figure 4. 

 

 

 

Figure 4: Wavelength ranges for GPON/XG-PON and video components. 
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2.2.10 Splitter Design 

OANs mostly use a tree topology to distribute services from OLTs on providers‟ edge to 

ONUs at subscribers' premises. For the design of such networks, one has to consider different 

aspects like optical linear and nonlinear effects [52], optical attenuation and amplification 

[50], possible wavelength routing [53], or ageing of network elements [54], among others. 

The signal distribution from the OLT to ONUs can be handled by optical splitters, which 

split the amplitude of one signal into N output signals without applying any other 

adjustments. Optical splitters are a key component in ODNs not only in pure TDM-PONs or 

WDM-PONs [55], but also in hybrid broadband access networks [56], as well as in future 

Ultra-Dense WDM-PONs [57][58]. They are beneficial to reduce the overall network cost 

implementation, as well as being easy for maintenance and troubleshooting. A splitter can be 

designed as a cascade of one-by-two waveguide branches, known as Y-branch splitters. The 

main benefit of this solution is its polarization and wavelength independency, which 

facilitates signal distribution in the entire operating wavelength window. On the other hand, 

the fabrication of branching points is demanding and this process generally faces with several 

problems, such as asymmetry in split ratio. 

The core size of waveguides is a key parameter. The commonly used size is 6 μm × 6 μm 

to match the SMF diameters and minimize the coupling loses. It has been shown that the Y-

branch splitter with a smaller waveguide core size can improve the non-uniformity of the 

power split and enhance the system performance of the network [59]. Authors in [60] 

analysed the impact of different types of splitter structures in PONs on the resource sharing 

and power consumption and they pointed out that the combination of cascaded splitters with 

extended reach is the most beneficial. Authors in [61] proposed a mathematical model for 

PON planning, where splitter allocation, attenuation and split ratio are considered. Optical 

splitters can enhance the PON performance efficiency as shown in [62][63]. Many factors 

have to be considered during their design. For example, the branching angle in Y-branch 

optical splitters can directly affect the power loss. Authors in [64] showed that the power loss 

is higher for wider angles. The key parameter remains the split ratio. There is always an 

interest on finding ways to increase split ratios, because in this manner we could connect 

more users through the same transmission media. Well-optimized optical splitters are crucial 

for the long-reach, dense grid, and high split ratio PONs [65]. Authors in [66] described how 

to design a 1x256 splitter, with an insertion loss below 1.3 dB and channel non-uniformity 

less than 5 dB within the operating wavelength range from 1530 to 1570 nm. 
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Asymmetric splitters could be beneficial mainly for balancing the attenuation of ODNs. 

Three-branch splitter structures can be utilized as a technique to improve the uniformity. 

Authors in [67] model a novel 1x24 splitter with a three-branch structure and 21 Y-branch 

elements, which has low insertion loss and good uniformity. 

In this thesis, I firstly simulate the standard 1x64 Y-branch splitter with a waveguide core 

size of 6 μm × 6 μm and then the low-loss length optimized 1x64 splitter with a waveguide 

core size of 5.5 μm × 5.5 μm. Simulations are based on GPON and XG-PON networks with 

triple-play services. Bandwidth optimization is obtained by employing CWDM. Data and 

voice downstream components are transmitted within the wavelength range of 1480-1500 nm 

for GPON, 1575-1580 nm for XG-PON, and 1550-1560 nm for video services, in accordance 

with the wavelength allocations shown in Figure 4. 

 

2.3 Optimization of Transmission Rate 

2.3.1 Intensity Modulation Formats 

NRZ, RZ and Carrier-Suppressed RZ (CSRZ) are well known modulation formats in 

optical communications [68]. On-Off Keying (OOK) remains the almost exclusively 

deployed format up to 10 Gbps per optical channel [69] despite the fact that it is the simplest 

modulation type. Nevertheless, its maximum physical reach at 10 Gbps is strongly limited. 

The upgrade of existing optical fiber infrastructures to higher bit rates would deal with 

physical layer constraints, such as Chromatic Dispersion (CD), PMD, fiber nonlinearities, 

accumulated amplified spontaneous emission noise and filter spectral narrowing [70]. For 10 

Gbps DWDM systems, the major sources of optical signal degradation are caused mainly by 

XPM and FWM [71]. My research was primarily focused on binary intensity formats, due to 

the significant back-to-back receiver sensitivity penalty of multilevel intensity formats 

[72][73]. Although a certain combination of Amplitude Shift Keying (ASK) and phase 

modulation might produce certain benefits, e.g. RZ-DPSK-3ASK format [74], the limited 

extinction ratios of the ASK modulated levels reduce the Optical Signal-to-Noise Ratio 

(OSNR) tolerance of the format. 

In OOK, binary 1 is represented by an optical carrier and binary 0 by its absence. In RZ-

OOK, the transmitted bits don‟t occupy the entire bit slot. A duty cycle of 0.5 means the 

pulses representing binary 1s occupy half of the bit slot. On the other hand, in NRZ-OOK 

each bit remains at the transmitted value for the entire bit slot and when they are broadened 

they will leave their desired bit slot. Therefore, NRZ is prone to CD and nonlinear effects, 
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and it is generally more beneficial because it requires less bandwidth than its counterpart RZ. 

For basic modulation techniques like RZ and NRZ, the signal can be directly detected using a 

photodiode. NRZ-OOK has been extensively used in the past as the predominant format in 

optical communications primarily due to its relatively simple transmitter design and easy 

signal generation. However its capabilities do not satisfy the rapidly growing network 

requirements for higher bit rates and high-capacity DWDM transmissions. For such a reason, 

other formats have to be considered.  

Chirped Return to Zero (CRZ) is a variation of RZ, in which each of the pulses is chirped. 

The most widespread pseudo-multilevel format is CSRZ. In CSRZ, the phase of optical 

carrier is changed by π every bit regardless of data traffic. As a result, the phases of a given 

binary sequence are subtracted, the central peak at the carrier frequency is suppressed and the 

reduced power is distributed over the spectrum where real traffic is carried. 

Another important format is Duobinary (DB). It represents correlative coding, a subclass 

of which is known as partial-response signalling. In DB, the phase changes if there is an odd 

number of logical zeros between two successive ones. The main benefit of the DB is its high 

tolerance to CD and narrow-band optical filtering [72]. The study in [75] shows a detailed 

performance comparison of various options of DB and Phase Shaped Binary Transmission 

(PSBT) formats for 40 Gbps and mixed 10/40 Gbps long-haul WDM systems based on SSMF 

and Large Effective Area Fiber (LEAF). Both DB and PSBT formats are more robust to intra-

channel Kerr nonlinear effects than NRZ. DB generally offers acceptable compromise 

between robustness to OSNR degradation and CD immunity. On the other hand, DB's 

Differential Group Delay (DGD) robustness is roughly similar to that of NRZ. The main goal 

of using this format at 10 Gbps is to increase dispersion tolerance, whereas at 40 Gbps is to 

achieve high spectral efficiency in WDM systems. The resistance of DB to nonlinear 

transmission at 40 Gbps does not differ much from similar duty cycle OOK. 

 

2.3.2 Phase Modulation Formats 

Phase-modulated formats generally provide higher spectral efficiency and better OSNR 

tolerances than intensity formats. In Phase-Shift Keying (PSK) the phase is altered while 

maintaining constant amplitude. Differential Binary Phase-Shift Keying (DBPSK or simply 

DPSK) is not limited by the phase stability as the detection is based on the phase difference. 

DPSK detectors do not need to detect the exact phase of the signal but rather the difference 

between two adjacent bits. For this reason, DPSK is one of the most PSK variations 
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implemented in practice. The detection method, which is used with differential phase 

modulations, is known as differentially coherent phase detection [76].  

Since DPSK modulates the signal's phase, transmitters consist of externally modulated 

laser sources. Mach-Zehnder Modulators (MZM) are used often for this purpose [77]. At a 

receiver side, signal is demodulated by comparing the phases of sequential bits. Phase 

differences must be converted into intensity signals, and subsequently transformed into 

electrical signals by photo-detectors. This can be achieved by splitting the received optical 

signal into two paths, where one part is delayed by exactly one bit by using a Mach-Zehnder 

Interferometer (MZI). MZI has two output ports: the constructive and destructive one. At the 

destructive port, no phase change results in destructive interference while a phase difference 

of π causes constructive interference. The constructive port yields the opposite results. Each 

of the ports may be used with a photo-detector to recover the original signal. But, a 3 dB 

sensitivity improvement is shown when both photo-detectors are used together, which is the 

main advantage of DPSK over OOK [70][72][78]. 

Similarly as OOK, DPSK can be implemented in RZ and NRZ versions. Authors in [79] 

investigate NRZ, RZ, CRZ, CSRZ, DB, RZ-DPSK, NRZ-DPSK in WDM-PONs for link 

spans up to 50 km. Results in [79] show that DB offers the lowest BER in WDM-PONs with 

a channel spacing of 100 GHz and bit rates 1.25 Gbps, 2.5 Gbps and 10 Gbps. 

Differential Quadrature Phase-Shift Keying (DQPSK) is a multilevel format that has 

received appreciable attention to achieve narrow signal spectra. In DQPSK, 2-bit symbols are 

assigned to the four different phases shifted by π/2. The information is modulated as the 

phase difference between one and the next symbol period improving receiver‟s 

synchronization. DQPSK signals can be produced essentially by combining two DPSK 

transmitters. Because of this, the laser signal is split into two signals which feed each of the 

MZMs. Additionally a phase shift of π/2 is applied optically after the MZMs. A pulse carver 

may be added at this point to create RZ-DQPSK. DQPSK receivers are made in a similar 

fashion. The signal is split into two parts which are processed by their own MZI and balanced 

receiver. The main difference is that the delay is now 2 bits, as the phase is compared to 1 

symbol (2 bit duration). 

The spectrum shape of DQPSK is similar to that of DPSK, however its compression in 

frequency enables higher spectral efficiency and increased tolerance to CD [72][80]. DQPSK 

can be used either to double the bit rate while not requiring more bandwidth, or to halve the 

required bandwidth for a given bit rate. For this reason, DQPSK has been implemented in 

many WDM networks. DQPSK is also more immune to PMD due to its longer symbol length, 
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while comparing it to DPSK [72][76]. DPQSK is primarily limited by XPM and it is more 

suitable for transmission based on SSMF.  

In [81], a part of a 1614 km link has been upgraded to 40 Gbps using DQPSK with live 

traffic of 10 Gbps OOK and the coexistence of 10 and 40 Gbps channels in the 50 GHz grid 

of DWDM has been numerically and experimentally confirmed. WDM has been investigated 

in [82] with different sources of radiation, which strongly influence the channel spacing and 

bandwidth. Authors in [83] demonstrate that NRZ-DQPSK is promising even for terabit 

transmission. DQPSK can also operate well at 40 Gbps. Its main limit factor at this speed is 

CD [84]. In [85], DPSK and DQPSK formats with NRZ, 33 % RZ and CSRZ are investigated 

for a single 160 Gbps channel and different dispersion compensation schemes. CD, higher-

order CD, nonlinearity and OSNR are considered as well. Results show that RZ-DQPSK 

enables the longest physical reach; NRZ-DQPSK allows the highest dispersion tolerance and 

RZ-DPSK offers the highest nonlinearity tolerance. Authors in [86] review 42.7 Gbps 

DWDM systems with NRZ-OOK, DB, NRZ-DBPSK and RZ-DQPSK formats. The results 

from simulations show that RZ-DQPSK in a system with LEAF, 50 GHz channel spacing and 

spectral efficiency of 0.8 bit/s/Hz can provide approximately 50 % improvement in terms of 

transmission distance over implementations based on other fiber types and modulation 

formats.  

 

2.3.3 Advanced Modulation Formats 

PDM has been demonstrated to potentially double the capacity of transmission systems 

based on DQPSK [87] as well as other multi-level formats [88]. In PDM, two optical signals 

are coupled to two orthogonal polarizations being mutually delayed by a symbol period to 

improve OSNR. The two delayed lines: a coupled resonator and a photonic crystal waveguide 

are compared by using PDM transmission in [89]. PDM has been applied experimentally in 

[87] to increase 8 DQPSK channels with 200 GHz DWDM grid from 100 Gbps to 200 Gbps. 

The data were transmitted through a 1200-km long link with completely compensated CD. 

However, in their experiment, an automatic polarization control is not implemented and 

proper polarization should be set manually every tens of minutes. PDM can also double 

transmission capacity of other modulation formats. Dual-carrier PDM with 16 Quadrature 

Amplitude Modulation (QAM) occupying two 100 GHz channel slots has been proposed in 

[73] to transmit data at 1 Tbps over 3200 km with spectral efficiency of 5.2 b/s/Hz. The 
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proposed DSP algorithm [90] and decoding with soft decision FEC compensates receiver 

imperfection and mitigates CD. 

Similar spectral efficiency can be obtained in data transmission by Coherent Optical 

Orthogonal Frequency Division Multiplexing (CO-OFDM) [91]-[93] owing to the partially 

overlapped optical carriers. A construction of CO-OFDM signal with cascaded optical 

modulators and subsequent coherent detection is described in detail in [76] and [91], 

respectively. A 1 Tbps CO-OFDM signal with a spectral efficiency of 3.3 b/s/Hz has been 

generated by using a Recirculating Frequency Shifter that requires a single optical modulator 

and lower drive voltage on the contrary to the cascaded optical modulators [92]. Optical 

signals have been detected after transmission over 600 km SSMF without Raman 

amplification and dispersion compensation. Further OSNR improvement can be obtained 

using trellis-coded modulation in 1 Tbps CO-OFDM transmission [92]. 

Another format which benefits from PDM is PDM-QPSK, which has been widely denoted 

differently either by PDM, polarization multiplexing, dual polarization or orthogonal 

polarization [74]. Its transmitter is similar to the so denoted earlier format PDM-DQPSK. 

Innovation in PDM-QPSK stands for the employment of a coherent receiver. The use of DSP 

requires a large number of components, as well as low-linewidth lasers [94]. Despite the fact 

that other formats have been designed and some of them are already commercially available, 

such as PM-OFDM-QPSK; PDM-QPSK proves to work better at 100 Gbps with respect to 

estimated reach, spectral efficiency, OSNR, CD and DGD tolerances [74].  

The main bottleneck of wide-spreading 100 Gbps and higher rate transponders 

[69][74][95] are their high requirements for power consumption, DSP circuits and analogue 

to digital converters [96]. Authors in [97], investigate 100 Gbps PDM-QPSK channels for 8 

Tbps transmission over a dispersion managed link based on low dispersion fibers. Experiment 

in [98] compares the system performance of 80 x 112 Gbps long-haul PDM-QPSK DWDM 

transmission over large-area fiber and SSMF spans. Other formats for 100 Gbps and higher 

rates are recently under research [74][99], e.g. Dual Polarization Multi-Band OFDM (DP-

MB-OFDM). Authors in [100] show that DP-MB-OFDM and PDM-QPSK offer nearly the 

same results at 100 Gbps after transmission over a 10 x 100 km fiber line. Generally PDM 

combined with QAM formats seems to currently have the highest attention for transmission 

rates over 100 Gbps [101][102]. Experiment in [103] shows the suitability of 256 Gbps PM-

16QAM and 128 Gbps PM-QPSK modulated signals in long-haul and submarine systems 

with span lengths over 100 km. 
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2.3.4 Electronic Dispersion Compensation 

Dispersion is one of the key limiting factors which directly affects the transmission rate. In 

this section I describe techniques of its Electronic Dispersion Compensation (EDC). CD and 

PMD have a significant role in SMFs. On the other side modal dispersion is present in multi-

mode fibers (MMF). Several techniques exist to compensate CD in the optical domain among 

which is the use of dispersion compensating fibers or Fiber Bragg Grating. PMD is randomly 

variable, therefore it is not easily predictable, which introduces a potential problem in case of 

static optical compensation. The cost of dispersion compensation techniques in optical 

domain and the efficiency in long-haul transmission systems must be considered as well. For 

these reasons, dispersion compensation in the electrical domain comes into strong 

consideration as an alternative solution.  

 

a) Feed-Forward Equalization 

Adaptive filtering techniques can electronically mitigate modal dispersion using adaptive 

equalization. The linear time-invariant model approximates the channel response for MMF. 

The effects of modal dispersion can be modeled using the linear and slowly time-varying 

model given in (1) [104]: 

 𝑟 𝑡 =   𝑕 𝜏, 𝑡 𝑚 𝑡 − 𝜏 𝑑𝜏 + 𝑤(𝑡)
∞

−∞
 (1) 

where m(t) = 𝑑 𝑛 · 𝑝(𝑡 − 𝑛𝑇)
𝑛

 is the modulation waveform with pulse shape p(t) 

transmitted per bit interval T; h(τ, t) is the equivalent electrical impulse response for the MMF 

and w(t) is the white Gaussian noise detected at the receiver. If we consider g(t) as the 

convolution of the transmit pulse with the channel impulse response i.e. g(t) = h(t) * p(t), and 

h(t) as time-invariant i.e. h(τ,t) = h(τ), the function r(t) can be written in terms of the 

transmitted bit sequence d[n] as expressed in (2):  

 𝑟 𝑡 =   𝑑 𝑘 𝑔 𝑡 − 𝑘𝑇 + 𝑤(𝑡)∞
𝑘=−∞  (2) 

Therefore, the optimal receiver filter is a matched filter to the transmit pulse g(t). 

Subsequently, the transmitted bit sequence d[n] can be obtained by sampling the output of 

this filter at intervals t = nT. This means that pulses caused by distortion can be suppressed by 

using adaptive equalizers modelling transmission of the pulses.  
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The Feed-Forward Equalization (FFE) method is based on Finite Impulse Response filters, 

whose output can be expressed as shown in (3): 

 𝑦 𝑛 = 𝑦 𝑛𝑇 =   𝑐𝑘𝑟(𝑛𝑇 − 𝑘𝜏)𝑁
𝑘=0  (3) 

where τ is the delay-line spacing of the N taps in the equalizer and ck are filter coefficients 

which can be determined by Least Mean Square (LMS) [105] or Minimum Mean Square 

Error (MMSE) [106] algorithm. Figure 5 schematically describes how FFE works in reality.  

 

Figure 5: Feed-Forward Equalization [104] 

 

b) Decision Feedback Equalization 

While FFE can operate well for linear channels with modest frequency selectivity; they are 

not particularly well-suited to channels with deep spectral nulls [104]. Decision Feedback 

Equalizer (DFE) is a natural extension of FFE, which comes as a solution. A DFE typically 

consists of an FFE with an additional linear (or nonlinear) filter which applies further 

correction based on the current and previous bits. The idea behind DFE is to start from FFE 

and correct it by employing a feedback equalizer as shown in Figure 6. 

 

Figure 6: Decision Feedback Equalizer [104] 

 



Optimization of Optical Transmission Systems  23 

The output of the DFE with a linear feedback filter can be expressed as shown in (4): 

 𝑦 𝑛 =   𝑐𝑘 𝑛 𝑟(𝑛𝑇 − 𝑘𝜏)
𝑁1−1
𝑘=0 −  𝑏𝑗  𝑛 𝑑 [𝑛 − 𝑗]

𝑁2
𝑗=1  (4) 

where LMS coefficient updates are determined by the equations shown in (5) and (6) 

 𝑐𝑘 𝑛 =  𝑐𝑘 𝑛 − 1 + 𝜇𝑟 𝑛𝑇 − 𝑘𝜏 𝑒 𝑛 , 𝑘 = 0,2, … , 𝑁1 − 1 (5) 

 𝑏𝑗  𝑛 =  𝑏𝑗  𝑛 − 1 +  𝜇𝑑  𝑛 − 𝑗 𝑒 𝑛 , 𝑗 = 1,2, … , 𝑁2 (6) 

The FFE/DFE approach is an appropriate solution for modal dispersion, i.e. for short-reach 

MMF systems. On the other hand, CD and PMD in longer reach applications were not 

considered in the above investigated linear and slowly time-varying model. Nevertheless, 

different studies are related to CD compensation using FFE/DFE such as in [107]-[110]. 

 

c) Maximum Likelihood Sequence Estimator 

The Maximum Likelihood Sequence Estimation (MLSE) is a nonlinear equalization 

technique that has performance advantages for correcting CD distortions over other 

algorithms such as FFE and DFE. Simulations and experimental results have shown that 

MLSE-based receivers can be capable of supporting uncompensated transmission over SSMF 

exceeding 1000 km, at transmission rate 10 Gbps for a total accumulated dispersion of over 

17000 ps·nm
-1

. Meanwhile, FFE/DFE-based receivers are mostly limited in the range of 2000 

– 4000 ps·nm
-1

. The SMF channel can be modeled as a nonlinear continuous-time channel 

with finite memory whose output at the detector can be expressed as shown in (7): 

 𝑟 𝑡 = 𝑆 𝑡 ;  𝑑 𝑛 , 𝑑 𝑛 − 1 , … , 𝑑 𝑛 − 𝐿𝑐  + 𝑛(𝑡) (7) 

where S(t,…) describes the noise-free state-dependent component of the signal, which is a 

function of Lc adjacent transmitted symbols, and n(t) stands for the optical noise in an 

amplified link or electrical noise in a unamplified fiber span. A baud-sampled bank of 

matched filters is used to detect such continuous-time channels with memory. Therefore, for 

each possible state of the channel, i.e. 2
Lc

 from S(t,0,…,0) to S(t,1,…,1), one filter is required. 

For is reason, a bank of 2
Lc

 continuous-time matched filters can be used, each sampled with a 

perfect symbol synchronization at rate T. The band of the detected electrical signal is mostly 

limited twice the bandwidth of the optical waveform. An oversampled Analog to Digital 

Converter (ADC) could comprise a set of sufficient statistics for subsequent data detection. 

Further data reduction to one sample per bit period can be obtained by filtering in the discrete 
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time [104]. The maximum a posteriori probability [109] detector is used to optimally detect 

an optical signal through a non-linear channel with memory in terms of minimizing the BER. 

The algorithm described in [111] can be used for its computation. MLSE provides a similar 

performance in terms of minimizing the Sequence Error Rate (SER). The SER-optimal 

transmitted sequence can be solved recursively with Viterbi algorithm [104]. While designing 

an MLSE receiver, many issues should be considered, among which the design of a baud-

sampled ADC, clock recovery in the presence of dispersion, nonlinear channel estimation in 

the absence of a training sequence, the design of a high-speed Viterbi equalizer, etc. 

 

d) Other Electronic Dispersion Compensation techniques 

FFE-DFE can utilize the Volterra series [112][113], which approximates the response of a 

non-linear system if the output of this system depends strictly on the input. The main idea is 

to substitute the linear impulse response with a higher-order impulse response (named as 

kernel) in the non-linear Volterra term. Authors in [113] show how the second order 

FFE/DFE can compensate CD as well as non-linear effects. However, PMD tolerance is not 

significantly improved compared to conventional DFEs. The Volterra series can be also 

incorporated in MLSE as shown in [114]. 

Direct compensation at the transmitter can be an alternative to equalization at the receiver 

side. MZMs can control in this case the amplitude and the phase of the transmitted signal to 

obtain pre-distorted signals. This would enable compensation of large amounts of dispersion, 

in addition to fiber nonlinearities. As a result, the majority of CD can be compensated at the 

transmitter as well as intra-channel nonlinearities, meanwhile equalization of the residual 

dispersion and rapidly varying impairments such as PMD can be carried out at the receiver as 

proposed in [115]. The idea behind "Electronic Pre-Distortion" is that the distortion of the 

transmitted pre-distorted signals is reversed by CD during the signal propagation which 

results in the desired waveform at the receiver [116]. 

The Single Side-Band (SSB) can be an alternative solution for greater range. In [117], 

authors propose the SSB transmitter architecture with a 6-bit digital to analog converters and 

a dual electrode MZM among others, driven by signals from a Pseudo-Random Binary 

Sequence (PRBS) generator. In order to generate the two MZ drive signals, the Hilbert 

transformation is applied on the PRBS digital signal. The effect of dispersion in fibers is 

modelled by using a transfer function, which takes into consideration the fiber dispersion and 

length, laser wavelength and the frequency offset from the carrier. The received signal enters 

to the detector. Subsequently it is sampled and transferred to further digital processing. 
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Chapter 3 

Methods 

 

3.1 Time Domain vs. Frequency Domain Split Step Method 

The propagation of an optical signal through a fiber can be expressed as shown in (8): 

 
𝛿𝐴(𝑡,𝑧)

𝛿𝑧
= {𝐿 + 𝑁}𝐴(𝑡, 𝑧)

 
(8)

 

where A(t, z) is the optical field intensity, L is the operator which considers linear effects 

such as dispersion, meanwhile N stands for non-linear effects such as FWM [118]. The Split 

Step method applies separately L and N operators to calculate A(t, z) over small fiber spans 

δz. Two basic methods are differentiated based on how the operator L is calculated: TDSS 

[119] and Frequency Domain Split Step (FDSS). N is calculated in the same manner. 

Simulations, which were built during the research work in OptSim software environment, are 

based on the TDSS method. TDSS computes L in the time domain from the convolution 

product in discrete time, as shown in (9): 

 𝐴𝐿 𝑛 = 𝐴 𝑛 ∗ 𝑕 𝑛 =   𝐴 𝑘 𝑕[𝑛 − 𝑘]∞
𝑘=−∞

 

(9)

 

where h is the impulse response of L. On the other hand, FDSS method calculates L in 

frequency domain by using the Fast Fourier Transform (FFT) algorithm on the signal in 

sampled time A[n] and on the impulse response in sampled time h[n] as well [118]. The 

Inverse FFT (IFFT) is subsequently applied on their product as shown in (10): 

 𝐴𝐿
′ [𝑛] = 𝐴 𝑛 ⊗ 𝑕 𝑛 =  IFFT{FFT 𝐴 𝑛  · FFT 𝑕 𝑛  } (10) 

TDSS has no constrains on the shape of signal spectra and it has no modelling limits. 

Although FDSS can be implemented much easier, the circular convolution it applies will 

introduce aliasing and the error is unavoidable. Thus, TDSS benefits in many features against 

FDSS at the cost of increased implementation complexity, such as its immunity against 

aliasing errors, accurate DGDs, full band simulation, etc. The speed of TDSS computation is 

enhanced with software pipelining as individual components can process one sample and pass 

it on to the next component without requiring other signal information. 
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3.2 Monitors 

The waveforms of optical signals are distorted when they arrive at the other end of fiber 

links due to the impact of negative factors such as PMD, CD, noise, non-linear effects, etc. 

Hence, bit errors are present when the receiver converts the optical signal into electrical 

domain. For this reason, suitable measurement techniques need to be utilized. I have 

measured in this thesis signal spectra, power levels, BER, Q-factor, eye diagrams and its 

related parameters, such as eye opening and jitter [120], among others. 

BER is an ultimate indicator for measuring transmission quality. It specifies the ratio of bit 

errors to the total number of transmitted bits. Therefore, a lower BER indicates a better 

service delivery. BER is affected by attenuation, noise, dispersion, crosstalk between adjacent 

channels, nonlinear phenomena, and jitter or by bit synchronization problems. Its numerical 

value may be improved by launching a stronger signal into the transmission system unless 

this causes cross-talk and more errors; by choosing a robust modulation format, or by 

applying channel coding schemes.  

The ratio of the net signal power to the net noise power is given by OSNR. This parameter 

indirectly reflects BER and it can give a warning of potential BER deterioration. The 

predominant source for its degradation is the amount of noise inserted by OAs. Q-factor on 

the other hand specifies the minimal required OSNR to obtain a certain value of BER. 

Therefore, Q-factor provides a qualitative description of the transmission system 

performance. It can be expressed as shown in (11): 

 𝑄 − =  
µ1− µ0

б1+ б0
 (11) 

where μ0, μ1 are the mean binary 0, binary 1 level values, and σ0, σ1 are their corresponding 

standard deviations [120]. Higher Q-factor indicates a better result. Optical systems operating 

at 10 Gbps per channel, for example, require BER to be below 10
-12

 and for better 

performance below 10
-14

. Q-factor and BER are mathematically related as shown in (12) 

[121]: 

 BER − =  
1

2
 𝑒𝑟𝑓𝑐 (

𝑄

√2
) (12) 

This equation is exact when the noise at the receiver is Gaussian and Inter-Symbol 

Interference (ISI) is negligible. In general, BER decreases as Q-factor increases. A Q-factor 

ranging from 6 to 7 [-] is needed to obtain a BER of 10
-9 

down to 10
-12

. The details of Q-

factor and BER measurement techniques in OptSim are described in [118]. 
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The eye diagram graphically represents many cycles of the signal superimposed on top of 

each other. From its appearance, it is possible to judge the amount of noise, ISI, jitter and 

signal distortion [122], as shown in Figure 7.  

 

 

 

Figure 7: Eye opening, ISI and jitter in a sample eye diagram obtained from a simulation in Optsim software 

environment 

 

OSNR can be estimated by observing the difference between the lowest level of binary 1 

state and the origin. Less noise makes eye diagrams appear smoother as there is less distortion 

in the signal. The timing variation can be assessed by observing the width at the beginning of 

the eye. The height of the eye determines the amount of noise that a receiver can tolerate. The 

larger the size of the eye opening is, the lower the error rate will be [120]. 

 

3.3 Estimation of the Attenuation on Optical Links 

The predominant part of the total attenuation in an ODN is accumulated from splitters and 

fibers. The overall attenuation can be decreased by deploying optical fibers with a lower 

specific attenuation or connectors with low insertion loss; by applying long distances between 

splices, or by utilizing splitters based on planar technology on behalf of their cost, among 

others. The estimation of attenuation together with dispersion and noise is discussed in details 

in [123] and [124]. Figure 8 shows a typical scheme of a tree topology ODN.  
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Figure 8: ODN – Evaluation of the attenuation 

 

The total attenuation of this network scheme can be evaluated as shown below in (13): 

A = mAc + As + A𝑂𝐷𝐹 + Af + nAsplc + At 

 =  mAc + As + AODF +  l1 + l2 + l3 α + nAsplc + At  [dB] (13) 

where α [dBkm
-1

] is the specific attenuation and Af represents the attenuation of fibers; l1, 

l2 and l3 are the main, intermediate and connecting fiber lengths; Asplc is the attenuation of 

splices (e.g. 0.05 dB) and n is their total number; Ac is the insertion loss of connectors in OLT 

and ONU (e.g. 0.2 dB) and m the number of connectors; As specifies the insertion loss of the 

splitter (e.g. 17.3 dB for 1:32 splitter); AODF stands for the attenuation of the intermediate 

optical distribution frame (e.g. 0.5 dB) into which are considered connectors and the 

connecting fiber; and At is the attenuation tolerance against material aging, temperature 

changes, etc. (e.g. 0.5 dB). 
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3.4 Structural Design Optimization of Optical Splitters 

The Y-branch splitters were designed and optimized in OptiBPM photonic tool, based on 

the beam propagation method, which simulates the light passage through slowly varying 

optical waveguides. The splitter optimization is discussed in [59][126][127] by the authors 

Burtscher and Seyringer from the FHV Vorarlberg University of Applied Sciences in Austria, 

with whom I have cooperated during my doctoral studies. The length-optimized splitters from 

their research have been investigated in different PON schemes, as it will be described later in 

this section. The input design parameters are summarized in Table 5.  

 

Table 5: Design parameters for 1x64 branch splitters 

Refractive index of the waveguide core, nc 1.456 

Refractive index of the cladding, ncl 1.445 

Refractive index contrast, Δn 0.75 % 

Operating wavelength, λ 1550 nm 

 

The refractive index contrast is considered 0.75 %, which is a typical value for optical 

fibers. The structural parameters of the proposed splitter are shown in Figure 9. 

 

Figure 9: Standard 1x64 Y-branch splitter structure designed using OptiBPM [126] 

 

Simulations in OptiBPM were performed at the operating wavelength of 1550 nm. The s-

bend-arc shapes of Y-branches were used, because they offer the lowest losses [125]. The 63 

branches that are required for 64 linear outputs are distributed into 6 branch layers. W(1
st
) 
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specifies the port pitch of output branches, where fibers are connected. This parameter is set 

to 127 μm. Based on this value, the length of the 1
st
 branch layer L(1

st
) is set to 5000 μm. The 

remaining lengths and widths of branch layers are given in Table 6. These two parameters are 

doubled from one layer to another to keep a constant bending shape. As a result, the total 

length of this standard 1x64 splitter reaches 318000 μm and its width is 8001 μm, while 

considering that the input and output port lengths are 1000 μm. 

 

Table 6: Widths and lengths of branch layers in the standard 1x64 splitter structure 

Widths of 

branch layers 

W(1
st
) 127 µm 

W(2
nd

) 254 µm 

W(3
rd

) 508 µm 

W(4
th

) 1016 µm 

W(5
th

) 2032 µm 

W(6
th

) 4064 µm 

Lengths of 

branch layers 

L(1
st
) 5000 µm 

L(2
nd

) 10000 µm 

L(3
rd

) 20000 µm 

L(4
th

) 40000 µm 

L(5
th

) 80000 µm 

L(6
th

) 160000 µm 

 

The optimization of its length has been achieved as described in [126]. Individual widths 

and lengths of branch layers of this length optimized splitter are shown in Table 7. 

 

Table 7: Widths and lengths of branch layers in the length optimized 1x64 Y-branch splitter structure 

Widths of 

branch layers 

W(1
st
) 127 µm 

W(2
nd

) 254 µm 

W(3
rd

) 508 µm 

W(4
th

) 1016 µm 

W(5
th

) 2032 µm 

W(6
th

) 4064 µm 

Lengths of 

branch layers 

L(1
st
) 5000 µm 

L(2
nd

) 10000 µm 

L(3
rd

) 17000 µm 

L(4
th

) 17000 µm 

L(5
th

) 34000 µm 

L(6
th

) 34000 µm 
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As it can be seen from Table 7, widths remain the same as in the standard Y-branch 

splitter. The layout of the length optimized 1x64 Y-branch optical splitter is given in Figure 

10. The overall splitter length has been reduced from 318000 µm to 120000 μm.  

 

Figure 10: Layout of the low-loss length-optimized 1x64 Y-branch splitter [126] 

 

Simulation results showed that a key factor, which affects the non-uniformity of the 

splitter, is the presence of the first mode. This phenomenon can be suppressed by reducing the 

waveguide core size from 6 μm x 6 μm to 5.5 μm x 5.5 μm and keeping constant the size of 

the Y-branch splitter structures [127]. 

Both proposed splitter designs were deployed in a PON and investigated in terms of 

physical reach, Q-factor and BER. Simulation scheme is shown in Figure 11. I focus on the 

downstream traffic, which does not restrict the generality of the problem. Scheme consists of 

three parts: OLT, ODN and ONU. Both GPON (2.5 Gbps downstream) and XG-PON (10 

Gbps downstream) are simulated. 



Optimization of Optical Transmission Systems  32 

 

Figure 11: GPON/XG-PON simulation schemes with triple-play services employing the designed 1x64 splitters 

 

Voice transmitter is considered as a Voice over Internet Protocol (VoIP) service due to its 

current applications and wide deployments globally as an alternative solution to traditional 

public switched telephone network with plain old telephone service at the customer‟s end. 

Data and VoIP transmitters generate NRZ modulated signals, which are multiplexed together 

with the video component by applying CWDM technique. A detailed description on the 

design of all transmitters which were used during the research is given in section 3.7. The 800 

Mbps video stream was generated via a 16-QAM modulation. The data, voice and video 

transmitter‟s output power was set to -3 dBm, since this is a commonly used value. ODN 
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consists of a 20 km long SSMF with an attenuation factor of 0.2 dB·km
-1

, and the 1x64 

splitter to be analyzed. The drop-off cable is several meters long. It was included in this 

simulation to consider the fiber patch cables at the customer promises. The main goal of this 

simulation was to find out the practical benefits of the length optimized splitter in OANs. The 

results are discussed in Chapter 4. 

 

3.5 Transmission Network Transparency and Potential 

Convergence at the Physical Layer 

The coexistence of GPON, XG-PON and video services is simulated in hybrid PONs to 

find out potential bandwidth utilization improvements. The idea behind this novel simulation 

setup is to show the benefits of convergence of multiple access network solutions in hybrid 

TDM/WDM-PONs, which I strongly recommend for next generation PONs. I focus on the 

downstream traffic for simplification purposes and due to the software limitations of the 

simulation tool that has been used; however it does not restrict the final goal of this 

investigation. The proposed TDM/WDM-PON can be realized by stacking a TDM-PON on 

top of a WDM structure, as shown schematically in Figure 12.  

 

 

 

Figure 12: Hybrid PON channel allocation in TDM and WDM domains 

 

Each of the wavelengths has its own independent TDM domain. As a result, system 

capacity can be expanded by increasing the wavelengths, leading in the ideal case to 

TDM/DWDM-PON systems. The simulation scheme that I have built in OptSim environment 

is shown in Figure 13. I consider GPON/XG-PON recommendations from ITU-T for the 

TDM-PON domain to allow triple-play service delivery up to 64 subscribers. Figure 26 is 

divided in three parts: OLT, which contains the data/voice/video transmitters; ODN, which 

includes the transmission path components; and ONU, which represents end user equipment. 
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Figure 13: FTTH TDM/WDM-PON system with GPON/XG-PON and video access architecture 

 

An Arrayed Waveguide Grating (AWG) is used to multiplex the optical channels in the 

WDM domain. The TDM part is built based on a common TDM-PON architecture. The 

Internet component is represented by a data link with a download speed  of 2.5 Gbps for 
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GPON and 10 Gbps for XG-PON. Data transmitters produce NRZ modulated signals. Further 

details on the transceiver construction are described in section 3.7. 

The voice component can serve VoIP services. CWDM technique has been applied to 

transmit the data/voice stream together with the video signal, which runs within the 

wavelength range 1550-1560 nm, in accordance with ITU-T recommendations [21], as shown 

previously in Figure 4. For simplification purposes, a 16-QAM SubCarrier Multiplexed 

system is used to generate the video signal, although other Quadrature Amplitude Modulation 

(QAM) formats are more typical. The 800 Mbps video stream is launched into the modulator, 

where the QAM modulated electrical signal is generated. This electrical signal is 

subsequently processed by an optical modulator, which is driven by a laser, similarly as in the 

data/voice transmitter. The output power of each transmitter is set to 0 dBm. Transmission 

media consists of an SSMF with 0.2 dB/km attenuation, an optical splitter for signal 

distribution among 64 subscribers and a drop-off cable of several meters. The signal of each 

optical channel is filtered at the corresponding receiver and the obtain electrical signals are 

measured in terms of eye diagram, Q-factor and BER. This scenario is also simulated for an 

AON by deploying a single booster, as schematically shown in Figure 26. The purpose of this 

simulation is to figure out the benefits of introducing an OA. Different transceiver designs 

from modulation perspective are considered as well to find out which of the network schemes 

offers the most enhanced system performance. The results are discussed in Chapter 4.  

 

3.6 Practical Implementations of EDC 

a. Ideal EDC 

Different schemes of deploying EDC have been simulated in this thesis to determine the 

advantages of each application. Firstly, an ideal EDC is used to detect the signal of a PDM-

QPSK modulated signal, which will be further discussed in section 3.7. The compensator has 

four electrical inputs and four electrical outputs. The four input signals represent the in-phase 

and quadrature components on the two polarizations of the received optical field and derived 

from a coherent homodyne receiver [118]. This ideal EDC applies the same amount of 

compensation on the signals. The two parameters which can be set in this compensator are the 

total amount of CD to compensate [ps/nm], or the total amount of CD slope to compensate 

[ps/nm
2
]. The numerical results discussed in Chapter 4 will show that the measured pre-FEC 

BER value at the PDM-QPSK receiver is within the acceptable threshold, even after hundreds 

of km in a long-distance transmission system. 
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b. Implementation of EDC Using MMSE-based FFE and DFE 

In this section, an application scheme of the EDC using MMSE-based FFE and DFE is 

shown. For this purpose, a 10 Gbps NRZ signal transmision is simulated over an 80 km 

SSMF, as illustrated in Figure 14. 

 

 

 

Figure 14: EDC using MMSE-based FFE and DFE 

 

The benefits from this EDC technique with FFE and DFE, both optimized based on the 

MMSE algorithm, are given in Chapter 4 together with the corresponding received eye 

diagrams. 

 

c. Implementation of EDC FFE in a Multimode Link 

Another application of EDC FFE can be in multimode links. Figure 15 shows a design 

scheme of such implementation, where a 10 Gbps multimode link is considered for 

simulation purposes.  

 

 

 

Figure 15: EDC FFE in a multimode link 

 

The graded-index OM4 MMF, which is used in this simulation scheme, is 400 m long with 

a 50 µm core diameter. Common fiber manufacturing imperfections are considered by using 

the fiber refractive index profile with a dip defect in the centre of the core. The connector 

between transmitter and MMF adds 10 micron offset from the fiber core center. This results 

in a distorted eye diagram. FFE is applied in the electrical signal after the first receiver to 

improve the results, and the parameters of equalization filter are optimized for the given 
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offset of laser-fiber alignment [118]. The FFE parameters were set to: 3 taps, tap delay of 

½TB, and taps coefficients {-0.3, 1.0, -0.3}. The results are discussed in Chapter 4.  

 

d. Implementation of a MLSE Receiver 

The aim of the following simulation is to design and test direct-detection systems 

deploying MLSE-based receivers. The simulation scheme is shown in Figure 16. The 

simulated 10 Gbps transmission system includes a 500 km SSMF with dispersion equal to 16 

ps·nm
-1

·km
-1

. The transmitter generates an amplitude modulated signal at 1550 nm using a 

single arm MZM with sin
2
 electrical shaped input-output P-V characteristic. The signal is 

then amplified so its output power level is at 0 dBm and subsequently it is noise loaded. 

 

 

 

Figure 16: Investigation of an MLSE-based receiver in an uncompensated transmission system 

 

The receiver consists of an optical filter, an ideal photo-detector and an electrical filter. 

The MLSE Viterbi processor is configured in such a way that it is sufficient to compensate 

the total amount of the accumulated dispersion, i.e. 16 ps·nm
-1

·km
-1 

· 500 km, with a -3 dB 

OSNR penalty. It employs 8192 states, 4 samples per bit, an analog to digital decoder with 

infinite resolution and a delay of 3N bits (where N is the number of states) before making a 

bitwise decision [118]. BER is obtained as a function of OSNR by using a Monte-Carlo error 

counting approach. The simulation results are discussed in Chapter 4.  

 

3.7 Modulations formats 

This section explains the design of all transceivers used in this thesis, together with the 

simulation schemes in which they are applied, either single channel or DWDM. The 

transmitters of intensity modulation formats NRZ, RZ and CSRZ are shown in Figure 17. The 

simplest transmitter is that of NRZ format. It consists of a Continuous Wave (CW) laser, an 

amplitude modulator, a PRBS generator and an NRZ raised cosine electrical driver. Bit rate, 

CW laser frequency and output power of the laser are defined as input parameters, among 
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others. Figure 17 shows that RZ transmitter is identical to that of NRZ, except of the driver 

type. In CSRZ, a second modulator is deployed to achieve the carrier-suppression effect. The 

frequency of sinusoidal signal generator is set to half of the bit rate to obtain a π phase shift 

between any two adjacent bits. 

 

 

 

Figure 17: Transmitter design of NRZ, RZ and CSRZ 

 

The design of DB transmitter is given in Figure 18. The amplitude dual-arm MZM is one 

of its key components. The binary sequence of one of the 'arms' is inverted by using a NOT 

gate. Low-Pass Filters (LPF in Figure 18) are included in the scheme to consider the impact 

of a non-ideal binary-to-electrical signal conversion. 

 

 

 

Figure 18: Transmitter design of DB format 
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Intensity formats are detected and measured at the receiver side with optical band-pass 

filters, PIN photodiodes and electrical scopes. The corresponding bandwidth of optical filters 

has been optimized by running a recursive scan with varied values to find out for which 

bandwidth we can achieve the lowest BER for a given modulation format.  

Moving on to phase-based formats, the transmitter's complexity increases. The transmitters 

of NRZ-DPSK and RZ-DPSK are shown in Figure 19.  

 

 

 

Figure 19: Transmitter design of NRZ-DPSK and RZ-DPSK 

 

MZM plays a key role in DPSK transmitters, because it generates the required phase-

modulated signal. The driver must be carefully set up with proper maximum and minimum 

values of electrical signal. RZ-DPSK transmitter contains in addition a second MZM driven 

by an electrical signal to generate RZ pulses. 

The design of DPSK is relatively simple compared to NRZ-DPQSK, RZ-DQPSK and 

CSRZ-DQPSK formats, which are shown in Figure 20. DQPSK deals with both in-phase and 

quadrature components, therefore it is necessary to work with each of them separately. Both 

binary signals for in-phase and quadrature parts are firstly encoded, so that signals at the 

receiver side will match the transmitted ones. Subsequently, their corresponding electrical 

signals are generated through the use of drivers to control MZMs, one per each component. 

An additional phase shift of 90° needs to be applied to one of the optical outputs for the 

quadrature component. This can be achieved by deploying a phase modulator, driven by a 

bias wave generator with correct settings. The output from the phase modulator is then 

combined with in-phase component to create a single NRZ-DQPSK modulated signal. 

Similarly as in RZ-DPSK transmitters, RZ-DQPSK contains in addition to NRZ-DQPSK 
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another MZM to generate the desired RZ output pulses. CSRZ-DQPSK transmitter is similar 

to the conventional DQPSK. The carving of signal is obtained via the use of an amplitude 

modulator, which is inserted between the laser source and DQPSK modulator. The effect of 

carrier suppression is achieved by driving the modulator between Voff - Vπ and Voff + Vπ.  

 

 

 

Figure 20: NRZ-DQPSK, RZ-DQPSK and CSRZ-DQPSK transmitters 

 

In order to detect phase modulated signals, the receivers require a different design 

compared to intensity formats. The core component of a DPSK receiver is a balanced 2DPSK 
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block which consists of a tuneable MZI followed by two optical paths, delayed to each other 

by one bit time duration. Each of these optical outputs is detected by a PIN photodiode. The 

output electrical signal of 2DPSK receiver is determined by the difference between the 

measured currents [118]. Two 2DPSK receivers are used in case of DQPSK format; one for 

in-phase and one for quadrature component. Similarly as for intensity formats, optical filters 

with optimized bandwidth settings are included in the input of phase-based receivers.  

Moving on to PDM-QPSK format, the implementation requirements significantly increase 

for both transmitter and receiver parts due to the combination of PDM and phase modulation, 

as shown in Figure 21. Four data sources are used to generate a single PDM-QPSK signal. 

The first part of the transceiver generates the phase-based modulated components, which are 

subsequently incorporated into PDM by rotating the polarization of one branch. 

 

 

 

Figure 21: Transceiver design of PDM-QPSK 
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At the receiver, a single ended 90° hybrid with local oscillator and four PIN photodiodes in 

its four output interfaces enable the coherent detection. Subsequently, signals travel through 

Trans-Impedance Amplifiers (TIA in Figure 21), electrical filters and then through an ideal 

EDC with four electrical input signals and four electrical output signals. An error counting is 

then applied on the four signals. The EDC block implements an ideal electronic dispersion 

compensator, which applies the same amount of compensation on all signals, and it takes into 

account the number of fiber spans, dispersion and fiber lengths. The final block in the PDM-

QPSK receiver consists of a memoryless blind receiver, which separates orthogonal 

polarizations as well as in-phase and quadrature signals by applying the Constant Modulus 

and Viterbi & Viterbi algorithms [118].  

PDM can be applied also on other formats, such as QAM. Based on similar design 

principles, which were described previously for PDM-QPSK, I have built in the OptSim 

environment a PDM-16QAM transceiver. The numerical results from simulations, which will 

be discussed in Chapter 4, prove the suitability of this format for terabit transmission over 

long distances and its ability to double the spectral efficiency of PDM-QPSK. 

Single-channel and DWDM simulation schemes are created in OptSim to investigate 

various aspects of the network performance for each modulation format, such as transmission 

rate, BER, Q-factor, optical reach, channel spacing, spectral efficiency, network topology. 

The simulation scheme, which is given in Figure 22, is used for the single-channel scenarios, 

where no OAs are deployed and no dispersion compensation technique is applied. 

 

 

 

Figure 22: Single-channel simulation scheme for comparison of optical modulation formats in OptSim software 

environment 

 

The optical path consists of an SSMF with 0.2 dB/km loss. The output power of 

transmitters is set to 0 dBm for comparison purposes, and the operating wavelength is set to 

1550 nm. Many measuring devices such as signal and spectrum analyzers, BER testers, eye 

diagram analyzers, optical power meters, etc., are used to investigate the modulation formats 

and find out not only their general efficiency, but also their performance at certain points of 
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transmission path and their main limiting factors. Optical and electrical noises are considered 

as well. The results from simulations in Chapter 4 will show that the overall system 

performance of a certain modulation format is degraded after a certain point and its 

deployment in a DWDM network starts to become quite inefficient without applying 

dispersion compensation schemes, optical amplification or further improvements of 

transceiver design, among others. Despite such enhancements, some formats cannot operate 

well at higher bit rates due to their physical limitations, therefore they have been excluded 

from the comparison after a certain bit rate to figure out the most appropriate format for a 

given network topology and transmission rate. 

Two different DWDM network topologies are used. The first one is based on a single 

fiber, as shown in Figure 23. One of the goals of this scheme is to find out the maximum 

physical reach in point-to-point links. 

 

 

 

Figure 23: DWDM passive optical network to investigate formats at 10, 40 and 100 Gbps 

 

The second considered DWDM scenario is based on a tree topology, as shown in Figure 

24. The purpose of this scheme is to find out how formats operate in a typical OAN scheme.  

 

 

 

Figure 24: Tree topology for 10, 40 and 100 Gbps DWDM systems 
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In both DWDM network schemes, the output power of each transmitter is set to 0 dBm for 

comparison purposes. SSMFs have an attenuation of 0.2 dB/km. WDM multiplexers and 

demultiplexers are modelled as a set of filters, whose parameters have been optimized based 

on the modulation type to obtain the best results, i.e. the lowest BER, respectively the highest 

Q-factor value. This has been achieved by running a sequence of simulations with a variable 

parameter, such as the bandwidth and transfer function of filters. The final goal is to achieve 

as higher spectral efficiency as possible.  

Another simulation scheme is introduced in addition in case of PDM-QPSK and PDM-

16QAM formats, as shown in Figure 25. The optical dispersion compensation is applied by 

using Non-Zero DSFs with 0.2 dB/km loss and CD 4 ps/nm/km at the considered band to 

avoid FWM.  

 

 

 

Figure 25: Simulation scheme for PDM-QPSK and PDM-16QAM DWDM systems 

 

The purpose of this simulation setup is to figure out the efficiency of PDM-QPSK and 

PDM-16QAM in long haul transmission systems, consisting of hundreds of kilometres. The 

optical signal is noise loaded to extract BER as the function of OSNR [128]. Each of the fiber 

spans is 100 km long and separated from each other by OAs with a fixed gain around 20 dB. I 

also consider in the transmitters a 7 % bit rate overhead for FEC, and 0 dBm of transmitted 

power. PDM-QPSK and PDM-16QAM formats are deployed at systems with 50 GHz channel 

grid and baud rate of 32 Gbps, which results in a per channel bit rate of 128 Gbps in case of 

PDM-QPSK and 256 Gbps in case of PDM-16QAM, including FEC overheads. The results 

are discussed in the next chapter. 
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Chapter 4 

Results and Discussion 

 

4.1 Optimization of Optical Network Capacity 

In this chapter, I summarize research accomplishments and describe the scientific progress, 

which was done in terms of network capacity and transmission rate. Techniques such as 

optimization of optical splitters, coexistence of different OAN solutions at the physical layer 

and introduction of hybrid PONs are proposed to optimize the utilization of network capacity. 

These solutions enable improved scalability and enhanced bandwidth efficiency.  

Table 8 shows the main results from simulating the standard 6 μm × 6 μm and low-loss 

length-optimized 5.5 μm x 5.5 μm 1x64 Y-branch splitters, which were discussed in Chapter 

3. Four different parameters are compared, specifically: insertion loss uniformity (non-

uniformity) ILu, insertion loss IL, maximum background noise BX and chip size. 

 

Table 8: Comparison of the main parameters of standard and low-loss length-optimized 1x64 Y-branch splitters 

 
Standard waveguide core size 

6 μm × 6 μm 

Optimized waveguide core size 

5.5 μm × 5.5 μm 

Non-uniformity, ILu 2.67 dB 1.98 dB 

Insertion loss, IL -19.89 dB -19.93 dB 

Max. background noise, BX -42.24 dB -41.85 dB 

Chip size 318 000 μm 120 000 μm 

 

From Table 8, it can be seen that the most significant enhancement in splitter design is 

related to non-uniformity. The individual values of insertion losses per each output port have 

been calculated and the results are given in Figure 26. The scale of y axis in the figure has 

been adjusted to distinguish better the deviations from the mean attenuation value and to 

compare both optical splitter designs. Figure 26 clearly proves that the non-uniformity has 

been significantly improved while using the low-loss length-optimized 1x64 optical splitter 

with the 5.5 μm × 5.5 μm waveguide core size. This is very beneficial especially for PONs 

with triple-play services as the provider can offer similar signal quality to individual users, 

and therefore it can maintain more efficiently the same Service Level Agreement (SLA) to 

each of the customers. 
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Figure 26: (a) Attenuation and deviations from the mean value for each of the output ports for both: 

conventional and (b) low-loss length optimized (triangles) 1x64 Y-branch splitters 

 

Both splitters, the conventional and the optimized one, are deployed in GPON and XG-

PON systems. Figure 27 and 28 show the results for data and voice services. As no changes 

were applied to video signals, the video service delivery remained the same under acceptable 

thresholds in both cases; hence it is not taken into account for comparison. The minimum and 

maximum values achieved by Q-factor and BER are displayed in Figure 27 and 28 with 

dashed lines.  
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Figure 27: (a) BER and (b) Q-factor values for GPON with triple-play services (circles - standard splitter; 

triangles- optimized splitter) 

 

Figure 27 shows that splitting uniformity was just slightly improved in case of GPON 

scenario, mainly because all BER values were too low, respectively Q-factor too high, at the 

receivers. As a result, small changes in attenuation of output ports of the splitters deployed in 

GPON were not noticeably influencing the overall service quality to end users. The minimum 
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and maximum achieved BER values differ by a factor of 10
6
 when the standard splitter is 

used, and by a factor of 10
5
 in case of the optimized splitter. For higher speed rates, like that 

of XG-PON and beyond, the optical signal quality significantly decreases if other network 

parameters are not properly tuned. The results for XG-PON systems are given in Figure 28. 

 

 

 

 

Figure 28: (a) BER and (b) Q-factor values for XG-PON with triple-play services (circles - standard splitter; 

triangles - optimized splitter) 
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Figure 28 shows that the minimum and maximum BER values, which were measured in 

XG-PON scenario, vary by a factor of 10
17

 in case of the standard splitter deployment and by 

only 10
4
 when the optimized optical splitter is deployed within the ODN. These simulation 

results clearly prove that the power split over all output ports becomes a crucial parameter for 

higher transmission rates to maintain similar customer SLAs and the proposed length-

optimized splitter performs much better. 

Besides splitter optimization, other design aspects are considered to enhance the network 

capacity starting from transceivers that combine simultaneously TDM and WDM techniques, 

which leads to hybrid PONs, and those who combine different OAN solutions at the physical 

layer to utilize more efficiency the available bandwidth. The main benefit from the 

coexistence of OAN solutions is the cost-efficiency and flexibility. Figure 29 shows the 

optical spectra of GPON/XG-PON data and voice components, and the video signal for 

downstream traffic, towards 64 subscribers.  

 

 

 

Figure 29: Optical spectrum for triple-play services and coexistence of GPON/XG-PON in a TDM-PON 

architecture 

 

The allocation of optical channels avoids the cross-talk between GPON, XG-PON and 

video signals. The simulation results proved that this system could work with BER values 

lower than 10
-10

 up to 20 km. Over this system, I implement a WDM platform to model the 

hybrid TDM/WDM-PON as per the simulation setup described in section 3.5, Figure 13. The 

maximum number of allowed wavelength channels within the GPON/XG-PON bandwidth 

ranges as per ITU-T is determined from simulations. The 50 GHz spacing between 

GPON/XG-PON channels has been found out as acceptable. The overall optical spectrum of 

this system is shown in Figure 30.  
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Figure 30: Spectrum for triple-play services and coexistence of multiple GPON/XG-PON channels in a 

TDM/WDM-PON 

 

The simulation results showed that it is possible to fit up to 50 GPON wavelength channels 

and 12 XG-PON channels for the download traffic with BER less than 10
-10

, or Q-factor 

higher than 6.3 respectively. This means that hybrid PONs based on this WDM scenario 

would allow triple-play service distribution up to 50x64 subscribers for GPON and 12x64 

subscribers for XG-PON in the time domain. 

The main advantages of PONs are their lower and simpler requirements on deployment 

and maintenance. On the other side, AONs can be a long-term investment for triple-play 

service delivery. Installation of a single amplifier can significantly extend the physical reach 

of PONs, including hybrid solutions. Therefore, installation of an optical amplifier has been 

investigated as well. Few options come into consideration while using optical amplification as 

per the simulation scheme discussed previously in section 3.5, in Figure 13. An amplifier can 

be deployed as a booster after the AWG at the OLT side; or before the AWG near the ONU 

side; or it can be used as an in-line amplifier. Deployment outside of this segment would be 

not efficient, since the amplification will have to be done separately on a wavelength basis. 

The use of an in-line amplifier would not be efficient as well from the cost and 

implementation perspective, as the provider will have to introduce an active NE in the middle 

of transmission path. I have reviewed the remaining two options in terms of BER, Q-factor 

and optical reach. A 10 dB amplifier was selected for reference purposes. The results showed 

that physical reach could be extended to 35 km while using a booster, meanwhile the 

deployment of an OA at the ONU side can enable a physical reach of 31 km.  
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NRZ is the recommended modulation format by the ITU-T for GPON/XG-PON systems. 

However, other intensity formats have been considered as well to search for any significant 

improvement in this research area. For this reason, NRZ, RZ and CSRZ formats have been 

simulated and compared to each other. The results showed that RZ is not beneficial for hybrid 

PONs mainly due to its wider spectrum, which introduces higher interference between 

adjacent channels in the wavelength domain. The CSRZ signalling brought just a slight 

improvement compared to NRZ due to its central peak suppression at the carrier frequency, 

which makes this reduced power to be distributed in other areas of the spectrum where real 

data traffic is carried. Nevertheless, due to its insignificant improvement and higher design 

requirements, I propose to keep NRZ and deploy the hybrid PON scenario with a booster. The 

final results from hybrid TDM/WDM-PONs based on GPON in the time domain are shown in 

Figure 31.  

 

 

 

Figure 31: Q-factor (crosses) and BER (circles) for GPON downstream channels in hybrid TDM/WDM-PON 

 

Similar results are drawn in Figure 32 for hybrid PONs based on XG-PON in the time 

domain. As it can be seen from these graphs, the proposed hybrid TDM/WDM-PON with a 

booster and 35 km long SSMF proves to have acceptable BER, respectively Q-factor values, 

for each of the channels, either for GPON or XG-PON TDM based. 
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Figure 32: Q-factor (crosses) and BER (circles) for XG-PON downstream channels in hybrid TDM/WDM-PON 

 

The combination of FTTH TDM/WDM-PON system with GPON/XG-PON, video access 

architecture and a booster proves to be the best solution for scalable and future-proof network 

systems as it combines together all benefits of TDM, WDM and AONs. I highly recommend 

this solution for the next generation of OANs not only because of the physical reach, capacity 

and amount of users that it can handle, but also due to the fact that it doesn't introduce any 

changes in the ODN, which makes the migration from the current network infrastructure 

easier, and its deployment and maintenance more efficient. 

 

4.2 Optimization of Transmission Rate 

This section summarizes the results from simulation schemes, which were proposed in 

Chapter 3 regarding the optimization of transmission rate in optical systems, such as the 

implementation of EDC and advanced modulation formats. 

Firstly, the implementation of EDC using FFE and DFE is discussed based on the 

simulation scheme described previously in section 3.6, Figure 14. DFE was applied with 14 

feed-forward and 5 feedback taps. The tap weights were optimized using the MMSE criterion. 

The receiver noise was considered as well. OptSim software environment doesn‟t offer an 

FFE block by itself, however equalization has been set up as feed-forward by setting to zero 
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the number of taps of the Feed-Back Finite Impulse Filter in DFE block [118]. The received 

eye diagram without any dispersion compensation was distorted. Figure 33 shows the 

improvement which is done in terms of eye diagram, when EDC using MMSE-based FFE or 

DFE is applied. 

 

 

 

 Figure 33: The received eye diagrams from EDC using MMSE-based DFE (left) and FFE (right) 

 

Simple upgrade of multimode links from 1 Gbps to 10 Gbps without applying EDC leads 

to potential signal degradation due to the higher modal dispersion penalties. One of the 

proposed solution is the implementation of EDC based on FFE as per the simulation scheme 

which was described in Figure 15, section 3.6. The eye diagrams have been measured again 

and they are given in Figure 34. 

 

 

 

Figure 34: The eye diagrams before (left) and after (right) EDC in a multimode link 

 

Figure 34 shows the significant enhancement when EDC is applied. The achieved BER 

value is on the order of 10
-12

. This solution can be a sample implementation of the IEEE 

standard for 10 Gigabit Ethernet long reach multi-mode (10GBASE-LRM), which is based on 

the application of EDC at the receiver side.  
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In conclusion of EDC implementations, the design of direct-detection systems by 

deploying MLSE-based receivers is discussed. The results are obtained from the simulation 

scheme explained previously in section 3.6, Figure 16. The received eye diagram was found 

to be entirely closed. Figure 35 shows BER as a function of OSNR, obtained with a Monte-

Carlo error counting approach [118].  

 

   

Figure 35: BER as a function of OSNR for an uncompensated transmission system with a MLSE-based receiver 

 

As it can be seen from this graph, a BER of 10
-4

 is achieved for an OSNR equal to 14 dB. 

EDC is a suitable method for transmission systems up to 10 Gbps in terms of operations and 

cost efficiency. However, for higher transmission rates, the system can be too expensive, even 

for simple implementations. In addition, for very long traces in the order of hundreds of km, 

the standard optical dispersion compensation methods become necessary. Nevertheless, EDC 

can compensate non-linear effects unlike the optical domain approach. Furthermore, EDC is 

more resistant to PMD. This means that the best service delivery of an optical system can be 

achieved by properly combining electrical and optical methods, i.e. EDC for nonlinear effects 

and optical dispersion compensation for CD. 

The selection of modulation formats represents the most significant part while designing 

optical systems and optimizing their transmission rate. I was focused not only on enhancing 

the system performance of well-known formats in practice, but also of the new proposed 

solutions which can be promising for future use. One-channel systems with well-known 

formats are investigated at 10 Gbps and 40 Gbps in terms of BER and Q-factor, as per the 

scheme described in section 3.7, Figure 22. The main results are summarized in Figure 36.  
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Figure 36: BERs and their corresponding Q-factor values of the investigated modulation formats in 10 Gbps 

(above) and 40 Gbps (below) transmission systems for different fiber lengths [3]. 

 

Although OptSim can predict very high Q-factor values, the maximum value of y-axis has 

been limited due to the fact that the required measurement time duration in such cases would 

be unfeasible. As it can be seen from the graphs, RZ-DQPSK offers at 10 Gbps the lowest 

BER, respectively the highest Q-factor for any fiber length. DB operates more efficiently 

among the intensity formats. A red horizontal line in each graph indicates the threshold values 

of either BER equal to 10
-10

 or its corresponding Q-factor of approx. 6.36. Figure 36 shows 

that only DB, NRZ-DQPSK and RZ-DQPSK meet this threshold requirement up to 150 km of 

fiber length. Meanwhile, all OOK formats do not perform well at 40 Gbps. For this reason, I 

include in the bottom graphs of Figure 36 only DB, DPSK and DQPSK formats to distinguish 

better their limitations on physical reach. DB, NRZ-DQPSK and RZ-DQPSK do not differ 

much. Up to a certain fiber length, DB can operate even better than other formats, however as 

the fiber length increases, DPQSK starts to take over and it offers a lower BER value. 

These results however do not explain the essential physical key factors, which directly 

contribute in the overall system performance of a modulation format. I go deeper into the 

analysis and investigate each channel from the optical spectrum point of view at the operating 

wavelength of 1550 nm. The optical spectra of NRZ, RZ and CSRZ are given in Figure 37.  
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Figure 37: Optical spectra of intensity modulation formats at 10 and 40 Gbps [5] 

 

The scale of the x axis has been unified for comparison purposes. Figure 37 shows that 

NRZ format has the narrowest main lobe. One can observe the spectrum broadening of RZ, 

which can result in an ineffective bandwidth utilization and it can significantly limit its 

implementation in DWDM transmission systems. CSRZ modulated signal introduces a π 

phase shift between adjacent bits resulting in carrier suppression, which can potentially 

reduce the interference between adjacent pulses.  

Modulation formats have been deployed in DWDM PONs as per the simulation schemes 

specified previously in section 3.7. The results showed that the acceptable DWDM grid in 

point-to-point links for each format is 25 GHz, as per the simulation scheme given in Figure 

23. In this context, NRZ and CSRZ could allow in 10 Gbps systems with 25 GHz channel 

spacing a maximum BER of 10
-10

 up to 80 km with a proper use of optical filters. RZ did not 

work well primarily due to its broader spectrum. Tree topologies have been investigated as 

well due to their extensive usage in access networks to deliver efficiently triple-play services 

among end users. I refer to the scheme shown in Figure 24. The attenuation of splitters is 

considered also in simulations. The results for the tree topology are analogous, while 

comparing them to the previous point-to-point scenario. NRZ and CSRZ could enable up to 

24 km of physical reach, consisting of three fiber spans: 12 km, 8 km and 4 km, and separated 

by 1:8 and 1:32 splitters. Nevertheless, there was seen a slight improvement in terms of BER 

by CSRZ format. The transition to higher transmission rates emphasis the shortcomings of 
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each format, as it can be expected for the spectra shown in Figure 37. At 40 Gbps and 

beyond, all these formats did not achieve adequate results due to their significant increased 

crosstalk penalties, resulting in a highly deteriorated signal quality at the receiver. The only 

intensity format which benefits in higher spectral efficiencies is DB. The results from 

spectrum analysers are shown in Figure 38 for a DB modulated signal at 10 and 40 Gbps.  

 

 

 

Figure 38: Optical spectra of DB at 10 and 40 Gbps [5] 

 

At 10 Gbps, the smallest acceptable channel spacing was found to be 12.5 GHz and this 

combination of parameters could offer an optical reach up to 110 km. Furthermore, a DWDM 

grid of 25 GHz could improve 27 % more the maximum physical reach. In a tree topology, 

DB has been efficiently implemented at these SSMF lengths: 25 km, 15 km, 5 km, separated 

by 1:8 and 1:32 splitters, referring to the scheme given in Figure 24. DB's immunity to 

nonlinear effects is not that different from the previously mentioned binary modulation 

formats, especially at higher transmission rates. At 40 Gbps and 100 GHz grid, DB could 

grant up to 15 km of physical reach. Better results can be achieved if the dispersion map 

optimization is considered, among others. 

Moving on to phase-based formats, new spectral features are introduced. I show in Figure 

39 the optical spectra of NRZ-DPSK and RZ-DPSK. Both formats at 40 Gbps start to have 

much wider spectra, which extensively decreases their efficiency at this transmission rate and 

makes them unsuitable for higher ones. The limit acceptable grid at 10 Gbps was found to be 

25 GHz. In this system, NRZ-DPSK modulated signals could travel up to 105 km and meet 

the maximum allowed BER requirement at the receiver side. On the other hand, RZ-DPSK 

offered 6 % less in terms of physical reach, primarily due to its wider spectrum which 

produces higher interference between adjacent channels. The simulation results in a tree 

topology were close as well. 
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Figure 39: Optical spectra of NRZ-DPSK and RZ-DPSK at 10 and 40 Gbps [5] 

 

At 40 Gbps, the grid limitation is 100 GHz, but the system performance of formats was 

significantly decreased. Simulations showed that the usage of SSMF is in this case not 

effective. Therefore, I tried to replace them by the world's most widely deployed Non-Zero 

DSF, i.e. Corning LEAF. With this fiber replacement, NRZ-DPSK could enable a physical 

reach up to 26 km and RZ-DPSK about 8 % more, to maintain a BER lower than 10
-10

. 

Unlike DPSK, DQPSK format introduces a compression in frequency, as shown in Figure 

40. This enables higher spectral efficiency primarily at 10 Gbps, as well as increased 

tolerance to CD and PMD due to its longer symbol length. DQPSK can double the bit rate for 

a given bandwidth, or it can halve the required bandwidth for a given bit rate. The numerical 

results showed that NRZ-DQPSK allows a maximum optical reach of 100 km after 

optimizing the simulation parameters, without using any active component in the optical path 

in a 10 Gbps transmission system with 12.5 GHz channel spacing. Larger channel spacing 

significantly decreases the inter-channel interference. In case of NRZ-DQPSK, a channel 

spacing of 25 GHz could improve the numerical results up to 40 % in terms of physical reach. 

Meanwhile, RZ-DQPSK could enable up to 130 km of physical reach in a system with 12.5 

GHz channel spacing and about 45 % more when the 25 GHz grid was considered. The tree 
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topology has been also simulated. The best outcome was achieved by a 10 Gbps RZ-DQPSK 

system with 25 GHz spacing, and fiber spans 110 km, 60 km and 10 km, separated by 1:8 and 

1:32 splitters, according to the scheme in Figure 24. 

 

 

 

Figure 40: Spectra of NRZ-DQPSK and RZ-DQPSK at 10, 40 and 100 Gbps [5] 

 

Similarly as DPSK, the results in terms of optical reach were poor for 40 Gbps DQPSK 

systems with SSMFs. After replacing SSMFs with LEAFs, the transmission path could reach 

up to 35 km for a 50 GHz DWDM grid, which was found to be the threshold channel spacing. 

RZ-DQPSK's results were 10 % lower, primarily due to its wider main lobe. As it can be also 

expected from Figure 40, simulations showed that optical transmission of a 100 Gbps NRZ-

DQPSK DWDM system based on LEAF is not efficient without further improvements in 

transceivers and deployment of optical amplifiers. The maximum reach did not exceed 10 km 

and the maximum allowed spacing was found to be 100 GHz. 

PDM-QPSK is a promising format for transmission rates 100 Gbps and beyond. This 

format was not simulated for lower rates that 100 Gbps, because the other simpler formats, 

that have been mentioned earlier, can operate well at lower transmission rates and fulfil the 

contemporary infrastructure needs. The higher spectral efficiency of PDM-QPSK at 100 Gbps 

can be noticed at first glance from its optical spectrum in Figure 41. Its coherent detection 



Optimization of Optical Transmission Systems  60 

provides high sensitivity receivers. I could find that the minimum acceptable channel spacing 

at 100 Gbps is 50 GHz. 

 

 

Figure 41: Optical spectrum of a 100 Gbps PDM-QPSK modulated signal [5] 

 

By properly tuning the typical transceiver parameters, including those of optical filters, 

PDM-QPSK could successfully transmit optical signals up to 2000 km. I refer to the 

transmission scheme in Figure 25, which consisted of 20 fiber spans, 100 km each, and 

separated by inline amplifiers with fixed gains 20 dB. The total measured pre-FEC value for 

all four signals was in the order of 10
-4

 for 20 dB of span loss, which demonstrates the 

suitability of this format in long transmission systems. 

The results from research on modulations were related till now to single-channel systems 

and their individual analysis in DWDM networks. Subsequently, I deploy all formats in 

DWDM networks, and investigate them under the same simulation parameters, topology, 

transmission rate and DWDM grids, as per the scheme given in Figure 23. For simplification 

purposes, only nine channels in C-band with central frequency at 1550 nm are shown in the 

results. Modulation formats were firstly deployed in a 10 Gbps transmission system with 25 

GHz channel spacing, for three different fiber lengths: 70, 100 and 130 km. PDM-QPSK was 

not included in the results, because currently there is no acute need and cost benefit to deploy 

at lower speeds such complex formats, which are primarily designed for 100 Gbps and 

beyond. The results are shown in Figure 42. As previously mentioned, the red lines in graphs 

are related to the threshold values, i.e. Q-factor of approx. 6.36 and BER of 10
-10

. The y-axis 

has been limited up to a Q-factor of 7, which corresponds to a BER of approximately 10
-12

. 

Referring to the limitation of OOK formats, a 25 GHz DWDM grid is considered in the 

graphs of Figure 42. At 10 Gbps, all formats worked well in a 70 km SSMF transmission 

system, except of RZ, which is mainly affected by its wider spectrum. 
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Figure 42: 10 Gbps DWDM systems with 25 GHz channel spacing and fiber length 70, 100 and 130 km [4]. 

 

As the fiber length increases, the difference between formats becomes more clear. At 100 

km, all OOK formats do not meet the threshold BER requirement, although NRZ worked a 

little better. Meanwhile, the results of DPSK formats are close to threshold values. The slight 

difference between NRZ-DPSK and RZ-DPSK is primarily related to the wider spectrum of 

RZ-DPSK. DB is the only intensity format, which is still stable even for a 130 km long 

transmission and its system functionality is quite similar to that of DQPSK. Furthermore, 

DB's narrow bandwidth could manage together with DQPSK also a 12.5 GHz grid. The 

outcome from this channel spacing over a 100 km long transmission is shown in Figure 43.  

 

 

 

Figure 43: 10 Gbps DWDM system with 12.5 GHz channel spacing and 100 km long SSMF [4]. 
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The highest Q-factor for each optical channel was achieved by RZ-DQPSK among 

DQPSK formats. DB proves again to be a stable format, which can be even more efficient 

than NRZ-DQPSK and CSRZ-DQPSK in terms of transmitter design complexity.  

All formats are subsequently deployed in a 40 Gbps system. The fiber length is set to 12 

km to distinguish better the performance between individual formats. OOK‟s efficiency 

significantly decreases at this rate,  therefore they have been excluded from the results in 

Figure 44.  

 

 

 

Figure 44: 40 Gbps DWDM systems with 12 km long SSMF [4]. 

 

The results are shown for two different DWDM grids. The first selected grid is 100 GHz, 

which is the minimum acceptable channel spacing for DB and DPSK. The second grid is 50 

GHz, which is related to the grid limitations of DQPSK and PDM-QPSK formats. From the 

first graph of Figure 44, it can be seen the overall system improvement in terms of Q-factor of 

DQPSK compared to DPSK for each optical channel. Although being an intensity format, DB 

proves its superiority in this scenario over phase-based formats. Nevertheless, DB's boundary 

DWDM grid at 40 Gbps is 100 GHz and the only two formats which could handle a channel 

spacing of 50 GHz are DPQSK and PDM-QPSK. PDM-QPSK operates way better than 
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DPQSK and furthermore, it can also be efficient at 100 Gbps with 50 GHz spacing, and as it 

was earlier shown, it can enable hundreds of km of physical reach by properly applying 

dispersion compensation techniques and in-line amplification.  

Other modulation formats more complex than PDM-QPSK have been studied as well. 

Nowadays some trials exist mainly in the lab environments, but none of them has been 

standardized to be massively deployed in practice. The primary reason is their design 

complexity for massive production so far and operators are often using other simpler 

solutions such as link aggregation technologies or deployment of more fibers with common 

transceivers to fulfil the capacity needs in their backbone networks. One of the most 

promising solutions which might be a standardized solution in the upcoming years for terabit 

transmissions can be the combination of QAM formats with PDM. The idea behind it, is 

similar as the combination of QPSK with PDM. I simulate PDM-QPSK and PDM-16QAM 

formats using the simulation scheme as per Figure 25, with a 50 GHz grid for few optical 

channels at a baud rate of 32 Gbps. This results in a per channel bit rate of 128 Gbps in case 

of PDM-QPSK and 256 Gbps in case of PDM-16QAM including FEC overhead. The optical 

spectrum of PDM-16QAM is given in Figure 45.  

 

 

 

Figure 45: Optical spectrum of a 256 Gbps PDM-16QAM modulated signal 

 

The spectral efficiency for PDM-QPSK is 2.56 bits/Hz (i.e. 128 Gbps / 50 GHz), 

meanwhile for PDM-16QAM is 5.12 bits/Hz (i.e. 256 Gbps / 50 GHz). This means that PDM-

16QAM offers double spectral efficiency compared to PDM-QPSK. However this comes at 

the cost of higher required OSNR at a given BER. For e.g., the required OSNR for a pre-FEC 

BER of 10
-3

 is 13.5 dB for PDM-QPSK and 21 dB for PDM-16QAM. 
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Conclusions 

 

In this thesis I proposed many novel solutions that can be utilized for the optimization of 

existing optical telecommunication networks and fulfilment of future demands for higher 

transmission rates and capacities. Among the proposed solutions are: the use of complex 

modulation formats for transmissions above 100 Gbps per optical channel such as PDM-

QPSK and PDM-xQAM; transparency and convergence of access networks at the physical 

layer including dynamic solutions which can support different bit rates within the same 

transmission system; optimization of CWDM and DWDM systems and their maximum 

allowed channel spacing; maximal utilization of the fiber capacity meanwhile minimization 

of the cost per transmitted date; and deployment of length optimized splitters, among others. 

Thesis gave a broad set of recommendations on how to systematically design optical 

networks, either access or backbone, based on the topology, number of channels, most 

efficient modulation format and highest possible network throughput.  

A low-loss length-optimized 1x64 Y-branch splitter has been considered to improve the 

insertion loss uniformity of casual splitters, so the signal quality from providers' edge to 

customers is distributed in even quality. This adds additional assurance to providers to 

maintain the same SLA to each of the customers. Significant improvements were achieved at 

10 Gbps systems in terms of BER, Q-factor. I showed that the combination of WDM and 

TDM is the most efficient PON solution in terms of cost-effectiveness, flexibility and 

extendibility. The hybrid system based on GPON and XG-PON recommendations in the time 

domain could theoretically provide simultaneous network connectivity up to four thousands 

of subscribers over the same optical medium. The same system was optimized further by 

deploying a booster, which could significantly extend the physical reach. This proposed 

solution doesn't introduce any changes within ODN and it can serve as a long-term resolution 

for future data, voice and video demands on access networks. The EDC implementation is 

one of the ways how to contribute on transmission rate optimization. Implementation of 

EDCs using MMSE-based FFE and DFE was investigated as well as EDC FFEs in multimode 

links, and MLSE receivers for uncompensated systems. EDC can compensate non-linear 

effects and it is more resistant to PMD, unlike the standard optical dispersion compensation 

methods. However, for higher transmission rates than 10 Gbps, the system can be too 

expensive even for simple scenarios, hence as a better approach comes the proper 
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combination of electrical and optical methods, i.e. EDC for nonlinear effects and optical 

dispersion compensation for CD. 

A significant part of the research done for this thesis was also the investigation of 

modulation formats, since they play the most significant role while designing optical 

transceivers. In this document I primarily investigated intensity, phase-based and PDM-based 

modulation formats. The main goal was to find out their limitations in commonly used 

network topologies, either single-channel or DWDM systems, with respect to transmission 

rate, BER, Q-factor, OSNR, optical reach, spectral efficiency, transceiver design, hardware 

limitations, channel spacing, fiber type, among others. Limitations in DWDM networks were 

figured out for each format and the most suitable solution has been proposed. Many schemes 

have been recommended to be the ones with the most efficient modulation format based on 

the number of channels, topology, either point to point or tree topology, channel spacing if 

more than one channel, transmission rate, fiber type and physical reach. The spectrum of each 

individual format was analyzed at a reference wavelength and justified why it is an important 

physical factor, which directly affects the spectral efficiency and the overall system 

performance. The spectrum broadening of RZ can result in an ineffective fiber capacity 

utilization, primarily in DWDM systems. Up to 10 Gbps, NRZ and CSRZ operate well even 

for a channel spacing of 25 GHz. At 40 Gbps, all OOK formats were not suitable due to their 

significant increased crosstalk penalties, resulting in a highly deteriorated signal quality at the 

receiver side. Among all intensity formats, DB performed the best. 

Phase-based modulation formats introduce new spectral features. DPSK could enable a 

physical reach above 100 km in 10 Gbps systems with 25 GHz grid, and without any 

repeaters involved. At 40 Gbps, NRZ-DPSK and RZ-DPSK formats can be beneficial while 

running over Corning LEAFs and minimum channel spacing of 100 GHz. Nevertheless, 

DPSK didn't offer significant improvements compared to other phase-based formats. DQPSK 

format introduces a new enhanced compression in frequency, and it can double the bit rate for 

a given bandwidth. Among the biggest advantages of this format are: higher spectral 

efficiency primarily at 10 Gbps, as well as increased tolerance to CD and PMD due to its 

longer symbol length. At 40 Gbps, DQPSK can be also an attractive solution in DWDM PON 

systems with 50 GHz grid and LEAFs within the ODN. After comparing all these formats 

within the same ODN which utilized the DWDM technique, DB proved to be even more 

efficient at 10 Gbps than DQPSK in terms of transceiver design and implementation 

complexity. DB proved to perform the best at 40 Gbps as well, however its boundary DWDM 

grid at this transmission rate is 100 GHz. 
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The most promising formats for future PONs are the ones that combine phase modulation 

with PDM, coherent detection and DSP, at the cost of higher design complexity, power 

consumption and faster circuits. These formats were proved to bring significant benefits at 

100 Gbps and beyond. PDM-QPSK has been recommended  to be used at 100 Gbps and 

PDM-16QAM at 256 Gbps in DWDM systems with 50 GHz channel spacing. By proper 

tuning of the parameters within the transmission system, PDM-QPSK could carry data traffic 

up to 2000 km of transmission path with the help of dispersion compensation techniques and 

optical amplification. PDM-QPSK and PDM-16QAM have been investigated in DWDM 

systems to determine which of them can offer a more significant scientific progress in the 

area of optical transmitter design. PDM-16QAM was found to offer double spectral efficiency 

compared to PDM-QPSK, at the cost of higher OSNR for a given BER.  

I strongly believe that 400 Gbps or 1 Tbps channels for long-haul transmission systems 

can be standardized in a near future as well, if the vendors properly combine and utilize the 

followings: complex constellations, high symbol rates, multiple sub-carriers. This is an open 

research which might take several more years. 
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