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Abstract

Intrusion detection systems (IDS) used in network security are complex solutions that require
precise tuning prior to their deployment. Such tuning, however, is a problem. If done statically,
the fixed configuration fails to follow the dynamic trends in the network traffic. On the other
hand, configuration which is dynamically optimized using the complete traffic of the monitored
network (background traffic) is infeasible due to the lack of ground-truth. To tackle these issues,
researchers recently proposed to mix prerecorded static traces of labeled network traffic (i.e.
challenges) into the background traffic, where they serve as evaluation data, and the IDS is
dynamically adapted with respect to these challenges.

This thesis extends the challenge-based approach in two steps. In the first step, we adopt
techniques from game theory to model the interactions between IDS (defender) and an at-
tacker to make the adaptation process robust against the rational adversaries. We propose
a dynamically-defined two-player single stage game with complex utility function to precisely
capture incentives of both attacker and defender. Next, we combine the game definition with
the challenge-based principle so we can estimate the parameters of the security game online, use
traditional game-theoretical solution concept to solve the game, and immediately reconfigure
the IDS accordingly. The experimental evaluation proves that this approach outperforms the
trust-based baseline solution and thus allows us to improve the performance of the IDS against
rational attacker.

However, using fixed database of static challenges for dynamic adaptation of the IDS is still
far from optimal as it provides data with only limited variability, and manual updates of the
database cannot provide new data fast enough as new trends and techniques used by malware
authors emerge literally every day.

To solve these problems, we propose to replace legitimate challenges with dynamic simulation
of network behavior based on probabilistic generative model. We experimentally verified that
the proposed model generates network traffic similar to the traffic of real users. Next, we
automate the updating the database of malicious challenges via emulation of malicious behavior
with network traffic observed during execution of malware binaries in controlled environment
(sandboz). In order to address the lack of labeled malware binaries, we propose novel approach
for classification and clustering of unknown binaries based on their interactions with system
resources (files, network traffic, mutexes, registry keys and error messages generated by the
operating system). Moreover, the proposed model prioritizes the generated clusters to further
aid the manual analysis of the threat level required in the definition of the security game. The
performance of the classification and clustering of malware binaries is verified on large real-world
dataset.



Abstrakt

Systémy pro detekei vniknuti do pocitacovych siti (IDS systémy) predstavuji komplexni feent,
ktera pred svym opera¢nim nasazenim typicky vyzaduji pfesné nastaveni v8ech parametri. To
ovSem predstavuje problém. Staticka konfigurace totiZz nerespektuje dynamické zmény v sitovém
provozu. Stejné tak pouziti dynamické konfigurace optimalizované na zakladé sitového provozu
neni mozné kvuli jeho neznamé klasifikaci. Proto byl v posledni dobé& navrzen tieti postup. Ten
je zaloZeny na principu vkladani pfedem oklasifikovanych statickych piikladt sitového provozu
(challenges), na jejichz zakladé se pak IDS systém dynamicky rekonfiguruje.

Tato préace rozsSifuje posledni zminény postup ve dvou smérech. Tim prvnim je pouziti
herné-teoretického pfistupu, ktery modeluje interakce mezi obrancem (v naSem p¥ipadé IDS
systém) a uto¢nikem. Navrzené feSeni spoc¢iva v pouZiti dynamicky definované jednokolové hry
dvou hra¢i kombinované s komplexni u¢elovou funkci, ktera detailné zachycuje zaméry utocnika
i obrance. Tato hra je poté propojena s principem vkladani prikladu sitového provozu, abychom
mohli odhadnout jeji parametry a nalézt optimalni feSeni, podle néhoz se poté IDS systém
rekonfiguruje. Experimentalni evaluace ukazuje, Ze navrzeny postup je schopen v porovnani s
vychozim trust-based feSenim lépe optimalizovat IDS systém.

V takovém pripadé vSak neni pro dynamickou rekonfiguraci IDS systému optimélni pouziti
fixni databaze statickych piiklad sitového provozu, a to kviili jeji omezené variabilits. To se
tyka jak provozu legitimniho, tak také generovaného malwarem.

Druhou ¢asti navrhovaného feSeni je nahrazeni fixni databize. V pripadé legitimniho
provozu je nahrazena dynamickou simulaci pomoci generativniho modelu. Tady experimen-
talni ovéfeni ukazuje, Ze navrzeny model simuluje provoz podobny redlnému provozu. V pfi-
padé provozu generovaného malwarem je databaze automaticky aktualizovana pomoci provozu
zachyceného v pribéhu exekuce malwaru v kontrolovaném prostiedi (sandboz). Vzhledem k
tomu, ze klasifikace jednotlivych aplikaci obvykle neni dostupna, navrhujeme klasifikovat a
shlukovat tyto aplikace podle jejich interakce se systémovymi prostiedky (soubory, sitovym
provozem, mutexy, registry, a chybovymi hlaSenimi generovanymi operaénim systémem) a tim
zjednodusit manuélni analyzu. NavrZzeny model je navic schopen sefadit jednotlivé shluky ap-
likaci pro néslednou analyzu jejich nebezpecnosti, kteréd je poté pouzita pii definici adaptaéni
hry. Schopnost klasifikovat a shlukovat neznamé aplikace byla overena na rozsahlé mnoziné
vzork.
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Chapter 1

Introduction

Due to the increased frequency and sophistication of cyber-attacks carried out over the In-
ternet, protection of the critical infrastructure has become more important than ever before.
Governments, corporations and other institutions deploy multilayered security solutions, with
an intrusion detection systems (IDS) [1] at the core, to protect their networks. Deployed next
to tools for policy enforcement (firewall), intrusion prevention systems (IPS) or host-based de-
tection systems (antivirus software), they often serve as the last line of defense against threats
such as targeted attacks, advanced persistent threats (APTs) or sophisticated malware.

One particular type of an IDS that received a lot of attention in research community is
an anomaly-detection-based IDS [2, 3]. It employs statistical modeling and machine learning
techniques to automatically detect threats by monitoring irregularities in the network traffic.
The main benefit is its independency on the static database of externally-maintained threat
intelligence or hand-designed rules. On the other hand, anomaly-detection-based IDS typically
requires precise tuning of its internal parameters before deployment to real-world networks [4]
to prevent overwhelming number of false alarms.

Traditional approach to optimize parameters of an IDS relies on labeled static dataset of the
network traffic. During the process, the optimal configuration is pre-selected and used across
all deployed instances of the IDS. However, such approach does not respect different profiles of
individual networks (bank vs. academic vs. retail), the dynamic nature of the network traffic
(different profile of the network during the day and night or working days and weekends),
or the rapid evolution of the threat landscape (new malware families or their variants are
emerging literally every day). This leads to situations when an attack, easily detected during
the nighttime, remains hidden in the daytime traffic, or when a new type of attack is completely
missed by the IDS.

An alternative approach is to tune the IDS system dynamically as it is deployed. However,
such approach requires labeling of the background traffic which is typically not available in
online deployment. Moreover, using the background traffic directly makes the configuration
process susceptible to manipulation as an adversary has direct access to the data used for
tuning. Such attacker can mislead the IDS by insertion of a sequence of attacks that are
orthogonal to its actual plan, and that would make the IDS less sensitive w.r.t the actually
dangerous attacks.

The approach proposed by Rehék et al. [5] is positioned between completely offline and
completely online approach. It is based on mixing known prerecorded examples of both legiti-
mate and malicious traffic called challenges [6] into the background traffic. The challenges are
then used to tune the system against various types of malicious behavior such as different types



of attacks or command and control channels used by malware. As challenges are completely
under operator’s control, attacker’s options to manipulate with the configuration of the IDS are
reduced.

However, for adversary with the complete knowledge of the system it is still possible to
attack the adaptation process itself and increase the chances to perform a successful attack [7].
To protect the adaptation process and tune the IDS in environments with such advanced adver-
saries, game theory [8] is a natural choice. It studies interactions of two or more actors, called
players, with potentially antagonistic goals and provides concepts for solving such interactions.
As such it was successfully adopted, albeit offline, for optimization of parameters of IDS in
scenarios with rational adversary [9, 10, 11, 12, 13, 14, 15]. However, adopting game theoretical
principles in online adaptation of an IDS system with the assumption of a rational attacker is
still an open question.

As we have discussed above, the approach proposed by Rehék et al. [5] relies on traffic traces
called challenges and assumes that they are realistic representations of the real-world traffic.
However, using static database of fixed traces is not optimal as it provides data with only
limited variability and updating process based on manual analysis of the unknown network
traffic does not provide sufficient amount of data to cover frequent modification of malware
behavior employed by malware authors. This aspect raises a question how to keep the database
updated or how to replace the static database and provide labeled data in sufficient quality and
volume.

1.1 Research problems

The open questions discussed in previous paragraphs can be summarized into the following
research problems:

e RPI1: How to dynamically tune parameters of an IDS system in an adversarial environ-
ment?

In situations when static configuration fails to capture differences between individual
networks, the dynamic character of network traffic, or changes in the threat landscape, the
adaptation process based on mixing pre-recorded traces of network traffic offers promising
results. However, attacks against the adaptation process may reduce its effectiveness. In
this thesis, we propose to tune the configuration of an IDS online such that the damage
caused by possible attacker with the complete knowledge of the system is minimized.

e RP2:How to obtain large amount of labeled data necessary for adaptation/validation of an
IDS system?

The key component of the adaptation process is the labeled data (challenges). Mistakes
in labels, or mismatch of the profile of both legitimate and malicious traffic, or unrealistic
artifacts in the data can cause failure of the adaptation process and limit the operational
performance of the IDS. However, obtaining high quality evaluation data is difficult as
manual labeling of network traffic requires deep understanding of both threat landscape
as well as the principles of the network communication itself. Even a highly-skilled expert
is often unable to provide accurate labels as they typically depend on the context (e.g.
connection to google.com can be either legitimate if an user is using it for search, or can
be a sign of malicious infection if it is used by malware as connection check). In this thesis
we divide the problem of obtaining evaluation data into two subproblems:

— RP2a: How to obtain sufficient amount of benign training data?
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Figure 1.2.1: Schema of the proposed architecture described in the thesis.

— RP2b: How to obtain fresh examples of malicious behavior?

It has been recognized by the community [16, 17, 18] that simulation and emulation of the
network traffic provides data that can be used for evaluation of an IDS system. In this
thesis, we propose a solution that connects both these approaches to obtain evaluation
data suitable for the adaptation process.

1.2 Proposed architecture

The research problems defined in the previous section motivate the solution illustrated in Fig-
ure 1.2.1. It extends the idea originally proposed by Rehak et al. [5] in two ways. First, we
introduce robust approach to online reconfiguration in the environment with advanced adver-
sary based on game-theoretical principles. The proposed solution tunes the system with respect
to administrator’s preferences for various types of attacks/malware families available to the at-
tacker and at the same time it minimizes the possible damage caused by successful attacks.
Second, we extend and improve the original idea of challenges with simulated traffic in the
case of legitimate users and emulated traffic in the case of malicious behavior to provide large
amount of realistic network traffic suitable for online adaptation of an IDS.

1.2.1 Game-theoretical online reconfiguration

As we have described in RP1, the online adaptation process is vulnerable to advanced attacks
performed by an attacker with the knowledge about the internal state of the IDS. In Chapter 3
we frame the problem in the game-theoretical framework. We specify the problem as a dynam-
ically defined two-player non-zero-sum game with utility function specifically designed for the
purpose of dynamic reconfiguration of the IDS and use standard solution concepts used in game
theory to solve this game. Using this formalism, we are able to dynamically select configuration
with minimal loss with respect to various types of malicious behavior represented by challenges
and thus minimize attacker’s gain.



1.2.2 Simulation of legitimate behavior

It has been recognized by the community [19, 16, 20, 21] that it is possible to artificially
simulate the legitimate behavior such that the IDS is not able to distinguish simulated and
real network traffic. In Chapter 4 we present a generative model designed to simulate realistic
traffic of legitimate users in the form of NetFlows [22], lightweight format suitable for anomaly-
detection-based IDS [23]. The model is based on the assumption that high-level behavior of a
legitimate user is stable in time, meaning that even though there are dynamic changes in the
behavior (day vs. night, working days vs. weekends, etc.) his long-term behavioral patterns
are stable (e.g. he uses the same e-mail server every day for long time, or visits the same web
sites, etc.).

1.2.3 Emulation of malicious behavior

Compared to the behavior of legitimate users, the network behavior of malicious actors changes
much more rapidly, as attackers frequently devise new techniques to avoid detection. Since
finding new malware, its analysis and building models of its behavior can take days or weeks
(or in case of sophisticated malware even months [24]), using complex stochastic model for
simulation of malicious network traffic would be impractical. Thus, we propose to employ
emulation instead of simulation. We execute various malware samples in a controlled environ-
ment (sandbox), record their network traffic and use them as challenges. Problem is, that even
though there is large number of samples® we can use, their classification (malware/legitimate)
and categorization into various malware families is unknown and manual analysis does not scale
to the amount necessary for the purpose of adaptation.

To address this problem, we provide an approach that instruments all samples in sandbox,
classifies them as legitimate or malicious and clusters the malicious ones into coherent groups.
Even though the groups are not categorized into malware families, samples in a single group
exhibit similar behavior so the complexity of manual analysis is significantly reduced.

The proposed approach is based on assumption that actions of a sample are visible through
its interaction with system resources, which in this work includes (1) interactions with files
(e.g. during encryption of a victim’s hard drive), (2) network communication (e.g. during
data exfiltration or displaying advertisements), (3) operation with mutexes (e.g. used to ensure
a single instance of malware is running), (4) manipulation with registry keys (e.g. to ensure
persistency after reboot), and (5) error messages of the operating system itself. As the number
of interactions vary for every sample (every sample interacts with different files, registry keys,
etc.), we apply multiple instance learning paradigm [25], designed to model such data, which
builds a vector representation of the sample suitable for standard machine learning algorithms.
Unknown samples are then classified using random forest classifier [26] and the ones considered
as malicious are clustered using probabilistic generative model (Bernoulli mixture model [27]).
The benefit of the probabilistic formalism is not only, that it is able to correctly cluster the
data, but we are able to derive (1) prioritization schema that promotes clusters better suited
for human analysis and (2) we can extract indicators of compromise (IOC), examples of files,
registry keys, mutexes etc., that can help an analyst and can be used to identify the malware
family in the future.

n this context by sample we mean anything that can weaponized by malware, i.e. PE executables, PDF
files, JAR files, documents with macros, etc.



1.3 Key contributions

e Game-theoretical approach to online reconfiguration of an IDS system [28, 29]
(Chapter 3). We present a self-adaptation mechanism for network intrusion detection
system based on the game-theoretical formalism to address RP1. The key innovation of
our method is a secure runtime definition and solution of the game and real-time use of
game solutions for immediate system reconfiguration. Our approach is suited for realistic
environments where we typically lack any ground truth and where the significant portion of
system inputs may be shaped by the attacker whose goal is to render the IDS ineffective.
Therefore, we employ the concept of challenge insertion: we inject a small number of
simulated traffic (both malicious and legitimate) into the background traffic and use the
system response to the challenges to define the game structure and utility functions. This
approach is also advantageous from the security perspective, as the manipulation of the
adaptive process by the attacker is far more difficult.

e Simulation of legitimate behavior [30] (Chapter 4). We propose a generative model
of the user’s behavior covering different aspects of the network traffic. It generates of
new data and thus it extends the principle of challenges. The possibility to continu-
ously generate examples of network traffic overcomes the key problem of challenge inser-
tion—limitation of variability of static challenges. In experimental evaluation, we demon-
strate that the model generates data practically indistinguishable from the real-world
samples, which makes it well-suited for the purpose of online reconfiguration and thus
addresses RP2a.

e Classification of sandboxed samples [31] (Chapter 5). We propose a novel approach
to model behavior of unknown binaries executed in sandbox based on their interaction
with system resources (files on the filesystem, mutexes, registry keys), network commu-
nication with remote servers and error messages generated by operating system. Since
the number of system resources the binary interacts with vary for every binary, we adopt
multiple instance learning that is specifically designed to handle such data. The proposed
approach was applied in two-class classification scenario necessary for solving the first
part of RP2b, for preselecting malware binaries. The extensive evaluation on large-scale
real-world dataset proves that the proposed approach outperforms current state-of-the-art
as it achieves the classification error lower by 30%.

e Clustering of sandboxed samples [32] (Chapter 6). In order to provide complete
framework for analysis of unknown samples we propose a probabilistic generative model
(Bernoulli mixture model) based on the representation described in Chapter 5, which
clusters malware samples according to their behavior. Moreover, the probabilistic model
allows human-friendly prioritization of identified clusters and extraction of readable be-
havioral indicators to maximize interpretability. Using this method human analysts are
able to annotate large number of malicious samples that can be used in adaptation process
which completes RP2b. The quality of the proposed model was evaluated on large-scale
experiments using real-world dataset and compared to related state-of-the-art approaches.
The evaluation prove that the proposed approach is able to discover the malware families
more precisely than state-of-the-art with the added benefit of human-friendly prioritiza-
tion and extraction of behavioral indicators.



1.4 Outline of this thesis

The thesis is organized as follows:

Chapter 2 summarizes review of relevant prior art. It is divided into three main parts covering
game-theoretical configuration of an IDS, simulation of network traffic and analysis of
malware binaries.

Chapter 3 describes the principles of the runtime adaptation in the adversarial environment.
It provides definition of the security game and its solution concepts, and evaluates its
impact on the real-world IDS.

Chapter 4 proposes probabilistic generative model that extends the concept of static chal-
lenges used in Chapter 3 so that their shortages are overcome. The quality of the gener-
ated traffic is experimentally evaluated on real-world IDS.

Chapter 5 introduces novel approach to model malware’s behavior based on multiple instance
learning. The performance of proposed model is verified on large-scale dataset and com-
pared to state-of-the-art approaches on the two-class classification problem.

Chapter 6 introduces novel approach to analysis of unknown samples executed in sandbox
based on the representation introduced in Chapter 5. This chapter proposes a probabilistic
generative model applied to the problem of clustering of malicious binaries as well as
prioritization of generated clusters and extraction of high-quality behavioral indicators to
simplify the human analysis. The performance of the proposed approach is experimentally
verified and compared to the state-of-the-art approaches.

Chapter 7 summarizes the contributions of this thesis and provides list of publications.



Chapter 2

Related work

In this chapter, we will review the recent work related to main topics of this thesis. First,
we will discuss the state-of-the-art approaches related to game-theoretical configuration of an
IDS system (Section 2.1), followed by review of approaches for simulation of network traffic
(Section 2.2) and recent work focused on analysis of malware samples (Section 2.3).

2.1 Game-theoretical reconfiguration

Using game theory in security applications (physical security [33, 34|, jamming and eavesdrop-
ping of wireless networks, IDS configuration, etc.), is a popular approach for modeling real-world
situations where we assume rational attacker [35, 10, 36]. It provides solid mathematical frame-
work for modeling interactions between two (or more) opponents with possibly antagonistic
intentions, and provide solution concepts that the optimal decision process can be based on. In
this section, we review the work related to configuration of an IDS system under the assumption
of rational attacker. The discussed approaches are summarized in Table 2.1.

2.1.1 Reconfiguration of single IDS system

One of the first applications of the game theory in intrusion detection systems was proposed
by Alpcan et al. [37]. Authors propose IDS composed of multiple detection nodes distributed
in the network and define two-player non-zero-sum game between attacker and defender to
optimally assign operational thresholds for the proposed IDS. Authors further extended their
work in [38] where they relax the assumption about perfect detection of attacker’s actions. They
introduce third fictional player that represents the IDS with imperfect detection of attacker’s
actions. Next, in [39] authors use their previous results and define the interaction between
attacker and defender as stochastic game and model the state of the network using finite-state
Markov chain. The optimal solution of the game is then find using reinforcement learning
(Markov-decision-process value iteration, minimax-Q, naive Q-learning).

Next step in the game-theoretical reconfiguration of an IDS was proposed by Zhu et al. [10].
Authors propose to use stochastic zero-sum dynamic game to model dynamic behavior of at-
tacker and defender. They further assume that defender (the IDS system) can be in one of
particular states s € S = {s1,...,$,}, which for n = 2 the state can represent whether the
system is infected or not. Next, authors assume that attacker has limited set of possible attacks
A = {ay,...,ap} with predefined damage d; at his disposal and defender has finite set of
libraries £ = {l1,..., Iy} assigned costs of deployment c;, where every library I; can detect only

7



Approach Game type IDS #players

Alpcan [37] two-player, non-zero-sum game S 2
Alpcan [38] two-player, non-zero-sum game S 2
Alpcan [39] two-player zero-sum stochastic game S 2
Liu [9] two-player static/dynamic Bayesian game S 2
Reddy [40] two-player zero-sum game S 2
Nguyen [41] two-player non-zero-sum game with imperfect inf. S 2
Zhu [10] stochastic zero-sum dynamic game S 2
Zhu [12] cooperative game S 2
Lisy [42] imperfect-inf. zero-sum extensive form game S 2
Zhu [43] two-player zero-sum game S 2
Moosavi [14], [15] two-player non-zero-sum discounted stoch. games S 2
Chen [44] static cooperative/non-cooperative game C N+M
Zhu [11] non-zero-sum stochastic game C N+ M
Jin [45] two-layer stochastic game C N+ M
Proposed approach  two-player, non-zero sum dynamically defined game S 2

Table 2.1: OVERVIEW OF THE RELATED WORK FOR CONFIGURATION OF SINGLE IDS SYSTEM (S) OR
COOPERATIVE IDS (C) ALONG WITH DETAILS ABOUT THE ADOPTED GAME-THEORETICAL CONCEPT.

Monitor Not monitor
Attack (1-20)w—cq, 20— 1)w—1cp wW—Cq,—W
Not attack 0, —fBw — ¢, 0,0

(a) DEFENDER’S OPPONENT IS ATTACKER NODE.

Monitor Not monitor

Not attack 0, —pw — ¢, 0,0

(b) DEFENDER’S OPPONENT IS REGULAR NODE.

Table 2.2: UTILITY FUNCTION FOR THE GAME DEFINED BY LIU ET AL. [9] WHERE w REPRESENTS THE
VALUE OF PROTECTED ASSET, « IS DEFENDER’S TRUE POSITIVE RATE AND 3 REPRESENTS DEFENDER’S
FALSE POSITIVE RATE, AND Cm, Cq > 0 REPRESENT COSTS OF MONITORING AND PERFORMING ATTACK
RESPECTIVELY.



subset of attacks and nothing else. Actions taken by the defender represent loading/unloading
particular library and actions taken by attacker represent performing particular attack. Authors
state that optimal policies can be computed either offline or using online learning. Furthermore,
authors propose an extension of their approach based on @-learning that can be used to esti-
mate the optimal policy in case that transition probabilities between states are not known, and
prove that under mild constraints their iterative algorithm converges to the optimal Q-function
and yields to optimal policies.

Zhu et al. further extend their previous idea in [12] where they introduce the solution to
optimal signature-based IDS system. They relax the condition from [10] that particular library
always detect an set of attacks and introduce the probability af; that particular attack a; can be
detected with library /;, and a”-weighted detectability of attack that represents the effectiveness
of an IDS against attack a; composed of a set of detection libraries. Using cooperative game
authors describe influence of individual detection libraries, apply Shapley Values and Banzhaf-
Coleman index to solve the optimization problem and provide optimal configuration of an IDS
system.

Zhu et al. [43] extend their idea of an IDS system to the whole network and postulate that
attacker can gain detailed information about static network using sufficient number of scans.
To address this problem, authors propose to dynamically reconfigure the network structure and
thus disrupt the attacker’s knowledge. The aspect that authors need to optimize is how fre-
quently reconfigure the network infrastructure as frequent changes disrupt attacker’s knowledge
but the legitimate business usages as well.

Besides traditional area of deployment, wireless sensor networks present important area that
requires protection as they are vulnerable to various types of attacks (jamming, eavesdropping,
etc.). Problem is that, traditional technologies are typically not applicable here due to limi-
tations of power, storage, or processing capabilities. Reddy [40] applies two-player zero-sum
game to solve the problem of allocation of detection mechanisms, where the goal is to keep the
network operational and minimize the total energy spent by the nodes in the network with the
assumption of the rational attacker.

Liu et al. [9] adopt the two-player Bayesian game for monitoring of wireless ad hoc networks.
Authors assume three types of nodes in the network: (1) defender node with actions monitor or
not monitor, (2) attacker node with actions attack or not attack and (3) regular node. Authors
further assume that defender do not know whether particular node is attacker or regular but
rather define prior probability ug that particular node is attacker. The payoff matrix in strategic
form given in Table 2.2 formalizes the interaction between defender and two remaining types
of node. It can be derived that in case that

A+Bw+em

2a+p-1Nw

the Bayesian game admits single pure strategy that defender plays Not monitor, and the oppo-
nent plays Attack if the node is malicious and Not attack if it is regular. In case that

Ho

(L+B)w + cm
2a+p-1Nw

only mixed strategy exists. Authors further extend the proposed game into dynamic Bayesian
game where defender’s prior probabilities about node being malicious are updated in every
step. The approach is then deployed in hybrid IDS system where defender can choose between
lightweight IDS and heavy IDS with different costs of monitoring. The benefit of such deploy-
ment is that the lightweight IDS with much lower monitoring costs can save significant amount
of energy without complete loss of protection.
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Similarly, Moosavi et al. in [14] and [15] address the problem of protecting wireless ad
hoc or sensor networks. Authors assume that due to the nature of these networks continuous
monitoring is not possible as individual nodes have only limited resources (battery, bandwidth,
etc.) and IDS can monitor only one wireless channel at the time. Therefore, in this work
authors adopt discounted stochastic games to model the situation when attacker tries to disrupt
wireless ad hoc network by compromising critical number of nodes, whereas defender’s goal is
to prevent such disruption by protecting clean nodes and recovering nodes that were already
compromised. Individual states of the game then represent number of compromised nodes in
the network. Authors verify the game definition on simulated scenario and analyze critical
number of compromised nodes under various configurations. Such analysis then can serve as
a guideline for deployment and configuration of various security solutions in wireless ad hoc
networks.

Slightly different scenario is studied by Lisy et al. [42] where authors propose to use game-
theoretical approach for adversarial plan recognition. Authors define the problem of plan recog-
nition as an imperfect-information zero-sum game in extensive form between the attacker and
the detector, and provide novel generalization of Monte-Carlo tree search to approximate the
optimal solution (Nash equilibrium [8]). The experimental evaluation proves that using game-
theoretical approach outperforms various naive approaches used for plan recognition.

2.1.2 Networked and collaborative IDS

Networked and collaborative IDS systems are natural extension of single IDS system deployed
to multiple nodes in the network. The earliest works assume that IDS systems are collaborating
honestly without selfish intentions [13, 46].

One of the first work that introduces the game theory in the field of cooperative IDS is
proposed by Chen et al. [44]. Here authors apply the work proposed by Liu et al. to the network
with multiple targets, each of them with different value, and use the Nash equilibrium [8]
as solution concept to provide optimal strategies for attacker and defender. They further
extend the definition of their problem to the situation with multiple attackers and multiple
defenders and study two principal cases: (1) each node is monitored by one defender at most
and (2) multiple defenders monitor single node. Authors provide theoretical lower bounds for
minimal numbers of defenders in each scenario and provide optimal strategy that can be used
for configuration of networked IDS.

Zhu et al. [11] apply their results derived for optimal configuration of single IDS [10] into the
scenario with multiple IDS systems and multiple attackers. Authors define stochastic nonzero-
sum dynamic game with N + M players and provide iterative algorithm that converges to e-
Nash equilibrium [47]. Authors further define security capacity as the “largest payoff achievable
under Nash equilibrium” which provides upper bound to the value of the target that can be
compromised and specifies targets that can be realistically compromised.

More recent work proposed by Jin et al. [45] addresses the problem of collaboration of fully
connected network of multiple IDS systems for the detection of various attacks. Authors propose
two-layer architecture where the first layer consists of two-player stochastic game in which each
IDS learns its own optimal strategy using @Q-Nash learning algorithm [48]. The second layer
than collects all strategies learned by individual IDS and employ Vickrey-Clarke-Groves auction
to optimally distribute the learned information such that the amount of available resources for
every IDS system is not exceeded.
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Name Type Output! IDS eval. Network eval.

a, f-profiles [50] C PN X
Swing [21] C P X X
LESS [19] C N X
cnaf [17] C P X
FLAME |[51] P N X
SSH brute-force attacks [52] P N X
NS-3 [53, 54] P X
NeSSi2 [55, 56] P X X
OMNet+ + [57] P X
Mininet [58] P X
Proposed approach P N X

Table 2.3: LIST OF DISCUSSED SIMULATION TECHNIQUES WITH TYPE (C=COMPLETE, P=PARTIAL)
AND oUTPUT (N=NETFLOWS, P=PACKETS).

2.2 Simulation of network traffic

This section provides review of work focused on simulation/emulation of network traffic. It
has been recognized in the research community [20, 49, 16], that simulation of network traffic
provides a viable alternative to manually labeled real-world traffic and proves to be useful for
tuning/evaluation of an IDS system. It overcomes the main problems of real-world traffic, such
as the insufficient scalability and high cost of manual labeling, uncertainty of labels, or privacy
issues with sharing real network traffic. Moreover, using simulated traffic is typically the only
option for exhaustive evaluation of an IDS as the data with necessary variety is often difficult
or even impossible to obtain on real network.

2.2.1 Simulation for evaluation

In the first part, we will review the work solely focused on evaluation of an IDS. It can be
divided into two principal groups. The first group focuses on generating traces of complete
traffic composed of both legitimate and malicious traces which allows sharing of complete data
necessary for tuning or evaluation of an IDS. The major concerns with such approach are
the realism of generated data and complexity of the simulation. To overcome the problems
of the simulation of complete traffic, the second group of works deals with the simulation of
only malicious traffic and mix it with prerecorded traces of background traffic. Such approach
provides the best possible realism of background data as it is gathered on real network but
limits the possibility to publicly share the complete dataset. The complete list of discussed
approaches is listed in Table 2.3.

Complete traffic simulation

In order to generate complete traffic, Shiravi et al. [50] propose approach that mixes network
traffic generated according to two types of descriptions (profiles). The first type, a-profile,
describes malicious behavior either in an exploit language (ADeLe [59]) or as prerecorded traces
of network communication. The second type, B-profile, is used to describe statistical properties
of legitimate (background) traffic using histogram of various statistical properties of network
traffic as no well-known distributions capture them correctly (authors considered Normal, Beta,
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Wei-bull, Erlang, Triangular, Gamma, Exponential, Uniform, and Lognormal). Every instance
of B-profile then characterizes behavior of a single user using a single protocol (HTTP, FTP,
SSH, SMTP, IMAP or POP3) in a single day, extracted from training data. Authors argue that
these profiles contain only statistical information or malicious behavior, and thus there are no
privacy concerns that prevent sharing. The main drawback of this approach is its complicated
adaptation for the purpose of online evaluation of IDS since the generation of legitimate traffic
is performed as connections over real network.

Vishwanath et al. [21] propose Swing, “a closed-loop, network-respounsive traffic generator”.
It uses simple and semantically meaningful underlying model of the transmitted packets popu-
lated from prerecorded network traces. Authors argue that such model is able to reflect changes
in structure of the network, covers changes in application layer (e.g. changes in application be-
havior generating packets) and generates traffic based on current state of the network with
slightly different parameters. The model is divided into four basic categories: users (how often
users are active, thinking time, etc.), sessions (e.g. number and target of individual connections
within a session), connections (destination of the connection, size of request and corresponding
responses, wait time before generating response, etc.) and network characteristics (loss rate,
latency, etc.). Authors claim that different applications such as FTP client, P2P client, or
e-mail client exhibit different characteristics (signatures) and therefore have to be considered
separately. The model with trained parameters is then used to generate packet traces. In
the simulation scenario the number of generators and listeners is specified using application
specific signatures. Furthermore, the simulation scenario contains specification of topology of
the emulated network along with specific level of bandwidth, latency and loss rate that are
extracted from the source trace. The simulated trace is then recorded as packets transmitted
over the simulated network. This approach is well-suited for creating datasets with precise
network characteristics but the overhead of the emulated network complicates its application
in online adaptation.

Sonchack et al. [19] propose Large-scale Evaluation for Security Simulation (LESS), an
agent-based simulation approach that generates traffic based on tunable stochastic processes.
It uses similar approach to Swing and «, 8-profiles as it extracts description of the legitimate
traffic from static traces and combines it with model of malicious behavior. The key difference is
that LESS is specifically designed for evaluation of large-scale security systems. The simulation
framework first analyzes static traces, detects applications used on both client-side and server-
side, and extracts necessary statistics (number of applications per host and server, ratio of hosts
that used particular application). Next, it instantiates predefined number of agents and assign
them detected applications (both clients and servers). The network traffic is then simulated
by communication between individual agents. In order to validate their approach, authors
used different evaluation criteria than authors of Swing and «, S-profiles. In this paper authors
compare the generated traces with specific attack scenarios with real ones using four large-scale
security systems, namely entropy-based anomaly detection [60|, Highly Predictive Blacklisting
System [61], Peer-to-peer Botnet Detection [62] and Collaborative Anomaly Detection Boggs [63].
Their results prove that it is possible to generate traffic traces that are for security systems
indistinguishable from the real ones.

Abt et al. [17] (cnaf) argue that tools used for simulation of network traffic are typically
too complex and too difficult to work with. Therefore, instead of using statistical models of the
traffic, cnaf defined behavior in user-defined scripts easily understandable to human analyst.
The simulation process is built on virtual machines (VMs) grouped into virtual networks that
executes various applications to simulate different types of network behavior (web browsing,
instant messaging and email communication). The generated traffic is then recorded on the
level of VM hypervisor connected to the Internet. Authors argue that such approach ensures
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high scalability and extensibility. However, using user-defined scripts limits the variability of
the generated traffic as it requires manual definition of every new behavior.

Simulation of malicious behavior

Brauckhoff et al. [51] present simulation tool based on anomaly injection principle designed
for evaluation of anomaly-based IDS systems. Authors use clean background NetFlow data
and mix it with a simulated malicious activity. The malicious activity is then labeled as an
anomaly that should be detected by the IDS system. Authors categorize anomalies into three
main classes according to their effect on the background traffic: (1) additive anomalies that
add NetFlows without affecting the background traffic (e.g. network scan or bot activity), (2)
subtractive anomalies that remove specific NetFlows from the background traffic (e.g. outage
events or shifts to other AS peerings), (3) interactive anomalies that add NetFlows and alter
the background traffic (e.g. DDoS attacks that consume network bandwidth or consuming large
portion of the processing power). Authors acknowledge that models of anomalies that should be
injected into the background traffic requires expert knowledge and large insight into behavior
of modeled anomaly. In order to create corresponding models, authors propose to use large
archive of anomalies [64] that provides sufficient baseline for correct definition of large number
of different anomalies.

Sperotto et al. [52] propose different approach to generate evaluation/tuning data than
papers we have discussed above. In this paper authors focus only on single specific attack
scenario—penetration of SSH servers using brute-force attack (using specific dictionary or ran-
domly generated passwords), since it is, according to their analysis, the most common attack
scenario carried out over the Internet. Authors divide the SSH brute-force attack into three
phases: (1) scanning phase during which attacker performs sequential scan looking for target
servers, (2) brute-force phase during which the attacker performs the actual SSH brute-force
attack to selected subset of targets gathered in the first phase and (3) die-off phase that corre-
sponds to the residual traffic generated shortly after the attack. All three phases of the attack
are modeled with discrete time Markov chain with transition probabilities estimated from train-
ing data. The validation of the proposed approach prove that the probabilistic model is able
to correctly capture all aspects of this attack scenario and generate realistic data.

2.2.2 Network Simulators

Network simulators are frequently used in the field of general network research where they are
used to verify new low-level network protocols such as routing protocols, transfer protocols or
new network topologies [54, 65, 58].

Typically, network simulators employ discrete event simulation (DES) [66, 67] that models
the evolution of the simulated network in discretized time events (e.g. start or end of packet
transmission, beginning of communication, etc.). The discrete event simulation further assumes
that no important change, that affects the simulated network, happens between two consecutive
time windows and the traffic is then emitted in these time windows.

One of the first network simulators, NS simulator [49, 68], was originally developed as a
replacement of the REAL project [69]. Its latest version, NS-3 [54], is designed as high fidelity
discrete event simulator that allows users to simulate both wired and wireless networks with
large number of different devices (routers, switches, etc.) and topologies. However, the primary
focus of the NS-3 simulator is on evaluation of low-level network protocols rather than evaluation
of an IDS system.
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OMNet++ [57] is another example of discrete event simulator which designed as framework
rather than complete simulation environment. Therefore, in its basic form, OMNet+-+ does
not contain simulation models that can be used for simulation of network traffic. Note that
different simulation models and different simulation tools using OMNet-++ such as INET [70]
or OverSim [71]| were developed by different research groups for different evaluation purposes.

Mininet [58] adopts OS-level virtualization instead of DES. It simulates individual hosts in
the network as processes encapsulated in separate network namespaces connected via virtual
Ethernet pairs. This design allows efficient simulation of large-scale networks which makes the
Mininet popular tool for design and simulation of software defined networks.

NeSSi [55] and its ancestor NeSSi2 [56] adopts different idea than simulators discussed
above. Their primary purpose is to generate realistic traffic for packet-based IDS systems
such as SNORT or Bro, which is the main difference to NS-3 or OMNet-++ simulators. The
NeSSi2 simulator is divided into simulation backend using the JIAC framework [72] and the
graphical frontend that allows users to intuitively create different simulation scenarios. The
agent-based approach allows to distribute the simulation and thus easily increase performance
of the simulator.

2.3 Malware analysis

Since the analysis of malicious binaries and recommending them for further analysis has impor-
tant practical applications, there exists a rich prior art. Although it is frequently divided into
three main categories, static analysis, dynamic analysis and hybrid analysis, the boundaries
between them are blurred since techniques such as analysis of the execution graph are used in
both static and dynamic analysis.

2.3.1 Static malware analysis

Static malware analysis treats a malware binary as a data file from which it extracts features
without executing it. The earliest approaches [73| looked for a manually specified set of specific
instructions (tell-tale) used by malware to perform malicious actions but not used by legitimate
binaries. Problem is that such simple approach is typically not able to detect polymorphic
and obfuscated malware that changes its code and structure. Since reversing obfuscation and
polymorphic techniques are in theory NP-hard [97], most of the recent state of the art [74, 80, 98]
moved to a higher-level modeling of sequences of instructions/system calls and estimating their
action or effects on the operating system. The rationale behind such shift in the paradigm is
that higher-level actions are more difficult to hide. In following paragraphs, we will discuss two
of the most prevalent higher-level representations used in related work.

Call graphs One of the most popular high-level representation is control flow graph (CFG).
It captures the flow of a binary as a graph where nodes represent basic blocks (sequence of
instructions without any jump) and edges represent dependencies between these blocks. The
control flow graph can be further extended to call graph where each node represents a function
(both internal and external) and edges represent dependencies between these functions.
Christodorescu et al. [74] propose to use annotated control flow graph extracted from indi-
vidual instructions and map it to an automaton used for classification. Authors propose several
techniques to prune the graph in order to remove randomization and obfuscation frequently
used by malware. Problem is that such approach fails to detect packed or encrypted binaries.
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Approach T Goal Method #samples
Lo [73] S C Static set of instructions (tell-tale) -
Christodorescu [74] S C static signatures of CFG 7
Cesare [75] S C static signatures of CFG -
Kinable [76] S L function call graphs 194
Kong [77] S M function call graphs 526179
Santos [78§] S C n-grams 2000
Reddy [79] S C n-grams 500
Ahmadi [80] S M n-grams, metadata, images, entropy, etc. 21741
Naval [81] D C syscalls (Ordered System-Call Graph) 3751
Wuchner [82] D C syscalls (quantitative data flow graph) 7507
Kolbitsch [83] D M syscalls (behavior graph) 300
Park [84] D M syscalls (behavior graph) 380
Pfoh [85] D C syscalls (String kernels) 4 565
Lanzi [86] D C syscalls (n-grams) 242
Canzanese [87], [88] D M syscalls (n-grams) ~ 76 000
Rieck [89] D C syscalls (cluster prototypes) 33698
Bayer [90] D L syscalls 14212
Pirscoveanu [91] D C syscalls + counts of selected files, 42068
mutexes, registry keys, DNS
Mohaisen [92] D C/M/L features extracted from files, registry 115157
keys, network
Mohaisen [93] D M n-gram model of behavioral traces 2699
Rieck [94] D M higher-level malware actions 10072
Bailey [95] D L files, registry keys, processes, network ~ 3700
communication
Anderson [96] H C dynamic instructions, static instructions, 22492
n-grams of bytes, opcodes, etc.
Proposed approach D C/L files, mutexes, reg.keys, network traffic 250527

Table 2.4: LIST OF DISCUSSED APPROACHES FOR TWO-CLASS CLASSIFICATION (C), MULTI-CLASS
CLASSIFICATION (M), CLUSTERING (L) OF MALWARE SAMPLES USING DYNAMIC ANALYSIS (D), sTaTIC
ANALYSIS (S) AND HYBRID ANALysIs (H).
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To address this problem, Cesare et al. [75] extends the idea of Christodorescu et al. and
propose an approach for automatic analysis of packed binaries and extraction of approximative
function call graph. Then, instead of annotating the graph per instruction, authors match
individual sequences of extracted code to static signatures stored in database to detect malicious
code.

Kinable et al. [76] propose to cluster call graphs extracted from the binaries using k-medoids
and DBSCAN clustering algorithms with the similarity between two graphs defined by graph
edit distance. The assumption is that malware binaries from the same malware family have
similar structure captured in call graph and therefore the clustering reconstructs individual
malware families.

In more recent work, Kong et al. [77] propose to extract call graph in order to capture the
structure of the execution tree of the binary and then for each node in the call graph (i.e. a
function in the binary code) define set of static features (histogram of instructions in function,
number of memory readings or writings in the function, etc.). Authors then optimize distance
function between two graphs using mazimum margin principle. It states that two binaries from
the same malware family should close to each other whereas two binaries from different malware
families should be separated with large margin. The experimental evaluation indicates that the
trained distance correctly separates large portion of selected malware families.

n-gram models Another approach, inspired by text analysis, is based on n-gram models of
binaries and instructions within. Each n-gram is a sequence of n consequent bytes, instructions,
etc., extracted from the binary. Note that the length of the n-gram has to be specified in
advanced. Typically, n-gram model is represented using bag-of-words representation where
each n-gram is considered as separate feature. Such approach is proposed by Santos et al. [78]
where authors extract n-gram from the binary itself without any preprocessing and the binaries
are then classified with k-nearest neighbor approach.

The main problem with n-gram models is the exponential growth of number of features with
the length of the n-gram. To address this issue, Reddy et al. [79] select only limited number
of the most frequent n-grams in both legitimate and malicious binaries. Using such approach,
they are able to limit the number of extracted n-grams and thus improve the performance and
scalability of their approach.

In more recent work, Ahmadi et al. [80] propose to combine n-gram model with other fea-
tures extracted from the binary such as metadata, image representation, frequency of symbols,
frequency of API calls, etc. The concatenated feature vector is pruned with forward feature
selection in order to select the most important features for the classification. Authors use
XGboost [99] to classify unknown binaries into individual malware families.

2.3.2 Dynamic malware analysis

Typically, approaches based on static analysis struggle to analyze binaries that are packed or
encrypted. An alternative solution to overcome these problems is the execution of a binary in
a controlled environment (sandbox) and analyzing its interactions with the operating system
and system resources.

A large portion of the work related to dynamic malware analysis utilizes system calls, since
in modern operating systems system calls are the only way for applications to interact with
the hardware and as such the system calls can reveal malware actions. Another source of data
are the higher-level actions executed by the malware (writing into file, modification of registry
keys, starting new processes, etc.). In this section, we will discuss the most relevant works that
employs both of these approaches.
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System calls The simplest methods identifying malware samples from sequences of syscalls
rely on n-grams [86, 87, 88]. However, simple model based on bag-of-words representation of
n-grams of syscalls is not able to correctly separate malware and benign software on practical
level [100]. In order to improve the performance, Lanzi et al. [86] extend the information
extracted from n-grams of syscalls with details about files that were executed, modified or read
in specific directories, and with information about operations with registry keys performed by
the analyzed binary. The presented results indicate that the extended model is capable to
correctly detect the malicious samples. Another problem with n-gram-based models is their
size. As we have discussed in previous section, the number of features defined by the n-grams
grows exponentially with the length of the n-grams which make the use of the raw feature space
is impractical. To address this principal problem, Canzanese et al. [87, 88| propose to transform
the original feature space into feature space with much lower dimension using various approaches
(singular value decomposition, linear discriminant analysis) and thus improve the classification
performance. Another extension of the n-gram model is proposed by Pfoh et al. [85] where
authors adopt string kernels rather than similarities based on bag-of-words representation to
measure similarity between two system call traces.

Another drawback of methods based on n-grams is that malware can mask its true behavior
by executing meaningless system calls, and thus avoid detection. To capture more complex
relations between individual system calls, large number of related work encodes the malware’s
behavior into graph structure. Park et al. [84] propose to generate behavioral graph from the
sequence of system calls and estimate their distance between using mazximal common subgraph.
Kolbitsch et al. in [83, 101] propose to extract the behavioral graph similar to Park. However,
the key difference is that instead of estimating the distance between two graphs, Kolbitsch et
al. search for key points in the code (slices) that are then recorded and stored in database.
Behavior of an unknown binary is then compared to these slices and if a match is found, the
binary is considered as malicious.

In contrast to the previous approaches, Wuchner et al. [82] propose to model the malware
behavior using quantitative data flow graphs (QDFGs). This approach provides abstraction
of malware’s behavior and captures the interactions between individual components of the
operating system using the data flow rather than temporal coincidence. Similar approach
is proposed by Naval et al. [81] where authors model the sequence of executed system calls
using Ordered System-Call Graph (OSCG) and extract the most relevant execution paths using
Asymptotic Equipartition Property. The most relevant paths are then used to construct the
vector representation used for classification.

Different approach is proposed by Rieck et al. [89]. In this paper, authors use normalized his-
tograms of n-grams as feature vectors, which effectively embeds syscall sequences into Euclidean
space endowed with Lo norm. In this space the algorithm extracts prototypes Z = {z1,...,2,}
using hierarchical clustering. Each prototype captures behavior of the cluster, which should
match corresponding malware family. An interesting feature is that if a cluster has less than a
certain number of samples, the prototype is not created.

Vast majority of approaches for analysis of unknown binaries focus on classification (two
class, multi-class). Bayer et al. [90], on the other hand, propose an approach for malware
clustering based on modeling of system calls. Authors taint certain portions of memory, such
as output arguments and output values of system calls, and tracks all operations with the
tainted memory to generate traces of system calls. This allows to uncover dependencies be-
tween individual system calls even when they are interleaved with unrelated ones and provides
information necessary for creating behavioral profile of the analyzed binary. These profiles are
then clustered with an algorithm based on locality sensitive hashing.
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Recently, Pirscoveanu et al. [91] proposed an approach that combines analysis of system calls
with analysis of higher-level actions. Along with system calls, authors extract DNS requests,
accessed files, mutexes and registry keys that the binary interacted with. This data is then
filtered using manually defined whitelists in order to ensure that the data contains only behavior
related to malware.

Higher-level actions Since the popularity of the system calls has already triggered the devel-
opment of evasion techniques such as shadow attacks [102], system-call injection attacks [103], or
sandbox detection [104], researchers explore different source of information suitable for malware
analysis.

AMAL proposed by Mohaisen et al. [92] uses custom sandbox to intercept and log inter-
actions of the malware binary with files and registry features and its communication over the
network. From these interactions AMAL extracts high-level numeric features such as counts or
sizes of created, modified or deleted files, counts of created, modified or deleted registry keys,
counts of unique IP addresses, etc., and uses single-linkage clustering to identify similar binaries.
Unlike AMAL, the work presented in this thesis uses resource names instead of their numerical
properties to construct its features. Moreover, the generative model allows to prioritize founded
clusters and extract typical characteristics of each cluster. Another approach proposed by Mo-
haisen et al. [93] called CHATTER, models the dynamic behavioral traces produced by their
custom sandbox using n-grams.

Rieck et al. [94] creates a representation of analyzed samples without manually defined con-
version of the input data, which consists of the names of system calls and its parameters. The
calls are treated as words, specifically each system call name together with all its parameters
corresponds to one word. To allow generalization, Rieck et al. creates n 4+ 1 additional words
from a syscall with n parameters by iteratively removing its last parameter. This causes explo-
sion of the number of features, for example in our experiments to represent 6 000 samples needs
about 20 million features. Although this representation is sparse, it is still difficult to work with
and limits the scalability. To prevent this explosion and to allow scaling, the work presented in
this thesis clusters resource names as described in Chapter 5. Also, Rieck et al. models actions
triggered by the malware (writing into a file, communication with remote server, reading data
from registry keys, starting new thread, etc.), whereas the proposed approach models only af-
fected resources. This enables to deploy the proposed approach in environments without direct
access to or low visibility of low-level actions (VMs without such access, user machines without
API hooking). Another key aspect is that Rieck et al. proposes a prioritization of syscalls to
aid the manual analysis. However, their approach is tailored to supervised scenario when labels
are available whereas the proposed approach is able to extract behavioral indicators directly
from the unknown samples without any labels.

Bailey et al. [95] propose idea similar to the one proposed in this thesis as authors model
the malware’s behavior based on its external manifestations. Authors record process names,
modified registry keys, modified file names, and network connection attempts and use them to
define malware’s behavioral profile. To evaluate the similarity between two behavioral profiles
X and Y authors use normalized compression distance defined as

C(X+4Y)—min(C(X),C(Y))

NCD(X.Y) = = @x), cv))

where X+Y represents concatenation of behavioral profiles and C'(X) represents zlib-compressed
length of profile X. In contrast to this approach, in this thesis we define similarities specifically
designed to capture different aspects of individual sources of information (files, registry keys,
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network connections) and project the data into numerical vector rather than defining similarity
between complete behavioral profiles. Using this approach, we are able to prioritize generated
clusters and extract humanly readable behavioral indicators.

2.4 Hybrid analysis

Anderson et. al [96] propose to combine approaches from static analysis with the data obtained
using dynamic analysis in order to counter techniques frequently used by malware authors to
avoid detection, e.g. packing or execution stalling. Authors propose six different types of input
data, three based on techniques from static analysis: (1) features extracted from raw binary
modeled as n-grams, (2) opcodes extracted from disassembled binary and (3) control flow
graph—a graph of all possible execution paths; two based on dynamic analysis: (4) instruction
traces [105] and (5) system call traces; and (6) one based on various information extracted from
the binary itself such as packer identification, entropy of the binary, number of instructions in
disassembled file, etc. For every type of input authors define a kernel which are then combined
using multiple kernel learning [106] to obtain optimal combination. The optimized kernel
combination is then used with SVM classifier.
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Chapter 3

Runtime optimization

This chapter presents a game theoretical model of local adaptation processes inside an auto-
nomic, self-optimizing Intrusion Detection System [6]. Our goal is first and foremost to analyze
the risks related to opponent’s manipulation of system internal state and configuration in or-
der to reduce its effectiveness. This addresses the existing concern with expected increase in
malware sophistication—theoretical models for distributed learning in malware exist [107], and
strategic manipulation of Intrusion Detection Systems by shaping of the input data has been
demonstrated, albeit offline [108]. This behavior corresponds to wider context of targeted at-
tacks on learning processes, studied in the fields of adversarial machine learning and adversarial
classification [109].

Therefore, if we want to introduce a new layer of environment-driven adaptation into the
intrusion detection system [6], we need to ensure what is the extent to which can the opponent
misuse the reconfiguration layer to reduce system’s effectiveness.

The principal question this chapter investigates is simple: What is the cost of preventive
IDS resistance to the attackers with access to internal state information and outputs of an
IDS, in terms of suboptimal False positives/False Negative values? In other words, we measure
whether and by how much will the IDS reconfiguration reduce its performance against the “worst
case”, highly sophisticated attacks with insider access compared to the “standard”, relatively
unsophisticated attackers with no knowledge of IDS existence, nominal effectiveness and current
internal state.

In order to answer the above question, we use the methods from the field of game theory [§]
and decision theory. These concepts, introduced in Section 3.1 are mapped to IDS structure
in Section 3.1.1. They conceptualize the relationship between the attacker and the defender as
a two player, non-zero-sum game, where the attack/defense actions of both players correspond
to strategies in the game-theoretical model of their interaction.’

INote that this chapter is based upon work supported by the ITC-A of the US Army under Contract W911NF-
12-1-0028 and by ONR Global under the Department of the Navy Grant N62909-11-1-7036 and work supported
by Czech Ministry of Education grant AMVIS-AnomalyNET: MSMT ME10051 and MVCR Grant number
VG2VS/189. Parts of this chapter were originally drafted for the final report of project W911NF-12-1-0028,
next were used in master thesis [110] and were subsequently published in [28] with extension to [29].
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3.1 IDS Game Model

In this chapter, we will use the simplest model available in the field of the game theory, a single
stage game of two players [111]. Each such game is defined as a three tuple:

G =(P,5,U) (3.1.1)

e where P is a set of players traditionally indexed as P = {1,2}, in our case denoted
P = {d, a}, where the player a is the attacker (the column player) and the player d is the
defender (the row player),

e S is a set of strategies available to all players. In our case, as the strategies are disjunc-
tive, we impose simply S = {d1,...,d;,....,dm, a1, ..., a;, ..., an }, here the strategies d; are
those of the defender and the strategies a; are available to the attacker, and

e U denotes utility function of the form: U : § x S — R x R, or less formally: U :
d; X a; — (ug,uq). Utility function returns the game payoff of the defender uy and the
attacker u, when these invoke the strategies d; and a; respectively. Payoffs are real valued,
and are frequently negative. Note that the negative value of payoff signifies the loss for
the player, and unlike in the case of zero-sum games, this loss does not become other
player’s gain. The game structure can be alternatively defined by two matrices that link
the attacker’s and defender’s strategies with the payoff functions for each player?. Such
alternative definition is defined in Equation 3.1.2 for defender and 3.1.3 for attacker.

Def./Att. ay as as an
d; ug(dy,ar)  uq(di,az)  uq(di,as) uq(dy, an)
Ug = da ug(dz,a1)  uq(da,a2)  uq(dz,as) uq(da, an) (3.1.2)
dm ug(dm,a1) uq(dm,az) uq(dnm,as) ug(dm, an)
Def./Att. a1 as as an
dl ua(dlval) Ua(dlaaﬂ) ua(dhaB) ua(dlvan)
Ug = dy ug(da,a1)  ug(de,as)  ug(da,as) g (dz, an) (3.1.3)
A Ua(d'rm al) ua(dnu a2) ua(dma a3) Uq, (dma an)

The gameplay of this game is very simple in our case: both players simultaneously select
their strategies from the set S and the combination of these strategies determines the payoffs
to attacker and defender, as defined by their respective utility functions. Note that due to the
inherent nature of the IDS problem, the game is not a zero sum one as for example investigation
of a security incident (an attack) typically costs the defender more than is the cost of performing
the attack for the attacker. Therefore, combination of strategies affects not only the distribution
of payoffs between the players, but also the total sum of payoffs.

3.1.1 Intrusion Detection Game Specification

The game structure introduced above allows us to reason about the outcome of the interaction
between the attacker and the defender, and potentially identify the likely outcomes of the game.
Below, we will present the details of player’s strategies, utility functions and solution concepts
that will influence the outcome of the game.

2These two matrices can be collapsed into a single one in case of the zero sum game, where the gain of one
of the player is directly translated into the equivalent loss of the other player.
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Strategies
The pure strategy sets of both players form the following set

S = {dl, ceny di, ceey dm,al, ceey Gy ...,an}

as defined in Eq. 3.1.1. The strategies dy, ..., d;, ..., d,, are the strategies of the defender (row
player), while the strategies ay, ..., a;, ..., a, are available to the attacker.

The defender’s pure strategies are defined as a selection of one system configuration
from a finite number of available configurations - playing the game is therefore functionally
equivalent with the trust-based optimization described in [112], where we have introduced an
online regret-minimization mechanism suitable for dynamic and unstable environments.

When the defender plays a mixed strategy, it constructs a probability distribution over
the set of pure strategies di, ..., d;, ..., ds,, assigning a probability in the [0, 1] interval to each
pure strategy. The sum of probabilities (weights) of individual strategies must be 1. In practice,
the mixed strategies will typically have a restricted support, with roughly 2-5 pure strategies
with non-zero probability.

The attacker’s pure strategies are defined even more easily. Each attacker’s strategy is
defined by performing one attack such as horizontal scan, vertical scan, host fingerprinting,
buffer overflow, denial of service and others. Mixed strategies are defined similarly to defender,
as a probability distribution on the support of attack actions. In practice, attackers also execute
their strategies in a particular, logical orderings (plans), but the identification and use of this
behavior is outside of the scope of this chapter. For more detailed discussion we refer reader
to [42] where authors propose game-theoretical approach to identify of attacker’s plan.

Utility Functions

In contrast to previous work in IDS modeling [37, 39, 9, 44], the utility functions that we use
to represent player’s gains and losses are not simplified, but are designed to provide a realistic
model of incentives in real IDS system. This is made possible by the fact that we don’t attempt
to perform a formal analysis of the problem (even if we are still able to identify and verify several
key properties of the system), but rather concentrate on online discovery of game parameters
and runtime solution of the game in the context of specific threat environment and network
traffic situation.

The form of the utility functions determines the characteristics of the game — if the game
is a zero sum game, i.e. the sum of utilities of all players is constant over any combination
of played strategies, it is relatively easy to identify stable Nash equilibria and other solutions,
as we will discuss in Section 3.1.2. However, in our case, the game is not zero sum which is a
natural corollary of the criminal character of the activities [113].

The utility functions in our game are relatively complex, as they need to reflect the com-
plexity of the problem. The utility function of the defender has three principal components:
the first term deals with successfully detected attacks, the second term represents the loss as-
sociated with undetected attacks and the third term describes the overhead of the monitoring,
which consists of the costs of false alarms (false positives) and the fixed cost of monitoring.
Individual utility functions are defined as follows. Defender’s utility is:

uq(dj,a;,t) =  aij(Dala;) — Crp) +(1 — ij)v;Palay)
—B;V(#t)Cpp — Cum

—_ =
[S1EENTN
S—
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Attacker’s utility can be described as:

ua(dj,ai) = ozijDa(aj) + (1 — aij)'yjPa(aj) — C’a(aj) (316)

The parameters of both utility functions are:

aj; denotes the probability that the attack strategy a; is detected when the defender
selects the defense strategy d;. Intuitively, in our case, it estimates the probability that
the given detection strategy (i.e. IDS configuration), combined with current status of
internal models of the IDS and the background traffic will be able to successfully raise an
alarm upon the occurrence of an attack from the class corresponding to a;.

B; denotes the probability that a given detection strategy 4, combined with current system
state and background traffic, will result in a false positive. Note that this element is only
present in defender’s utility matrix, and its manipulation can be used by the attacker to
launch denial-of-service attacks on detection mechanisms [114].

«v; denotes the probability of attack success. It discounts the value of undetected breach
from both the attackers and defenders standpoint, and typically features relatively low
values.

V(t) denotes the background traffic volume that is used to estimate the number of false
positives in combination with the parameter ;.

P;(a;) denotes the defender’s payoff/loss on attack success. It is most often a negative
value, except for multi-tier honeypot systems or very particular situations where the de-
fender can gain knowledge from the attacker bypassing the IDS. The loss can be relatively
low in case of exploratory activities (scan, fingerprinting), but is relatively high when the
attacker actually breaches a system.

P,(a;) denotes the expected utility the attacker receives upon successful realization of
given attack action from the attack class corresponding to strategy a;.

D,(a;) denotes the attacker’s payoff/loss on detection, which is typically a negative value.
The value of this parameter can vary widely, as it can be very high for last stages of
elaborate attacks executed inside defender’s perimeter (e.g. cleaning exploited machine),
or can be almost zero in case of internet attacks.

Dgy(a;) denotes the defender’s payoff for attack detection. This parameter value is the
main cause for the game not being a zero sum game in a general case, as the payoff is
typically zero internet settings following the similar reasoning as in the P;(a;) case —
damages from the attacking party are almost impossible to seek (not even considering the
problems related to the root attacker identification and burden of proof).

Co(a;) denotes the cost of the attack performance on the part of attacker. Typically very
low for internet-originating attacks.

Crp - denotes the (average) cost of processing of each detected incident (true positive)
for the defender.

Crp - denotes the average cost of a false alarm for the defender, used in conjunction with
B and V(t) to estimate the false positive cost.

C - denotes the fixed cost of monitoring infrastructure, independent on attack or traffic
intensity.
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Utility function terms. The first situation that we represent corresponds to attack detec-
tion. The term in the defender’s utility function describing this situation (without the fixed
costs of monitoring and false positives, which will be discussed below) is:

aij(Dd(aj) — CTP) (317)

We can see that the defender may get some payoff from attack detection, but globally, the value

of the term D,(a;) would be zero or negative due to the reinstallation and recovery costs. The

term C'7p represents the immediate cost of incident detection, investigation and processing.
On the attacker’s side, this situation is described by the term:

aijDq(ay) (3.1.8)

We can see that the loss of the attacker depends almost entirely on the impact the detection
has on attacker’s plans — the value can be relatively high in the last stages of complex attack
plans deep within the protected perimeter, but is next to zero for malware propagation on
Internet due to the lack of effective enforcement.

The second term of the utility function covers the situation when the attacks are not de-
tected.

In the defender’s case, the term is:

(1 — aiz)vjPalay) (3.1.9)

The first factor corresponds to non-detection probability, while the factor 7; describes the
likelihood of attack/exploit success, which then amortizes the value of the successful execution
Py(a;). The impact of the factor v; is crucial. When there is an attack, the actual defender’s
optimum in most situations is that the attack is both undetected and unsuccessful. Reasoning
behind this analysis is straightforward: Equation 3.1.7 typically has the term Dgy(a;) zero or
negative®, the term —Crp is also negative and the best strategy is therefore to avoid detection
of attacks with low loss/likelihood product v;Pi(a;).

From the attacker’s perspective, the second term is a straightforward amortization of success
payofl by success likelihood and non-detection probability. Failure to exploit (with probability
1—1;) is also preferable to detection for the attacker, but only by the slight margin of the term
Dq(a;), which is typically low for external attacks:

(1 — aij)viPal(ay) (3.1.10)

The conclusion that some (i.e. unsuccessful) attacks are better left undetected may seem
surprising, but it actually corresponds to very natural equilibria, due to the costs associated
with any detected attacks. The problem in this case is therefore how to optimize the sensitivity
of the intrusion detection system, so that it will only detect the relevant threats. We attempt
not only to remove the false positives, but also discount the value of true positives with little
relevance to the actual system. This behavior ensures more effective monitoring with little or
no impact on security.

3The only situations where this term is actually globally positive are those where an efficient counter-attack
mechanism (in tactical/military problems) or intelligence-processing mechanism allows the defender to counter-
attack the attacker’s resources or to deduce attacker’s goals, plans or at least intentions. From the other side
of the problem, the attacker needs to structure its actions in such a way, that their eventual compromise would
not give away disproportionally high volume of information about its goals or resources. This consideration is
integrated in the value of the term Dy (a;).
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The last component of both utility functions captures the costs related to cyber-attack or
defense. Attacker’s side lost utility can be trivially described as the cost associated with attack
performance:

—Cy(ay) (3.1.11)

The defender’s utilities depend on two principal factors: cost of the monitoring infrastructure
and the cost of the processing of false positives, which can be significant for real world systems:

=BV (#t)Crp—Cu (3.1.12)

The first of the two components estimates the number of false positives (5V (t)) and the
total cost of their assessment (8V (¢)Cpp), while the second term captures the fixed cost of
monitoring, such as the infrastructure cost and fixed operation costs.

The size of these two terms is non-negligible — the number of false positives can rival the
number of real incidents in open networks (see the Experimental section 3.3 for more details),
and false positives would typically significantly outnumber the true positives on internal, well-
managed networks. These two terms are also the main reason why the IDS game is not a zero
sum game, as they introduce a fundamental non-efficiency into the system.

It is important to note that in typical cyber-attack scenarios, the game is actually highly
asymmetric, as the attacker’s costs C,(a;) and potential losses are almost zero in the individual
attack case, and the defender’s much higher losses are amplified by relatively high cost of
monitoring and false positives processing as specified in Equation 3.1.12.

3.1.2 Solution Concepts

The definition of the game alone does not allow the player to identify the optimal behavior.
There are several well-accepted solution concepts, based on different criteria of optimality. The
ones that we have considered are the most commonly used ones:

e Max-min rule. This solution concept (similar to Minmax rule) selects the strategy with
the highest minimal payoff for the player. This solution concept is a security strategy,
and is especially relevant in the situations where we suspect that the opponent has access
to the part of the system’s internal state or even to strategy selection decision. Playing
max-min (for the defender) covers the risk of the opponent playing the most damaging
action:

d* = arg maxn;in ug(d;, aj;). (3.1.13)
While being a relatively strong solution concept, it shall be noted that the max-min
criteria does not require any knowledge of the opponent’s utility function—the selected
strategy depends only on the defender’s utility functions alone which is not true for the
last concept introduced below.

e Nash equilibrium. The Nash equilibrium is a strong solution concept that identifies
a stable combinations of player’s strategies. It is defined as a state where no player
can improve his payoff by unilaterally changing his strategy. Formally, the equilibrium,
defined as a pair of strategies (either pure or mixed) of both players needs to fulfill the
following condition:

(diyaj;) is a NE iff Vd;, 1 # i ug(di,a;) < uq(ds,aj)
and Vag, k # j : ua(d;, ar) < uq(d;,ay), (3.1.14)
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where d; and a; are to be considered as mixed strategies. The major difference with the
max-min rule is the number of equilibria solving the condition 3.1.14. It can be shown
that when we admit solutions in mixed strategies, the IDS game as specified in this section
always has at least one Nash equilibrium. However, we are typically able to identify more
than one equilibrium in the game, and the players are then confronted with the problem
which one to select (by playing the corresponding d; or a; strategy).

The performance of solution concepts will be analyzed in Section 3.3, where we will compare
them on both the challenge data®, and also on their ability to handle a real world instance
of an actual attack scenario. To understand the results, we need to understand the difference
between the various types of optimality criteria in the system [115]:

e Optimal strategy is the player’s best pure strategy from the set .S in the time ¢. This is
an a-posteriori concept, which can be only determined after the execution was completed
and the system results against the actual network attacks were determined. This value
is independent of the solution concept used.

e Optimal decision is the strategy (mixed or pure) identified by the player as optimal
a-priori, given the inputs available a-priori in the moment that the decision is taken.
Making the optimal decision does not guarantee actually selecting the optimal strat-
egy, principally for two reasons: information about the state of the system is incom-
plete/limited /biased (making the optimal strategy not present in the optimal decision, or
decreasing its selection probability in the mix), or the pure strategy selected stochasti-
cally from the optimal decision was not actually the optimal strategy. Optimal decision
can be obtained by the use of any of the four solution concepts described above (or any
other solution concepts, such as trust-based mechanism), as each of the solution concepts
introduces a slightly different bias into the optimality criteria.

The utility difference between the two concepts is called regret, and reflects the quality of
the model, randomness of the environment, strategic behavior of the opponent and the cost of
hedging against such strategic behavior. In the experiments presented in Section 3.3, the regret
of different solution concepts is evaluated and compared.

The solution concept also tightly connects the security of the IDS system and the quality
of the decisions it is able to achieve. The first concept—max-min rule—does not require any
knowledge of opponent’s plans intentions or goals, as they only consider the information about
player’s own decision function. On the other hand, reaching Nash equilibria requires that
both players either interact over a longer period of time, or have at least some knowledge of
opponent’s utility function. Otherwise, they would not be able to identify the equilibria and
can gain less profit (or rather more loss) than when playing max-min.

Under some circumstances, it might be even rational to disclose some information about
the system to the attackers, in order to avoid the solutions which leave both players worse off.
However, the practical implementation of this concept may be challenging, and our original
intuition regarding the usefulness of the Nash equilibria as a solution concept was skeptical.
This was to some extent disproved by the results of the experiments from Section 3.3, where it
performs on par with other concepts even without explicit information transfer.

4Challenges are prerecorded sets of network traffic that are manually labeled as legitimate or malicious and
can be seen as training samples.
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3.2 Game Integration for Runtime Reconfiguration

In this section, we will describe the integration of the game-theoretical model with the adapta-
tion process of a particular IDS. This integration consists of several steps: dynamic parameter
estimation in the system, game definition, game solution and integration of results back into
the system.

There are two existing integration options addressing the problems from the opposite sides
of the spectrum that reflect the two traditional approaches for tuning parameters of an IDS:

e Off-line integration, when the game is defined and solved analytically and the system
parameters are configured according to game results[116]. This is the most traditional way
of using the game theoretical methods, as their use ensures that the system parameters are
set to force the adversary into the selection of less damaging (or more rational) strategies.
The advantage of this approach is relatively easy solution identification and low technical
difficulty, but the disadvantage, similarly to the offline tuning of an IDS, is the fact that
the game solutions identify the behavior that is advantageous on average, and do not
reflect the dynamic changes of assumptions, threat characteristics and background traffic.
This is sufficient for systems deployed in stable environments, but most IDS need to
cope with dynamic environments, where the background traffic and other factors change
frequently.

e Direct on-line integration, when the game uses presumed adversary actions in the observed
network traffic to define the game. The game is being defined by the actual actions of
real-world attackers executed against the monitored system. This approach addresses the
problem with game definition relevance by using the actual attacks and traffic background
to define the game at runtime. The game is then solved as an optimization problem, but
with several drawbacks. Direct interaction between the adversary and the adaptation
mechanism makes the system potentially vulnerable to attacks on machine learning and
adaptation algorithms [109], making the whole IDS potentially less secure than without
the use of game-theory driven adaptation. Motivated attacker can easily mislead the IDS
by insertion of a sequence of attacks that are orthogonal to its actual plan, and that would
make the IDS less sensitive w.r.t the actually dangerous attacks.

The approach adopted in this thesis, named indirect online integration, combines the above
approaches and provides interesting security properties desirable for real-world deployment.
The solution uses the concept of challenges to mix a controlled sample of legitimate and adver-
sarial behavior with actually observed network traffic and is a compromise between the above
approaches (see Figure 3.2.1). In this case, the real traffic background (including any possible
attacks) is used in conjunction with simulated hypothetical attacks (challenges) on IDS input.
The system’s response to the simulated traffic is used as an input for game definition as it
is used to estimate probabilities of detection of individual attacks o;; and probability of false
positive . The major advantage is higher robustness w.r.t strategic attacks on adaptation
algorithms, and lower system configuration predictability by the adversary, as the simulation
runs inside the system itself and its results cannot be easily predicted by the attacker.

This approach offers the optimal mix of situation awareness and security against engineered
inputs. In this case, we actually play against an abstract opponent model inside the system,
and expect that the moves that are effective against this opponent will be as effective against
the real attacks. The advantage of this approach is not only in its security, but also in better
model characteristics in terms of strategy space coverage (less frequent, but critical attacks can
be covered), robustness and relevance—the abstract game can represent the attacks and utility
combinations that would be obvious only for insider attackers.

28



#let\f?/.ork Security Threat
raflic Policy Model
. . . (For Nash
Simulated incidents L i Detection eq. only)
probabilities
—| Game
Definition
IDS
System Core Partial Game matrices
results
[ Reconfiguran ot
Optimal Solution
decision
On-Line Processing Self-Monitoring Strategic Reasoning

Figure 3.2.1: Indirect online variant of integration of the game with IDS.

3.2.1 Indirect Online Integration

The use of the indirect online integration in practice requires a division of the covered time
interval into sub-intervals defining each single game as a sequence. The length of such interval
depends on the IDS technology used, line speed, hardware performance and other factors —
it can vary between few seconds for pattern-matching packet filters to few minutes/hour for
statistical anomaly detectors.

During each interval ¢, the system measures/estimates the values of parameters (in particular
the detection probabilities c;; and the false positive probabilities 3;, V — discussed in details
in Section 3.1.1). For the reasons listed above, we suggest the use of challenge-based parameter
estimation [112], which relies on insertion of known instances of legitimate or malicious behavior
into the background, unclassified traffic. We measure the system response to these challenges,
drawn from the realistic attack classes, and use them to estimate the system response to all
real-world samples from the same classes. In practice, we will define one class for each broadly
defined attack/legitimate traffic type and measure the difference between the system response
to legitimate traffic and to various classes of malicious traffic. The adaptation process will then
assess the statistical properties of the response and use them to estimate the probability of
detection of each strategy combination c;; (where the index 7 specifies the defender’s strategy,
i.e. system configuration, and the index j denotes the attack type, i.e. attacker’s strategy) and
the corresponding expected ratio of false positives §; for given defender’s strategy i. It is worth
noting that this method is based on the assumption that the response of the detection method
used in the IDS against members of each class is consistent and that the anomaly scores of
the class members are distributed according to normal distribution. This assumption has been
verified in our past work [5], and can be ensured as the attack class definition is under the full
control of game designer — if the response to one of the classes is for example multimodal, it
can be easily split into separate classes.
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The game definition ordering with respect to each time interval also depends on the type
of the underlying IDS. The CAMNEP system [6] is a NetFlow-based [22] collective anomaly
detector, and therefore processes the data in well-defined and regularly produced batches rather
than in real time. This means that the game is actually defined after the data has been recorded.
In case of traditional pattern matching IDS that needs to operate on wire speed, the game needs
to be defined and solved beforehand, so that the strategies can be applied directly to each
processed packet, flow or connection. In practice, this means that the systems solving the game
after the interval ¢ on which the solution is applied have precise parameter estimations for each
particular interval, while the wire-speed systems apply the t-th game results to the interval
t+1.°

In both cases, once the system obtains the game definition and solves it, it can directly apply
the results back into the system configuration and use them on current or next time interval.

3.2.2 Game Strategies for Real World IDS

To test whether the game theoretical concepts can be integrated with a real IDS, we have used
the CAMNEP system [6]. As we have noted in Section 3.2.1, the CAMNEP is a NetFlow-
based IDS system. In addition, CAMNEP already features self-monitoring and self-optimizing
functionality, allowing us to benchmark the performance of game-theoretical self-optimization
with other approaches. The existing self-monitoring capabilities are also essential for online
empirical estimation of the key utility function coefficients «;; and f; (see Section 3.1.1), as
their values typically evolve throughout the day.

The CAMNEP system is based on a self-organized, multi-level collaboration of detection
algorithms, each of them maintaining a different model of traffic normality /anomaly. The
algorithms share the anomaly estimates at various stages of processing and once they have
reached their partial conclusions (anomaly scores for each network flow /connection), the system
needs to aggregate these opinions together. At this stage, it is important to notice that the
performance of individual detection algorithms and their combinations varies with background
traffic and attack types. For more information about the CAMNEP system, please refer to [29].

The defender strategies in CAMNEP are instantiated as specific aggregation functions used
to integrate the opinions of detection algorithms in the system. Defender’s strategy selection
is thus technically straightforward, as it only picks one particular aggregation operator that
aggregates diverse expert opinions with particular weights or methods. In our experimental
system, there were 30 operators aggregating the opinions of 6 detection algorithms in total.

3.3 Experiments

In the experimental evaluation we compare the detection performance of the self-adaptation
mechanism based on game-theoretical principles described in this chapter to the adaptation
mechanism based on trust modeling originally proposed by Rehak et al. [6].

The underlying CAMNEP system manages optimal selection of challenges and their mixing
into the background traffic. The selection of challenges is based on a simple threat model [112],
which includes estimation of defender’s risk and potential losses. The response of the system
to the challenges is then used both as an input for the original, trust-based self-adaptation
mechanism and for the game-theoretical mechanism, running on the same traffic data and
inserted challenges. This ensures that the experimental results, averaged over 40 system runs

5The slight delay of application is unlikely to cause a problem, as suggested by our experimental results. The
system using the parameters weighted over 5 last intervals performed comparably with the one using only the
precise values for the specific interval.
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Type of attack  Description

SSH bruteforce  Dictionary based attack with 100 attempts per attack passwords
were randomly selected from predefined database.
Dictionary based attack with 300 attempts per attack, passwords
were randomly selected from predefined database
Vertical scan Vertical TCP scan performed against linux server with enabled
OS detection
Vertical UDP scan for all services performed against linux server
Horizontal scan  Horizontal scan for SSH service performed against network of De-
partment of Cybernetics
Horizontal UDP scan for DNS service
Horizontal ICMP ping scan
Combination horizontal and vertical scan performed against whole
network of Department of Cybernetics

Table 3.1: PARAMETERS OF PERFORMED ATTACK SAMPLES (REAL-WORLD ATTACKS).

on the same inputs of the system, fairly compare the influence of various techniques. The
individual runs vary by the actually selected challenge values, as these are selected stochastically
from a challenge database.

In our experiments, we want to measure two effects. First, we will compare the ability
of the game-theoretical methods to deliver at least comparable performance on the inserted
challenges. Then, we will judge the effectiveness of the selected configurations while detect-
ing a classical, real-world attack sequence comprising of exploratory activities: horizontal and
vertical scanning, followed by password brute force attack on the SSH service on one of the
vulnerable hosts. The results of the second experiment can be then used to measure how does
the performance on challenge data translate to the performance on real attack detection.

We compare 6 different solution concepts for the defender: MaxMinl and MaxMin5, Nashi
and Nash5 and Trust1 and Trust5. The name of the method comprises of the strategy selection
method, Max-Min rule, Nash equilibrium and original trust-based approach, and the number
(either 1 or 5) that determines the number of periods over which the system behavior is observed:
the concepts with the "1" suffix react to immediate situation only, while the solution concepts
with the suffix "5" consider the values (o;; and ;) aggregated over the last 5 intervals (25
minutes in total).

3.3.1 Experiments’ settings

To correctly evaluate the system’s ability to strategically select the best aggregation function
we had acquired data recorded on a mid-size university network, with relatively low and sta-
ble background activity that comprised of 100 5-minute long intervals. We manually classified
recorded data in order to obtain a dataset with a mix of partially classified third-party traffic
and our attack with known properties. We have classified most of the legitimate traffic (roughly
75-80% NetFlows of legitimate traffic). The performed attacks summarized in Table 3.1 repli-
cates most common attack scenario, the goal of which is to gain administrator access to the
protected system. In these experiments we evaluated brute-force attacks with various speed
and different types of scans used to discover vulnerable services (i.e. horizontal scans, vertical
scans, various types of fingerprinting, etc.).

Next, we have to specify all coefficients necessary to evaluate the utility function for attacker
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Attack strategy Pi=P, v

Horizontal scan 300 0.001
SSH brute force request 500 0.001
SSH brute force response 500 0.001
Vertical scan 300 0.001

Table 3.2: GAME PARAMETER VALUES FOR DIFFERENT STRATEGIES.

and defender as well (see Equations (3.1.4) and (3.1.6)). Part of these coefficients is listed in
Table 3.2. Note that the selection of the coefficients dependent upon the attacker’s strategy
corresponds with the coefficients obtained from attack trees proposed in [112]. The rest of the
coefficients are listed in Equations (3.3.1), (3.3.2), (3.3.3), (3.3.4), (3.3.5) and (3.3.6). Note that
the selection represents situation when defender nor attacker gain any asset (or worse in the
case of attacker) when the attack is detected. This covers attacks performed from Internet by
unknown attacker.

Cq(a;) =0 Vaj, (3.3.1)

Cpp =1, (3.3.2)

Car = 0, (3.3.3)

Dal(a;) =0, (3.3.4)
Dqy(a;) — Crp =0 Vay, (3.3.5)
V(t) =1Vt. (3.3.6)

3.3.2 Challenge-based results

In this section we will present results measured on challenges artificially inserted into the back-
ground traffic. To fulfill this goal we define the following evaluation function
0, — 0,
E=4 % (3.3.7)
Oy + 0y

where 6, and 0, represent mean and o, and o, represent the standard deviation of legitimate
and malicious challenges. The value of the criterion increases when the detection process
correctly separates the legitimate and malicious traffic (i.e. G_y tends to 1 and 6, tends to 0)
and at the same time minimizes their standard deviation which corresponds with the trust
experience defined in [112]. Note that the challenges used for the following measurement equal
to the challenges used to find optimal aggregation function using trust modeling approach,
i.e., the training set. Therefore, in theory, the results of this experiment should show that the
solution Trustl gives the best results.

The values of evaluation criteria £ for all solution concepts are summarized in Table 3.3
extended with values for an average strategy, referred as AvgOWA, computed as an average value
of evaluation function for all strategies in every time step, and values of best strategy, referred
as Best, computed as an average value for the best possible strategy in every time step. The
values of evaluation criteria confirm the theoretical assumption that Trust1 provides the best
results. However, detailed analysis of the evaluation criteria for every time step (Figures 3.3.2
and 3.3.1) revealed that it is not assured as between the intervals 820 MaxMin1 outperforms
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Figure 3.3.1: Performance of solutions on challenge-based attacks over time, using the criteria
€ (3.3.7), higher is better, using values «;; and f; without aggregation.

MaxMinl Nashl Trustl MaxMinb5 Nash5 Trustd AvgOWA Best
4.09 4.07 4.68 4.16 3.68 4.25 2.24 5.14

Table 3.3: AVERAGE VALUE OF CRITERIA £ (3.3.7) (HIGHER IS BETTER) FOR CHALLENGE-BASED
RESULTS

Trustl. This is caused by the fact, that the evaluation function does not completely matches
the trust experience used in the trust modeling approach.

Furthermore, the values of evaluation score indicate that all solution concepts highly out-
perform the average strategy AvgOWA and provide relatively good results even in comparison to
the best possible selection.

Finally, we have to mention that despite using solution concepts with short history provide
better results on challenge-based attacks, solutions with longer history ensure more stable results
and thereby provide higher robustness against more sophisticated attacks.

3.3.3 Real-world attacks

In the experiment we verify the capability of the system to detect a real-world attack. To
measure the quality of detection, we have defined the criterion:
Ot — 0.
g=2al % (3.3.8)

Tall

where the 6, is the arithmetic mean of the anomaly values of the whole observed traffic, 0, is
the arithmetic mean of the flow anomaly values of the measured attacks described above and
o is the standard deviation of the whole traffic anomaly values. The higher value of the £
is better, as it ensures better separation of the anomalous traffic.To evaluate the equality from
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Figure 3.3.2: Performance of solutions on challenge-based attacks over time, using the criteria
€ (3.3.7), higher is better, using values «; ; and ; aggregated over last 5 intervals.

the perspective of the false positives and false negatives, we define another criterion involving
these two parameters:
" = |FP| + 3|FN|, (3.3.9)

where the variables |FP| and |FN| represents number of false positive and false negative Net-
Flows, i.e. the legitimate NetFlows labeled as attack and attacks labeled as legitimate traffic.
The definition of this criteria implies that the lower value is better.

Table 3.4 shows how well the individual solution concepts can select the strategies that
correctly separate the individual attack types from the legitimate traffic (criteria £ in Table 3.4a
and in Figures 3.3.3 and 3.3.4) and at the same time minimize the false detections (criteria £”
in Table 3.4b and Figures 3.3.5 and 3.3.6). We can clearly see that some of the attacks are
more difficult to detect (Horiz. UDP scan), and result in negative values of the criteria, as the
known malicious traffic is less anomalous than the average flow. From aggregated results shown
in the last line can be seen that the results of all three methods are closer to each other, and
two game-theoretical concepts outperform trust-based approach in case of longer time horizon
(MaxMin5, Nash5 and Trust5 columns). This is caused by the fact that the randomized selection
of challenges does not match the actual attacks and since the Trustl and Trust5 optimizes
the IDS configuration according to these challenges more strictly the selected configurations
underperform the configurations selected by the game-theoretical solutions.

It can be assumed that the game theoretical methods may under-perform the trust-based so-
lutions in the situations when the opponent does not behave strategically. The game-theoretical
methods will be penalized by their security features, as they optimize for robustness rather than
for precise match of the single optimization criteria. This (rather pessimistic) assumption does
not hold. While the game theoretical methods score slightly less, the actual lost utility is sur-
prisingly low, lower than the difference due to the use of longer history in directly optimizing
trust function. The game theoretical methods outperform the trust-based optimization because
they are less sensitive to challenge selection effects. The difference in performance is due to the
randomization and inefficiencies related to second-order strategic behavior.
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Figure 3.3.3: Performance of solutions on real attacks over time, using the criteria £ (3.3.8),
higher is better, using actual values «;; and ; without aggregation.

3.3.4 Solution stability

In the last section we will briefly present the stability of each solution concept. We will compare
both game-theoretical solution concepts noted in previous sections. For each solution concept
we will present two graphs — one when there is used no history and one where values a;; and
B; are aggregated over last 5 intervals. Each graph shows the normalized weights in mixed
strategies in time. Therefore, if there is one IDS configuration that is preferred by the solution
concept for given period of time, it will appear as large area in the graph as it has large weight
in the mixed strategy.

At first, we will discuss the MaxMin. As Figures 3.3.7 and 3.3.8 show, the MaxMin solu-
tion concept provides relatively stable solution in both versions, with (MaxMin5) and without
(MaxMin1) history. This indicates that there is small number of configurations that outperform
the others and as such are frequently selected by this solution concept.

More interesting situation appears in the case of Nash equilibria (Figures 3.3.9 and 3.3.10).
In the case that this solution concept does not use history (Nashl), the selection of the best
aggregation function is more stochastic and, as it was confirmed in Section 3.3.3, this fact affects
negatively the final results. This phenomena is caused by the fact that without using history
the utility function has a large number of mixed equilibria and the solver has to randomly select
the best defender’s strategy. In the case when the history is used (Nash5), this phenomena does
not appear and the solutions are relatively stable.
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Figure 3.3.4: Performance of solutions on real attacks over time, using the criteria £ (3.3.8),
higher is better using values «;; and 3; aggregated over last 5 intervals.

3.4 Conclusions

This chapter addressed several important research issues related to the use of game-theoretic
approaches for strategic adaptation of multi-agent intrusion detection system. In Section 3.1.1,
we presented a practical game theoretical model of the IDS problem and discussed its integration
with a real-world intrusion detection system. The use of such mechanism shall improve system
robustness w.r.t very advanced attacks based on adversarial machine learning approaches. To
our knowledge, we have proposed the first implementation of game-theoretical principles suitable
for real-time reconfiguration of an IDS system and evaluated the influence the game-theoretical
mechanisms to the performance of commercial IDS system on real-world attacks.

The experiments performed with a simplified version of this IDS clearly showed that the cost
of game-theoretical formulation use is very low, and does not adversely affect the effectiveness
of the adaptation process. In particular, our results suggest that the max-min method provides
results that outperform the original trust-based adaptation with very consistent results. More-
over, it does not require an explicit model of opponent’s utility function and is computationally
trivial, and as such it makes an appropriate first choice for future implementations.
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Figure 3.3.5: Performance of solutions on real attacks over time, using the criteria £” (3.3.9),
lower is better, using actual values a; ; and 3; without aggregation.
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Figure 3.3.6: Performance of solutions on real attacks over time, using the criteria £” (3.3.9),
lower is better, using values o ; and f; aggregated over last 5 intervals.
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Figure 3.3.7: Max-min rule without history (MaxMin1)
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Figure 3.3.8: Max-min rule using history (MaxMin5)
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Figure 3.3.9: Nash equilibrium without history (Nash1)
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Figure 3.3.10: Nash equilibrium using history (Nash5)
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Chapter 4

Simulation of legitimate behavior

This chapter discusses an approach to generate realistic network traffic suitable for tuning/evaluation
of an intrusion detection system (IDS) designed as an replacement of the fixed database of static
challenges. In this chapter we describe a model that simulates behavior of legitimate user and
generate data in high-level NetFlow [22] format popular in security community and especially

in anomaly-detection-based IDS systems [117, 118, 119]. Simulation of the network traffic in

the form of NetFlows allows us to construct the data directly in memory which removes a large
amount of computational complexity typically involved in the simulation approaches [17, 19|
and make our approach well-suited for online adaptation. Note that similar approach was
proposed by Sperotto et al. [120] for online simulation of SSH attacks, however the approach
proposed in this chapter is design to simulate much broader spectrum of network traffic.

In order to capture users’ behaviors we assume that their high-level behavioral patterns
are stable for long period of time (weeks, or even months) as users typically come to work at
the same time, visit the same or similar web sites, use the same e-mail server, etc. The main
reason is, that in contrast to the malware, legitimate users have no reason to intentionally
change their behavior to avoid detection. This aspect allows us to use the same models for
relatively long period of time without retraining. At the same time, we assume that the low-
level behavioral patterns of legitimate users (individual network connections) are much more
random compared to the malware. Instead of following pre-scripted scenarios like malware does,
legitimate users behave stochastically, i.e. they visit similar sites but not always the same, they
do not follow precisely the same order of actions (first checking e-mail, then opening website,
then SSH connection), etc. Both these assumptions motivate to simulate the users’ behaviors
stochastically which was successfully adopted in previous work [50, 19]. The traffic generated
with well-defined stochastic models exhibit stable high-level behavioral patterns but on the
low-level, the generated traffic is randomized.

In this chapter we propose three techniques with different level of complexity. The first
two use simple statistical models that are easy to implement but not sophisticated enough to
capture various aspects of users’ behaviors, such as changes in the users’ behaviors during the
day, dependency between NetFlow features (e.g. packet-bytes ratio), etc. The third one ad-
dresses these deficiencies and generates the users’ traffic in a way that state-of-the-art detection
algorithms are not able to distinguish it from real traffic.!

'Work presented in this chapter was published in [30].
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Field name Description

Starting time Time stamp of the first packet of the flow
Duration Length of the flow

Protocol TCP, UDP, ICMP, etc.

Source 1P IP address of the source

Source port
Destination IP IP address of the target
Destination port

Bytes Number of bytes transferred in the flow
Packets Number of packets transferred in the flow
TCP flags Not used for non-TCP protocols

Table 4.1: List or NETFLOW FIELDS.

4.1 Basic models

The design of a simulation model needs to address the common trade-off between complexity
and performance. Before introducing the advanced model in the next section we first discuss
two simpler approaches. We show that simplifying assumptions about NetFlow traffic allow for
models with low complexity. At the same time we will show where simplified models fail to
capture higher-order aspects of users’ behaviors such as dependencies between individual Net-
Flow features. The identified flaws then inspire the definition of the improved model presented
in the next section.

4.1.1 Random sampling

The simplest approach to simulation of behavior of a single user is to generate individual
NetFlow fields (as listed in Table 4.1) independently?. Such approach does not take into account
any realistic properties of the NetFlow fields (e.g. distribution of bytes, distribution of source
ports, etc.), relation between fields of the NetFlow (e.g. bytes/packet ratio) or relations between
individual NetFlows (e.g. request/responses relations). The only condition that has to be
satisfied is the validity of NetFlow, i.e. all fields have to be in their allowed ranges and the
following condition must be met

0 < number of bytes < number of packets x 65535. (4.1.1)

As such, the only parameter of this algorithm that has to be specified in advance is the IP address
of the simulated user. The random sampling generates all but three individual NetFlow features
randomly with respect to the condition of validity of the generated NetFlow. The exceptions
are the starting time and source and destination IP addresses.

Instead of generating the starting time directly we sample the user’s thinking time, the time
delay between two consequential NetFlows, uniformly between Os and 10s. The new starting
time is then computed as sum of the last starting time and the current thinking time.

Similarly to the thinking time, the source and destination IP addresses are not generated
directly. Instead, we randomly choose whether a given flow is request or response. If the flow
is generated as request the source IP field is set the IP address of the simulated user specified

2Similar approach was proposed by Sommers et al. [121] and technological solutions such as Breaking-
Point [122]
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Feature name

Description

Client’s thinking time
Client port

Request bytes
Request packets
Request protocol
Request flags
Request length
Server thinking time
Server IP

Server port
Response bytes
Response packets
Response length
Response flags

Has response

Time difference between two consequential client’s requests
Source port of the request

Number of bytes in request

Number of packets in request

TCP, UDP, ICMP, etc.

TCP flags in request

Duration of request

Time difference between request and response
IP address of server

Port number of service used by user

Number of bytes in response

Number of packets in response

Duration of response

TCP flags in response

Is there corresponding response to the request?

Table 4.2: ListT oF NETFLOW FEATURES TO BE MODELED IN ORDER TO CREATE NETFLOW DATA
THAT CORRECTLY REFLECT REQUESTS AND RESPONSES. NOTE THAT TCP FLAGS FOR REQUEST AND
RESPONSE ARE EMPTY FOR ALL NON-TCP NETFLOWS.

in advance and the destination IP is chosen randomly. In the case of response it is the other
way around.

The main benefit of this algorithm is its independence on any training data or manual
tuning, as the only parameter that has to be set in advance is the user’s IP address. However
at the same time, the complete randomness is the main disadvantage since it can generate
completely unrealistic data. Therefore, we use this approach only for syntax testing and as a
baseline for the comparison to more sophisticated methods.

4.1.2 Sampling with independent intra-flow relations—marginal model

The marginal model adopts more realistic approach than completely random sampling. It uses
training data of a single user in order to train the statistical model of individual NetFlow
features (e.g. distribution of bytes or distribution of user’s thinking times, etc). Unlike the
random sampling, the marginal model considers NetFlows in request /response pairs®. Therefore
it is able to partially model inter-flow relations (the relation between individual flows), namely
the request/response relations, but not the sequential character of the user’s behavior. For
example, it is able to correctly model the HTTP request/response pairs but not the download
of the whole Google home page. Next, the marginal model assumes that the modeled features
are independent and thus it does not take into account intra-flow relations (e.g. bytes/packets
ratio, etc.). This assumption is a limitation that affects the variance of the internal model and
can cause serious sampling artifacts (see Figure 4.1.1). The complete list of modeled features
is listed in Table 4.2.

3The marginal model focuses on the modeling of user’s behavior and thus we consider outgoing flow as request
and incoming flow as response.
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Figure 4.1.1: Artifacts of marginal sampling in real-life example. The figure shows that marginal
sampling (red crosses) is not able to mimic the data correctly and thus creates serious sampling
artifacts—data that did not appear in the original data—whereas sampling from time variant
joint probability model (to be introduced in next section) respects the dependency between
features and generates the data correctly.

To train the marginal model, the training data are preprocessed to pair the requests with
the corresponding responses. We assume that the user behaves only as a client and thus every
NetFlow with user’s IP address as source IP is considered as a request. The corresponding
response is matched as NetFlow with following properties:

source IP esponse = destination IP equest,

source port = destination POrtyequests

response

destination IP ¢sponse = user’s IP,
destination port,egponse = SOUICE POty e onges

protocol = protocol (4.1.2)

response request "

Note that there is a maximal delay 7 between request and response in order to avoid incorrectly
paired flows, current set to 2 seconds. The extracted request/response pairs are used to esti-
mate the distributions of all individual features of the model (Table 4.2) using non-parametric
estimates (histogram for continuous features or relative frequencies for categorical features) as
no well-known parametric distribution correctly describes these features [50]. Note that in the
experimental evaluation individual features were estimated from one-week-long sample of data
which prove to be sufficient, as larger datasets did not provide significantly better estimates.
Once model training is finished, request/response pairs are sampled as follows. At first,
we randomly choose whether there will be a response or the generated pair will contain only
request (the feature Has response). Next, we sample values of individual NetFlow fields from
distributions of corresponding features estimated from the training data, except for starting
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time of the request and response. Instead of sampling starting time of request and response
directly, we sample user’s and server’s thinking times (both from corresponding distributions
estimated from training data). The starting time of the request is then computed as a sum
of the last starting time and user’s thinking time, and the starting time of the response is
computed as sum of starting time of the request and thinking time of the server. In the last
step is the source address in the request (and destination IP in the response) set to the user’s IP
address (parameter of the algorithm) and the destination address in the request (source address
in the response) is sampled from the distribution estimated from the training data.

4.2 Time variant joint probability model

In Section 4.1.2 we have described a simulation technique that uses simple statistical model but
misses more complicated aspects of the user’s behavior. This leads to serious sampling artifacts
such as

e single connection transfers 60GB in 2 seconds,
e user activity remains constant during the day and night,
e HTTP request precedes corresponding DNS request.

The first issue is caused by the fact that marginal model does not respect relations between
indiwvidual features (see Figure 4.1.1).

Next problem is caused by the fact that user’s behavior changes during the day. Usually
during the night there is no network traffic generated by the user’s machine or the volume of
the traffic is very low (only the automated behavior of the machine, e.g. periodic updates).
However, during the working hours its network activity increases rapidly and fluctuates during
the whole day. For example during the lunch break there is a significant drop in the volume of
the network traffic followed by a spike when users return to work. Note that the profile of the
user’s behavior changes through the day as well, since user uses different services at different
time of day. The marginal model described in previous section does not reflect such changes
and this has negative effects to the quality of the generated data.

The third problem relates to the sequential character of the network traffic triggered by
user’s actions. The typical example is the opening of a web site as the web browser has to
resolve the domain name of the HTTP server before it can establish TCP connection with the
server. This will appear as request to the DNS server that resolves the domain name of the web
site followed by a number of different connections to port 80 over TCP protocol to the HT'TP
server. This example illustrates that user’s network traffic exhibits sequential behavior which
is not reflected by the marginal model.

Comparison of all three models and various characteristics captured by these models is
summarized in Table 4.3.

4.2.1 Model formalism

In order to address all deficiencies and problems described in previous section, we propose the
time variant joint probability model (referred as joint for short). It assumes following generative
process that generates user’s traffic: after some time of inactivity (user’s thinking time T") user
selects specific service s (DNS, HTTP, SSH, etc.) defined by a combination of server port and
protocol. For this service, he selects a remote server specified with destination IP dIP, initiate
connection, and, if successful, performs communication.
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Random

< | Marginal

Properties of fields of NetFlows (e.g. distribution of bytes, source ports,
etc.)

Intra-flow relations (e.g. Packet/Bytes ration, etc.) - -
Inter-flow relations (e.g. request/response ration) -
Changes in the user’s behavior - -
Sequential character of the user’s behavior - -

\
NSNS AN Joint

Table 4.3: CAPABILITIES OF PRESENTED MODELS. THE TABLE SUMMARIZES CAPABILITIES OF RANDOM
SAMPLING (Random), MARGINAL MODEL (Marginal) AND TIME VARIANT JOINT PROBABILITY MODEL
(Joint). IT SHOWS WHETHER GIVEN PROPERTY OF THE TRAFFIC CAN BE (v'), CANNOT BE (-)
CAPTURED BY GIVEN MODEL.

Algorithm 4.1 Sampling of the NetFlow data

1: procedure SAMPLEFLOW (length) > Sampling single flow
2 F 0

3 t<0 > Set current time to 0
4 repeat

5: T < thinkingTime(t) > Sample thinking time
6 s < p(s|t) > Sample service
7 dIP < p(dIP|s, 1) > Sample target
8 cPort « p(cPort|s, t) > Sample client port
9: xs + p(as|dIP, s, t) > Sample remaining features
10: flow < ¢, s,dIP, cPort, = > Build flow
11: F « F U {flow}
12: t—t+T > Increment current time
13: until ¢ < length
14: return F

15: end procedure

Feature name Description

Request bytes Number of bytes in request

Request packets Number of packets in request

Request protocol TCP, UDP, ICMP, etc.

Request flags TCP flags in request

Request length Duration of request

Server thinking time Time difference between request and response
Response bytes Number of bytes in response

Response packets Number of packets in response

Response length Duration of response

Response flags TCP flags in response

Has response Is there corresponding response to the request?

Table 4.4: SET OF FEATURES THAT DESCRIBE THE BEHAVIOR OF A SERVICE. NOTE THAT TCP FLAGS
FOR REQUEST AND RESPONSE ARE EMPTY FOR ALL NON-TCP CONNECTIONS.
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To capture such interaction we adopt request/response pairing used in marginal model.
Additionally, we adopt following assumptions:

1. the whole generative process is parametrized by day time (hours of the day), further
denoted as t, to address the problem of the variability of user’s behavior during the day,

2. the thinking time (T") depends only on the day time ¢, i.e. no other aspects of user’s
behavior affect his thinking time,

3. the client port (cPort) depends only on the service and day time, as source ports for the
outgoing connections are assigned by the operating system without any user’ interaction.
Most operating systems simply increment the last used port until the range is depleted
and thus for different daytime different range of ephemeral ports is used. The dependency
on service is caused mainly by long persistent connections that are split by the NetFlow
probe into several NetFlow records. All these flows have the same client port and in the
statistics, it appears as the service prefers single source port.

The generative process described above is then formalized as probabilistic generative model
with following probability distribution function (PDF)

p(x|t) = p(s|t) - p(dIP|s, t) - p(cPort|s, t) - p(z|dIP, s, t) - p(T|t), (4.2.1)

where t represents the day time, s represents service, dIP represents destination IP, cPort
represents client port and 2’ represents vector of all remaining features (see Table 4.4). Gen-
erating new traffic (summarized in Algorithm 4.1) is then implemented as sampling from this
distribution.

The first factor of the complete PDF, p(s|t), corresponds to the probability of a user using
service s (the server port and protocol tuple) in given day time ¢. It is modeled as first order
discrete-time Markov chain [123] which naturally captures the sequential character of the user’s
behavior (e.g. the example with the HTTP communication described above). In the Markov
chain, services are represented as states and transition probabilities are estimated from the
data. Generating of a new service is then sampling from the Markov chain for specific day time
t given the knowledge of service in previous time step.

The factor p(dIP|s, t) represents the probability of connection to service s in day time ¢ that
runs on destination IP dIP. It is modeled simply as histogram of all destination IP (for specific
service in given day time) estimated from the training data.

The factor p(cPort|s,t) captures the probability of operating system assigning the client
port cPort when user opens connection to service s in day time ¢ modeled as histogram of client
ports estimated from training data. This model is able to capture the long term connections to
a service that appear in the data as different NetFlows with the same client port (connection to
e-mail server, long term SSH connection, etc.) as well as different strategies used by operating
system to assign the ephemeral source ports to outgoing connections.

The factor p(2’|dIP, s,t) describes the joint distribution of all remaining features for service
s running on IP dIP in day time t. It is modeled by multivariate histogram to capture the
behavior of the remote service running on given server.

The last factor, p(T'|t) describes the user’s thinking time in different day times. In contrast
to the previous factors, this one does not model the distributions of thinking times directly
using e.g. histogram. The main reason is that it results in unrealistic data as the histogram
does not capture correctly the time intervals when the activity of the user is very low. In the
next section we discuss approach specifically designed to address this issue.
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Sampling of user’s thinking time

The marginal model, we have proposed in Section 4.1.2, models the starting time of the request
as a sum of the starting time of the previous request, and the thinking time of the client.
However, such approach cannot be directly adopted in the joint model due to the fact that
if we parametrize the thinking time with the daytime, it does not estimate the thinking time
for time intervals when the activity of the user is very low. The typical example is the night
time, when the last user’s activity appears in the evening and we do not have enough data to
estimate the thinking times.

To avoid this issue, we do not estimate the thinking time directly. Instead we model the
numbers of request n generated by user in given time interval. The thinking time is then
computed as follows

T=-— 4.2.2
: (42.2)
where L is the duration of usual time interval in seconds. In our setup we set L = 300s, the
usual length of a batch in anomaly-detection-based IDS systems [124, 125].
To stabilize the estimates of the numbers of requests [n1,...,n;,...] in individual time
windows, we smooth the data with sliding window as follows

T
|~

ni, (4.2.3)

ny =

o~ =

I

~

|
o~

where [ is the width of the sliding window controlling the smoothness of the estimate. If the
window is too long, the value does not follow the trends in the data, and if it is too short
the estimated value is too noisy. In the experimental evaluation we use [ = 8 as it sufficiently
smooths the estimates but still follows the dynamic trends in the data.

Next, we divide the list of the number of requests N = {ny,...,n;,...} into one-day long
sets forming matrix N’ defined in Equation (4.2.4). For every time interval ¢ € {1,...,288},
that is represented by a row in matrix N’, we have k samples where k is the length of the
training data in days.

n1  Nagy
, Ng  MN290 -
N = . . (4.2.4)
Nagg  N576
k

We estimate the distribution of number of requests for interval ¢ with histogram H; with
non-linearly distributed bins [1,11),[11,21),[21,41), [41,81),[81,201),[201,c0) as the number
of requests in interval ¢ roughly follows exponential distribution approximated by the bins.
Furthermore, for every bin of the histogram H; we define distribution of values. If the number
of samples that fit into this bin is 1, we assume uniform distribution of values in this particular
bin. If there are more samples, we assume normal distribution with parameters estimated from
the samples that fit into the bin. This setup helps us to overcome the lack of data as we have
only k samples.

The sampling procedure of the thinking time for given time interval is listed in Algorithm 4.2.
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Algorithm 4.2 Sampling of thinking time

1: procedure THINKINGTIME(t) > Sampling thinking time
2 for time interval ¢

3 b~ H; > Select bin with respect to distribution H;
4: if |b| = 1 then > If there is only one training sample
5: that fits in the bin b

6 ng ~ U (bg, by) > Sample from uniform dist. defined
7 by boundaries b, and by of the bin b

8 else

9: ng ~ N (p, o) > Sample from normal distribution with
10: parameters p and o estimated from
11: training samples
12: end if
13: T=1L/n > Compute thinking time, L is the length of
14: the time interval (in our case L = 300s)

15: return T

16: end procedure

4.3 Experimental evaluation

In this section we evaluate the quality of the data generated by the sampling approaches defined
in Sections 4.1 and 4.2. Our assumption is that if the simulated traffic correctly mimics the
profile of the real traffic, the IDS will trigger the same response to the simulated and real
data. Since the aim of the presented approaches is to evaluate an anomaly-detection-based
IDS, we measure the response of the IDS as a distribution of anomaly scores and the difference
between responses to the simulated and real data is measured as distance between corresponding
distributions of anomaly score. In this text we quantify the distance with Jensen-Shannon
divergence (D;g) [126], a symmetric version of Kullback—Leibler divergence (Dxry,). It is formally
defined as

1 1
DJS (¢real||¢sim> = §DKL <¢real|‘d)) + §DKL (¢blm‘|¢) )

¢ = % (¢real + ¢sim) ,

where @rea and ¢y represent distributions of anomaly scores for real and simulated data
respectively.

4.3.1 Selected anomaly detection algorithms

In order to evaluate the data under different conditions, we have implemented various types of
anomaly detection algorithms based on different detection paradigms.

Algorithms proposed by Pevny et al. [127] and Lakhina et al. [128, 129] use the principal
component analysis to detect anomalies in the traffic. However, there are several key differences
between these methods. First difference is in the features that are used for the definition of
the model of the individual detectors. Second difference is the measure used for assigning
the anomaly value (Lakhina proposes to use reconstruction error and Pevny uses mahalanobis
distance in sub-spaces). Note that we have implemented four different versions of algorithm
proposed by Pevny denoted in the results as Pevngj-f-dIP, Pevny-f-sIP, Pevny-f-dIP and
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Pevng-f~+-sIP (all described in [127]), and two versions of Lakhina’s algorithm Lak. Vol.-sIP
and Lak. Vol.-dIP where algorithms with suffix ““s/P” models the traffic with respect to a source
IP and versions with suffix “-dIP” models the traffic with respect to a destination IP.

Second type of algorithm we have used in the evaluation is a modified version of Minnesota
Intrusion Detection System—MINDS [130]. It uses an internal model of the network traffic but
unlike the algorithms proposed by Pevny and Lakhina it does not use PCA but measures the
difference between last and current time window. In order to overcome the performance issues
we have modified the algorithm from the originally proposed version. The modifications are
described in [131].

The last group of algorithms does not use any internal model of the network traffic. The
method originally published by Kuai Xu et. al. [132] uses a basic assumption that all network
traffic can be classified into several categories using a set of static thresholds. In addition to
the original algorithm (denoted as Xu-sIP in our evaluation) we have implemented modified
version (denoted as Xu-dIP) that uses complementary features relating to the destination IP.

4.3.2 Training and evaluation data

To evaluate the quality of the simulated traffic we used data recorded on mid-size university
campus during one week in April 2013 (further denoted as Derig). From the recorded data
we selected a set of full-time employees with various user profiles (developers, scientists, man-
agers and administrative staff) and sufficient amount of NetFlow data. We separated their
traffic based on their IP addresses and use it as training data for two models defined in Sec-
tions 4.1.2 and 4.2. The remaining traffic formed the reduced dataset D,.q which was used as
background that was mixed with the simulated traffic.

The evaluation of quality of the generated data was separated into two stages. During the
first stage we processed the original data D, by all anomaly detection methods and estimated
the distribution of anomaly values for selected users for every detection method separately.

In the second stage we simulated the network traffic using three approaches proposed in
this chapter: (1) the random sampling (referred as Random, see Section 4.1.1), (2) sampling
with marginal model (Marginal, see Section 4.1.2) and (3) sampling with time variant joint
probability model (Joint, see Section 4.2). The generated data were mixed with the reduced
dataset D,eq and this mix was again processed by all anomaly detection algorithms. Again, we
have estimated the distributions of the anomaly values of the simulated traffic for individual
anomaly detection algorithms and measure the distance between the distribution of anomaly
score for the simulated traffic and the distribution of anomaly score for real traffic estimated
in the first step. This process was repeated 20 times and using Kruskal-Wallis statistical test
on significance level « = 0.05 we verified that the results for the simulation approaches are
significantly different. Therefore we can compare individual simulation approaches using only
their average values of Djg estimated from the 20 runs.

In order to evaluate how realistic the simulated data are, we setup a baseline (further
referred as Real) which estimated the self-similarity of the real traffic. We split the original
data of selected users in two subsets according to the time and evaluated the distance Djg
between distributions of anomaly scores for individual anomaly detection methods estimated
on these two subsets. The assumption is that if the distance between two subsets of real traffic
is similar to the distance between simulated and real traffic, we consider the simulated traffic
realistic enough to be used for tuning/evaluation of an IDS.
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Detection alg. Joint Marginal Random Real

Pevny-f-dIP [127]  0.0321  0.0483  0.5427 0.0769
Pevny-f-sIP [127] ~ 0.0320  0.0464  0.5573 0.0674
Pevny-f+-dIP [127] 0.0124  0.0214  0.4237 0.0204
Pevny-f-sIP [127]  0.0088  0.0216  0.3942 0.0198
Lak.Ent. [129] 0.0472  0.1111  0.1889  0.0549
Lak.Vol-sIP [128] ~ 0.0353  0.1132  0.1889 0.0118
Lak.Vol.-dIP [128]  0.0433  0.1124  0.1874 0.0152

MINDS [130] 0.0292 0.0976 0.2399 0.0516
Xu-sIP [132] 0.0301 0.0371 0.0286 0.0078
Xu-dIP [132] 0.0421 0.0815 0.1704 0.0354
Average 0.0313 0.0691 0.2922 0.0361

Table 4.5: JENSEN-SHANNON DIVERGENCE (Djs) BETWEEN DISTRIBUTION OF ANOMALY VALUES OF
REAL AND SIMULATED TRAFFIC (LOWER VALUE IS BETTER).

4.3.3 Quality of the generated data

The results summarized in Table 4.5 prove that the random sampling generates the least realistic
data. The value of Djg is by order of magnitude larger compared to the two remaining models.
This confirms the expectations that the random sampling can be used only for syntax testing.

The second approach, the sampling with marginal model, provides significantly better results
compared to the random sampling. The results show that correct estimation of the marginal dis-
tribution of individual features significantly improves the results. However, the most advanced
approach, the joint model, provides the results more than 2x better than marginal model. This
indicates that, assumptions (1) all inter-flow features are independent and (2) user’s behavior
does not depend on the day time clearly do not hold.

The last column in Table 4.5 provides the comparison with the baseline that captures the
internal variability of the real network data. We can see, that for some detection algorithms
(e.g. Pevny-f-dIP, Pevny-f-sIP, Lak.Ent., etc.) the internal variability significantly exceeds
the distance between network traffic simulated with joint model and the real traffic. This is
caused by the fact that these detection algorithm adapt their internal model to the current
state of the network. Therefore even insertion of the same network traffic in two different time
windows does not necessarily produce the same response. In the case of the Xu-sIP and Xu-dIP
detection methods that do not have any internal model, the internal variance of the real traffic
is lower than distance between simulated and real traffic. However, on average, the distance
between simulated and real traffic is comparable to the internal variance of the real traffic. This
indicates that the joint model realistically simulates the network traffic.

This result is further confirmed in Figures 4.3.1 and 4.3.2 that visualize the distributions of
anomaly value of real data and data simulated by the joint model. Note that anomaly score > 1
represents the flows where the particular detector provided no results (due to its limitations).
These figures show that our model generates traffic that triggers response of anomaly detection
algorithms practically indistinguishable from the response to real traffic.
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Figure 4.3.1: Distribution of anomaly values for various anomaly detection method estimated
on the real traffic and traffic simulated by the time variant joint probability model.
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Figure 4.3.2: Distribution of anomaly values for various anomaly detection method estimated
on the real traffic and traffic simulated by the time variant joint probability model.
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4.4 Conclusion

In this chapter we have proposed a model for generating realistic NetFlow data that can be
used for evaluation and configuration of anomaly-detection-based IDS. We introduced the time
variant joint probability model that captures inter- and intra-flow relations as well as sequential
character of user’s behavior and compared this solution with two other simpler models (random
sampling and sampling with marginal model). The experimental results have shown that the
time variant joint probability model generates data that are more than 2x better in terms of
Jensen-Shannon divergence compared to the marginal model. The key difference between our
approach and most of the prior art is that we are able to construct the data in memory with
much lower overhead compared to approaches that adopt simulation of complete network and
as such our approach is well-suited for runtime adaptation of an IDS system.

The main limitation of the proposed model arises from its structure, where every server
has its own separate model. In the case that several servers provide the same application,
their models can be merged which can improve the estimations of the underlying probabilities.
However, such extension will be considered in future work.

Although the proposed model is tailored to the NetFlow format, the general schema of
the proposed model can be extended to capture not only NetFlow data but different types of
communication as well. Therefore, the proposed model can be extended to other types of data
(e.g. HTTP proxy logs) by incorporating necessary features in the proper parts of the model.
However, these extensions, though beneficial, are out of the scope of this thesis and will be,
again, considered in future work.
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Chapter 5

Malware classification using
malware behavioral traits

In previous chapter we have discussed the approach to simulation of legitimate network traffic.
We have argued that due to characteristics of the human behavior a stochastic model is well
suited for simulation of user’s behavior.

However, in the case of malware (or malicious behavior in general) the situation is quite
different as malicious actors (malware and its authors, or human attackers) constantly alter
their network behavior to avoid detection. They introduce new types of attacks, novel methods
for command and control communication (C&C) and monetization, at rate that makes the use
of trained stochastic model impractical. This leads to a situation when obtaining network traffic
for training model of legitimate user is relatively easy, but with malware we are always one step
behind.

The main reason is that, we first need to find the malware, record its behavior, analyze it and
build a model. This process, however, can take days or weeks (or even months in case of very
sophisticated malware [24]). In order to overcome the complex process of analysis of malware
behavior and extraction of a model, we propose to emulate the malware behavior rather than
simulate. Therefore, we analyze malware samples in controlled environment (sandboz) record
its network traffic and use it for online adaptation.

However, implementing such approach brings the problem of how to navigate in a vast
amount of samples available, as for example VirusTotal [133] receives 2 millions of unknown
samples per day. We need to label individual samples since (1) we are interested only in malware
at this point and (2) we need to select interesting malware samples as using traffic traces from
dominant malware family may introduce significant bias into the adaptation process.

In order to find missing labels, one can use well-known Anti-Virus products (AV products)
or techniques based on static analysis. Problem is that such approaches typically relies on
static patterns or statically extracted features to classify malware. This leads to situations
when completely new malware, malware with encrypted code, or polymorphic malware that is
able to modify its own binary, avoids detection as it is too different to be detected. Another
problem is that AV engines typically use generic labels such as generic, trojan, downloader, etc.
instead of names of malware families which does not fully counter the problem of categorization
of unknown samples into malware families.

To address these problems we propose first to classify and then to cluster the samples
using information extracted from malware behavior recorded in sandbox by means of dynamic
analysis [134]. Since the samples are executed, it overcomes the problem with encoded or
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polymorphic malware as they are forced to exhibit its true behavior. In the case of completely
new malware, using dynamic analysis is beneficial as well, since information about malware
behavior significantly simplifies the analysis.

In this chapter we introduce a novel representation of behavioral traces recorded in a sandbox
and verify its robustness in classification scenario.!

5.1 Classification of sandboxed samples

To capture the malware behavior, we assume that execution of malware’s actions involves in-
teractions with resources visible at the operating system level. Examples of such interactions
include operations with files during encryption of a victim’s hard drive, network communication
during data exfiltration or displaying advertisements, operation with muteres used to ensure
a single instance of malware is running, or manipulation with registry keys to ensure persis-
tency after reboot. An additional source of information are error messages of the operating
system itself. Such information is provided by the sandboxing environment as the following
warnings: dll not found indicating missing dynamic library, incorrect executable checksum in-
dicating corrupted binary, and sample did not execute indicating the fact that the binary was
not executed at all due to various reasons (corrupted binary, sandbox was not able to copy the
binary into VM, etc). All these system resources are then collected by the sandbox and used
as an input of further analysis. The particular approach to collect this data can be different
for every sandboxing solution, but it typically involves hooking system calls used for handling
these resources [135], modification of hardware drivers or external monitoring (e.g. recording
of network traffic on the level of host machine).

To model the interactions of a malware binary with resources, this work views each binary
executed in a sandbox as a set of pairs of names and types of resources the binary interacted
with. This view {rames the problem as a multiple instance learning (MIL) problem [136] where
each sample (binary) is represented as a bag that consists of a set of instances of different
size. In our scenario an instance represents the pair of name and type of a resource the binary
interacted with during sandboxing.

Variable sizes of samples and lack of order over their instances pose a challenge to traditional
machine learning methods that expect samples to have fixed size. A recent review of MIL
algorithms [25] lists various approaches to overcome this variability in sample sizes. One of
the most popular (also adopted in this work) is wvocabulary-based method [137] outlined in
Algorithm 5.1. It employs clustering of instances to describe the sample by a fixed-dimensional
vector with length equal to the size of vocabulary, i.e. a set of clusters, so that an ordinary
machine learning method can be applied.

To convert a sample into a fixed-dimensional vector, all instances I from all training samples
S are extracted and clustered by a suitable method per given resource type: files, mutexes,
registry keys, network communication, where the resulting clusters represent the vocabulary.
Note that due to the low number of possible warnings generated by the sandboxing environment,
we consider every warning as a separated cluster. Next, for every instance i the closest cluster
prototype ¢* (a small random subset of the cluster of instances) of corresponding type is located.
Finally, the binary representation is then used such that element of the vector equals to 1 iff
there was an instance close to the particular cluster prototype.

I This chapter is based on the work published in [31].
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Algorithm 5.1 High-level overview of training (function TRAIN) and classification (function

PREDICT) of malware samples.

1: function TRAIN(S,y)
2: I + extractInstances(S)
3: C + cluster(I)

=

X < project(S, C)

@

M <« trainClassifier(X,y)
6: return M, C

7: end function
8: function PREDICT(S’, C, M)

9: X' « project(S’, C)
10: g « predict(M, X")

11: return g
12: end function

> Training samples and labels

> Clustering of instances (separately for in-
dividual types)

> Projection of samples into binary vector
(Alg. 5.2)

> Returns cluster centers C' and trained
classifier M

> Testing samples S’, clusters C' and clas-
sifier M

> Projection of samples into binary vector
(Alg. 5.2)

> Classification of testing samples

Algorithm 5.2 Projection of samples S into binary vector using cluster centers C.

1: function PROJECT(S, C)

2 X0

3 for all s € S do

4: I « extractInstances(s)
5 x40

6 for all : € I do

7 c* < nnSearch(i, C)
8: x[c*] 1

9: end for

10: X + XU{z}

11: end for
12: return X

13: end function

> Samples S and clusters C.

> Finds closest center ¢* to in-
stance 1.
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Once all samples are encoded as fixed-dimensional vectors, one can use a machine learning
algorithm of choice to implement the classifier. This work uses the random forest classifier [26]
due to its versatility, accuracy, and scalability, which make it a popular choice for many different
machine learning tasks including malware classification [100].

Since the clustering is an essential component of the above algorithm, the definition of
similarity over instances (resource names) greatly influences the accuracy of the system, and
therefore it should reflect properties of the application domain. The rest of this section defines
a specific similarity metric for each type of resources the malware interact with, namely on files
(Section 5.1.1), network hostnames (Section 5.1.2), mutexes (Section 5.1.3), and registry keys
(Section 5.1.4). The above metrics are then used in a modified clustering algorithm justified in
Section 5.1.6.

5.1.1 Similarity between file paths

Although viewing file paths as strings would allow to use vast prior art such as Levenshtein
distance [138], Hamming distance, Jaro-Winkler distance [139], or string kernels introduced in
[140], the file systems were designed as tree structures with names of some folders (fragments of
the path) being imposed by the operating system. The distance should reflect that. For example
two files with paths /Documents and Settings/Admin/Start Menu/Programs/Startup/tii9-
fwliiv.lnk and /Documents and Settings/Admin/Start Menu/Programs/Accessories/
Notepad.lnk share large parts of their paths and common string similarities will return high
similarity score, but the paths serve very different purposes, since the first file is a link to an
application executed after the start of the operating system (OS), while the second is a regu-
lar link in the Start menu in Windows OS. Another aspect that prohibits the use of common
string similarities is their computational complexity (typically O(n?) where n is the length of
the string). The complexity combined with the number of resources to be clustered (in order
of millions) leads to unfeasible time requirements. This motivates the design of a similarity
that is fast and takes into the account the tree structure of the file system, special folders, and
differences between folders and filenames.
The proposed similarity s(z,2’) of two file paths x and 2’ is defined as

s(x, ") = exp (—wa(x, '), (5.1.1)

where w is a vector of weights and f(x,2’) is a function extracting a feature vector from file
paths z and z’. Both the weight vector w and function f play an essential role and are both
discussed in detail below.

The function f in (5.1.1) captures differences between the two paths 2 and z’ by a fixed-
dimensional vector. It first splits both paths x and 2’ into fragments x; and 2 using OS specific
path separator?, in the cases of MacOS and Windows changes all characters to lowercase, and
assigns all fragments into one of the following four categories:

1. known folder — fragment x; is a well-known folder in the list of folders imposed by the
operation system (e.g. Windows, Program Files, System32, etc.),

2. general folder — fragment x; is a not-well-known folder (e.g. unknown folders in Program
Files, randomly generated folders in Internet Explorer cache folder, etc.),

3. file — fragment x; is file,

2Unixes and MacOS uses ’/’ as a path separator, Windows uses ’\’.
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Fragment 1 Fragment 2 Fragment 3

x Documents and Settings (K) Admin (G) Start Menu (K)

x' Documents and Settings (K) Admin (G) Start Menu (K)
Fragment 4 Fragment 5 Fragment 6
Programs (K) Startup (K) tii9fwliiv.1lnk (F)
Programs (K) Accessories (G) Notepad.lnk (F)

Table 5.1: EXAMPLE OF TWO PATHS & AND 2’ SEPARATED INTO INDIVIDUAL FRAGMENTS WITH LABELS
(K — KNOWN FOLDER, G — GENERAL FOLDER AND F' — FILE).

4. empty — artificial fragment used for padding the paths in cases when paths x and z’ have
different depths.

When all fragments are assigned to one of the above classes, their dissimilarity is captured by
the function f as

f(z,2") = (fxr, [xe, [P, [xEB, faa, far, fap, frr, fFE)
where

e fr i is the number of fragments on the same level that were both classified as known
folder and were not equal,

e fao is the sum of Levenshtein distances between all fragments on the same level that
were classified as general folder,

e frp is the sum of Levenshtein distances of all fragments on the same level that were
classified as file,

e fxa, fxr, frE, far, for, fre are the sums of all fragments of the same level and were
classified as known and general folder, known folder and file, known folder and empty,
general folder and file, general folder and empty, and file and empty respectively.

To illustrate the calculation of f(x,z’), let’s consider the same two paths used above. At first,
function f splits both paths into fragments and assign them into one of four categories (see
Table 5.1). Assigning fragment to classes requires a list of known folders®, which for the purpose
of this example we assume to contain Documents and Settings, Start Menu, Programs and
Startup, which are present in all windows installations. All corresponding folders from those
two paths are therefore assigned to known folder class, while Admin and Accessories are labeled
as general folders.* Individual elements of the vector f(z, ') are calculated using the above
rules as follows: the first rule applies to three fragments 1, 3, and 4 belonging to known folder
class, but as they are all equal fxx = 0; the second rule returns 0 based on analogous reasoning
but for general folders; the third rule returns frr = 0.7143, which is the Levenshtein distance
between tii9fwliiv.1lnk and Notepad.lnk; the only mismatch is on fragment 5—known folder

3Full list of known folders is available online: https://github.com/SfinxCZ/Malware-analysis-using-multiple-
instance-learning

4The first three known folders are embedded in the functionality of the Windows OS. The Startup folder
has a specific meaning altering the behavior of the operation system since all programs listed in this folder
are executed after the boot of the OS. On the other hand Accessories can be easily changed without major
consequences.
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and general folder yielding fx¢ = 1; and finally all remaining elements of feature vector are 0.
The output of f(x,z’) is captured by the feature vector

flz,2') = (0,0,0.7143,1,0,0,0,0,0).

The weight vector w in (5.1.1) captures the contribution of individual elements of the feature
vector f(z,2’). Imposing condition w > 0, in combination with construction of function f,
bounds the value of the similarity function (5.1.1) s(x,z’) € [0,1]. The similarity function
then returns 1 (or values close to 1) if x and 2’ belong to the same class (files in /temp/
directory, cache of the Internet Explorer, files in system directory, etc.) and values approaching
0 if they belong to different classes. Since the similarity function (5.1.1) was inspired by the
popular Gaussian kernel, the parameter vector w was optimized using the Centered Kernel
Target Alignment [141] (CKTA), which is a method to optimize kernel parameters. CKTA
assumes training data {(x;, y;), }/, where in our case z; is a file path and y; is the class of the
path x;. CTKA then defines centered kernel matriz as

w w 1 - w 1 S w 1 = w
[Sc]ij :Sij - EZSU - EZS”‘FW Z Sij? (512)
i=1 j=1

ij=1

where S} = s, (z;,2;) is the kernel matrix corresponding to the similarity function (5.1.1)
parametrized by the weight vector w. CKTA maximizes correlation between labels and a simi-
larity matrix by solving the following optimization problem

SU} Yc
w* = arg max (8¢, Ye)p

e DOF (5.1.3)
w20 [[S¥]p - 1Y el

where Y is target label kernel with [Y],; equaling to 1 when i*™ and j*" paths from training data
belongs to the same class and —1 otherwise, and (:,-) » and ||-||  represent Frobenius product
and Frobenius norm respectively defined for matrices A and B as

(AB),=> > A;-Bjy,

i=1 j=1

Al = /(A A)p.

In below experiments (5.1.3) is solved by stochastic gradient descent (SGD) algorithm [27].
Note that although the path similarity s(z;, x;) is not a valid kernel because it is not positive
definite, the use of centered kernel alignment is still possible as the only limitation is that the
global optimum might not be found.

To finish the example, the similarity function (5.1.1) with weight vector

w=(2,107°,1,2.3,1.6,1,0.36,0.7,0.9)

returns the value s(z,2’) = 0.049, which correctly indicates that the two paths are different.
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http://www.abc.com/av?sv=1&v=3.0.5&e=651af&u=http%3A%2F/2Fxyz. com),2F&if=0

sv_number v_version e_string wu_url if_number

Table 5.2: AN ExampPLE oF URL wITH QUERY STRING AND EXTRACTED KEYS AUGMENTED WITH
TYPE OF CORRESPONDING TYPES OF VALUES.

5.1.2 Similarity of network traffic

To define the similarity between network resources, represented by domain names or server IPs,
one has to overcome the randomization often employed by malware authors that renders trivial
similarity based on names of network resources ineffective. To evade blacklisting command and
control (C&C) channels of malware, malicious actors use various techniques to hide and obscure
C&C operation. Popular approaches include randomization of domain names by generating
them randomly (DGA), quickly changing hosting servers and/or domain names by fast flux,
using large hosting providers like Amazon Web Services to hide among legitimate servers, etc.
These techniques are relatively cheap (e.g. registering a new .com domain costs “3USD per 1
year) and they allow for variation in domain names without updating disseminated malware
binaries. In contrast, switching from one C&C paradigm to another requires costly update and
therefore occurs relatively infrequently. These two properties contribute to the fact that each
malware family uses specific patterns of domain names, paths, and parts of URLs. Exploiting
these patterns allows to group domain names into clusters. In this work the similarity in network
traffic is defined only for HTTP protocol, because it is presently the default choice for malware
authors as it is rarely filtered in currently deployed defenses. However, the extension to other
network traffic is possible [142].

The similarity of URL patterns used in this work has been adopted from [143], which
has proposed to cluster network resources so that each cluster contains resources that exhibit
behavior typical for one family of malware or its variant. The calculation of similarity starts by
grouping all HT'TP requests using the same network resource (domain, server IP) and building
separate models for both query strings and paths in the URL. The overall similarity between
two network resources is then computed as an average similarity between these resources using
individual models. Since the similarity measures are not defined for every pair of resources
(details are discussed in following sections), the average similarity is computed only from those
models that are valid for given pair of network resources.

Query-based similarity

A query string is a part of the URL that carries information from clients to the specific function
or resource on servers in the form of key-value pairs without hierarchical structure or specific
order. We assume that servers serving the same application receive the same set of parameters
via the query string. Values themselves are not that important, since they can differ from client
to client but their types (number, string, e-mail address, etc.) are typically bundled with the
parameters. Therefore, we extract all keys from set of all HTTP requests W and enrich every
key k by the type of corresponding value (see Table 5.2).

To define similarity between two servers, we adopt the bag-of-words model [144], which is
widely used in text mining. The vocabulary V is formed by all keys augmented with correspond-
ing value types extracted from set of all HTTP requests W. The server s is then represented
as a vector defined as
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Figure 5.1.1: Three URLs and a path tree constructed from them. Each path is first separated
to path fragments and tree is built from top to bottom, representing the directory structure.

0 = (R, G
where ch(fS) is equal to the number of occurrences of key j in the set of HT'TP requests targeting
server s € S.
However, some query parameters are very common and don’t discriminate between servers.
To address this, we apply term frequency-inverse document frequency scaling (TF-IDF)[145] to
each j* element of vector ¢(*).

tidE(, 5, ) =tE(j, ) - idf(j, S) where
tf(4,s) =1 +In kj(s) and
S|

IED)

Finally, we employ cosine similarity on rescaled vectors ¢(*) to determine the similarity
of two servers. Only servers that receive at least one query parameter are considered in the
similarity calculation.

idf(j, S) =In

Path-based similarity

The idea behind using paths in HT'TP requests to determine similarity between servers is based
on assumption that two servers providing the same service are likely provide it at the same
location specified by path. The importance of ordering path elements is also the reason why
we do not use the bag-of-words representation in this case.

To reflect this assumption, we propose a representation that captures the directory structure
of all paths ever visited on servers. Specifically, each server is represented by a tree, whose root
is denoted “/”, each node in the tree specifies one directory in the hierarchy and each path from
root to a leaf represents one particular path observed in URL.
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{ eyJjbGllbnQiOiJhYWEILCAiYnJvd3NIcil6lm1vemIsbGEifQ== j
{ eyJjbGlIbnQiOiJjZGRIliwglmJyb3dzZXIiOiJJRTkifQ== j

Figure 5.1.2: An example of data tunneling through URL path.

Construction of path trees is simple. Paths from each URL are split by the directory
separator and a tree is built from the top to the bottom, representing the directory structure.
Figure 5.1.1 shows an example of several paths and the associated tree.

Paths in the URL do not always serve only as a pointers to the resources requested by the
clients. Both legitimate and malicious applications may use URLSs to tunnel (or exfiltrate) data
from client to the server. Figure 5.1.2 shows an example of an URL tunneling of a Base64-
encoded JSON. In this case, the corresponding part of the path cannot be considered a pointer
to the resource, but rather looked at as data. To capture information about the tunneled data,
we define new type of a node in the tree—the data node. In the rest of the text we refer to the
nodes representing directories as simple nodes.

Data node keeps description of the data being tunneled. The exfiltrated information is not
constant and changes in time. Therefore, the encoded strings are not exactly the same. On
the other hand, because the structure of the data is always the same for the same malware,
we can see some regularities in the encoded strings. The data node keeps track of parts of
the data strings that are constant across all requests. In the case of URLs in Figure 5.1.2,
the constant positions are emphasized in bold. Specifically, each data node is represented by
a set of such positions. In the case depicted in Figure 5.1.2, the respective data node contains
numbers between 1 and 15.

There is one more typical URL pattern that poses challenges to the proposed representation.
Usually, parameters are specified in the query string, e.g. after the ? symbol. However, in some
applications the parameters are transferred using the path, for example it is often used in
streaming media. An example of the parameter tunneling is depicted in Figure 5.1.3a. As you
can see, the trees grow to large sizes and children nodes of the parameter values are redundant
because most of them have the same value. Therefore, when we detect that parameters are
being sent via the path, we join nodes representing parameter values into a single node with
special value <*>. Figure 5.1.3b shows the same tree after compression.

Similarity metric While there are general similarity metrics for trees, such as edit distance,
we propose a similarity tailored to our specific domain where ordering of the path elements is
crucial but at the same time, ordering of children of any node is not. We take advantage of the
kernel formalism [146] that allows us to define dot product of two trees in a transformed space.
We define kernel

K(n,m)=L(n,m)-(1+C- > K(u,v)), (5.1.4)

u€sub(n)
vEsub(m)
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Figure 5.1.3: Compressing of fragments of URL path that tunnels data.

where n and m are two nodes, sub(-) returns all children of the node, C' determines how quickly
the importance of deeper tree levels increases or decreases, and L(n,m) is defined as

Itp—my  if n,m are both ordinary nodes,
L(n,m) = ¢ JI(n,m) if n,m are both data nodes, (5.1.5)

0 otherwise,

where I{,,—.,} is equal to 1 if m and n represent the same directory (name), otherwise it is equal
to 0. Data nodes are represented as sets of integers, and JI(n, m) of two data nodes is Jaccard
index of these sets.
It can be shown that K is a valid kernel function. The similarity itself is then determined
by the formula
2K (n,m)
K(n,n)+ K(m,m)’

where n and m are root nodes of trees being compared.

Not all HTTP requests specify path, part of them can target the root directory itself. Such
domains are not considered in the model, and their similarity to other domains from the point
of view of the path-based model is 0.

s(m,n) = (5.1.6)

5.1.3 Similarity between mutex names

Mutex (Mutual exclusive object) is a service provided by most modern operating systems to syn-
chronize multi-threaded and multi-processes applications. This mechanism is popular among
malware authors to prevent multiple infections of the same machine, because running two in-
stances of the same malware can cause conflicts limiting the potential revenue. Mutexes are
identified by their name, which can be an arbitrary string. The naming scheme is challeng-
ing for malware authors, because the names cannot be static, which would make them good

64



indicators of compromise of a particular malware, but they cannot be completely random ei-
ther, because two independent binaries of the same family would not be able to check the
presence of each other. Therefore malware authors often resort to pseudo-deterministic al-
gorithms or patterns for generating mutex names. For some malware families these patterns
are already well known, for example Sality [147] uses mutex names of the form "<process
name>.exeM_<process ID>_"-explorer.exeM_1423_.

Since operating systems do not impose any restrictions on the names of mutexes, they can be
arbitrary strings. Therefore standard string similarities such as Levenshtein distance, Hamming
distance, Jaro-Winkler distance, etc. can be used. In experiments presented in Sections 5.2
Damerau-Levenshtein [148] was used, as it gives overall good results.

5.1.4 Similarity between registry names

In Microsoft Windows operating system, the primary target of the majority of malware, the
system registry serves as a place where programs can store various configuration data. It is a re-
placement of configuration files with several improvements such as strongly typed values, faster
parsing, ability to store binary data, etc. The registry is a key-value store, where key names have
the structure of a file system. The root keys are HKEY_LOCAL_MACHINE, HKEY_CURRENT_USER,
HKEY_CURRENT_CONFIG, HKEY_CLASSES_ROOT, HKEY_USERS and HKEY_PERFORMANCE_DATA; some
root keys also always have sub-keys with specific names (Software, Microsoft, Windows, etc.).
Due to similarity with a file system, the similarity distance is the same as the one defined
in Subsection 5.1.1, but with a different set of names of known folders and a weight vector
optimized on registry data rather than on files.

5.1.5 Similarity between error messages

As we have discussed in Section 5.1, error messages of operating system considered in this work
are limited to: dil not found indicating missing dynamic library, incorrect executable checksum
indicating corrupted binary, and sample did not execute indicating the fact that the binary was
not executed at all due to various reasons (corrupted binary, sandbox was not able to copy the
binary into VM, etc). The low number of possible error messages allows us to use the individual
messages directly as cluster centers ¢* and the similarity measure is therefore reduced to simple
identity.

5.1.6 Clustering of system resources

The above similarities are not true distances, which limits the choice of applicable clustering
methods to those that do not require proper distance metric between points. The Louvain
method [149] is a popular choice and it is used in experiments below, because it also automati-
cally determines the number of clusters and thus removes the need to set it manually. The use
of the Louvain method is the authors’ preference, but other clustering methods can be used as
well; the reader is referred to [150] for an overview of methods applicable when true distance is
not available.

The use of the Louvain method is not straightforward in our scenario because it requires a
full adjacency matrix in advance. This results in a lower bound to computational complexity
being O(n?) in the number of resources, which is clearly prohibitive as the number of unique
resource names to cluster can easily reach the order of millions. To decrease the number of
calculated similarities, an approach inspired by [151, 152, 153| is adopted where the Louvain
clustering is used iteratively as summarized in Algorithm 5.3. Given a set of instances I of a
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Algorithm 5.3 Approximative clustering algorithm for instances I (resource names).
1: function APPROXCLUSTER(/; k, m, €)
2: =0
3: while I # () do
4:
5

I’ + Random subset of size k from [
C’" + cluster(I',m) > Cluster instances I’ and create
cluster prot. of size m.

6: for allie I\ I’ do

7: ¢* < nnSearch(i,C") > Find cluster prot. ¢* closest to
instance 1.

8: if s(i,c*) > € then

9: U {i}

10: end if

11: end for

12: C—cuc

13: end while

14: return C

15: end function

particular type, in every iteration the algorithm selects a random subset I’ C I of the data
of size k small enough for the Louvain method to be computationally feasible. The results of
the Louvaine clustering are then transformed to cluster prototypes—random subsets of clusters
with size limited to m. Remaining data I'\I' are then traversed and all samples with similarity
larger than € to some cluster prototype ¢* € C’ are added to ¢* and removed from I. Finally,
C" is merged with the clustering C' obtained in the previous iteration, and if I is not empty,
the process is repeated.

Clearly the algorithm is an approximation of a clustering with complete data and its perfor-
mance depends on the choice of parameters k and e¢. Experiments indicate that if parameter &
is large enough (k = 10%) and parameter ¢ is set reasonably (in the experimental evaluation we
use € = 0.4, see Section 5.2.2 for details), the results are comparable with clustering methods
applied to the complete data. The computational complexity of this sequential approximation
isO(-(k-(k—1)/24 ¢ -m-(n; —k))) where [ is the number of iterations of algorithm (typ-
ically [ < 10), n; is the number of non-clustered samples in [-th iteration, k is the number of
randomly selected samples, ¢; is the number of cluster prototypes produced by the clustering
algorithm in I-th iteration and m is the maximal size of a cluster prototype (typically m = 10).
Since the parameter k is fixed and k£ < n, we can see that the number of evaluations of the
similarity function is linear in the number of samples, which clearly outperforms the quadratic
complexity required by the vanilla Louvain method. More details about performance of the pro-
posed clustering and comparison of proposed similarity metrics with state-of-the-art approaches
can be found in Appendix (A).
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Malware family  #samples Malware family #samples

nemucod 13781 amonetize 1172
cerber 12829 nanocore 1032
bladabindi 10945 loadmoney 964
locky 9894 yakes 892
gamarue 7694 bifrose 804
darkkomet 4664 autoit 781
hupigon 3555 kolabc 707
upatre 3269 waldek 686
tinba 3104 pdfka 649
scar 2961 shipup 625
swrort 2868 rebhip 613
zbot 2426 razy 599
virlock 1797 agentb 579
fareit 1763 poison 551
farfli 1749 xtrat 511
zegost 1719 onlinegames 502
virut 1556 ramnit 493
adwind 1537 magania 463
zZusy 1505 atraps 461
ircbot 1447 softpulse 460
zerber 1329 banload 387
palevo 1270 ruskill 374
vobfus 1244 downloadassistant 373
delf 1228 binder 350
donoff 1211 remaining MW families 31856
Total malicious 144229
Total legitimate 87026

Table 5.3: NUMBER OF SAMPLES OF MALWARE FAMILIES IN THE DATA SET. THE MALWARE FAMILIES
FOR INDIVIDUAL SAMPLES WERE DETERMINED USING AVCLAsS TooL [154].

5.2 Evaluation

In this section the proposed approach (further referred to as MIL model) is compared to the
approach proposed by Rieck, et al. [94] (further referred to as Rieck) and the approach pro-
posed by Mohaisen, et al. [92] (further referred to as AMAL). Rieck has been selected as a
representative of the prior art that encodes malware behavior into a high-dimensional feature
space using bag-of-words model built directly from data; it uses kernelized SVM to classify bi-
naries. The second approach, AMAL, encodes malware behavior using a relatively low number
of hand-made features; to classify unknown binaries AMAL trains multiple classifiers (SVM,
decision trees, k-nearest neighbor, etc.) and selects the optimal classifier for given data using
cross-validation.
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AhnLab, V3 Internet Security G Data, InternetSecurity

Avira, Antivirus Pro Kaspersky Lab, Internet Security
Bitdefender, Internet Security ~Microworld, eScan internet security suite
ESET, Internet Security Symantec, Norton Security

F-Secure, Safe Trend Micro, Internet Security

Table 5.4: SELECTED AV ENGINES THAT RECEIVED FULL 6 POINTS FOR PERFORMANCE IN AV-TEST
REPORT FROM DECEMBER 2016 [155].

5.2.1 Data set description

The dataset used for experiments contained 250527 files collected from October 24, 2016 to
December 12, 2016 using AMP ThreatGrid [156]. All files were also analyzed by VirusTotal.com
service [133] and labeled using its verdicts as follows: a file was labeled as malicious if at least
4 out of 10 selected AV engines (see Table 5.4 for details) detected the file as malicious, and
it was labeled as legitimate if none of the AV engines detected the file. Remaining files were
discarded as unknown and removed from both training and testing sets in order to limit the
effect of misclassifications by individual AV engines. The final numbers of files were: 144 229
malicious, 87026 legitimate, and 19272 discarded as unknown. The numbers of samples of
individual malware families are summarized in Table 5.3.

All files were executed in sandbox by AMP ThreatGrid [156] service, using Windows 7 64bit
(71% samples) environment, as it is the most popular OS at the time of writing®, and Windows
XP (29% samples) environment, since it is still widely deployed on embedded machines such
as ATMs. Virtual machines were connected to the Internet without any filtering or restrictions
that could by any mean prevent connections to command & control servers or other servers.
The work here is not tailored to AMP ThreatGrid, as the same or similar information about
binaries can be obtained by a number of different sandboxing solutions such as Cuckoo [157],
Ether [158], or CWSandbox [159].

In contrast to the majority of prior art, binaries were divided into training and testing sets
according to the dates they were collected rather than randomly. This approach is more realistic
since it does not overestimate the detection performance as some malware families may not be
known at the time of training, as they might have appeared later. Thus, all training samples
collected prior to November 12, 2016 (72963 malicious binaries and 48 152 legitimate binaries)
were used for training, and remaining samples (71266 malicious binaries and 38 874 legitimate
binaries) were used for testing.

5.2.2 Hyper-parameter optimization

All compared methods have several parameters that have to be tuned to achieve good detection
accuracy. While in Rieck and the proposed method the parameters have to be optimized using
grid search (detailed below), AMAL is designed to perform such optimization during training in
order to select both the optimal classifier (SVM, linear SVM, decision trees, logistic regression,
k-nearest neighbor and perceptron) and its parameters and thus it does not need to optimize
its parameters in advance.

Since Rieck uses SVM with L2 regularization and polynomial kernel there are two parameters
that need to be tuned: misclassification cost C' € {10_2, ceey 108} and degree of the kernel

5According to http://www.w3schools.com/browsers/browsers _os.asp Windows 7 has 34.6% market share
against 1.0% covered by Windows XP, 11.1% covered by Windows 8 and 30.9% covered by Windows 10.
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d € {1,...,5}. The optimal configuration achieving highest accuracy estimated by five-fold
cross-validation on the training data was C' = 10%,d = 4.

The random forest classifier described in Section 5.1 contains several parameters such as
the number of trees K € {10, 20, 50,100,200}, maximal depth d,, € {5, 10,30,50, 00}, min-
imal number of samples in node to perform split s, € {2,4,6,10,20}, and criterion ¢ €
{gini, entropy}. All remaining parameters (maximal number of features, minimal number of
samples in leaf, maximal number of leafs, class weights, minimum weighted fraction of the total
sum of weights in leaf, minimal impurity for split) were set to their default values as defined
in the Scikit-learn library [160] since according to our experiments they have little influence
on detection performance. The optimal configuration of parameters with respect to accuracy
estimated by five-fold cross-validation on training data was K = 100, d,, = o0, s, = 2 and
c = gini.

Additional two parameters (minimal similarity € € {0.1,...,0.9} and size of randomly se-
lected subsets k € {104,2 -10%,5-10%,10%,2 - 10,5 - 105,00}) affect the clustering of the re-
source names described in Section 5.1.6. The minimal similarity was optimized on a manually
labeled set of file paths and registry keys that were clustered with different values of €. The
resulting clusters were evaluated with respect to the adjusted rand index [161], a well-known
score for evaluation of clustering algorithms, and the optimal value of ¢ = 0.4 was selected.
To find the optimal size of randomly selected subsets k the accuracy of the whole proposed
method with different settings of parameter k£ was estimated using fivefold cross validation on
randomly selected subset of training dataS. Since the differences between various settings were
negligible, the value of the parameter k = 10° was selected as a reasonable balance. Low value
of parameter k increases the number of iterations [ performed by the clustering algorithm, since
too many samples are rejected to be too dissimilar to available cluster prototypes, and high
value increases the quadratic cost for computation of adjacency matrix required by Louvain
method.

Classification performance was measured with standard evaluation metrics [162]: true posi-
tive rate (TPR), false negative rate (FNR), true negative rate (TNR), false positive rate (FPR)
and accuracy. Since the experimental scenario is binary (positive malware vs. negative benign),
the TPR (FNR) is the proportion of correctly (incorrectly) classified malware samples, TNR
(FPR) is the proportion of correctly (incorrectly) classified legitimate samples and accuracy is
the rate of correctly classified samples regardless their class.

5.2.3 Experimental results

The comparison and evaluation is divided into two parts. The first experiment evaluates the
detection performance of the MIL model, Rieck and AMAL trained on the full training set
(121 115 samples), while the second experiment measures degradation of detection performance
when only a limited number of data are available for training (5%, 10%, 20% and 100% of
training samples). Note that to evaluate AMAL on the complete training set, the meta learner
was not allowed to use SVM classifier with RBF kernel due to excessive computational require-
ments. Note that AMAL’s meta-learner has never selected this variant of the SVM classifier
in smaller experiments performed in this work, hence removing it most probably does not have
any impact on the results.

The detection rates and accuracy of classifiers trained on all 121115 training samples as
estimated on testing samples are shown in Table 5.5. The differences between evaluation metrics
indicate that the MIL model outperforms both Rieck and AMAL having the lowest false positive

6The subset was limited to ~ 30000 samples in order to limit the number of resources so that complete
clustering could be performed.
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Figure 5.2.1: Comparison of FNR and FPR for Rieck and proposed method trained on training
sets of different sizes (5%, 10%, 20% and 100% of training samples).

70



estimated on testing set estimated on training set

TPR FPR  ACC TPR FPR ACC
MIL model 0.954 0.067 0.943 0.973  0.061 0.956
Rieck 0.934 0.081  0.926 0.974 0.014 0.980
AMAL 0.795 0.108  0.845 0.845  0.047 0.899

Table 5.5: TRUE (TPR) AND FALSE (FPR) POSITIVE RATES OF EVALUATED METHODS ESTIMATED
ON THE TRAINING AND TESTING SET.

rate and false negative rate. A deeper analysis of the misclassifications produced by the MIL
model revealed that most of the false positives (legitimate binaries classified as malware) were
software utilities such as TeamViewer that install themselves into system directories without any
user interaction. Since their incidence in the training set was relatively low, the random forest
was not able to precisely learn this type of behavior. A second source of errors are false negatives
(malware samples classified as benign) where almost 70% are caused by insufficient numbers of
training samples (less than 100 samples) from corresponding malware families. Another 11% of
false negatives was caused by concept drift as a portion of testing samples exhibited different
behaviors than training samples, i.e. created files or registry keys followed different pattern,
network communication significantly different URLs, etc.

Large gaps between training and testing accuracies for AMAL and Rieck suggest that man-
ually created features and BoW features do not generalize over longer periods of time as well
as features created through clustering do. This suggests that clustering removes some random-
ization of resource names while retaining a large part of information content.

Figures 5.2.1a and 5.2.1b show graphs of FNR and FPR rates for larger sizes of the training
set expressed as fraction of the data available for training. For fair comparison the testing set
was kept static containing all 110 140 samples collected after November 12, 2016. Both graphs
show that the MIL model is able to achieve lower FNR and FPR using fewer samples. In fact,
the MIL model achieved FNR of 0.052 using just 5% of samples, while Rieck achieved 0.066
using the full training set. Similarly, the MIL model needed just 20% of samples to achieve the
same FPR 0.081 as Rieck on all samples.

Figures 5.2.1a and 5.2.1b also shows that while false negative rates almost do not change
with respect to the size of the training set (especially for the MIL model), the false positive rates
decrease dramatically. This suggests that learning behavior of legitimate applications is more
difficult than that of malware, which can be caused by the fact that the behavior of malware
is more uniform than that of legitimate applications. This corroborates the motivation of this
work, that even though malware authors try to randomize, they tend to randomize with same
sort of regularity, which leads to uniformity.

5.2.4 Detection limits

The experimental results hint at where are the limits of classifying binaries executed in sandbox.
When a binary (or all binaries of some malware family) does not perform any actions chang-
ing the data used by the discussed methods (dependent on modeling files, mutexes, network
communication or registry keys) it clearly evades detection. An example of such malware is
bitcoin miner that resides only in memory without any additional footprint (no operations with
files, no operations with registry keys, no mutexes, very limited network communication). Such
malware has to be carefully crafted to avoid any interaction with system resources (statically
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compiled to carry all libraries in the executable, limited network communication, no mutexes
ensuring that only single instance is running on the same machine, no persistency after reboot,
etc.). Fortunately, at the time of writing this work, this is not an easy task and accordingly
the majority of malware authors choose to interact with system resources rather than sacrifice
functionality.

Another limitation is the fact that a growing number of malware families are equipped
with advanced anti-VM and anti-sandbox features and/or are targeted to specific environments
(Stuxnet [24]). Such malware families do not reveal their true purpose during sandboxing
or mimic less severe types of malware (adware, PUAT, etc.). This fact is recognized by the
community as the main factor hindering the performance of dynamic analysis as the whole.
Addressing this issue is out of the scope of this work.

The last aspect we need to discuss is the false positive rate. The analysis of the results from
Section 5.2 revealed that a large number of false alarms is caused by applications that install
themselves into system directories without user’s interaction and since their number is limited,
the classifier was unable to fit this behavior. A solution is of course to improve the training
data by including a larger number of such samples and thus achieve lower false positive rate.

5.2.5 Scalability and computational complexity

The last aspect we will discuss is the scalability of the proposed solution and prior art. Since
the proposed solution employs clustering to project the input data into a feature space with a
lower dimension, a large portion of the training time is spent in the clustering phase. However,
the preprocessing of the dataset used in above experiments was much faster (~ 2h50min) than
the highly optimized pre-computation of the full kernel matrix required by Rieck (~ 7h). This
is caused by the fact that the time required by Rieck for preprocessing grows quadratically with
the number of training samples in contrast to the proposed solution with linear complexity
(up to an additive constant, see Section 5.1.6). Moreover, the proposed solution can be easily
distributed since in every iteration the nearest neighbor search depends only on a limited set
of current cluster prototypes C’.

Another benefit of the proposed solution is tied to the representation itself. Since the
clustering is performed only on training samples, in order to classify unknown samples we need
to store only the cluster prototypes determined during training. For the whole training dataset
used in this work, which contains over 7 million unique resource names projected into ~ 40000
features, only 400000 instances need to be stored. In contrast, the kernelized SVM classifier
used by Rieck et al. requires to store all training samples (over 120000 samples in the data
discussed in Section 5.2) with all actions (on average 2000 actions per sample) in order to make
prediction on unknown samples.

In contrast to both the proposed solution and Rieck, AMAL does not need any preprocessing
since the features can be extracted per sample. However, the complexity arises from the design
of the training process. Authors in [92] argue that the dynamic selection of both optimal
algorithm and its parameters provides optimal results, but this design makes the training process
computationally expensive since every training of the meta-learner requires to evaluate all
possible combinations of parameters for all its classifiers. Another aspect is the selection of
classifiers itself. Authors propose to use an array of classifiers such as kernelized SVM, linear
regression, decision trees, perceptron, etc. However, the complexity of some classifiers (e.g.
kernelized SVM) prevents any large-scale training. Moreover, according to the evaluation the
AMAL’s detection capabilities are not sufficient for real-world deployment since both FPR and
FNR are nearly 20%, which is clearly insufficient.

"Potentially unwanted application.
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5.2.6 Conclusion

In this chapter we have proposed an approach for classification of unknown binaries as malicious
or legitimate using a model of malware behavior observed through their interactions with the
operating system and network resources (operations with files, mutexes, registry keys, opera-
tions with network servers or error messages provided by the operating system). The proposed
representation employs an efficient clustering of resource names to reduce the impact of ran-
domization commonly employed by malware authors to avoid detection and projects malware
samples into a low-dimensional space suitable for classifiers such as random forest.

The proposed solution was extensively tested and compared to related state-of-the-art on
a large corpus of binaries where it demonstrated significant increase in precision of malware
detection on independent test data.

73



74



Chapter 6

Malware clustering

In Chapter 5 we motivated the use of emulation rather than simulation of malware traffic traces
for online adaptation. We introduce all problems connected to the lack of labels and propose
approach for malware modeling and classification using information extracted from dynamic
analysis of malware samples.

In this chapter we describe the second part of the process focused on the clustering of
malware samples to recover malware families. We use the same representation described in
previous chapter and build probabilistic model that is able to cluster malware samples according
to their behavior. However, we still need human analyst to assess the threat level of malware
samples required in the game-theoretical adaptation process described in Chapter (3). To
increase the efficiency of the manual analysis we use the probabilistic model to define human-
friendly prioritization of identified clusters and extraction of readable behavioral indicators that
maximize interpretability.®

6.1 Model definition

To describe behavior of a malware we use the approach described in Chapter 5. Here we only
briefly summarize its basic principle.

The proposed model assumes that malware actions are visible through their interaction with
system resources, which in this work includes (1) interactions with files (e.g. during encryption
of a victim’s hard drive), (2) network communication (e.g. during data exfiltration or displaying
advertisements), (3) operation with mutezes (e.g. used to ensure a single instance of malware
is running), (4) manipulation with registry keys (eg. to ensure persistency after reboot), and
(5) error messages of the operating system itself.

During analysis of the malware sample in the sandboxing environment we thus record (1)
all paths of files that were created, deleted or modified, (2) all network communication, (3) all
names of mutexes that were opened or created, (4) all registry keys that were created, deleted
or modified and (5) all error messages emitted by the operating system during sandboxing.
All these system resources are then collected by the sandbox and used as an input of further

1This chapter is based on the work presented in [32].

2Error messages are provided by the sandboxing environment as one of the following warnings: dll not found
indicating missing dynamic library, incorrect executable checksum indicating corrupted binary, and sample did
not execute indicating the fact that the binary was not executed at all due to various reasons (corrupted binary,
sandbox was not able to copy the binary into VM, etc.). Note that in this text error messages have been included
into system resources to keep the notation clean even though technically they are not system resources.
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analysis. The particular approach to collect this data can be different for every sandboxing
solution, but it typically involves hooking system calls used for handling these resources [135],
modification of hardware drivers or external monitoring (e.g. recording of network traffic on
the level of host machine).

6.1.1 Model description

Let us now assume we have a set of all system resources observed during sandboxing of a set
of samples S, i.e. union of all file paths, mutexes, network communications, registry keys and
warnings touched by any binary from the set S. We further assume that the set has fixed length
D. The interactions of a sample s € S with these resources are then encoded into a binary
vector z, where z; is 1 iff the sample interacted with i*" resource and zero otherwise. Because
the length of such vector would be enormous due to the fact that malware’s authors frequently
employ randomization of the system resources, Section 5.1 discusses in detail how the data is
pre-processed using multiple instance learning. However, for now it is sufficient to assume that
a sample is encoded into a binary feature vector x with fixed dimension D, i.e. = € {0,1}.
The binary feature vector = encoding the interaction of the malware binary with system
resources can be viewed as a realization of a random variable where interaction with a particular
resource i follows a Bernoulli distribution, x; ~ Ber(u;), p(xi|w:) = i (1 — p;) =29 with
w; € (0,1) controlling the probability that the resource is used. For simplicity it is assumed
that the use of resources is independent of each other and therefore for one execution of a binary

in sandbox can be written
D

plalp) = [ plailp). (6.1.1)
i=1

Although the independence is rather crude simplification, since in reality the creation of a
file can be for example related to a particular network connection, the simplification has been
accepted to make the computation tractable. The multivariate Bernoulli distribution [163] that
captures relations between individual resources has 2P — 1 parameters which would make the
model impractical for large number of dimensions (in the experimental evaluation the number
of dimensions reaches ~ 50000).

Parametrizing the use of resources by a single vector p for all samples is limiting since each
malware family can have different pattern of resource usage. Therefore every malware family
should have its own parameter vector p. This phenomenon motivates the use of mixture of
Bernoulli models, where vector p is replaced by a matrix M = (uki)f;gl’l with K rows and D
columns where each row corresponds to one malware family and each column corresponds to
one resource. The affiliation of particular samples to j* malware family is then indicated by a
variable z. The variable z is encoded with one-hot representation vector with 1 on k" position
indicating that sample belongs to k™ family and zeros everywhere else. The extended model is
then formalized as

>

p(z|z, M) = | | p(x|Mj.)™, (6.1.2)

k

1

where M}, = p introduced in Equation (6.1.1) for k** malware family.
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Since the affiliation of sample x to particular malware family is unknown, the variable z is
itself a random variable with categorical distribution with K possible outcomes parametrized
by a vector 7 € (0,1)%, Zszl 7 = 1. The probability p(z|7) then describes the probability of
malware family described by vector z and is formalized as

K
p(z|m) = H o (6.1.3)
k=1

The complete model is then parametrized by the vector m determining the probability of
observing particular malware family and by the matrix M = (uki)nggl , characterizing the use
of resources by individual malware families. Formally it is defined as

p(z) = p(z|m)p(z|z, M) (6.1.4)
K D

= [T - TT (a1 = agy==0) ™ (6.1.5)
k=1 =1

These equations describe a generative model which has the following interpretation. A
binary belongs to the malware family j with probability m; and during its execution it interacts
with it resource with probability Mj;. The advantage of the probabilistic formulation is that
it captures variability in malware families and their use of resources. It also allows individual
binaries from the same malware family to use slightly different resources since the actual usage
of resources is a realization of the probability distribution defined in Equation (6.1.1).

The parameters m and M are learned (inferred) from observed data X = {z1,...,2zn}
(executions of N malware binaries in the sandbox). The membership of samples to the malware
family is captured by variables {21, ..., 2y} arranged in binary matrix Z where z,; = 1 if n'®

malware is a member of k" family. Since this membership is unknown, Z is treated as a hidden
unobserved variable and is inferred during the learning process as well. After the inference, Z
contains assignments of individual samples to different malware families (clusters).

Using the above notation, the likelihood function of observed data with parameters 7 and
M is given by

= H H (WZ“ H (Mifzm(l — Mki)(l_zmﬂ))znk> , (6.1.6)

i=1

corresponding to the well-known Bernoulli mizture model [27], which has been successfully
used in many different areas [164, 165, 166]. Since it is not possible to derive analytical formula
for posteriori distribution of the parameters p(m, M|X) and sampling methods [167] are com-
putationally infeasible due to the enormous number of dimensions, a well-known expectation-
mazximization (EM) algorithm [168, 27] is adopted. It iteratively optimizes the likelihood func-
tion p(X, Z|m, M) until convergence is reached. In each iteration it alternates the following two
steps:
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1. In E-step the posterior probability of component k for a given sample x,, is approximated
as

t) 17D t
ey T2 plani| M)
nk /) T K t) 77D t

D ket Wl(c ) ITiz p(xnl|Mlgz))
where values of parameters m and M are fixed on values from previous iteration (indicated
by superscript t).

2. In M-step the complete-data likelihood function (6.1.6) is maximized with respect to
parameters  and M using the values fy(z,(f,:r 1)) estimated in E-step which leads to following

update equations

N
1
t+1 t+1
i =g 2
(t+1) _ Nk
Tl'k = N

where Nj, = ZnN:1 V(ZSJ 1)) represents the effective number of samples in component &.

The algorithm is started with random initialization of ¥(z,) using Dirichlet distribution with
parameter v = 10~! as it provides good level of sparsity and the values of parameters 7 and
M are recomputed during first iteration.

6.2 Model application

Since the main purpose of the proposed model is to assist the human analyst by grouping
unknown binaries into coherent clusters, prioritizing their analysis, and extracting their char-
acteristics we now describe the application of the model described in previous section to the
problem of clustering sandboxed samples.

The processing pipeline displayed in Figure 6.2.1 starts with preprocessing of malware traces
recorded in sandbox and extraction of vector representation z, € X for every sample (see
Section 5.1). Next, we estimate parameters Z, M and 7 of the proposed model using this data
X. The main idea is that each malware family or its variant uses specific resources and therefore
malware samples should form clusters in {0,1}? space, ideally with one cluster containing
samples from one malware family. When the model is fitted to data X, this assumption is
reflected by samples from the same malware family following similar distribution over the hidden
variable Z. The identifier of the most probable cluster for a given sample z,, is then obtained
as

2" = argmax p(z|z,,7, M) = argmax ~y(z,k)
ze{1,....K} ke{l,...,.K}
and serves as a cluster label for given sample z,,. It is possible that one malware family spreads
over multiple clusters, which is mainly caused by their modular design as different modules
operate with different system resources. Nevertheless the behavior of malware binaries inside
one cluster should be relatively uniform and it should be easy to create behavioral indicators
for them as we discuss in Section 6.2.2.3

3In the text malware families and their variants are not differentiated because the model does not make a
difference between them.
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6.2.1 Cluster prioritization

To further simplify the use of outputs, the clusters should be ordered such that a large number of
samples can be analyzed quickly. The proposed heuristic (further referred as a score) prioritizes
clusters of samples with homogenous behavior as their analysis is easier for human analyst and at
the same time it promotes the largest clusters since their quick identification has higher impact.
The purity of a cluster is approximated by the inverse value of entropy of the distribution defined
by Equation (6.1.1) and the size is approximated by its probability ;. Note that values of both
the probability of a cluster 73 and parameters of distribution p(x|u) are estimated during fitting
the model to unknown data X. The prioritization score for cluster k is then formalized as

Tk

(k) =——— ™ where (6.2.1)
S H(us)

H (puri) =My - log M+
(1= My) - log (1 — Mps) (6.2.2)

The final ranking of clusters is obtained by computing the score for every cluster and ordering
them in the decreasing order.

6.2.2 Behavioral indicator extraction

The last step of the analysis is the extraction of behavior indicators (BIs) that provide an
insight into the behavior of analyzed samples. In the proposed model Bls are represented
by system resources (files, mutexes, network communications and registry keys) used by the
samples during the sandbox run. A behavior indicator that is a good candidate for an indicator
of compromise (I0C) should be frequently used by samples from a given cluster and rarely
used by samples from other clusters. This requirement is formalized for cluster k£ and system
resource ¢ as

K
(i, k) = In My; + ﬁ > In(1— My), (6.2.3)
1=1,l#k

where the first term In My; corresponds to the probability that samples from cluster & will
interact with the system resource ¢ (p(z; = 1,z = k|r, M) — 1) and the second term represents
the average probability that the samples from other clusters will not interact with the system
resource i (VI # k,p(x; = 1,z = l|mr, M) — 0). Using average of probability overcomes the
instability which can demote system resources common for cluster k£ but used by the few samples
from other clusters as well in favor to system resource rarely used by samples from cluster k
and not used by any other samples. This is caused by the fact that without the normalization
term = the term Z{iu 21 In(1—My;) would have disproportionally higher influence than the
term In My;. The variable (i, k) then provides a ranking score for the system resources within
the cluster k¥ where higher values indicate good candidates for IOCs.
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6.3 Evaluation

This section presents the results of the experimental comparison of the proposed model to
AMAL [92] on the problem of clustering of unknown samples. AMAL is the closest prior art, as
it clusters malware binaries on basis of their interaction with system resources. Furthermore,
clustering using the generative model is compared to the popular K-Means [169] algorithm
to observe benefits or disadvantages of the probabilistic formulation. Lastly, we evaluate the
cluster prioritization and extraction of behavioral indicators.

6.3.1 Data set description and performance metric definition

The dataset used for experimental evaluations contained random selection of samples from files
that were submitted to AMP ThreatGrid [156] sandboxing service by its customers between
October 24, 2016 and December 12, 2016 and as such can be considered as a representative
example of the threat landscape. All samples were analyzed by VirusTotal.com service [133]
and their labels were determined using AVClass tool [154]. Then, malware families with less
than hundred samples were removed, which yielded 130198 samples. The exact numbers of
samples of individual malware families are summarized in Table B.2 in Appendix B.2. Since all
three compared solutions are applicable to any file type as long as the underlying sandboxing
solution is able to instrument them, the evaluation dataset contained samples of various file
types such as 32bit PE executables, 64bit PE executables, JavaScripts, VisualBasic scripts, etc.
The complete list of file types along with number of samples is summarized in Table B.1 in
Appendix B.1.

All samples were analyzed in sandbox by AMP ThreatGrid [156] service, using Windows
7 64bit (71% samples) environment, as it is the most popular OS at the time of writing?,
and Windows XP (29% samples) environment, since it is still widely deployed on embedded
machines such as ATMs. The sandboxing environment (OS) for individual samples was selected
randomly with exception of 64bit PE executables that were executed solely on Windows 7 64bit.
Virtual machines were connected to the Internet without any filtering or restrictions that would
intervene connections to command & control infrastructure or other servers. Note that the
approach proposed in this chapter is not specific to AMP ThreatGrid. Similar information can
be obtained with a number of different sandboxing solutions such as Cuckoo [157], Ether [158],
or CWSandbox [159].

Although clustering algorithms are technically unsupervised, they usually contain several
hyper-parameters that need to be tuned to achieve good performance. Samples were therefore
divided according to the time of their first observations, such that those collected before October
27th, 2016 (17064 samples further referred to as training set) were used to find the optimal
configurations of all methods and remaining samples (113 134 samples further referred as testing
set) were used for the final evaluations. The time-based split makes the optimization phase
more realistic since in real-world scenario all parameters have to be set in advance with the risk
that some malware families will not be available.

The performance of all methods was evaluated using standard clustering criteria, namely ad-
Justed rand index, homogeneity, completeness and V-measure. Adjusted rand index (ARI) [170]
is a corrected-for-chance version of Rand index (RI) that guarantees values close to one for
perfect clustering and values close to zero or negative values for random clustering. In order to
define ARI between partition K = {kl, cee k‘K‘} and target partition C' = {cl, R C|C|}, we
first define a contingency table that summarizes overlap between these two partitions as

4According to http://www.w3schools.com/browsers/browsers _os.asp Windows 7 has 33.2% market share
against 0.9% covered by Windows XP, 10.2% covered by Windows 8 and 33.1% covered by Windows 10.
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Class c1 Co e ¢ >
k1 n11 ni2 ny|c| ni.
ko n21 n22 n2|C| n2.
ki) | M ikl oo MIRjO| | K]
n.q n.g . n.|c‘
where ki, ..., kx| represents clusters of instances generated by the clustering, c1,...¢|¢
represents groups of instances with the same label, n;; = |k; N¢;| is the number of instances

in 4-th cluster with j-th label, n;. is the total number of instances in i-th clusters and v; is the
total number of instances with j-th label. Using this contingency table we define the adjusted
rand index as follows

S, () - 2 (()§ (")
ARI(K,C) = S

F(Zi )+, () - 2R

The main advantage of the adjusted rand index is that it is normalized with respect to
random clustering, i.e. it gives values close to zero or negative values for random clustering
even for datasets with large number of clusters and values close to one for perfect clusterings.
The main drawback of the adjusted rand index is its hard interpretability. Although from its
value can be seen the quality of the clustering, it does not provide any insight whether the
clusters are pure but fractioned into multiple clusters, or concise but different labels are merged
into the same cluster.

To provide additional information about clusters we use entropy-based evaluation metrics
known as homogeneity h, completeness ¢ and V-measure vy [171]. Homogeneity h measures
the “purity” of resulting clusters and equals to one if all labels in each cluster are the same,
i.e. the distribution of labels for each cluster has zero entropy. It can be seen as a clustering’s
counterpart to precision used in classification scenarios. Formally it is defined as

1 H(C,K) =
h(K7 C) = {1 _ H(C|K) otherwise
H(C) ’

where
K| |C| "
zg 1]
H(CIK) == 3% 7 log S
1=1 j=1 —1 Nij
|C| K| |K|
HIC) == 3 En g s
j=1

and N is number of instances in the input data.
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Completeness ¢ measures how well individual labels are grouped together. It equals to one
if samples with one label are all in one cluster, or more formally, if the distribution of cluster ids
for single label has zero entropy, which makes it closely related to recall used in classification.
It is defined as

1 H(K,C) =0
c(K,C) = {1 _ H(K[C) ( )

H(K) otherwise,
where
H(K|C) = lzcl‘ lf: Rij jog — 0
j=1i=1 * S s Zy:{l Nij
|K| IO IC]
H(K) = — ; ij\} M 1og ij\} i

They are combined together with equal importance into a single value by V -measure defined
as
2-h-c
h+c

that resembles the F-measure from classification scenarios.
Additionally, the quality of individual clusters is measured by purity [172, 173] defined as
number of samples from most prevalent malware family in given cluster normalized by its size.

v =

)

6.3.2 Hyper-parameter optimization

AMAL’s hyper-parameters consist of the metric that defines similarity between samples (co-
sine, correlation, hamming or jaccard), the linkage method in hierarchical clustering (average,
centroid, complete, median, single, ward), and the value of threshold ¢ for the hierarchical clus-
tering. For every combination of hyper-parameters we have estimated the value of V-measure
on the training data and the one with highest value (jaccard metric, average linkage method
and threshold ¢ = 0.25) was used in final evaluation.

The only parameter in the proposed method is the number of components K, which corre-
sponds to the number of clusters. Setting this number is generally unresolved problem, since one
typically does not know the number of clusters in data in advance. The training data were there-
fore clustered with with different number of components K = {50, 100, 200, 500, 1000, 2000} and
the K with the highest V-measure was used in the evaluation. Since the EM algorithm de-
pends on starting conditions (the problem may have many local extrema), the accuracy of the
clustering for every configuration was estimated using five executions. As the optimal number
of clusters was then determined K = 500.

Similarly, K-Means clustering algorithm requires specification of the number of cluster in ad-
vance as well, which has been determined using the same approach as in the previous paragraph.
The optimal number of clusters for K-Means was K = 200.
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h c v1 ARI  #clusters

AMAL 0.602 0.499 0.546  0.093 5856
K-Means 0.690 0.561 0.619 0.189 200
Proposed model 0.767 0.609 0.679 0.321 500

Table 6.1: HOMOGENEITY (h), COMPLETENESS (¢), V-MEASURE (v1) AND ADJUSTED RAND INDEX
(ARI) ESTIMATED ON TEST DATASET FOR AMAL, K-MEANS AND PROPOSED MODEL.
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Figure 6.3.1: Confusion matrix of proposed model for 100 largest clusters.

6.3.3 Clustering performance

The first part of experimental evaluation compares the clustering performance of the proposed
model, K-Means clustering algorithm with the same features as the proposed model, and AMAL.
The performance is measure as homogeneity, completeness and V-measure estimated on testing
dataset for all three approaches using settings described above and is summarized in Table 6.1.
As can be seen from the values of the V-measure and ARI, the proposed model significantly
outperforms both AMAL and K-Means. Clusters recovered by the model are the purest and
the individual malware families are the least fractioned into multiple clusters. These results are
illustrated in more detail in Figures 6.3.1, 6.3.2, 6.3.3 that show confusion matrices of largest
100 clusters for proposed model, K-Means and AMAL respectively, normalized by the number
of samples per family (i.e. every point displays ratio of samples from particular malware family
clustered into particular cluster). Although the view is not complete, these selections covered
87%, 90% and 80% of samples for proposed model, K-Means and AMAL respectively which
represent significant portion of samples.

Confusion matrices show that the low performance of the AMAL method (Figure 6.3.3) is
mainly caused by the fact that it failed to separate large portion of samples (~ 37000 samples)
and grouped them into single cluster. This indicates that hand-designed features were not able
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Figure 6.3.2: Confusion matrix of K-Means for 100 largest clusters.
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Figure 6.3.3: Confusion matrix of AMAL method for 100 largest clusters.

85



to precisely capture the behavior of a new, previously unseen malware. Comparison of confusion
matrices of proposed method and K-Means revealed that although K-Means provided better
results than AMAL, it was still outperformed by the proposed method as it created clusters
that failed to separate several malware families. This fact is significant for clusters 2-5, 30-50
and mainly cluster 76 that incorrectly grouped more than 20 different malware families such
as lotoor (malware family #61), pdfka (malware family #84) or zegost (malware family #117)
that, however, got correctly clustered together by the proposed model. These results indicate
that the probabilistic model correctly captures malware behavior. It is caused by the fact
that K-Means is not able to distinguish minor differences between individual malware families
(e.g. one file specific to particular malware family) as the euclidean distance embedded in the
K-Means smooths the distances between individual malware samples. Although it would be
possible to find specific combination of distance metric, clustering algorithm and its parameters
that provides better or at least comparable results, such combination would introduce high bias
as it would be overfitted to our data and would lack the interpretability of the proposed model.

Detailed analysis of clusters created by the proposed model revealed that it correctly discov-
ered several malware families such as winner, waldek, ircbot, downloadguide, downloadassistant,
kolabe, dlhelper, softpuls, etc., but some malware families such as adwind, gamarue, locky, ne-
mucod or zbot were split into multiple pure clusters. This is caused by the fact that a single
label may refer to multiple variants of the same malware family (locky or adwind), by modu-
lar design of some malware families (zbot), or by the fact that some malware families deliver
additional infections (nemucod) with different behavior. However, several clusters contained
samples from multiple malware families such as atraps (also known as cryptowall), delf, fly-
studio, palevo or winsecsrv. Analysis of these clusters revealed that these samples neither run
properly (e.g. crashed due to missing libraries) nor exhibited their true behavior (advanced
anti-vm protection, no command from bot master, etc.), and the only interactions with system
resources recorded during sandboxing were caused by the operating system handling the crash
of the binary.

This exposes the main limitation of the proposed solution, because if malware samples do
not exhibit any behavior, the model is not able to cluster them correctly as it does not have
enough information to distinguish individual malware families. In case that malware samples are
equipped with advanced anti-vim technique we can improve the results by optimizing the sand-
boxing environment (anti-anti-vin/anti-anti-sandbox techniques) and thus limit its detectability
by malware. Although such approach is successful for some malware families (e.g. gamarue),
malware authors quickly adapt the anti-vm techniques to avoid detection (e.g. atraps). As the
hardening techniques are usually tailored for specific sandboxing solution, their description is
out of the scope of this work and reader is referred to [174] for deeper analysis of this problem.

To conclude the first part of experiment, the proposed solution significantly outperforms the
prior art and it is able in most cases correctly recognize binaries from the same family under
the condition that the binary has exhibit its true behavior in sandbox.

6.3.4 Prioritization score

As has been discussed in Section 6.2, resulting clusters should be presented to a security analyst
sorted to facilitate quick analysis of a large number of samples. Instead of selecting clusters at
random, the optimal prioritization should focus the analyst’s attention to large and pure clusters
that can be easily analyzed (ideally to clusters that contain samples from single family).

To verify this assumption, clusters identified by the proposed model from the testing data
were ordered by prioritization score proposed in Section 6.2 (further referred to as Score), and
by their size (referred to as Size). Figure 6.3.4a shows the average purity for first 5, 10, 15, 20,
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30, etc. clusters ordered by the Score and those ordered by the Size. Similarly, Figure 6.3.4b
shows the cumulative number of samples for first 5, 10, 15, 20, 30, etc. clusters prioritized
by the Score and the Size. We observe that the purity of clusters ordered by Score is much
higher than of those ordered by Size, while cumulative numbers of samples of top n clusters are
very similar. This means that the proposed Score promotes purer clusters without too much
sacrificing their size.

In order to further verify these results we have performed deeper analysis of top 25 prioritized
by the Score and the Size. Tables 6.2 and 6.3 provide details about malware categories the
samples from particular cluster belong to and their ratio. Note that malware category listed
as unknown covers malware families that we were not able to reliably assign to any category.
The statistics indicate that the Score promotes larger number of pure clusters® (14 out of 25)
compared to the Size (7 out of 25) and these clusters cover larger portion of samples, namely
21919 samples in the case of Score vs. 18 510 samples in the case of Size. In order to provide
complete results, we include results obtained on clusters created by K-Means (Table 6.5) and
AMAL (Table 6.4) prioritized by their size as the Score is not applicable. The detailed statistics
regarding the clusters created by AMAL show that in top 25 clusters there are 12 considered
pure, but they cover only 12 323 samples which is almost half of samples covered by the proposed
model. Similarly, top 25 clusters created by K-Means contains 6 pure clusters, covering 9520
samples. These numbers indicates that the proposed model combined with the prioritization
score correctly promotes clusters so that the security analyst can analyze large number of
samples efficiently.

6.3.5 Behavioral indicators

The last step of the analysis of a cluster is the extraction of behavior indicators that can be
considered as indicators of compromise. To verify the performance of the ranking score proposed
in Section (6.2), top 20 clusters identified by the model from the testing data and prioritized
by Score were manually analyzed and searched for the first system resource that matched some
known IOC for malware families in a given cluster. Known IOCs were collected from reports
published by various AV companies (e.g. [175]) such as Symantec, ESET, TrendMicro, etc., or
publicly available collections of various behaviors frequently exhibited by malware [176, 177].

Table 6.6 summarizes number of resources in cluster, and the rank and the probabil-
ity p of usage of given resource for the first BI that matched some known IOC. It shows
that for 12 clusters out of 20 extracted Bls matched some known IOC to one of the top
system resources promoted by the ranking score.® The lower ranks of the matched sys-
tem resources for clusters 13 and 14 are caused by the nature of the malware families dom-
inant in these clusters. Although bladabindi malware uses system resources that are not
frequently used by other malware families in our dataset (/windows/syswow64/netsh.exe,
/windows/microsoft.net/.../machine.config, etc), they cannot be considered as IOCs since
they are part of Windows operating system or other common software. In this case the only
system resources that matched known IOCs are specific registry keys modified by only portion
of samples from this cluster which lowers their rank. Similarly, fujacks malware interacts with
system resources that are unique for this malware family but are part of the operating system
and are incorrectly promoted over the actual IOCs.

For 6 clusters we were not able to find any IOC that will match with the proposed Bls. In
the case of clusters 3, 6 and 16 it is caused by the fact that these clusters contain samples that

5Here, we consider cluster with at least 98% samples from the same category as pure rather than 100%.
6The example of matched IOCs is a path to malware’s main binary, specific registry key, known C&C domain
or mutex with specific name.
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Cluster Size Malware categories with coverage

1302 trojan (1.00)
811 banking trojan (1.00)
4337 unknown (0.41), worm (0.26), dropper (0.18)
531 banking trojan (1.00)
2135 dropper (0.92), banking trojan (0.08)
6320 dropper (0.33), unknown (0.33), trojan (0.14), rat (0.08),
information stealer (0.07)
7 495 banking trojan (1.00)
8 141  dropper (0.94), banking trojan (0.06)
9 4228 dropper (0.62), banking trojan (0.37)
10 904 rat (0.99)
11 5967 dropper (0.74), ransomware (0.26)
12 374 trojan (1.00)
13 91 unknown (1.00)
14 5942 information stealer (0.96)
15 9366 ransomware (0.98)
16 1197  unknown (0.33), dropper (0.30), trojan (0.09), rat (0.07),
ransomware (0.06), information stealer (0.05)
17 191 dropper (0.90), banking trojan (0.10)
18 1475 ransomware (1.00)
19 2876  banking trojan (0.92), unknown (0.08)
20 456 banking trojan (1.00)
21 1556 rat (0.98)
22 1402 ransomware (1.00)
23 2273 banking trojan (1.00)
24 1271  trojan (0.78), unknown (0.11), rat (0.05)
25 883 ransomware (0.99)

Total 56 524
Total pure 21 919

ULk W N

Table 6.2: Topr 25 CLUSTERS CREATED BY PROPOSED MODEL AND PRIORITIZED WITH score WITH
THE MALWARE CATEGORIES THE CLUSTERED SAMPLES BELONG TO ALONG WITH THE RATIO OF EVERY
CATEGORY IN PARTICULAR CLUSTER.
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Cluster Size Malware categories with coverage

1 9366 ransomware (0.98)

2 6320 dropper (0.33), unknown (0.33), trojan (0.14), rat (0.08),
information stealer (0.07)

3 5967 dropper (0.74), ransomware (0.26)

4 5942  information stealer (0.96)

5 4337 unknown (0.41), worm (0.26), dropper (0.18)

6 4228  dropper (0.62), banking trojan (0.37)

7

8

2876  banking trojan (0.92), unknown (0.08)
2661  dropper (0.97)
9 2273 banking trojan (1.00)
10 2135 dropper (0.92), banking trojan (0.08)
11 1726  dropper (0.75), ransomware (0.25)
12 1691 trojan (0.45), dropper (0.39), unknown (0.10)
13 1623  dropper (0.83), ransomware (0.17)
14 1556 rat (0.98)
15 1475 ransomware (1.00)
16 1402 ransomware (1.00)
17 1302 trojan (1.00)
18 1292 dropper (0.74), ransomware (0.26)
19 1283  information stealer (0.96)
20 1271  trojan (0.78), unknown (0.11), rat (0.05)
21 1266 ransomware (0.82), unknown (0.18)
22 1197  unknown (0.33), dropper (0.30), trojan (0.09), rat (0.07),
ransomware (0.06), information stealer (0.05)
23 1136 ransomware (1.00)
24 1005 unknown (0.53), information stealer (0.31), rat (0.08)
25 964 information stealer (0.73), unknown (0.21)

Total 66 294
Total pure 18 510

Table 6.3: Topr 25 CLUSTERS CREATED BY THE PROPOSED MODEL PRIORITIZED BY SIZE WITH THE
MALWARE CATEGORIES THE CLUSTERED SAMPLES BELONG TO ALONG WITH THE RATIO OF EVERY
CATEGORY IN PARTICULAR CLUSTER.
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Cluster Size Malware categories with coverage

1 37303 information stealer (0.27), unknown (0.21), rat (0.17),
dropper (0.16), trojan (0.07)

2 6263 dropper (0.46), banking trojan (0.25), trojan (0.13), pua
(0.08)

3 3678 dropper (0.62), banking trojan (0.38)

4 2889  banking trojan (0.92), unknown (0.08)

5 2472 ransomware (0.58), unknown (0.22), pua (0.08), dropper
(0.08)

6 2105 ransomware (0.99)

7 1710 banking trojan (1.00)

8 1465 trojan (0.92), unknown (0.08)

9 1438 ransomware (0.99)

10 1153 ransomware (0.91)

11 1099  ransomware (0.33), dropper (0.30), trojan (0.25),

unknown (0.12)
12 1066 banking trojan (0.99)
13 1013 ransomware (0.98)
14 988 trojan (0.90), unknown (0.08)
15 889 ransomware (0.99)
16 888 dropper (0.64), ransomware (0.36)
17 861 trojan (0.93), dropper (0.05)
18 819  dropper (0.88), ransomware (0.12)
19 806 dropper (0.99)
20 750 ransomware (0.98)
21 686 worm (0.99)
22 664 dropper (0.98)
23 658 dropper (0.76), ransomware (0.24)
24 601 ransomware (1.00)
25 595 ransomware (0.98)

Total 72 859
Total pure 12 323

Table 6.4: TopP 25 CLUSTERS CREATED BY AMAL AND PRIORITIZED BY SIZE WITH THE MALWARE
CATEGORIES THE CLUSTERED SAMPLES BELONG TO ALONG WITH THE RATIO OF EVERY CATEGORY IN
PARTICULAR CLUSTER.
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Cluster Size Malware categories with coverage

1 12719 unknown (0.30), dropper (0.20), rat (0.15), worm (0.09),
trojan (0.09), information stealer (0.05),

4211 information stealer (0.96)

3478  banking trojan (0.90), unknown (0.06)

3450 dropper (0.71), ransomware (0.29)

3192 dropper (0.75), banking trojan (0.15), unknown (0.06)

3073 dropper (0.79), ransomware (0.21)

3044 unknown (0.31), dropper (0.26), pua (0.18), trojan (0.12),

ransomware (0.10)
8 3007 unknown (0.31), rat (0.28), information stealer (0.23),
worm (0.08), trojan (0.06)
9 2850 unknown (0.42), dropper (0.20), rat (0.14), trojan (0.12)

10 1943 ransomware (0.99)

11 1890 banking trojan (1.00)

12 1766  dropper (0.79), unknown (0.15), banking trojan (0.05)

13 1713 banking trojan (1.00)

14 1574  unknown (0.41), dropper (0.25), trojan (0.09), rat (0.07),
information stealer (0.06)

15 1548  unknown (0.40), trojan (0.31), pua (0.16)

16 1511  information stealer (0.97)

17 1490 ransomware (1.00)

18 1353  rat (0.91), unknown (0.05)

19 1344 trojan (1.00)

20 1328 trojan (0.75), unknown (0.12), rat (0.05)

21 1266 information stealer (0.95)

22 1143  information stealer (0.33), rat (0.31), unknown (0.24),
trojan (0.09)

23 1140 ransomware (0.99)

24 1140  banking trojan (0.89), dropper (0.08)

25 1130  trojan (0.40), unknown (0.23), information stealer (0.20),
rat (0.10), dropper (0.08)

N O Uk W N

Total 62 303
Total pure 9520

Table 6.5: Top 25 CLUSTERS CREATED BY K-MEANS AND PRIORITIZED BY SIZE WITH THE MALWARE
CATEGORIES THE CLUSTERED SAMPLES BELONG TO ALONG WITH THE RATIO OF EVERY CATEGORY IN
PARTICULAR CLUSTER.
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Figure 6.3.4: Average purity and cumulative number of samples for top 10, 20, 30, etc. clusters
for proposed prioritization (Score) and size-based prioritization (Size).
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Cluster Rank #BIs Prob Cluster Rank +#BIs Prob

1 1 80 1.000 11 N/A 42 N/A
2 1 19 1.000 12 1 48 1.000
3 N/A 20 N/A 13 13 150  1.000
4 2 15 1.000 14 14 61 0.866
5 1 15 1.000 15 N/A 142 NJ/A
6 N/A 22 NJ/A 16 N/A 51 N/A
7 1 15 1.000 17 1 15 1.000
8 1 15 1.000 18 9 37 0.844
9 1 47 0.993 19 1 52 0.994
10 1 22 0.993 20 1 16 1.000

Table 6.6: RANK AND PROBABILITY j4 OF FIRST BEHAVIOR INDICATOR THAT MATCHES KNOWN IOCs
OF MOST FREQUENT MALWARE FAMILY IN GENERATED CLUSTERS. N /A INDICATES THAT NO BEHAVIOR
INDICATOR MATCHED KNOWN [OC.

did not exhibit their true behavior and the only interactions with system resources recorded
during sandboxing relate to operating system handling application crashes. In case of cluster
11 it is caused by the nature of behavior of the malware dominant in this cluster. Similarly
to bladabindi, nemucod interacts with files specific for this malware but they are all part of
the operating system and thus cannot be considered as IOCs. Cluster 15 contains cerber ran-
somware that encrypted various different files during sandboxing which can be easily recognized
by malware analyst. However, the recorded behavior indicates that these samples belong to
different variants for which we were not able to find any known IOCs.

6.4 Discussion

The experimental results revealed, that when a binary (or all binaries of some malware family)
does not perform any action reflected by interaction with files, mutexes, network communi-
cation, and registry keys, it clearly evades detection by the proposed model. An example of
such malware is bitcoin miner that resides only in memory without any additional footprint
(no operations with files, no operations with registry keys, no mutexes, very limited network
communication). Such malware has to be carefully crafted to avoid any interaction with system
resources (statically compiled to carry all libraries in the executable, limited network commu-
nication, no mutexes ensuring that only single instance is running on the same machine, no
persistency after reboot, etc.). Fortunately, at the time of writing this work, this is not an easy
task and the majority of malware authors choose to interact with system resources rather than
sacrifice functionality.

Another limitation is the fact that a growing number of malware families are equipped
with advanced anti-VM and anti-sandbox features (Gamarue/Andromeda [178]) and/or are
targeted to specific environments (Stuxnet [24]). Such malware families do not reveal their true
purpose during sandboxing or mimic less severe types of malware (adware, potentially unwanted
application, etc.). This fact is recognized by the community as the main factor hindering the
performance of dynamic analysis as a whole. Addressing this issue, however, is out of the scope
of this work.

Another important aspect that affects the performance of the proposed method is the qual-
ity of the data representation. First problem is when system resources are incorrectly split
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into number of different instance clusters due to the randomization of their names. This frag-
mentation can cause the split of binaries from the same malware family into multiple clusters.
Even though this is clearly an error, it does not severely affect the analysis. According to our
experience when malware families are split into low number of clear clusters, they can be still
quickly analyzed, which is the goal of this work. Second problem arises when unrelated system
resources are merged into single instance cluster. This can cause that corresponding malware
samples from different malware families are grouped into single cluster. Again, according to our
experiments this situation is not so common to drastically affect the analysis. The only clusters
containing samples from multiple binaries are the ones that did not reveal their true behavior
or did not execute correctly. Such situation can be easily identified, since the interaction with
system resources limits to the noise generated by the operating system (operations with system
logs, creating generic mutexes, etc.).

The quality of the data representation raises question which system resources are the most
important for malware clustering. According to our experiments, model limited only to file
paths and mutexes achieves ~ 70% — 75% of the clustering performance compared to the case
with complete information. However, only the combination of all five types of system resources
provides optimal results as there are some malware families (e.g. scar) that use legitimate
file paths to hide their payload but uses specific command and control infrastructure which is
exploited by the model and detected as possible IOC.

The last question we need to discuss is the scalability of the proposed method. The most of
the time required for the overall analysis was consumed in the preprocessing phase (~ 1h15min)
and in the fitting of the model (~ 50min); the time required for cluster prioritization and
extraction of behavioral indicators was negligible (less than 1min). The theoretical analysis of
the preprocessing phase shows the linear computational complexity in the number of samples
(see Chapter 5 for more details). Similarly, the EM algorithm used to find the parameters 7 and
M is linear in the number of samples which enables good scalability to large-scale dataset. In
comparison the time required by AMAL was only ~ 28min. However, since the computational
complexity of the hierarchical clustering used in AMAL is ©(N?) or ©(N?3) depending on the
linkage method [179] the scalability to the large-scale dataset is limited.

6.5 Conclusion

This chapter focused on providing complete pipeline for analysis of large number of unknown
binaries executed in the sandbox. The pipeline starts with grouping samples according to their
behavior in the sandbox, continuing by prioritizing bigger groups with homogeneous behavior,
and ending with extraction of human-readable descriptions of groups of binaries. The proposed
method utilizes a probabilistic model of malware behavior observed through its interactions
with operating system and network resources (operations with files, mutexes, network servers,
registry keys or system messages). To the best of our knowledge, such a complete pipeline was
not yet published, albeit there is a prior art on the first step, the clustering of unknown binaries.

Individual steps of the pipeline were evaluated on a large corpus of binaries, and the first
problem of clustering has been compared to the prior art. This comparison showed that the
proposed method outperforms the related state-of-the-art approaches as it produces clusters
that are purer, while individual malware families were less fractioned into multiple clusters.
Moreover, the evaluation also revealed limitations of the proposed method, as it fails on samples
that do not interact with resources monitored by the sandbox.
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Chapter 7

Conclusion

The goal of this thesis was to design an approach for dynamic reconfiguration of an anomaly-
detection-based intrusion detection system (IDS) under the assumption of a rational attacker.
The proposed architecture (see Section 1.2) adopts the game-theoretical principle which allows
precise modeling of interactions between the IDS and an attacker. The key novelty is the
online definition of the security game combined with the indirect online integration principle
(challenges) which allows us to estimate the game parameters, find the optimal strategy and
immediately reconfigure the IDS accordingly. The experiments performed with a simplified
version of real-world IDS suggest that the computational cost of game-theoretical approach is
very low and does not affect the effectiveness of the adaptation process. In particular, our
results show that proposed approach outperforms the trust-based baseline solution and thus
the proposed solution represents a suitable tool for dynamic reconfiguration of an IDS.

Since parameters of the security game are estimated online, the results of the adaptation
process heavily depend on the quality of the injected traffic (challenges). As we have discussed
in Chapter 1, using static challenges is far from optimal as they do not follow the dynamic
changes in the background traffic (e.g. day vs. night) or the ever-changing trends in the threat
landscape. Therefore, we proposed to employ (1) simulation of legitimate network traffic and
(2) emulation of malicious behavior with network traffic observed during execution of malware
binaries in controlled environment.

The simulation of network traffic proposed in Chapter 4 adopts a probabilistic model which
generates continuous stream of network traffic that simulates behavior of legitimate users. The
proposed model incorporates various aspects of user’s behavior such as changes in the behavior
profile during the day or sequential character of user’s behavior and thus it addresses limitations
of the static challenges. We experimentally verified that the simulated traffic correctly mimics
real network traffic so the anomaly-detection-based IDS cannot distinguish it. Moreover, the
data is generated directly in memory with much lower overhead compared to approaches that
adopt simulation of the complete network which makes the proposed approach well-suited for
the purpose of dynamic reconfiguration.

In order to scale the emulation of malware behavior to cover its frequent modifications
employed by malware authors, we proposed a novel approach to classification of unknown
binaries as legitimate or malicious (see Chapter 5) and to clustering of the malicious ones into
coherent groups (see Chapter 6). The network traffic of these categorized binaries along with
their manually estimated threat levels then represent malicious challenges used to estimate the
parameters of the game-theoretical model. Such automation allows us to frequently update the
database of malicious network behavior so that the IDS adapts to the latest threats.
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7.1 Key contributions of this thesis

In this section we summarize the main contribution of this thesis to the state-of-the-art of
network security:

1. Design and implementation of dynamically defined two-player security game between at-
tacker and defender. In Chapter 3 we have proposed two-player single-stage game with
complex utility function that reflects both attacker and defender incentives and allows
us to precisely model their goals. Next, we have proposed an indirect online integration
approach that enables us to dynamically define and solve the proposed security game
using current characteristics of the background traffic and the state of the IDS. We have
experimentally evaluated the influence of the game-theoretical approach on real-world
IDS using real network dataset and shown that the proposed solution outperforms the
trust-based baseline solution and thus successfully addresses the research problem RP1
of this thesis.

2. Design and implementation of an approach for simulation of behavior of legitimate user in
high-level NetFlow format that can be used for evaluation and configuration of anomaly-
detection-based IDS system. In Chapter 4 we have introduced the time variant joint
probability model that is designed to capture complex aspects of the user’s network traffic
such as inter- and intra-flow relations and sequential character of user’s behavior. The
experimental evaluation of the proposed solution has shown that the simulated data prop-
erly mimics the real traffic so that anomaly detection algorithms used in real-world IDS
are not able to distinguish it. Another key difference between our approach and most of
the prior art is that we are able to construct the data in memory with much lower over-
head compared to approaches that adopt simulation of the complete network. This makes
the proposed solution well-suited for runtime adaptation of an IDS and thus successfully
addresses the research problem RP2a of this thesis.

3. Design and implementation of novel approach for classification and clustering of malware
samples using dynamic analysis. In this thesis we have proposed novel approach for
modeling of malware behavior based on malware’s interactions with system resources
recorded in sandbox. The model is based on assumption that malware’s actions involve
interactions with system resources, namely files (e.g. encryption of files in the case of
ransomware), registry keys (e.g. to ensure persistence after reboot), mutezes (e.g. to
ensure that only single instance of the malware is running), network resources (e.g. remote
servers used for command-and-control or exfiltration of stolen data), and error messages
produced by the operating system (e.g. error logged when application crashes). Since the
number of system resources the malware interacts with can be different for every binary,
we have proposed an approach based on multiple instance learning that is specifically
designed to handle such data. The proposed model was used in two different scenarios:
(1) malware classification (see Chapter 5), where the goal was to separate malware and
benign applications, and (2) clustering of malware samples into groups that exhibited
coherent behavior (see Chapter 6). The experimental evaluation performed on large set
of real-world binaries proved that the proposed solution outperforms the current state-of-
the-art approaches in both two-class classification and clustering. Moreover, the design
of the proposed model allows us to promote clusters important for human analysts and
to extract and to prioritize behavioral indicators to further speed up the manual analysis.
As such it helps to automate the manual analysis of new samples and helps administrators
of an adaptive IDS to keep the database of challenges up-to-date and thus addresses the
research problem RP2b of this thesis.
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Appendix A

Evaluation of system resources’
similarity metrics

The evaluation of the MIL model proposed in Section 5.1 raises two principal questions that
need to be discussed:

1. Are the proposed similarities and clustering algorithm the optimal choices?
2. Is the proposed approach scalable?

In order to answer the first question, we would ideally need to find the best possible combination
of similarity and clustering algorithm for every type of system resource along with the optimal
settings of their parameters using the two-class classification as a testbed. However, such ex-
haustive search is computationally infeasible as the number of combination grows exponentially
with number of parameters we need to vary.

Instead of testing the whole stack, we estimate the clustering performance of various similar-
ity metrics and clustering algorithms on the scenario of clustering of system resources. The idea
is that if the resulting clusters correctly represent behavioral indicators they will be well-suited
for malware classification since behavioral indicator specific for a malware family is optimal
feature for classification. Moreover, this approximation gives us the opportunity to precisely
assess the scalability of the proposed approach and thus answer the second question, whether
the optimal combination of similarity metric and clustering algorithm scales to large datasets.

A.1 Compared metrics and clustering algorithms

Since system resources can be viewed as strings with specific structure, we compare proposed
similarities with well-known string metrics [139] (see Table A.1 for complete list) with the
only exception—the network traffic. Since there is a prior art related to computing similarity
between two HTTP requests, we compare the proposed similarity to the similarity proposed by
Perdisci et al. [184].

The strings metrics we have selected as a baseline fall into three main categories:

e Metrics based on edit distance,
e metrics modeling n-grams,

e string kernel.

109



Name Metric? Type Complexity

Levenshtein dist. [138] No edit dist.  O(Jz| - |2’|)
Damerau-Levenshtein dist. [148] Yes edit dist.  O(Jz| - |2’|)
Jaro-Winkler distance [180] No edit dist.  O(Jz| - |2’|)
Longest Common Subsequence [181]  Yes edit dist.  O(Jz| - |2’|)
Cosine similarity No n-gram  O(|z| + |2])
Jaccard similarity Yes n-gram  O(|z| + |2/])
Sorensen-Dice coefficient [182] No n-gram  O(|z| + |2'|)
N-Gram [183] No n-gram O(|z| - |2'|)
String kernel [140] Yes subseq. O(Jz| - |2'|)
Proposed similarity No O(max(|z|, |2']))

Table A.1: STRING METRICS USED FOR COMPARISON WITH PATH SIMILARITY. PARAMETERS |z| AND
|2'| DENOTE LENGTHS OF COMPARED PATHS AND PARAMETERS |z| AND |z/| DENOTE NUMBER OF
FRAGMENTS. NOTE THAT |z|,|2'| > |z|,|2/| SINCE THE NUMBER OF FRAGMENTS IS MUCH LOWER
THAN NUMBER OF CHARACTERS IN FILE PATH.

Metrics based on edit distance compute the distance as the minimal number of character opera-
tions required to convert one string to another. The particular selection of operations is specific
for each string metric (Levenshtein distance, Jaro-Winkler distance, Metric Longest Common
Substring) but in general they include

1. insertion of new character (kiten—kitten),

2. deletion of a character (kitten—kiten),

3. substitution of a character (kiten—kitan) and

4. transposition of two adjacent characters (kitten—ktiten).

Originally, these string metrics were designed for correction of misspelled words, where indi-
vidual operations model typical typing mistakes [185]. Another important application area is
computational genetics where DNA and protein sequences are considered as long strings over
specific alphabet (e.g. X = {A,T,C,G} in case of DNA). The goal is then to determine the
similarity of two sequences which can be used to reconstruct the evolution tree. In this scenario
the character operations model the mutations of the analyzed sequence.

The second category of string metrics (Cosine similarity, Jaccard similarity, N-Gram) is
based on modeling n-grams, continuous sequences of n characters. For examples, bigrams
(n = 2) for word kitten are: ki, it, tt, te, en. The extracted n-grams are then typically modeled
with bag-of-words model where every n-gram represents single feature with the value equal to
the frequency of the n-gram in the string. The similarity between two strings is then defined
as a similarity between two feature vectors corresponding to compared strings.

A specific category of string metrics are string kernels. In general, kernels are based on
feature mapping ¢(z) that projects the input data (in our case strings) into a vector space with
potentially infinite dimension. The kernel function that represents the distance between strings
z and z’ is then defined as



The concept of kernels was successfully applied on many machine learning tasks since it allows
to use various machine learning algorithms for non-numerical data (e.g. strings, graphs, images,
etc.).

Since some of the string metrics are defined as distances rather than similarities we use
following formula to compute the similarity required by the Louvaine method

s(z,2") =1 — f(d(z,2)), (A.1.1)

where d(x,2') is the underlying string distance and f(-) is a function that normalize the value
of the string distance d(z,z’) into [0, 1] interval, typically defined as max (||, |2']).

Similarity metric, however, is only one of the components necessary for clustering of system
resources. The second component that affects the results is the clustering algorithm itself.
Therefore, we need to verify that the proposed approximation of Louvaine clustering algorithm is
suitable for clustering of system resources. We compare the results obtained with approximative
Louvaine clustering defined in Section 5.1.6 (further referred as ApprozL) and four different
state-of-the-art clustering algorithms that can be combined with similarities under comparison:
hierarchical clustering with complete linkage (further referred as CLINK) [186], hierarchical
clustering with single linkage (further referred as SLINK) [187] and generalized density-based
clustering (further referred as GBSCAN) [188].

A.2 Dataset description

The performance of the similarities proposed in Section 5.1 was evaluated on four different
datasets, one for every type of system resources (file paths, mutexes, registry keys, network
traffic). The data were extracted from behavioral traits of malware samples originating from
multiple malware families such as Zeus, Sality, Ramnit, Nemucod, CyberGate, Bifrost, Dark-
Commet, Bedep, etc. These samples were analyzed using AMP ThreatGrid service [156] and
submitted to manual analysis. Analyst then grouped system resources of individual types ac-
cording to their purpose in the operating system or their structure such these groups represent
behavioral indicators of corresponding malware families. The examples of groups from the file
path dataset include

e files that resembles installation of Acrobat Reader (e.g. /program files/adobe/reader
9.0/reader/acrobroker.exe),

e files in Windows DLL cache (e.g. /windows/system32/dl1lcache/spcplui.dll),

e files in Start folder (e.g. /documents and settings/all users/start menu/programs
/games . exe), etc.

The mutex dataset contains
e mutexes specific to a particular malware family (e.g. DC_MUTEX-R4RAJJ3),
e mutexes with similar structure (e.g. D30D239201D1732D000007E82), etc.
The registry key dataset includes

e registry keys that contains information about binaries that are executed after startup of
the operating system (e.g. HKLM\software\microsoft\windows\currentversion\run\
:fbf674c6aed6196C206250415e53e947),
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Training data Testing data

#instances #groups #instances #groups

Paths 5907 50 8907 52
Mutexes 2056 49 1021 45
Registry keys 5705 59 2782 78
Network 790 124 477 108

Table A.2: NUMBERS OF INSTANCES AND GROUPS IN TRAINING AND TESTING DATASETS FOR INDIVID-
UAL SYSTEM RESOURCES.

e keys that contains list of applications that are authorized to make network connections
(e.g. HKLM\system\controlset001l\services\sharedaccess\parameters\firewall
policy\standardprofile\authorizedapplications\list\c:\temp\1432671mgr.exe).

The last dataset, the network resources dataset, contains traits of communication with vari-
ous domains/IPs related to malware’s command and control or monetization structures (e.g.
ubnsyhv27fa2j.ru).

All four datasets were divided into training and testing data such that only part of the groups
is present in both training and testing data (detailed numbers are summarized in Table A.2).
Such split allows us to partially overcome the bias that is typically introduced when both
training and testing data contains the same groups of instances. The training data were used
for optimization of following parameters of the clustering algorithms:

e CLINK: e = {0,0.025,0.05,0.075, ... 1} - maxValue,

e SLINK: € = {0,0.025,0.05,0.075, .. .1} - maxValue,

e GDBSCAN: ¢ = {0,0.025,0.05,0.075, ... 1} - maxValue, minPts = {1, 2,3, 4,5},
e approxL: e = {0,0.025,0.05,0.075, ... 1} - maxValue,

where maxValue represents theoretical maximal value of particular similarity metric. Since the
results of the approximative Louvaine clustering depends on the starting conditions we have
repeated the clustering 5 times and used average value of ARI.

The performance of individual combinations of similarity metrics and clustering algorithms
is evaluated with adjusted rand index (ARI) defined in Section 6.3.1. All metrics and clustering
algorithms were implemented in Java 8 as single-threaded applications and the scalability was
evaluated on Amazon AWS virtual machine (r4.x4large, 16-core Intel Xeon E5-2686 v4 Broad-
well Processors with 122GB RAM). Each experiment was repeated 10times and the running
times were averaged.

A.3 Comparison of proposed metrics with related work

In the first part of the experimental evaluation we evaluated the suitability of the proposed
similarities and the clustering algorithm for clustering system resources. As we have discussed
above, appropriate combination of similarity and clustering algorithm should correctly recover
behavioral indicators for individual system resources. The results summarized in Tables A.4,
A.5, A.6 and A.7 indicate that the proposed combinations of similarity and clustering algorithm
provide best clustering results (in the case of network traffic, see Table A.5) or near best
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Number of unique file paths 5416 757
Number of unique registry keys 823 852
Number of unique mutexes 78 963
Number of unique domains/IPs 20 926

Table A.3: NUMBERS OF UNIQUE SYSTEM RESOURCES EXTRACTED FROM DATASET USED IN SEC-
TION 5.2 FOR EVALUATION OF THE CLASSIFICATION PERFORMANCE OF MIL-MODEL.

CLINK SLINK GDBSCAN ApproxL

Cosine (n =1) 0.267 0.171 0.178 0.452
Cosine (n = 2) 0.313 0.293 0.304 0.508
Cosine (n = 3) 0.377 0.297 0.309 0.542
Damerau-Levenshtein 0.340 0.444 0.444 0.537
Jaccard (n =1) 0.207 0.099 0.099 0.343
Jaccard (n = 2) 0.336 0.441 0.420 0.508
Jaccard (n = 3) 0.462 0.483 0.453 0.534
Jaro-Winkler 0.247 0.469 0.416 0.491
LCS 0.255 0.486 0.486 0.589
Levenshtein 0.367 0.443 0443 0.524
n-gram (n = 1) 0.369 0.532 0.508 0.571
n-gram (n = 2) 0.398 0.534 0.509 0.550
n-gram (n = 3) 0.308 0.544 0.518 0.536
Sorensen-Dice (n = 1) 0.220  0.099 0.099 0.421
Sorensen-Dice (n = 2) 0.287 0.469 0.427 0.513
Sorensen-Dice (n =3)  0.458 0.472 0.448 0.525
String kernel (n = 1) 0.256 0.171 0.178 0.459
String kernel (n = 2) 0.247 0.330 0.330 0.504
String kernel (n = 3) 0.210 0.387 0.387 0.505
Proposed similarity 0.620 0.687 0.687 0.677

Table A.4: FILE PATHS CLUSTERING: VALUES OF ARI (HIGHER IS BETTER) ESTIMATED USING TEST-
ING DATA FOR PROPOSED PATH SIMILARITY METRIC AND SELECTED STRING METRICS COMBINED WITH
SELECTED CLUSTERING ALGORITHMS.

CLINK SLINK GDBSCAN ApproxL

Perdisci (n = 1) 0.350 0.562 0.562 0.599
Perdisci (n = 2) 0.524 0.497 0.497 0.603
Perdisci (n = 5) 0.462 0.424 0.472 0.610
Proposed similarity  0.668 0.495 0.417 0.708

Table A.5: CLUSTERING OF NETWORK TRAFFIC: VALUES OF ARI (HIGHER IS BETTER) ESTIMATED
USING TESTING DATA FOR SIMILARITY PROPOSED BY PERDISCI ET AL. [184] AND PROPOSED SIMILARITY
COMBINED WITH SELECTED CLUSTERING ALGORITHMS.
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Figure A.3.1: Average processing time (lower is better) required to cluster file paths with various
clustering algorithms coupled with two best performing path similarities.
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CLINK SLINK GDBSCAN ApproxL

Cosine (n =1) 0.391 0.532 0.532 0.624
Cosine (n = 2) 0.574 0.504 0.504 0.759
Cosine (n = 3) 0.785 0.660 0.660 0.794
Damerau-Levenshtein 0.385 0.343 0.343 0.823
Jaccard (n =1) 0.234 0.530 0.493 0.687
Jaccard (n = 2) 0.426  0.788 0.795 0.762
Jaccard (n = 3) 0.786 0.579 0.539 0.755
Jaro-Winkler 0.328 0.715 0.715 0.688
LCS 0.453 0.835 0.835 0.806
Levenshtein 0.380 0.343 0.343 0.812
n-gram (n = 1) 0.445 0.754 0.754 0.793
n-gram (n = 2) 0.490 0.822 0.822 0.794
n-gram (n = 3) 0.424 0.774 0.774 0.790
Sorensen-Dice (n = 1) 0.227 0.536 0.536 0.662
Sorensen-Dice (n = 2) 0.426  0.788 0.795 0.799
Sorensen-Dice (n =3)  0.786 0.579 0.579 0.800
String kernel (n = 1) 0.391 0.532 0.532 0.627
String kernel (n = 2) 0.322 0.590 0.590 0.656
String kernel (n = 3) 0.222 0.598 0.598 0.650

Table A.6: MUTEX CLUSTERING: VALUES OF ARI (HIGHER IS BETTER) ESTIMATED USING TESTING
DATA FOR SELECTED STRING METRICS COMBINED WITH SELECTED CLUSTERING ALGORITHMS.

clustering results compared to all combinations of similarity metrics and clustering algorithms
with very small difference between best possible combination and the proposed combination.
This indicates that the proposed metrics correctly capture the similarity between corresponding
system resources and is able to correctly recover the behavioral indicators captured in the testing
data.

However, the optimal clustering results are useless if the proposed solution is not able to
process the required amount of data. In the second part of evaluation we study the scalability
of clustering algorithms in the scenario of clustering file paths as they constitute the largest
amount of data we need to process (see Table A.3). We have selected for every clustering
algorithm two similarity metrics that provided best results and compare the time required for
clustering 1000, 2000, 5000,...,100 000 file paths. The growth of the processing time summarized
in Figure A.3.1 proves that only the proposed similarity combined with the approximative Lou-
vaine clustering algorithm provides the scalability necessary for clustering of required amount
of system resources. The experiments therefore prove, that the proposed similarities combined
with approximative Louvaine clustering algorithm are overall the best choices for clustering file
paths, registry keys, mutexes and network traffic.

A.4 Scalability of the approximative Louvaine clustering
algorithm
In the last set of experiments we discuss the influence of parameter k, the size of subset I’,

to the clustering performance and scalability of ApprozL algorithm defined in Section 5.1.6.
As we have discussed above, results of the proposed ApprozL algorithm depend on the value
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CLINK SLINK GDBSCAN ApproxL

Cosine (n =1) 0.407 0.747 0.747 0.834
Cosine (n = 2) 0461  0.822 0.822 0.916
Cosine (n = 3) 0.695 0.860 0.860 0.928
Damerau-Levenshtein 0.594 0.754 0.744 0.804
Jaccard (n =1) 0.578 0.547 0.451 0.753
Jaccard (n = 2) 0.475 0.761 0.769 0.912
Jaccard (n = 3) 0.667 0.831 0.831 0.892
Jaro-Winkler 0.619 0.772 0.772 0.879
LCS 0.600 0.832 0.832 0.813
Levenshtein 0.654 0.754 0.743 0.928
n-gram (n = 1) 0.416 0.830 0.830 0.904
n-gram (n = 2) 0.720 0.825 0.825 0.890
n-gram (n = 3) 0.556 0.813 0.813 0.922
Sorensen-Dice (n = 1) 0.574 0.498 0.451 0.762
Sorensen-Dice (n = 2) 0.479 0.772 0.772 0.906
Sorensen-Dice (n = 3) 0.666  0.834 0.834 0.823
String kernel (n = 1) 0.407 0.747 0.747 0.840
String kernel (n = 2) 0.379 0.780 0.780 0.831
String kernel (n = 3) 0.348 0.826 0.826 0.821
Proposed similarity 0.924  0.950 0.950 0.941

Table A.7: REGISTRY KEYS CLUSTERING: VALUES OF ARI (HIGHER IS BETTER) FOR PROPOSED REG-
ISTRY SIMILARITY METRIC AND SELECTED STRING METRICS COMBINED WITH SELECTED CLUSTERING
ALCORITHMS ESTIMATED USING TESTING DATA.
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Figure A.4.1: Influence of the parameter k to the quality of the clustering of “mouse”’ dataset
related to processing time.
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Figure A.4.2: Influence of the parameter k to the quality of the clustering of file paths
compared to processing time. The approximative clustering with different values of k =
{100, 200, 500, ..., 100000} is compared to modularity clustering with complete data (100000
samples).

of parameter k as if the value is too low, the clustering algorithm effectively degenerates to
nearest neighbor search, and if it is too large, the initial clustering becomes too complex which
prohibits the scalability to large datasets.

First we evaluated the influence of the parameter k£ on artificial dataset constructed from
three gaussian distributions with parameters py = (2.5,4), o1 = 0.3, n; = 2500, us = (—2.5,4),
o2 = 0.3, ny = 2500 and p3 = (0, —2), 03 = 4, ng = 5000, also known as “mouse dataset”. For
every value of parameter k = {1, 2,5, 10, 20,50, ...,10000} we have found the optimal value of
parameter € and estimated the ARI and processing time of the clustering algorithm. Values of
ARI summarized in Figure A.4.1 show that lower values of parameter k = {1,2,5, 10} degrades
the clustering performance as the values of ARI are lower and with higher variance. It is caused
by the fact that the ApprozL algorithm is not able to correctly estimate the initial clusters.
When the initial subset I’ is larger (kK = {20,50,100,200,500,1000}), the results stabilize
(ARI = 0.83) and increasing size of the subset I’ does not further improve the performance.
With the last setting (kK = 10000) the proposed algorithm becomes equivalent to original
Louvain method since all samples are used in the initial step. The value of ARI for this setting
proves that the approximation slightly affects the results (ARI = 0.89 for complete clustering).
However, the processing time required for complete clustering of the artificial dataset becomes
too large which advocates the approximation.

In the second experiment we evaluated the influence of the parameter £ = {100, 200, 500, 1000, . .., 100000}
on real dataset composed of 100 000 file paths extracted from malware traits used in Chapter 5.
Due to the fact that we do not have ground truth labels, we compared the clustering perfor-
mance of the ApprozL algorithm with the results of Louvaine clustering method. The values of
ARI and processing time summarized in Figure A.4.2 indicates that even though there is a drop
in the performance between original Louvain method (k¥ = 100000) and the ApprozL algorithm,
the degradation of the clustering performance that can appeared on artificial dataset, does not
appear on the real dataset. This is mainly caused by the fact that the space induced by the
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file path similarity metric is very sparse and thus the data are very well separated. However,
for the sake of generality of the solution we set the value of parameter £ = 10000 as it provides
good balance between the scalability and clustering performance. Note that for the dataset
used in Chapter 5 (see Table A.3 for complete numbers) the nearest neighbor search dominates
the processing time and therefore the performance gain achieved by setting lower values of
parameter k is negligible and is overweighted by the possibility of unstable results.
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Appendix B

Details about evaluation dataset

B.1 Number of samples per file type

File type #samples File type #samples
Microsoft Office - DOC 898 Microsoft Office 2007+ - DOCM 546
Microsoft Office - HWP 1 Microsoft Office 2007+ - DOCX 18
Microsoft Office - MSI 17 Microsoft Office 2007+ - DOTM 49
Microsoft Office - PPS 1 Microsoft Office 2007+ - PPSX 2
Microsoft Office - XLS 21 Microsoft Office 2007+ - PPTX 10
HTML document 3464 Microsoft Office 2007+ - XLSM 138
Java archive data 1845 MS-DOS executable 1536
JavaScript 6370 PDF document 859
PE32 executable 97 428 Rich Text Format data 4
PE32+ executable 182 VisualBasic Script 4749
XML document text 5 Windows Script File 5295
Zip archive data 6760

Total 130 198

Table B.1: NUMBER OF SAMPLES PER FILE TYPE EXTRACTED FROM EVALUATION DATASETS.
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B.2 Number of samples of individual malware families

Table B.2: NUMBER OF SAMPLES OF MALWARE FAMILIES IN THE DATA SET. THE MALWARE FAMI-
LIES FOR INDIVIDUAL SAMPLES WERE DETERMINED USING AVCLASS TOOL [154]. THE CATEGORIES
WERE DETERMINED USING VARIOUS REPORTS PUBLISHED BY AV COMPANIES AND INDEPENDENT RE-

SEARCHERS.

Family Category #samples Family Category  #samples
nemucod dropper 15 644 paneidix 278
cerber ransomware 12 813 gamehack 277
bladabindi inf. stealer 10 984 myxah 276
locky ransomware 10 697 delbar 274
gamarue banking trojan 7677 winner 264
darkkomet RAT 4661 advml 261
hupigon dropper 3568 confuser 260
upatre dropper 3256 flystudio 252
tinba banking trojan 3089 dynamer 249
scar trojan 2958 redirector 242
swrort dropper 2866 multiplug 241
zbot, banking trojan 2421 nitol 230
adwind RAT 1875 mamianune 228
virlock ransomware 1789 browsefox 217
fareit inf. stealer 1784 fakejquery 211
farfli trojan 1761 vopak 209
zegost RAT 1745 cosmu 203
virut trojan 1591 filefinder 194
ZUsy trojan 1502 linkury 192
ircbot trojan 1442 dlhelper 190
zerber ransomware 1322 ardamax 188
palevo worm 1269 msilperseus 184
vobfus worm 1262 lotoor 183
delf dropper 1255 peclient 181
donoff dropper 1211 vittalia 180
amonetize adware 1198 lethic 170
loadmoney PUA 1037 ngrbot 161
nanocore RAT 1031 buzus 156
autoit 1006 skeeyah 151
yakes trojan 901 koutodoor 150
poison 836 neshta 148
bifrose inf. stealer 819 barys 148
kolabc worm 705 parite 146
waldek 684 mikey 146
downloadassistant PUA 678 redosdru 142
pdfka exploitkit 644 hancitor 139
shipup trojan 624 mintluks 134
rebhip inf. stealer 612 cheatengine 133
razy 598 miancha 133
agentb 576 midie 133

120



onlinegames 529 fujacks 127
xtrat 510 pidief 126
ramnit banking trojan 498 teslacrypt 126
atraps 478 kolovorot 124
magania 471 dupzom 123
softpulse PUA 467 bublik 122
banload 435 opencandy 120
installmonster 411 socks 118
ruskill 373 icloader 114
convertad 363 fadok 113
installcore PUA 361 garrun 113
sality dropper 356 disfa 113
binder 355 chisburg 112
shiz 341 bedep 111
downloadguide PUA 340 banbra 111
shyape 324 mydoom 108
llac 296 jaik 103
bayrob inf. stealer 293 hlux 103
mywebsearch 283 refroso 101
winsecsrv 281

Total malicious 130198

121



