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ABSTRACT 

The All Saints’ Church is part of the Broumov group of churches which tells the legacy of Bohemian 

baroque architecture in the northern Bohemian area. Built by the famous Dientzenhofer family of 

architects, these churches had their glorious times through the numerous ruling powers in the area for 

300 years of its life. Once glorified, the All Saints’ Church has now fallen to despair from decades of 

neglect. This report summarizes a structural investigation, using ATENA 2D finite element (FEM) 

software, ATENA-Gid FEM software and Geo5 geotechnical FEM software, to assess the safety of the 

church walls with regards to damages it currently faces, in particular due to differential soil settlement 

and recommendations for proposal for further studies, in terms of additional proposed tests and 

monitoring, and proposed repair and strengthening methods. The study is started off by summary of 

findings from preliminary historical, geotechnical background studies. A brief report from preliminary 

investigation conduction in the site was explained. Several conclusions of possible sources of decay 

and damage of the church is deduced. The most important sources include presence of moisture and 

possible differential soil settlement as a result of uneven deterioration of subsoil. In order to investigate 

the extent of damage the differential soil settlement could cause; a series of FEM modelling was 

employed. The first set of models aim to assess the bearing capacity of the enclosure wall, which is the 

main structural element in the church. From these models, it was known that structure is able to sustain 

the vertical loads it is subjected to. Hence, the damages it suffers should not be due to the compression 

loads. The wall’s mechanical properties are derived from these models as an input for the soil-structure 

interaction FEM models. The second set of models involve modelling the structure with the subsoil 

underneath it. The subsoil properties are estimated from visual inspection of the bore log samples 

extracted. Stresses on the walls due to differential soil settlement from 2D and 3D models were analysed 

and found to be rather significant that further more detailed studies should be conducted to ascertain 

the safety of the church and the need for further strengthening. The deterioration of both structural 

components and subsoil were taken into consideration in analysis of the bearing capacity of the 

structure, estimation of geotechnical parameters and soil-structure interaction modelling. Repair regime 

to control the presence of moisture surrounding the church proximity is proposed. Furthermore, proposal 

on additional tests and monitoring to obtain a more accurate mechanical properties of the wall’s 

constituting materials is elaborated. Lastly, a few methods of foundation strengthening are discussed in 

view of potential need to strengthen the foundation in the future. 
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ABSTRAKT 

 

Kostel Všech svatých je součástí Broumovské skupiny kostelů, která významně prezentuje bohatství 

české barokní architektury v severočeském regionu. Kostel byl postaven proslavenou rodinou 

architektů, Dientzenhoferů. Broumovská skupina prožívala zlaté časy v prvních tři sta letech své 

existence díky značnému vlivu církve v regionu Broumovska. Vlivem hektických historických událostí, 

byl kostel Všech svatých v posledních několika desítkách let zanedbáván. Diplomová práce shrnuje 

výsledky stavebního šetření a podává numerickou analýzu současného stavu. Pro výpočet byl využit 

konečně prvkový software  ATENA 2D, software ATENA-Gid MKP a geotechnický software Geo5 MKP. 

Analýza byla zaměřena na spolehlivost a únosnost stěn kostela. Ukázalo se, že poškození, které 

prezentují trhliny jasně vykreslené ve zdech, bylo způsobeno nerovnoměrným sedáním základů. Práce 

se zabývá návrhem testů ke zjištění parametrů jednotlivých prvků stavby a doporučuje postup jejího 

sledování. Jsou v ní též doporučené způsoby oprav a posílení jednotlivých nosných prvků.  Studie je 

zahájena souhrnem zjištění vycházejících předchozích historických a geotechnických skutečností. 

Uvádí stručnou zpráva z předběžného šetření na místě. Z tohoto jsou vyvozovány možné příčiny 

rozpadání a poškození. Mezi nejdůležitější příčiny patří přítomnost vlhkosti a rozdílné sedání zeminy v 

důsledku degradace podloží. Za účelem ověření rozsahu poškození byla provedena řada numerických 

testů pomocí MKP. První sada numerických byla zaměřena na zjištění únosnosti nosných stěn kostela. 

Výpočtem bylo zjištěno, že únosnost stěn je dostatečná a stěny bez problémů unesou svislé zatížení. 

Z toho vyplývá, že porušení stěn není způsobeno tlakovým zatížením.  Druhá sada numerických modelů 

je zaměřena na interakci stavby s podložím. Mechanické vlastnosti zdí jsou odvozeny z první sady 

numerických modelů. Vlastnosti podloží jsou odhadnuty z vizuální prohlídky vyjmutých vzorků z vrtů. 

Napjatost ve stěnách v důsledku nerovnoměrného sedání byla ověřena pomocí 2D a 3D numerických 

modelů. Ukázalo se, že účinky nerovnoměrného sedání jsou významné. Pro budoucí bezpečnost a 

úspěšné zajištění stability stavby budou nutné další podrobnější studie. Při analýze únosnosti 

konstrukce byla zohledněna deteriorace kamenného zdiva, a to obou jeho složek, stejně tak jako 

zhoršení únosnosti základů v důsledku degradace základového zdiva i podloží. Je navrženo opatření, 

které povede ke kontrole vlhkosti v blízkosti kostela. Dále jsou navrženy dodatečné zkoušky a 

monitorování, což povede k přesnějšímu popisu mechanických vlastností jednotlivých materiálů 

tvořících stěnu. Nakonec je diskutováno několik metod nutných k budoucímu posílení základů.    
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RINGKASAN 

 

Gereja All Saints’ adalah bagian dari grup gereja Broumov yang menceritakan pengaruh arsitektur 

Barok Bohemia yang hebat dan sampai ke ujung Bohemia Utara. Dibangun oleh keluarga arsitek 

Dientzenhofer yang terkenal, gereja-gerja ini telah melalui waktu-waktu gemilangnya di bawah 

penguasa-penguasa yang berbeda dalam 300 tahun masa hidup gereja ini. Namun sekarang, gereja 

All Saints’ ini telah mengalami beberapa kerusakan dikarenakan pemeliharaan yang kurang selama 

berpuluh-puluh tahun. Laporan ini meringkas investigasi structural mengenai tingkat keselamatan 

tembok gereja All Saints’ ini terutama dalam bidang penuruan tanah yang tidak seimbang. Laporan ini 

diawali dengan ringkasan penemuan dari investigasi sejarah dan geoteknis dari gereja All Saints’. 

Laporan singkat ini dilanjutkan oleh beberapa kesimpulan mengenai sumber-sumber yang mungkin 

menyebabkan kerusakan pada gereja All Saints’ ini. Sumber yang paling penting termasuk adanya 

kadar air yang tinggi dan penurunan tanah yang tidak seimbang disebabkan oleh kadar air yang tinggi 

di tanah. Untuk menginvestigasi sejauh apa penurunan tanah tidak seimbang ini bisa menyebabkan 

kerusakan pada gereja All Saints’ ini, beberapa model FEM dianalisa. Sekumpulan model pertama 

bertujuan untuk menemukan daya tampung dari tembok gereja ini yang sangat heterogen. Dari model-

model ini bisa disimpulkan bahwa kapasitas tembok ini dalam kompresi sangatlah cukup, makan 

kerusakan gereja kemungkinan bukan karena kurangnya kekuatan tembok. Lalu, dari model-model ini 

juga disimpulkan besarnya kekuatan dan modulus Youngs’ dari tembok gereja ini untuk digunakan di 

model selanjutnya. Sekumpulan model yang kedua bertujuan untuk mengetahui seberapa besar 

tekanan pada tembok gereja yang disebabkan oleh penurunan tanah tidak seimbang. Tekanan pada 

tembok yang ditemukan lumayan besar. Di akhir laporan ini, beberapa kesimpulan dibuat termasuk ada 

perlunya untuk memperbaiki saluran air di gereja dan untuk mempelajari unsur-unsur bangunan dengan 

lebih teliti sehingga perkiraan parameter mekanis dari tembok dan tanah bisa dibuat dengan lebih 

akurat. Akhirnya, beberapa rekomendasi untuk kemungkinan pelajaran lebih lanjut dan perbaikan gereja 

diberikan.  
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1. INTRODUCTION 

Czech Republic is home to numerous important cultural heritages in Europe. History of human 

civilization on this land dates back to end of the fifth century when the Slavs arrived in the territory. 

However, it was not until the 14th century during the Premyslid dynasty that the Czech states reached 

the peak of its power. During this period, a lot of constructions started to spring around the country. The 

land had seen numerous shifts in the ruling power, but owing to its location, it has always remained an 

important part of European history and historical buildings continued to flourish over the years [1].  

Unlike the current construction industry, builders from the past designed based on geometrical rules 

sanctioned by the experience and the observation of past successful structures. The first rational design 

approaches were formulated in the 17th century. However, these guidelines are very much generalized 

and knowledge of different types of construction material and subsoil was very limited. As a result, these 

historical buildings are typically under designed or over designed. The ones that have survived until now 

typically belong to the latter. Over the course of hundreds of years, however, accumulated stress from 

soil settlement, deterioration of materials and earthquakes create many problems in these buildings 

nowadays. In Czech Republic, the problem of deterioration of materials due to lack of maintenance is 

very prevalent; one of the reasons for this being the centralized state ownership of most properties 

during the communist regime [2]. As people were living in a property that they do not own, maintaining 

these buildings was deemed unnecessary. One such example is the Broumov group of churches that is 

the subject of study in this report. 

The Broumov group of churches is built in the part of Czech Republic that has the most amazing rock 

formation. The rock formation consists of varied sandstone quality with a climate of high rainfall and cold 

weather [5]. Engineering in the past were not able to detect the correct soil type to design it against 

differential settlement. The current technology, though, has enabled engineers to obtain samples of the 

foundation and estimate the parameters needed to assess effect of soil settlement on the church. In 

addition, depending on the structure rigidity and the arrangement of the soil, the stress distribution on 

the soil and in turn its settlement and the stresses that are subjected to the structure will be different. In 

this paper, the soil structure interaction modelling will be performed and the deduction of this causing 

the cracks on the church walls will be assessed. 

In addition, due to the church construction funded mostly by the local villagers which were not very well 

off, the walls of the church were constructed by various types of materials and the skills of the masons 

are not that high. The different skills of construction and the different types of construction materials 

around the church brings about lateral tension within the walls as different parts of the wall settle 

compresses in different manner with the same compressive force. Additionally, the different Poisson’s 

ratios of the different material intensify this effect. The wall sections in transverse and longitudinal 
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directions will be modelled in this paper to analyse the effect of this lateral tension in the formation of 

cracks.  
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2. HISTORY 

Before works on a cultural heritage is done, it is important to study the settings at which the building is 

built. These include the time period of the construction, the reigning power of the locality and the main 

figures involved in the construction such as the builder and the client. Understanding these aspects 

allows conservator to better apprehend the importance of the building, the construction techniques used 

in the construction, as well as possible sources of damage that happened in the past. 

2.1 Bohemia 

 

Figure 2.1. Map showing the current territory of Czech Republic and the Bohemian crown 
border in the 1500s [3] 

As can be seen from Figure 2.1, the current Czech Republic boundary falls pretty much within Bohemian 

crown boundary in the 1500s, and so was the building that is studied in this report. 

Bohemia’s history goes as early as the ninth century dominated by the Slavs tribes. The influence of 

Christianity was soon brought from the land of Moravia by prince Wenceslas who later became the 

patron saint of Bohemia. As an independent state and part of the Holy Roman empire, several Bohemian 

kings were crowned emperor of the Holy Roman empire as well, one of whom is Charles IV who 

established Bohemia to the peak of its power [4].  

Charles’ successor, though, was not able to carry his legacy and the turbulent era of reformers including 

the Hussite weakening rule of Bohemian kingdom until it was defeated by the catholic Habsburg empire 
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in mid-16th century. It was still an independent state but it was largely influenced by the Habsburg nobles’ 

rule. Catholic rule over the Christian majority during this period created much tension within the area, 

especially in Prague [4].  

The 17th century witnessed several dramatic events that shaped Bohemia, the first of which was the 

defenestration (out-windowing) in Prague in 1618 A.D. Two Habsburg-appointed catholic regents were 

forcibly thrown out of Hradcany fortified palace windows. This event triggered the events leading to 

Thirty Years’ War between the Catholics and the Protestants in Central Europe. At the time, the catholic 

Bohemian king crowned by the Habsburg, Ferdinand II, imposed rigorous Catholicism of Counter-

Reformation which was not welcomed by the population. In 1619, he became the Holy Roman Emperor 

but was dethroned in Bohemia when the protestant Frederik V was crowned Bohemian king by the local 

protestant party. However, Frederick was soon defeated at the battle of White Hill (1620) by the forces 

of Ferdinand II and his allied Bavarian army. The following Thirty Years’ War (1618 – 1648) had a 

significant effect on Bohemia, exhausting the country’s finances and wiping out much of its infrastructure 

[4]. 

The Broumov group of churches were built in the beginning of the 18th century as Bohemia started to 

recover from the damages inflicted by the war. These events from the 16th to early 18th century preceding 

the construction of these churches would have significant impact on the monument [5]. 

2.2 Baroque architecture in Bohemia 

The defeat of reformist Bohemian nobles at the Battle of White Mountain (1620), the Thirty Years and 

emphatic re-Catholicization led to the emigration of leading advocates of Czech architecture and the 

influx of foreign nobles. The great wealth and political power of the church and the nobles resulted from 

confiscation of properties from the old ruling nobles enabled the new ruling power to reconstruct even 

the countryside churches and chapels to support their re-Catholicization campaign throughout Bohemia. 

This resulted in change in the landscape of Bohemian architecture that lasts up till now [6].  

Baroque architecture in Bohemia comes to Bohemia together with the influx of foreign Catholic nobles 

and originates from Italy. Baroque architecture in Italy started in the early 17th century accompanying 

the Counter-Reformation that was intended to restore Catholic’s popularity after issues it had faced due 

to Protestant Reformations. As the Roman Catholic Church looked for a way to manifest its influence 

and regain lost souls all over Europe, it turned its attention to church architecture. The new style of 

church architecture was intended to touch human emotion as compared to the previous styles which 

appeals more to human intellect. The very act of approaching and stepping into a church had to become 

more of an experience that entice believers into the grandeur of the church, but also strongly welcome 

them to a strong attachment to the church [7].  

Baroque style architecture differs from the previous Renaissance style which was very strict with rules. 

It allows very dynamic designs, employing a mixture of repetition, breaking-up, and distortion of 

Renaissance classical motifs. Typically, Italian Baroque architecture makes much larger use of 
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abstracted or exaggerated elements to provide more dynamic interiors. The building interiors usually 

contains much decoration including frescoes, paintings and ornaments. These exaggerated features 

coupled with large gold statues of Christian figures imposes feeling of domination and protection [7]. 

While the early baroque period in Bohemia in the early 17th century was dominated by Italian architects, 

the high Baroque period later in that century saw emergence of architects of Bohemian or Moravian 

birth and architects from Bavaria. One of the most significant architects of the High Baroque period was 

Dientzenhofer family, who came to Bohemia from Bavaria and lived in Prague. Christoph and his son 

Kilian Ignaz Dientzenhofer are known for their style called "radical Baroque", which was inspired by 

examples from northern Italy, particularly by the works of Guarino Guarini, and which seeks to express 

movement. It is characterized by the curvature of walls and intersection of oval spaces. However, this 

was later adopted into a Czech version of the style by local architects. One of their most important work 

include the St. Nicholas Church in the Lesser Town of Prague which becomes one of the most important 

Baroque churches in Europe. It was with this style that the Broumov group of churches was constructed 

[6]. 

2.3 Broumov region 

The region of Broumov is distinctive for its wild and poetic landscape and architecture. The landscape 

of this region is diverse with mountains, valleys and bizarre rock formations and also mosaics of 

forestland, meadows and grassland. Coupled with the Baroque buildings constructed mainly under the 

order of the Benedictine order, it creates a “genius loci” – spirit of this place – that makes Broumov an 

enchanting region. The construction of the most important historical buildings in this area was attributed 

to the history of this region being a very important cultural centre in the area from the 13th to the 19th 

century. These buildings include the two Benedictine monasteries in the towns of Broumov and Police 

nad Metuji, a group of twelve churches and chapels in surrounding villages, the oldest wooden church 

in the town of Broumov, brick farmhouses and typical German folk houses. Other than the monasteries 

and the oldest wooden church, most of these buildings have been neglected over the years and are in 

much need of repair [8]. 

The legacy of Broumov region goes back to the 13th century when it was colonized by the Benedictine 

order of Brevnov when the land was given to them by King Premysl Otakar l. The town of Police were 

occupied mostly by people of Bohemian origin, while the town of Broumov by people of German origin. 

Monasteries in Broumov and Police were later built as centres of Benedictine order in this region of 

Bohemia. After the completion of the monasteries, the monks carried out a planned colonization to 

anticipate the growing population. This results in the villages surrounding the towns and other functional 

buildings in the main towns, as what is present today [8].  

Due to its location and diverse population, this region experienced many political and religious upheaval. 

This includes conflicts between Catholics and Protestant, Thirty Years’ wars and plagues. However, it 

has always managed to recover itself thanks to the good economic status and business activities of the 
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Benedictine abbacy. In the aftermath the Thirty Years’ War in 18th century, this area saw major 

renovation of the monasteries and new constructions of new stone Baroque churches replacing old 

wooden churches by the order of the abbot. This development continued on to the 19th century when 

this area experienced great prosperity due to the development of the textile industry and the political 

freedom. This was manifested in the population boom and building of places of worship of architectural 

values in surrounding villages [8]. 

This prosperity would not last in the 20th century. After the Munich Agreement in 1933, the Broumov 

region was divided - Broumov and Teplice, whose inhabitants were mostly of German origin, became 

part of Hitler's Third Reich and Police was part of the Protectorate Bohemia - Moravia. German’s defeat 

in the Second World Was undid this division and returned the area back to Czechoslovakia. The German 

inhabitants who would not swear allegiance to Czechoslovakia were evicted from the country. The 

population of this area would be reduced by about two third deeming many buildings unnecessary as 

the inhabitants were gone. This was made worse by the nationalization of many buildings due to the 

communist ideology leading to minimal or no maintenance of the buildings by the locals. This led to the 

current damaged state of the buildings currently [8]. 

 

Figure 2.2. Location of Broumov within the Czech Republic [9]. 

2.4 Broumov group of churches 

The term “Broumov group of churches” include numerous Baroque parish country churches in the 

villages of Broumov-Brevnov abbey. The important value of this group of churches also stems from the 

single client, the single family of builder and the short construction span. This gives a cultural identity of 

the whole complex of estate, geographically delimited area of plateau surrounded by ridges. This is 

further accentuated by the closeness of the Baroque shapes to the natural rocky formation surrounding 

the area [5]. 
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Most of these churches were built in the beginning of 18th century under the order of abbot Otmar Zinke 

and builders Dientzenhofers. Charismatic Otmar Zinke replaced Sartorius as abbot in 1700 and in 1709 

hired the Dientzenhofers as the architects and builders of his new churches. The Dientzenhofers began 

by constructing a new monastery and renewing the church in Police. Killian Ignaz Dientzenhofer worked 

under his father, Christoph Dientzenhofer, who later passed away in the middle of the construction of 

this group of church. Kilian took over the role as builder for churches in Vernéřovice, Ruprechtice and 

Otovice and completed them based on his father’s previous designs in 1720, 1730 and 1726 

respectively. In the years to follow, he built and designed churches in Hermakovice, Viznov, Bezdekov, 

Sonov and Bozanov. While Christoph’s style revolves around centralized oval or octagon with 

embedded pillars, Killian took this further to incorporate more unconventional curves on the building 

plan [5].  

This group of churches also has another similarity among them. They are country churches that had to 

meet very fundamental and practical requirements met in their designs. Due to the limited amount of 

funding available and the lower skill level of the local mason, design of these country churches had to 

be kept simple and economic while displaying its beauty. The typical design was a single nave structure 

with a bell tower without complicated structural details. All of the churches were built with false timber 

ceilings designed to imitate masonry vaults that significantly reduces horizontal thrust on the enclosure 

wall allowing thinner walls. Another distinguishing characteristic of these church is the steep hipped roof 

that rivals the bell towers in height and creates impressive silhouettes in the countryside. Other than for 

aesthetic reason, these roofs were designed to allow snow and rain to run off quickly. Originally the 

roofs were shingled in red painted wood but have been replaced by the more durable slate [5].  

The main purpose of these churches was to present a dominating building at the main road or cross 

roads of a town along main trading routes. These extensive buildings were meant to showcase the 

prompt restoration of the area after the damages from the wars impressing travelling merchants with 

their wealth, ultimately resulting in larger trade and attention [5]. The Dientzenhofers were capable of 

meeting all the practical requirements of the churches while creating a unique Broumov Baroque 

architecture. Examples of their design are shown in Figure 2.4.2 and Figure 2.4.3. 
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Figure 2.3. Photo of St. Jacob the Greater's church in Ruprechtice, Czech Republic. 

 

Figure 2.4. Photo of St. Ann's Church in Viznov, Czech Republic 

2.5 All Saints’ Church in Hermankovice 

All Saints’ Church in Hermankovice was built replacing the role of the wooden church constructed by 

abbot Thomas Sartorius in 1672 as the main worship place in this village. In the beginning of settlement 

of this village, there was a Gothic church in Hermankovice that was said to have already been there in 

the year of 1353. This was later replaced by the wooden chapel in 1672. Riding on the wave of stone 

church construction in the time of abbot Zinke, the current church was constructed in Hermankovice in 
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the first quarter of the 18th century. Preparation works for the construction of the current church started 

in 1720, the ground stone was laid in the following year and the church was finished and consecrated 

in 1723 by abbot Zinke. The design of the church was done by Killian Ignaz Dientzenhofer and the 

church was built by local master builder. Due to the lack of funding, the essential structural component 

was the main requirement of the initial construction. The decoration in the interior as well as the altar 

was brought into the church at a later time in the decade [5].  

As mentioned in the previous section, the Broumov group of churches were built with an intention to 

flaunt the wealth of the region. This is reflected very well in the case of this All Saints’ Church. The 

church is located on a hill in the middle of the village above a cross road of a track going to Ruprechtice. 

Furthermore, the church orientation, westward, is rather atypical. This was done to expose it more to 

traveller traveling to Broumov. View from the main road going to Broumov offers wide silhouette of the 

lateral façade [5].  

The church is built on a ground plan with a distinctively prolonged central. The longitudinal axis is 

elongated with the inclusion of vestry behind the altar and the bell tower at the front façade location. The 

presence of the high bell tower and the high roof created a monumental effect of the building. The walls 

are accentuated with piedroits and cavities giving a more dynamic look to the church both from the 

outside and the inside. The building structural system itself is really simple with a single nave and 

columns embedded in the walls, but general shape of the church being an oval combined with the 

embedded rounded columns gives a continuous convex-concave curved internal wall. This church 

shows the mature work of Killian Ignaz Dientzenhofer in its exceptional scenic effect, dynamic size and 

impressive interior [5]. 

 

Figure 2.5. Walls accentuated with piedroits and cavities of All Saints’ Church in 
Hermankovice, Czech Republic. 
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3. PRELIMINARY INVESTIGATION  

3.1 Visual Inspection 

Visual inspection was carried out to assess the current condition of the church in one visit on May 4th, 

2017. The areas surveyed were the internal and external façade, the bell tower and the sacristy walls. 

The main objectives of the inspection were:  

- Mapping of current damage and decay (including deformation, presence of moisture, material 

degradation, and biological activity) of the church with focus on the church wall.  

- Categorization of cracks in terms of type, length, and width; 

- Measurement of some critical dimensions of the wall 

The inspection equipment included artificial light, measurement tools (measuring tape and ruler), and 

recording equipment (drawings, digital cameras). 

The results from the investigations are elaborated in the following few sub-chapters. 

3.1.1 Description of church geometry 

The church is 44 metres long and 20 meters wide, including the bell tower and sacristy as can be seen 

in the floor plan in Figure 3.1. The masonry walls are on average 1.2 meters wide with exception of the 

sacristy wall which is 1.0 meters wide. The main nave is 27 metres by 17 metres.  

 

Figure 3.1. Floor plan of All Saints’ Church in Hermankovice, Czech Republic. 
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3.1.2 Decay  

3.1.2.1 Moisture  

Moisture signs could be observed infiltrating the false stone that covers the bottom half meter of the 

external church enclosure wall [Figure 3.2]. Similar signs of moisture could be observed from the interior 

of the church [Figure 3.3]. 

3.1.2.2 Biological growth 

Biological growth in the form of fungi, algae and moss could be observed at the bottom of the enclosure 

wall almost throughout the church. In the interior of the church, biological growth on the southern wall is 

limited to small patches of algae, but larger patches of fungi, algae and moss growth dominate the 

bottom of the northern wall [Figure 3.4]. At the exterior of the church, the same pattern is observed that 

the decay of the bottom of the wall is more extensive at the northern wall than it is on the southern wall. 

While there is microorganism growth on both façades, on the northern wall, it is more spread out and 

there is moss growth as well. 

Other than at the bottom of the walls, algae and moss growths are concentrated at the kink where the 

enclosure wall joins with the wall of the sacristy [Figure 3.6]. 

3.1.2.3 Delamination of rendering and plaster 

Throughout the church, the building plaster and rendering are observed to have deteriorated and at 

some parts the inner masonry are completely exposed due to decay of the rendering. In the interior of 

the church, this effect is limited to the bottom of the walls and the kink area where a new rainwater 

downpipe is observed at the exterior [Figure 3.7]. However, on the exterior, this effect is observed to be 

more extensive. Renders at the top of the wall as well as most of the renders at the convex part of the 

wall are observed to have been completely deteriorated exposing the inner masonry [Figure 3.7]. 

Furthermore, the condition on the northern wall is again observed to be worse than it is on the southern 

wall. 
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Figure 3.2. Moisture signs at the church 
exterior 

Figure 3.3. Moisture signs in church interior 
 

 

Figure 3.4. Biological growth on the southern wall (left) and on the northern wall (right) in the 
interior of the church 

 

Figure 3.5. Biological growth on the southern wall (left) and on the northern wall (right) in the 
exterior of the church 
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Figure 3.6. Biological growth at the kink at the lateral façade where a water downpipe is located 
from the exterior (left) and the interior (right) 

 

Figure 3.7. Render and plaster deterioration on the external southern wall (left) and northern 
wall (right) 

3.1.3 Damage and cracks 

3.1.3.1 Cracks on transverse arches of the church 

Extensive series of cracks transverse arches bridging the northern and the southern façade were 

observed [Figure 3.8]. This series of cracks are found consistently throughout the church from the arch 

connecting the entrance hall and the main central area to the sacristy northern wall. The cracks could 

be categorized as small cracks at the bottom of the mid-arch, large cracks at the top left and right end 

of the arches.  
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Figure 3.8. Cracks on transverse arches bridging the northern and southern facade 

3.1.3.2 Cracks at the sacristy vault  

Cracks are also observed at the connection vault connecting the sacristy and the rest of the church. The 

cracks form a continuous line separating the sacristy and the rest of the church [Figure 3.9].  

 

Figure 3.9. Continuous crack separating the sacristy vault to the main church wall 
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3.1.3.3 Cracks on the western façade behind the sacristy 

As can be seen from Figure 3.11, there is a large crack running from the ground to the top of the western 

façade behind the sacristy. This crack is consistent with the other cracks in the transverse arches in the 

church.  

3.1.3.4 Crack on the longitudinal façade near the kink of the church that is degraded due to faulty 
drainage system 

Furthermore, there is a crack originating from the foundation to the window opening near the kink where 

faulty drainage system is observed []. This indicates potential movement of the church due to poorer soil 

condition in this area as compared to the other areas. 

 

Figure 3.10. Crack on the longitudinal façade near the kink of the church 

3.1.3.5 Minor typical cracks 

Other minor typical cracks including the ones due to relieving arch above openings were observed as 

well, but they are of little concerns as they are rather small and limited. Hence, they will not be discussed 

here.  
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3.1.4 Signs of later reconstruction 

Some signs of reconstruction could be observed on the walls from the presence of ill-located brick blocks 

that are covered with render recklessly at random location [Figure 3.12]. furthermore, the frames around 

the doors and windows are observed to be constructed with majorly regular brick masonry [Figure 3.13]. 

The same kind of stones that are randomly places in other parts of the walls are arranged in an organized 

manner at the sacristy walls. It could be inferred that these frames were reconstructed or added at a 

later time after the completion of the church.  

 

 

Figure 3.11. Large crack on the western facade behind the sacristy 
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Figure 3.12. Ill-located brick blocks showing signs of reckless repair 

 

Figure 3.13. Frame around sacristy door 
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3.2 Geotechnical Investigation 

3.2.1 Subsoil in Hermakovice 

The subsoil in the area where All Saints’ church is sitting on is described as combination of feldspathic 

sandstone, volcanic breccia and conglomerate with layers of ryolitic tuff [Figure 3.14]. While sandstone, 

breccia and conglomerate are sedimentary stone, conglomerate is metamorphic stone and ryolite is 

igneous stone. The rock type is categorized as consolidated sediment and volcanic. The subsoil was a 

formation from continuous volcanic activities [10].  

Ryolite is plutonic rock – rock that is formed by magma cooled rapidly at or near the earth’s surface. 

This corresponds with the placement of ryolite at the bottom of the soil layers. Ryolite is a felsic extrusive 

rock with high silica content. Hence, it has high strength and hardness as compared to the other rocks 

[11]. 

Sandstone and breccia can be categorized as sedimentary stone. Sedimentary stones are formed either 

by build-up of sediments from rivers, sea, wind or precipitation. In the case of Hermankovice, it is likely 

the case that at the time when volcanic activity in this area became inactive, wind and rain erode 

sediment and build it up downstream creating layered sedimentary rocks. Due to its nature, elements 

constituting sedimentary stones are very diverse. Its durability and strength depends very much on the 

cementing material and the chemical constituents of the sediments. Furthermore, the thicker each 

bedding in sedimentary rock, the more resistant the rock is. This is due to low cohesion between each 

bedding as compared to cohesion between particles within each bedding [12]. 

 

Figure 3.14. Soil map showing position of All Saints' church and its soil description 

3.2.2 Subsoil description from boreholes next to church walls 

Two boreholes were bored just outside the church wall. One borehole was installed next to the northern 

wall and another next to the southern wall. The bore log description and the photos of the extracted soil 
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and rock coring samples are shown in Table A.1 to Table A.3 and in Figure A.1 to Figure A.4 in Appendix 

A respectively.  

In general, the soil extracted from the borehole next to the southern wall shows better characteristics 

rather than that from the borehole next to the northern wall. The soil extracted from the northern side 

shows more moist and weaker sandstone fragments, while that from the southern side shows drier and 

stronger sandstone fragments. However, below 6m, both sides show very good bedrock made of ryolite.  

From the extracted soil samples from the southern wall, it could be observed that the soil of the first 

1.65m is made up of larger and less degraded fragments as compared to the layer just beneath it. This 

could be an evidence showing that the former foundation of the church on the southern side was up to 

1.65m. This distinct line of separation, however, is not present in the soil sample from the northern side 

of the wall. This indicates worse degradation of foundation under the northern wall. 

As can be seen from the samples, the soil beneath the church consist mostly of weak rocks. Hence, 

Standard Penetration Test using N-number was not appropriate to be done to determine the soil 

properties. Furthermore, there is no soil extracted in between the rock fragments. This was because the 

soil is too loose. These components crumble as the tube is extracted leaving the rock fragments. 

Consequently, standard mechanical property tests were not able to be done on these samples. As a 

result, the only available information on the soil at the moment are the sample tubes and the 

descriptions. 

3.3 Conclusion of preliminary investigation 

3.3.1 Decay due to groundwater infiltration  

As described in the previous chapter, much of the decay of mortar, stones and extensive biological 

growth could be found at the bottom of the wall. A plausible explanation is decay due to groundwater 

infiltration causing moist environment on the stones that is suitable living environment for moss, algae 

and fungi.  

3.3.2 Deterioration due to rainwater splashing and drainage system failure 

Furthermore, particularly appalling condition of a strip of wall at the kink on the enclosure wall near the 

sacristy was observed. Currently there is a rather new rainwater downpipe of to channel water from the 

gutter that is located surrounding the roof of the church. It could be plausible that this decay of this strip 

happened in the past due to broken water downpipe causing the wall being substitute channel for water 

to travel down. Alternatively, this could well be due to clogged water downpipe. The gutter at the top of 

the roof is an open channel. Leaves from nearby trees that are blown towards this channel would readily 

clog the pipe causing rainwater from the roof to gush down the wall instead. 
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3.3.3 Worse deterioration on the northern wall due to its orientation and terrain 

The decay on the northern wall is observed to be more pervasive as compared to that on the southern 

wall. Since the decay is mostly due to presence of moisture on the wall, there are two likely explanations 

to this. Firstly, the northern facing wall is exposed to less sunlight. Moisture on these walls will evaporate 

at a slower rate due to less exposure to sunlight. Furthermore, the terrain on which the church is sitting 

on is sloping downwards with the northern lateral wall being on the higher ground as compared to the 

southern lateral wall. Rainwater that falls down from the roof and the adjacent higher ground will end up 

ponding this naturally made channel [Figure 3.15]. This ponding exposes both the wall and the subsoil 

underneath it to more moisture source. 

3.3.4 Damage due to differential soil settlement 

As described earlier, the soil below the northern façade is found to be poorer compared to that below 

the southern façade. This is likely to be connected to the higher exposure of moisture and less exposure 

of sunlight for the soil beneath the northern façade. Coupled with the series of cracks along the 

transverse arches and the transverse western wall, this could suggest differential settlement between 

the northern and southern façade resulting in stress build-up in these transverse elements. 

 

 

Figure 3.15. Diagram showing the higher exposure of moisture of the northern wall due to the 

church terrain 
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4. STUDY ON WALL BEARING CAPACITY 

As can be seen from Figure 4.1, the church enclosure wall is made up of stone rubble masonry. The 

stones are of uneven sizes even if they are mostly of rectangular shape. There are at least three different 

types of stones that could be observed, along with some patches of bricks that were added in unsuitable 

manner. Furthermore, considering the thickness of the wall – up to 1.2 meters, it is very likely that the 

enclosure wall is made of at least three-leaf walls with inner infill material. This heterogenous nature of 

this enclosure wall makes estimation of wall bearing capacity using certain standards very much 

inappropriate and inaccurate. Hence, modelling representative parts of the wall to obtain its mechanical 

parameters would be necessary. 

 

Figure 4.1. Enclosure wall masonry from the exterior shows non-uniform mixture of stones 

making up the outer leaf masonry layer 

4.1 Description of models used for analysis 

In this study, four different arrangements of cross-sectional cut of stone masonry from different parts of 

the enclosure wall and two arrangements of longitudinal cut of the wall will be analysed using ATENA 

2D. It is a 2D Finite Element Software (Plane strain) for non-linear analysis of structures. The main 

advantage of this programme is that it automatically considers internal force redistribution due to 

cracking, which represent the real behaviour of the structure. Furthermore, it supports advanced 
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research in cementitious mat material as well. The portion of the structure modelled in this study is the 

lateral wall in the middle of the church that is subjected to the highest load due to the longest span 

[Figure 4.2].  

In the sectional wall modelling, due to the limitation of the computer speed and the model size, 4m high 

walls with 1.2m thickness. Even though this is not the entire height of the wall, this model is deemed 

satisfactory in determining the bearing capacity of the wall. This is because the wall is not slender with 

its height to thickness ratio being less than 10. The wall is not very vulnerable to failure due to buckling 

and hence, model of the whole height of the wall is not so important. Furthermore, due to the simplicity 

of the structure with absence of masonry vault, the wall is subjected to very minimal horizontal load. 

Consequently, the failure mode could most probably be due to build-up of tension forces within the 

masonry between different layers of masonry due to the non-homogeneity of the masonry. In this 

respect, the size of wall modelled is sufficient to represent the behaviour of the masonry.  

As for the modelling of the wall in longitudinal direction, 2m high walls with 4m width are modelled. In 

longitudinal direction, the likely failure modes include diagonal shear and crushing due to excessive 

compression after eliminating other failure modes that are related to large horizontal forces. In this 

respect, typically a wall with one-to-one height to width ratio would be a better representative. Originally, 

a 4m by 4m wall was envisioned to be analysed. This was thought to be optimal size as this is large 

enough such that the constituting stone blocks are small enough while small enough to represent a 

portion of the enclosure wall. however, due to limitation of the computer memory, the model was not 

able to be run in ATENA. A less ideal size of 2m height by 4m width wall with symmetry condition to its 

right and left was modelled instead.   

The arrangement of the constituting blocks modelled are based on some on-site element measurement 

and observation from photographic documentation of walls with exposed masonry. The different 

arrangements and the corresponding locations from which these arrangements are derived from are 

shown in Appendix B. 

 

Figure 4.2. Analysed walls for its bearing capacity 
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4.1.1 Modelling assumptions  

Material and geometrical non-linearity is considered in the finite element modelling in this report. 

Considering the limited tensile strength of masonry, material non-linearity has to be considered into this 

modelling. It is very likely that with the addition of load, the state of stress within the structure will be 

over its elastic limit and non-linearity in material is exhibited. Furthermore, as the intention of the 

modelling is to find the peak load that the wall can resist, it is to be expected that the structure will be 

subjected to significant displacement. Consequently, it will only be appropriate to use deformed shape 

of structure in modelling each step to reduce inaccuracy in modelling. Since the model assumes non-

linearity in both material and geometrical, the modelling will be done in small increment of steps to 

capture this non-linearity, of 0.2 times of the currently applied load up to the currently applied load, and 

of 0.1 times of the currently applied load subsequently up to the peak load.  

The interface between the elements are assumed to be rigid. This means that sliding of each element 

against adjacent elements assumed not to be possible. Even though this is not exactly true in the real 

life, this does not deviate too much from the real behaviour of masonry as the stones used in the 

construction of the church wall is not very smooth – this increases friction – and the stones are always 

connected to either mortar or rubble infill masonry that have rather low tension and shear strength 

capacity. Consequently, failure in the element rather than the interface is more likely. Hence, this 

simplification could be justified. 

The load is assumed to be spread uniformly across the top surface of the modelled wall over a rigid 

steel plate top. Even though the surcharge exerted by the roof truss at the top of the wall resembles a 

point load more than a uniform load, the 1m ring beam that surrounds the top of the enclosure wall has 

enough depth to redistribute this point load to be uniform area load acting on the wall instead. To mimic 

this effect of rigid ring beam, a thin rigid steel plate is modelled on top of the wall analysed. 

4.1.2 Material model  

The material model used to model the different masonry elements including stone blocks, bricks, lime 

mortar layer and rubble masonry infill is Constitutive Model SBETA material. This material uses a 

smeared approach to model material properties in 2D plane stress model. This ensures continuity of 

strain between adjacent elements within the entire finite element model. The constitutive model is based 

on the stiffness and is described by the equation of equilibrium in a material point: 

ݏ = ,݁ܦ ݏ = ሼߪ௫ ௬ߪ ௫௬ሽ்ߛ , ݁ = ሼߝ௫ ௬ߝ ߬௫௬ሽ் 

where s, D and e are a stress vector, a material stiffness matrix and a strain vector, respectively. The 

stress and strain vectors are composed of the stress components of the plane stress state σx, σy, γxy 

and the strain components εx, εy, τxy [13]. 

This assumption of plane stress model works perfectly fine with the longitudinal wall as the actual width 

and height of the wall is much larger than the thickness of the wall. However, this assumption is not 

compatible with the sectional wall model as the sectional wall model has much larger dimension in the 
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direction perpendicular to the plan modelled. The sectional wall model fits a plane strain model better. 

In this case, certain transformation of the stiffness properties has to be performed to transform the model 

from plane stress to plane strain. A simple substitution of the right-hand side of both equations should 

provide the required results. The relations have been obtained from and mathematically expressed as: 

௖௢௠௣௨௧௘௥ݒ =
௪௔௟௟ݒ

1 − ௪௔௟௟ݒ
 

௖௢௠௣௨௧௘௥ܧ =
௪௔௟௟ܧ

(1 − (௪௔௟௟ݒ
ଵ
ଶ

 

Where vcomputer and Ecomputer are the Poisson ratio and Young’s modulus to be modelled into the computer 

while vwall and Ewall are the estimated actual Poisson ratio and Young’s modulus of the modelled material 

[14]. 

The material model SBETA includes the following effects of material behaviour [13]: 

- non-linear behaviour in compression including hardening and softening, 

- fracture of material in tension based on the nonlinear fracture mechanics, 

- biaxial strength failure criterion, 

- reduction of compressive strength and shear stiffness after cracking, 

- tension stiffening effect, 

As mentioned in the previous section, the material matrix is derived using the nonlinear elastic approach. 

The elastic constants are derived from a stress-strain function called here the equivalent uniaxial law as 

shown in Figure 4.3. Dissipation of energy is assumed with the different loading and unloading curve as 

depicted in the same diagram. Another name for this approach is isotropic damage model [13].  

 

Figure 4.3. Equivalent uniaxial law considered for constitutive SBeta material [13] 
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Additionally, exponential crack law opening that represent the reduction of tensile strength of the 

material with presence of crack is adopted with the use of this constitutive model. The exponential 

factor adopted is shown in Figure 4.4. 

 

 

Figure 4.4. Exponential crack law opening adopted in SBeta material model [13] 

4.2 Mechanical parameters of materials used in modelling 

The wall is modelled as stacks of grey sandstone, red siltstone, bricks, mortar and rubble masonry infill. 

The first three elements are as observed from the site inspection while the rubble masonry infill is 

estimated to be in place due to the thickness of the wall. The relevant mechanical properties used for 

the modelling, as well as the transformed properties to simulate plane stress model for sectional model, 

are tabulated in Table 4.1 and Table 4.2 respectively. While the values of the mechanical properties 

used were derived from typical values of such stone, the lower bound of the range is used instead of 

the average values as the elements making up the masonry have been subjected to rather significant 

deterioration due to lack maintenance and moisture attack.  

Furthermore, for modelling of the longitudinal wall section, reduced parameters are used to account for 

the effect of multi-leaves wall in the single leaf model. Only the outer leaf is modelled in this study. The 

reduction factor is obtained by modelling only the outer leaf sectional wall. Subjecting this wall to the 

same uniform loading, a load-displacement curve is obtained. The Young’s modulus and the yield 

strengths of the stones and mortars in the model are modified such that a load displacement curve that 

is comparable to that of the three-leaves wall model is obtained. Ultimately, after rounds of iteration, 

reduction factors of 0.33 for the Young’s modulus and 0.8 for the yield strength and the shear strength 

are used.  
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Table 4.1. Mechanical properties of elements constituting enclosure wall for modelling 
purposes 

Material Name 
Young's 

Modulus E 
Poisson's 
ratio, v 

Tensile 
strength 

Compression 
strength 

Fracture 
Energy in 

tension, Gf 

Unit 
Weight 

GPa  MPa MPa N/m kN/m3 

Lime Mortar [15], 
[16] , [17] 

2 0.375 0.58 -2.09 9.808 17.3 

Red Siltstone [18] 10 0.275 0.35 -3.5 50 28.5 

Grey Sandstone 
[19], [20], [17] 

25 0.171 1 -10 150 28.5 

Steel Plate for 
Rigid top 

210 0.3 - - - 0 

Brick [21] 4.2 0.2 1.85 -18.5 130 18.7 

Rubble Masonry 
[22], [23] 

0.5 0.3 0.07 -0.7 35 19 

Table 4.2. Transformed parameter of mechanical properties of the elements for purposes to 
model in plane stress state 

Material Name 
Young's Modulus 

E 
Poisson's 
ratio, v 

GPa  

Lime Mortar 2.53 0.60 

Grey Sandstone 27.46 0.21 

Red Siltstone 11.74 0.38 

Steel Plate for 
Rigid top 

251.00 0.43 

Brick 4.70 0.25 

Rubble Masonry 0.60 0.43 

4.3 Finite Element Method 

In ATENA, Updated Lagrange formulation is used to solve for equilibrium in structural analysis. In this 

case, behaviour of infinitesimal particles of volume dV is analysed. The change in volume of these 

particles determine the amount of deformation experienced by the structure. In Updated Lagrangian, 

the governing equation is written with respect to the deformation of the particles from its previous 

timestep [24]. 

Principle of virtual displacement is used to solve the equilibrium and from the solved displacements, the 

external energy applied to the particles is equated to the change in internal energy of the structure due 

to its change in shape and volume. In principle of virtual displacement, a load increment is applied at 

each timestep, Δt. Assuming that the response of the structure up to time t is known, the state of the 

structure at time t+Δt is solved by solving the equilibrium equations using numerical methods [24]. 
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Subsequently, incremental changes in virtual internal energy can be obtained by integrating the changes 

in strain to the internal stiffness for each infinitesimal particle. Correspondingly, the incremental external 

work done by external forces subjected to the deformation the particle experiences can be calculated 

by integrating the elements’ body forces with respect to the volume of the structure and the surface 

forces to the surface with prescribed boundary forces [24]. 

The iteration method used to solve the equations numerically is Newton-Raphson method. The 

displacement error, residual error and absolute residual error specified for convergence is 0.01, while 

energy error tolerance is 0.0001. 

4.4 Load Applied 

In determining the magnitude of loading that the walls are subjected to, references to Eurocode was 

made. Although the current design code might not be very relevant in design of historical structures, it 

provides a base of the necessary load combination that could be modelled. The load combination 

assumed in the modelling is presented in Table 4.3. As can be seen, majorly, dead load, live load and 

snow load are considered. Since the analysis is done to determine the bearing capacity of the wall, only 

transient loading will be considered in the load applied.  

Table 4.3. Loading combinations [25]. 

# ULS Loading Combinations 
1 1.35DL + 1.5LL + 1.5 (0.5SL + 0.2WL) 
2 1.35DL + 1.5LL + 1.5 (0.6WL + 0.2SL) 
3 1.35DL + 1.5WL + 1.5 (0.6SL) 
4 1.35DL + 1.5SL + 1.5 (0.5WL) 

Where DL is dead load of the elements, LL is live load of the roof spaces, WL is wind load and SL is 

snow load. 

The self-weight of the wall elements modelled were incorporated into the finite element model by 

ATENA. The additional load due to portion of wall above the element, ring beam surrounding the roof, 

and wooden roof trusses were estimated based on actual wall and beam dimension, typical unit weight 

of historical masonry and typical area load of wooden roof. The snow load calculation includes exposure, 

thermal and shape coefficients in the standard calculation. Using equation specified by the Eurocode 1 

as shown below, a snow load value, sL, of 0.62 kPa was found and employed in the normally loaded 

model [26]. 

௅ݏ =  ௞ݏ௧ܥ௘ܥଵߤ

The live load assumed to act on the roof spaces that are not accessible except for normal maintenance 

and repair is recommended to be 0.4 kPa by Eurocode 1. This value will be used as the roof of All Saints’ 

church is not accessible except for workers maintaining the roof truss condition [26]. Live load on the 

roof will not be considered as the roof is too steep for any access. In addition, even if there is little load 
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to be considered from rare access, it will be much smaller than the snow load that is assumed to be 

acting on the roof as well. The wind load is assumed to be 0.79 kPa as presented in the previous work 

on St Ann’s church in neighbouring village in Broumov area [9]. 

Since the loads acting on the walls considered are all static loading, instead of inputting the different 

load cases, a lumped maximum load combination is keyed in as input to the ATENA analysis model. 

Table 4.4 shows the tabulation of the actions applied on the wall. 

Table 4.4. Actions applied on the top of wall modelled [26] 

Type 
Load 

(kN/m2) 

Dead load due to pointed roof plank and wooden beam/bracing 2 
Dead load due to ceiling plank and wooden beam 2 
Dead load due to roof spaces platform and wooden beam 2 
Masonry self-weight of wall and ring beam 20 kN/m3 

Complete tabulation of derivation of the actual load to be acting on the wall in the analysed model is 

shown in Appendix C. 

4.5 Results 

4.5.1 Sectional wall model 

In general, the failure in the three-leaves wall modelled happens at the rubble masonry infill which has 

lower strengths in tension and shear as compared to the outer wall leaf. The crack patterns observed in 

the wall at failure are shown in Figure 4.5. The outer wall leaves are much stiffer as compared to the 

rubble masonry infill in the model. In this respect, bulk of the load is transferred through the outer leaves 

than the inner leaves. However, the two outer leaves are subjected to different stiffness due to the 

different masonry configuration. The difference in stresses between the leaves causes lateral tension to 

be built up in between the two outer masonry leaves [Figure 4.6]. This lateral tension causes the inner 

infill which is the weakest part among the masonry leaves to start cracking and cause failure.  

Figure 4.7 shows the typical load-displacement diagram measured from the top of the wall that is 

subjected to the highest deformation. The graph shows a slightly non-linear behaviour that ends at a 

peak stress. The graph is discontinued at the peak stress because the external force is applied as 

incremental load. Thus, the program tries to increase the load at each new interval. However, after the 

peak stress, the stress decreases with increase in displacement. Hence, the program is not able to find 

a solution for higher load and stopped because of divergence issue. While this problem could be 

overcome by imposing prescribed displacement instead of vertical load, imposing vertical load is a more 

direct representative of the problem. Additionally, since the post-peak behaviour is of an interest in this 

analysis, this problem is ignored and vertical load is used to be imposed on the model instead. 

The complete load-displacement diagrams for each wall arrangement with and without the connecting 

tie stones are presented in Appendix D. 
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Figure 4.5. Crack pattern for sectional 
wall analysis with connecting stones of 

wall configuration 1 

 

Figure 4.6. Horizontal tensile stress distribution 
for sectional wall analysis with connecting stone 

of wall configuration 1 

Table 4.5 tabulates the peak stresses and displacement of different wall arrangements with and without 

tie stones connecting the leaves. It can be seen that the peak stress before failure for all of the wall is 

more than 1MPa, which is about two times the current working load of 0.5MPa. This means that the 

walls have more than sufficient strength to withstand the loading it is currently subjected to. From this, 

one could derive that the damages that is experienced by the church is not likely to be caused by the 

failure in the sectional capacity of the wall.  

In the same table, equivalent compressive stress of the masonry is shown. This value is derived from 

the lowest peak stress from the different wall arrangements. The values from masonry without 

connecting tie stones are always used in this case. Furthermore, the tensile strength is assumed to be 

1/10 of its compressive strength [27]. A value of strain at the elastic portion of the graph is calculated by 

dividing total wall deformation to the total height of wall modelled. Engineering strain is assumed here 

as it is assumed that the lateral enlargement of the masonry could be ignored. Lastly, the Young’s 

modulus is easily calculated by dividing the corresponding stress to strain obtained earlier. 

Another observation from the tabulation is that the peak stress experienced by the wall before failure is 

higher for walls with tie stones connecting the two outer leaves as compared to the ones without. The 

presence of the stiffer tie stones in the masonry infill alleviate some of the lateral tension from the 
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masonry infill as the stiffer tie stones attract more load. This in turn increases the compressive load that 

the masonry is able to withstand. 

 

Figure 4.7. Load-displacement curve for sectional wall of configuration 1 with connecting 
stones between the walls leaves (blue line showing the wall behaviour while red line showing 

linear line drawn by connecting the peak and initial points 

Table 4.5. Tabulation of peak stress and corresponding displacement with compressive 
strength and Young's modulus derived from these values 

 

4.5.2 Longitudinal wall model 

Different from the sectional model, in this sectional model, the failure is observed to appear on the mortar 

joint. However, the same load pattern is observed in load-displacement curve obtained from the 

longitudinal wall model. A linear curve that is followed by non-linear section to the point the curve stops 

as it reaches the peak stress. Load displacement curve for longitudinal wall models are shown in Figure 

4.8 and Figure 4.9 below.  

Arrangement 
No.

Peak stress 1 
(kPa)

Peak stress 2  
(kPa)

Compressive 
strength 

(MPa)

Estimated 
Tensile 

Strength

Corresponding 
displacement 

(10-4m)

Corresponding 
strain (10-4)

Young's 
modulus 

(Gpa)
1 1161.86 1114.44 1.11 0.11 6.87 1.73 6.43
2 1344.22 1246.46 1.25 0.12 8.40 1.84 6.77
3 1621.23 1597.03 1.60 0.16 8.90 2.04 7.82
4 1198.94 1174.96 1.17 0.12 9.68 2.31 5.08

Note: Peak stress 1 is for walls with connecting tie stones connecting the outer leaves while Peak stress 2 is the ones 
without.
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Figure 4.8. Load-displacement curve for longitudinal wall of configuration 1 (blue line showing 
the wall behaviour while red line showing linear line drawn by connecting the peak and initial 

points 

 

Figure 4.9. Load-displacement curve for longitudinal wall of configuration 2 (blue line showing 
the wall behaviour while red line showing linear line drawn by connecting the peak and initial 

points 
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As compared to the sectional model, the failure load is observed to be much higher. This might be 

because only a small area of the wall is modelled and the lateral tension does not build up sufficiently 

in this small area. Furthermore, the absence of the poorer inner infill causes a more even stress 

distribution throughout the wall resulting in higher failure load.  

The peak stresses and displacement of different longitudinal wall arrangements are tabulated in Table 

4.6. 

Table 4.6. Tabulation of peak stress and corresponding displacement with compressive 
strength and Young's modulus derived from these values 

 

4.5.3 Mechanical properties to be adopted for 3D wall analysis 

Looking at Table 4.5 and Table 4.6, the masonry strengths and the young’s modulus for the 3D analysis 

will be based on the sectional wall model from wall configuration 1 and 3 respectively. The lowest 

compressive strength of 1.11 MPa is adopted while the highest Young’s modulus of 7.82 GPa is used. 

This is to ensure conservative approach to the problem due to the high uncertainty of the material. Since 

the 3D model analysis is assessing the stress distribution in the walls due to differential settlement, 

adoption of higher Young’s modulus generates higher stresses in the walls, which is conservative for 

this analysis. 

  

Arrangement 
No.

Peak stress   
(kPa)

Compressive 
strength 
(MPa)

Estimated 
Tensile 

Strength

Corresponding 
displacement 

(10-4m)

Corresponding 
strain (10-4)

Young's 
modulus 

(Gpa)
1 2205.82 2.21 0.22 5.70 2.49 8.86
2 2210.14 2.21 0.22 6.30 3.06 7.23
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5. STUDY ON SOIL STRUCTURE INTERACTION AND EFFECT OF DIFFERENTIAL 

SETTLEMENT ON WALL STRUCTURE 

To study the soil structure interaction and the effect of differential settlement on wall structure, a series 

of 2D model and a 3D model modelling the enclosure wall with properties obtained from the previous 

chapters resting on different subsoil parameters are analysed. The first part of this chapter will explain 

the theory on soil structure interaction followed by explanation and results of 2D and 3D models in this 

order. 

5.1 Soil Structure Interaction 

The modelling of foundation in structural engineering is often simplified to be pin supports on selected 

areas, lines and/or points. While this is relevant for modern structures where deep and stiff foundations 

are normally utilized, this assumption is not usually relevant for historical buildings that usually have 

shallow and less stiff foundation [28]. In the case of the church in our study, this is more so because of 

the suspected different subsoil condition below the foundation.  

To model the soil structure interaction, there are two methods that can be used, one is modelling 

structure as a beam element on elastic subsoil layer and the other is continuum approach using 

numerical analysis method. Using these methods, deformation of subsoil and structure which finally 

determines settlement are analysed. The resulting stresses on the structure and soil could subsequently 

be studied or analysed. The first method is simpler as it requires only two input parameter which include 

modulus of subgrade reaction and shear modulus of shear layer. However, there are a lot of estimations 

involved to obtain these parameters [29]. In this study, the first method will be used to simulate the 

supports for the 3D FEM modelling and the second method will be used for the 2D modelling in Geo5 

geotechnical software. 

The first method could be done using two model of subsoil idealization. The first one being Winkler 

foundation model and the other one is an improvement of the previous model, Winkler-Parsenak 

foundation model [29]. These two models and the continuum approach will be explained in the following 

sub-chapters. 

5.1.1 Winkler Method 

This idea of Winkler method idealize subsoil to be an elastic layer that could be represented as a series 

of vertical independent springs supporting a beam element as shown in Figure 5.1 [29]. The 

mathematical expression representing Winkler method is as presented below 

ܫܧ
݀ସݓ௦

ସݔ݀ + ௦ݓ݇ =  ݍ

The settlement is dependent on the flexural stiffness of beam element, EI, surcharge, q, and idealised 

deformation modulus of soil, k. With the first two parameter being readily available in design, this leaves 

this method with one variable, ‘k’.  
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This ‘k’ value is determined by finding the ratio of the pressure acting on soil by the settlement it causes 

(k=p/w). The settlement can be determined by different methods including Koppejan formula, Terzaghi 

formula or commercial software. Since settlement is not only dependent on the type of soil but also the 

load distribution as well as pre-consolidation and duration of loading, this parameter not only depends 

on the nature of the soil, but also on the dimensions of the load area and the type of loading. 

Consequently, this ‘k’ value is a floating value that changes with time, space and load state even for a 

single slab. Assuming this ‘k’ value as a single constant inherently ignores these variations. However, 

many a time, this is a good estimation for a preliminary study or when these variation is not too large. 

After all, this model offers simplicity and convenience of use [29].  

Another disadvantage of this model is the independent behaviour of each spring. In actual case, when 

a volume of soil is compressed vertically, it expands exerting pressure on adjacent volumes. This 

phenomenon shows that each subsoil columns do interact. This model again overlooks this effect [29].  

 
Figure 5.1. Winkler foundation method 

 

5.1.2 Pasternak Model 

To overcome the previous model’s shortcoming that overlooks interaction between each spring, 

Pasternak formulated a new model as shown in Figure 5.2. As can be seen in Figure 5.2, a horizontal 

layer connecting the vertical springs at the top of the spring just below ground surfaces is added into the 

model. This horizontal layer is modelled as a thin elastic membrane connecting the springs subjecting 

them to constant horizontal tension [29].  

This horizontal interaction between the vertical springs is often represented by the shear modulus of 

shear layer, Gp parameter. With this extra parameter, the displacement of the model can be more 

realistic compared to the previous model. This new parameter is related to the shear modulus (G) even 

if they are not identical. Gp can be calculated as product of shear modulus and an effective depth over 

which the soil is shearing [29]. However, due to the difficulty in obtaining this Gp parameter, another 

expression for Winkler Pasternak as shown in equation below is commonly used [30]. 

ܿଵ. ௦ݓ + ܿଶ. ௦ݓ߂ = ௭݂ 

Where c1, c2 are constants representing compressive and shear deformability respectively, ws 

represents displacement in the vertical direction and fz represents vertical load acting on a layer. 



Numerical evaluation of the bearing capacity of the All Saints Church walls in Broumov, CR 

 
 

Erasmus Mundus Programme 

ADVANCED MASTERS IN STRUCTURAL ANALYSIS OF MONUMENTS AND HISTORICAL CONSTRUCTIONS 37
  

In Geo5 software, these two constants are calculated from the condition of equal compliance matrices 

of infinitely stiff infinite strip footing [13]. Using the same concept, Program Depth generates equivalent 

constants for a single elastic layer of soil for a given width and load [31]. The constants from this program 

will be used later in this report. 

In this study, this approach will be used to estimate a spring constant for 3D modelling of the church to 

simulate the different soil condition at different parts of the church.  

݇ܽ݊ݎ݁ݐݏܽܲ − ܫܧ
݀ସݓ௦

ସݔ݀ + ௦ݓ݇ − ௣ܩ
݀ଶݓ௦

ଶݔ݀ =  ݍ

 
Figure 5.2. Winkler-Pasternak foundation model 

5.1.3 Continuum Approach 

In continuum approach, the subsoil layers are modelled as continuous distributed matter through the 

space. Various constitutive model can be used to represent the soil properties. The simplest one being 

linear elastic isotropic material. A continuum model can approximately be analysed with numerical 

methods which include Finite Element Method (FEM) and Boundary Element Method (BEM). FEM is a 

preferred to solve model with non-linear soil properties, while BEM is more compatible with semi-infinite 

linear elastic analysis [32]. Since modelling of shallow foundation is not a problem of semi-infinite 

structure, FEM is more relevant in the course of this study and hence will be discussed in more detail. 

Several analytical solutions for this continuum approach have been developed. One of the most well-

known approach is Boussinesq theorem. In his theorem, the sub-soil is assumed as a semi-infinite, 

homogenous, isotropic, linear elastic matter. The analysis was carried out for point loads and infinite 

strip loads regardless of Poisson’s ratio. The self-weight of the soil is disregarded in this approach [32]. 

The mathematical representation of this theorem is shown in the equation below: 

௭ߪ =
3ܳ

ଶݖߨ2

1

൬1 + ቀ
ݎ
ቁݖ

ଶ
൰

ହ
ଶ

=
ܳ
ଶݖ  ஻ܫ

Where r represents the horizontal distance of the point in study to the point load application, z is the 

depth of the point from the load application and IB is the Boussinesq coefficient. 
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From the above equation, it could be observed that the maximum stress is obtained when r value equals 

to zero. This corresponds to a point directly beneath the point of application, and this yields IB value of 

0.48 [33].  

Another proposed method of estimating the vertical stress is Westergaard’s analysis. Westergaard’s 

analysis assumes that subsoil is reinforced by thin, horizontal sheets of negligible thickness. 

Westergaard’s formula is especially useful to model subsoil with alternating layers of stiff and soft 

material. Vertical stress increases below a stiff soil stratum calculated using this method had been 

shown to be less than that of Boussinesq’s method. In this paper, however, since the subsoil is not 

consisted of layers of very different soil, Boussinesq’s method will be sufficient to perform calibration of 

the results obtained from the other program [33]. 

5.1.4 Depth of Influence Zone 

Influence zone is critical in investigation of geotechnical deformation of subsoil due to applied surface 

load. Only this portion of subsoil under the ground is contributing to the total deformation of the subsoil 

and hence, the soil settlement. Typically, the strains in the soil are negligible when the stresses at that 

point are 10 to 15% the applied surface load. Terzaghi proposed a higher stress state of 20% the applied 

surface load [34]. 

In this analysis, the depth of influence zone was calculated using Program Depth which uses Winkler 

Pasternak and the Theory of Structural Strength as a basis for its calculation. It also provides the values 

of the constants c1 and c2.This program is based on the assumption that the only deformation that occurs 

is deformation of virgin soil. It is assumed that the soil is incompressible until it experiences stress that 

is higher than the initial stress state it had previously experience. This is represented as excavation 

depth. The subsoil is assumed to perfectly retain the original stress state the excavated soil previously 

exerts on it [31]. 

 
Figure 5.3. Depth of influence zone as calculated by Program Depth [31] 
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This program estimates the depth of influence zone based on the deformation of an elastic subsoil layer. 

Furthermore, it assumes no horizontal displacement as in Westergaard assumption. The mathematical 

representation of the estimation of the depth of influence zone (H) due to line load with a width of 2a is 

presented below. 

ܪ =
ܽߨ
2

൬
2 − ݒ2
1 − ݒ2

൰

ଵ
ଶ

൮
1

ln (sin ൬
ℎߛߨ
2 ௭݂

൰ − ln ൬cos ൬
ℎߛߨ
2 ௭݂

൰൰)
൲ 

It could be observed that the depth of influence zone is not related to Young’s modulus but only to 

Poisson’s ratio in this formulation [31]. 

Geo5 makes use of theory of structural The Theory of Structural Strength which is similar to the 

previously explained method. The influence zone is defined as the depth at which the increment in 

vertical stress is used as a standard to equate with the original structural strength of soil multiplied by 

the coefficient (m) and the settlement is expressed as a function of these parameters. The value of m is 

dependent on the fundamental type of soil, consolidation and deformation modulus [13].  

 

Figure 5.4. Depth of influence zone based on Theory of structural strength 

In a previous work by Meera Ramesh, these two methods had been calibrated to show that the 

settlement obtained from FEM model of a shallow foundation model is in accordance to the Winkler 

Parsenak theorem. Additionally, influence depth estimated by Boussinesq analysis differs much from 

that obtained by Winkler Parsenak theorem using Program depth. Hence, for the rest of the paper, 

influence depth will be determined using Program depth and soil up to this depth will be modelled into 

FEM model and the settlement will be assessed using FEM Model [14]. 
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5.2 2D Model 

This study will be conducted using Finite Element Analysis (FEM) module in software FINE Geo 5. Geo5 

is a 2D Finite Element software that is able to analyse behaviour of soil with surcharge using continuum 

soil approach [13]. Even if the 2D model does not represent completely the behaviour of the church’s 

3D problem due to soil settlement, this serves a preliminary model and a comparison to the 3D model 

that is also modelled.  

5.2.1 Modelling assumptions 

The church enclosure walls are idealised to be of rectangular arrangement in this 2D modelling. One 

side of the rectangle would be 44m as is the length of the church and the other side of the rectangle, 

20m as is the width of the church with 11m in height. Three wall strips will be modelled - one to represent 

differential settlement between the northern and the southern façade, one to model the behaviour of 

northern with weaker soil at the kink of the church near the water downpipe location and the last one to 

model the same longitudinal wall section but on the southern part of the church. In these modelling, the 

door and window openings will be modelled accordingly.  

The first model to represent differential settlement between the northern and southern façade will be 

done in two stages. Cutting a transversal church cross section through the middle of the church, these 

walls are not rigidly connected. The only connections between them are the wooden roof truss, which is 

significantly less stiff as compared to the walls, and the ground floor which typically do not have rigid 

connection to the walls. As a result, these two walls will deform independent of each other. The first 

stage of modelling will model this effect of two independent walls 20m apart from each other, exerting 

surcharge on two different types of soil [Figure 5.5]. Two stages of this model were run, first using the 

southern soil throughout the entire terrain, the second using the current soil type. The respective 

deformation caused by each wall will be noted. The second stage of the modelling involves imposing 

the differential deformation obtained from the previous models to the front and back façade [Figure 5.6]. 

This is done by applying additional load on one end of the wall. The stresses experienced by the western 

and the eastern façade are then analysed.  

The last two models to study the effect of poorer soil condition under the kink of the church will be done 

by modelling a 44m wall sitting on subsoil representing each side’s soil condition with a 2m strip of 

poorer soil located approximately at the presumed poorer soil location [Figure 5.7]. The tensile and 

shear forces that the wall experience as a result will then be assessed.  
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Figure 5.5. Modelling the differential settlement cause on the soil due to different soil type (top 

– stage 1, bottom – stage 2) 

 

Figure 5.6. Modelling eastern (left) and western (right) transverse facade to analyse the 
stresses due to differential settlement 
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Figure 5.7. Modelling northern and southern longitudinal wall stresses due to differential 
settlement 

5.2.2 Material Model 

A few frameworks of material model are available. In general, they can be categorized into linear and 

non-linear modelling. In Geo5, two models are available for linear material model including elastic and 

modified elastic model. The former assumes a secant Young’s modulus during loading, unloading and 

reloading. The modified version introduces another parameter, unloading/reloading Young’s modulus 

denoted as Eur, to differentiate loading of over-consolidated and virgin soil [Figure 5.8]. This modified 

version is especially useful for modelling of series of loading and unloading of surface load. 

The non-linear material models include Mohr Coulomb failure criterion and critical state of soil. The Mohr 

Coulomb Failure Criteria is capable of capturing the change of stiffness of soil at each stress state 

[Figure 5.9]. Employing this material model involves acquiring information on angle of friction, cohesion 

and dilatation angle of the soil. The first two parameters determine the start of plastic phase while the 

last one determine the extent of plasticity. The other non-linear model is based on the assumptions that 

the soil is isotropic, elasto-plastic and deform as continua, unaffected by creep. Different from Mohr 

Coulomb method, the yield surfaces using this method is of an ellipse shape.  

In this analysis however, the material model employed for soil was the simplest linear model, linear 

elastic model. As limited information is known about the soil, it would not be appropriate to estimate 

more advanced soil properties as the ones that are required for modelling the non-linear soil model. 

Furthermore, as can be seen by comparing the linear and non-linear stress-strain curve depicted in 

Figure 5.8 and Figure 5.9 respectively, linear stress-strain curve provides a more conservative 

estimation in terms of soil settlement that it causes to the soil which the main focus in this study. Hence, 
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the use of this method is not inappropriate as a preliminary approach in this study with the limited 

information available. 

 

Figure 5.8. Stress-strain curve of modified elastic material model in Geo5 

 

Figure 5.9. Stress-strain curve of non-linear soil models 

5.2.2.1 Conversion of Parameters to Plane Stress Analysis 

Geo5 software analyses soil and structure using plane strain state assumption. This is compatible for 

soil modelling as the soil could be considered to be bounded in other direction by adjacent soil. However, 

this is not compatible in modelling the wall since the wall has a finite depth as contrast to the soil. The 

wall studied fits a plane stress assumption. Hence, a conversion of mechanical parameters including 

Young’s modulus and Poisson’s ratio has to be performed before modelling. 
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This conversion is as explained in chapter 4.1.2 earlier. However, instead of converting from plane strain 

to plane stress, the conversion is the other way around. The relations can be mathematically expressed 

as [14]: 

௖௢௠௣௨௧௘௥ݒ =
௪௔௟௟ݒ

1 + ௪௔௟௟ݒ
 

௖௢௠௣௨௧௘௥ܧ = ௪௔௟௟ܧ ൥1 − ൬
௪௔௟௟ݒ

1 + ௪௔௟௟ݒ
൰

ଵ
ଶ

൩ 

5.2.3 Mechanical properties of soil and structure used in modelling 

As mentioned earlier, the subsoil is modelled as layers of elastic compressible soil layer. This 

assumption is applicable to the wall structure as well. Categorization of soil layers in the bore log 

description into different soil model is tabulated in Table A.1 to Table A.3 in Appendix A.  

Typical values of mechanical parameters for sandstone and compact sand are used to estimate 

mechanical properties in a layer of soil. Based on the proportion of rock and void shown from the bore 

log, a simple conversion is performed using the following equations. 

 

Figure 5.10. Depiction of a few layers of soil 

Consider two layers of soil with different Young’s modulus, different thickness and same cross-sectional 

area as shown in Figure 5.10. Assuming that the total depth of all the soil layers are not so large, the 

force acting on the soils could be assumed to the same and equals to the average force acting in the 

middle of the total depth, F. Correspondingly, the strain acting on each layer of soil could be represented 

as: 

ଵߝ =
ଵߪ

ଵܧ
=

ܨ
ܣ ∙ ଵܧ

, ଶߝ =
ଶߪ

ଶܧ
=

ܨ
ܣ ∙ ଶܧ

 

As strain is the ratio of reduction in length, X, to the initial length of an element, l, the reduction in length 

for each soil layer is: 

ଵܺ =
ܨ ∙ ݈ଵ

ܣ ∙ ଵܧ
, ܺଶ =

ܨ ∙ ݈ଶ

ܣ ∙ ଶܧ
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The equivalent Young’s modulus of the entire depth of soil as shown in Figure 5.10 is 

ܧ =
ߪ
ߝ

=
.ܨ ݈

ܣ ∙ ܺ
=

ଵ݈)ܨ + ݈ଶ)

)ܣ ଵܺ + ܺଶ)
 

By substituting the definition of reduction of length into above equation of equivalent Young’s modulus, 

the equivalent Young’s modulus could be reduced to be: 

ܧ =
ܨ
ܣ

൮
݈ଵ + ݈ଶ

ܨ ∙ ݈ଵ
ܣ ∙ ଵܧ

+
ܨ ∙ ݈ଶ
ܣ ∙ ଶܧ

൲ =
݈ଵ + ݈ଶ

݈ଵ
ଵܧ

+
݈ଶ
ଶܧ

=
ଵܧ ∙ ଶ (݈ଵܧ + ݈ଶ)

ଶܧ ∙ ݈ଵ + ଵܧ ∙ ݈ଶ
 

As for the equivalent values of unit weight and Poisson’s ratio, a weighted average based on the depth 

of each component in a soil layer has been assumed. 

The rock and compact sand mechanical properties had been used to do the abovementioned estimation 

is shown in Table 5.1. Higher Young’s modulus is used for subsoil under the southern part as they are 

observed to be less deteriorated as compared to the northern subsoil. Furthermore, the lower soil layers 

are assumed to have be less compressible, i.e. having higher modulus, since it has been subjected to 

higher surcharge in the form of soil overburden.  

Table 5.1. Table showing rock and compact sand mechanical properties used to estimated 
mechanical properties of each soil layer 

Material Name Location 
Poisson's 
ratio, v 

Unit 
weight 

Young's 
Modulus E 

Typical 
values 

 kN/m3 GPa GPa 

Sandstone [35]  

North (0-3m) 0.25 26.50 1.00 

3 to 14 
North (3-6m) 0.17 28.50 3.00 
South (0-3m) 0.17 26.50 3.00 

South (3-6m) 0.17 28.50 5.00 

Sandy silt [36] 

North (0-3m) 

0.30 

18 0.01 

0.007 to 
0.05 

North (3-6m) 20 0.02 

South (0-3m) 18 0.02 

South (3-6m) 20 0.05 

Using the values shown in Table 5.1, the following mechanical properties of each soil layer as shown in 

Table 5.2 in the next page is obtained. 
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Table 5.2. Mechanical parameter of each soil layer in North and South part of the church based 
on the bore log visual investigation 

Location 
Layer description by 

coordinate location (m) 
Young's 
modulus 

Unit 
Weight 

Poisson 
Ratio 

Top  Bottom GPa kN/m3  

North 

0 0.6 10.00 18.00 0.30 

0.6 1.2 14.22 20.55 0.29 
1.2 1.8 10.00 18.00 0.30 

1.8 3 15.30 20.98 0.25 
3 6.1 39.74 24.25 0.24 

6.1 9.04 1000.00 28.50 0.10 

South 

0 2 78.43 24.38 0.20 
2 3.3 97.40 24.80 0.20 

3.3 4.5 458.72 27.65 0.18 
4.5 6.4 240.38 26.80 0.20 

6.4 8.077 1000.00 28.50 0.10 
 

5.2.4 Load Applied 

The load cases and load combination assumed in this study is assumed to be the same as that explained 

in the previous chapter. 

For the first model, since the wall and the foundation are not modelled, but applied on the soil as a 

surcharge, the load applied is equal to the load applied to the sectional model but with addition of 

foundation load. The additional load due to foundation equals to the following: 

ݐℎ݃݁ݓ ݂݈݁ݏ ݈݈ܽݓ ݀݊ܽ ݊݋݅ݐܽ݀݊ݑ݋݂ ݋ݐ ݁ݑ݀ ݀ܽ݋݈ ݈ܽ݊݋݅ݐ݅݀݀ܣ

=                        ݎ݋ݐܿܽܨ ݕݐ݂݁ܽܵ×ݐℎܹ݃݅݁ ݐܷ݅݊× ܽ݁ݎܣ

= 2 ∙ 1 ∙ 20 ∙ 1.35 + 4 ∙ 1.2 ∙ 20 ∙ 1.35 = 183 ݇ܰ/݉ 

For the rest of the models, since the wall and the foundation are modelled accordingly, the applied 

surcharge consists of only load from the roof area. The tabulation of total applied load in this load 

combination is tabulated in Table E.1 and Table E.2 in Appendix E. 

5.3 3D Model  

ATENA-Gid 3D is a 3D finite element software to analyse non-linear behaviour of a structure. As 

mentioned in the previous section, this software has an advantage of being able to study the stresses 

based on the deformed shape of the structure and represent the non-linearity accurately.  
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5.3.1 Modelling assumptions 

The church enclosure wall is modelled as 3D solid structure of 11m high wall with different thicknesses 

surrounding the church. Due to the size of this model, introducing mesh smaller than 0.35m in size is 

not practical as the running time for analysis of this model becomes too long. Consequently, there are 

only 2-3 mesh element within the wall thickness. There is no problem with convergence in the model 

due to this, but the out-of-plane wall bending might not be assessed through this model. Considering 

that the problem assessed here is problem of soil settlement of subsoil along the wall length, the out-of-

plane wall bending could be neglected in this study. Hence, the model is sufficiently meshed. 

The material model used is the same as the one used in estimating the bearing capacity of the wall 

[refer to section 4.1.2]. However, macro-modelling of masonry is used in this analysis instead of the 

micro-modelling used in analysing the sectional wall bearing capacity in Section 4. The mechanical 

property of masonry used in this section was estimated by taking the highest Young’s modulus as 

depicted from the load-displacement curves obtained in Section 4. 

ܧ =
ߪ
ߝ

=
ߪ

௪ܪ/݀
=  ܽܲܩ 7.82

Where E is the Young’s modulus of masonry, σ is the pressure applied on top of the wall, d is the 

deformation of the wall due to the applied load, and Hw is the total height of the wall modelled.  

Since it is not possible to model the layers of subsoil in ATENA-Gid, the different soil condition at relevant 

locations will be modelled as different spring supports. The conversion of subsoil layers estimated in the 

previous section to spring constant will be discussed in the next sub-chapter. 

5.3.2 Conversion of subsoil layers properties into spring constants  

The deformation modulus, k, of the subsoil is obtained by first transforming the soil into the two Winkler 

Pasternak constant, c1 and c2. This transformation is done using Program Depth as explained earlier. 

The limitation of this program is that it is only able to do the transformation for a single layer of subsoil 

[31]. To overcome this limitation, an equivalent value of Young’s modulus, Poisson’s ratio and unit 

weight of the subsoil is obtained for the north and south borehole respectively. This equivalency is done 

for subsoil within the influence depth of the surcharge assumed. Similarly, the influence depth is 

obtained from the same Program Depth. Hence, an iteration of process has to be performed such that 

an influence depth value that gives an equivalent value of unit weight and Poisson’s ratio that in turn 

generates the same influence depth for the specified surcharge value is obtained. 

Using this method of iteration, the influence depth obtained equals to 9.93 m and 8.89 m for the north 

side and south side of the church respectively. 

In contrast with the previous equivalent value estimation, since the soil is of deeper depth, the force 

acting on each soil layer could not be assumed to be equal. A simple triangular force attenuation is 

assumed [Figure 5.11]. Due to this, transforming the equations to obtain an expression to represent the 

equivalent value of Young’s modulus is not practical. Instead, deformation caused by a force, F, of 1kN 
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is assumed to act at the ground level. The sum of deformation caused by each layer is computed and 

the equivalent Young’s modulus is calculated by dividing the pressure to the ratio of the sum of 

deformation to the total depth of soil considered. Using this method and the influence depth obtained 

earlier, the equivalent Young’s modulus, Poisson’s ratio and unit weight for soil at northern and southern 

side of the church for the given load are tabulated in Table 5.3. 

Table 5.3 also shows the mechanical parameters assumed for the degraded soils under the kink area 

with higher moisture and biological growth that is possibly degraded due to broken drainage system. A 

reduction of 80% of the Young’s modulus of each soil layer is assumed for both the northern and the 

southern side in this estimation.  

Table 5.3. Parameters of the idealised single elastic subsoil layer on the south and north side 
of the church respectively 

Location 

Influence 
Depth 

Load 
Applied 

Equivalent 
E 

Equivalent 
v 

Equivalent 
γ 

C1w C2w 

m kN GPa  kN/m3 MN/m3 MN/m 

South 
8.892 

561 
 

222.18 0.23 26.55 17.501 17.742 
South 

(Degraded) 
48.59 0.23 26.55 2.911 2.948 

North 
9.931 

39.73 0.20 23.02 2.828 3.351 
North 

(Degraded) 
7.96 0.20 23.02 0.577 0.682 

 
Figure 5.11. Attenuation of force experienced by soil layer with increasing depth that is 

assumed 

Analytical solution to the equation presented in chapter 5.1.2 that expressed the stress experienced by 

subsoil as a function of c1 constant, c2 constant, displacement, ws, and change in displacement, Δws, 

could be expressed in equation below [30]:   

௭݂ = ௦൫2ඥܿଵ௪ݓ ∙ ܿଶ௪ + ܿଵ௪ܾ൯ 
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Where fz (kN/m) represent the total load acting on subsoil, c1w and c2w are Winkler Pasternak constants, 

b (m) is the width of the foundation modelled. 

Considering that the deformation modulus, k, of subsoil is defined as the settlement, w, that a load, fz, 

causes. This modulus of deformation, k, could be represented as [30]: 

݇ = 2ඥܿଵ௪ ∙ ܿଶ௪ + ܿଵ௪ܾ 

Based on the abovementioned equation, the modulus of deformation that would be used as spring 

constants for the 3D modelling is tabulated below. 

Table 5.4. Spring constants to be used at different part of the wall 

k values (MPa) 

Wall thickness 1.2m 0.6m 

South 77.24 56.24 

South (Degraded) 12.84 9.35 

North 12.94 9.55 

North (Degraded) 2.64 1.94 

 

5.4 Results  

5.4.1 2D Models 

In the 2D transverse wall modelling, the resulting maximum deformation due to the church loads in the 

original soil is 3.3mm, while it is 20.3mm in the current soil condition. It can be deduced that the northern 

part the church has a differential settlement of 17mm. This amount of deformation is then simulated in 

the model of the transverse wall. The pictorial deformation results from the 2D models could be seen in 

Figure F.1 to Figure F.4 in Appendix F.  

The resulting stresses in the transverse wall due to differential settlement imposed are shown in Figure 

5.12. In general, since the northern (right) side of the church is deforming more than the southern (left) 

side of the church, the right part of the transverse walls is undergoing compressive shear stress while 

the left side tensile shear stress. The stresses could be seen to be the maximum in the middle of the 

wall and at the bottom right corner of the church. The stresses at the bottom right corner of the church 

will not be taken into account in this part as this is due to incompatibility of the corners. 

As such, the maximum shear stress is shown to be acting on the western transverse walls and is of 0.2 

MPa in value. As can be seen from the diagram, this is mainly due to the large opening in the façade 

that opens to the sacristy. As the sacristy is built later and due to the large crack separating the main 

church and the sacristy, the sacristy wall is not modelled in this case. This shear stress is rather high 

considering the wall is deduced to have about 0.1 MPa tensile strength, which are usually not much 

lower compared to the shear stress. This is, then, a cause of concern. 
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One limitation of this model, however, is that it does not take into account the bracing provided by the 

longitudinal walls of the church. Hence, another 3D model to simulate the whole church behaviour was 

analysed and the results will be presented in the next section. 

  

Figure 5.12. Shear stresses in the eastern (left) and western (right) transverse walls of the 
church due to imposed soil settlement 

In the longitudinal wall modelling, the maximum deformation for the southern and northern is 13.8mm 

and 72.6mm respectively. This is higher as compared to the values of deformation obtained by the 

sectional modelling of the walls. This is because of the stretch of poorer soil at the kink of the church 

due to faulty drainage system. While the value looks outrageously high, this value is not too far off the 

ratio suggested by Eurocode for normal usage of concrete building, which is L/250 [37]. Since the width 

of the building at this edge is around 13m, the allowable deformation according to Eurocode for concrete 

structure would be 52mm. Hence, the current differential settlement between the longitudinal walls could 

be considered acceptable as masonry has generally more ductility as compared to concrete and should 

be able to sustain higher deformation. The figure showing deformation of each part of the longitudinal 

wall can be found in Figure F.5 to Figure F.6 in Appendix F. 

Figure 5.13 and Figure 5.14 shows the horizontal stress attributed in the wall due to the different soil 

stiffness. It could be seen that the tensile stresses are concentrated at the top and bottom of the window 

openings, as well as above the poorer subsoil section. This is because both the window openings and 

the poorer subsoil is not able to transfer vertical load down as effectively as the adjacent elements. 

Hence, the vertical load is transferred diagonally. This diagonal force is resolved to be vertical force and 

horizontal force directed from the middle of the opening away from it. This horizontal force causes tensile 

force above these openings [Figure 5.15].  
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Figure 5.13. Horizontal stress distribution of southern longitudinal walls 

 
Figure 5.14. Horizontal stress distribution of northern longitudinal walls 

 

Figure 5.15. Schematic diagram of tensile force build-up above opening and poorer subsoil 
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In this study, the part above the window openings could be ignored at this time due to the presence of 

stiff ring beam across the top of the wall that is able to transfer this force more effectively. With that in 

mind, the maximum tensile stress that the wall is subjected to is about 0.135 MPa. This is rather 

significant as this is slightly more than 10% of the compressive strength of the wall obtained from earlier 

analysis. Further study should be conducted to ascertain the tensile capacity of the wall to ascertain if 

remedial action to strengthen the foundation or the window wall should be considered. 

 

Figure 5.16. Shear stress distribution of northern longitudinal walls 

 
Figure 5.17. Shear stress distribution of northern longitudinal walls 

Figure 5.16 and Figure 5.17 shows the shear stress attributed in the wall due to the load and the different 

soil type it is subjected to. Similarly, it can be seen from these two diagrams that the stresses are 

concentrated near the openings and the poorer subsoil border. The maximum values of the shear stress 

are found to be about 0.12 MPa, which is again rather significant for the masonry of the church in study. 
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Hence, this effect should be studied in more detail with parameters from further tests to ascertain the 

safety of the church.  

In addition, it could be noted that the highest portion of the shear stress occur across the wall from the 

bottom of the rightmost window on the northern wall façade. This coincides with the crack on this part 

of the wall as shown in Figure 3.10 shown in the previous section.  

5.4.2 3D Models 

The results obtained from the analysis of the 3D models shows similar stress patterns as the ones 

obtained from the 2D models, but with lower magnitudes. 

 

Figure 5.18. Shear stress distribution on the southern facade 

 

Figure 5.19. Shear stress distribution western façade 
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Figure 5.18 and Figure 5.19 shows the shear stress distribution on the lateral and transversal façade of 

the church respectively. On the lateral façade, it could be seen that the shear stresses in general have 

different direction on the left and the right side. Furthermore, stress concentrations could be observed 

around openings. Maximum stress is seen near the kink where the soil condition is worse near the 

western side of the church. However, the magnitude of the maximum stress is lower than that in the 2D 

models, it is 0.07 MPa, which is slightly lower than the estimated tensile strength of the material, which 

is about 0.1 MPa. While this shows that currently the church might not be in danger, this value is really 

close to the tensile capacity. Deterioration of the subsoil and the building stones should be monitored 

and controlled so that these stresses do not increase to be beyond the limiting values. 

Regarding the horizontal stress distribution, the highest horizontal stress is observed on the western 

façade where there is a large opening to the sacristy. And this is observed at the top left and right of the 

façade. Considering the large opening on this façade, this is expected because the stress due to 

differential settlement on the northern and southern part of the church would pass through the stiffer 

part of the church, hence, from the solid top of the façade, the stresses would pass through the corners 

of the façade to the southern and northern façade. As for the magnitude, the maximum tensile stress is 

about 0.10-0.14MPa. Again, this is about the estimated tensile stress. It is rather alarming and as 

mentioned earlier, further tests and monitoring to ascertain the damage should be done.   

 

 

Figure 5.20. Horizontal stress distribution showing the front of the western facade and the back 
of the eastern façade 
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Figure 5.21. Horizontal stress distribution showing the front of the eastern facade and the back 
of the western facade 

 
Figure 5.22. Horizontal stress distribution on the southern facade 
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6. CONCLUSION 

The main threat to All Saints church in Hermankovice is the attack due to moisture from faulty drainage 

system, water ponding and groundwater infiltration. These problems lead to deterioration in the structure 

material capacity as well as deterioration in the subsoil properties. While deterioration in the subsoil 

properties might not be harmful to the structure if it happens uniformly across the building, in this case, 

the positioning of the church on an uneven terrain makes it worse by pronouncing the deterioration effect 

on one side of the church and lessening the effect on the other side. Differential settlement that occurs 

as a result has been shown, through series of 2D and 3D modelling, to potentially be causing significant 

damage to the structure.  

From the analyses, conclusions regarding the original structure’s capacity could be derived. Even with 

the currently deteriorated building blocks properties assumed, the wall structural capacity in terms of 

compression capacity is at least 100% higher compared to the load it is subjected too. As are other 

historical structures that were built without much knowledge about building statics, structures tend to be 

overdesigned. However, this is also the reason why these structures are able to be to sustain such 

deterioration over the years. 

The results of the 2D analysis of the wall bearing capacity on the Young’s modulus are very close to 

those recommended in the Italian circular for three leaves wall with regular brick masonry while the 

estimated value of strength of the masonry is similar to that of poor irregular stone masonry [22]. 

Furthermore, EC6 suggest a ratio of 1:1000 between compressive strength and Young’s modulus of 

masonry [38]. This should yield a Young’s modulus of 1GPa, as compared to the value of 7GPa adopted. 

This might suggest that the Young’s modulus is overestimated while the strength values are 

underestimated leading to a conservative approach of higher stress and lower capacity adopted. 

However, in the case of this study, due to limited information, this more conservative values are still 

adopted.  

Furthermore, the low bound values for mechanical parameter of the constituting stone blocks, mortar 

and infill material had been adopted in the analysis. This might further lower the capacity of the masonry 

analysed. Again, due to limited information, this assumption cannot be changed. Hence, further tests 

and monitoring should be carried out before a major restoration is done to the structure. Having said 

that, minor restoration and maintenance that prevent the situation from progressing further should be 

adopted immediately. Some of them are mentioned in the subsequent chapter. 
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7. RECOMMENDATION 

7.1 Further studies 

7.1.1 Tests 

7.1.1.1 Double flat jack testing to obtain the Young’s modulus 

Since it is suspected that the Young’s modulus might be overestimated for the masonry wall and a larger 

stress is obtained in the FEM analysis, one test that could be done is double flat jack test. In this test, 

two pressurizing tubes are installed horizontally parallel to each other. Strain gages are installed 

between the strain tubes to measure the deformation resulted from the pressure applied from the tubes. 

By plotting a stress-strain curve, the Young’s modulus at different stresses could be obtained [39].  

This instrument should be located carefully at heavily loaded part of the wall so as not to create uplift in 

the structure. In this case, it should be located on either side of the lateral wall at the bottom of the wall 

[Figure 7.1]. Furthermore, since the wall should not be loaded more than its original surcharge, the 

expected deformation should be around about 3.5cm, hence, strain gage with suitable sensitivity should 

be used. 

7.1.1.2 Hole drilling with endoscopy test to ascertain the infill material 

Furthermore, from the 2D analysis of the wall bearing capacity, the cracks are mostly located at the infill 

material. Since these are the weakest part of the masonry that ultimately cause failure, it may be 

worthwhile to ascertain the strength of these materials so that the FEM model could yield a more 

accurate results. 

The first method that could be used to check the infill material is by visual inspection using endoscopy. 

Endoscopy is very useful in inspecting the interior of a structural element. It is done by introducing a 

borescope into a small hole, either newly drilled or existing ones. Borescope is a tube with a light source 

and an eye piece. Using this method, images of the interior of structural elements could be obtained 

[40]. 

This minor destructive method not only leaves very minor damage to the wall but gives a very important 

insight to how thick the outer leave wall actually is and images of the inner infill that would enable very 

much more accurate estimation of the infill properties [40]. Depending on the amount of void observed 

in the images, the strength of the infill material could be better apprehended.  

Due to the minor impact of the test on the building, several numbers of this test could be performed. 

One should be done at each side lateral and transverse wall, away from areas with high stress 

concentration (i.e. away from openings and supports) [Figure 7.1]. 
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7.1.1.3 Removal of infill material for lab testing to obtain the material properties 

Another method that could be used to determine the infill material properties causes more damage to 

the structure, but it is more precise. This method involves creating a small opening on the wall exposing 

the infill material. The infill materials could then be removed and tested in the lab for its mechanical 

properties.  

Due to the destructiveness of this method, this method should be limited to thicker wall. This test is 

proposed to be done on the southern side of the lateral wall from the inner side [Figure 7.1]. As was 

noted for the previous test, this test should be located away from areas with stress concentration. 

 

 

Figure 7.1. Proposed location of additional tests 

 
7.1.2 Monitoring 

The most prominent damage observed in the church is the pattern of cracks along the church transverse 

arches. And from this study, it was concluded that there is a possibility that this is related to differential 

soil settlement of the church. Since restoration of historical buildings should be kept at minimum to 

preserve its historical value and well as to reduce resources spent, damages should be proven as active 

damage before a major restoration plan is conducted. 

The two major variables to be monitored in this church include structural damage (crack) monitoring and 

settlement monitoring. Since there has already been a settlement monitoring to monitor the settlement 

of the building in either side of the church, only crack monitoring will be proposed in this work. 

One way to ascertain active damage is by placing a set of sensors to monitor if the crack is opening or 

whether the opening has stabilized over the years. In the case of All Saints Church, one number of 

LVDT fitted with temperature sensor is proposed to be placed to monitor the largest cracks on each 

transverse arch. furthermore, one should be placed outside the sacristy where a large crack through the 
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transverse sacristy wall could be observed. Hence, this would total up to 3 numbers of LVDT sensors 

[Figure 7.2]. 

 

Figure 7.2. Proposed placement of crack monitoring LVDT fitted with temperature sensor 

7.2 Recommendation for remedial work to be done  

In this sub-chapters, a few recommendations for remedial work will be elaborated. Some are to be done 

immediately as the repair technique requires no changes to the structural component and is easily 

removable. Furthermore, these repairs aim to fix cases that are obviously causing harm to the structure. 

Other major interventions are categorized as future repair that should only be carried out upon further 

confirmation of problem and if no other more minor interventions are available. 

7.2.1 Immediate repair 

7.2.1.1 Replacement of drainage system from the roof with slanted protective steel net cover and 
larger rainwater downpipes to prevent clogged drainage 

The first immediate repair proposed is to replace the drainage system of gutters channelling water down 

through a rainwater down pipe by the side of the wall. Even though the pipes channelling the water down 

to the ground looks rather new, drops of water were observed to be dripping near these pipes. This 

could mean clogging of these pipes causing water to overflow from the rooftop gutters to the ground or 

to seep through the wall. Considering proximity of the church to large trees, the clogging could potentially 

be due to the leaves from the trees that were blown onto the gutters. 

A proposal is to create a special gutter system that is placed little lower than the roof with slanted grating 

cover to prevent the leaves to accumulate in the gutter and thus allowing smooth water flow in times of 

rain or snow melting. Furthermore, the grating cover is envisioned to be slanted so that leaves would 

not be accumulated on the cover at all times. Lastly, the rainwater downpipe is proposed to be enlarged 
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to a size of 25-30cm to reduce the possibility of clogging. Figure 7.3 shows a simple illustration of the 

proposed improvement of the rooftop gutter system. 

 

Figure 7.3. Proposed improvement to the rooftop gutter system to avoid clogging (current condition (left) 
and proposed improvements (right) 

7.2.1.2 Repair of drainage channels on the ground to be larger and more resistant with open covers 
to allow water to penetrate quick enough as to not allow water ponding 

The second immediate repair proposed is the drains on the ground level. As mentioned in the earlier 

chapters, due to the terrain of the location on which the church is sitting on, the northern part of the 

church is prone to water ponding and higher exposure of water flow. To minimize this effect, proper 

water channelling system should be constructed such that water flowing from adjacent slope will be 

directed towards this drain instead of to the church wall or absorbed by the subsoil under the church. 

To ensure this, the drain should be large enough and the top of the drain should be covered with porous 

grating instead of solid concrete cover that is used currently allowing smooth water flow into the drain.in 

order to reduce the aesthetical impact on the church surrounding, instead finishing the drain with steel 

grating, a 10cm deep large gravels topping is proposed. Large gravels with low thickness is proposed 

to allow water porosity. 

Furthermore, the repair should also ensure minimal water seepage from the subsoil to the wall since 

substantial evidence of groundwater infiltrations had been observed. This could be done by moving the 

drain away from the side of church, but creating an empty space allowing air circulation after rain or wet 

event to encourage evaporation and quick drying of the walls. 

The proposed system is illustrated in diagram shown in Figure 7.4. 
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Figure 7.4. Illustration of the proposed drainage and air channel system along the norhtern 
facade 

7.2.1.3 Reduce effect of water infiltration by means of providing covered air channels surrounding 
the foundation of the church 

Figure 7.4 also shows an air channel to be constructed beside the main drain with a shallow secondary 

drain of about 100mm to 150mm deep to channel any rainwater that might accumulate near the church. 

The purpose of providing this air channel is to keep the church foundation and structure dry and reduce 

the potential groundwater infiltration to the structure. Furthermore, this brings moisture away from the 

subsoil under the church as well leaving the subsoil drier and reduce the rate of degradation of the 

subsoil, thereby stopping further possible differential settlement problem.  

 
7.2.2 Potential repair to be done in the future 

The abovementioned immediate solutions are meant to prevent further degradation of the church 

structures, foundation and subsoil. However, they do not restore the church to its original condition. 

While this might be sufficient in the short run, the actual extent of differential soil settlement problem on 

the safety of the church should be assessed in greater detail and if it is necessary, strengthening should 

be done to improve the soil condition near the kink location and on the northern side of the church. 

Alternatively, the church structure could be strengthened by addition of ties. 

Various methods could be implemented to strengthen the foundation of a structure sitting on a settling 

ground. Two most commonly used methods include lime injection to the subsoil and change of 

foundation system to piling system. Lime injection is proposed in this study instead of addition of 

micropiles. From the borehole boring done previously, it was could be seen that pieces of rock exist in 
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the subsoil from depth of 2m onwards. Furthermore, from 6m onwards, the subsoil is made of very hard 

ryolite. Since micropiles have normally more than 6m of depth, it is not very suitable to be implemented 

in All Saints’ church’s subsoil.  

Lime injection is suitable in this case because the subsoil seems to consist of very hard rock pieces with 

voids in between filled with sandy silt. Since the sandy silt is rather dense, the lime injection should be 

of low viscosity and is able to penetrate small voids. The lime injection will be done by placing steel 

tubes with openings into a few small holes drilled in the poorer subsoil areas. 
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A. APPENDIX A – BORELOG DETAILS 

 

Figure A.1. Extracted soil tube from borehole beside the northern wall at depth 0-3m (left) and 
3-6m (right) 

 

Figure A.2. Extracted soil tube from borehole beside the northern wall at depth 6-9m (left) and 
9-12m (right) 
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Figure A.3. Extracted soil tube from borehole beside the southern wall at depth 0-3m (left) and 
3-6m (right) 

 

Figure A.4. Extracted soil tube from borehole beside the southern wall at depth 6-9m (left) and 
9-12m (right) 
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Table A.1. Bore log description of extracted soil sample from borehole close to northern wall 

 

Depth (m) Description
Categorization for 

modelling purposes

0,00 - 0,30

bigger pieces of strongly weathered sandstone, max. size 10 cm, from fine-
grained to medium-graiened, sometimes so weathered positions, that they 
look like soil; light coloured sandstone

0,30 - 0,60

fine masonry fragments from strongly weathered sandstones - both light 
coloured fine-grained, as well as red Permian sandstones, which are harder; 
light coloured sandstones are falling into pieces in hand; average size 4 cm; 
significant amount of brownish-red slimy soil

0,60 - 1,20

bigger peices of weathered coarse-grained sandstone, both dark as well as light 
coloured, in some places smaller pieces of almost sandy siltstone (weathered), 
high amount of fine masonry fragments of almost soil character

weathered sandstone

1,20 - 1,55
strongly weathered ferruginous sandstone, mostly already incoherent creating 
"soil"

1,55 - 1,65 "harder" light coloured sandstone, lightly weathered

1,65 - 1,80 strongly disintegrating "sandsotne" almost to sandy soil of brownish-red colour
1,80 - 2,00 compact piece of ferruginous sandstone
2,00 - 2,30 quartz porphyre, compact big pieces, beige-red colour 
2,30 - 2,40 "hard" sandstone (almost of greywacke character)
2,40 - 2,50 weathered sandstone (fragments), see upper lines, together with "soil"
2,50 - 2,60 ignimbrite, hard

2,60 -3,00
strongly weathered basement (probably originally brownish-red Permian 
sandstones) with bigger pieces of quartz porphyre and brown-black sandstone

3,00 - 3,10 brownish-red sandstone, weathered

3,10 - 3,80

sandstone to arcose sandstone, firstly with brownish-red colouring, at the end 
brown-black (greywacke character), in some places strogly silicified (cement, 
compacted grains), relativ hard

3,80 - 3,85 position of greenish siltstone to silty marlite
3,85 - 4,00 brown-black sandstone, fine- to medium-grained, high portion of feldspars

4,00 - 4,20
very fine-grained sandstone to sility sandstone, thinly laminated, soft, 
weathered

4,20 - 4,60 pinkish to brownish-red sandstone, very coarse-grained, hard

4,60 - 4,90
silty sandstone to siltstone, in some places brown laminas, at the end strongly 
weathered with the position of slimy soil

4,90 - 5,00 fine-grained brownish-red sandstone, relativ hard

5,00 - 5,25
silty sandstone to siltstone, in some places brown laminas, at the end strongly 
weathered with the position of slimy soil

5,25 - 6,10
brownish-red coarse-grained sandstone, at the end strongly weathered, 
completely crumbling, pieces without coherent core

6,10 - 6,50 smaller compact pieces of quartz porphyre (paleryolite)
6,50 - 7,00 compact drill cores of quartz porphyre, feldspars kaolinizated

7,00 - 7,40
bigger pieces of quartz porphyre of beige-brown colour, partly weathered, 
coherent (disintegrates after hammer hit)

7,40 - 7,60
light beige to grey quartz porphyre (paleoryolite), partly weathered, feldspars 
ochre (kaolin.)

7,60 - 8,00
strongly weathered sandstones to fine-grained conglomerates, dominance of 
powdery material, without compact core pieces

8,00 - 9,00 strongly weathered coarse-grained sandstone to conglomerate
9,00 - 9,50 quartz porphyre (paleoryolite), hard, with positions of clay soil
9,50 - 9,70 quartz porphyre (paleoryolite), hard, pieces

9,70 - 10,9
pyroclastic sediment (?), changing of soily clay positions with vulcanic stones 
fragments (q. porphyre), completely falling into pieces after light hit

10,9 - 12,00
compact pieces of drill core made by quartz porphyre, in some places soil-clay 
insertion

weathered sandstone

sandy silt

sandy silt

weathered sandstone

weathered ryolite
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Table A.2. Bore log description of extracted soil sample from borehole close to southern wall 
from 0-6.36m 

 
 
 
 

Depth (m) Description
Categorization for 

modelling purposes
0,00 - 0,30 soil, loess-sandy soil

0,30 - 0,59

faine-grained to coarse-grained brownish-red sandstones, slightly weathred 
(faine-grained are harder). Smaller pieces strongly weathered (easy to break 
up, coarse-grained easy to crumble by hand)

0,59 - 0,77 smaller pieces of sandstones with soil (with the presence of calcitic component)

0,77 - 1,00

bigger pieces of stones with soil, mostly faine-grained ferruginous sandstone 
(relatively hard); light gray fine-grained sandstone (very soft, easy to break up 
by hand, but does not crumble)' brown faine- to medium-grained sandstone 
(partly weathered, possible to break up, very soft)

1,00 - 1,65

bigger compact pieces of stone material of a round shape (as a consequence of 
drilling) with the height 1,5 to 10 cm; very softly weathered sandstones 
(medium-coarse, gray-wine-coloured); conglomerate; ignibrite; conglomerate 
with ferruginous cement; coarse-grained ferruginous sandstones to 
conglomerates (very soft, easy to break up by hammer) 

1,65 - 2,00 brown-redish sandy soil

2,00 - 2,44
dark brown-redish sandstone, smaller pieces extremely weathered (extremely 
soft, are crumbling in hand, big pieces compact)

2,44 - 2,76 extremely weathered ferruginous sandstone to sand (coherent), wet

2,76 - 3,30
very weathered ferruginous sandstone with the admixture of calcite, easy to be 
falling into pieces, wet, extremely soft

3,30 - 3,90

compact sandstone, brown-redish with parts of lighter coloured sandstones, 
close to 4 m sandstone changes colour to gray-black; medium- to coarse-
grained

3,90 - 4,05 silty-clay sediment, thin insertion, ochre colour

4,05 - 4,50
brown-redish disintegrated sandstones, non-compact pieces, weathered, 
coarse-grained

4,50 - 4,70
brown-black coarse-grained sandstone to conglomerate, strongly weathered 
(very soft, easy to crumble by fingers, but compact pieces)

4,70 - 4,90
fine-grained light gray sandstone with greenish positions (Cu compound), 
extremely soft

4,90 - 5,00
gray-beige medium-coarsed sandstone, not crumbling in hand, but easy to 
break up by hammer, very soft

5,00 - 5,62
gray-beige medium-coarsed sandstone, not crumbling in hand, but easy to 
break up by hammer, in some places coarse-grained, very soft

5,62 - 5,77
strongly disintegrated sandstone to coarse-grained sand with sandstone pieces, 
brown-redish col., in some places grey-beige, extremely to very soft

5,77 - 5,90
coarse-grained sandstone to conglomerate, brown-redish, compact pieces, 
strongly weathered

5,90 - 6,00
black-brown crushed sandstone with the portion of fine-grained gray-greenish 
siltstone (to marlite), soft

6,00 - 6,12
gray-green fine-grained clastic sediment (siltstone to fine-grained sandstone) - 
gradually changes to coarse-grained parts

6,12 - 6,20
strongly weathered sandstone to conglomerate, is crumbling in hand, wet, 
brown, extremely soft

6,20 - 6,36
light coloured gray-green, fine-grained clastic sediment to marlite, soft, but 
compact

very weathered 
sandstone

weathered sandstone

weathered sandstone

very weathered 
sandstone
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Table A.3. Bore log description of extracted soil sample from borehole close to southern wall 
from 6.36-12m 

 
 

  

6,36 - 6,60
light gray ryolite (quartz porphyre) with predominant fine-grained matrix, 
compact pieces, easy to break up by hammer, moderately hard

6,60 - 6,70
compact drill core made by the same light coloured stone, clay-soily waste 
around

6,70 - 7,00 fragments of light coloured stones, mixed clay-soily waste with clods
7,00 - 7,30 extremely soft, crumbling in hands, fragments of light coloured stone

7,30 - 7,67
big compact pieces, cores to 10 cm height, hard, quartz porphyre (paleryolite), 
very hard

7,67 - 8,00 smaller fragments of the same stone, very hard
8,00 - 8,60 fragments of the same stone (max 10 cm)

8,60 - 8,70
fragments of the same stone, in some places strongly disintegrating to white 
fine dust

8,70 - 8,80
the same stone, at the beginning hard - changes to strongly disintegrating, wet, 
crumbling in hand, preserved compact cores, very soft

8,80 - 8,90 completely disintegrated stone to soily matter
8,90 - 9,00 hard stone (see upper line)

9,00 - 9,30
weathered light coloured stone with brown-beige parts; cores seems to be 
compact, but pieces stay in hand

9,30 - 9,70 the same stone (see upper line), but hard

9,70 - 9,90
compact piece of gray stone, in the middle rusty-coloured clay-soily dolls, 
which is slimy in hands

9,90 -10,00 light coloured crushed stone, breaking up in fingers to smaller pieces
10,00 - 10,30 smaller pieces of the same stone with rusty-brown positions
10,30 - 10,40 completely weathered, clay-silty sedimenty, strongly disintegrating
10,40 - 10,45 light gray to light brown strongly disintegrating stone
10,45 - 10,60 same, in some places strongly partially weathered
10,60 - 11,00 strongly partially weathered, see upper line, in some places compact cores

11,00 - 12,00
weathered magmatic stone (quartz porphyre, paleoryolite), in some places 
harder positions

weathered ryolite
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B. APPENDIX B – WALL MODEL ARRANGEMENTS 

 

 

Figure B.1. Sectional wall configuration 1 with legend 

 

 

Figure B.2. Sectional wall configuration 2 with connecting stones and legend 
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Figure B.3. Derivation of sectional wall configuration 2 

 

Figure B.4. Sectional wall configuration 2 with connecting stones and legend 
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Figure B.5. Derivation of sectional wall configuration 3 

 

Figure B.6. Sectional wall configuration 3 with connecting stones and legend 
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Figure B.7. Derivation of sectional wall configuration 4 

 

Figure B.8. Sectional wall configuration 4 with connecting stones and legend 
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Figure B.9. Location longitudinal wall configuration 1 is derived from 

 

Figure B.10. Longitudinal wall configuration 1 and legend 
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Figure B.11. Location longitudinal wall configuration 2 is derived from 

 

Figure B.12. Longitudinal wall configuration 2 and legend 
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C. APPENDIX C – APPLIED LOAD IN ATENA 2D BREAKDOWNS 

Table C.1. Breakdown of loads acting per meter span of the sectional model of the enclosure 
wall excluding self-weight of the wall modelled 

 

Table C.2. Load combinations assumed in modelling and the maximum ultimate load for 
sectional wall modelling 

No Load Combination 
Total Load 

(kN/m) 

1 1.35DL + 1.5LL + 1.5 (0.5SL + 0.2WL) 370.0032 

2 1.35DL + 1.5LL + 1.5 (0.6WL + 0.2SL) 372.7527 

3 1.35DL + 1.5WL + 1.5 (0.6SL) 378.6813 

4 1.35DL + 1.5SL + 1.5 (0.5WL) 375.57225 

 Maximum ULS Load 378.6813 

Element Description
Load span 

(m)
Load area 

(m2)
Unit Load 
(kN/m2)

Unit Load 
(kN/m3)

Roof
Pointed roof beam, bracing, 

cover and cladding
14.1 3 42.3

Roof space
Access platform and beam 

supporting platform
10 2.5 25

Wooden ceiling and beam 
supporting it

10 2.5 25

Wall Ring beam 1.5 20 30
Wall above the wall 

modelled
7 20 140

Total Dead 
Load

262.3

Roof space Live load on roof space 10 0.4 4
Total Live 

Load
4

Roof
Snow load above pointed 

roof
14.1 0.62 8.742

Total Snow 
Load

8.742

Roof
Wind pressure acting on the 

roof
14.1 0.79 11.139

Total Wind 
Load

11.139

Dead Load

Total load (kN/m)

Wind Load

Snow Load

Live Load
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Table C.3. Breakdown of loads acting per meter span of the longitudinal model of the enclosure 
wall excluding self-weight of the wall modelled 

 

Table C.4. Load combinations assumed in modelling and the maximum ultimate load for 
longitudinal wall modelling 

No Load Combination 
Total Load 

(kN/m) 

1 1.35DL + 1.5LL + 1.5 (0.5SL + 0.2WL) 480.7032 

2 1.35DL + 1.5LL + 1.5 (0.6WL + 0.2SL) 483.4527 

3 1.35DL + 1.5WL + 1.5 (0.6SL) 489.3813 

4 1.35DL + 1.5SL + 1.5 (0.5WL) 486.27225 

 Maximum ULS Load 489.3813 

   

Element Description
Load span 

(m)
Load area 

(m2)
Unit Load 
(kN/m2)

Unit Load 
(kN/m3)

Roof
Pointed roof beam, bracing, 

cover and cladding
14.1 3 42.3

Roof space
Access platform and beam 

supporting platform
10 2.5 25

Wooden ceiling and beam 
supporting it

10 2.5 25

Wall Ring beam 1.8 20 36
Wall above the wall 

modelled
10.8 20 216

Total Dead 
Load

344.3

Roof space Live load on roof space 10 0.4 4
Total Live 

Load
4

Roof
Snow load above pointed 

roof
14.1 0.62 8.742

Total Snow 
Load

8.742

Roof
Wind pressure acting on the 

roof
14.1 0.79 11.139

Total Wind 
Load

11.139

Total load (kN/m)

Dead Load

Live Load

Snow Load

Wind Load
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D. APPENDIX D – ATENA LOAD DISPLACEMENT CURVES 

 

Figure D.1. Load-displacement curve of sectional wall of wall configuration 1 with connecting 
tie stones 

 

Figure D.2. Load-displacement curve of sectional wall of wall configuration 1 without 
connecting tie stones 
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Figure D.3. Load-displacement curve of sectional wall of wall configuration 2 with connecting 
tie stones 

 

Figure D.4. Load-displacement curve of sectional wall of wall configuration 2 without 
connecting tie stones 
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Figure D.5. Load-displacement curve of sectional wall of wall configuration 3 with connecting 
tie stones 

 

Figure D.6. Load-displacement curve of sectional wall of wall configuration 3 without 
connecting tie stones 
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Figure D.7. Load-displacement curve of sectional wall of wall configuration 4 with connecting 
tie stones 

 

Figure D.8. Load-displacement curve of sectional wall of wall configuration 3 without 
connecting tie stones 



Numerical evaluation of the bearing capacity of the All Saints Church walls in Broumov, CR 

 
 

Erasmus Mundus Programme 

ADVANCED MASTERS IN STRUCTURAL ANALYSIS OF MONUMENTS AND HISTORICAL CONSTRUCTIONS XIX
  

E. APPENDIX E – APPLIED LOAD IN GEO5 AND ATENA-GID BREAKDOWNS 

Table E.1. Breakdown of loads acting per meter span of the wall excluding its own self-weight 
for modelling in Geo5 and 3D ATENA-Gid Model 

 

Table E.2. Load combinations assumed in modelling and the maximum ultimate surcharge on 
enclosure wall model for modelling in Geo5 and 3D ATENA Model 

No Load Combination 
Total Load 

(kN/m) 

1 1.35DL + 1.5LL + 1.5 (0.5SL + 0.2WL) 189.1032 

2 1.35DL + 1.5LL + 1.5 (0.6WL + 0.2SL) 191.8527 

3 1.35DL + 1.5WL + 1.5 (0.6SL) 197.7813 

4 1.35DL + 1.5SL + 1.5 (0.5WL) 194.67225 

 Maximum ULS Load 197.7813 
 

 

 

Element Description
Load span 

(m)
Load area 

(m2)
Unit Load 
(kN/m2)

Unit Load 
(kN/m3)

Roof
Pointed roof beam, bracing, 

cover and cladding
14.1 3 42.3

Roof space
Access platform and beam 

supporting platform
10 2.5 25

Wooden ceiling and beam 
supporting it

10 2.5 25

Wall Ring beam 1.8 20 36
Total Dead 

Load
128.3

Roof space Live load on roof space 10 0.4 4
Total Live 

Load
4

Roof
Snow load above pointed 

roof
14.1 0.62 8.742

Total Snow 
Load

8.742

Roof
Wind pressure acting on the 

roof
14.1 0.79 11.139

Total Wind 
Load

11.139

Total load (kN/m)

Dead Load

Live Load

Snow Load

Wind Load
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F. APPENDIX F – GEO5 RESULTS 

 

Figure F.1. Deformation of the soil under foundation due to the church load on the presumed 
original soil condition 

 

Figure F.2. Deformation of the soil under foundation due to the church load on the current soil 
condition 
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Figure F.3. imposed deformation of eastern facade with the altered load on the model to 
analyse the wall stresses 

 

Figure F.4. Imposed deformation of western facade with the altered load on the model to 
analyse the wall stresses 
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Figure F.5. Deformation of the southern longitudinal wall and the subsoil due to the church 
load on the current soil condition 

 

Figure F.6. Deformation of the northern longitudinal wall and the subsoil due to the church load 
on the current soil condition 
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