

DIPLOMOVÁ PRÁCE

Iliyas Boztayev

Příčné řízení letounu pomocí spoilerů

Ústav letadlové techniky

Vedoucí diplomové práce: Ing. Tomáš Čenský Ph.D. Studijní program: Letectví a Kosmonautika Studijní obor: Letadlová a kosmická technika

Praha 2017

ZADÁNÍ DIPLOMOVÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

Příjmení:	Boztayev	Jméno: Iliyas	Osobní číslo: 412343
Fakulta/ústav:	Fakulta strojní		
Zadávající katedra	a/ústav: Ústav letadlové tec	hniky	
Studijní program:	Letectví a kosmonautika		
Studijní obor:	Letadlová a kosmická techn	ika	

II. ÚDAJE K DIPLOMOVÉ PRÁCI

Název diplomové práce:	
Návrh změny systému příčného	řízení letounu nahrazením křidélek spojlery
Název diplomové práce anglicky:	
Design change of airplane latera	I control system by substitution of ailerons for spoilers
Pokyny pro vypracování:	
Návrh změny systému příčného řízení nevýhod. 1. Stanovení profilových charakteristik 2. Analýza a porovnání různých uspořá 3. 3D simulace vybraných variant konfi 4. Porovnání CFD výpočtů spoilerů s a	letounu nahrazením křidélek spojlery, analýza a výpočet očekávaných výhod a na 2D CFD modelu profilu letounu JA-100 s vysunutým spoilerem. ádání spoiler - profil. Analytický výpočet rozložení vztlaku po rozpětí křídla. igurace spoiler - křídlo. analytickými a porovnání charakteristik příčného řízení pomocí spoilerů a křidélek.
Seznam doporučené literatury:	
Jméno a pracoviště vedoucí(ho) dip	olomové práce:
Ing. Tomáš Čenský Ph.D., ústa	v letadlové techniky FS
Jméno a pracoviště druhé(ho) vedo	ucí(ho) nebo konzultanta(ky) diplomové práce:
Datum zadání diplomové práce: 2 Platnost zadání diplomové práce:	18.04.2017 Termín odevzdání diplomové práce: 07.08.2017 <u>Adduluu</u> Podpis vedoucí(ho) ústavu/katedry Podpis děkana(ky)

III. PŘEVZETÍ ZADÁNÍ

Diplomant bere na vědomí, že je povinen vypracovat diplomovou práci samostat Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v dip	ně, bez cizí pomoci, s výjimkou poskytnutých konzultací. Jlomové práci.	
28.4.2017	A	
Datum převzetí zadání	Podpis studenta	

© ČVUT v Praze, Design: ČVUT v Praze, VIC

Prohlašuji, že jsem tuto diplomovou práci vypracoval(a) samostatně a použil jsem pouze podklady uvedené v přiloženém seznamu.

Nemám závažný důvod proti užití tohoto školního díla ve smyslu § 60 Zákona č.121/2000 Sb., o právu autorském, o právech souvisejících s právem autorským a o změně některých zákonů (autorský zákon).

V dne

Podpis autora

Název práce: Příčné řízení letounu pomocí spoilerů

Autor: Iliyas Boztayev

Katedra: Ústav letadlové techniky

Vedoucí diplomové práce: Ing. Tomáš Čenský Ph.D., Ústav letadlové techniky

Abstrakt: Tato diplomová práce řeší problematiku příčného řízení letounu pomocí netradičního druhu ovládacích ploch: spoilerů. Ověřuje se schopnost provedení předběžného návrhu použitím výpočtového softwaru na základě CFD: Ansys Fluent. Na základě předchozích zkušenosti z tunelových měření a letových zkoušek testuje se vliv uspořádání spoileru vůči profilu/křídlu na aerodynamické součinitele. Testuje se možnost použití hodnot získaných 2D výpočtem v následném návrhu spoileru pomocí Glauertového řešení Prandtlové rovnice a simulování obtekání křídla v 3D pomocí softwaru ANSYS.

Klíčová slova: Spoiler Příčné řízení Letadlo CFD

Title: Lateral control by spoilers

Author: Iliyas Boztayev

Department: Department of aerospace engineering

Supervisor: Ing. Tomáš Čenský Ph.D., Department of aerospace engineering

Abstract: This diploma work deals with lateral flight control problems of an aircraft by non-traditional control surfaces – spoilers. In this work is verified the capability of numerical software CFD: Ansys Fluent to perform a preliminary design of a lateral control. Based on a past tunnel aerodynamic experiments and flight tests, in this work is tested the influence of spoiler configurations on aero-dynamic coefficients against airfoil/wing configuration. The possibility of usage of values from 2D solutions for design of a spoiler by Glauert method of Prandtl equation is tested. In addition in this work is performed a simulation of a wing streamline in 3D by Ansys software.

Keywords: Spoiler Lateral control Aircraft CFD

Chtěla bych poděkovat Ing. Tomáš Čenský Ph.D., vedoucímu mé diplomové práce, za vedení, zájem a čas, který mi věnoval. Dále bych chtěl poděkovat své rodině, přítelkyni a svým spolužákům za morální podporu po celou dobu práce nad touto diplomovou práci.

Obsah

Seznam obrázků	2
Seznam tabulek	4
Seznam použitých zkratek	5
1 Úvod. Historický přehled.	8
2 Výhody na nevýhody spoileru. Model turbulence.	10
2.1 Metoda zkoumání	10
2.2 Skyleader IA-100	11
2.2 Okýradel 511 100 · · · · · · · · · · · · · · · · ·	19
2.5 Overeni fulkchosti r horizu nicelu	12
2.4 From Clark-Fillou's hulovou vychytkou spolleru	12
$2.4.1 2D \text{ geometrie} \dots \dots \dots \dots \dots \dots \dots \dots \dots $	12
$2.4.2 \text{Mesn} \qquad \dots \qquad $	13
2.4.3 Mezni vrstva. Obtekani v blizkosti steny.	14
$2.4.4 \text{Charakteristiky siti} \dots \dots \dots \dots \dots \dots \dots \dots \dots $	16
$2.4.5 \text{Model turbulence} \dots \dots \dots \dots \dots \dots \dots \dots \dots $	16
2.4.6 Okrajové podmínky	17
3 Ověřování funkčnosti modelu se spoilerem	24
3.1 Clark-Ymod	24
3.2 GA(W)-1 se spoilerem	24
4 Clark-Ymod. 2D model	30
5 Prandtl-Glauert	33
5.1 První případ. Geometrie dle křidélka.	33
6 3D model.	40
7 Závěr	46
Seznam použité literatury	49
Přílohy	51

Seznam obrázků

2.1	JA-100 "Advanced" půdorys	20
2.2	Prostor zkoumání	20
2.3	Profil Clark-Ymod	20
2.4	Celková síť	21
2.5	Profil	22
2.6	Síť v blízkosti spoileru	23
3.1	Vztlaková čára	25
3.2	Momentová čára	26
3.3	Polára	27
3.4	Závislost poklesu součinitele vztlaku s výchylkou kormidla	29
4 1	Závielest soužinitele vztlelu ne výskules korreidle. Závěsová sou	
4.1	Zavisiost soucinitele vztiaku na vycnylce kormidia. Zavesova osa	-01
	0,66; sterbina $0,015m$	31
5.1	Vztlakové čáry v závislosti na úhlu vychýlení spoileru. 0,6b	35
6.1	3D Geometrie výpočtového prostoru	41
6.2	3D Výpočtová síť	42
6.3	Výpočtová síť v blízkosti spoileru	43
6.4	3D Geometrie křídla se spoilerem	44
6.5	Tendence změny CL,CD a mx s výchylkou spoileru pro AOA=0 .	45
7.1	Závislost součinitele vztlaku na výchylce kormidla. Závěsová osa	
	0.7b; štěrbina $0.015m$	46
7.2	Závislost součinitele vztlaku na výchylce kormidla. Závěsová osa	
	0,55b;štěrbina $0,015m$	47
7.3	Závislost součinitele vztlaku na výchylce kormidla. Závěsová osa	
	0.55b; štěrbina 0.001 m	75
7.4	Závislost součinitele vztlaku na výchylce kormidla. Závěsová osa	
	0,55b; štěrbina 0,005m	76
7.5	Závislost součinitele vztlaku na výchylce kormidla. Závěsová osa	
	0,55b; štěrbina 0,010m	77
7.6	Závislost součinitele vztlaku na výchylce kormidla. Závěsová osa	
	0.7b: štěrbina 0.001m	78
7.7	Závislost součinitele vztlaku na výchylce kormidla. Závěsová osa	
	0.7b: štěrbina 0.005m	79
78	Závislost součinitele vztlaku na výchylce kormidla. Závěsová osa	
	0.7b: štěrbina 0.010m	80
79	Závislost součinitele vztlaku na výchylce kormidla. Závěsová osa	
1.7	0.6b: štěrbina 0.001m	81
7 10	7 vielost součinitelo vztlaku na výchylce kormidla. Závěsové osa	10
<u>[1.10</u>	0.6b; štěrbina 0.005m	ົ້ອບ
7 11	Zówielost sowipitele wztleky ne wishyles korreidle. Zówiscowi	02
[(.1]	Zavisiost souchitele vztiaku na vychylce kormidia. Zavesova osa	0.0
	U,OD; sterdina U,U10m	ბა

7.12 Závislost součinitele vztlaku na výchylce kormidla. Závěsová osa	
$0,6b; \text{ sterbina } 0,015m \dots \dots$	84
7.13 Závislost součinitele vztlaku na výchylce kormidla. Závěsová osa	
0,65b; štěrbina 0,015m	85

Seznam tabulek

2.1 Charakter	ristiky JA-100 "Advanced
3.1 Aerodyna	mické součinitele Clark-Ymod
3.2 Srovnání	výsledků FLUENT a XFOIL pro GA(W)-1
3.3 Změna so	učinitele vztlaku s výchylkou kormidla $\operatorname{GA}(\mathrm{W})$ -1 29
4.1 Porovnán	í linearity jednotlivých konfigurací pomocí metody nejme-
nších čtve	rcu
4.2 Porovnán	í linearity jednotlivých konfigurací pomocí metody nejme-
nších čtve	rců
5.1 Hodnoty	potřebné k řešení Glauertovou metodou Prandtlové rovnici 34
5.2 Závislost	charakteristik klonění na výchylce spoileru. $AOA=0; 0, 4 \cdot l/2$ 34
5.3 Závislost	charakteristik klonění na výchylce spoileru. AOA= $6; 0, 4 \cdot 1/2$ 34
5.4 Závislost	charakteristik klonění na výchylce spoileru. AOA=0; 0,6·l/2 37
5.5 Závislost	charakteristik klonění na výchylce spoileru. AOA=6; $0,6\cdot l/2$ 37
b.1 lendence	zmeny aerodynamickych soucinitelu s vychylkou spoileru
pro AOA:	=0.0,41/2

Seznam použitých zkratek

- 1. AOA $[\mathbf{o}]$ Aerodynamický úhel náběhu
- 2. b[m]- hloubka profilu
- 3. l [m] rozpětí
- 4. CL[-] součinitel vztlaku
- 5. CX [-] součinitel odporu
- 6. CX
i $\left[\text{-} \right]$ součinitel indukovaného odporu
- 7. CM $\left[\text{-} \right]$ součinitel klopivého momentu
- 8. Cl [-] součinitel vztlaku
- 9. Cx [-] součinitel odporu
- 10. Cm [-] součinitel klopivého momentu
- 11. mx [-] součinitel klonivého momentu
- 12. Výchylka [o] výchylka spoileru
- 13. V; U [m/s] rychlost nabíhajícího proudu
- 14. p $[{\rm o/s}]$ úhlová rychlost
- 15. S $[\mathrm{m}]$ plocha křídla
- 16.
 λ [-] štíhlost křídla
- 17. η [-] zúžení křídla

- 18. u^+ [-] bezrozměrná rychlost
- 19. y^+ [-] bezrozměrná vzdálenost od stěny
- 20. ρ [kg/m3] hustota vzduchu
- 21. μ [Pa.s] dynamická vizkosita
- 22. τ_m [kg.m-2.s] tečné napětí
- 23. $C_f \ [\text{-}]$ součinitel třecího odporu
- 24. $Re \ [\mathchar`-]$ číslo Reynoldsa
- 25. $Re_x \left[\mathsf{-} \right]$ lokální číslo Reynoldsa
- 26. $U_{\tau}~[{\rm m/s}]$ dynamická rychlost
- 27. σ [m] tloušťka mezní vrstvy
- 28. Tu, I [%] intensita turbulence
- 29. μ_t [Pa.s] turbulentní dynamická vizkosita
- 30. $l~[{\rm m}]$ charakteristická délka energetických vírů
- 31. $k \; \mathrm{[m2/s2]}$ turbulentní kinetická energie
- 32. $\epsilon~[{\rm m2/s3}]$ míra disipace energie

Seznam použitých programů

- 1. ANSYS Design Modeler
- 2. ANSYS Mesh
- 3. ANSYS Fluent
- 4. Glauert
- 5. Siemens NX
- 6. Microsoft EXCEL

1. Úvod. Historický přehled.

Ještě z doby bratrů Wrightu křidelka, jak je dneska známe, se utvrdily jako hlavní řídicí plochy příčného řízení letounu. Měnily se tvar a účinnost, ale základní princip fungování i v současné době zůstává stejný. Skoro stoletá praktická zkušenost používaní, obrovské množství experimentálních dat a spolehlivých analytických modelů určují volbu konstruktérů při návrhu letounu, zvlášť v tak konzervativním oboru, jakým je letectví.

Rozvoj letadlové techniky, prudký nárůst výkonu a tím pádem i rychlosti letadel nutil konstruktéry navrhovat čím dál výkonnější a konstrukčně složitější vztlakovou mechanizaci, zejména klapky, aby mohly zabezpečit příjemnou rychlost přistání. Jedním z omezení ke zvýšení výkonu vztlakové mechanice jsou právě křidelka, která nedovolují použití klapek po celém rozpěti křídla, proto konstruktéři stále hledají jiné prostředky k zabezpečení příčného řízení. Takovým prostředkem můžou být např. spoilery První uvažování o použití spoilerů jako řídicí plochy příčného řízení se vztahuji ke začátku 30-tých let minulého století. V technické zprávě NACA-Langley Memorial Aeronautical Laboratory z roku 1932 (FRED, 1932) bylo prokázáno na základě zkoumání aerodynamického profilu Clark-Y možnost dosažení vhodných klonivých charakteristik pro určité typy letadel. V roce 1933 ve zprávě (FRED a JOSEPH, 1933) bylo znovu prokázána možnost použití spoilerů jako prostředku pro příčné řízení. Společným rysem zkoumaných konfigurací v těchto zprávách je umístění závěsové osy spoilerů v blízkosti náběžné hrany křídla. V roce 1935 se uskutečnil další výzkum FRED a JOSEPH (1935) kde se navíc zkoumal vývoj klonivého momentu s časem pro různé polohy závěsové osy (až do 0,83 hlobky profilu) a různé druhy spoilerů, tzv. "retracteble spoiler" a "slot-lip spoiler". Ukázalo se, že zpoždění nárůstu klonivého momentu klesá s posunutím hingle-line spoileru blíž k odtokové hraně křídla. Výzkum v tomto směru se v Spojených Státech nezastavoval ani v průběhu druhé světové války, kde v roce 1941-1942 proběhly první letové zkoušky letadel vybavených křidélky a spoilery najednou. (SPAHR, 1947)

Další výzkumy, jako např. (JACK a VITO, 1947), (LAWRANCE a WILLIAM, 1942), (SPAHR a CHRISTOPHERSEN, 1943) zkoumaly jiné vlivy konstrukčního uspořádání spoileru na klonivé charakteristiky letounu, jako např. vliv rozpětí, štěrbiny mezi obrysem křídla a náběžnou hranou spoileru, výška spoileru, jeho geometrický tvar aj. Jeden z nejvýznamnějších experimentálních projektu v tomto směru se konal na půdě Kansaské univerzity pod vedením profesora Davida L. Kohlmana. Jeho první výsledky byly publikovány v (KOHLMAN, 1977), kde byly stručně popsány klonivé charakteristiky letounu Redhawk, který je ve své podstatě modifikaci Cessna-177 Cardinal. Byly uvedeny základní aerodynamické, výkonnostní charakteristiky a porovnání s původní verzi letounu. Náhrada křidelek za spoilery a zavedení klapek po celém rozpětí křídla umožnilo snížit plochu křídla o 6,02 m^2 a tím pádem zvýšit cestovní rychlost letounu do 128.1 km/h z původních 104 km/h.

Prvním sériovým letounem, ve kterém byla použitá příslušná koncepce ovládání byl japonský letoun MU-2 (1963), který z roku 1963 do roku 1986 byl výroben v počtu 704 kusů ve více než desítkách modifikací. Také stojí za zmínku Australský letoun GAF "Nomad" (1972). Při velkých úhlech náběhu se příčné řízení u tohoto letounu provádí jen za pomocí spoilerů, v cestovním režimu se příčné řízení uskutečňuje pomocí vnějších sekcí klapek (BADYAGIN a F.A., 1978). V současné době častějšímu používání spoileru brání stále chybějící analytický postup návrhu jeho uspořádání. Stejně tak k tomu přispívá skutečnost, že výsledky simulaci získané pomocí metody konečných objemů potřebují verifikaci měřením v aerodynamickém tunelu. Přesto autor věří, že rozvoj počítačových simulací a matematickým modelů umožní překonat tyto nedostatky.

Výhody na nevýhody spoileru. Model turbulence.

V příslušné literatuře, zabývající se popisem postupu při návrhu letounu a ve zprávách z experimentálních měření uvádějí určité výhody a nevýhody používání spoileru jako prostředku příčného řízení. Zejména Badyagin <u>BADYAGIN a F.A.</u> (1978) a Rokham (ROSKAM a kol., 1974) jmenují tyto základní výhody spoilerů:

- 1. Použití spoilerů dává možnost umístění klapek po celém rozpětí křídla, což umožňuje výrazně zmenšit přistávací rychlost při zachováni původní plochy křídla, nebo zvětšit maximální rychlost redukováním plochy křídla při stanovených vzletových a přistávacích charakteristikách.
- 2. Spoilery brání vzniku tzv. "Dutch rollu" díky zmenšení zatáčivého momentu při klonění. Důvodem je kompenzace nárůstu tlakového odporu spoileru poklesem indukovaného odporu v důsledku snížení vztlaku na křídle.
- 3. Odštěpná klapka je o 30-50 procent lehčí, než křidelka (vztáženo na stejnou plochu), neboť konstrukce křidelka je navrhovaná na dynamický tlak při maximální rychlosti na rozdíl od klapky, která je navrhovaná na dynamický tlak při rychlosti vzletu/přistání. Tento bod nebude v této diplomové práce prokazován.

Základní nevýhody spoileru:

- 1. Nelineární změna klonivého a závěsového momentu s výchylkou.
- 2. Časové zpoždění poklesu vztlaku.
- 3. Riziko reversu (nárůstu vztlaku) při malých a naopak příliš velkých výchylkách.
- 4. Ztráta výšky v důsledku poklesu vztlaku.

Výsledky experimentů a letové zkoušky prokazují, že vhodné uspořádání spoileru dokáže eliminovat vliv těchto negativních faktorů, popř. snížit jejich vliv na přijatelnou úroveň. Cílem této diplomové práce je navrhnout vhodné uspořádání spoileru pro letounu JA-100 v modifikaci Advanced s profilem Clark-Ymod.

2.1 Metoda zkoumání

Simulace obtékání bude provedena pomocí softwaru ANSYS-Fluent, který nabízí rozsáhlé možností 2D a 3D simulace, zejména v oblasti turbulentního proudění. Vzhledem k omezeným výpočtovým kapacitám a časové náročnosti simulování ve 3D byla zvolená "iterační" návrhová cesta, která se stává z několika kroků, které budou dále popsány. Prvotní návrh uspořádání spoileru bude uskutečněn za pomocí 2D simulace pro stanovení profilových charakteristik při různých úhlech náběhu a výchylkách spoileru. Toto zjednodušení umožní stanovit změnu profilových charakteristik v závislosti na poloze závěsové osy spoileru, velikosti

Tabulka	2.1:	Charakteristiky	JA-100	"Advanced

6,820 m
$5,595 { m m}$
2 m
8,259 m2
1,224 m
1,434 m
0,988 m
5,632
CLARK-Y mod.
300(resp. 315) kg
210 kg
207 km/h
65 km/h

Rozměrové charakteristiky

štěrbiny mezi spoilerem a sací stárnou profilu, hloubce spoileru aj. Dalším krokem je zvolení nejvhodnějšího uspořádání dle určitých kritérií (viz. dále) a použití příslušných profilových hodnot pro řešení Prandtlové integro-diferenciální rovnice Glauertovou metodou při různých velikostech spoileru podél rozpětí. Obdržené hodnoty budou dále použitý pro vymodelování a simulaci obtékání 3D modelu křídla s příslušnou geometrií spoileru, která byla stanovená v předchozích bodech a porovnání výsledků s Prandtlovým modelem.

2.2 Skyleader JA-100

Letoun JA-100 je jednomístným celokovovým (konstrukce z hliníkových slitin, pevnostní díly z oceli) dolnoplošníkem s přímým křídlem a pohonem v konvenčním uspořádání, (MALÁSEK, 2011) který vznikl na základně spolupráci mezi podnikem Skyleader a Ustavem letadlové techniky Fakulty strojní ČVUT. Letoun nabízen ve čtyřech modifikacích "Basic", "Basic+" "Cruiser" a "Advanced", které se liší mezi sebou použitím různých nosných ploch (profiláž a vztlaková mechanizace). (MALÁSEK, 2011), (VRCHOTA, 2008), (VRCHOTA, 2009) Pro naši úpravu je zvolená modifikace "Advanced", veškeré geometrické hodnoty a letové charakteristiky jsou uvedeny v (MALÁSEK, 2011). Půdorys, nárys a bokorys jsou zobrazeny na obrázku 2.1. V tabulce 2.1 jsou uvedeny základní charakteristiky letounu JA-100 Advanced které my budeme dále potřebovat.

Profil Clark-Ymod je upraveným profilem Clark-Y. Cílem úpravy bylo zabezpečit nahraditelnost křídel různých verzí letounu mezi sebou, aniž by se měnila konstrukce trupu v místě spojení s křídlem. Souřadnice profilu jsou uvedeny v Příloze 1.

2.3 Ověření funkčnosti FLUENT modelu

Jako první krok je potřeba ověřit přesnost simulování obtékání profilu a porovnat výsledné zkoumané veličiny s referenčními hodnotami. V případě profilu s nulovou výchylkou spoileru referenční hodnoty budou získány z programu XFOIL, který používá pro výpočet aerodynamických charakteristik panelovou metodu. Tyto hodnoty byly zejména použity pro prvotní návrh nosných ploch ve zprávě (VRCHOTA, 2008). Dalším krokem ověřování funkčnosti je porovnání hodnot změn aerodynamických součinitelů s výchylkou spoileru. Bohužel experimentální data měření profilu Clark-Y v aerodynamickém tunelu s různými druhy spoilerů nejsou dostupny. Ve zprávách (FRED a JOSEPH, 1933), (FRED, 1932) jsou uvedeny jenom součinitele klonivého momentu. Proto pro ověřování funkčnosti FLUENT modelu byla zvolena zpráva WEICK (1975), kde se jedná o tunelovém měření profilu GA(W)-1 při různých výchylkách spoileru, poloze závěsové osy a úhlech náběhu. V DesignModeleru programu ANSYS byl vytvořen shodný geometrický model se spoilerem bez štěrbiny mezi náběžnou hranou spoileru a povrchem samotného profilu (v tunelovém měření tuto vznikající štěrbinu zalepovali lepící páskou). Tyto body jsou podrobně popsány dále.

2.4 Profil Clark-Ymod s nulovou výchylkou spoileru

2.4.1 2D geometrie

2D model profilu Clark-Ymod je zpracován v rámci programu ANSYS pomocí balíčku pro vytvoření a úpravu geometrie - DesignModeler. Pro automatizaci výpočtu jsou zavedeny geometrické parametry jejichž nastavením měníme uspořádání spoileru vůči profilu. V seznamu jsou uvedeny příslušné parametry a jejich popis. Tyto parametry budeme používat nadále pro vlastní simulaci Clark-Ymod profilu se spoilerem.

- 1. Umístění závěsového bodu spoileru
- 2. Hloubka spoileru
- 3. Úhel náběhu profilu
- 4. Štěrbina mezi spoilerem a profilem
- 5. Výchylka spoileru.

Prostor simulující vnější prostředí je tvořen půlkružnici o poloměru R=20m a navazujícím na ní obdélníkem o délce l=20m, tento prostor má formu tzv. Cdomainu, který se používá pro vytváření strukturované výpočtové síti pro profil s odtokovou hranou ve tvaru jednoho bodu. Pro naše účely budeme používat nestrukturovanou výpočtovou síť z trojúhelníků, viz. podkapitola "Mesh", proto tvar vnějšího prostoru není pro nás důležitý. Tato velikosti prostoru byla zvolená na základě zprávy (ATHADKAR a DESAI, 2014.). Na půdě institutu technologií v Tumkruru proběhl výzkum vlivu velikosti prostoru kolem profilu na přesnost simulací, zejména vzdálenosti hran vstupních a výstupních okrajových podmínek (v našem případě velocity-inlet a pressure-outlet, viz. kapitola o modelu turbulence). Při simulování obtékání profilu s výchyleným spoilerem bude použit menší prostor za účelem ekonomie času, viz. další kapitoly. Ukázalo se, že vzdálenost vstupního okraju od náběžného bodu profilu 10b a vzdálenost od odtokového bodu 15b dávají výsledky s velikosti chyby do 5 procent v porovnání s výsledky experimentu, kde b je hloubka zkoumaného profilu, v našem případě b=1m. Souřadnice profilu Clark-Ymod byly převzaty z (VRCHOTA, 2008) a jsou uvedeny v příloze.

2.4.2 Mesh

Kvalitní výpočetní síť (dále-mesh)je základem toho, že obdržené výpočty se budou blížit realitě. Na druhou stranu příliš jemný mesh po celé ploše (objemu) zkoumaného prostoru klade velké nároky na výkon počítače a zabírá mnohém více času na strukturování síti, aniž by v tom byla potřeba z hlediska přesnosti výpočtu. Proto pro obdržení odpovídajících realitě výsledků a zároveň menší spotřebě výkonu je nutno zvětšovat hustotu meshe jen v oblastech našeho "zájmu", v našem případě je to prostor v blízkosti profilu. Další otázkou je volba mezi tzv. strukturovaným a nestrukturovaným meshem. Uvedeme tady vysvětlení těchto pojmů dle (J.BLAZEK, 2001).

- Strukturovaný mesh každý uzel sítě je jednoznačně definován indexy i,j,ka odpovídajícími Cartezianskými souřadnicemi $x_{i,j,k}y_{i,j,k}z_{i,j,k}$. Buňka síti má tvar čtyřhranů ve 2D případě nebo šestihranů v 3D případě.
- Nestrukturovaný mesh každá buňka nebo uzel sítě není jednoznačně definován, tj. sousedící buňky nebo uzly nemůžou být přímo identifikovaný pomocí jejich indexů. Síť se skládá z trojúhelníků ve 2D případě a nebo z čtyřstěnů v 3D případě. V současné době se nestrukturovaná síť sestává z čtyřhranů a trojúhelníků ve 2D případě a z šestihranů, čtyřhranů, hranolů a jehlanů v 3D případě, zejména pro simulování mezní vrstvy. V tomto případě takovým sítím se říká hybridní síť.

Při zkoumání se profilových charakteristik ve většině věděckých a technických článcích používá strukturovaný mesh. (Dr.LEYLAND a WILHELM, 2011) Tento druh meshe má své určité výhody, jako např. menší čas na provádění výpočtu. Na druhou stranu v případě složité geometrie tvoření strukturovaného meshe může být velmi obtížné, neboť jediná pravidla síťování nemohou platit po celé ploše (objemu) síťovaného prostoru. Řešením tohoto problému je rozdělení prostoru do meších jednodušších části pro vytváření příslušné strukturované síti v každém takovém prostoru. (J.BLAZEK, 2001) V anglosaské literatuře se takové síti říká "multiblock grid". (J.BLAZEK, 2001) Faktem je, že při použití multiblock grid stoupá čas potřebný pro výpočet, důvodem je potřeba zavádět další podmínky do simulačního modelu pro výměnu informací o hodnotách fyzikálních veličin mezi jednotlivými zónami sítě. Další možnost síťování složité geometrie je použití už zmíněné nestrukturované síti, která se často skládá z trojúhelníků ve případě 2D. Tento druh meshe má větší flexibilitu v případě složité geometrie, právě díky použití trojúhelníkových elementů, pomocí kterých se dá popsat jakkoliv složitou geometrii. (J.BLAZEK, 2001) Pro účely teto diplomové práce budeme pracovat

jen s hybridními síti, tj. strukturovaná síť z čtyřharnů v oblasti mezní vrstvy a nestrukturovaná síť z trojúhelníků, kterými se bude vyplňovat zbývající prostor. Před tím, než uvedeme podrobný popis charakteristik používaného meshe, musíme v krátkosti zmínit o simulování obtékání v blízkosti stěny, které klade určité nároky na kvalitu síti v blízkosti profilu.

2.4.3 Mezní vrstva. Obtékání v blízkosti stěny.

Mezní vrstva je oblast tekutiny v blízkosti povrchu s převažujícím vlivem vazkosti a intensivním normálním gradientem rychlosti. BROŽ (1990). Zjistilo se, že ne všechny modely turbulence jsou schopné adekvátně popisovat procesy, které probíhají v této oblasti. Modelům, které jsou schopny modelovat jevy v blízkosti povrchu se říká nizkoreynoldsové modely.(Low-Reynolds), modelům, které nejsou k tomu schopné se říká vysokoreynoldsové. (High-Reynolds) A.A.ANIKEYEV a kol. Nutno podotknout, že pojmy Low and High-Reynolds se nevztahuji k číselné hodnotě Reynoldsová čísla zkoumaného proudu. Pro modelování mezní vrstvy u vysokoreynoldsových modelů se často využívá poloempirických modelů tzv. metod stěnových funkcí A.A.ANIKEYEV a kol.; (J.BLAZEK, 2001) Tyto funkce stanovují závislosti mezi velikosti rychlosti proudu a vzdálenosti od stěny. Těchto modelů se dá využit za podmínky, že rychlostní profil nezávisí na čísle Reynoldsa, gradientu tlaku a dalších vnějších podmínkách, což platí ve většině inženýrských aplikací. (A.A.ANIKEYEV a kol.) Jeden z takových modelu, tzv. logaritmický zákon (log-law) popisuje rychlostní profil v blízkosti stěny vztahem

$$u^+ = \frac{1}{k} ln(Ey^+),$$

kde k je Karmonová konstanta (k=0.4148) (AnsysInc.), E je empirická konstanta. Pro hladký povrch (A.A.ANIKEYEV a kol.) uvádí E=8.8, v (AnsysInc.) se používá E=9.793. u^+ je bezrozměrná rychlost a y^+ je bezrozměrná vzdálenost od stěny, která se vyjadřuje vztahem

$$y^+ = \frac{\rho U_\tau \Delta y}{\mu}$$

kde U_{τ} je dynamická rychlosti, μ je dynamická viskozita a Δy je výška první (od stěny) buňky síti. (AnsysInc.);(A.A.ANIKEYEV a kol.);WILCOX (2006);J.BLAZEK (2001). Tato hodnota je základem pro dimenzování výpočetní síti v blízkosti stěny. Pro vysokoreynoldsové modely realizované ve Fluentu platí, že hodnota y^+ pro použíti log-law leží v intervalu $30 < y^+ < 300$. V případě síti, kde $y^+ \sim 1$ u vysoreynoldsových modelu turbulence začíná platit tzv. zákon vazké podvrstvy a výpočet hodnot proudu se řídí vztahem

$$u^+ = y^+.$$

U nizkoreynoldsových modelu turbulence požadavek na hustotu síti v blízkosti stěny je $y^+ \sim 1$. (A.A.ANIKEYEV a kol.); (WILCOX, 2006); (AnsysInc.) Dále uvedeme vztahy pro výpočet zmíněných hodnot, abychom následně mohli stanovit potřebnou hodnotu výšky první buňky. Fyzikální význam těchto rovnic a hodnot nebude v této diplomové práce rozebírán, čtenář může najít potřebnou informaci

např. v WILCOX (2006); (J.BLAZEK, 2001); (AnsysInc.). Dynamickou rychlost je možné stanovit ze vztahu

$$U_{\tau} = \sqrt{\frac{\tau_m}{\rho}},$$

kde τ_m je tečné napětí, které se stanoví ze vztahu

$$\tau_m = 0.5 C_f \rho U^2$$

kde C_f je součinitel tření, který se stanoví z emirického vztahu v v případě vnějšího obtékání jako

$$C_f = 0.058 Re^{-0.2}$$

Výpočet dle těchto vztahů je pouze orientační, neboť reálná přesná hodnota y^+ může být stanovená jen po provedení simulace, proto se často síť upravuje po prvním výpočtu pro dosažení vhodné hodnoty y^+ . (A.A.ANIKEYEV a kol.) V našem případě pro simulování obtékání byl zvolen tzv. k- ω SST model turbulence v kombinaci s Intermittency Transition modelem, které budou popsány později. k- ω SST spadá do nizkoreynoldsových modelů (Fluent umožňuje fungování tohoto modelu i jako vysokoreynoldsovo), proto výpočet výšky buňky provedeme pro $y^+ = 1$. Charakteristická délka L pro výpočet čísla Reynoldsa bude reprezentovaná hloubkou profilu b=1m a rychlost nerozrušeného proudu U=25 m/s

$$Re = \frac{\rho bU}{\mu} = \frac{1.225 \cdot 1 \cdot 25}{1.789 \cdot 10^{-5}} = 1711850.2$$
$$C_f = 0.058Re^{-0.2} = 0.058 \cdot 1711850.2^{-0.2} = 3.29 \cdot 10^{-3}$$
$$\tau_m = 0.5C_f \rho U = 0.5 \cdot 3.29 \cdot 10^{-3} \cdot 1.225 \cdot 25^2 = 1,2595kgm^{-2}s$$
$$U_\tau = \sqrt{\frac{\tau_m}{\rho}} = \sqrt{\frac{1,2595}{1.225}} = 1,01396ms^{-1}$$
$$\Delta y = \frac{y^+\mu}{\rho U_\tau} = \frac{1 \cdot 1.789 \cdot 10^{-5}}{1.225 \cdot 1,01396} = 1,44 \cdot 10^{-5}m$$

Jak se zjistilo při výpočtu tato hodnota je příliš mála pro tvoření kvalitní sítě, proto empirickým způsobem byla nalezená jiná hodnota výšky první vrstvy $\Delta y = 2,2 \cdot 10^{-5}$. Dosažení se potřebného úrovně parametru y^+ docílí použitím adaptace síti v průběhu výpočtu. FLUENT umožňuje upravovat sít dle zadaných kriterii, např. zjemnění síti dle gradientu rychlosti/tlaku/hustoty nebo úpravy síti v blízkosti stěny pro dosažení požadované hodnoty y^+ . V našem případě potřebujeme postupně zjemňovat síť v blízkosti stěny do úrovně $y^+ = 1$. Dle zkušenosti síť budeme upravovat po každých 100 iteracích. Abychom stanovili celkovou tloušťku strukturované části meshe spočítáme tloušťku mezní vrstvy, použijme k tomu vztah pro výpočet tloušťky turbulentní mezní vrstvy pro tenkou desku, dosažená hodnota je samozřejmě jenom orientační, neboť výpočet mezní vrstvy v případě přítomnosti tlakového gradientu je velice složitou záležitost, navíc její

turbulentní části. Dle (BROŽ, 1990) se tloušťka turbulentní mezní vrstvy na tenké desce určuje vztahem

$$\sigma = \frac{0.38}{\sqrt[5]{Re_x}} = \frac{0.38}{\sqrt[5]{1711850.2}} = 0.02297m,$$

kde Re_x je lokální Reynoldsové číslo, v našem případě bude použita hodnota charakteristické vzdálenosti b=1m. Reálná tloušťka strukturované části síti bude několikanásobně větší.

2.4.4 Charakteristiky síti

Pro vytváření nestrukturované síti byl zvolen tzv. "All triangle method". Strukturovaná se část síti nastavuje příkazem "infuence", kde dle předchozích výpočtů byly zvolený následující parametry: Tlošťka první vrstvy - $2.2 \cdot 10^{-5}m$; počet vrstev - 65; součinitel přírůstku (Growth rate) 1,1. Příkaz influence použijeme po obvodu profilu. Při tvoření sítě byla snaha vytvořit strukturovanou síť nejen po obvodu profilu, ale také z vnější strany vychýleného spoileru, bohužel takovéto struktury sítě se nepodařilo dosáhnout, neboť stále se měnící geometrie vyžadovala vlastní nastavení pro každou zkoumanou konfigurací, což při jejich obrovském množství nebylo možné. Je důležité zachytit křivost profilu při síťování. z tohoto důvodu profil se dělí na 1000 elementů. V případě přítomnosti spoileru trochu se mění nastavení sítě v blízkosti profilu. Ve vychýleném stavu spoiler ovlivňuje tvoření strukturované síti, proto je potřeba vynechat místo v okolí spoileru, kde se nebude tvořit strukturovaný mesh. Samozřejmě tato skutečnost může ovlivnit přesnost výpočtu. Pro každou konfigurací byla použita přibližně stejná hustota sítě, pro představu pro konfiguraci spoileru se závěsovým bodem 0,6b bylo použito 171690 elementů. Největší element má velikost: 0,6 m, součinitel nárůstu: 1,03.

2.4.5 Model turbulence

Správně zvolený model turbulence je základem toho, že výsledky simulace budou odpovídat realitě. V inženýrské aplikaci se většinou pracuje s tzv. metodou výpočtu turbulence - RANS (Raynolds Averadge Navier-Stokes). Tato metoda popisuje charakteristiky turbulentního proudu pomocí sumy dvou složek: průměrné konstantní složky a náhodné pulzační složky. V případě rychlosti

$$U_i = \bar{U}_i + U'_i$$

Tato představá umožňuje popisovat turbulence jako náhodný proces a používat k popisu teorii pravděpodobnosti a matematickou statistku. (A.A.ANIKEYEV a kol.) Úprava soustavy Navier-Stokesových rovnic (rovnice pohybu, zachování hmoty a energie) dle tohoto uvažování a podmínek s ním spojených vede k soustavě tři tzv. Reynoldsových rovnic s devíti neznámými. Abychom mohli hledat tyto neznáme Reynoldsové rovnice se doplňují dalšími rovnicemi, které právě tvoří model turbulence. V současné době existují stovky různých poloempirických modelů turbulence, které mají své vlastní specifika a oblast použití, universální model turbulence doposud nebyl vynalezen.

V letectví se našli uplatnění několik modelů.

- model Spalart-Allmaras obsahující jednu diferenciální rovnici (což umožňuje snížit časové náklady na výpočet), tento model byl vytvářen speciálně pro účelu simulování vnější podzvukové aerodynamiky, spadá do oblasti nizkoreynoldsových modelu(viz Kapitola 2).
- k-ε je vysokoreynoldsový velice populární model, který je hodně používán v různých inženýrských odvětví. Velice dobře popisuje oblas plně rozvinuté turbulence.
- 3. k- ω je nizkoreynoldsový model obsahující několik modifikací. Velice populární a v současné době často používaná v letectví modifikace k- ω SST (Shear Stress Transport). Tato modifikace je kombinací k- ϵ a k- ω Wilcox modelu, kde se kombinují výhody od obou těchto modelů. k- ϵ jak už bylo řečeno kvalitně popisuje rozvinutou turbulentnost, k- ω Wilcox kvalitně funguje v oblasti mezní vrstvy.

Pro naše účely byl zvolen SST k- ω model. Tento model mimo jiné vykazuje větší přesnost v předvídaní bodu odtržení proudu a zpátečního připojování, což jsou velice důležitými parametry v případě simulování obtékání profilu s vychýleným spoilerem. (A.A.ANIKEYEV a kol.); (WILCOX, 2006) Pro naše účely byl zvolen řešitel na základě výpočtu tlaku, tzv. "pressure-based". Tento řešitel byl vyvinut právě pro potřeby subsonické aerodynamiky s uvažováním nestlačitelnosti proudícího media. Pro vyšší rychlosti a uvažovaní stlačitelnosti se používal řešitel na základě výpočtu hustoty, tzv. "density-based". V současné době velký pokrok CFD-simulaci umožňuje (ve většině případů) používat oba tyto řešitele pro případy jak subsonické tak i supersonické aerodynamiky. Důležitým faktorem pro správné fungování modelu je použíti tzv. Intermittency Transition modifikace v rámci SST k-ω. Výzkumy Corrsina, Kistlera a Klebanoffa v roce 1954 ukázali, že charakter proudu vzduchu při obtékání od mezní vrstvy směrem k volnému proudu není vždy turbulentní. Proud přerušovaně (intermittent)mění svůj charakter z turbulentního na laminární a naopak. Zavedením do modelu SST určitých úprav pro výpočet vírové vazkosti výrazně zlepšuje přesnost výpočtu. (WILCOX, 2006)

2.4.6 Okrajové podmínky

Okrajové podmínky hrají významnou roli v numerických simulacích a jejich správné zadání určuje, zda dosažený výsledek simulace bude odpovídat realitě. V případě nastavení vstupních okrajových podmínek program FLUENT nabízí několik možností zadávaní charakteristických hodnot proudu, zejména jeho vlastnosti z hlediska turbulence v závistivosti na zvoleném modelu. V případě k- ω modelu uživatel může zadávat přímo hodnoty turbulenční kinetické energie- k a hodnoty specifické disipace ω , tak i specifické hodnoty intensity turbulence- I v procentech, tak i geometrické velikosti velkých energetických vírů l v turbulentním proudu. Cílem je najít takové vstupní okrajové podmínky, při kterých my budeme získávat výsledky blížící se realitě.

Pro účely naše simulace my budeme pracovat jenom s třemi druhy okrajových podmínek: vstupní (inlet), výstupní (outlet) a stěna (wall).

Vstupní okrajová podmínka se určuje vektorem rychlosti a parametry turbulentního proudění. Počáteční vektor rychlosti vždy je totožný s osou X. Dalšími důležitými parametry jsou Intensita turbulence (Turbulence intensity) a poměr turbulentní viskozity (tubulence viskosity ratio). Intensita turbulence (Tu) se určuje jako

$$Tu = \frac{\sqrt{u_x^2 + u_y^2 + u_z^2}}{U},$$

kde $u_x; u_y; u_z$ jsou fluktuace rychlosti ve směrech x,y,z a U je průměrná rychlost proudu. Dle zprávy SPALART a RUMSEY je doporučováno pro typické případy externí aerodynamiky v případě použití dvourovnicových modelů turbulence zadávat Tu=0.1%. V knize (A.A.ANIKEYEV a kol.) se uvádí, že v současné době moderní aerodynamické tunely jsou schopné zabezpečit intensitu turbulence nerozrušeného proudu Tu=0.05%. Pro výpočet poměru turbulentní viskozity se uvádí vztah

$$\frac{\mu_t}{\mu} = 2 \cdot 10^- 7Re,$$

kde μ je dynamická viskozita
a μ_t je tzv. turbulentní viskozita. V našem případě pr
o ${\rm Re}{=}1236640.6$

$$\frac{\mu_t}{\mu} = 2 \cdot 10^- 7 \cdot 1771850, 2 = 0.354$$

V případě simulování profilu GA(W)-1 při čísle $Re = 2.6 \cdot 10^6$

$$\frac{\mu_t}{\mu} = 2 \cdot 10^- 7 \cdot 2600000 = 0.52$$

Výpočet charakteristické délky energetických vírů *l* provedeme dle (AnsysInc.) a (J.BLAZEK, 2001)

$$l = C_{\mu}^{3/4} \frac{k^{3/2}}{\epsilon},$$

kdekje turbulentní kinetická energie
a ϵ je míra disipace energie. kmůžeme orientačně stanovit ze vztahu

$$k = \frac{3}{2}(UI)^2$$

Spočítáme tuto hodnotu pro dva čísla Re

$$k_{Clark} = \frac{3}{2}(UI)^2 = \frac{3}{2}(25 \cdot 0.0005) = 2,34 \cdot 10^{-4}m^2/s^2$$

Rychlost proudu v případě GA(W)1 spočteme z hodnoty čísla Re, hustoty a dynamické viskozity a charakteristické délky (hloubka profilu b=1m.)

$$U_{GAW} = \frac{Re\eta}{b\rho} = \frac{2600000 \cdot 1,789 \cdot 10^{-5}}{1 \cdot 1.225} = 37,97m/s \approx 38m/s$$
$$k_{GAW} = \frac{3}{2}(UI)^2 = \frac{3}{2}(38 \cdot 0.0005) = 3,4 \cdot 10^{-4}m^2/s^2$$

Disipace energie potom bude

$$\epsilon = C_{\mu}^{3/4} \frac{\rho k^2}{\mu} \left(\frac{\mu_t}{\mu}\right)^{-1}$$

$$\epsilon_{Clark} = 0.09^{3/4} \frac{1,225 \cdot (2,34 \cdot 10^{-4})^2}{1,789 \cdot 10^{-5}} (0.354)^{-1} = 9,53 \cdot 10^{-4} m^2 / s^3$$

$$\epsilon_{GAW} = 0.09^{3/4} \frac{1,225 \cdot (3,4 \cdot 10^{-4})^2}{1,789 \cdot 10^{-5}} (0.52)^{-1} = 1,3 \cdot 10^{-3} m^2 / s^3$$

$$l_{Clark} = 0,09^{3/4} \frac{(2,34 \cdot 10^{-4})^{3/2}}{9,53 \cdot 10^{-4}} = 6,17 \cdot 10^{-4} m$$

$$l_{GAW} = 0,09^{3/4} \frac{(3,4 \cdot 10^{-4})^{3/2}}{1,3 \cdot 10^{-3}} = 7,92 \cdot 10^{-4} m$$

V průběhu výpočtu se zjistilo, že zadání vstupních okrajových podmínek na základě intensity turbulence a charakteristické délky energetických vírů dává přesnější výsledky, proto dále budeme používat právě tyto okrajové podmínky při výpočtu.

Výstupní podmínka se určuje tlakem vůči atmosferickému tlaku, tzv. gauge pressure. V našem případě tento rozdíl je nulový, neboť tlak okolí se rovná atmosferickému tlaku. Aerodynamický profil a spoiler jsou nepohyblivé stěny na které platí podmínka nulové rychlosti. (no-slip condition)

$$u = v = 0,$$

kde u a v jsou složky rychlosti v ose x a y. Správnou realizaci tyto podmínky zajišťuje jemná síť v blízkosti povrchu, která byla popsaná v předchozí kapitole.

Obrázek 2.1: JA-100 "Advanced" půdorys

Obrázek 2.2: Prostor zkoumání

Obrázek 2.3: Profil Clark-Ymod

Obrázek 2.4: Celková síť

Obrázek 2.5: Profil

Obrázek 2.6: Síť v blízkosti spoileru

3. Ověřování funkčnosti modelu se spoilerem

3.1 Clark-Ymod

Případ zcela zasunutého spoileru bude reprezentován čistým profilem Clark-Ymod bez jakýchkoliv úprav. Výpočet byl proveden pro úhly náběhu -2 až 20 stupňů. Výsledné hodnoty součinitele vztlaku, odporu a momentu (moment se měřil k náběžnému bodu) jsou uvedeny v tabulce 3.1 spolu s referenčními hodnotami z programu XFOIL a procentuální odchylkou vůči referenční hodnotě.

		XFOIL	I]	FLUEN	Т			
AOA	Cd	Cl	Cm	Cd	Cl	Cm	Δ Cd [%]	$\Delta \operatorname{Cl}[\%]$	$\Delta \text{ Cm}[\%]$
-2,000	$0,\!007$	0,159	-0,159	$0,\!007$	$0,\!173$	-0,173	0,762	$7,\!653$	$4,\!670$
$0,\!000$	$0,\!006$	0,364	-0,364	$0,\!007$	$0,\!392$	-0,392	9,174	7,222	$6,\!415$
$3,\!000$	$0,\!009$	$0,\!682$	-0,682	$0,\!007$	$0,\!691$	-0,691	$-32,\!690$	1,241	$0,\!676$
6,000	$0,\!011$	0,975	-0,975	0,009	$1,\!068$	-1,068	-20,973	$8,\!694$	$10,\!954$
9,000	$0,\!014$	1,289	-1,289	$0,\!011$	$1,\!316$	-1,316	-29,786	2,110	1,541
$12,\!000$	$0,\!019$	1,527	-1,527	0,018	1,503	-1,503	-7,259	$-1,\!606$	$-3,\!899$
$14,\!000$	$0,\!027$	1,621	-1,621	$0,\!024$	$1,\!615$	$-1,\!615$	$-10,\!642$	$-0,\!370$	-2,589
$16,\!000$	$0,\!036$	1,710	-1,710	$0,\!034$	$1,\!698$	$-1,\!698$	-4,020	-0,730	-3,204
$18,\!000$	$0,\!058$	1,611	-1,611	0,062	$1,\!635$	$-1,\!635$	6,308	$1,\!430$	0,110
$20,\!000$	$0,\!095$	1,484	-1,484	$0,\!096$	1,562	-1,562	0,466	4,985	2,444

Tabulka 3.1: Aerodynamické součinitele Clark-Ymod

Tyto hodnoty jsou grafické znázorněny na 3.13.23. Jak je vidět největší chyba v případě součinitele vztlaku je v oblasti lineární části vztlakové čáry a pří 6 stupních dosahuje 8 procent. Při větších úhlech náběhu rozdíl v hodnotách postupně klesá. Menší chyba při velkých úhlech náběhu je dána snadnějším určením přechodu z laminárního do turbulentního proudění, což je mnohém obtížnější při menších úhlech náběhu a malá odchylka v určení přechodového bodu výrazně ovlivňuje výslednou hodnou. Celkem pro naše účely sledování tendence změny součinitele vztlaku s výchylkou a s polohou spoileru tato přesnost může stačit. V publikacích (WILCOX, 2006), (A.A.ANIKEYEV a kol.) a dalších se uvádí, že strukturovaná síť nabízí větší přesnost výpočtu, ale jak jíž bylo popsáno před tím přítomnost spoileru a velké nároky na výpočtové výkony nedovolují nám tuto síť používat.

3.2 GA(W)-1 se spoilerem

Tunelové měření (?) bylo provedeno v roce 1975 na půdě Kanzaské univerzity a se zabývalo dvourozměrným obtékáním profilu GA(W)-1 s různou konfiguraci spoileru a klapek. Měření se provádělo při čísle $Re = 2 \cdot 10^6$. Měření prokázalo

Obrázek 3.1: Vztlaková čára

Obrázek 3.2: Momentová čára

Obrázek 3.3: Polára

účinnost spoileru jako prostředku příčného řízeni s zasunutými a vysunutými klapkami. Bylo stanoveno, že ventilační spojení tlakové a sací strany profilu zvyšuje efektivitu řízení a zabraňuje reverzu řízení při malých výchylkách kormidel, což bylo následně použito u letounu Redhawk. (?)

Pro naše účely bude provedena simulace měření profilu GA(W)-1 bez uvažování vztlakové mechanizace, závěsovým bodem spoileru v místě 0,7b, kde b je hloubka profilu, v našem případě 1 m, hloubkou profilu 0,15b a bez štěrbiny mezi sací stranou profilu a spoilerem. Souřadnice profilu GA(W)-1 jsou uvedeny v příloze 2. Výpočet provedeme pro úhly náběhu 0 a 8 stupňů a úhly výchylek spoileru 0, 10, 15, 20, 40, 60 stupňů, následně porovnáme výsledné hodnoty s uvedenými hodnotami změny aerodynamických součinitelů. V tabulce jsou uvedeny data tunelových měření, výpočtu pomocí programu FLUENT a procentuální odchylka vůči experimentálním hodnotám.

Zaprvé provedeme výpočet profilu GA(W)-1 bez spoileru pro úhel náběhu nula a osm stupňů a výsledek pak porovnáme s hodnotami z programu XFOIL 3.2. Stejně jako v případě profilu Clark-Ymod chyba výpočtu klesá se zvětšením úhlu náběhu.

Tabulka 3.2: Srovnání výsledků FLUENT a XFOIL pro GA(W)-1

AOA	XFOIL	FLUENT	%
$0,\!000$	0,5455	0,5136	5,85
8,000	$1,\!3559$	$0,1,\!328$	2,06

Dále porovnáme hodnoty změn součinitele vztlaku z tunelových měření a programu FLUENT v závislosti na výchylce spoileru. Ve spoupce Δ [%] je uveden procentuální rozdíl hodnot poklesu vztlaku vztaženy k hodnotě obdrženou z tunelového měření. Je vidět, že rozdíl hodnot roste s úhlem náběhu. Ve sloupce $\Delta(\Delta Cl[\%])$ je uvedena velikost rozdílu poklesu vztlaku z tunelového měření a FLUENTu vztaženého k součinitelu vztlaku profilu pří daném úhlu náběhu bez spoileru. Je vidět, že chyba měření očekávaně roste se zvětšující se výchylkou kormidla. Velká chyba při velkých výchylkách spoileru není důležitá, neboť ze zkušenosti (BADYAGIN a F.A., 1978); (KOHLMAN, 1977) potřebné a bezpečné výchylky spoileru by neměly přesahovat 40-50 stupňů.

Bez ohledu na to, že rozdíl hodnot je procentuálně výrazný, můžeme konstatovat, že zvolený model turbulence na příslušné síti dobře demonstruje tendenci k lineární změně součinitele vztlaku s výchylkou kormidla 3.4, což je vzhledem k omezeným výpočtovým výkonům můžeme považovat za přijatelný výsledek. V další kapitole bude popsáno vlastní měření na zvoleném Clark-Ymod profilu a volení nejlepší konfiguraci z hlediska linearity změny součinitele vztlaku.

AOA[0]	Výchylka [0]	ΔC_{L_tunel}	ΔC_{L_fluent}	Δ [%]	$\Delta(\Delta Cl[\%])$	C_L se spoilerem
0,0000	10,0000	-0,2300	-0,2302	0,1	$0,\!0$	0,2898
0,0000	$15,\!0000$	-0,3400	-0,3902	$14,\!8$	-9,7	$0,\!1298$
0,0000	20,0000	-0,4600	-0,5290	$15,\! 0$	-13,3	-0,0090
0,0000	40,0000	-0,8000	-0,9848	23,1	-35,5	-0,4648
0,0000	60,0000	-1,0600	$-1,\!3201$	24,5	-50,0	-0,8001
0,0000	10,0000	-0,1500	-0,1977	$31,\!8$	-3,6	$1,\!1303$
0,0000	$15,\!0000$	-0,2500	-0,3299	$31,\!9$	-6,0	$0,\!9981$
0,0000	20,0000	-0,3300	-0,4613	$39,\!8$	-9,9	$0,\!8667$
0,0000	40,0000	-0,7000	-0,9439	$34,\!8$	-18,4	$0,\!3841$
0,0000	60,0000	-1,0800	-1,2864	19,1	-15,5	$0,\!0416$

Tabulka 3.3: Změna součinitele vztlaku s výchylkou kormidla $\mathrm{GA}(\mathrm{W})\text{-}1$

Obrázek 3.4: Závislost poklesu součinitele vztlaku s výchylkou kormidla

4. Clark-Ymod. 2D model

Pro zkoumání aerodynamických charakteristik profilu Clark-Ymod se spoilerem byly zvoleny 16 konfigurací, které se lišeji velikosti štěrbiny mezi sací stranou profilu a spoilerem: 0.001 m; 0.005m; 0.01m; 0.015m při výchylce 55 stupňů a polohou závěsového bodu: 0,55b; 0,6b; 0,65b; 0,7b. Tyto hodnoty byly zvoleny na základě doporučení z (BADYAGIN a F.A., 1978) a zkušenosti z praxe (KOHLMAN, 1977). Očekávaný vliv těchto hodnot byl popsán v předchozích kapitolách. Kriteriem pro zvolení nejvhodnější konfigurace je co nejmenší hodnota sumy nejmenších čtverců. Hodnoty vztlaku byly vyneseny na grafu a pomocí programu EXCEL byl spočítán lineární trend na základě příslušných hodnot. Dalším součtem kvadrátů rozdílu spočítaných hodnot a hodnot dle přímky trendu právě obdržíme sumu nejmenších čtverců. Tyto hodnoty spočítané pro různé úhly náběhu budou sloužit porovnávacím kriteriem při zvolení potřebné konfigurace. Dalším kriteriem je absence reverzu při velkých úhlech náběhu. Logickým uvažováním můžeme předpokládat, že různým úhlům náběhu dle popsaného kriteria budou odpovídat různé konfigurace. V tomto případě vhodná konfigurace bude zvolená na základě největší linearity pro větší úhly náběhu, zejména 6 stupňů, neboť tento úhel náběhu odpovídá cestovnímu režimu letoun JA-100.

Výsledné hodnoty jsou uvedeny v přílohách 3;4;5;6. Na obrazcích v těchto přílohách jsou uvedeny závislosti součinitele vztlaku v závislosti na výchylce spoileru, jsou zobrazeny lineární trendy a rovnice těchto přímek pomocí kterých pak počítáme sumu nejmenších čtverců. Pro všechny konfigurací je typické, že při úhlu náběhu 20 stupňů pozorujeme zcela náhodný průběh součinitele vztlaku, což svědčí o odtrhávání proudu. Dalším obecným rysem je postupné zvětšení lineárity se zvětšením úhlu náběhu, což odpovídá informacím o letounu "Nomad", kde při velkých úhlech náběhu jako prostředek příčného řízeni se používaly právě spoilery. Jak bylo uvedeno v (BADYAGIN a F.A., 1978) čím dále od náběžné hrany je umístěn závěsový bod spoileru, tím menší je maximální úhel náběhu při kterém je spoiler účinný. V případě 0,7b při úhlu náběhu 18° dochází k reverznímu účinku spoileru, vztlak roste nehledě na zvětšovaní úhlu vychýlení spoileru. Zvětšení štěrbiny pomáhá ovlivnit velikost reverzu, při odpovídající velikosti štěrbina mezi spoilerem a profilem funguje stejným způsobem, jako např. štěrbina vztlakové mechanizace: urychlením proudu dodává příslušnou kinetickou energii proudu vzduchu, ale přesto reverz se zcela neeliminuje. V případě umístění spoileru v 0,55b spoiler zůstává účinný až do 18 stupňů, dokonce i při nejmenší štěrbině. V poloze 0,6b při nejmenší štěrbině také dochází k reverzu, ale pří dalším zvětšování štěrbiny tento jev se zcela eliminuje.

V tabulkách 4.1 4.2 jsou uvedeny porovnávací sumy nejmenších čtverců pro uvedené konfigurace. Nejlepší lineárita je zabezpečená při umístění závěsového bodu spoileru v 0,7b, ale vzhledem k tomu, že při teto konfiguraci dochází k reverzu nemůžeme tuto konfiguraci dále použit. Při poloze 0,65b štěrbina eliminuje reverz, ale přesto při větších úhlech náběhu efektivita spoileru je velmi nízká, až do výchylky spoileru 15 stupňů vztlak profilu je skoro konstantní. Při porovnání sum nejmenších čtverců dvou zbývajících konfigurací 0,55b a 0,6b můžeme konstatovat, že poloha 0,6b a štěrbina 0,015m zabezpečuje nejlepší lineáritu poklesu součinitele vztlaku a dobrou účinnost i při větších úhlech náběhu. Právě tuto

Obrázek 4.1: Závislost součinitele vztlaku na výchylce kormidla. Závěsová os
a $0,6\mathrm{b};$ štěrbina $0,015\mathrm{m}$

konfiguraci budeme používat dále. 7.12 Celkem byly splněny všechna očekávaní od chování profilu s vychýleným spoilerem. V příslušných přílohách čtenář najde chybějící hodnoty pro určité druhy konfigurace, toto je dáno chybami síťování nebo geometrie.

Konfigurace AOA 0,55;0,0010,55;0,05 0,55;0,10,55;0,150,6;0,0010,6;0,05 0 0,0861 0,0811 0,59370,0954 1,6845 0,8139 3 0,22700,27000,10830,14260,45830,71486 0,52930,0804 0,08510,0736 0,21480,0539 9 0,07550,0780 0,07240,25020,0939 0,2191 120,0464 0,0463 0,4614 0,0108 0,4056 0,0838 0,0153 0,0145 2,30580,00870,3010143,7505 160,0047 0,0039 0,0035 0,0024 7,1992 2,7584

Tabulka 4.1: Porovnání linearity jednotlivých konfigurací pomocí metody nejmenších čtverců

Tabulka 4.2: Porovnání linearity jednotlivých konfigurací pomocí metody nejmenších čtverců

	Konfigurace						
AOA	$0,\!6;\!0,\!1$	$0,\!6;\!0,\!15$	$0,\!65;\!0,\!15$	0,7;0,001	0,7;0,05	0,7;0,1	0,7;0,15
0	0,5289	$0,\!2543$	$0,\!1917$	0,0428	0,0419	$0,\!0345$	$0,\!0675$
3	$0,\!0659$	$0,\!0710$	$0,\!2764$	0,0326	0,0259	0,0356	$0,\!0410$
6	$0,\!0450$	$0,\!1304$	$0,\!4180$	0,0194	0,0221	0,0189	$0,\!0170$
9	$0,\!0435$	$0,\!0434$	$1,\!1074$	0,0133	0,0158	0,4232	$0,\!0089$
12	$0,\!0261$	1,7165	$0,\!0131$	0,0304	0,0060	$0,\!0055$	$0,\!0041$
14	0,5653	$0,\!0049$	$0,\!0024$	$0,\!0375$	0,0037	$0,\!0030$	$0,\!0067$
16	$0,\!9577$	$2,\!6087$	2,7235	0,0129	0,0086	0,0125	$0,\!0170$
18						0,0260	

5. Prandtl-Glauert.

Předběžný výpočet rozložení vztlaku podél rozpětí s vychýleným spoilerem provedeme pomocí programu Glauert vytvořený panem Martinem Proksem, který je založen na principu rešení Glauertovou metodou Prandtlové integro-diferenciální rovnici. Vychýlený spoiler bude reprezentován změnou hodnot součinitele vztlaku a směrnice vztlakové čáry u jednotlivých řezů křídla dle hodnot, které byly obdržené v předchozích kapitolách. V výzkumných zprávách a další literatuře jsme nenašli žádná doporučení ohledně rozpětí spoileru, proto hodnotu rozpětí budeme odhadovat na základě letounu Radhawk (KOHLMAN, 1977) a původní velikosti křidélka JA-100 "Advanced".

5.1 První případ. Geometrie dle křidélka.

První případ výpočtu bude odpovídat rozpětí původního křidélka. Potřebné geometrické hodnoty odečteme z mušky letounu JA-100. Souřadnice kořene spoileru vůči ose symetrie letounu dle výkresu $\eta_{in} = 1,83m$, konec spoileru $\eta_{out} = 3,19m$. Potřebné hodnoty stoupání vztlakových čar a úhly nulového vztlaku pro různé výchylky spoileru jsou uvedeny v tabulce 5.1 a grafu 5.1.

Klopivý moment m_x spočítáme pomocí numerického integrování místních součinitelů vztlaků. Součinitel klopivého momentu potom bude

$$m_x = \frac{-1}{8S_{kr}l_{kr}} \cdot \sum_{j=0}^{2m-1} (c_{yj+1} + c_{yi})(z_{j+1} + z_j)(b_{j+1} + b_j)(z_{j+1} - z_j),$$

kde m je počet panelů na které se dělí polokřídlo. Charakteristika, která popisuje klonící charakteristiky letounu je tzv. šroubovice - Helix angle, který se spočte jako

$$\frac{pb}{2V} = -\frac{m_x}{m_{lp}}$$

kde m_{lp} je součinitel tlumení klonění. Tuto hodnotu je možné orientačně spočítat ze vztahu, které se uvádí v (GUDMUNDSSON, 2014) jako

$$m_{lp} = -\frac{(C_L^{\alpha} + C_{D0})b_0 l}{24S} \cdot (1 + 3\eta),$$

kde C_L^{α} je stoupání vztlakové čáry křídla, ten spočteme také pomocí výpočtu v programu Glauert, C_{D0} je odpor křídla při nulovém úhlu náběhu, ten odečteme z grafu v (VRCHOTA, 2008), b_0 je hloubka kořenového profilu křídla, S je plocha křídla a η je hodnota zúžení.

$$m_{lp} = -\frac{(4,419 + 0,0395)1,434 \cdot 6,8}{24 \cdot 8,2348} \cdot (1 + 3 \cdot 0,689) = -0,06751/rad$$

Výsledné hodnoty m_x , C_L křídla, indkukovaného odporu C_{xi} a Helix angle pb/2V jsou uvedeny v tabulce.

Druhý případ je rozpětí spoileru 0,6 l/2 dle zkušenosti projektu Redhawk (?). Výsledné hodnoty a graf je také uveden v tabulce.
Výchylka [0]	Lift-curve-slope[1/rad]	Alpha_0[rad]	Alpha_0[o]
0	6,069	-0.0742	-4,250
2	$5,\!408$	-0,062	$-3,\!558$
5	$5,\!290$	-0,044	-2,521
10	$5,\!637$	-0,003	-0,191
15	$5,\!625$	0,016	0,911
20	5,562	$0,\!032$	$1,\!830$
25	$5,\!492$	$0,\!047$	$2,\!686$
30	$5,\!419$	0,062	3,573
35	5,283	$0,\!077$	4,400
40	5,228	$0,\!091$	5,192
45	$5,\!114$	$0,\!103$	5,910
50	$4,\!685$	$0,\!107$	6,138
55	4,597	$0,\!121$	6,926

Tabulka 5.1: Hodnoty potřebné k řešení Glauertovou metodou Prandtlové rovnici Výchylka [o] | Lift-curve-slope[1/rad] | Alpha_0[rad] | Alpha_0[o]

Tabulka 5.2: Závislost charakteristik klonění na výchylce spoileru. AOA=0; $0,4\cdot l/2$

Výchylkla [o]	mx	Clkridla	Cxi	pb/2V[1/rad]	p[rad/s]	p[o/s]
0,0000	0,0000	$0,\!3279$	$0,\!0062$	0,0000	0,0000	$0,\!0000$
$2,\!0000$	0,0018	$0,\!3144$	$0,\!0057$	0,0027	0,0196	$1,\!1234$
$5,\!0000$	0,0038	$0,\!3007$	$0,\!0054$	$0,\!0056$	$0,\!0414$	$2,\!3717$
10,0000	0,0080	0,2723	$0,\!0051$	0,0119	$0,\!0871$	$4,\!9931$
$15,\!0000$	0,0100	0,2582	0,0053	0,0148	0,1089	$6,\!2414$
20,0000	0,0118	$0,\!2463$	$0,\!0055$	0,0175	$0,\!1285$	$7,\!3648$
$25,\!0000$	0,0134	$0,\!2354$	$0,\!0058$	0,0199	0,1460	$8,\!3634$
30,0000	0,0150	0,2246	$0,\!0062$	0,0222	0,1634	$9,\!3621$
$35,\!0000$	0,0165	0,2141	$0,\!0067$	0,0244	$0,\!1797$	10,2983
40,0000	0,0179	0,2043	$0,\!0072$	0,0265	$0,\!1950$	$11,\!1721$
$45,\!0000$	0,0191	$0,\!1962$	$0,\!0077$	0,0283	0,2081	$11,\!9210$
50,0000	0,0192	$0,\!1957$	$0,\!0077$	0,0284	0,2092	$11,\!9834$
55,0000	0,0204	$0,\!1869$	$0,\!0084$	0,0302	0,2222	12,7324

Tabulka 5.3: Závislost charakteristik klonění na výchylce spoileru. AOA=6; $0,4\cdot l/2$

Výchylkla [o]	mx	Clkridla	Cxi	pb/2V[1/rad]	p[rad/s]	p[o/s]
0,0000	0,0000	0,7906	0,0362	0,0000	0,0000	$0,\!0000$
2,0000	0,0025	0,7705	0,0343	0,0037	$0,\!0272$	$1,\!5603$
$5,\!0000$	0,0047	0,7556	0,0331	$0,\!0070$	$0,\!0512$	$2,\!9334$
10,0000	0,0084	0,7307	0,0316	0,0124	$0,\!0915$	$5,\!2428$
$15,\!0000$	0,0105	0,7165	0,0309	0,0156	$0,\!1144$	$6,\!5534$
20,0000	0,0123	0,7040	0,0304	0,0182	0,1340	$7,\!6769$
$25,\!0000$	0,0140	$0,\!6924$	$0,\!0301$	0,0207	$0,\!1525$	8,7379
30,0000	0,0157	$0,\!6808$	0,0299	0,0233	$0,\!1710$	9,7990
$35,\!0000$	0,0174	$0,\!6688$	0,0298	0,0258	$0,\!1895$	10,8600
40,0000	0,0189	$0,\!6584$	0,0298	0,0280	0,2059	11,7962
45,0000	0,0203	$0,\!6492$	0,0299	0,0301	0,2211	$12,\!6700$
50,0000	0,0211	$0,\!6437$	$0,\!0300$	0,0313	0,2298	13,1693
$55,\!0000$	0,0225	$0,\!6338$	0,0302	0,0333	$0,\!2451$	$14,\!0431$

Obrázek 5.1: Vztlakové čáry v závislosti na úhlu vychýlení spoileru. $0,6\,\mathrm{b}$

Tabulka 5.4: Závislost charakteristik klonění na výchylce spoileru. AOA=0; $0,6\cdot l/2$

Výchylkla [o]	mx	Clkridla	Cxi	pb/2V[1/rad]	p[rad/s]	p[o/s]
$0,\!0000$	0,0000	$0,\!3279$	0,0062	0,0000	0,0000	$0,\!0000$
2,0000	0,0026	$0,\!3052$	$0,\!0055$	0,0039	0,0283	$1,\!6228$
$5,\!0000$	0,0054	0,2826	0,0049	0,0080	0,0588	$3,\!3703$
10,0000	0,0113	$0,\!2353$	0,0046	0,0167	0,1231	$7,\!0527$
$15,\!0000$	0,0142	0,2119	0,0048	0,0210	0,1547	$8,\!8627$
20,0000	0,0166	$0,\!1924$	$0,\!0052$	0,0246	0,1808	10,3607
$25,\!0000$	0,0188	$0,\!1743$	$0,\!0057$	0,0279	0,2048	11,7338
30,0000	0,0210	$0,\!1565$	0,0063	0,0311	0,2288	$13,\!1069$
$35,\!0000$	0,0231	$0,\!1394$	0,0071	0,0342	0,2516	$14,\!4176$
40,0000	0,0251	$0,\!1233$	0,0079	0,0372	0,2734	$15,\!6658$
45,0000	0,0267	$0,\!1104$	0,0087	0,0396	0,2908	$16,\!6645$
50,0000	0,0266	$0,\!1107$	0,0086	0,0394	0,2898	$16,\!6020$
55,0000	0,0283	$0,\!0966$	0,0095	$0,\!0419$	0,3083	$17,\!6631$

rasama s.s. Ba	101000 0110	21 GIL 0 01 10 011	i monom	na (jenjice spoi	ior di Trott	0, 0, 0, 1/2
Výchylkla [o]	mx	Clkridla	Cxi	pb/2V[1/rad]	p[rad/s]	p[o/s]
0	0,000	0,7906	0,0362	0,0000	0,0000	$0,\!0000$
2	0,0038	0,7682	0,0343	$0,\!0056$	$0,\!0414$	$2,\!3717$
5	0,0069	0,7434	0,0325	0,0102	$0,\!0752$	$4,\!3065$
10	0,012	0,7024	0,0300	0,0178	$0,\!1307$	$7,\!4896$
15	0,0149	$0,\!6789$	0,0290	0,0221	0,1623	$9,\!2996$
20	0,0174	$0,\!6582$	0,0283	0,0258	$0,\!1895$	10,8600
25	0,0198	$0,\!6388$	0,0278	0,0293	0,2157	$12,\!3579$
30	0,0222	$0,\!6197$	$0,\!0275$	0,0329	0,2418	$13,\!8558$
35	0,0246	$0,\!6001$	0,0274	0,0364	0,2680	$15,\!3538$
40	0,0267	0,5829	0,0274	0,0396	0,2908	$16,\!6645$
45	0,0285	0,5678	$0,\!0275$	0,0422	$0,\!3105$	17,7879
50	0,0295	0,5596	0,0277	$0,\!0437$	$0,\!3214$	18,4120
55	0,0315	0,5436	0,0280	$0,\!0467$	$0,\!3431$	$19,\!6603$

Tabulka 5.5: Závislost charakteristik klonění na výchylce spoileru. AOA=6; $0,6\cdot l/2$

Součinitel indukovaného odporu pří AOA=0 stupňů klesá jenom do výchylky spoileru 15 stupňů, pro úhel náběhu AOA=6 tento součinitel klesá až do výchylky 40 stupňů. Pokles indukovaného odporu je velice důležitým faktorem funkčnosti celého systému řízení pomocí spoilerů, neboť právě toto musí zabezpečit přibližně stejný (nebo alespoň jen mírný nárůst) součinitel celkového odporu, aby nevznikal další nežádoucí účinek od zatačivého momentu navíc k tomu, který vzniká při rotaci letounu kolem podélné osy. Výsledné hodnoty úhlové rychlosti kolem podélné osy mají očekávaně relativně lineární průběh. Zlom směrnice nastává v obou případech při výchylce spoileru 10 stupňů. Celkově charakter průběhu teto charakteristiky odpovídá stejným grafům, které jsou uvedeny v (SPAHR, 1947).

6. 3D model.

Posledním krokem našeho návrhu bude simulace 3D modelu 6.1; 6.4 křídla se spoilerem v programu FLUENT. Kořen křídla je vetknut do stěny. Výpočtový prostor tvoří čtvrt koule o poloměru 20m s navazujícím protažením o délce 20m. Spoiler je umístěn v 0,6b hloubky jednotlivých řezů křídla s konstantní štěrbinou po celém rozpětí spoileru. Geometrické charakteristiky křídla jsou uvedeny v 2.1. Tento model křídla zcela kopíruje příslušnou geometrii křídla letounu JA-100. Křídlo má úhel vzepětí 3,96 stupňů a úhel náběžné hrany 2,37 stupňů. Bohužel omezené výpočtové kapacity v případě síťování neumožňují vytvořit kvalitní výpočtovou síť pro 3D model, proto výsledky budou očekávaně zatížené velkou chybou, ale tato simulace má za cíl ukázat tendence lineárního poklesu součinitele vztlaku a nárůstu součinitele moment klonění. Výpočtová síť v průměru se stává z 6872980 elementů 6.2; 6.3 Velikost elementů na povrchu křídla a spoileru: 0,02m. Velikost maximálního elementů v síti: 1m. Pro naši simulaci bude použít stejný model turbulence k- ω SST, jak jsme to popsali v předchozích kapitolách. Vzhledem k velké náročnosti vytváření sítě v případě 3D modelu bezrozměrná výška buňky v blízkosti stěny byla nastavena na hodnotu $y^+ \sim 30$. Tato hodnota odpovídá vysokoreynoldsovým modelům, ale (AnsysInc.) uvádí, že k- ω SST má možnost automatického určování hodnoty y^+ a následného přepínání používaného zákona stěny. Výsledky simulace pro případ nulového úhlu náběhu a rozpětí spoileru 0,4l je uveden v tabulce a grafu 6.5

Tabulka 6.1: Tendence změny aerodynamických součinitelů s výchylkou spoileru pro ${\rm AOA}{=}0.~0.4{\rm l}/2$

Výchylka	CL	CD	mx
0	0,2420	$0,\!0325$	0,0000
15	$0,\!1556$	0,0386	$0,\!0550$
25	0,1024	0,0428	0,0900
35	$0,\!0722$	0,0489	0,1093
45	0,0239	$0,\!0545$	0,1394
55	-0,0024	0,0618	$0,\!1568$

Obrázek 6.1: 3D Geometrie výpočtového prostoru

Obrázek 6.2: 3D Výpočtová síť

Obrázek 6.3: Výpočtová síť v blízkosti spoileru

Obrázek 6.4: 3 D
 Geometrie křídla se spoilerem $% \left({{{\rm{S}}} {{\rm{B}}} {{\rm{A}}} {{\rm{B}}} {{\rm{A}}} {{\rm{B}}} {{\rm{B}$

Obrázek 6.5: Tendence změny CL,CD a mx s výchylkou spoileru pr
o $\mathrm{AOA}{=}0$

7. Závěr

Cílem teto diplomové práce bylo ověřit možnost náhrady křidelek spoilery v roli prostředků příčného řízení na základě letounu JA-100 "Advanced" a profilu Clark-Ymod. 2D simulace s různou konfiguraci uspořádání spoileru vůči profilu potvrdily očekávané chování sledovaných aerodynamických součinitelů dle (BA-DYAGIN a F.A., 1978), (?), (KOHLMAN, 1977) aj. Lineární charakter klesání součinitele vztlaku byl výrazným způsobem ovlivněn polohou závěsového bodu po hloubce. Bližší poloha spoileru k náběžnému bodu výrazně snižuje lineárnost klesání součinitele vztlaku, ale na druhou stranu snižuje se maximální úhel náběhu při kterém spoiler ještě zůstává funkční. Tak při poloze spoileru 0,7b a úhlu náběhu byl pozorován reverz (nárůst součinitele vztlaku) dokonce i při maximální štěrbině 0,015m, což odpovídá výstrahám obsazeným v (BADYAGIN a F.A., 1978). 7.1. Růst štěrbiny také očekávaně pozitivně působil na lineárnost změny součinitele.

Při poloze spoileru 0,55b úhel náběhu 18 stupňů se znova stává "funkční", ale tady pozorujeme další nevhodný jev popsaný v (BADYAGIN a F.A., 1978). Při malých úhlech náběhu a velké výchylce spoileru: 55 stupňů dochází k prudkému nepředvídatelnému růstu součinitele vztlaku. Dle tunelových měření a zkušenosti s letouny MU-2 a Redhawk maximální výchylka spoileru nesmí přesahovat 50 stupňů. (BADYAGIN a F.A., 1978).

Výsledky velikosti součinitele klonivého momentu dosažené pomocí Glauertovo řešení Prandtlové integro-diferenciální rovnice dává řádově shodné výsledky s (FRED, 1932), kde bylo provedeno měření profilu Clark-Y s polohou spoileru v blízkosti náběžného bodu, což nevhodně ovlivňovalo lineárnost průběhu součinitele klonivého momentu, ale přesto výzkum ukázal schopnost spoileru vyvolávat potřebné momenty. Bohužel, velká náročnost 3D síťování a výpočtu neumožnilo provést simulaci obtékání celého křídla s odpovídající přesnosti, ale přesto bylo ukázáno, že pokles vztlaku a nárůst součinitele klonění také má lineární charakter. Vážným celkovým neúspěchem diplomové práce je skutečnost, že nebyl prokázán jev dle (BADYAGIN a F.A., 1978) o kompenzaci nárůstu tlakového odporu poklesem odporu indukovaného vlivem poklesu tlaku na křídle. Graf 6.1 ukazuje postupný růst součinitele vztlaku s výchylkou kormidla i když ne tak prudký, jak se očekávalo. Spolu s nárůstem zatáčivého momentu při klonění tato skutečnost může vest k nepoužitelnosti celého systému příčného řízení.

Celkově se ukázala velká časová a výpočtová náročnost návrhu systému řízení pomocí spoilerů, přestože v současné době jsou přístupné některá tunelová měření a jsou známe základní souvislosti mezi konfiguraci spoileru vůči křídlu tyto znalosti neumožňují navrhovat vhodné pro příčné řízení uspořádaní na bázi standardních výpočtových kapacit. Abychom zabezpečili správné fungování systému řízení je potřeba eliminovat všechny možnosti reverze při velkých úhlech náběhu nebo při velkých výchylkách spoileru, tyto jevy závisí nejen na geometrii spoileru, ale také výrazně na geometrii vlastního profilu a nemůžou být předpověděny analytický. Návrh tohoto systému řízení vyžaduje velké výpočtové výkony, neboť výkony, které byly k dispozici při tvorbě teto diplomové práce neumožnily ani porovnat výsledné charakteristiky Prandl-Glauerta a 3D modelování ve FLU-ENTu. S ohledem na všechno výše uvedené jsme dospěli k závěru, že nahrazení křidelek spoilery u tak malých letounu, jakým je JA-100, které vyrábějí malé firmy nemající možnost zabezpečit dostatečné výpočtové kapacity není účinné. Přesto taková náhrada u větších specializovaných letounu tento systém může přinášet určité výhody za podmínky existence dostatečných výpočtových a časových zdrojů, které by takový návrh umožnily.

Obrázek 7.1: Závislost součinitele vztlaku na výchylce kormidla. Závěsová os
a $0,7\mathrm{b};$ štěrbina $0,015\mathrm{m}$

Obrázek 7.2: Závislost součinitele vztlaku na výchylce kormidla. Závěsová os
a $0,55\mathrm{b};$ štěrbina $0,015\mathrm{m}$

Seznam použité literatury

A.A.ANIKEYEV, A.M.MOLCHANOV a YANYSHEV, D. Zákkadý výpočtového tepelné výměny a hydrodynamiky.

ANSYSINC. Ansys Fluent tutorial.

- ATHADKAR, M. a DESAI, S. S. (2014.). Importance of the extent of far-field boundaries and of the grid topology in the cfd simulation of external flows. Siddaganga Institute of Technology. Tumkur.
- BADYAGIN, A. a F.A., M. (1978). Projektování lehkých letounu. Mašinostrojenije, Moskva.
- BROŽ, V. (1990). Aerodynamika nizkých rychlosti. Ediční středisko ČVUT, Praha.
- DR.LEYLAND, P. a WILHELM, P. (2011). Introduction to structured grid generation for aeronautics. *Interdisciplinary Aerodynamics Group (IAG)*. Swiss Institute of Technology Lausanne.Semester Project, page 35.
- FRED, E. W. (1932). Preliminary investigation of rolling moments obtained with spoilers on both slotted and plan wing. NACA Technical Notes, (415).
- FRED, E. W. a JOSEPH, A. S. (1933). Wind-tunnel research comparing lateral control devices, particularly at high angles of attack. v-spoilers and ailerons on rectangular wings. NACA Technical Notes, (439).
- FRED, E. W. a JOSEPH, A. S. (1935). Development of the N.A.C.A. slot-lip aileron. NACA Technical Notes, (547).
- GUDMUNDSSON, S. (2014). GENERAL AVIATION AIRCRAFT DESIGN: APPLIED METHODS AND PROCEDURES. First edition. ELSEVIER. ISBN 978-0-12-397308-5.
- JACK, F. a VITO, T. (1947). Investigation of effect of span, spanwise location, and chordwise location of spoilers on lateral control characteristics of a tapered wing. *NACA Wartime report*, (1294).
- J.BLAZEK (2001). Computational Fluid Dynamics: Principles and Applications. First edition. ELSEVIER. ISBN 0 08 043009 0.
- KOHLMAN, D. L. (1977). Flight test results for an advanced technology light airplane. AIAA Paper, (77-1217).
- LAWRANCE, A. C. a WILLIAM, H. M. (1942). Flight 1v1easurements of the lateral control characteristics of an airplane equipped with a combination aileron -spoiler control system. *NACA Wartime report*.
- MALÁSEK, I. T. (2011). Typový návrh letounu skyleader 100 advanced. technická zpráva. ČESKÉ VÝSOKÉ UČENÍ TECHNICÉ V PRAZE., (TZP/ULT/20/11), 7.

- ROSKAM, J., KOHLMAN, D. a WENTZ, W. (1974). Spoilers for roll control of light airplanes. *AIAA Paper*, (74-861).
- SPAHR, J. R. (1947). Lateral-control characteristics of various spoiler arrangements as measured in flight. NACA Technical Notes, (1123).
- SPAHR, J. R. a CHRISTOPHERSEN, D. R. (1943). Measurements in flight of the stability, lateralcontrol, and stalling characteristics of an airplane equipped with full-span zap flaps and spoiler-type ailerons. *NACA Wartime report*.
- SPALART, P. R. a RUMSEY, C. L. Effective inflow conditions for turbulence models in aerodynamic calculations. *American Institute of Aeronautics and Astronautics*.
- VRCHOTA, I. P. (2008). Aerodynamický návrh nosných ploch rodiny letounů. dílčí zpráva. zpráva je součástí: Fi-im5/044. ČESKÉ VÝSOKÉ UČENÍ TECH-NICÉ V PRAZE., (VZP/ULT/15/08), 54.
- VRCHOTA, I. P. (2009). Aerostatický výpočet letounu skyleader 100. roční zpráva. zpráva je součástí: Fi-im5/044. ČESKÉ VÝSOKÉ UČENÍ TECHNICÉ V PRAZE., (RZP/ULT/49/2009), 33.
- WEICK, W. (1975). Effectiveness of spoilers on the ga(w)-1 airfoil with a high performance fowler flap. WICHITA STATE UNIVERSITY. NACA CONTRACTOR REPORT, (NASA CR-2538).
- WILCOX, D. C. (2006). Turbulence Modeling for CFD. Third Edition. DCW Industries. ISBN 978-1-928729-08-2.

Přílohy

- 1. Příloha 1
- 2. Příloha 2
- 3. Příloha 3
- 4. Příloha 4
- 5. Příloha 5
- 6. Příloha 6
- 7. Příloha 7
- 8. Příloha 8

Příloha 1. Souřadnice profilu Clark-Ymod

X/b	Y/b	$\rm Z/b$	X/b	Y/b	Z/b
1.0	0.000819	0.0	0.000502	-0.00596	0.0
0.989999	0.003689	0.0	0.002003	-0.0103	0.0
0.979999	0.006554	0.0	0.004004	-0.01406	0.0
0.969998	0.009405	0.0	0.008006	-0.01941	0.0
0.959997	0.012236	0.0	0.012007	-0.02334	0.0
0.939996	0.017813	0.0	0.02001	-0.02862	0.0
0.919995	0.023261	0.0	0.030012	-0.03278	0.0
0.899994	0.028585	0.0	0.040014	-0.03616	0.0
0.879993	0.03379	0.0	0.050015	-0.03891	0.0
0.859992	0.038876	0.0	0.060016	-0.04101	0.0
0.839991	0.043836	0.0	0.080018	-0.04399	0.0
0.81999	0.048668	0.0	0.10002	-0.04628	0.0
0.799989	0.053368	0.0	0.120021	-0.048	0.0
0.779988	0.057932	0.0	0.140022	-0.04921	0.0
0.759987	0.062359	0.0	0.160023	-0.04998	0.0
0.739986	0.066646	0.0	0.180024	-0.05038	0.0
0.719985	0.070794	0.0	0.200024	-0.05045	0.0
0.699984	0.0748	0.0	0.220025	-0.05024	0.0
0.679983	0.078663	0.0	0.240025	-0.04981	0.0
0.659983	0.08237	0.0	0.260025	-0.04921	0.0
0.639982	0.085909	0.0	0.280025	-0.04849	0.0
0.619981	0.089265	0.0	0.300025	-0.04772	0.0
0.59998	0.092425	0.0	0.320025	-0.04692	0.0
0.57998	0.095377	0.0	0.340025	-0.04611	0.0
0.559979	0.098117	0.0	0.360025	-0.04526	0.0
0.539979	0.100645	0.0	0.380025	-0.04438	0.0
0.519978	0.10296	0.0	0.400025	-0.04346	0.0
0.499977	0.105062	0.0	0.420024	-0.04249	0.0
0.479977	0.106948	0.0	0.440024	-0.04147	0.0
0.459976	0.108603	0.0	0.460023	-0.0404	0.0
0.439976	0.110009	0.0	0.480023	-0.03929	0.0
0.419976	0.111147	0.0	0.500023	-0.03815	0.0
0.399975	0.111997	0.0	0.520022	-0.03698	0.0
0.379975	0.112544	0.0	0.540021	-0.03577	0.0
0.359975	0.112801	0.0	0.560021	-0.03453	0.0
0.339975	0.112795	0.0	0.58002	-0.03326	0.0
0.319975	0.112549	0.0	0.60002	-0.03195	0.0
0.299975	0.112088	0.0	0.620019	-0.03062	0.0
0.279975	0.111425	0.0	0.640018	-0.02925	0.0
0.259975	0.110476	0.0	0.660017	-0.02786	0.0
0.239975	0.109122	0.0	0.680017	-0.02643	0.0
0.219975	0.10724	0.0	0.700016	-0.02499	0.0

0.199976	0.104706	0.0	0.720015	-0.02352	0.0
0.179976	0.101403	0.0	0.740014	-0.02203	0.0
0.159977	0.097303	0.0	0.760013	-0.02052	0.0
0.139978	0.092409	0.0	0.780012	-0.01899	0.0
0.119979	0.086662	0.0	0.800011	-0.01743	0.0
0.09998	0.079904	0.0	0.82001	-0.01586	0.0
0.079982	0.071967	0.0	0.840009	-0.01426	0.0
0.059984	0.062646	0.0	0.860008	-0.01264	0.0
0.049985	0.057146	0.0	0.880007	-0.01101	0.0
0.039986	0.050779	0.0	0.900006	-0.00936	0.0
0.029988	0.043204	0.0	0.920005	-0.00768	0.0
0.01999	0.03373	0.0	0.940004	-0.00599	0.0
0.011992	0.024236	0.0	0.960003	-0.00428	0.0
0.007994	0.018869	0.0	0.970002	-0.00342	0.0
0.003996	0.012486	0.0	0.980001	-0.00255	0.0
0.001997	0.008299	0.0	0.990001	-0.00169	0.0
0.000998	0.005503	0.0	1.0	-0.00082	0.0
0.000498	0.003626	0.0			
0.0	0.000427	0.0			

Příloha 2. Souřadnice profilu GA(W)-1

X/b	Y/b	Z/b	X/b	Y/b	Z/b
1.00000	-0.00074	0.0	0.00200	-0.00974	0.0
0.97500	0.00604	0.0	0.00500	-0.01444	0.0
0.95000	0.01287	0.0	0.01250	-0.02052	0.0
0.92500	0.01965	0.0	0.02500	-0.02691	0.0
0.90000	0.02639	0.0	0.03750	-0.03191	0.0
0.87500	0.03313	0.0	0.05000	-0.03569	0.0
0.85000	0.03983	0.0	0.07500	-0.04209	0.0
0.82500	0.04644	0.0	0.10000	-0.04700	0.0
0.80000	0.05291	0.0	0.12500	-0.05087	0.0
0.77500	0.05913	0.0	0.15000	-0.05426	0.0
0.75000	0.06517	0.0	0.17500	-0.05700	0.0
0.72500	0.07096	0.0	0.20000	-0.05926	0.0
0.70000	0.07639	0.0	0.25000	-0.06265	0.0
0.67500	0.08144	0.0	0.30000	-0.06448	0.0
0.65000	0.08604	0.0	0.35000	-0.06517	0.0
0.62500	0.09013	0.0	0.40000	-0.06483	0.0
0.60000	0.09374	0.0	0.45000	-0.06344	0.0
0.57500	0.09674	0.0	0.50000	-0.06091	0.0
0.55000	0.09917	0.0	0.55000	-0.05683	0.0
0.50000	0.10269	0.0	0.57500	-0.05396	0.0
0.45000	0.10456	0.0	0.60000	-0.05061	0.0
0.40000	0.10500	0.0	0.62500	-0.04678	0.0
0.35000	0.10409	0.0	0.65000	-0.04265	0.0
0.30000	0.10169	0.0	0.67500	-0.03830	0.0
0.25000	0.09778	0.0	0.70000	-0.03383	0.0
0.20000	0.09209	0.0	0.72500	-0.02930	0.0
0.17500	0.08848	0.0	0.75000	-0.02461	0.0
0.15000	0.08413	0.0	0.77500	-0.02030	0.0
0.12500	0.07909	0.0	0.80000	-0.01587	0.0
0.10000	0.07309	0.0	0.82500	-0.01191	0.0
0.07500	0.06561	0.0	0.85000	-0.00852	0.0
0.05000	0.05600	0.0	0.87500	-0.00565	0.0
0.03750	0.04974	0.0	0.90000	-0.00352	0.0
0.02500	0.04165	0.0	0.92500	-0.00248	0.0
0.01250	0.03069	0.0	0.95000	-0.00257	0.0
0.00500	0.02035	0.0	0.97500	-0.00396	0.0
0.00200	0.01300	0.0	1.00000	-0.00783	0.0
0.00000	0.00000	0.0			
0.279975	0.111425	0.0	0.640018	-0.02925	0.0
0.259975	0.110476	0.0	0.660017	-0.02786	0.0
0.239975	0.109122	0.0	0.680017	-0.02643	0.0
0.219975	0.10724	0.0	0.700016	-0.02499	0.0

0.199976	0.104706	0.0	0.720015	-0.02352	0.0
0.179976	0.101403	0.0	0.740014	-0.02203	0.0
0.159977	0.097303	0.0	0.760013	-0.02052	0.0
0.139978	0.092409	0.0	0.780012	-0.01899	0.0
0.119979	0.086662	0.0	0.800011	-0.01743	0.0
0.09998	0.079904	0.0	0.82001	-0.01586	0.0
0.079982	0.071967	0.0	0.840009	-0.01426	0.0
0.059984	0.062646	0.0	0.860008	-0.01264	0.0
0.049985	0.057146	0.0	0.880007	-0.01101	0.0
0.039986	0.050779	0.0	0.900006	-0.00936	0.0
0.029988	0.043204	0.0	0.920005	-0.00768	0.0
0.01999	0.03373	0.0	0.940004	-0.00599	0.0
0.011992	0.024236	0.0	0.960003	-0.00428	0.0
0.007994	0.018869	0.0	0.970002	-0.00342	0.0
0.003996	0.012486	0.0	0.980001	-0.00255	0.0
0.001997	0.008299	0.0	0.990001	-0.00169	0.0
0.000998	0.005503	0.0	1.0	-0.00082	0.0
0.000498	0.003626	0.0			
0.0	0.000427	0.0			

Příloha 3. Aerodynamické charakteristiky profilu. Závěsový bod 0,7b

		Šte	rbina 0,0	$01\mathrm{m}$	Štei	bina 0,00	$05\mathrm{m}$
AOA [0]	Výchylka [0]	CL	CD	CM	CL	CD	CM
0	2	0,3381	$0,\!0075$	0,1573	$0,\!3354$	0,0076	0,1561
3	2	$0,\!6564$	$0,\!0096$	0,2347	$0,\!6196$	0,0093	0,2184
6	2	0,9278	$0,\!0134$	0,2937	0,9288	0,0131	0,2937
9	2	1,2098	$0,\!0178$	$0,\!3569$	1,2164	0,0179	0,3596
12	2	$1,\!6311$	$0,\!0868$	0,5154	$1,\!4542$	0,0263	0,4095
14	2	$1,\!8486$	$0,\!0326$	0,5340	1,5861	0,0332	$0,\!4320$
16	2	1,7001	$0,\!0412$	$0,\!4511$	$1,\!6993$	0,0414	$0,\!4512$
18	2	1,7019	$0,\!0547$	$0,\!4384$	$1,\!3814$	$0,\!0397$	0,3682
20	2	$1,\!6931$	$0,\!0770$	$0,\!4352$	1,7066	$0,\!0755$	$0,\!4373$
0	5	0,2676	$0,\!0119$	0,1314			
3	5	0,5594	$0,\!0133$	0,1983	0,5396	$0,\!0136$	0,1909
6	5	$0,\!8374$	$0,\!0173$	0,2607	$0,\!8344$	$0,\!0170$	0,2596
9	5	$1,\!1345$	$0,\!0209$	$0,\!3311$	$1,\!1363$	0,0208	$0,\!3316$
12	5	$1,\!4201$	$0,\!0263$	$0,\!3965$	1,4205	$0,\!0263$	$0,\!3967$
14	5	1,5725	$0,\!0336$	$0,\!4279$	1,5701	$0,\!0335$	$0,\!4269$
16	5	1,7088	$0,\!0408$	$0,\!4541$	$1,\!6990$	$0,\!0413$	$0,\!4512$
18	5	1,7399	$0,\!0557$	$0,\!4526$	1,7410	$0,\!0558$	$0,\!4531$
20	5	1,7201	$0,\!0753$	$0,\!4421$	1,5851	$0,\!0871$	0,4118
0	10	$0,\!0832$	$0,\!0184$	0,0603	$0,\!0737$	0,0188	$0,\!0557$
3	10	$0,\!3989$	$0,\!0189$	0,1383	$0,\!3932$	0,0186	$0,\!1350$
6	10	0,7090	$0,\!0218$	0,2143	$0,\!6994$	$0,\!0217$	0,2094
9	10	1,0168	$0,\!0249$	0,2882	1,0166	$0,\!0250$	0,2876
12	10	$1,\!3241$	$0,\!0290$	0,3619	$1,\!3247$	$0,\!0296$	0,3623
14	10	1,5090	$0,\!0366$	$0,\!4075$	1,5084	$0,\!0359$	0,4068
16	10	$1,\!6908$	$0,\!0423$	$0,\!4497$	$1,\!6883$	$0,\!0424$	$0,\!4489$
18	10	1,7962	$0,\!0510$	0,4669	1,7753	$0,\!0532$	0,4624
20	10	$1,\!6820$	$0,\!0772$	$0,\!4322$	1,2350	$0,\!1309$	$0,\!3474$
0	15	-0,0501	$0,\!0228$	$0,\!0084$	-0,0548	0,0230	$0,\!0052$
3	15	0,2730	$0,\!0227$	$0,\!0901$	0,2698	$0,\!0225$	$0,\!0873$
6	15	0,5901	$0,\!0256$	0,1689	0,5844	0,0246	0,1651
9	15	0,9113	$0,\!0283$	0,2495	0,9079	0,0281	0,2471
12	15	1,2293	$0,\!0329$	$0,\!3287$	1,2298	$0,\!0326$	0,3280
14	15	$1,\!4299$	$0,\!0380$	$0,\!3787$	$1,\!4413$	$0,\!0392$	0,3838
16	15	$1,\!6409$	$0,\!0450$	$0,\!4347$	$1,\!6330$	$0,\!0458$	$0,\!4334$
18	15	1,7888	$0,\!0532$	0,4675	1,7725	$0,\!0514$	$0,\!4595$
20	15	1,7311	$0,\!0743$	$0,\!4455$	$1,\!3856$	$0,\!0834$	$0,\!3499$
0	20	-0,1607	$0,\!0275$	-0,0343	-0,1609	0,0280	-0,0357
3	20	0,1629	$0,\!0268$	$0,\!0478$	0,1591	$0,\!0270$	$0,\!0447$
6	20	$0,\!4890$	0,0291	0,1313	$0,\!4829$	0,0297	0,1274

9	20	0,8065	$0,\!0322$	0,2108	$0,\!8067$	0,0322	0,2096
12	20	1,1273	$0,\!0361$	0,2916	$1,\!1270$	$0,\!0360$	0,2905
14	20	1,3503	0,0417	0,3515	1,3399	0,0404	0,3456
16	20	1,5931	0,0494	0,4232	1,5506	0.0458	0,4007
18	20	1,7636	$0,\!0547$	0,4604	1,7325	$0,\!0527$	0,4466
20	20	1,7620	0,0790	0,4610	1,5826	0,0845	0,4080
0	25	-0,2591	0,0327	-0,0717	-0,2569	0,0336	-0,0721
3	25	0,0616	0,0315	0,0086	0,0612	0.0325	0,0081
6	25	0,3850	0,0343	0,0920	0,3825	0,0338	0,0890
9	25	0,7109	0,0376	0,1765	0,7028	0,0369	0,1707
12	25	1,0344	0,0407	0,2589	1,0304	0,0406	0,2560
14	25	1,2548	0,0446	0,3169	1,2563	0,0444	0,3168
16	25	1,4743	0,0498	0,3761	1,4741	0,0493	0,3751
18	25	1,6762	0,0550	0,4280	$1,\!6855$	0,0564	0,4328
20	25	$1,\!6055$	0.0933	0,4295	$1,\!6507$	0.0798	0,4266
0	30	-0.3501	0,0383	-0,1060	-0,3469	0,0391	-0,1061
3	30	-0.0271	0.0385	-0.0227	-0.0287	0.0389	-0.0249
6	30	0,2934	0,0395	0,0589	0,2906	0,0397	0,0561
9	30	0.6169	0.0418	0.1421	0.6168	0.0425	0.1411
12	30	0,9427	0,0457	0,2267	0,9416	0,0455	0,2247
14	30	1,1674	0.0490	0.2868	1.1619	0.0484	0.2831
16	30	1,3976	0,0538	0,3510	1,3931	0,0531	0,3479
18	30	1,6097	0.0584	0,4070	1,6097	0.0582	0,4064
20	30	1,7905	0,0704	0,4635	1,4724	0,0907	0,3815
0	35	-0,4327	0,0444	-0,1366	-0,4285	0,0454	-0,1363
3	35	-0,1166	0,0429	-0.0561	-0,1133	0,0449	-0,0559
6	35	0,2089	0,0449	0,0286	0,2083	0,0459	0,0268
9	35	0,5349	0,0479	0,1138	0,5312	0,0481	0,1107
12	35	0,8558	0,0503	0,1966	0,8559	0,0509	0,1952
14	35	1,0828	0.0538	0.2581	1.0863	0.0551	0.2584
16	35	1,3234	0,0606	0,3281	1,3259	0,0604	0,3280
18	35	1,5415	0,0621	0,3857	1,5446	0,0622	0,3863
20	35	1,6664	0,0804	0,4340	1,7658	0,0735	0,4561
0	40	-0,5075	0,0507	-0,1639	-0,5037	0,0523	-0,1640
3	40	-0,1966	0,0488	-0,0851	-0,1948	0,0503	-0,0862
6	40	0,1311	0,0509	0,0014	0,1324	0,0520	0,0001
9	40	0,4548	0,0536	0,0861	0,4547	0,0545	0,0844
12	40	0,7786	0,0562	0,1708	0,7806	0,0571	0,1700
14	40	1,0008	0,0587	0,2303	0,9971	0,0597	0,2270
16	40	1,2514	0,0646	0,3048	1,2520	0,0657	0,3043
18	40	1,5846	0.0702	0,4223	1,4743	0.0661	0.3640
20	40	$1,\!6943$	0,0789	0,4413	1,5729	0,0875	0,4130
0	45	-0,5739	0,0571	-0,1874	-0,5714	0,0587	-0,1885
3	45	-0,2631	0,0559	-0,1092	-0,2612	0,0589	-0,1095
6	45	0.0609	0,0567	-0,0229	0,0615	0.0586	-0.0245
9	45	0,3857	0,0595	0,0631	0,3806	0,0602	0,0589
12	45	0,7057	0,0619	0,1467	0,7099	0,0633	0,1471
14	45	0,9292	0,0641	0,2071	0,9362	0,0666	0,2089

16	45	1,1798	0,0691	0,2818	1,1848	$0,\!0720$	0,2833
18	45	1,4123	0,0723	0,3471	1,4123	0,0712	0,3456
20	45	1,6220	0,0807	0,4169	$1,\!6111$	0,0847	0,4216
0	50	-0,6314	0,0636	-0,2072	-0,6284	0,0652	-0,2082
3	50	-0,3231	0,0639	-0,1285	-0,3184	0,0656	-0,1287
6	50	-0,0028	0,0629	-0,0442	0.0123	0,0666	-0,0363
9	50	0,3175	0,0653	0,0403	$0,\!3254$	0,0703	0,0428
12	50	$0,\!6394$	0,0681	0,1258	0,6291	0,0661	0,1144
14	50	0,8635	0,0701	0,1867	0,8688	0,0719	0,1871
16	50	1,1158	0,0761	0,2628	1,1153	0,0767	0,2605
18	50	1,3531	0,0781	0,3307	1,3563	0,0783	0,3302
20	50	$1,\!6157$	0,0843	0,4157	1,6107	0,0827	0,4169
0	55	-0,6843	0,0694	-0,2251	-0,6770	0,0715	-0,2244
3	55	-0,3787	0,0699	-0,1471	-0,3740	0,0723	-0,1474
6	55	-0,0588	0,0702	-0,0631	-0,0551	0,0718	-0,0634
9	55	0,2590	0,0722	0,0210	0,2571	0,0725	0,0130
12	55	0,5835	0,0720	0,1062	0,5926	0,0752	0,1104
14	55	0,8016	0,0754	0,1676	0,8100	0,0772	0,1687
16	55	1,0529	0,0793	0,2427	1,0575	0,0835	0,2436
18	55	1,2910	0,0812	0,3111	1,4301	0,0834	0,3867
20	55	1,5681	0,0883	0,4131	1,4961	0,0885	0,3895
		Šte	rbina 0,0	1m	Šter	bina 0,0	$15 \mathrm{m}$
AOA [0]	Výchylka [0]	CL	CD	СМ	CL	CD	CM
0	2	0,3318			0,3273	0,0078	$0,\!1526$
3	2	0,6385			0,6139	0,0093	0,2160
6	2	$0,\!9311$			0,9230	0,0132	0,2913
9	2	1,2194			1,2146	0,0178	$0,\!3588$
12	2	1,4766			1,4738	0,0251	$0,\!4155$
14	2	1,5750			1,5710	0,0341	$0,\!4277$
16	2	$1,\!6939$			$1,\!6810$	0,0424	$0,\!4458$
18	2	1,7634			1,7408	$0,\!0558$	$0,\!4530$
20	2	2,4643			1,7205	0,0746	$0,\!4410$
0	5	0,2342			0,3273	0,0078	$0,\!1526$
3	5	0,5356			0,5102	0,0138	$0,\!1769$
6	5	$0,\!8316$			$0,\!8143$	0,0174	0,2508
9	5	1,1306			1,1268	0,0206	$0,\!3270$
12	5	1,4208			1,4160	0,0266	$0,\!3952$
14	5	1,5547			1,5502	$0,\!0345$	$0,\!4208$
16	5	$1,\!6846$			$1,\!6703$	0,0430	$0,\!4429$
18	5	1,7566			1,7300	$0,\!0569$	$0,\!4507$
20	5	$1,\!6959$			2,3666	0,0620	$0,\!6477$
0	10	$0,\!0588$			$0,\!0537$	$0,\!0185$	$0,\!0431$
3	10	0.3731	0,0193	$0,\!1253$	$0,\!3705$	0,0186	0,1212
6	10	0,0.0-					
	10	0,6952	$0,\!0217$	0,2055	$0,\!6917$	$0,\!0217$	0,2031
9	10 10 10	$0,6952 \\ 1,0115$	$0,\!0217 \\ 0,\!0246$	$0,2055 \\ 0,2846$	$0,\!6917 \\ 1,\!0148$	$0,0217 \\ 0,0245$	$0,2031 \\ 0,2842$
912	10 10 10 10	0,6952 1,0115 1,3249	$0,0217 \\ 0,0246 \\ 0,0288$	$0,2055 \\ 0,2846 \\ 0,3613$	$0,6917 \\ 1,0148 \\ 1,3394$	0,0217 0,0245 0,0289	$0,2031 \\ 0,2842 \\ 0,3659$
9 12 14	10 10 10 10 10	$0,6952 \\ 1,0115 \\ 1,3249 \\ 1,5004$	0,0217 0,0246 0,0288 0,0353	0,2055 0,2846 0,3613 0,4030	0,6917 1,0148 1,3394 1,5129	$\begin{array}{c} 0,0217\\ 0,0245\\ 0,0289\\ 0,0366\end{array}$	$\begin{array}{c} 0,2031 \\ 0,2842 \\ 0,3659 \\ 0,4094 \end{array}$

18	10	1,7558	$0,\!0528$	$0,\!4551$	1,7522	$0,\!0542$	$0,\!4556$
20	10	1,5571	0,0833	0,3984	$1,\!6931$	$0,\!0764$	0,4348
0	15	-0,0569	0,0231	0,0023	-0,0442	0,0234	0,0056
3	15	0,2642	0,0221	0,0827	0,2784	0,0233	0,0872
6	15	0,5844	0,0248	0,1635	0,5916	0,0244	0,1644
9	15	0,9079	0,0278	0,2453	0,9169	0,0275	0,2470
12	15	1,2253	0.0317	0,3242	1,2323	0.0315	0,3253
14	15	1,4290	0.0371	0.3765	1,4465	0.0378	0,3834
16	15	1.6184	0.0433	0,4240	$1,\!6358$	0.0454	0,4332
18	15	1.7537	0.0523	0.4543	1.7454	0.0547	0.4541
20	15	1.3547	0.0988	0.3522	1.6873	0.0783	0.4355
0	20	-0.1549	0.0282	-0.0355	-0.1287	0.0285	-0.0268
3	$\frac{1}{20}$	0.1689	0.0270	0.0464	0.1858	0.0287	0.0522
6	20	0,4858	0.0293	0.1265	0,1000	0.0291	0.1298
ğ	20	0,1000	0,0200	0,1200 0,2087	0,1000	0,0201 0,0323	0,1200 0.2108
12	$\frac{20}{20}$	11284	0,0020 0.0357	0,2001 0,2893	1,0000	0,0020 0.0355	0,2100 0,2907
14	$\frac{20}{20}$	1,1201 1,3436	0.0403	0,2050 0,3458	1,1000 1,3765	0,0000 0,0430	0,2601 0,3600
16	$\frac{20}{20}$	1,5100 1,5517	0,0454	0,3100 0,4002	1,5100 1,5804	0.0482	0,3000 0,4139
18	$\frac{20}{20}$	1,0011 1 7211	0,0101 0.0534	0,1002 0.4441	1,0001 1 7320	0,0102 0.0562	0,1100 0.4513
20	$\frac{20}{20}$	1,7211 1 5743	0.0856	0,1111 0,4068	1,1020 1 4298	0,0002 0,0923	0,1010 0.3690
0	$\frac{20}{25}$	-0 2410	0.0339	-0.0680	-0.2584	0.0328	-0.0714
3	$\frac{20}{25}$	0.0742	0,0000 0,0330	0.0118	0.0636	0,0320 0.0321	0.0104
6	$\frac{20}{25}$	0,3933	0,0000 0.0351	0,0110 0.0928	0,0000 0.4102	0,0321 0.0349	0.0971
9	$\frac{26}{25}$	0,3330 0.7116	0,0001 0.0371	0,0520 0.1731	0,1102 0.7303	0,0010 0.0374	0,0011 0.1788
12	$\frac{20}{25}$	1,0404	0.0408	0,2587	1.0454	0,0401	0,1100 0.2579
14	$\frac{20}{25}$	1,0101 1,2642	0,0454	0,2001 0.3185	1,0101 1 2810	0,0101 0,0464	0,2010 0,3240
16	$\frac{20}{25}$	1,2012 1,5075	0,0534	0.3961	1,5044	0.0520	0.3870
18	$\frac{20}{25}$	1,0010 1,6953	0.0577	0,3331 0,4383	1,6949	0.0580	0,3310 0,4387
20	$\frac{20}{25}$	1,5553	0.0937	0,1300 0,4131	1,5379	0,0946	0,1001
0	30	-0.3295	0.0398	-0 1016	-0.2856	0.0402	-0.0860
3	30	-0.0155	0,0383	-0.0226	0.0208	0,0102 0.0389	-0.0104
6	30	0,3029	0,0309	0.0589	0,0200 0.3239	0,0305 0.0405	0.0650
9	30	0,5025 0.6217	0,0000	0,0005 0.1406	0,0200 0.6389	0,0100 0.0428	0,0000 0 1452
12	30	0,0211 0.9416	0,0120 0.0456	0,1100 0.2227	0,0505 0.9545	0,0120 0.0458	0,1102 0.2255
14	30	11771	0,0100 0.0504	0,2221 0.2882	1,3810 1,1891	0,0100 0.0515	0,2200 0.2915
16	30	1,111 1 4418	0,0501 0.0576	0,2002 0.3727	1,1001 1,4025	0.0528	0,2010 0.3488
18	30	1,4410 1,6324	0.0607	0,0121 0.4175	1,4020 1.6079	0,0520 0.0582	0,0400 0.4062
20	30	1,0024	0,0001	0,4110	1,0015	0,0002	0,4002
0	35	-0 4043	0,0005	-0 1203	-0.3560	0,0313 0.0467	-0 1125
3	35	0,4045	0,0400	-0,1235 0.0535	-0,3505 0.1168	0,0407 0.0420	0.0563
5 6	35	-0,0300 0.2171	0,0440	-0,0000	-0,1100 0.9471	0,0429 0.0479	0.0365
0 Q	35	0,2171 0.5371	0,0404	0,0279 0.1107	0,2471 0.5503	0,0472 0.0495	0,0303 0.1173
9 19	35	0,0071	0,0490 0.0520	0,1107	0,0090	0,0495 0.0516	0,1173
12 14	35	1 0836	0.0520	0,1900 0.2548	1.0061	0,0510	0,1940 0.2570
14 16	२ ५	1 3203	0,0000 0.0617	0,2040	1 2 9 4 7	0,0550	0,2019
18	35	1 5691	0.0652	0,3009	1,5247 1 5591	0,0099	0,3204
20	२ ५	1,0021 1,3177	0,0002	0,0040	1 5820	0.0850	0.4199
20 0	30 70	1,3177	0,0994	0,3444	1,0009 0 5075	0,0009	0,4120
U	40	-0,4004	0,0529	-0,1409	-0,3073	0,0007	-0,1039

3	40	-0,1707	$0,\!0530$	-0,0790	-0,1209	$0,\!0524$	-0,0628
6	40	0,1397	$0,\!0529$	0,0003	0,1688	0,0545	0,0089
9	40	$0,\!4592$	$0,\!0553$	0,0836	0,4718	0,0560	0,0854
12	40	0,7827	$0,\!0574$	0,1686	0,7895	$0,\!0588$	0,1689
14	40	1,0149	0,0614	0,2332	1,0094	0,0606	0,2274
16	40	1,2623	$0,\!0667$	0,3069	1,2514	0,0644	$0,\!3047$
18	40	$1,\!4840$	$0,\!0679$	$0,\!3671$	1,5241	$0,\!0718$	0,3983
20	40	$1,\!4582$	$0,\!0875$	$0,\!3782$	$1,\!4314$	$0,\!0969$	0,3761
0	45	-0,5418	$0,\!0600$	-0,1797	-0,4849	0,0600	-0,1595
3	45	-0,2434	$0,\!0600$	-0,1053	-0,1828	0,0598	-0,0837
6	45	0,0688	$0,\!0609$	-0,0239	$0,\!0991$	0,0618	-0,0153
9	45	$0,\!4074$	$0,\!0646$	$0,\!0752$	0,3985	0,0627	0,0604
12	45	0,7101	$0,\!0644$	0,1446	0,7114	$0,\!0647$	0,1422
14	45	$0,\!9363$	$0,\!0690$	0,2064	$0,\!9354$	$0,\!0670$	0,2030
16	45	$1,\!1946$	$0,\!0719$	0,2854	1,1822	$0,\!0684$	0,2828
18	45	1,5010	$0,\!0760$	0,4006	$1,\!4760$	$0,\!0760$	0,3865
20	45	1,5627	$0,\!0896$	0,4119	$1,\!6238$	$0,\!0994$	$0,\!4450$
0	50	-0,5988	$0,\!0665$	-0,1996	-0,4856	0,0694	-0,1466
3	50	-0,2356	$0,\!0657$	-0,0917	-0,2089	0,0684	-0,0819
6	50	0,0017	$0,\!0664$	-0,0476	$0,\!0327$	0,0678	-0,0388
9	50	0,3195	$0,\!0677$	$0,\!0362$	0,3169	$0,\!0651$	$0,\!0400$
12	50	$0,\!6447$	$0,\!0699$	$0,\!1235$	$0,\!6461$	$0,\!0711$	0,1211
14	50	0,8666	$0,\!0708$	$0,\!1835$	0,8667	$0,\!0720$	0,1810
16	50	$1,\!1284$	$0,\!0769$	0,2638	1,1127	$0,\!0722$	0,2602
18	50	$1,\!3618$	$0,\!0784$	$0,\!3310$	$1,\!4340$	$0,\!0807$	0,3809
20	50	$1,\!6283$	$0,\!0890$	$0,\!4298$	$1,\!6046$	$0,\!0845$	$0,\!4130$
0	55	$-0,\!6577$	$0,\!0727$	-0,2200	-0,6830	0,0694	-0,2244
3	55	-0,3592	$0,\!0753$	-0,1451	-0,2626	$0,\!0760$	-0,0998
6	55	-0,0526	$0,\!0726$	-0,0650	-0,0071	$0,\!0754$	-0,0432
9	55	0,2603	$0,\!0736$	$0,\!0147$	0,2608	$0,\!0726$	0,0223
12	55	0,5866	$0,\!0761$	0,1051	0,5852	$0,\!0770$	0,1018
14	55	$0,\!8141$	$0,\!0787$	0,1683	$0,\!8110$	$0,\!0785$	0,1643
16	55	1,0686	$0,\!0811$	0,2448	$1,\!0539$	$0,\!0770$	0,2427
18	55	$1,\!3047$	$0,\!0822$	$0,\!3132$	$1,\!2901$	$0,\!0810$	$0,\!3107$
20	55	1,5694	$0,\!0898$	0,4098	1,5154	$0,\!0866$	$0,\!3747$

Příloha 4. Aerodynamické charakteristiky profilu. Závěsový bod 0,55b

		$\mathrm{\check{S}terbina}~0,005\mathrm{m}$			$\rm \check{S}terbina~0,010m$		
AOA[0]	Výchylka[∘]	CL	CD	CM	CL	CD	CM
0	2	$0,\!3560$	0,0087	0,1647	$0,\!3471$	0,0080	0,1610
3	2				$0,\!6395$	0,0093	0,2269
6	2	$0,\!9495$	0,0133	$0,\!3025$	$0,\!9386$	0,0138	0,2981
9	2	1,2252	0,0181	0,3631	$1,\!2704$	0,0182	0,3822
12	2	$1,\!4541$	0,0261	0,4084	$1,\!4479$	$0,\!0262$	0,4061
14	2	1,5184	0,0369	0,4118	$1,\!4216$	$0,\!0447$	0,3869
16	2	$1,\!6169$	0,0480	$0,\!4299$	1,5856	0,0498	0,4211
18	2	1,7055	$0,\!0576$	$0,\!4433$	$1,\!6820$	$0,\!0590$	$0,\!4370$
20	2	1,5809	0,0868	0,4089	$1,\!6065$	0,0858	0,4159
0	5	0,1886	0,0229	$0,\!0999$	0,2810	$0,\!0133$	0,1364
3	5	0,5751	0,0140	0,2044	0,5610	$0,\!0151$	0,1988
6	5	$0,\!8260$	$0,\!0207$	0,2610	0,7719	0,0229	0,2401
9	5	$1,\!0704$	0,0278	$0,\!3151$	$1,\!0664$	0,0284	0,3141
12	5	$1,\!3079$	$0,\!0349$	$0,\!3654$	$1,\!3104$	$0,\!0352$	0,3666
14	5	1,4106	$0,\!0459$	$0,\!3850$	$1,\!4323$	$0,\!0429$	0,3889
16	5	1,5602	$0,\!0498$	$0,\!4127$	1,5493	$0,\!0505$	0,4098
18	5	$1,\!6943$	$0,\!0583$	$0,\!4407$	$1,\!6575$	$0,\!0615$	$0,\!4320$
20	5	1,5109	$0,\!0897$	$0,\!3904$	1,5297	0,0896	$0,\!3965$
0	10	$0,\!0544$	0,0279	$0,\!0634$	$0,\!0243$	$0,\!0285$	$0,\!0508$
3	10	0,3198	$0,\!0291$	0,1239	$0,\!3006$	0,0296	0,1151
6	10	0,5931	0,0338	$0,\!1874$	0,5789	$0,\!0339$	0,1808
9	10	0,8698	$0,\!0385$	$0,\!2521$	$0,\!8497$	$0,\!0380$	0,2431
12	10	1,1367	$0,\!0433$	$0,\!3123$	1,1314	$0,\!0432$	0,3092
14	10	$1,\!3010$	$0,\!0486$	$0,\!3486$	$1,\!3052$	$0,\!0486$	$0,\!3499$
16	10	$1,\!4700$	$0,\!0549$	$0,\!3876$	1,4696	$0,\!0569$	0,3900
18	10	$1,\!6447$	$0,\!0631$	$0,\!4299$	$1,\!6292$	$0,\!0631$	$0,\!4249$
20	10	1,5717	$0,\!0865$	0,4060	1,5512	$0,\!0892$	0,4024
0	15	-0,1333	$0,\!0394$	-0,0043	-0,1279	$0,\!0362$	-0,0024
3	15	0,1644	0,0368	$0,\!0713$	0,1588	$0,\!0373$	0,0669
6	15	0,4413	$0,\!0405$	0,1363	$0,\!4432$	$0,\!0407$	0,1349
9	15	0,7243	$0,\!0446$	0,2038	0,7237	$0,\!0445$	0,2014
12	15	$1,\!0065$	$0,\!0496$	0,2707	1,0092	$0,\!0492$	0,2696
14	15	1,1972	$0,\!0542$	$0,\!3170$	1,1970	$0,\!0534$	0,3147
16	15	$1,\!3859$	$0,\!0606$	0,3638	1,4013	0,0619	$0,\!3701$
18	15	1,5547	$0,\!0665$	0,4019	1,5612	0,0656	$0,\!4034$
20	15	$1,\!6177$	$0,\!0831$	0,4172	1,5814	$0,\!0859$	0,4090
0	20	-0,2362	$0,\!0429$	-0,0366	-0,2291	$0,\!0431$	-0,0362
3	20	$0,\!0471$	$0,\!0435$	$0,\!0316$	$0,\!0500$	$0,\!0444$	$0,\!0301$
6	20	$0,\!3316$	$0,\!0474$	0,1003	$0,\!3272$	$0,\!0463$	$0,\!0952$

9	20	$0,\!6142$	$0,\!0518$	0,1685	$0,\!6192$	$0,\!0512$	0,1675
12	20	0,9040	$0,\!0577$	0,2404	0,9009	0,0560	0,2353
14	20	$1,\!0972$	0,0615	0,2878	1,0891	0,0598	0,2812
16	20	1,2824	0,0658	0,3319	1,2827	0,0649	0,3301
18	20	1,4697	$0,\!0713$	0,3777	1,4707	0,0704	0,3766
20	20	$1,\!6053$	0,0830	0,4136	1,6296	0,0822	0,4209
0	25	-0,3362	0,0493	-0,0707	-0,3201	0,0503	-0,0675
3	25	-0.0542	0,0505	-0,0020	-0,0421	0,0514	-0,0003
6	25	0,2125	0,0544	0,0608	0,2340	0,0541	0,0655
9	25	0,5055	0,0598	0,1343	0,5206	0,0587	0,1364
12	25	0,7943	0,0633	0,2044	0,8011	0,0634	0,2045
14	25	$0,\!9934$	0,0687	0,2559	0,9890	0,0673	0,2508
16	25	1,1870	$0,\!0724$	0,3040	1,2134	0,0763	0,3155
18	25	1,3824	0,0773	0,3532	1,3798	0,0764	0,3508
20	25	$1,\!6054$	0,0882	0,4203	1,4936	0,0882	0,3844
0	30	-0,4260	$0,\!0571$	-0,1010	-0,4026	0,0563	-0,0956
3	30	-0,1494	0,0574	-0,0338	-0,1286	0,0577	-0,0297
6	30	0,1343	0,0618	0,0361	0,1492	0,0615	0,0382
9	30	0,4147	0,0674	0,1060	0,4282	0,0672	0,1074
12	30	$0,\!6996$	0,0716	0,1758	0,7045	0,0712	0,1747
14	30	0,8905	$0,\!0750$	0,2233	0,8964	0,0753	0,2233
16	30	$1,\!0957$	$0,\!0791$	0,2771	1,1014	0,0798	0,2778
18	30	1,2953	0,0835	0,3287	1,3185	0,0881	0,3389
20	30	$1,\!4898$	0,0890	$0,\!3784$	1,4939	0,0889	0,3793
0	35	-0,4885	0,0651	-0,1210	-0,4647	0,0655	-0,1150
3	35	-0,2059	$0,\!0706$	-0,0517	-0,1993	0,0680	-0,0518
6	35	$0,\!0537$	$0,\!0700$	0,0112	0,0683	$0,\!0703$	0,0128
9	35	$0,\!3347$	$0,\!0753$	0,0813	0,3447	0,0752	0,0816
12	35	$0,\!6119$	$0,\!0796$	0,1495	$0,\!6336$	$0,\!0827$	0,1566
14	35	$0,\!8062$	$0,\!0837$	0,1992	0,8103	0,0837	0,1980
16	35	1,0203	$0,\!0888$	0,2579	1,0173	0,0873	0,2539
18	35	1,2163	$0,\!0911$	$0,\!3075$	1,2205	0,0910	0,3076
20	35	$1,\!4233$	$0,\!0978$	0,3636	1,4130	$0,\!0947$	$0,\!3571$
0	40	-0,5585	$0,\!0718$	-0,1434	$-0,\!4901$	$0,\!0734$	-0,1196
3	40	-0,2684	$0,\!0777$	-0,0710	-0,2764	$0,\!0751$	-0,0774
6	40	-0,0226	$0,\!0781$	-0,0124	-0,0081	$0,\!0784$	-0,0111
9	40	0,2577	0,0829	$0,\!0580$	0,2655	$0,\!0840$	$0,\!0574$
12	40	0,5344	$0,\!0887$	0,1273			
14	40	0,7247	$0,\!0916$	$0,\!1755$	0,7262	$0,\!0920$	$0,\!1734$
16	40	$0,\!9330$	$0,\!0936$	0,2313	$0,\!9347$	$0,\!0944$	0,2301
18	40	1,1470	$0,\!1004$	0,2904	$1,\!1545$	0,1034	0,2928
20	40	$1,\!3551$	$0,\!1073$	$0,\!3481$	$1,\!3460$	0,1022	$0,\!3406$
0	45	$-0,\!6065$	0,0809	-0,1588	-0,5393	0,0838	-0,1320
3	45	-0,3305	$0,\!0856$	$-0,\!0901$	-0,3309	0,0832	-0,0938
6	45	-0,0889	0,0862	-0,0325	-0,0727	0,0859	-0,0305
9	45	0,1877	0,0919	$0,\!0375$	0,1948	0,0924	0,0364
12	45	$0,\!4647$	$0,\!0972$	0,1075	0,4638	$0,\!0975$	0,1041
14	45	$0,\!6526$	$0,\!0999$	$0,\!1553$	$0,\!6526$	0,1009	$0,\!1530$

16	45	0,8672	$0,\!1056$	0,2153	0,8585	0,1039	0,2085
18	45	1,0702	$0,\!1058$	0,2685			
20	45	1,2753	0,1092	0,3236	1,2807	0,1092	0,3243
0	50	-0,6582	0,0881	-0,1747			
3	50	,	,	,	-0,3859	0,0920	-0,1101
6	50				-0.1375	0.0938	-0.0498
9	50				0.1309	0.1019	0.0185
12	50				,	,	,
14	50						
16	50				0 7914	0.1121	0 1904
18	50				1,0171	0 1178	0.2558
20	50				1,2193	0 1163	0.3092
0	55				-0.6685	0.0942	-0 1757
3	55				-0.3941	0,0012 0 1039	-0.1022
6	55				_0 1000	0,1000	-0.0648
0	55				-0,1303 0.0748	0,1022 0.1102	0.0020
9 19	55				0,0740	0,1102 0.1140	0,0029 0.0712
12 14	55				0,5425 0.5306	0,1149 0 1189	0,0712 0.1205
14	55				0,3300 0.7304	0,1102 0.1100	0,1203 0.1743
10	55				0,7304	0,1199	0,1743
10	55 55						
20	55	Čtor	bine 0.0	15m			
	Vz obvilko [o]	ou	CD	CM	CI	CD	CM
AOA[0]	v ycnytka[0]	O_{2474}	$O_{0.0071}$	0.1600	CL	CD	UM
0	\angle	0,3474	0.0071	0.1009			
ი	0	0 0 4 4 1	0,000	ດ່ວວວວ			
3	2	0,6441	0,0095	0,2282			
3 6	2 2	0,6441 0,9331	$0,0095 \\ 0,0141 \\ 0,0140$	$0,2282 \\ 0,2956 \\ 0,2556$			
3 6 9	2 2 2	0,6441 0,9331 1,2064	0,0095 0,0141 0,0189	0,2282 0,2956 0,3556 0,2510			
3 6 9 12	2 2 2 2	0,6441 0,9331 1,2064 1,2802	0,0095 0,0141 0,0189 0,0408	$\begin{array}{c} 0,2282\\ 0,2956\\ 0,3556\\ 0,3518\\ 0,4051 \end{array}$			
3 6 9 12 14	2 2 2 2 2 2	$\begin{array}{c} 0,6441 \\ 0,9331 \\ 1,2064 \\ 1,2802 \\ 1,5073 \\ 1,5012 \end{array}$	$\begin{array}{c} 0,0095\\ 0,0141\\ 0,0189\\ 0,0408\\ 0,0374\\ 0.0402\end{array}$	0,2282 0,2956 0,3556 0,3518 0,4071			
3 6 9 12 14 16	2 2 2 2 2 2 2 2	$\begin{array}{c} 0,6441 \\ 0,9331 \\ 1,2064 \\ 1,2802 \\ 1,5073 \\ 1,5816 \\ 1,6422 \end{array}$	0,0095 0,0141 0,0189 0,0408 0,0374 0,0493	0,2282 0,2956 0,3556 0,3518 0,4071 0,4179			
3 6 9 12 14 16 18	2 2 2 2 2 2 2 2 2	$\begin{array}{c} 0,6441 \\ 0,9331 \\ 1,2064 \\ 1,2802 \\ 1,5073 \\ 1,5816 \\ 1,6432 \\ 1,5010 \end{array}$	0,0095 0,0141 0,0189 0,0408 0,0374 0,0493 0,0622	0,2282 0,2956 0,3556 0,3518 0,4071 0,4179 0,4264			
$ \begin{array}{r} 3 \\ 6 \\ 9 \\ 12 \\ 14 \\ 16 \\ 18 \\ 20 \\ 2 2 2 3 3 4 4 4 4 4 $	2 2 2 2 2 2 2 2 2 2 2 2	$\begin{array}{c} 0,6441 \\ 0,9331 \\ 1,2064 \\ 1,2802 \\ 1,5073 \\ 1,5816 \\ 1,6432 \\ 1,5910 \\ 2,5911 \end{array}$	0,0095 0,0141 0,0189 0,0408 0,0374 0,0493 0,0622 0,0813 0,0813	$\begin{array}{c} 0,2282\\ 0,2956\\ 0,3556\\ 0,3518\\ 0,4071\\ 0,4179\\ 0,4264\\ 0,4070\\$			
$ \begin{array}{r} 3 \\ 6 \\ 9 \\ 12 \\ 14 \\ 16 \\ 18 \\ 20 \\ 0 \\ 2 \end{array} $	2 2 2 2 2 2 2 2 2 2 2 5	$\begin{array}{c} 0,6441\\ 0,9331\\ 1,2064\\ 1,2802\\ 1,5073\\ 1,5816\\ 1,6432\\ 1,5910\\ 0,2541 \end{array}$	0,0095 0,0141 0,0189 0,0408 0,0374 0,0493 0,0622 0,0813 0,0132	$\begin{array}{c} 0,2282\\ 0,2956\\ 0,3556\\ 0,3518\\ 0,4071\\ 0,4179\\ 0,4264\\ 0,4070\\ 0,1247\\ 0,1247\\ \end{array}$			
$ \begin{array}{r} 3 \\ 6 \\ 9 \\ 12 \\ 14 \\ 16 \\ 18 \\ 20 \\ 0 \\ 3 \\ . $	2 2 2 2 2 2 2 2 2 2 5 5 5	$\begin{array}{c} 0,6441\\ 0,9331\\ 1,2064\\ 1,2802\\ 1,5073\\ 1,5816\\ 1,6432\\ 1,5910\\ 0,2541\\ 0,5610\\ \end{array}$	$\begin{array}{c} 0,0095\\ 0,0141\\ 0,0189\\ 0,0408\\ 0,0374\\ 0,0493\\ 0,0622\\ 0,0813\\ 0,0132\\ 0,0151\\ 0,0151\\ \end{array}$	$\begin{array}{c} 0,2282\\ 0,2956\\ 0,3556\\ 0,3518\\ 0,4071\\ 0,4179\\ 0,4264\\ 0,4070\\ 0,1247\\ 0,1988\\ 0,0101\\ 0,1988\\ 0,0101\\ 0,1000\\ 0,1000\\$			
$ \begin{array}{r} 3 \\ 6 \\ 9 \\ 12 \\ 14 \\ 16 \\ 18 \\ 20 \\ 0 \\ 3 \\ 6 \\ 4 \end{array} $	2 2 2 2 2 2 2 2 2 2 5 5 5 5	0,6441 0,9331 1,2064 1,2802 1,5073 1,5816 1,6432 1,5910 0,2541 0,5610 0,7719	0,0095 0,0141 0,0189 0,0408 0,0374 0,0493 0,0622 0,0813 0,0132 0,0151 0,0229	$\begin{array}{c} 0,2282\\ 0,2956\\ 0,3556\\ 0,3518\\ 0,4071\\ 0,4179\\ 0,4264\\ 0,4070\\ 0,1247\\ 0,1988\\ 0,2401 \end{array}$			
$ \begin{array}{r} 3 \\ 6 \\ 9 \\ 12 \\ 14 \\ 16 \\ 18 \\ 20 \\ 0 \\ 3 \\ 6 \\ 9 \\ 9 \\ 4 \end{array} $	$ \begin{array}{c} 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 5 \\ $	0,6441 0,9331 1,2064 1,2802 1,5073 1,5816 1,6432 1,5910 0,2541 0,5610 0,7719 1,0348	0,0095 0,0141 0,0189 0,0408 0,0374 0,0493 0,0622 0,0813 0,0132 0,0151 0,0229 0,0292	$\begin{array}{c} 0,2282\\ 0,2956\\ 0,3556\\ 0,3518\\ 0,4071\\ 0,4179\\ 0,4264\\ 0,4070\\ 0,1247\\ 0,1988\\ 0,2401\\ 0,3015\end{array}$			
$ \begin{array}{r} 3 \\ 6 \\ 9 \\ 12 \\ 14 \\ 16 \\ 18 \\ 20 \\ 0 \\ 3 \\ 6 \\ 9 \\ 12 \\ \end{array} $	$ \begin{array}{c} 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 5 \\ $	0,6441 0,9331 1,2064 1,2802 1,5073 1,5816 1,6432 1,5910 0,2541 0,5610 0,7719 1,0348 1,2104	0,0095 0,0141 0,0189 0,0408 0,0374 0,0493 0,0622 0,0813 0,0132 0,0151 0,0229 0,0292 0,0450	0,2282 0,2956 0,3556 0,3518 0,4071 0,4179 0,4264 0,4070 0,1247 0,1988 0,2401 0,3015 0,3328			
$ \begin{array}{r} 3 \\ 6 \\ 9 \\ 12 \\ 14 \\ 16 \\ 18 \\ 20 \\ 0 \\ 3 \\ 6 \\ 9 \\ 12 \\ 14 \\ \end{array} $	$ \begin{array}{c} 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 5 \\ $	0,6441 0,9331 1,2064 1,2802 1,5073 1,5816 1,6432 1,5910 0,2541 0,5610 0,7719 1,0348 1,2104 1,4185	0,0095 0,0141 0,0189 0,0408 0,0374 0,0493 0,0622 0,0813 0,0132 0,0151 0,0229 0,0292 0,0450 0,0430	0,2282 0,2956 0,3556 0,3518 0,4071 0,4179 0,4264 0,4070 0,1247 0,1988 0,2401 0,3015 0,3328 0,3828			
$ \begin{array}{r} 3 \\ 6 \\ 9 \\ 12 \\ 14 \\ 16 \\ 18 \\ 20 \\ 0 \\ 3 \\ 6 \\ 9 \\ 12 \\ 14 \\ 16 \\ 14 \\ 16 \\ 16 \\ 12 \\ 14 \\ 16 \\ 16 \\ 12 \\ 14 \\ 16 \\ 16 \\ 12 \\ 14 \\ 16 \\ 12 \\ 14 \\ 16 \\ 12 \\ 14 \\ 16 \\ 12 \\ 14 \\ 16 \\ 12 \\ 14 \\ 16 \\ 12 \\ 14 \\ 16 \\ 12 \\ 14 \\ 16 \\ 12 \\ 14 \\ 16 \\ 12 \\ 14 \\ 16 \\ 12 \\ 14 \\ 16 \\ 12 \\ 14 \\ 16 \\ 12 \\ 14 \\ 16 \\ 12 \\ 14 \\ 16 \\ 12 \\ 14 \\ 16 \\ 12 \\ 14 \\ 16 \\ 12 \\ 12 \\ 14 \\ 16 \\ 12 \\ 12 \\ 14 \\ 16 \\ 12 \\ 12 \\ 14 \\ 16 \\ 12 \\ 12 \\ 12 \\ 14 \\ 16 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 14 \\ 16 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 14 \\ 16 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 14 \\ 16 \\ 12 \\ $	2 2 2 2 2 2 2 2 2 2 5	0,6441 0,9331 1,2064 1,2802 1,5073 1,5816 1,6432 1,5910 0,2541 0,5610 0,7719 1,0348 1,2104 1,4185 1,5313	0,0095 0,0141 0,0189 0,0408 0,0374 0,0493 0,0622 0,0813 0,0132 0,0151 0,0229 0,0292 0,0450 0,0430 0,0526	0,2282 0,2956 0,3556 0,3518 0,4071 0,4179 0,4264 0,4070 0,1247 0,1988 0,2401 0,3015 0,3328 0,3828 0,4050			
$ \begin{array}{r} 3 \\ 6 \\ 9 \\ 12 \\ 14 \\ 16 \\ 18 \\ 20 \\ 0 \\ 3 \\ 6 \\ 9 \\ 12 \\ 14 \\ 16 \\ 18 \\ \end{array} $	$ \begin{array}{c} 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 5 \\ $	0,6441 0,9331 1,2064 1,2802 1,5073 1,5816 1,6432 1,5910 0,2541 0,5610 0,7719 1,0348 1,2104 1,4185 1,5313 1,6092	0,0095 0,0141 0,0189 0,0408 0,0374 0,0493 0,0622 0,0813 0,0132 0,0151 0,0229 0,0292 0,0450 0,0430 0,0526 0,0647	0,2282 0,2956 0,3556 0,3518 0,4071 0,4179 0,4264 0,4070 0,1247 0,1988 0,2401 0,3015 0,3328 0,3828 0,4050 0,4181			
$ \begin{array}{r} 3 \\ 6 \\ 9 \\ 12 \\ 14 \\ 16 \\ 18 \\ 20 \\ 0 \\ 3 \\ 6 \\ 9 \\ 12 \\ 14 \\ 16 \\ 18 \\ 20 \\ $	$ \begin{array}{c} 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 5 \\ $	0,6441 0,9331 1,2064 1,2802 1,5073 1,5816 1,6432 1,5910 0,2541 0,5610 0,7719 1,0348 1,2104 1,4185 1,5313 1,6092 1,6238	0,0095 0,0141 0,0189 0,0408 0,0374 0,0493 0,0622 0,0813 0,0132 0,0151 0,0229 0,0292 0,0450 0,0430 0,0526 0,0647 0,0842	0,2282 0,2956 0,3556 0,3518 0,4071 0,4179 0,4264 0,4070 0,1247 0,1988 0,2401 0,3015 0,3328 0,3828 0,4050 0,4181 0,4199			
$ \begin{array}{r} 3 \\ 6 \\ 9 \\ 12 \\ 14 \\ 16 \\ 18 \\ 20 \\ 0 \\ 3 \\ 6 \\ 9 \\ 12 \\ 14 \\ 16 \\ 18 \\ 20 \\ 0 \\ 0 \\ 0 \end{array} $	2 2 2 2 2 2 2 2 2 2 2 5 5 5 5 5 5 5 5 5 5 5 5 5 10	0,6441 0,9331 1,2064 1,2802 1,5073 1,5816 1,6432 1,5910 0,2541 0,5610 0,7719 1,0348 1,2104 1,4185 1,5313 1,6092 1,6238 0,0360	0,0095 0,0141 0,0189 0,0408 0,0374 0,0493 0,0622 0,0813 0,0132 0,0151 0,0229 0,0292 0,0450 0,0450 0,0430 0,0526 0,0647 0,0842 0,0309	0,2282 0,2956 0,3556 0,3518 0,4071 0,4179 0,4264 0,4070 0,1247 0,1988 0,2401 0,3015 0,3328 0,3828 0,4050 0,4181 0,4199 0,0501			
$ \begin{array}{r} 3 \\ 6 \\ 9 \\ 12 \\ 14 \\ 16 \\ 18 \\ 20 \\ 0 \\ 3 \\ 6 \\ 9 \\ 12 \\ 14 \\ 16 \\ 18 \\ 20 \\ 0 \\ 3 \\ 3 \end{array} $	2 2 2 2 2 2 2 2 2 2 2 5 5 5 5 5 5 5 5 5 5 5 5 10 10	0,6441 0,9331 1,2064 1,2802 1,5073 1,5816 1,6432 1,5910 0,2541 0,5610 0,7719 1,0348 1,2104 1,4185 1,5313 1,6092 1,6238 0,0360 0,3150	0,0095 0,0141 0,0189 0,0408 0,0374 0,0493 0,0622 0,0813 0,0132 0,0151 0,0229 0,0292 0,0450 0,0430 0,0526 0,0647 0,0842 0,0309 0,0287	0,2282 0,2956 0,3556 0,3518 0,4071 0,4179 0,4264 0,4070 0,1247 0,1988 0,2401 0,3015 0,3328 0,3828 0,4050 0,4181 0,4199 0,0501 0,1165			
$ \begin{array}{r} 3 \\ 6 \\ 9 \\ 12 \\ 14 \\ 16 \\ 18 \\ 20 \\ 0 \\ 3 \\ 6 \\ 9 \\ 12 \\ 14 \\ 16 \\ 18 \\ 20 \\ 0 \\ 3 \\ 6 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 6 \\ 7 \\ $	2 2 2 2 2 2 2 2 2 2 2 5 5 5 5 5 5 5 5 5 5 10 10 10 10	0,6441 0,9331 1,2064 1,2802 1,5073 1,5816 1,6432 1,5910 0,2541 0,5610 0,7719 1,0348 1,2104 1,4185 1,5313 1,6092 1,6238 0,0360 0,3150 0,5891	0,0095 0,0141 0,0189 0,0408 0,0374 0,0493 0,0622 0,0813 0,0132 0,0151 0,0229 0,0292 0,0450 0,0450 0,0450 0,0526 0,0647 0,0842 0,0309 0,0287 0,0332	0,2282 0,2956 0,3556 0,3518 0,4071 0,4179 0,4264 0,4070 0,1247 0,1988 0,2401 0,3015 0,3328 0,3828 0,4050 0,4181 0,4199 0,0501 0,1165 0,1813			
$ \begin{array}{r} 3 \\ 6 \\ 9 \\ 12 \\ 14 \\ 16 \\ 18 \\ 20 \\ 0 \\ 3 \\ 6 \\ 9 \\ 12 \\ 14 \\ 16 \\ 18 \\ 20 \\ 0 \\ 3 \\ 6 \\ 9 \\ 9 \\ 12 \\ 14 \\ 16 \\ 18 \\ 20 \\ 0 \\ 3 \\ 6 \\ 9 \\ 9 \\ 3 \\ 6 \\ 9 \\ 9 \\ 3 \\ 6 \\ 9 \\ 9 \\ 3 \\ 6 \\ 9 \\ 9 \\ 3 \\ 6 \\ 9 \\ 9 \\ 3 \\ 6 \\ 9 \\ 9 \\ 3 \\ 6 \\ 9 \\ 9 \\ 3 \\ 6 \\ 9 \\ 9 \\ 3 \\ 6 \\ 9 \\ 9 \\ 3 \\ 6 \\ 9 \\ 9 \\ 3 \\ 6 \\ 9 \\ 9 \\ 3 \\ 6 \\ 9 \\ 9 \\ 3 \\ 6 \\ 9 \\ 9 \\ 9 \\ 3 \\ 6 \\ 9 \\ 9 \\ 3 \\ 6 \\ 9 \\ 9 \\ 9 \\ 3 \\ 6 \\ 9 \\ 9 \\ 3 \\ 6 \\ 9 \\ 9 \\ 3 \\ 6 \\ 9 \\ 9 \\ 3 \\ 6 \\ 9 \\ 3 \\ 6 \\ 9 \\ 9 \\ 3 \\ 6 \\ 9 \\ 9 \\ 3 \\ 6 \\ 9 \\ 3 \\ 6 \\ 9 \\ 9 \\ 3 \\ 6 \\ 9 \\ 3 \\ 6 \\ 3 \\ 6 \\ 9 \\ 3 \\ 6 \\ 9 \\ 12 \\ 14 \\ 16 \\ 18 \\ 20 \\ 10 \\ 7 \\ 10 \\ $	2 2 2 2 2 2 2 2 2 2 2 5 5 5 5 5 5 5 5 5 5 10 1	0,6441 0,9331 1,2064 1,2802 1,5073 1,5816 1,6432 1,5910 0,2541 0,5610 0,7719 1,0348 1,2104 1,4185 1,5313 1,6092 1,6238 0,0360 0,3150 0,5891 0,8666	0,0095 0,0141 0,0189 0,0408 0,0374 0,0493 0,0622 0,0813 0,0132 0,0151 0,0229 0,0292 0,0450 0,0450 0,0450 0,0526 0,0647 0,0842 0,0309 0,0287 0,0379	0,2282 0,2956 0,3556 0,3518 0,4071 0,4179 0,4264 0,4070 0,1247 0,1988 0,2401 0,3015 0,3328 0,3828 0,4050 0,4181 0,4199 0,0501 0,1165 0,1813 0,2469			
$ \begin{array}{r} 3 \\ 6 \\ 9 \\ 12 \\ 14 \\ 16 \\ 18 \\ 20 \\ 0 \\ 3 \\ 6 \\ 9 \\ 12 \\ 14 \\ 16 \\ 18 \\ 20 \\ 0 \\ 3 \\ 6 \\ 9 \\ 12 \\ 14 \\ 16 \\ 18 \\ 20 \\ 0 \\ 3 \\ 6 \\ 9 \\ 12 \\ 14 \\ 16 \\ 18 \\ 20 \\ 0 \\ 3 \\ 6 \\ 9 \\ 12 \\ 14 \\ 16 \\ 18 \\ 20 \\ 0 \\ 3 \\ 6 \\ 9 \\ 12 \\ $	2 2 2 2 2 2 2 2 2 2 2 5 5 5 5 5 5 5 5 5 5 5 10 1	0,6441 0,9331 1,2064 1,2802 1,5073 1,5816 1,6432 1,5910 0,2541 0,5610 0,7719 1,0348 1,2104 1,4185 1,5313 1,6092 1,6238 0,0360 0,3150 0,5891 0,8666 1,1129	0,0095 0,0141 0,0189 0,0408 0,0374 0,0493 0,0622 0,0813 0,0132 0,0151 0,0229 0,0292 0,0450 0,0430 0,0526 0,0647 0,0842 0,0309 0,0287 0,0379 0,0508	0,2282 0,2956 0,3556 0,3518 0,4071 0,4179 0,4264 0,4070 0,1247 0,1988 0,2401 0,3015 0,3328 0,3828 0,4050 0,4181 0,4199 0,0501 0,1165 0,1813 0,2469 0,3041			
$ \begin{array}{r} 3 \\ 6 \\ 9 \\ 12 \\ 14 \\ 16 \\ 18 \\ 20 \\ 0 \\ 3 \\ 6 \\ 9 \\ 12 \\ 14 \\ 16 \\ 18 \\ 20 \\ 0 \\ 3 \\ 6 \\ 9 \\ 12 \\ 14 \\ 16 \\ 18 \\ 20 \\ 0 \\ 3 \\ 6 \\ 9 \\ 12 \\ 14 \\ 16 \\ 18 \\ 20 \\ 0 \\ 3 \\ 6 \\ 9 \\ 12 \\ 14 \\ 16 \\ 18 \\ 20 \\ 0 \\ 3 \\ 6 \\ 9 \\ 12 \\ 14 \\ 14 \\ 14 \\ 14 \\ 14 \\ 14 \\ 14 \\ 14 \\ 14 \\ 14 \\ 14 \\ 14 \\ 14 \\ 14 \\ 14 \\ 14 \\ 15 \\ 12 \\ 14 \\ 14 \\ 14 \\ 16 \\ 18 \\ 20 \\ 0 \\ 3 \\ 6 \\ 9 \\ 112 \\ 14 \\ 14 \\ 14 \\ 14 \\ 14 \\ 14 \\ 14 \\ 14 \\ 16 \\ 18 \\ 20 \\ 0 \\ 3 \\ 6 \\ 9 \\ 112 \\ 14 \\ 14 \\ 14 \\ 14 \\ 14 \\ 16 \\ 18 \\ 20 \\ 0 \\ 3 \\ 6 \\ 9 \\ 12 \\ 14 \\ 14 \\ 14 \\ 14 \\ 16 \\ 18 \\ 20 \\ 0 \\ 3 \\ 12 \\ 14 \\ 14 \\ 14 \\ 16 \\ 18 \\ 10 \\ $	2 2 2 2 2 2 2 2 2 2 2 2 2 5 5 5 5 5 5 5 5 5 5 10 1	0,6441 0,9331 1,2064 1,2802 1,5073 1,5816 1,6432 1,5910 0,2541 0,5610 0,7719 1,0348 1,2104 1,4185 1,5313 1,6092 1,6238 0,0360 0,3150 0,5891 0,8666 1,1129 1,3143	0,0095 0,0141 0,0189 0,0408 0,0374 0,0493 0,0622 0,0813 0,0132 0,0151 0,0229 0,0292 0,0450 0,0450 0,0430 0,0526 0,0647 0,0842 0,0309 0,0287 0,0332 0,0379 0,0508 0,0481	0,2282 0,2956 0,3556 0,3518 0,4071 0,4179 0,4264 0,4070 0,1247 0,1988 0,2401 0,3015 0,3328 0,3828 0,4050 0,4181 0,4199 0,0501 0,1165 0,1813 0,2469 0,3041 0,3502			

18	10	1,5812	$0,\!0685$	0,4136
20	10	1,5613	$0,\!0915$	0,4082
0	15	-0,1081	0,0372	0,0008
3	15	0,1994	0,0366	0,0784
6	15	0,4600	0,0392	0,1378
9	15	0,7420	0,0438	0,2056
12	15	1,0079	$0,\!0553$	0,2711
14	15	1,2289	$0,\!0549$	0,3268
16	15	1,4124	$0,\!0614$	$0,\!3721$
18	15	1,5565	$0,\!0698$	0,4067
20	15	$1,\!6118$	$0,\!0833$	0,4159
0	20	-0,1644	$0,\!0415$	-0,0160
3	20	0,1131	$0,\!0420$	0,0496
6	20	$0,\!3754$	$0,\!0455$	0,1108
9	20	$0,\!6593$	$0,\!0500$	0,1796
12	20	0,9281	$0,\!0582$	0,2462
14	20	1,1229	0,0609	0,2938
16	20	$1,\!3108$	0,0644	0,3387
18	20	1,5010	$0,\!0715$	0,3876
20	20	$1,\!6113$	$0,\!0845$	0,4173
0	25	-0,2428	0,0470	-0,0422
3	25	0,0368	0,0480	0,0245
6	25	0,2896	$0,\!0512$	0,0823
9	25	0,5731	$0,\!0560$	0,1520
12	25	0,8527	$0,\!0634$	0,2233
14	25	1,0404	$0,\!0655$	0,2662
16	25	1,2332	$0,\!0709$	$0,\!3167$
18	25	1,4197	$0,\!0761$	0,3641
20	25	1,5688	$0,\!0865$	0,4050
0	30	-0,3125	$0,\!0532$	-0,0656
3	30	-0,0305	$0,\!0544$	0,0034
6	30	0,2285	$0,\!0591$	0,0638
9	30	$0,\!4957$	0,0633	0,1276
12	30	0,7838	$0,\!0719$	0,2052
14	30	$0,\!9519$	$0,\!0720$	0,2389
16	30	$1,\!1509$	$0,\!0766$	0,2923
18	30	$1,\!3575$	$0,\!0832$	$0,\!3485$
20	30	1,5261	$0,\!0886$	$0,\!3914$
0	35	-0,3761	$0,\!0589$	-0,0864
3	35	-0,1008	0,0610	-0,0200
6	35	0,1645	0,0660	$0,\!0436$
9	35	$0,\!4262$	$0,\!0703$	0,1058
12	35	0,7090	$0,\!0786$	0,1805
14	35	$0,\!8741$	$0,\!0799$	0,2164
16	35	$1,\!0730$	$0,\!0828$	0,2698
18	35	1,2799	$0,\!0873$	$0,\!3256$
20	35	1,4134	$0,\!1066$	0,3789
0	40	$-0,\!4300$	0,0659	-0,1041

3	40	-0,1636	0,0674	-0,0402
6	40	0,1006	$0,\!0785$	$0,\!0245$
9	40	0,3638	$0,\!0783$	$0,\!0870$
12	2 40	$0,\!6410$	$0,\!0854$	0,1603
14	40 40	0,7952	$0,\!0875$	0,1926
16	i 40	$0,\!9934$	$0,\!0902$	0,2463
18	3 40	1,2017	$0,\!0933$	$0,\!3022$
20) 40	$1,\!3998$	$0,\!0972$	$0,\!3545$
0	45	-0,4854	$0,\!0714$	-0,1217
3	45	-0,2134	$0,\!0761$	-0,0553
6	45	0,0470	$0,\!0797$	$0,\!0071$
9	45	0,3088	$0,\!0858$	$0,\!0721$
12	2 45	0,5957	$0,\!0914$	0,1494
14	45	0,7229	$0,\!0947$	0,1715
16	5 45	$0,\!9398$	$0,\!1341$	0,2507
18	3 45	1,1396	$0,\!0998$	0,2858
20) 45	$1,\!3387$	$0,\!1024$	$0,\!3385$
0	50	-0,5284	$0,\!0778$	-0,1352
3	50	-0,2607	$0,\!0827$	-0,0698
6	50	-0,0060	$0,\!0865$	-0,0089
9	50	$0,\!3017$	$0,\!0994$	$0,\!0835$
12	2 50	0,5203	$0,\!0969$	$0,\!1265$
14	4 50	$0,\!6620$	$0,\!1030$	$0,\!1550$
16	50	0,8691	$0,\!1045$	0,2125
18	3 50	1,0832	$0,\!1057$	0,2711
20) 50	1,2849	$0,\!1079$	$0,\!3250$
0	55	-0,4663	$0,\!0916$	-0,0943
3	55	-0,0925	0,2714	$0,\!0247$
6	55	-0,0459	$0,\!0944$	-0,0184
9	55	0,2158	0,1019	$0,\!0474$
12	2 55	$0,\!4884$	$0,\!1048$	0,1190
14	L 55	$0,\!6053$	$0,\!1103$	0,1400
16	55	0,8113	$0,\!1112$	0,1967
18	3 55	1,0408	$0,\!1152$	0,2624
20) 55	0,8223	$0,\!1884$	0,2749

Příloha 5. Aerodynamické charakteristiky profilu. Závěsový bod 0,6b

		Šte	rbina 0,0	$01\mathrm{m}$	Št∈	erbina 0,0	$05\mathrm{m}$
AOA [0]	Výchylka [0]	CL	CD	CM	CL	CD	CM
0	2	0,0077	$0,\!3404$	0,1583			
3	2	0,0102	$0,\!6514$	0,2328	0,0102	$0,\!6530$	0,2336
6	2	0,0144	$0,\!9406$	0,3022	0,0138	$0,\!9383$	0,2979
9	2	0,0296	$1,\!0770$	0,3099	0,0182	1,2203	0,3613
12	2	0,0254	1,4591	0,4100	0,0257	$1,\!4599$	0,4107
14	2	0,0443	$1,\!6653$	$0,\!4725$	0,0351	1,5409	0,4178
16	2				0,0441	$1,\!6581$	$0,\!4397$
18	2	0,0659	1,5859	$0,\!4113$	$0,\!0548$	1,7472	$0,\!4540$
20	2	$0,\!0962$	1,5441	0,4031	0,0960	$1,\!3282$	0,3420
0	5	0,0117	0,2991	0,1438	0,0122	0,2928	0,1413
3	5	0,0143	$0,\!5974$	0,2150	0,0147	0,5813	0,2088
6	5	$0,\!0203$	$0,\!8281$	0,2616	0,0207	$0,\!8235$	0,2600
9	5	$0,\!0338$	$1,\!0020$	0,2876	$0,\!0254$	$1,\!0870$	0,3185
12	5	$0,\!0316$	$1,\!3464$	$0,\!3756$	$0,\!0314$	$1,\!3465$	$0,\!3756$
14	5				$0,\!0387$	$1,\!4757$	$0,\!3991$
16	5	$0,\!0458$	$1,\!6218$	$0,\!4295$	$0,\!0459$	$1,\!6181$	0,4282
18	5	$0,\!0549$	1,7444	$0,\!4536$	$0,\!0549$	1,7287	0,4482
20	5	$0,\!0972$	$1,\!3277$	$0,\!3430$	$0,\!0926$	$1,\!4806$	0,3835
0	10	0,1326	0,1329	0,1130	0,0246	$0,\!0595$	0,0609
3	10	$0,\!0254$	$0,\!3610$	$0,\!1350$	0,0258	$0,\!3532$	0,1316
6	10	$0,\!0295$	$0,\!6380$	0,1984	$0,\!0291$	$0,\!6297$	$0,\!1945$
9	10	$0,\!0395$	$0,\!8924$	0,2533	0,0336	$0,\!9215$	0,2641
12	10	$0,\!0383$	1,2111	$0,\!3329$	$0,\!0381$	1,2059	0,3302
14	10	$0,\!0446$	1,4082	$0,\!3816$	$0,\!0433$	$1,\!3837$	$0,\!3709$
16	10	$0,\!0489$	1,5496	$0,\!4079$	$0,\!0493$	1,5513	0,4089
18	10	$0,\!0559$	1,7050	$0,\!4421$	$0,\!0561$	$1,\!6936$	$0,\!4381$
20	10	$0,\!0965$	$1,\!4042$	$0,\!3645$	$0,\!0841$	1,5948	0,4106
0	15	$0,\!0310$	-0,0869	$0,\!0096$			
3	15	$0,\!0342$	0,2322	$0,\!0916$			
6	15	$0,\!0357$	0,5075	0,1498	$0,\!0347$	$0,\!4953$	0,1475
9	15	0,0389	0,7928	0,2197	$0,\!0385$	0,7917	0,2193
12	15	$0,\!0502$	$1,\!0756$	0,2896	$0,\!0429$	$1,\!0845$	0,2895
14	15	$0,\!0474$	$1,\!2787$	$0,\!3370$	$0,\!0474$	1,2800	0,3372
16	15	$0,\!0522$	1,4601	$0,\!3788$			
18	15	$0,\!0587$	$1,\!6391$	$0,\!4222$			
20	15	$0,\!0801$	1,5701	$0,\!3992$			
0	20	$0,\!0371$	-0,2087	-0,0340	$0,\!0374$	-0,2151	-0,0384
3	20	$0,\!0433$	$0,\!0934$	$0,\!0391$	$0,\!0387$	$0,\!0874$	$0,\!0370$
6	20	0,0413	0,3872	0,1120	0,0413	0,3815	0,1081

9	20	$0,\!0455$	$0,\!6875$	0,1862	0,0455	$0,\!6841$	0,1836
12	20	$0,\!0414$	$0,\!9229$	0,2186	0,0487	0,9758	0,2536
14	20	0,0529	1,1807	0,3072	0,0522	1,1735	0,3020
16	20	0,0576	1,3706	0,3518	0,0577	1,3752	0,3538
18	20	0,0607	1,5486	0,3914	0,0628	1,5614	0,3987
20	20	0.0696	1,7377	0,4410	0.1104	1.2885	0,3430
0	25	0.0426	-0.3267	-0.0784	0.0447	-0.3114	-0.0721
3	25	0.0429	-0.0299	-0.0067	0.0447	-0.0114	0.0025
6	25	0.0468	0.2803	0.0753	0.0487	0.2845	0.0762
9	25	0.0516	0.5850	0.1523	0.0524	0.5811	0.1494
12	$\frac{1}{25}$	0.0556	0.8849	0.2266	0.0546	0.8708	0.2188
14	$\frac{1}{25}$	0.0581	1.0780	0.2731	0.0577	1.0770	0.2689
16	$\frac{1}{25}$	0.0631	1,2831	0.3263	0.0629	1 2833	0.3254
18	$\frac{1}{25}$	0.0680	1,2001 1,4796	0.3748	0.0678	1 4822	0.3758
20	$\frac{20}{25}$	0.0753	1,1100 1,6814	0,3140 0,4281	0.0786	1,18 22	0,3100 0,4240
0	30	0.0501	-0 4006	-0 1015	0,0100 0.0514	-0 4001	-0 1030
3	30	0,0001	0,1000	0,1010	0.0506	-0 1099	-0.0316
6	30	0.0533	0.1867	0.0430	0,0500 0.0544	0,1889	0.0434
9	30	0,0555	0,1007 0 5097	0,0100 0.1350	0.0587	0,1005	0,0101
5 19	30	0.0615	0,0001 0.7824	0,1000 0 1930	0.0621	0,4000 0.7821	0,1101
14	30	0.0642	0,1021	0,1000 0.2416	0.0646	0,1021	0,1010 0.2407
16	30	0,0042 0.0688	1 1982	0,2410 0,3010	0.0688	1,9155 1,1953	0,2401 0.2985
18	30	0,0000	1,1502	0,0010	0.0728	1,1300 1 4006	0,2500 0.3518
20	30				0.0800	1,4000 1 6057	0,3010 0.4064
0	35				0.0583	-0 4799	-0 1303
0 3	35				0,0505 0.0578	-0,4133	-0,1505
5 6	35	0.0617	0 10/1	0.0161	0.0618	0,1005	0.0145
9	35	0,0011	0,1041	0,0101	0.0654	0,1004	0,0140
5 19	35	0 0692	0 6908	0 1630	0,0004	0,0000	0.1629
14	35	0,0052	0,0500	0,1000 0.2124	0.0715	0,0521	0,1025 0.2136
16	35	0,0709	1,0000 1,1139	0,2124 0.2744	0.0751	1,0520	0,2130 0.2736
18	35	0,0743	1,1102 1 3 9 9 7	0,2144	0,0101	1,1121	0,2100
10 20	35	0.0838	1,5227 1,5208	0,3308	0 0838	1 5310	0 3857
20	30 40	0,0635	1,5250 0.5527	0,3000	0,0050	0.5477	0,5057
0 3	40 40	0,0045	-0,0027	-0,1520	0,0058 0.0677	-0,5477 0.2640	-0,1525 0.0827
5 6	40				0,0077 0.0701	-0,2040	-0,0827
0	40	0.0720	0 3201	0.0653	0,0701 0.0731	0,0290 0.3211	-0,0080
ย 10	40	0,0729 0.0761	0,5201 0.6120	0,0000	0,0751 0.0764	0,5211 0.6120	0,0000
12 14	40 40	0,0701	0,0130	0,1392 0.2540	0,0704	0,0129	0,1006
14	40	0,0901 0.1125	1 0000	0,2040 0.2401	0,0795	1 0201	0,1900
10	40	0,1120	1,2200	0,3401	0,0010	1,0301	0,2522
10	40	0,0812	1,2004	0,2014	0,0850	1,2011	0,5095
20	40	0,0850	1,4005	0,3048	0.0797	0 6 1 0 4	0 1720
U ว	40	0,0855	-0,000	-0,1423	0,0727	-0,0104	-0,1732
ა ი	40 45	0,0805	-0,2031	-0,0707	0,0777	-0,2870	-0,0884
0	40 45	0,0769	-0,0472	-0,0325	0,0777	-0,0305	-0,0290
y 10	40				0.0049	0 5415	0 1179
12	40				0,0842	0,5415	0,1173
14	45				0,0868	0,7431	0,1098

16	45				0,0884	$0,\!9711$	0,2337
18	45				$0,\!0913$	1,1842	0,2914
20	45				$0,\!0951$	$1,\!3960$	0,3488
0	50				0,0792	-0,6670	-0,1915
3	50				0,0838	-0,3594	-0,1119
6	50				0,0836	-0,0846	-0,0428
9	50				0,0890	0,1974	0,0289
12	50				0,0924	$0,\!4835$	0,1013
14	50				0,0938	$0,\!6779$	0,1510
16	50				0,0956	0,9056	0,2153
18	50				0,0975	1,1225	0,2749
20	50				0,1006	1,3358	0,3332
0	55						
3	55						
6	55				0,0909	-0,1547	-0,0655
9	55				0,0996	0,4193	0,0825
12	55				0,1013	0,6189	0,1348
14	55				,	,	,
16	55						
18	55						
20	55						
		Šte	erbina 0,0	10m	Šte	erbina 0,0	15m
AOA [0]	Výchylka [0]	CL	CD	CM	CL	CD	CM
0	2	0,0080	0,3362	0,1565	0,0080	0,3358	0,1563
3	2	0,0100	$0,\!6445$	0,2300	0,0104	$0,\!6469$	0,2308
6	2	0,0139	0,9342	0,2962	0,0139	0,9233	0,2915
9	2	0,0181	1,2190	0,3608	0,0184	1,2133	0,3585
12	2	0,0253	1,4618	0,4109	0,0253	1,4629	0,4113
14	2	0,0354	1,5367	$0,\!4167$	$0,\!0358$	1,5316	0,4153
16	2	0,0451	$1,\!6401$	$0,\!4346$	0,0453	$1,\!6363$	$0,\!4335$
18	2	$0,\!0559$	1,7266	$0,\!4483$	$0,\!0561$	1,7204	$0,\!4466$
20	2	0,0989	$1,\!3936$	0,3635	0,0999	$1,\!3665$	$0,\!3561$
0	5	0,0133	0,2741	0,1340	0,0151	0,2328	0,1180
3	5	0,0157	0,5600	0,2011	0,0179	0,5047	0,1804
6	5	0,0213	0,7989	0,2508	0,0227	0,7685	0,2391
9	5	0,0264	1,0790	0,3159	0,0262	$1,\!0587$	0,3077
12	5	0,0319	1,3491	$0,\!3768$			
14	5	0,0392	1,4729	$0,\!3987$	0,0392	1,4710	0,3981
16	5	0,0465	$1,\!6039$	0,4241			
18	5	0,0568	1,7058	$0,\!4427$	$0,\!0579$	$1,\!6887$	0,4382
20	5	0,0954	1,4438	$0,\!3754$			
0	10	0,0252	0,0353	0,0497	0,0250	0,0188	0,0399
3	10	0,0259	0,3321	0,1217	0,0250	0,3180	0,1125
6	10	0,0290	0,6169	$0,\!1879$	0,0285	$0,\!6091$	0,1823
9	10	0,0334	0,9129	0,2594	0,0329	$0,\!9083$	0,2550
12	10	0,0375	1,2027	$0,\!3277$	$0,\!0372$	1,1997	0,3246
14	10	$0,\!0425$	1,3786	0,3676	0,0428	1,3883	$0,\!3704$
16	10	0.0493	1.5460	0,4071	0,0496	1.5551	0,4108

18	10	0,0577	$1,\!6950$	0,4407	0,0594	$1,\!6762$	0,4363
20	10	0,0837	1,6058	0,4135	0,0856	1,5753	0,4061
0	15	0,0313	-0,1026	-0,0008	0,0316	-0,0894	0,0015
3	15	0.0315	0.1969	0.0725	0.0319	0.2075	0.0736
6	15	0.0357	0.4935	0.1451	0.0356	0.5075	0.1504
9	15	0.0383	0.7874	0.2155	0.0376	0.7966	0.2162
12	15	0.0425	1.0851	0.2874	0.0420	1.0896	0.2869
14	15	0.0468	1.2812	0.3356	0.0462	1.2859	0.3353
16	15	0.0522	1.4673	0.3809	0.0514	1.4720	0.3809
18	15	0.0596	1.6319	0.4210	0.0600	1.6282	0.4203
20	15	-,	_,	-,	0.0981	1.3954	0.3635
0	20	0.0377	-0.2083	-0.0384	0.0378	-0.1776	-0.0294
3	$\frac{1}{20}$	0.0384	0.0952	0.0370	0.0384	0.1159	0.0420
6	20	0.0414	0.3883	0.1083	0.0411	0.4034	0.1119
9	20	0.0450	0.6850	0.1814	0.0447	0.6983	0.1837
12	$\frac{1}{20}$	0.0488	0.9797	0.2530	0.0486	0.9876	0.2542
14	$\frac{1}{20}$	0.0518	1.1760	0.3010	0.0510	1.1825	0.3010
16	$\frac{1}{20}$	0.0570	1.3756	0.3524	0.0566	1.3843	0.3538
18	$\frac{2}{20}$	0.0626	1.5657	0.3996	0.0617	1.5698	0.3994
20	$\frac{20}{20}$	0.0727	1.7122	0.4376	0.0901	1.6031	0.4223
0	$\frac{1}{25}$	0.0446	-0 2928	-0.0683	0.0443	-0.2574	-0.0568
3	$\frac{20}{25}$	0.0440	-0.0029	0.0028	0.0445	0.0294	0.0123
6	$\frac{1}{25}$	0.0470	0.2891	0.0742	0.0472	0.3142	0.0812
9	$\frac{1}{25}$	0.0511	0.5835	0.1466	0.0507	0.6045	0.1522
12	$\frac{1}{25}$	0.0546	0.8781	0.2191	0.0544	0.8911	0.2218
14	$\frac{1}{25}$	0.0546	1.0592	0.2484	0.0573	1.0846	0.2692
16	25	0.0629	1.2874	0.3255	0.0619	1.2886	0.3236
18	25	0.0674	1.4858	0.3760	0.0668	1.4866	0.3747
20	$\overline{25}$	0.0844	1.5263	0.3918	0.0915	1.3183	0.3356
0	30	0.0519	-0.3751	-0.0966	0.0516	-0.3380	-0.0853
3	30	0.0512	-0.0881	-0.0264	0.0516	-0.0500	-0.0151
6	30	0.0542	0.1987	0.0440	-)	-)	-)
9	30	0.0581	0.4912	0.1167	0.0581	0.5175	0.1234
12	30	0.0620	0.7829	0.1891	0.0620	0.8035	0.1938
14	30	0.0647	0,9835	0,2399	0,0647	0.9951	0.2414
16	30	0.0683	1.1963	0.2972	0.0679	1.1997	0.2962
18	30	0.0727	1.4036	0.3517	0.0723	1.4049	0.3505
20	30	0.0891	1.5075	0.3917	0.0832	1.5866	0.4078
0	35	0.0587	-0.4480	-0.1217	0.0585	-0.4057	-0.1084
3	35	0.0585	-0.1674	-0.0533	0.0595	-0.1171	-0.0369
6	35	0.0629	0.1247	0.0209	0.0627	0.1777	0.0443
9	35	0.0656	0.4041	0.0885	0.0664	0.4361	0.0971
12	35	0.0692	0.6953	0.1614	0.0696	0.7125	0.1642
14	35	0.0719	0,8938	0,2118	0,0723	0,9023	0,2118
16	35	0.0748	1,1179	0,2742	0.0746	1,1153	0,2704
18	35	0.0786	1,3275	0.3298	0,0777	1,3256	0,3270
20	35	0.0939	1.4277	0.3711	0.0874	1.5476	0.3936
0	40	0.0665	-0.5126	-0.1431	-,	_,	-,
-	-0	0,0000		-,			

3	40	0,0683	-0,2370	-0,0763	$0,\!0667$	-0,1857	-0,0602
6	40	$0,\!0723$	0,0638	0,0143	$0,\!0701$	0,0869	0,0052
9	40	$0,\!0743$	0,3280	0,0649	$0,\!0747$	$0,\!3617$	0,0708
12	40	$0,\!0770$	$0,\!6134$	0,1358	$0,\!0779$	$0,\!6310$	0,1388
14	40	$0,\!0797$	0,8128	0,1874	$0,\!0801$	0,8206	0,1869
16	40	0,0815	$1,\!0407$	0,2512	0,0816	1,0407	0,2491
18	40	$0,\!0878$	1,2668	0,3152	0,0862	1,2616	0,3105
20	40	0,0923	1,4769	$0,\!3725$	0,0899	1,4731	0,3687
0	45	$0,\!0771$	-0,5212	-0,1358	$0,\!0730$	-0,5274	-0,1492
3	45	$0,\!0760$	-0,3026	-0,0976	$0,\!0754$	-0,2451	-0,0795
6	45	$0,\!0775$	-0,0347	-0,0360	$0,\!0774$	0,0229	-0,0151
9	45	0,0822	0,2581	0,0438	0,0824	$0,\!2904$	$0,\!0507$
12	45	$0,\!0853$	0,5422	0,1147	$0,\!0867$	0,5581	0,1169
14	45				0,0888	0,7456	0,1648
16	45				0,0888	$0,\!9720$	0,2293
18	45				$0,\!0908$	$1,\!1871$	0,2883
20	45				0,0938	$1,\!4004$	0,3477
0	50				$0,\!0852$	-0,5019	-0,1233
3	50	0,0838	-0,3633	-0,1169	0,0884	-0,2414	-0,0618
6	50	$0,\!0851$	-0,0959	-0,0509	$0,\!0854$	-0,0374	-0,0339
9	50	$0,\!0900$	0,1919	0,0231	$0,\!0937$	$0,\!2493$	0,0491
12	50	$0,\!0925$	$0,\!4779$	$0,\!0959$	$0,\!0947$	$0,\!4876$	0,0962
14	50	$0,\!0951$	$0,\!6766$	0,1482	$0,\!0958$	$0,\!6748$	0,1441
16	50	$0,\!0979$	$0,\!9027$	0,2117	$0,\!0972$	$0,\!8908$	0,2040
18	50	$0,\!0974$	1,1250	0,2737	$0,\!0972$	1,1261	0,2719
20	50	0,1046	$1,\!3508$	0,3393	$0,\!0999$	$1,\!3415$	0,3323
0	55	$0,\!0901$	$-0,\!6396$	-0,1735	$0,\!0916$	-0,5558	-0,1398
3	55	$0,\!0929$	-0,3903	-0,1158	$0,\!0958$	-0,2947	-0,0778
6	55	$0,\!0925$	-0,1503	-0,0672	$0,\!0994$	-0,0492	-0,0202
9	55	$0,\!0974$	0,1319	$0,\!0053$	0,1021	$0,\!1867$	0,0309
12	55	0,1009	$0,\!4214$	0,0806	0,1042	$0,\!4460$	$0,\!0936$
14	55	0,1028	$0,\!6187$	0,1321	0,1042	$0,\!6171$	0,1287
16	55	0,1037	$0,\!8380$	$0,\!1933$	0,1445	$0,\!8101$	0,1867
18	55	0,1040	1,0682	0,2589	0,1035	1,0669	0,2559
20	55	0,1091	1,2916	0,3229	0,1355	$1,\!2976$	0,3329
Příloha 6. Aerodynamické charakteristiky profilu. Závěsový bod 0,65b

		Šterbina 0,015m					
AOA [0]	Výchylka [0]	CL	CD	СМ	CL	CD	CM
0	2						
3	2	$0,\!635936$	0,009405	0,22591			
6	2	0,929148	0,013725	0,294003			
9	2	1,224313	0,017976	0,363015			
12	2	1,474021	0,02478	0,41517			
14	2	1,561566	0,034477	0,424814			
16	2	1,664263	0,043377	0,441175			
18	2	1,746246	$0,\!054363$	$0,\!453348$			
20	2	$1,\!632865$	0,035981	0,347819			
0	5						
3	5						
6	5	0,782708	0,018876	$0,\!240434$			
9	5	$1,\!095376$	0,022903	$0,\!317947$			
12	5	$1,\!386708$	0,027918	$0,\!386356$			
14	5	1,510879	$0,\!036991$	$0,\!409732$			
16	5	$1,\!637289$	$0,\!044388$	$0,\!433199$			
18	5	1,725324	$0,\!055462$	$0,\!447708$			
20	5	$1,\!370692$	$0,\!097182$	$0,\!355145$			
0	10	$0,\!034686$	$0,\!021482$	$0,\!040862$			
3	10	$0,\!340432$	$0,\!022454$	$0,\!114562$			
6	10	$0,\!629519$	$0,\!031232$	$0,\!184945$			
9	10	$0,\!955505$	$0,\!028064$	0,26711			
12	10	1,267128	$0,\!032212$	$0,\!343628$			
14	10	$1,\!447733$	$0,\!038297$	$0,\!387048$			
16	10	$1,\!615254$	$0,\!045287$	$0,\!426972$			
18	10	1,709345	$0,\!055345$	$0,\!442618$			
20	10	$1,\!669106$	$0,\!080569$	$0,\!431038$			
0	15						
3	15	$0,\!240359$	$0,\!026544$	$0,\!078676$			
6	15						
9	15	$0,\!858089$	$0,\!032298$	$0,\!230745$			
12	15	$1,\!173268$	$0,\!037723$	$0,\!310775$			
14	15	$1,\!358254$	$0,\!040536$	$0,\!353546$			
16	15	1,571663	$0,\!047524$	$0,\!410649$			
18	15	1,700845	$0,\!055357$	$0,\!439488$			
20	15	$1,\!670719$	$0,\!079245$	$0,\!430691$			
0	20	-0,15733	$0,\!032744$	-0,02996			
3	20	$0,\!126842$	$0,\!033352$	$0,\!02674$			
6	20	$0,\!464585$	$0,\!036322$	0,128382			

9	20			
12	20	$1,\!078716$	$0,\!045416$	0,283306
14	20	1,250296	$0,\!048623$	0,313757
16	20	1,468241	0,049569	$0,\!374782$
18	20	1,596692	0,064878	$0,\!395981$
20	20	1,590494	0,082592	0,408625
0	25	-0,23335	0,03941	-0,05707
3	25	0,069343	0,040117	0.016861
6	25	0.354623	0.041827	0.084469
9	25	0.661767	0.043364	0.161543
12	25	0.965991	0.047495	0.238138
14	25	1.168694	0.049495	0.288939
16	25	1.381207	0.053975	0.344969
18	25	1,757756	0.088517	0 479282
20	25	1,741014	0.071586	0 44669
0	30	-0.30047	0.048136	-0.08077
3	30	0.046215	0,010100 0.055654	0.016100
6	30	0,040210	0,055054 0.054502	0.068514
0	30 30	0,502003 0.578833	0,054052 0.051678	0.134604
9 19	30	0,378855	0,051070 0.05317	0,134004 0.204178
14	20	0,809450 1.070720	0,05517	0,204170
14 16	30 20	1,079739	0,000001	0,209004
10	30	1,40277	0,079233	0,397313
18	30	1,000007	0,070677	0,400082
20	30	1,082707	0,072758	0,420000
0	35	-0,38908	0,052118	-0,11288
3	35	0 100 707	0.054500	0.00001
6	35	0,188727	0,054722	0,02881
9	35	0,737893	0,087152	0,219517
12	35	0,786605	0,05967	0,177604
14	35	1,000732	0,064549	0,235181
16	35	1,231903	0,067942	0,300854
18	35			
20	35	$1,\!399477$	$0,\!099596$	0,368897
0	40			
3	40			
6	40	0,131179	$0,\!062299$	$0,\!009412$
9	40			
12	40	0,778994	$0,\!066196$	$0,\!188387$
14	40	$0,\!904846$	$0,\!06945$	0,202425
16	40	1,144601	$0,\!071643$	0,272188
18	40	$1,\!272651$	$0,\!103056$	$0,\!291278$
20	40	$1,\!649709$	$0,\!095633$	$0,\!441596$
0	45	-0,50466	$0,\!065702$	-0,15327
3	45			
6	45			
9	45	0,345168	$0,\!073293$	$0,\!056676$
10				
12	45	$0,\!670043$	$0,\!115556$	0,146157

16	45	$1,\!045207$	$0,\!104947$	0,244425
18	45	1,25254	0,102291	0,353467
20	45			
0	50	-0,50249	$0,\!076869$	-0,13752
3	50	-0,22431	$0,\!079324$	-0,07093
6	50			
9	50	0,267236	$0,\!080207$	0,03
12	50	0,568588	$0,\!093564$	0,105339
14	50	0,768351	$0,\!083671$	0,161035
16	50	$0,\!823791$	$0,\!12507$	0,174059
18	50	1,251079	$0,\!089251$	0,302856
20	50	$1,\!367524$	$0,\!103355$	0,317071
0	55	-0,55149	$0,\!083438$	-0,1536
3	55	-0,28217	$0,\!085675$	-0,08987
6	55			
9	55	0,230219	0,08982	0,033232
12	55	0,503268	0,089869	0,089075
14	55	0,703684	$0,\!090029$	0,140473
16	55	$0,\!954676$	$0,\!089631$	0,21616
18	55	$1,\!18551$	0,091099	0,282126
20	55	1,410881	0,09321	0,347101

Příloha 7. Grafy průběhu poklesu součinitele vztlaku s výchylkou spoileru

Obrázek 7.3: Závislost součinitele vztlaku na výchylce kormidla. Závěsová os
a $0,55\mathrm{b};$ štěrbina $0,001\mathrm{m}$

Obrázek 7.4: Závislost součinitele vztlaku na výchylce kormidla. Závěsová os
a $0,55\mathrm{b};$ štěrbina $0,005\mathrm{m}$

Obrázek 7.5: Závislost součinitele vztlaku na výchylce kormidla. Závěsová os
a $0,55\mathrm{b};$ štěrbina $0,010\mathrm{m}$

Obrázek 7.6: Závislost součinitele vztlaku na výchylce kormidla. Závěsová os
a $0,7\mathrm{b};$ štěrbina $0,001\mathrm{m}$

Obrázek 7.7: Závislost součinitele vztlaku na výchylce kormidla. Závěsová os
a $0,7\mathrm{b};$ štěrbina $0,005\mathrm{m}$

Obrázek 7.8: Závislost součinitele vztlaku na výchylce kormidla. Závěsová os
a $0,7\mathrm{b};$ štěrbina $0,010\mathrm{m}$

Obrázek 7.9: Závislost součinitele vztlaku na výchylce kormidla. Závěsová os
a0,6b;štěrbina $0,001\mathrm{m}$

Obrázek 7.10: Závislost součinitele vztlaku na výchylce kormidla. Závěsová os
a0,6b;štěrbina $0,005\mathrm{m}$

Obrázek 7.11: Závislost součinitele vztlaku na výchylce kormidla. Závěsová os
a $0,6\mathrm{b};$ štěrbina $0,010\mathrm{m}$

Obrázek 7.12: Závislost součinitele vztlaku na výchylce kormidla. Závěsová os
a $0,6\mathrm{b};$ štěrbina $0,015\mathrm{m}$

Obrázek 7.13: Závislost součinitele vztlaku na výchylce kormidla. Závěsová os
a $0,65\mathrm{b};$ štěrbina $0,015\mathrm{m}$

Příloha 8. Anotace diplomové práce

BOZTAYEV, I.: Příčné řízení letounu pomocí spoilerů: diplomová práce. Praha: ČVUT – České vysoké učení technické, Fakulta strojní, Ústav letadlové techniky, 2017, s. Vedoucí práce: Ing. Tomáš Čenský Ph.D.

Tato diplomová práce řeší problematiku příčného řízení letounu pomocí netradičního druhu ovládacích ploch: spoilerů. Ověřuje se schopnost provedení předběžného návrhu použitím výpočtového softwaru na základě CFD: Ansys Fluent. Na základě předchozích zkušenosti z tunelových měření a letových zkoušek testuje se vliv uspořádání spoileru vůči profilu/křídlu na aerodynamické součinitele. Testuje se možnost použití hodnot získaných 2D výpočtem v následném návrhu spoileru pomocí Glauertového řešení Prandtlové rovnice a simulování obtekání křídla v 3D pomocí softwaru ANSYS.

BOZTAYEV, I.: Lateral control by spoilers: Master Thesis. Prague: CTU – Czech Technical University, Faculty of Mechanical Engineering, Department of Aerospace Engineering, 2017, p. Thesis head: Ing. Tomáš Čenský Ph.D.

This diploma work deals with lateral flight control problems of an aircraft by non-traditional control surfaces – spoilers. In this work is verified the capability of numerical software CFD: Ansys Fluent to perform a preliminary design of a lateral control. Based on a past tunnel aerodynamic experiments and flight tests, in this work is tested the influence of spoiler configurations on aerodynamic coefficients against airfoil/wing configuration. The possibility of usage of values from 2D solutions for design of a spoiler by Glauert method of Prandtl equation is tested. In addition in this work is performed a simulation of a wing streamline in 3D by Ansys software.