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Abstrakt

Urcovani DNA sekvenci z Nanopore dat se v sou¢astnosti velmi rychle vyviji.
Od predstaveni zafizeni MinION™ je moZné se soustfedit na C4st zvanou
urcovani bazi. Tato prace implementuje snadno pouzitelny nastroj, ktery
k tomuto ucelu vyuziva Viterbiho a Forward-Backward algoritmy. Presnost
daného feseni je porovnatelna s jiz existujicimi nastroji jako Nanocall a Deep-
Nano. Data pouzitd k testovani byla ziskdna pomoci R9 chemie z E.coli DNA
molekul.

Klic¢ova slova DNA, Urcovani bazi DNA, Algoritmus Forward—-Backward,
Skryty Markoviuv Model, Nanopore, Zarovnani sekvenci, Viterbiho algoritmus
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Abstract

MinlON Nanopore sequencing technology is a novel approach to DNA se-
quencing which allows to sequence individual molecules in real time and can
generate continuous sequences 100 x longer than the existing short-read tech-
nologies. One of the downsides of this emerging technology is much less accur-
ate base-calling, the process of determining the actual DNA sequence from raw
data. In this work an open-source implementation of a base-caller is presen-
ted. It is based on Hidden Markov Models (HMM) and implements Viterbi
and Forward-Backward algorithms. The accuracy is evaluated on E.Coli data
and compared to the existing programs.

Keywords DNA, DNA Base-calling, Forward—Backward Algorithm, Hid-
den Markov Model, Nanopore, Sequence Alignment, Viterbi Algorithm
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Introduction

In the recent years a significant progress has been made in DNA sequencing.
The first practical method of sequencing invented by Frederick Sanger in 1977
was in the past 15 years replaced by the second-generation high-throughput
methods. The most successful and most widely used today became sequencing
by synthesis (Illumina) which can read billions DNA bases with high accuracy
in the matter of days. The main disadvantage is that the generated sequence
comes in short reads (typically around 150 bases) that originate from random
places of the genome. Because biological sequence can be highly repetitive
(mammalian genome is 40 % repetitive, plant genomes 80 %), the assembly
of the genome from short reads is a very difficult problem. Also the massively
parallel approaches sequence ensemble of sequences, rather than individual
molecules.

The MinION Nanopore technology allows to sequence tens of thousands
bases of a single molecule in real time with a relatively low cost. However, the
accuracy of base-calling is much lower than for Illumina data. This is mostly
due to the low resolution caused by the rapid movement of the strand through
the Nanopore.

The main idea of this method is based on an ability to drive a single DNA
strand through a biological pore. It is possible to measure ionic current which
is released by the molecules in the actual part of the DNA sequence present
in the pore. So, the input data for base-calling is a relatively simple sequence
of numbers which depend mostly on the current context of the Nanopore.
A hindrance to the process of base-calling is however the fact, that the current
is measured periodically but the move of DNA strand seems rather stochastic
as it is determined by the chemistry involved. This is addressed by measuring
the current with higher frequency, which leads to the need of segmentation
of the raw data. Another problem is caused by the unrepeatable nature of
the measuring. Even the same DNA sequence measured by the exactly same
device will not yield the same results as some conditions changed.
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INTRODUCTION

One of the first methods used to perform base-calling using Nanopore data
utilized Hidden Markov Models and specifically Viterbi algorithm. HMM uses
a set of hidden states, in this case pore contexts, and visible observations, here
the measured ionic currents, to predict the probability of parts of the measured
sequence. Viterbi Algorithm is designated to recreate the whole sequence, so it
is an obvious choice for base-calling. Another widely used algorithm operating
with HMM is a Forward—Backward Algorithm, which has a different purpose
however.

Results of the base-calling are then compared with the reference data. This
is accomplished by designated alignment algorithms. Used alignments include
Smith—Waterman Algorithm, Needleman—Wunsch Algorithm and a modified
computation of Levenshtein distance.

In summary, the aim of the thesis is to write a lightweight open source tool
for base calling from MinlON Nanopore data. Other necessary modules will
be implemented as well, which among others include the alignment module
and a script which can scale the input parameters for the actual base-calling.
As there already exist some tools for base-calling like Metrichor or Nanocall,
the goal is to provide an alternative open source, easy to use and low demand
tool, which is usable on any machine.

To accomplish this goal it is necessary to thoroughly analyze given problem
which is presented in the chapter[I} Chapter[2/discusses the implemented solu-
tion and its modifications, and also provides an in depth analysis of measured
results with an included comparison to the State-of-the-Art solutions.



CHAPTER 1

Methods

The focus of this chapter is on the theoretical foundations which will then be
used in the realization and evaluation of achieved results in later chapters.
The chapter is structured as follows: First a general information about DNA
and DNA sequencing with an introduction to the problem of base-
calling, followed by the HMM algorithms and algorithms used to compare
the resulting sequence [1.4

1.1 DNA

Deoxyribonucleic acid, hereafter called by a commonly used abbreviation
DNA, is a vital part of every organism. It keeps its genetic information.
DNA is in a form of double helix, where each strand is a sequence of four
bases known also as nucleotides. These bases are Adenine (A), Guanine (G),
Cytosine (C) and Thymine (T) [12]. An illustration of a double helix can
be seen in Figure [1.1] where each color represents a different base. For the
purpose of base-calling, it is sufficient to know that DNA is composed of four
bases (called nucleotides). The genetic information is encoded in the order of
the nucleotides and this sequence is unique to every organism. The process of
determining the order is known as DNA sequencing.

Two strands of the double helix are held together by hydrogen bond inter-
actions between the nucleotides. Adenosine pairs with Thymine and Guanine
pairs with Cytosine. Therefore, if the sequence of one strand is known, the
sequence of the complementary strand can be determined as well. As the
pairs are fixed the sequences have varied CG to AT ratio specific to the given
organism.



1. METHODS

Figure 1.1: DNA double helix [IJ.

1.2 DNA Sequencing

The task of recognizing the sequence of bases in given DNA strand is called
DNA sequencing. It remains a very difficult to perform accurately on long
sequences.

Precise sequencing is desired in many fields. One area is particularly fo-
cused on it and even if it was the only area where it could be used, which is
by far not true, the motivation to create an accurate sequencer would be im-
mense. It is of course Medicine. Not only it could be used to more accurately
diagnose genetic diseases, but also it would be possible to improve the drug
design to target specific genes and much more. Other existing field interested
in this research is for example agriculture. Understanding of crops genome
could lead to creating more resilient and more producing individuals. An-
other important applications are for example in DNA forensics and detecting
bacteria responsible for pollution. Actually, the possibilities are innumerable,
any field which works with any kind of organic material probably can use
results of these researches in some way.
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1.2. DNA Sequencing

Following sections will discuss some of the most popular or promising
methods separated into three categories. Although the DNA was first isolated
already in 19th century, its structure was not known until 1950 and the first
widely used methods for DNA sequencing were proposed in 1970s [13]. These
are presented in section [I.2.1] In section [[.2.2] some of the high-throughput
methods are discussed, which were developed mainly to reduce the high cost of
previous methods. Finally, section [I.2.3]is focused on Nanopore sequencing.
It is one of the most recent methods, which tries to address some of the
disadvantages of the used high-throughput methods. It is also the focus of
this work, so it will be discussed more thoroughly.

1.2.1 First Methods

As was already mentioned the first sequencing methods were proposed in
the second half of the 1970s. Two similar approaches are presented as they
were proposed almost at the same time and both use electrophoresis to create
electropherogram traces for base-calling.

1.2.1.1 Maxam—Gilbert Method

First discussed method was published in 1976 by Maxam and Gilbert [I4]. The
method chemically modifies specific nucleotides of a chemically labeled DNA
molecule, leaving the backbone susceptible to cleavage at the modified bases.
Partial cleavage at each base produces fragments extending from labeled end
to each of the positions of that base. Then these single-stranded fragments
are resolved by electrophoresis of polyacrylamide gel.

The process required only three different chemical cleavage reactions to
identify every base. Each with single-base specificity. The fourth base would
be recognized using the information from all three negative results.

As can be seen from the description this method involves a relatively com-
plex chemical process. At the time of proposition, it was possible to sequence
both double-stranded and single-stranded DNA molecules which were labeled
at one end. Usual length of the sequenced molecule was about 100 bases,
however with high dependency on resolving power of the used gel.

1.2.1.2 Sanger Method

Next method was proposed in 1977 and is still popular and widely used today.
The method was proposed by [I5] and is usually called Chain Termination
method or even Sanger method. The Chain Termination method involves the
Polymerase Chain Reaction (PCR), which creates many copies of the single
stranded DNA template fragment. The template is then used in four sequen-
cing reactions, where each is specific for one nucleotide. To each reaction all
four ordinary nucleotides are added with one of the dideoxynucleotide, which
terminates DNA strand elongation when bound to the strand. The resulting

5



1. METHODS

DNA fragments are heat denatured and electrophoresis is performed to sep-
arate the fragments based on their length, resulting in an electropherogram
trace.

An example of human DNA electropherogram is shown in Figure[T.2] The
graph is composed by four separate curves, each from different chemical reac-
tion. If overlapped, the peaks then show occurrences of respective nucleotides
based on the curve. The figure shows a relatively clean part of the DNA se-
quence, which may tempt to think it would be a simple process to use a very
simple base-calling method. Here and in any sequencing method, most of the
data contain some noise.

1200

Base C Base T

Base A

1000}

800

600

Amplitude

400

2001

L
10500 1550 1600 1650 1700
Time (Samples)

Figure 1.2: Segment of an electropherogram trace [2].

Chain Termination is also a complex chemical process which could se-
quence tens to hundreds of bases in single DNA strand. However, as it is still
a popular method used usually for targeted validation, it has been improved
over the time.

1.2.1.3 Electropherogram Trace Base-calling

As the Sanger method is widely used for several decades, a large number of
heterogenous base-callers were developed to precisely determine nucleotides
using the electropherogram traces. They vary from heuristic methods [16] [17],
through statistical base-callers [I§] up to machine learning methods [19, 20]
and others [21], 22, 23]. Each method obviously has some advantages and
disadvantages and is better suited for specific data.

1.2.2 High-throughput Methods

High-throughput methods is a category which describes a wide variety of ap-
proaches. The main reason for development was to increase throughput and
reduce high cost of previously presented methods. This is done mostly by par-
allelization of the sequencing process allowing to produce thousands or more
sequences simultaneously.

6



1.2. DNA Sequencing

Many methods were developed over the time, however three of them were
considered as the most promising and thus will be presented here. The me-
thods are pyrosequencing [1.2.2.1] 2 base encoding also known as SOLID se-
quencing [1.2.2.2| and Illumina dye sequencing [1.2.2.3

All of the mentioned approaches share some features. First, all platforms
require a library obtained either by amplification or ligation with custom adap-
ter sequences. Each fragment is amplified on solid surface with linkers. This
creates clusters of DNA for each library fragment. A sequencing reaction will
be performed with each cluster. This reaction is specific for each technology.
The raw output data is then a collection of DNA sequences generated for each
cluster.

1.2.2.1 Pyrosequencing

First presented method is Pyrosequencing. The idea of the process is to recre-
ate complementary strand to the template DNA. Two strategies are possible.
First a solid state phase pyrosequencing uses immobilized DNA in the three-
enzyme system. Second is a liquid phase pyrosequencing which introduces
apyrase to make a four-enzyme system. It relies on the detection of released
pyrophosphate (PPi). When a nucleotide is bound to the DNA backbone, a
pyrophosphate group is released to form the inherent phosphodiester bond.
This reaction is driven by the large negative free energy change associated
with the release of pyrophosphate.

As the process is similar in both strategies, only the liquid phase pyrose-
quencing will be presented. One iteration of the process is shown in Figure
[[.3] First step is polymerase which adds a solution of one of the nucleotides
to the sample. A pyrophosphate is released only if a first unpaired base is
complemented. PPi is then converted into ATP by sulfurylase. It then acts
as a substrate for luciferase which produces light detectable by a camera.
A pyrogram is used for analysis. The last step is “washing” performed by
apyrase which degrades unused nucleotides and ATP [3].

Intensity

T

Nucleotide Time

Figure 1.3: One iteration of Liquid Phase Pyrosequencing process [3].
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The most known use of this process was by 454 Life Sciences company
founded in 2000. The 454 sequencer was the first high-throughput technology
available and was used to determine the first million base pairs of the Neander-
thal genome. Although the reads produced by the platform were longer than
its competitors (500bp), it became non-competitive due to high reagent cost,
lower reliability, and higher error rate, especially in homopolymers [24].

1.2.2.2 SOLiD Sequencing

Next method is called 2 base encoding or sequencing by oligonucleotide ligation
and detection (SOLiD) [25]. It does not rely on DNA polymerase as the other
technologies, it is based on ligation sequencing. It uses 8-mer probes, each with
one of four fluorescent dyes attached. Each 8-mer consist of two probe specific
bases and six degenerate bases, which are able to pair with any nucleotide.

The process of the sequencing starts with binding of the primer to the
single stranded sequence and after that the correct probe is ligated to the
sequence and the rest are washed away. The fluorescent signal is recorded and
along with the last three bases of the oligonucleotide is cleaved. The next cycle
is performed the same way. After a few cycles the DNA strand is denatured
and another primer, which is offset by one base, is attached. Five primers are
used in total.

-

Ligase ¢ C-T-n-n-n-zz-2 +
O +
w . . G-G-n-n-n-z-z-z YT
g Tl_Fﬁ“_‘ilﬂ_[ .:5,3 YT G-C-n-n-n-z-z-z
-
Bead -5 LOLCOPER T L,
Adapter Sequence Template Sequence
; Primer +
| | I | | | | I | C-A-n-n-n-z-z-7
Bead 5 G [ LU LT
Adapter Sequence Template Sequence
) Cleavage +
% . Primer 777
) [TETTTTT cpomn o5
Bead 5 G L LT
Adapter Sequence Template Sequence

Figure 1.4: Illustration of sequencing by ligation in SOLiD System [4].



1.2. DNA Sequencing

An illustration of the process is shown in Figure This process has
an advantage of lower error rate, because each base is read twice. The main
disadvantage is the very short sequencing reads generated.

1.2.2.3 Illumina Dye Sequencing

Last presented method relies on sequencing by synthesis [26]. It is currently
the most popular and most widely used method for DNA sequencing as it
offers fast and low-cost usage compared to the formerly used methods. The
results reports robust performance and ensure uniform accuracy and coverage
across any sequenced genome regions [27].

The sequencing reaction in this approach uses incorporation of cleavable
fluorescent and terminated nucleotides. All four nucleotides are added and
after one of them incorporates to the sequence, the others are washed away.
The fluorescent signal is read from the cluster and after that the fluorescent
molecule and the terminator group are washed away as well. For better il-
lustration Figure is provided, which shows one example iteration of the
described process.

computer readout
P —> T
primer i
attaches optlcal
here sensor
N . O,o . > . .

-
AN

,
o
'
NG
N ’

-
1
1

\4

Cleave
fluorescence,
wash away

5

- -

~o

5 3
attach to
flow cell \ repeat /

Figure 1.5: Illustration of sequencing by synthesis [5].

3

This process overcomes the issue of pyrosequencing by incorporating single
nucleotides with the terminator group. However, the error of the sequencing
increases over time due to the incomplete removal of the fluorescent signal,

9



1. METHODS

which leads to higher background noise levels, thus limiting the lengths of
sequences to several hundreds base pairs.

1.2.3 Nanopore Sequencing

Although most of the sequencing produced in the world today comes from
Ilumina instruments, the technology still has severe limitations. Currently,
the most used sequencing method performs very short reads and it is difficult
to sequence single molecules. To address these two issues a new generation of
sequencers is being actively developed. The concepts of nanopore sequencing
have been proposed more than two decades ago, but with first instruments
starting to be commercially available only a few years ago.

Usually the device consists of a protein with a gap which is approximately
1.4 nanometers wide, depending on the version, or it can be a solid state device
with a drilled hole which is also maximally three nanometres wide to prevent
secondary structures to flow through with the single strand. An illustration
of the Nanopore is shown in Figure During the transition of the DNA
strand through the pore there is a recognizable decrease in ionic current. This
ionic current can be translated, base-called, to a sequence of bases and thus
finish the sequencing [6].

Already in 1996, Brantons group [28] has first shown a method to actually
drive a single-stranded DNA through a pore protein. However, it took almost
two more decades to unveil the MinlON device. Oxford Nanopore Technolo-
gies created a Nanopore device which is able to read DNA strands with the
length of several thousand bases.

This allowed researchers to focus on the actual base-calling which consist
of translating the ionic current to the DNA bases. The main obstacle is, that
while Nanopore is narrow enough to allow only one strand to pass at any
given time, the measured current depends on the nucleotide context, instead
of a single base. Typically five to six bases are taken into account. This
is a problem for the following stages of the sequencing however. Thus it
completes the experimental part of sequencing, which produces useful data
from the chemical DNA sample.

1.2.3.1 Nanopore Base-calling

Each nanopore read is a sequence of currents measured in the pore, while
a single strand of DNA flows through. And even though the sequencing can
be performed almost anywhere and anytime it always yields data with similar
attributes, therefore any base-calling technique should be adjustable to the
currently measured dataset.

So, the usual process of base-calling consists of adjusting the parameters for
current data (preprocessing) and after that the actual base-calling algorithm
[29]. The first part of the preprocessing is segmentation. The raw data

10



1.2. DNA Sequencing

Figure 1.6: Nanopore illustration [6].

generated by MinION are usually much longer than the actual DNA sequence
which passed through. The reason for this is, that it captures the current
values periodically but usually with a much higher frequency than the bases
pass through. The threading of the DNA strand through the Nanopore seems
like a stochastic process, nevertheless it is controlled by biological enzymes
so in other words the strand slows and speeds up, which makes it almost
impossible to synchronize it with the measuring. Therefore, each context may
be either measured more than once, or not at all. The frequency tends to
be higher than seemingly necessary not to miss too many contexts. This
requires a segmentation, which groups the currents of the same context in the
Nanopore. Ideally, the result of this step is a sequence of events, where each
event follows the previous event with a single move of the bases.

Two types of error can occur. First, called oversegmentation, is caused by
the incorrect segmentation, where two following events describe the same con-

11
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text in the pore. The latter, called undersegmentation, is caused by the DNA
molecule moving too fast through the pore and leaving none or significantly
fewer data points in the signal.

Usual approach to segmentation detects all regions of ionic current longer
than certain time threshold (e.g. 500 ms) which is in predefined interval (e.g.
from 0 pA to 90 pA). After that, each event is recursively split at the point,
which best splits a region into two Gaussian distributions until a threshold
in probabilistic gain is reached, representing each time interval as a segment
characterized by its mean current, standard deviation and duration [30].

Second step is parameters scaling with the goal to set or at least ac-
knowledge the scaling of the measurement. Each device produces a slightly
different values and even the same device used in different conditions does
not yield the same values. Most prominent characteristics are shift and scale.
Before any base-calling is possible, it is necessary to adjust these parameters
to match the base-called sequence. Otherwise it would not only be inaccurate
it may even fail to produce any meaningful result.

The last step is then the actual base-calling. The process always uses the
events created by the segmentation, which may or may not be normalized by
the scaling parameters. Other parameters mostly depend on the method used.
However the usually needed information consist of the mean currents for each
context in some form, e.g. table, and the way to get transition probabilities.
The process itself may be done by many ways using a variety of algorithms.
Some of those will be presented below.

1.2.3.1.1 Metrichor While presenting the most used base-callers, it is
almost impossible not to start with Metrichor [31]. It is a platform created by
Oxford Nanopore Company and it is probably the most accurate base-caller
currently available. It used Hidden Markov Models for the base-calling and
a complex preprocessing based on a thorough research.

However, it had several drawbacks, first and the most cast upon was, that
it was an online service only. So, even though the MinlON may have been
used anywhere to sequence any DNA molecule obtained, the base-calling had
to be then send via internet to the Metrichor, where it was processed. In
some cases it may have limited otherwise astounding effectiveness of MinION
device in practice.

Also the source code was accessible only under a restrictive proprietary
license, which may have hindered the progress of the community in developing
more and better base-callers. Because of that, other presented base-callers are
easier to access, if not fully open source.

Recently a new version was released which now uses Artificial Neural Net-
works and is free to use, so most of the disadvantages were eliminated.
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1.2. DNA Sequencing

1.2.3.1.2 Nanocall One of the first available open source offline base-
caller was proposed in late 2016 [29], so around the time the work started on
this thesis. Authors as well noticed the lack of possibilities to perform local
and private analysis of MinlON data.

All three parts in Nanopore sequencing presented in section [L.2.3| are con-
sidered. However, as the Metrichor solution computes the segmentation locally
it was not replaced by other method. The scaling on the other hand has been
implemented and there are several options to pick from. The simplest method
is Method of Moments which matches the first two moments of the distribu-
tion of pore model to the first two moments of the distribution of sequenced
event means. Another option is an iterative Expectation—-Maximization (EM)
algorithm which uses several runs of Forward-Backward Algorithm to assess
scaling parameters.

The final decoding is done by Viterbi algorithm, which computes the most
likely observed event sequence and finally the base sequence is constructed by
iteratively adding the minimum number of bases require to transition from
one state to another. The whole project is written in C++11 and is available
on github. Unfortunately for this work, their process is very similar to the
planned outcome of this thesis. On the other hand, it was possible to overcome
some difficulties based on the solutions proposed in this paper.

The Nanocall solution produces impressive results, where the mappability
is comparable with the former Metrichor 1D reads with around 68 percent
identity. As such and considering its similarity with this work it will be the
main method with which the results will be compared.

1.2.3.1.3 DeepNano Another option to base-call offline is DeepNano [32].
This solution is implemented in Python and is accessible on bitbucket. It was
presented around the same time as Nanocall for the same reasons. However,
DeepNano uses Recurrent Neural Networks as a base-caller, which can po-
tentially capture long-distance dependencies in the data. On the other hand,
HMM works only with the fixed k-mers.

Used RNN is a type of Artificial Neural Network which generates se-
quence of output vector {yi,y3,...9:} for given sequence of input vectors
{#1,2%,...2;}. In this use, the inputs vectors consist of the mean, standard
deviation and length of each event, and the output vectors give a probability
distribution of called bases.

This method also uses already segmented data, so the first step is scaling of
parameters of current reads. Considering the nature of the Neural Networks,
it is done by iterative training, which uses alignment with a reference sequence
using again EM algorithm. 1D base-calling is then simply done by applying
the Recurrent Neural Network on other sequences. In this case, the RNN has
three hidden layers and 100 hidden units. For 2D base-calling it is necessary
to build an RNN which takes input from the two strands and combines them
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ACGTTATZ CGZ CGA

Ref. _l_\_ N —|_,—

Read 1

Read 2 T

Figure 1.7: Sequence of events alignment in PoreSeq [7].

into a single prediction. This version of RNN uses four hidden layers and
250 hidden units.

1.2.3.1.4 PoreSeq Already in 2015 an algorithm called PoreSeq [7] which
creates a consensus sequence from multiple sequencing reads of the same region
of DNA. This algorithm iteratively optimizes the sequence of currents (events)
to best fit the actual DNA sequence. An example of creating the best fit
sequence is in Figure [I.7} It uses similar assumptions to the HMM version in
terms of the k-mers present in Nanopore at any given time. So the measured
current depends only on this short sequence of bases.

The model may even be extended to further use with the DNA sequences.
And as it is written in Python and available on github, it is possible to use and
modify by anyone. This type of method is called de novo genome assembly
and is not exactly the base-calling performed in this work.

1.2.3.1.5 Nanopolish Around the same time Loman et al. published
a similar approach as the PoreSeq. This method is called Nanopolish [33].
Their de novo genome assembly works in three stages. First stage detects
overlaps between reads using multiple-alignment process. Next stage uses
Celera Assembler and the last stage is polishing the result using a probabilistic
model.

The main cause of errors was caused by an under representation of 5-mers
consisting of single base, because it relies on change in electric current to detect
base-to-base transitions, which may not be captured by the Nanopore as the
measured current does stay in the same vicinity. The final version deals with
this problem by polishing the assembly. However, any base-calling method
has to deal with this fact.
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1.3. Hidden Markov Model

Figure 1.8: Illustration of Hidden Markov Model with three hidden states and
four discrete observations.

1.3 Hidden Markov Model

This work will create a base-calling tool which uses commonly used Hidden
Markov Model, so it is necessary to present its definition and properties.

Hidden Markov Model (HMM) is a finite model that describes a probability
distribution over an infinite number of possible sequences [34]. It may be used
for various purposes like speech recognition [35]. However here it will be
described as a base-calling technique so all principles will be discussed using
mostly DNA terminology.

The HMM is composed of a number of states, which are interconnected by
transitions just like in basic Markov Model. In this case however, the current
state is not visible. In other words, just by looking at the process it is not
possible to determine in which state the model actually is in any given time.
This is why it is called Hidden MM. However each state emits an observable
value. The value emitted depends on emission probabilities of the current
hidden state. The observations can be discrete values or, as in the case of
DNA, continuous. If the emission probabilities are different for each hidden
state it is then possible to recreate the order of the hidden states with certain
probability. A general HMM is shown in Figure[I.8] Depicted HMM has these
properties:

Hidden States: S1, S2, S3
Observations: O1, 02, 03, O4
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Transition probabilities: all, al2, al3, ..., a33

Emission probabilities: b11, 12, 13, ..., b34

In nanopore base-calling, the hidden states are the different contexts of
the pore. Therefore, if using 3-mers, there are already 64 (4%) hidden states.
And thus, using longer context exponentially increases the complexity of the
model. Observations are of course the recorded currents usually in the form of
segmented events. The default transitions are then between contexts that are
moved by one base, e.g. ‘ACG’ and ‘CGT". In theory, if the events were optim-
ally segmented, it would be possible to have 25 percent probability between
these contexts and 0 percent otherwise. However, as there are some segmenta-
tion errors it is necessary to adjust those probabilities accordingly. Lastly, the
emission probabilities are continuous and have Gaussian distribution specific
for each context present in the Nanopore.

There exist several algorithms designated for HMMs. The three most
used are Forward Algorithm, Forward—Backward Algorithm and Viterbi Al-
gorithm, where all of them use dynamic programming to accomplish their
goal. The purpose of Forward Algorithm is filtering, which means it finds
distribution of probabilities for hidden states at the last observation. This
by itself is not very useful for DNA sequencing, so the next algorithm called
Forward-Backward adds a backward phase by which it is possible to compute
a distribution of probabilities of hidden states at any observation. This al-
gorithm will be presented in greater detail in the section below. Lastly, the
Viterbi Algorithm computes joint probability of the entire sequence. As the
last algorithm looks the most promising for the actual base-calling it will be
presented next.

1.3.1 Viterbi Algorithm

Viterbi algorithm proposed already in 1966 by Viterbi [37] is a widely used
algorithm. Its main idea is to use dynamic programming followed by a back-
track to assess the most probable order of hidden states in Hidden Markov
Model. It creates two matrices with the dimensions of n x s, where n is the
number of observations and s is number of hidden states. The computation
process is shown in Algorithm

As can be seen from the pseudocode, the assumption is, the sequence of
hidden states can lead to each given state with a certain probability and this
algorithm picks the highest probable state from which the sequence moved to
this particular state. The probability is dependent on transition probabilities
and on the probability of the previous state. The resulted maximum is then
also multiplied by emission probability for the current current.

During the process however, the values become quickly too small to be
represented directly and in order to prevent arithmetic underflow, a normal-
ization is required, often combined with computing in log space.
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1.3. Hidden Markov Model

Data: Observations (O), States (S), Transition Probabilities (tp),
Emission Means (em)
for each observation (i) in Observations do
for each hidden state (s) in States do
prev(i][s] = arg maxpses(prob[i — 1][ps] x tp[ps][s])
prob[i|[s] = max,ses(probli — 1][ps] x tp[ps][s]) x Pg(em][s], Oli])
end
end
Backtrack prev States for: argmaxcg(prob[last][s])

Algorithm 1: Pseudocode of Viterbi Algorithm [g].

1.3.2 Forward—Backward Algorithm

Second discussed algorithm is Forward—Backward Algorithm. It was first
presented by Chang [40] and later used and discussed by Baum [4I]. The
algorithm has two main phases and then a smoothing phase. The phases
are called Forward phase and Backward phase, hence the name Forward-
Backward.

The Forward phase is actually identical to the mentioned Forward al-
gorithm. Its goal is to compute the most probable state for certain event.
It uses the history of observations to asses conditional probability for each
hidden state. This process is called filtering. However, if a Backward phase
is added, the process is referred to as smoothing. The Backward phase, as
the name suggests, starts at the last event of the input data and computes
probability of observing the remaining observations. Last phase uses results of
both previous computations and uses its products for each event to assess the
probability for all hidden states. The whole process is shown in Algorithm
As can be seen, both of the main phases are very similar to the Viterbi main
phase. The difference is however, the probabilities of previous, next respect-
ively, states are summed instead of finding just the maximal value.

Theoretically, if only the states with the highest probability are considered,
it would be possible to reconstruct whole sequence, however it is not the pur-
pose of this algorithm. The neighbouring events would not consider the trans-
ition probabilities. As an example, transition probability from ‘ACG’ to ‘GTA’
is very low because it would mean that at least one event, which describes the
connecting context, is missing in the input data. These segmentation errors
happen, although rarely, and two or more missing events in a row are even
rarer. However, using Forward—Backward algorithm, these “skips” would oc-
cur commonly because the continuity is not taken into account. Therefore,
this algorithm is commonly used to assess the quality of other base-calling
methods by computing the probability of error for each base.
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Data: Observations (O), States (S), Transition Probabilities (tp),
Emission Means (em)
Forward Phase:
for each observation (i) in Observations do
for each hidden state (s) in States do
| fwd[i][s] = Pr(eml[s], O[i]) ¥ X pses(tplps][s] + fwdli —1][ps])
end
end

Backward Phase:
for each observation (i) in Observations reversed do
for each hidden state (s) in States do
| bkwli][s] = 3, .c5(Pr(em]s], O[i])  tp[s][ns] * bkw[i + 1][ns])
end
end

Consolidation Phase:

for each observation (i) in Observations do

| Estimated hidden state[i] = argmaxcq(fwd[i][s] * bkw]i][s])
end

Algorithm 2: Pseudocode of Forward—Backward Algorithm [9].

Base algorithm works with an assumption that the starting and ending
states are known. This is not the case in the presented DNA base-calling
so instead of that, starting probabilities depend solely on the first current
and means of all contexts. Probabilities of end state then depends on the
last current and means as well. This may cause inaccurate predictions for the
starting and ending events due to the seemingly random deviations of recorded
currents. However, considering how long most of the DNA sequences are, it
should not cause concern.

Same as in the Viterbi Algorithm, there is a possibility to use logarithmic
values, because in both Forward and Backward phase, the probabilities cannot
keep any precision in commonly used data types. However, in this case it is not
that simple, since there are the sums of probabilities. Using logarithmic values
changes multiplications to additions. Additions on the other hand cannot be
done so easily. The solution to this is that the logarithms are used only for
the normalization purposes and the values are kept in original form.

1.4 Comparing Sequences

After finishing the base-calling process using a base-caller in development, it
is necessary to compare the predicted sequence with a reference one to assess
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its accuracy. That is obviously just an example, but one which applies for
this thesis. To accomplish the comparison, it is possible to use many methods
and means. One of the highly used methods is called alignment. It is because
it can be relatively clearly visualized so even by looking at the alignment, it
is recognizable if the given sequences are similar. For example, if sequence A
is ‘ACGTGTCACCG’ and sequence B is ‘GTGACACGG’, the alignment can
look like this:

ACGTGTCACCG- (1.1)
--GTGACAC-GG '
There is also this option:
ACGTGTCACCG
(1.2)
—--GTGACACGG

In most cases, there are multiple possible alignments, however it is not easy
to determine which one is the best. It also depends a lot on the preferences
of the author. Sometimes mutations can not cause a big difference, however
gap (insertion/deletion) is then highly penalized.

Hence, there exist more ways to do the actual alignment and each takes into
account different preferences, but mainly the sequences can be aligned using
two methods. First is local alignment and the other is global alignment. As the
names suggest, the local alignment focuses on smaller portions of sequences
and finds local similarities. Because of it, it is best suited for finding out if
a smaller sequence is a subsequence of a larger one.

This work will however focus on computing whole sequences, so the global
alignment method, which is designated to figuring out if the two given se-
quences are parts of the same DNA, should provide better comparison of the
results. Only advantage of the local alignment in this work should be, that
it does not penalize different starting and ending dissimilarities as the global
alignment does. It can prove to be useful as well. That is why there will be
both local and global alignment method implemented.

A third way of alignment is presented as well. It is a common edit distance
with the addition of remembering the taken steps. This solution may provide
the best insight as it counts the sum of insertions, deletions and substitutions.

1.4.1 Smith—Waterman Algorithm

Local alignment is usually done by Smith—Waterman algorithm [42]. The main
idea of the algorithm is to use dynamic programming so the computation is
relatively fast, considering the number of different alignments. The speed is
compensated by higher space requirements.

Implementation uses matrix of semi-results F' with the dimensions of (m -+
1) x (n + 1), where m is the length of one compared sequence and n is the
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length of the other sequence. Then another matrix D of the same dimensions,

which contains direction of the current step (left, top, top-left). This matrix

is used for backtracking phase, where the actual alignment is completed.
The algorithm is relatively simple as shown in Algorithm

Data: Sequence A, Sequence B
for each row in F do
for each element in row do
match = Fi—l,j—l + S(AZ, Bj)
delete = maxyeqy i1y (Fiok,j — wk)
insert = maxje g ;1 (F -1 — wi)
F; ; = max(delete, match, insert)
D; j = direction(delete, match, insert)
end

end
Result = maXiEl...m,jEl...n(E,n; Fm,j)
Backtrack in D from D; j, (i and j are same as in the result)

Algorithm 3: Pseudocode of Smith-Waterman Algorithm [10].

S in this context returns comparison value of the given bases. In most
cases it is represented as a substitution matrix, where the values are usually:

S0, ifi=j
Si e (1.3)
<0, ifi#j

The matrix can take into account, that Adenine and Guanine are purines,
while Cytosine and Thymine are pyrimidines, so these pair may be almost
interchangeable. Or the symbol comparison can be very simple as shown in
the example Table

Hl Rl Q|»>
—
_
—
_

Table 1.1: Substitution matrix.
Another important thing is the Gap Penalty denoted by w;. It comes into
play when an insertion or deletion is made, which creates a gap (denoted by
‘~’ in alignment). Usually the Gap Penalty is computed like this:

w; = u + vk,
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in this context u is the initial penalty for starting the gap, v is a penalty
for expanding the gap and k is the length of the gap minus 1. So with the gap
of length 3, starting penalty of 12 and continuing penalty of 5, the whole gap
would cost 12 + 5 % 2 = 22.

1.4.1.1 Gotoh Improvement

The algorithm in the explained version still has relatively high time complexity.
It is O(m?n). This may not be a problem for shorter sequences, however in
this work some of the sequences (either reference or predicted) can be tens
or even hundreds of thousands bases long, so it would make this algorithm
almost unusable.

The space complexity can be also considered too high especially for per-
sonal computers. The space complexity is O(mn), because it uses m x n
matrix of semi-results and m x n matrix of two bit (three values) directions.
The actual Gotoh improvement does not consider the space complexity at all,
however the improvement enables the algorithm not to use the semi-results
matrix and instead can use only two m long vectors and one variable. The
actual space complexity stays at O(mn), however the matrix consist of only
three bit values instead of whole integers.

The improvement is done in the step where the algorithm selects the best
direction for current step i, j. The steps looks like this:

F; ; = max(delete, match, insert)

In base Smith—Waterman algorithm the time complexity for computing
delete is O(m) and insert is O(n). Gotoh proposed [43] a way to compute
both delete and insert in O(1). Method uses the idea, that it is not necessary
to look back through the whole row or column, but remembering partial results
enables to use only one comparison.

delete is then computed [44]:

delete; j = max(F;_1; — w1, delete;_q ; — u)
and insert:

insert; ; = max(F; j_1 + wy,insert; j_1 — u)

However when backtracking, the algorithm has to know which value was
taken as a new delete, insert respectively, and continue the same way instead
of turning to the diagonal direction. Hence the third bit in directional matrix.

1.4.2 Needleman—Wunsch Algorithm

Needleman—Wunsch algorithm [45] has a similar structure to previously presen-
ted Smith—Waterman method, especially with the Gotoh improvement. The
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main difference is that the gap penalty is applied to every insertion/deletion so
continuing the gap is penalized by the same amount as starting it. Another im-
portant difference is in initialization. In this case the first column and row are
filled by using the higher index multiplied by gap penalty, so F; o = i * gap(),
and Fp; = j * gap() respectively. Then the algorithm continues as shown in
Algorithm

Data: Sequence A, Sequence B
for each row in F do
for each element in row do
match = Fiflyjfl + S(AZ, BJ)
delete = F;_1; —w
msert = F; j_1 —w
F; j = max(delete, match, insert)
D; ; = direction(delete, match, insert)
end

end
Result = Fy, 0
Backtrack in D from D, ,,

Algorithm 4: Pseudocode of Needleman—Wunsch Algorithm [IT].

Lastly as shown in the pseudocode, the result is always in the “bottom-
right corner”, so in Fy, 5.

Otherwise, the properties are same as for the Smith-Waterman—Gotoh
algorithm, so both the time and space complexity are O(mn), and it uses one
n long vector and m X n matrix of 2 bit directions.

1.4.3 Levenshtein Distance

Levenshtein distance, also ordinarily called Edit distance, is a string metric,
which measures the distance of two strings by counting the number of neces-
sary insertions, deletions and substitutions [46]. This is done very similarly as
in both algorithms discussed before, however considering the definition, the
lower the results the more similar are the compared strings. So, instead of
maximums, the algorithm uses minimums.

The decision then looks like this:

F%fl,jfl if A,L = Bl #match
[ Fi_1; #deletion (1.4)
" IL+minq F;j—1 #insertion
Fi 11 #substitution

Though defined only as a metric, it can also be used to remember the
“movement” during comparison and the result can be then shown in the same
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manner as it was in alignment methods. Algorithm then looks very much
like Needleman—Wunsch algorithm using specific substitution matrix and gap
penalty.
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CHAPTER 2

Results

First section [2.1] of this chapter presents the dataset, which was used to op-
timize implemented solutions that are presented in section Following
sections focuses on obtaining the best settings for both Viterbi and Forward—
Backward Algorithms. Therefore several runs were executed and graphs and
tables showing results are presented. First testing was performed on simulated
data in section after that on sample set 1 and lastly on sample set 2
[2.5] with the adjusted table of means and standard deviations. Sample set 3
was used only in comparison with other solutions.

Each dataset was tested using 3, 4 and 5-mers. After all test were ex-
hausted the best performing solution was selected and compared with
both Nanocall and DeepNano The last section briefly discusses the
time and space complexity of the solution.

2.1 Dataset

Data provided by Nicholas Loman [47] were used for most of the testing and
optimization purposes. These data contain 164,472 E.coli DNA sequences.
The data were recorded during the 28th and 29th of July of 2016. The meas-
uring was performed in six different locations using the same R9 chemistry.
Even though the same type of device was used, each of the station will have
a different parameters, so the scaling will be necessary.

But first, the dataset as a whole will be presented. The dataset can be
summarized by these numbers using base pairs as a unit:

Minimal Length: 177
Average Length: 9,009
Maximal Length: 131,969
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The histogram [2.1] shows that the lengths have almost geometric distribu-
tion if grouped by thousands. Except the very start, where there are not as
many sequences shorter than thousand base pairs.

Count

10000 20000 30000 40000 50000 60000
Lengths

Figure 2.1: Histogram of sequence lengths in used dataset.

The distribution of individual bases is almost uniform, where both Cytosine
and Guanine bases are represented by more than 26 percent, while Adenine
is represented a little under 24 percent. This is shown in Figure 2.2] As such
the data are slightly CG rich.

20 A C G T

Figure 2.2: Nucleotide distribution in the datatset.

In subsections below an example sequence will be shown in detail. After
that, two sample sets, taken from the introduced dataset, are presented and
their properties discussed. Last section shows another sample set, which is on
the other hand a measurement of one specific human gene, which should be
harder to base-call because of its repetitiveness and different CG to AT ratio.
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2.1.1 Example Sequence

Each sequence is stored in a fast5 file. Whole tree of the content is shown
in Appendix [C] One of the sequences will be shown in detail, others have
similar properties. The presented sequence is from sample 1 discussed below.
It is a sequence recorded on 29th of July 2016 in the lab with ID of 26075 on
channel 115 read 849. It contains 5,671 bases.

One of the most important parts for this work will be the Signal dataset
from Raw group and the FEvents dataset from FventDetection group. The raw
data are shown in Figure As can be seen the data points are mostly
between 400 and 800 units. However most of the sequences start and some
even end with the measuring highly above the 800 mark. These parts of the
sequences will not be taken into account as they are the parts, where the DNA
strand was not located inside the nanopore. A closer look in Figure 2.4 shows
about 30 base shifts, because the whole dataset consist of 96,260 valid raw
measurements so that leaves almost 17 data points per base move.

1400

1200

1000

Current

600

0 20000 40000 60000 80000 100000

400

Figure 2.3: Example of raw currents in one fast file.

The segmentation of raw data creates a sequence of events. In optimal
case each event represents one step of the sequence reading, meaning that
any single event would be shifted by exactly one base. So, for example if
one event represents ‘TTCAC’, the next one can be ‘TCACG’. However, the
segmentation is not always perfect and it is necessary to introduce so called
stays and skips.

Stays are events which made no shift in context from the previous event,
in other words, the Hidden Markov Model used a loop back to the same state.
This may happen only due to a segmentation error, which wrongly assessed
a shift. Skips, on the other hand, are events with context shifted by more
than a single base. Skips may occur due to an error in segmentation as well or
due to an irregularity in sequencer, where the strand of DNA moved too fast
and the sequencer did not measure enough values for the skipped context.
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700

Current

500

400
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Figure 2.4: Closer look at 500 data points in one real data file.

The correct events will be called steps in future references. An example of
segmentation using the same sequence is shown in Figure Closer look at
the segmentation results is in Figure [2.6] It shows the same part of the raw
data in orange, with the segmented section shown in blue. All of those events
are stored in the dataset Events in the fast5 file.
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400

0 20000 40000 60000 80000 100000

Figure 2.5: Example of segmented events in one data file.

2.1.2 Sample Set 1

Both selected samples contain exactly hundred sequences. The first of the two
sample sets was measured by a station with ID of 26075 on 29th June 2016.
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Figure 2.6: Detail of 50 events in the same data file.

Main properties are as follows:

Minimal Length: 606
Average Length: 4,784
Maximal Length: 11,982

Whereas the full dataset contain sequences over 130,000 base pairs long,
in the sample the longest sequence is only 12,000 base pairs long. The main
reason for choosing shorter sequences is the shorter run time. Closer compar-
ison of the bases and event count is in Figure where the ratio between
event and base count is visible. There are up to twice as much events which
means a high number of stays will have to be detected. However, it is ne-
cessary to take into account some skips as well. By the examination of the
provided analysis, the stay probability should be around 0.5 and skip prob-
ability little over 0.002, although more probabilities will be tested using these
as defaults.

2.1.3 Sample Set 2

The other sample set was measured by a station with ID of 40525 a day earlier
on 28th June 2016. The properties are very similar to the previous set and
are listed here:

Minimal Length: 528
Average Length: 6,197
Maximal Length: 16,208

As in previous sample, there are more events recorded than the actual
base count (Figure [2.8)). Stay and skip probabilities should be similar to the
previous sample.
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Figure 2.7: Event count to Base count ratio for each read in sample 1.
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Figure 2.8: Event count to Base count ratio for each read in sample 2.

2.1.4 Sample Set 3

As was already mentioned, the third sample is a measurement of human gene
with a distribution of all nucleotides presented in Figure 2.9] As can be seen,
the distribution is very different from the previous dataset. It has lower CG
content, although as it describes only single strands without their comple-
ments, the number of C and G bases is different.

On the other hand, some properties are very similar due to the sequencing
technology used. The sample contains 100 sequences and the lengths of used
strands are as follows:
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Figure 2.9: Nucleotide distribution in sample 3.
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Figure 2.10: Event count to Base count ratio for each read in sample 3.

Minimal Length: 472
Average Length: 8,043
Maximal Length: 11,968

Ratios between event and base pair counts are also similar to the previous
samples, so the skip and stay probabilities should be very similar. The specific
values are shown in Figure and it is again sorted by the shown value.

2.2 Implemented Methods

This section describes the proposed approach to the DNA Base-calling. In-
troduction to algorithms and the pseudocodes were described in methods [T}
the focus of this chapter is on the practical implementation and usage of both
Viterbi and Foward-Backward algorithms as well as the supportive scripts,
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which were used for processing the data and the outputs. In the first two
sections [2.2.1] and [2.2.2] both HMM algorithms are discussed. Next section
2.2.3 will show data simulation for the initial test and the last section 2.2.4]
will discuss mainly the implementation of the alignment algorithm.

It might be helpful to first introduce a flexible toolkit Poretools [48], which
was created by Loman and Quinlan in 2014 in order to easily handle fast5 files
generated by the MinlON. Currently the device generates single fast5 file for
each read, which results in a large number of files. Thus the Poretools can be
used on whole directories or single files. It is written in Python and is easy
to use. It is possible to convert fasts files to either fastq files or to fasta files
which are expected as an input in the proposed application.

However, considering that the data were filtered only once and it was more
convenient to do so using a script, instead a hdpy [49] library was used to not
only extract both events and reference sequences from the fasts files, but also
to analyse all features of the dataset. This is the source of the information
given in section [2.1]

2.2.1 Viterbi Algorithm

Viterbi algorithm was chosen due to its proven usefulness in this area. Timp
et al. in 2012 [50] proposed using Viterbi algorithm as a high accuracy base-
caller. It was not tested on real sequences, but on simulated data, which
should be generated using the same parameters the actual data are distributed.
However, one very important and not very accurate assumption was made.
The generated data used optimally segmented events, so the algorithm did not
have to consider stays and skips and instead could take into account only steps
by exactly one base. The algorithm performs well despite the simplification,
which was later confirmed by others like [29]. The algorithm just needs to
take into account stays and skips by adjusting transition probabilities.

In this approach only the scaling of parameters and base-calling steps
are implemented as the segmentation is not only a rather difficult process to
perform accurately, but the given dataset provided already segmented data
as well. Also the Metrichor platform segments the data locally so it is not
necessary to create a new segmentation tool. On the other hand, both parts
implemented are usable for computation with 3-mers, 4-mers and 5-mers as
contexts. Those three versions were tested, however other sizes should be
viable without further modifying the solution.

2.2.1.1 Scaling of Parameters

The default parameters for the algorithm were based on means and standard
deviations taken from the sample 1 presented in section [2.I] The dataset
Events contains means, standard deviations and matching 5-mers, so using
this information it is possible to reconstruct every value for up to 5-mers.
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When reconstructing means and standard deviations for currents for smaller
k-mers, the last nucleotides were taken into account as they should be those
which entered the pore last and thus influenced the ion current values.
These means and standard deviations were used in testing on sample set 1.
However for the sample set 2, those values would not be optimal. Therefore,
a simple adjustment using a normalization similar to Min-Max is used. The
assumption is that both compared datasets will have the same distribution of
currents. Then the k-mer with lowest and the highest mean current will have
the value at the similar percentile of the data. Thus it is possible to get new
values for those two k-mers and use their values as new Min and Max. After
that the new value of mean current for each k-mer is computed like this:

Hold — MiNeld
MaXold — MiNeld

Measured percentiles and matching k-mers are shown in Table This
is a relatively simple solution and it should work for sample 2 mostly because
both datasets are measured using E.coli DNA strands. When this scaling is
used on DNA from different organism it may yield skewed results, because the
ratio of CG to AT nucleotides may not be the same and thus the distributions
of currents will differ as well.

Hnew = (maxnew - minnew) + MiNpew

Min Max
k k-mer perc. k-mer perc.
3 GTT | 2.7179 TCA | 96.9545
4 GGAT | 0.5402 ATCA | 98.9582
5 | GGGAT | 0.3041 || GATCC | 99.2965
Table 2.1: Percentiles of contexts with minimal and maximal current in
sample 1.

To confirm the assumption about the distribution of currents a histogram
2.11]is presented. It is visible that the values are slightly shifted and are wider
in sample 2 compared to sample 1, otherwise they both have two similar peaks.
The decrease in the middle is caused by steeper increase in currents between
corresponding contexts in the middle of the table.

Also, as was predicted, sample 3 follows a different curve, so the scaling
method may not be as viable as for the sample 2. The last curve represents
the distribution of currents in the whole E.coli dataset. As the dataset con-
tains measurements from several laboratories with differently shifted values,
the decrease in the middle of the curve is smoothed out and almost perfect
Gaussian curve is created. As can be seen, sample 1 is shifted more from the
average sequence, although it can still be considered common.

The scaling was done by a Python 2.7 script adjustTable.py, which requires
the size of k-mers used, the default table of means and standard deviations of
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Figure 2.11: Comparison of current representations in used data samples.

currents for each context, fasta file of the sequences to be base-called and the
name of output table.

2.2.1.2 Base-calling

The process of base-calling is then implemented both in Python 2.7 (file vi-
terbi.py) and in C++11 (file viterbi.cpp). The C++ version can be compiled
by attached Makefile. All algorithms also implemented in C++ are included
in the Makefile as well.

The run of base-calling using Viterbi Algorithm requires an input file with
segmented currents, a table with means and standard deviations of currents,
name of the output file, size of k-mers, stay probability and skip probability.
The results will be measured using the size of k-mers from 3 to 5 and will
iterate over both stay and skip probability with the default values set to the
one determined in the section 2.1l

The procedure of Viterbi algorithm was previously discussed, here we show
the probability computations. The probabilities of the first k-mer was uni-
formly distributed as no part of the sequence is known.

After that the transition probabilities were computed this way:

P(A—>B) = Pstay * da=p + Pstep * 6follows(A,B,1) + Pskip * 5follows(A,B,2)7

where pgiep is the complement of pyiqay + Pskip to 1 and the follows(A, B, 1)
function returns whether k-mer B is reachable from k-mer A using exactly
1 steps. This is an approximation in terms of not taking into account skips with
the length of three and more. The adjustment was made mostly due to the
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acceleration of the computation by a significant amount. The simplification is
possible because it should not affect accuracy much. The py;;, value is already
really small and thus the longer skips would have even lower probability, which
means that long skips are extremely rare and as such would be very hard to
predict even if the algorithm expected skips of arbitrary length.

Other parts of the algorithm were not modified, so after finishing the core
computing, backtrack is performed and then the base sequence is reconstruc-
ted using the smallest number of base shifts possible between the neighbouring
predicted contexts.

2.2.2 Forward—Backward Algorithm

Forward—Backward algorithm was implemented twice, each with a different
purpose. First uses this algorithm for its intended purpose. It uses an output
from the base-caller and assesses the quality of each base using Phred quality
score. The score is computed using this formula:

Q) = —10logy, P,

where P is probability of an error. The probability is computed using an
average value for all k-mers, which contain specific base. An output of this
algorithm is the default fastq file, where the quality is in Phred+33 format.
This means it is representable in ASCII characters from ‘!’ for the lowest
probability to ‘I’ for the highest probability.

The implementation is in fwd_bkw_quality.cpp script and is also included
in the Makefile. The other use of the Forward—Backward algorithm is more
experimental and thus will be discussed more thoroughly in the next section.

2.2.2.1 Experimental Approach

The Forward—Backward algorithm is not suitable for base-calling by itself
due to the fact that its purpose is only to compute the hidden state with
highest probability for each event. One could consolidate k-mers into a base
sequence, but attempting to do this mostly results in a much longer sequence
than expected, because the transitions are not taken into account during the
Consolidation phase. It is not uncommon to see four or five bases long skips.

However, the issue can be addressed by modifying the Consolidation phase.
The idea is to go through all events and find the state with the highest prob-
ability as usual, however if a skip of length three or more is encountered, the
algorithm looks at other probabilities in descending order and if it finds a k-
mer which follows the previous k-mer with shorter skip or even as a stay /step,
this k-mer is used instead. However, it stops going through other states if the
probability is too low. The boundary is set by a new input parameter called
smoothing, which is used as a multiplier.
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Another improvement is expected if the consolidation which ignores some
events is used. The idea behind it is that many times the consolidation phase
encounters two long skips immediately after each other. This may be caused by
the nature of Forward—Backward algorithm, where the sequence of predicted
k-mers is for example ‘TCAAA’, ‘GGGGG’ and ‘AAATG’. There the third
k-mer follows the first one using two steps (consolidated as ‘TCAAATG’),
but the second k-mer does not fit between them, which may be caused by
some sequencing anomaly. The modified consolidation removes the 'GGGGG’
event, because it neither follows the previous event, nor is followed by the next
event.

Both of these experimental improvements are optional using input para-
meters and as such will be tested if they show any potential to be of any use.
Again this algorithm is implemented in both Python and C++.

2.2.3 Simulated Data Generation

The algorithm was optimized and tested using simulated data. For this pur-
pose there is a Python script generateGrouped.py. All random sampling was
performed using Random library provided by Python distribution [52]. The
input parameters of the script are as follows:

minLength maxLength count size stay_prob skip_prob table.csv

Min and Max lengths are the base count limitations for each sequence,
count is the number of sequences to generate, size is the size of k-mers for
generating data points, stay and skip probabilities are the probabilities dis-
cussed above and table contains the means and standard deviations of data
points for each k-mer.

The actual simulation is relatively simple and uses several simplifications.
First, bases are sampled from uniform distribution, so the CG to AT ratio
should be around 0.5. Currents are then generated using the k-mers and their
mean and standard deviation of data points. The stay and skip probabilities
are taken into account as well. The table obtained from sample 1 was used
for the final simulated dataset, so the data should be relatively similar to the
segmented real data.

A sample of 20 sequences with the length between 5,000 and 15,000 base
pairs was simulated. Stay probability was set to 0.5 and skip to 0.002 as
the real sample set 1 suggested. An example of one sequence is shown in
Figure 2.12] and the detail of 50 events is shown in Figure 2.13

2.2.4 Alignment Implementations

Last required step that needs to be implemented is the alignment algorithm,
which was used to measure accuracy of base-calling using the predicted and

36



2.2. Implemented Methods

140

120

Current
=
o
o

80
0 5000 10000 15000 20000
Figure 2.12: All Events of Generated Sequence.
130
120
110

Current
=
o
o

90
80

70

0 10 20 30 40 50

Figure 2.13: 50 Events of Generated Sequence.

reference sequences. For this purpose, three alignment techniques presented in
Methods were implemented. Smith-Waterman algorithm as local alignment
Needleman—Wunsch algorithm as global alignment and modified
edit distance [I.4.3] As these methods have similar structure and purpose,
they are all in one script called align.cpp (align.py for Python).

The absolute values returned by the alignment algorithms depend on the
sequence length, therefore a normalized value is necessary for better compar-

ison of results. Thus, the alignment value for local and global methods is
computed like this:
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2value
Reference.length + Predicted.length

and for edit distance:

result =

Reference.length + Predicted.length — 2value
Reference.length + Predicted.length

The difference in formulas is due to the fact, that local and global align-
ment returns higher values for better alignment. On the other hand edit
distances uses a sum of insertions, deletions and substitutions, so the lower
the value the better the result. Using these formulas, predictions of different
sizes are penalized and the maximum value is 1.

After that a simple script called checkAcc.py goes through the resulting
alignments and finds minimal, maximal, mean and standard deviation values
for each alignment. This will be used in presenting results in the following
sections.

result =

2.3 Simulated Data

The simulated data are generated according to the base-calling model presen-
ted above. This is a simplification, in real data we expect to observe more
complex dependencies. Therefore, higher accuracy was expected. Neverthe-
less, the simulated data still contain noise, even if pseudo random, so the
results should atleast indicate possible accuracy on real data. Data were sim-
ulated separately for each context size, so the biggest difference in accuracy
in comparison to real data is expected in the 3-mer version.

2.3.1 Results of Viterbi Algorithm

For each algorithm the result is presented in set of figures. Each set shows
results computed using local and global alignment and the modified edit dis-
tance in rows. Each column is then designated for each tested context size.
Standard deviations were also recorded, however as all of the sequences were
simulated using the same mechanisms their values were not discernible in the
figures. Therefore Figure shows only mean values.

Figures show values only for skip probability of 0.002, because changing its
value had almost no effect and this value was the default. Results for all tested
k-mers are shown in Appendices [D] [E] and [F] for 3, 4 and 5-mers respectively.
The x axis represents the stay probability.

The results improved significantly when increasing the k-mer size from 3
to 4. Already from these simulations it can be concluded that context size of
atleast 4 should be taken into account. Difference between results for sizes 4
and 5 is minimal however, and curiously edit distance accuracy even decreases
from 4 to 5. As explained later, the computational time depends exponentialy
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Figure 2.14: Generated Data, Viterbi Algorithm, Skip probability = 0.002

on the size of context. This suggests that using 4-mers may be viable in certain
applications.

Also modifying the stay probability parameter changed the accuracy of
the prediction and it was not necessarily most accurate for the value that
corresponded to the value that the data were generated with. Edit distance
showed different trend from local and global alignment. The purpose of edit
distance metric is different from other used metrics which caused this disagree-
ment. The edit distance probably uses more technical point of view focusing
on frequency of base-call errors.

The main goal of this experiment was to confirm the viability of the im-
plemented Viterbi algorithm and to outline the usability of the three context
sizes. Using 3-mers proved significantly worse than the other two sizes, nev-
ertheless it is used in the following tests as well.

2.3.2 Results of Forward—-Backward Algorithm

As the Forward—Backward algorithm is usually not used for base-calling pur-
pose, the main goal of this experiment was to show the improvement caused
by the two modifications made. Figure shows average results for different
context sizes. Similarly to Figure 2.14] the three evaluation methods are dis-
played in rows and the smoothing parameter is shown on the x axis. Blue bars
represent results with standard consolidation phase and orange bars represent
the usage of the improved version, which removes predicted contexts that does
not fit into the sequence as was discussed above. The results are presented in
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more detail in Appendices [G] [H] and [[| again for different context sizes. The
default values are 0.5 for stay probability and 0.002 for skip probability. Also
the rest of the experiments for Forward—Backward algorithm use the same
values.

Il Standard = Improved
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Figure 2.15: Generated Data, Forward—Backward Algorithm

Figure shows the reason this algorithm is not suitable for base-calling as the
results without any modification, mainly for 5-mers, are absolutely unusable,
with generated sequences much longer than the reference sequence. However,
both modifications drastically improve accuracy in every measured situation.
Also both modifications improve results by reducing the number of skips.
Therefore, using low smoothing value combined with improved consolidation
phase does not increase the accuracy over basic consolidation phase.

Even with these modifications, the Forward—-Backward algorithm is less
accurate than Viterbi algorithm. It also seems that the modifications has
reached its limits, because the values for the last smoothing value does not
change at all, whether using the improved consolidation or not.

On the other hand, this algorithm was not as sensitive to the context size
as was Viterbi algorithm. Even when using 3-mers, the accuracy decrease
was not as significant as in Viterbi experiment. Even though the Forward-—
Backward algorithm is a two pass process, using smaller context still reduces
the time complexity of computation significantly.
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In summary, the viability of both modifications was confirmed. But even
the modified Forward—Backward algorithm does not achieve the accuracy of
Viterbi algorithm.

Also the three different metrics for evaluating the accuracy were tested. All
three methods can be used for evaluating the results and edit distance seems to
use the most appropriate approach. Both local and global alignment search for
matching sub-sequences split by insertions or deletions. In this case, compared
sequences are expected to have the same length with occasional mismatch.
Therefore, only edit distance will be presented in following sections.

2.4 Sample Set 1

In this experiment, predicted sequences were compared with the results of
state-of-the-art base-caller. Those reference sequences were provided in fastd
files and they showed very accurate results. Therefore, if the results are similar
to the reference sequences, the base-calls are considered accurate.

A decrease in accuracy was expected, because the data are not just pseudo-
randomly generated, but represent real E.coli DNA and also contain unpredict-
able noise from various sources. However, the means and standard deviations
for each pore context should be very precise considering they were recreated
specifically from the sequenced data. Other properties of the results should
remain similar however, thus the Viterbi algorithm is presented first, because
of its higher potential to show good results.

2.4.1 Results of Viterbi Algorithm

Individual average accuracies are again shown in Figure As in previous
section, only results for skip probability of 0.002 are shown, as the differences
were minimal. Detailed results are presented in Appendix [J] Again all three
context sizes were tested, but only edit distance was used to evaluate the
results. The figure also shows standard deviation error bars as in this case
its values were high enough to be discernible. This applies for all following
figures.

3-mers 4-mers 5-mers
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Figure 2.16: Sample 1, Viterbi Algorithm, Skip probability = 0.002
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As expected, the usage of 3-mers proved to be least accurate, but the
usage of 5-mers now has visibly higher accuracy than using 4-mers. Therefore,
the conclusion drawn from simulated data has proven incorrect. In this case
the lowest stay probability (0.4) yielded the best results, even though 0.5
corresponds better to the value computed from the reference data.

The overall accuracy decreased by more than 0.1. Most errors are in the
form of short “detours”, where the algorithm loses the correct way and returns
to it in about five more steps. Example using local alignment of this is:

.. .GAATAGCGGG-—--—-- TGTG. .. (2.1)
.. .GAAT-——-—- GGCAGATTGTG. . . .
Edit distance aligns this section as:
.. .GAATAGCGGG-TGTG. . .
(2.2)

.. .GAATGGCAGATTGTG. . .

Note that in this example the edit distance uses more desired approach to
the penalization of mismatches. It is a sign, that the selection of alignment
algorithm was correct.

Overall, the results show that the Viterbi algorithm can achieve similar
results to the reference sequence and if using context size of four or more, it
can achieve over 0.8 score on some sequences.

2.4.2 Results of Forward—Backward Algorithm

This is the first real test of the improvements made in the last phase of
Forward-Backward algorithm so it may prove not worth using and the Vi-
terbi algorithm will stay more accurate as suggested the experiment on sim-
ulated data. Figure [2.17] again shows the acquired results using the same
placement and the same settings. In this case, detailed results are presented

in Appendix [K]
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Figure 2.17: Sample 1, Forward—Backward Algorithm

In this experiment, using 3-mers proved significantly worse than 4 or 5-
mers. However, other findings are very similar to the simulated dataset. The
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base algorithm is not worth using at all, but both modifications help signific-
antly. The resulting accuracy is still lower than by using the Viterbi algorithm
with the same settings.

As the previous results suggested, Forward-Backward algorithm is not
suitable for base-calling. Therefore, here its used only for estimating base-
calling quality.

2.5 Sample Set 2

The sample set 2 was used to test the scaling of parameters performed by Min-
Max normalization. As in previous experiment, both Viterbi and Forward—
Backward algorithms were used. Also, both modifications of Consolidation
phase in Forward—Backward algorithms were tested. The emphasis is on Vi-
terbi algorithm as it showed better results in previous experiments.

2.5.1 Results of Viterbi Algorithm

Again, Figure [2.18]is provided using the same settings for stay and skip prob-
abilities. The table of means and standard deviations was normalized as dis-
cussed above. Detailed results are presented in Appendix [[] for 3, 4 and
5-mers.

3-mers 4-mers 5-mers

0.7

0.7 0.7

0.6 0.6 0.6

os NN Wi e o x
0.4 0.5 0.6 0.4 0.5 0.6

0.4 0.5 0.6 . . . . . .
Stay probability Stay probability Stay probability

Figure 2.18: Sample 2, Viterbi Algorithm, Skip probability = 0.002

The overall conclusions remain the same. As expected, 5-mers provided
best results. However, the mean accuracy decreased significantly. The stand-
ard deviation was much higher, because some of the sequences sequences in
the set aligned poorly and some were aligned with approximately the same
score as the best sequences in sample 1 (over 0.8). The reason for this will be
discussed in section 2.7.5

This test showed that the normalization method is not robust enough
and can influence the results significantly even when the normalization was
performed on E.coli dataset measured by the same R9 chemistry. Therefore,
the normalization should be performed for each read separately as in sample 3.

43



2. RESULTS

2.5.2 Results of Forward—Backward Algorithm

Accuracy for Forward-Backward algorithm is shown in Figure 2.19] Detailed
results are presented in Appendix [M] The settings stayed the same as in the
sample 1 experiment, so the only difference are the normalized means and
standard deviations for the distributions in the sample set 2.
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Figure 2.19: Sample 2, Forward-Backward Algorithm

Conclusions made from these results are the same as for Viterbi algorithm.
The overall accuracy is lower with significantly higher standard deviations. As
in Viterbi algorithm experiment the normalization gave reasonable results for
only a part of the sequences and therefore it should be used with caution,
especially when applied to data with significant difference in properties as in
sample 3.

2.6 Method Selection

The best performing solution is the Viterbi algorithm using context size 5. For
used datasets the stay probability of 0.4 and skip probability of 0.001 performs
best if the edit distance alignment is taken as the decisive element. Forward—
Backward algorithm proved to be too inaccurate even with modifications in
the Consolidation phase. Still, both modifications increased the accuracy by
a significant amount.

Using smaller context size also reduces the accuracy. With 4-mers the
method can achieve decent results and if the computation time is a consid-
eration, it may be a viable option. Using 3-mers is not advised at all, the
decrease in accuracy is too big.

In the paragraphs below, this method will be referred to as Nanopore Base-
caller Lite (NBL). In all future references, the default settings use contexts of
5 bases, stay probability of 0.4 and skip probability of 0.001.

2.7 Comparison with Existing Methods

This section will compare NBL, the method defined in previous section, with
both Nanocall and DeepNano solutions. These two solutions were selected as
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they are both open source, thus easily obtainable, and claim to provide ac-
curate results comparable to Metrichor. Nanocall method is similar to NBL,
so the comparison is at hand. DeepNano on the other hand uses different ap-
proach so it serves as a complement to possible solutions. The comparison will
be made on both sample set 1 and sample set 2 using edit distance alignment
with the reference sequences.

On those samples, the evaluation was based on similarity with state-of-the-
art base-caller. Instead, in sample 3 a BWA-MEM alignment of the base-called
sequence to the reference (human) genome is performed, which allows to count
the number of mismatches, insertions and deletions for all base-callers. Except
for natural polymorphism, it should be possible to measure the real error rate
of the base-calling.

Sample 1 and 2 came from two distinct experiments, but the sequences in
sample 3 are a mixture of multiple experiments performed at different time,
place and protocol chosen specifically by their alignment score using BWA-
MEM algorithm.

2.7.1 Nanocall Overview

Nanocall is based on Viterbi algorithm as well, however it uses 6-mers as
context lengths. It may provide the crucial advantage for Nanocall as the
results has shown, that the longer the context the better the results. However,
the dataset analysis used only 5-mers as a context so it may not prove as
a significant advantage.

2.7.2 DeepNano Overview

DeepNano solution is based on Recurrent Neural Network. Its main advert-
ised advantage is that it may capture dependencies longer than the length
of a context. It is certainly true that in the DNA there are those kind of
dependencies, however the impact on base-calling is hard to predict.

2.7.3 Burrows—Wheeler Aligner

Burrows—Wheeler Aligner (BWA) [53] is a software package for mapping base-
called sequences against a large reference genome, such as the human genome.
It consists of three algorithms, but only the MEM algorithm is recommen-
ded for this type of project. It works by seeding alignments with maximal
exact matches (MEMs) and then extending seeds with the affine-gap Smith—
Waterman algorithm.

BWA is widely used for the result assessment. Both Nanocall and Deep-
Nano used it, so it should provide unbiased comparison between all used im-
plementations.
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2.7.4 Sample 1 Comparison

On sample 1, NBL has a significant advantage as it was specifically optimized
for this dataset. Both Nanocall and DeepNano were used with their default
settings, except for specifying R9 chemistry to DeepNano. Comparison of all
three solutions is shown in Figure [2.20] The results are shown using violin
plot, with mean value in the middle. As in previous figures, the alignments
shown are performed by edit distance.
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NBL Nanocall DeepNano

Figure 2.20: Sample 1, Comparison of Results

The results on a 100 randomly selected sequences show, that the implemen-
ted version of Viterbi algorithm performs better than the Nanocall solution,
although Nanocall is disadvantaged by the need to adjust all settings by it-
self. DeepNano and its Recurrent Neural Network displays significantly better
results, which indicates its advantage over both HMM based methods.

Overall, the RNN proved to be more accurate than HMM models in agree-
ment with [32]. Nanocall has shown lower accuracy in comparison to NBL,
however the cause for this is probably the need to use scaled parameters,
which is both hard to perform precisely and very important for the resulting
accuracy.

2.7.5 Sample 2 Comparison

On sample 2, the advantage of knowing the settings for implemented solution
is not so prominent, because the scaling had to be used even in the NBL. Nev-
ertheless, the dataset still contains similar E.coli sequences and was measured
by the same chemistry.

Results are shown in the same manner as in previous section in Figure
Nanocall is again indicated by green color, DeepNano is orange and
NBL is blue.

The results show similar performance for DeepNano with overall perform-
ance significantly better than both HMM solutions. Nanocall reports lower
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Figure 2.21: Sample 2, Comparison of Results

maximal accuracy than NBL, but in average case reaches higher values. The
reason for the decrease in accuracy of NBL is probably due to incorrect use
of scaling, where it should be applied for each read separately.

To sum both comparisons, the implemented solution performed well to cer-
tain extent, although it was designated exactly for the given dataset. DeepN-
ano solution achieved the best results with the lowest variance. Nanocall is not
as accurate, but on the other hand shows stable results on both samples. The
numeric values of DeepNano and Nanocall results are shown in Appendix [N]

2.7.6 Sample 3 Comparison

Last comparison is performed on sample 3. It does not use the edit distance
alignment as was already mentioned. The comparison is made using BWA-
MEM algorithm against the real human gene, which was base-called. To avoid
the problem with scaling present in sample 2, which may be magnified in this
sample because of its heterogeneity, all input parameters were adjusted for
each read separately. Figure[2.22]shows error rate for each of the 100 sequences
base-called. The error rate is computed from CIGAR string provided in the
mapping result.

The CIGAR string is a sequence of base lengths and the associated op-
eration. The main operations are hard clip (H), soft clip (S), insertion (I),
deletion (D) and match (M). Clips can occur only at the start and the end
of the sequence and signalize, that the aligned sequence had to be shortened
to be successfully mapped, thus may be considered as insertions at the ends.
An example CIGAR string looks like this:

10530M5I1D20M2S (2.3)

It shows a very short alignment with 10 bases clipped at the start and 2
at the end. 50 matches in total and 5 insertions and 1 deletion. The resulting

47



2. RESULTS

0.45
—— NBL
0.40 Nanocall
o 0.35| —— DeepNano
&: 0.30 —— Metrichor [
o
5 0.25
0.20
0.15 V
W‘
0.105 20 40 60 80 100
Read

Figure 2.22: Error rate comparison on sample 3 using BWA-MEM.
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average number of errors per match.

From the figure, it is visible that Metrichor achieves the best
result on most sequences. There are several possible reasons. First is that the
sequences were selected based on the achieved result by Metrichor, so other
sequences could provide more balanced results. Also, Metrichor could utilize
some information from complement strand whose measurement is sometimes
concatenated to the template strand in the fasts file.

Otherwise, if only the three selected solutions are compared, DeepNano
solution performs best on most reads. Average values per read are presented
in Table DeepNano achieves significantly lower error rate than both HMM
based solutions. On the other hand, Nanocall creates longer mapped sequences
with more than 100 bases difference in matches. The NBL solution does not
outperform other solutions in any category, but the results are competitive.

= 0.36. Therefore, the error rate is an

NBL | Nanocall | DeepNano
Clips 155 144 116
Insertions/Deletions 788 827 732
Matches 4712 4833 4711
Error Rate 0.205 0.209 0.183

Table 2.2: Average BWA-MEM alignment result comparison on sample 3.

The last read shows very high error rate even using Metrichor. All reads
were selected using only clip, insertion and deletion count and this read was
only several hundred base pairs long, therefore the error rate was affected. In
this case both Nanocall and NBL generated a sequence which was not mapped
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at all. The figure shows value 1 so the other values were still recognizable. All
numeric values of error rate are shown in Appendix

2.8 Time and Space Complexity

The last comparison between the three solutions is not about performance in
base-calling, instead it focuses more on the hardware requirements. The first
attribute is time complexity. The main disadvantage of NBL solution is the
lack of parallelization. DeepNano uses four threads in the default settings,
which is not adjustable by an input parameter. Nanocall can be run using
arbitrary number of threads. The disadvantage can be partly evaded by run-
ning several instances of NBL, because the base-calling of one sequence does
not affect other sequences, although the parallelization requires extra effort.
The time complexity of NBL for one read can be interpreted as:

TNBL = O(Ne X 4k X tT‘),

where N, is number of events, k is the size of context and tr is the number
of possible transitions from each state. As was already discussed, the value of
tr is up to 21 in current implementation.

Table shows performance using events per second (eps) which was
achieved on the whole sample 1. All times are measured for the run of the
whole process as it was used as a black box. Every run was measured on
processor Intel Core i7-4700MQ CPU @ 2.40 GHz x 8.

Tool Threads | Context Eps
NBL 1 3-mers | 20,287
NBL 1 4-mers 4,333
NBL 1 5-mers 975
Nanocall 1 6-mers 565
Nanocall 4 6-mers 1,513
DeepNano 1 N/A 836
DeepNano 4 N/A 2,824

Table 2.3: Events per second comparison in base-calling of sample 1.

From the table, it is visible that if run on single core without multi-
threading, the NBL is the fastest. However, the parallelization speeds the
computation by a significant amount. Also as expected, if smaller contexts
are used, the number of events per second processed is significantly higher at
the cost of lower accuracy.

Another attribute is space complexity. Table shows the peak memory
usage of each tool during the computation of sample 1 base-calling.
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Tool Context | Kilobytes
NBL 3-mers 18,992
NBL 4-mers 61,980
NBL 5-mers 250,792
Nanocall 6-mers 580,260
DeepNano | N/A 93,872

Table 2.4: Peak memory usage of base-callers on sample 1 in kilobytes.

Again as expected, the values strongly depend on the size of context in
NBL solution. And as the DeepNano does not use HMM and dynamic pro-
gramming, it requires smaller amount of memory unless using very short con-
text size. The memory requirement for NBL can be expressed as:

MNBL = O(Ne X 4k>,

using the same variables as in time complexity. The value 4% in these
formulas is the number of contexts and therefore the number of states of the
Hidden Markov Model.

In summary, DeepNano excels in both presented comparisons, unless using
very short contexts in NBL. However, the difference in accuracy for shorter
contexts is so significant, it is not worth any consideration in most cases.
Based only on these parameters, the RNN seems to have only advantages.
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Conclusion

DNA sequencing is and probably will be in focus of many researchers, because
of its wide variety of applications. With the release of MinlON device which
uses the nanopore technology and the constant improvements made in its
chemistry, computer science oriented researchers may focus on optimizing the
base-calling to improve its lacking accuracy, because the speed and lengths of
reads achieved by this method provide a significant advantage over any other
proposed sequencing method.

And now with the recent publication of Metrichor, other solutions and
new methods may be easier to develop and optimize. A lightweight open
source tool presented in this work may be useful for either comparison with
new solutions or the practical usage in small scale projects. It may help,
that it is implemented in both Python and C++ and does not require any
specialized tools and only few common libraries so it can be used on almost
any machine. Therefore, the goal to create a tool for base-calling sequences
was accomplished.

The overall precision is comparable with other solutions like DeepNano or
Nanocall, and although it is optimized specifically for R9 chemistry and E.coli
sequences, the results were satisfactory even on presumably hard to base-call
human gene. Although, the results show the reason why Metrichor stopped
using HMMs and went over to the use of RNNs as the DeepNano solution
performed better in almost every instance.

The NBL is also implemented as separate modules, therefore it is possible
to use only some parts and for example replace the scaling of parameters with
more sophisticated methods. This module may be a focus of the future work,
as it is responsible for significant accuracy change if used on data measured
using different chemistry or DNA.

Another important note is that the experimental use of Forward-Backward
algorithm was not as successful as desired, even though both implemented
modifications increased the accuracy by a large amount.
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CONCLUSION

All of the implemented modules are provided on the enclosed flash drive
or available at https://bitbucket.org/horaktol/NBL.

52


https://bitbucket.org/horakto1/NBL

Bibliography

Holub, J. 12. Pattern Matching in Bioinformatics. 2016, course MI-EVY,
FIT CTU University Lecture.

Mohammed, O. G.; Assaleh, K. T.; et al. Novel algorithms for accur-
ate DNA base-calling. Journal of Biomedical Science and Engineering,
volume 6, no. 2, 2013: pp. 165-174.

Ronaghi, M. Pyrosequencing sheds light on DNA sequencing. Genome
research, volume 11, no. 1, 2001: pp. 3—11.

Applied Biosystems. SOLiD System Brochure. 2008, [Online; accessed
20-05-17]. Available from: http://www.columbia.edu/cu/biology/
courses/w3034/Dan/readings/SOLiD_System_Brochure.pdf

Snipcademy. 09. Illumina Sequencing-By-Synthesis (SBS) Tech-
nology. [Online; accessed 20-05-17]. Available from: https:
//binf.snipcademy.com/lessons/ngs-techniques/illumina-solexa

Liang, F.; Zhang, P. Nanopore DNA sequencing: Are we there yet? Sci-
ence Bulletin, volume 60, no. 3, 2015: pp. 296-303.

Szalay, T.; Golovchenko, J. A. De novo sequencing and variant call-
ing with nanopores using PoreSeq. NATURE BIOTECHNOLOGY,
volume 33, no. 10, 2015: pp. 1087-1087.

Lou, H. L. Implementing the Viterbi algorithm. IEEFE Signal Processing
Magazine, volume 12, no. 5, Sep 1995: pp. 42-52, ISSN 1053-5888, doi:
10.1109/79.410439.

Khreich, W.; Granger, E.; et al. On the memory complexity of the
forward-backward algorithm. Pattern Recognition Letters, volume 31,
no. 2, 2010: pp. 91-99.

93


http://www.columbia.edu/cu/biology/courses/w3034/Dan/readings/SOLiD_System_Brochure.pdf
http://www.columbia.edu/cu/biology/courses/w3034/Dan/readings/SOLiD_System_Brochure.pdf
https://binf.snipcademy.com/lessons/ngs-techniques/illumina-solexa
https://binf.snipcademy.com/lessons/ngs-techniques/illumina-solexa

BIBLIOGRAPHY

[10]

[11]

[15]

[16]

o4

Mott, R. Smith—Waterman Algorithm. eLS, 2005.

Likic, V. The Needleman—Wunsch algorithm for sequence alignment. Lec-
ture given at the 7th Melbourne Bioinformatics Course, Bi021 Molecular
Science and Biotechnology Institute, University of Melbourne, 2008: pp.
1-46.

Sinden, R. R. DNA structure and function. Elsevier, 2012.

Pray, L. Discovery of DNA structure and function: Watson and Crick.
Nature Education, volume 1, no. 1, 2008: p. 100.

Maxam, A. M.; Gilbert, W. A New Method for Sequencing DNA. Pro-
ceedings of the National Academy of Sciences of the United States of
America, volume 74, no. 2, 1977: pp. 560-564.

Sanger, F.; Nicklen, S.; et al. DNA Sequencing with Chain-Terminating
Inhibitors. Proceedings of the National Academy of Sciences of the United
States of America, volume 74, no. 12, 1977: pp. 5463—-5467.

Giddings, M. C.; Brumley, R. L., Jr; et al. An adaptive, object oriented
strategy for base calling in DNA sequence analysis. Nucleic Acids Re-
search, volume 21, no. 19, 1993: p. 4530, doi:10.1093/nar/21.19.4530.
Available from: http://dx.doi.org/10.1093/nar/21.19.4530

Berno, A. J. A graph theoretic approach to the analysis of DNA sequen-
cing data. Genome Research, volume 6, no. 2, 1996: pp. 80-91.

Brady, D.; Kocic, M.; et al. A maximum-likelihood base caller for DNA
sequencing. IEFE transactions on biomedical engineering, volume 47,
no. 9, 2000: pp. 1271-1280.

Manolakos, E. S. Clustering methods for accurate DNA base-calling. In
Signals, Systems and Computers, 2002. Conference Record of the Thirty-
Sixth Asilomar Conference on, volume 1, IEEE, 2002, ISBN 1058-6393,
pp. 311-315.

Khan, O. G. M.; Assaleh, K. T.; et al. DNA base-calling using artifi-
cial neural networks. In Biomedical Engineering (MECBME), 2011 1st
Middle Fast Conference on, IEEE, 2011, pp. 96-99.

Pereira, M. S.; Andrade, L.; et al. Statistical learning formulation of the
DNA base-calling problem and its solution in a Bayesian EM framework.
Discrete Applied Mathematics, volume 104, no. 1, 2000: pp. 229-258.

Mohammed, O. G.; Assaleh, K. T.; et al. DNA base-calling using poly-
nomial classifiers. In Neural Networks (IJCNN), The 2010 International
Joint Conference on, IEEE, 2010, pp. 1-5.


http://dx.doi.org/10.1093/nar/21.19.4530

Bibliography

23]

[24]

[25]

[26]

[27]

[30]

[31]

32]

[33]

[34]

Thornley, D.; Petridis, S. Decoding Trace Peak Behaviour—A Neuro—
Fuzzy Approach. In Fuzzy Systems Conference, 2007. FUZZ-IEEE 2007.
IEEE International, IEEE, 2007, ISBN 1098-7584, pp. 1-6.

Eltoukhy, H.; El Gamal, A. Modeling and base-calling for DNA
sequencing-by-synthesis. In Acoustics, Speech and Signal Processing,
2006. ICASSP 2006 Proceedings. 2006 IEEE International Conference
on, volume 2, IEEE, 2006, ISBN 1520-6149, pp. II-II.

McKernan, K.; Blanchard, A.; et al. Reagents, methods, and libraries for
bead-based sequencing. Apr. 30 2013, uS Patent 8,431,691.

Ju, J.; Kim, D. H.; et al. Four-color DNA sequencing by synthesis using
cleavable fluorescent nucleotide reversible terminators. Proceedings of the
National Academy of Sciences, volume 103, no. 52, 2006: pp. 19635—
19640.

Mlumina Inc. Sequencing by Synthesis (SBS) Technology. [Online;
accessed 20-05-17]. Available from:  https://www.illumina.com/
technology/next-generation-sequencing/sequencing-
technology.html

Kasianowicz, J. J.; Brandin, E.; et al. Characterization of individual
polynucleotide molecules using a membrane channel. Proceedings of the
National Academy of Sciences, volume 93, no. 24, 1996: pp. 13770-13773.

David, M.; Dursi, L. J.; et al. Nanocall: an open source basecaller for
Oxford Nanopore sequencing data. Bioinformatics, volume 33, no. 1,
2017: p. 49, doi:10.1093/bioinformatics/btw569. Available from: http:
//dx.doi.org/10.1093/bioinformatics/btw569

Schreiber, J.; Karplus, K. Analysis of nanopore data using hidden Markov
models. Bioinformatics, 2015: p. btv046.

An Oxford Nanopore Company. Metrichor. https://metrichor.com,
[Online; accessed 29-04-17].

Boza, V.; Brejova, B.; et al. DeepNano: deep recurrent neural net-
works for base calling in MinlON nanopore reads. arXiv preprint
arXiv:1603.09195, 2016.

Loman, N. J.; Quick, J.; et al. A complete bacterial genome assembled
de novo using only nanopore sequencing data. NATURE METHODS,
volume 12, no. 8, 2015: pp. 733-U51.

Eddy, S. R. Hidden markov models. Current Opinion in Structural Bio-
logy, volume 6, no. 3, 1996: pp. 361-365.

95


https://www.illumina.com/technology/next-generation-sequencing/sequencing-technology.html
https://www.illumina.com/technology/next-generation-sequencing/sequencing-technology.html
https://www.illumina.com/technology/next-generation-sequencing/sequencing-technology.html
http://dx.doi.org/10.1093/bioinformatics/btw569
http://dx.doi.org/10.1093/bioinformatics/btw569
https://metrichor.com

BIBLIOGRAPHY

[35]

[36]

[37]

[40]

[41]

[42]

[43]

[44]

o6

Rabiner, L. R. A tutorial on hidden Markov models and selected applic-
ations in speech recognition. Proceedings of the IEEE, volume 77, no. 2,
Feb 1989: pp. 257-286, ISSN 0018-9219, doi:10.1109/5.18626.

Rabiner, L. R.; Juang, B.-H. An introduction to hidden Markov models.
IEEE ASSP Magazine, volume 3, no. 1, Jan 1986: pp. 4-16, ISSN 0740-
7467, doi:10.1109/MASSP.1986.1165342.

Viterbi, A. Error bounds for convolutional codes and an asymptotically
optimum decoding algorithm. IEEE Transactions on Information Theory,
volume 13, no. 2, April 1967: pp. 260-269, ISSN 0018-9448, doi:10.1109/
TIT.1967.1054010.

Forney, G. D. The viterbi algorithm. Proceedings of the IEEFE, volume 61,
no. 3, March 1973: pp. 268-278, ISSN 0018-9219, doi:10.1109/
PROC.1973.9030.

Shinghal, R.; Toussaint, G. T. Experiments in Text Recognition with the
Modified Viterbi Algorithm. IEEFE Transactions on Pattern Analysis and
Machine Intelligence, volume PAMI-1, no. 2, 1979;1978;: pp. 184-193.

Chang, R.; Hancock, J. On receiver structures for channels having
memory. IEEE Transactions on Information Theory, volume 12, no. 4,
1966: pp. 463—-468.

Baum, L. E.; Petrie, T.; et al. A maximization technique occurring in
the statistical analysis of probabilistic functions of Markov chains. The
annals of mathematical statistics, volume 41, no. 1, 1970: pp. 164-171.

Smith, T. F.; Waterman, M. S. Identification of common molecular sub-
sequences. Journal of molecular biology, volume 147, no. 1, 1981: pp.
195-197.

Gotoh, O. An improved algorithm for matching biological sequences.
Journal of molecular biology, volume 162, no. 3, 1982: pp. 705-708.

Will, S. Sequence Alignment. 2011, course 18.417, MIT University Lec-
ture. Available from: http://math.mit.edu/classes/18.417/Slides/
alignment.pdf

Needleman, S. B.; Wunsch, C. D. A general method applicable to the
search for similarities in the amino acid sequence of two proteins. Journal
of molecular biology, volume 48, no. 3, 1970: pp. 443-453.

Ukkonen, E. On approximate string matching. In Foundations of Com-
putation Theory, Springer, 1983, pp. 487-495.


http://math.mit.edu/classes/18.417/Slides/alignment.pdf
http://math.mit.edu/classes/18.417/Slides/alignment.pdf

Bibliography

[47]

[48]

[51]

[52]

Loman Labs. Nanopore R9 rapid run data release. 7 2016, [Online; ac-
cessed 29-04-17]. Available from: http://lab.loman.net/2016/07/30/
nanopore-r9-data-release/

Loman, N. J.; Quinlan, A. R. Poretools: a toolkit for analyzing nano-
pore sequence data. Bioinformatics, volume 30, no. 23, 2014: p. 3399,
do0i:10.1093 /bioinformatics/btub55. Available from: http://dx.doi.org/
10.1093/bioinformatics/btubbb

Collette, A. HDF5 for Python. 2008, [Online; accessed 29-04-17]. Avail-
able from: http://hbpy.alfven.org

Timp, W.; Comer, J.; et al. DNA base-calling from a nanopore using
a Viterbi algorithm. Biophysical journal, volume 102, no. 10, 2012: pp.
L37-L39.

Python Software Foundations. Python Laguage Reference, version 2.7.
2010-. Available from: https://www.python.org/

Victor, S. Generate pseudo-random numbers. 1990-, [Online; ac-
cessed 29-04-17]. Available from: https://docs.python.org/2/library/
random.html

Li, H. Aligning sequence reads, clone sequences and assembly contigs with
BWA-MEM. arXiv preprint arXiv:1303.3997, 2013.

Oliphant, T'; et al. NumPy. 2006—, [Online; accessed 29-04-17]. Available
from: http://www.numpy.org/

Jones, E.; Oliphant, T.; et al. SciPy: Open source scientific tools
for Python. 2001, [Online; accessed 29-04-17]. Available from: http:
//www.scipy.org/

Hunter, J. D. Matplotlib: A 2D graphics environment. Computing In
Science € Engineering, volume 9, no. 3, 2007: pp. 90-95, do0i:10.1109/
MCSE.2007.55.

C++ Standards Committee; et al. iso/iec 14882: 2011, standard for pro-
gramming language c++. Technical report, ISO/IEC, 2011. Available
from: http://www.open-std.org/jtcl/sc22/wg21

o7


http://lab.loman.net/2016/07/30/nanopore-r9-data-release/
http://lab.loman.net/2016/07/30/nanopore-r9-data-release/
http://dx.doi.org/10.1093/bioinformatics/btu555
http://dx.doi.org/10.1093/bioinformatics/btu555
http://h5py.alfven.org
https://www.python.org/
https://docs.python.org/2/library/random.html
https://docs.python.org/2/library/random.html
http://www.numpy.org/
http://www.scipy.org/
http://www.scipy.org/
http://www.open-std.org/jtc1/sc22/wg21




APPENDIX A

Acronyms

A Adenine

ANN Artificial Neural Network

ATP Adenosine triphosphate

BWA Burrows—Wheeler Aligner

C Cytosine

CPU Central Processing Unit

DN DeepNano

DNA Deoxyribonucleic Acid

E.coli Escherichia coli

EM Expectation-Maximization Algorithm
eps Events per second

FB Forward—Backward Algorithm
FwdBkw Forward-Backward Algorithm
G Guanine

HMM Hidden Markov Model

MEM Maximal exact matches algorithm
MM Markov Model

NBL Nanopore Base-caller Lite

NC Nanocall
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A. ACRONYMS

NW Needleman—Wunsch Algorithm

PC Polynomial Classifiers

PPi Pyrophosphate

RNN Recurrent Neural Network

SOLiD Sequencing by oligonucleotide ligation and detection
SW Smith—-Waterman Algorithm

SWG Smith—Waterman—Gotoh Algorithm

T Thymine
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APPENDIX B

Contents of Enclosed Drive

README.tXbt .vvvevvnennnnnn.. the file with flash drive contents description
QAT ettt e s the directory with sample data

simulated

samplel

sample?2
BX .ttt the directory with executables (C++)
S e16) ] o NN the directory of C++ source codes
STCPY . the directory of Python source codes
srcThesis ............. the directory of IXITEX source codes of the thesis
thesis.pdf......... ...t the thesis text in PDF format






APPENDIX C

Data File Structure
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C. DATA FILE STRUCTURE

File

| Analyses

| Basecall_1D_000

| BaseCalled_template

tEvents (Dataset)

Fastq (Dataset)

| Configuration

aggregator

basecall_1d

calibration_strand

components

event_detection

general

split_hairpin

| Log (Dataset)

| Summary

Lg,basecall,ld,template

| Calibration_Strand_000

| Configuration
aggregator
basecall_1d
basecall_2d
calibration_strand
components
general
genome_mapping
hairpin_align
post_processing.3000Hz
split_hairpin

| Log (Dataset)

| Summary
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| EventDetection_000
| Configuration
aggregator
basecall_1d
basecall_2d
calibration_strand
components
event_detection
general
hairpin_align
post_processing
post_processing.4000Hz
split_hairpin
| Log (Dataset)
| Reads
LA,Read,i

| Events (Dataset)
| Summary
Lg,event,detection
| Segment_Linear_000
| Configuration
aggregator
basecall_1d
calibration_strand

components
general
split_hairpin
| Log (Dataset)

| Summary
L,splitghairpin
, _Raw
LA,Reads
| Read i
LA,Signal (Dataset)
| __UniqueGlobalKey
channel_id
context_tags
tracking_id







APPENDIX D

Generated, Viterbi A., 3-mers

Alignment | Stay | Skip | Minimum | Average | Maximum
0.001 0.763 0.782 0.793

0.4 | 0.002 0.764 0.782 0.793

0.004 0.764 0.782 0.794

0.001 0.766 0.780 0.793

Local 0.5 | 0.002 0.767 0.780 0.793
0.004 0.767 0.780 0.794

0.001 0.760 0.772 0.781

0.6 | 0.002 0.761 0.772 0.781

0.004 0.761 0.772 0.782

0.001 0.727 0.750 0.793

0.4 | 0.002 0.728 0.750 0.793

0.004 0.727 0.750 0.794

0.001 0.722 0.742 0.793

Global 0.5 | 0.002 0.722 0.742 0.793
0.004 0.723 0.742 0.794

0.001 0.707 0.727 0.781

0.6 | 0.002 0.708 0.727 0.781

0.004 0.709 0.727 0.782

0.001 0.857 0.872 0.881

0.4 | 0.002 0.858 0.872 0.881

0.004 0.858 0.872 0.881

0.001 0.870 0.881 0.891

Edit 0.5 | 0.002 0.871 0.881 0.891
0.004 0.871 0.881 0.891

0.001 0.872 0.883 0.889

0.6 | 0.002 0.873 0.883 0.889

0.004 0.873 0.882 0.889
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APPENDIX E

Generated, Viterbi A., 4-mers

Alignment | Stay | Skip | Minimum | Average | Maximum
0.001 0.831 0.846 0.863

0.4 | 0.002 0.831 0.846 0.863

0.004 0.831 0.846 0.863

0.001 0.827 0.846 0.865

Local 0.5 | 0.002 0.827 0.846 0.865
0.004 0.828 0.846 0.864

0.001 0.821 0.837 0.856

0.6 | 0.002 0.823 0.837 0.856

0.004 0.823 0.837 0.855

0.001 0.801 0.821 0.863

0.4 | 0.002 0.801 0.822 0.863

0.004 0.801 0.821 0.863

0.001 0.799 0.820 0.865

Global 0.5 | 0.002 0.799 0.820 0.865
0.004 0.801 0.820 0.864

0.001 0.788 0.806 0.856

0.6 | 0.002 0.790 0.806 0.856

0.004 0.791 0.805 0.855

0.001 0.884 0.896 0.912

0.4 | 0.002 0.884 0.897 0.912

0.004 0.884 0.896 0.911

0.001 0.895 0.908 0.918

Edit 0.5 | 0.002 0.895 0.908 0.918
0.004 0.896 0.908 0.917

0.001 0.899 0.909 0.922

0.6 | 0.002 0.900 0.909 0.922

0.004 0.899 0.909 0.921
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APPENDIX F

Generated, Viterbi A., b-mers

Alignment | Stay | Skip | Minimum | Average | Maximum
0.001 0.839 0.856 0.869

0.4 | 0.002 0.838 0.856 0.870

0.004 0.838 0.856 0.869

0.001 0.838 0.857 0.872

Local 0.5 | 0.002 0.838 0.857 0.871
0.004 0.838 0.857 0.871

0.001 0.829 0.848 0.860

0.6 | 0.002 0.829 0.848 0.860

0.004 0.828 0.847 0.860

0.001 0.810 0.831 0.869

0.4 | 0.002 0.809 0.831 0.870

0.004 0.809 0.831 0.869

0.001 0.807 0.832 0.872

Global 0.5 | 0.002 0.807 0.832 0.871
0.004 0.806 0.831 0.871

0.001 0.792 0.817 0.860

0.6 | 0.002 0.793 0.817 0.860

0.004 0.791 0.816 0.860

0.001 0.887 0.899 0.908

0.4 | 0.002 0.886 0.899 0.908

0.004 0.886 0.899 0.908

0.001 0.885 0.899 0.909

Edit 0.5 | 0.002 0.885 0.899 0.909
0.004 0.885 0.899 0.908

0.001 0.876 0.890 0.900

0.6 | 0.002 0.876 0.890 0.900

0.004 0.876 0.889 0.900
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APPENDIX G

Generated, FwdBkw A., 3-mers

Alignment | Smoothing | Consolidate | Minimum | Average | Maximum
1.00 yes 0.683 0.698 0.713

' no 0.648 0.662 0.675

0.70 yes 0.697 0.717 0.730

Local no 0.680 0.698 0.711
0.10 yes 0.738 0.754 0.762

no 0.738 0.753 0.762

0.01 yes 0.745 0.759 0.767

no 0.745 0.759 0.767

1.00 yes 0.508 0.531 0.713

no 0.396 0.416 0.675

0.70 yes 0.548 0.584 0.730

Global no 0.495 0.527 0.711
0.10 yes 0.668 0.690 0.762

no 0.666 0.688 0.762

0.01 yes 0.686 0.706 0.767

’ no 0.686 0.706 0.767

1.00 yes 0.684 0.699 0.711

no 0.607 0.620 0.636

0.70 yes 0.711 0.735 0.748

Edit no 0.675 0.696 0.712
0.10 yes 0.795 0.809 0.819

no 0.794 0.807 0.819

0.01 yes 0.808 0.820 0.830

no 0.808 0.820 0.830
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APPENDIX I I

Generated, FwdBkw A., 4-mers

Alignment | Smoothing | Consolidate | Minimum | Average | Maximum
1.00 yes 0.744 0.757 0.771

no 0.644 0.661 0.678

0.70 yes 0.761 0.772 0.786

Local no 0.704 0.718 0.735
0.10 yes 0.808 0.821 0.840

no 0.807 0.819 0.836

0.01 yes 0.818 0.831 0.847

' no 0.818 0.831 0.847

1.00 yes 0.562 0.583 0.771

no 0.243 0.285 0.678

0.70 yes 0.610 0.623 0.786

Global no 0.432 0.462 0.735
0.10 yes 0.745 0.763 0.840

no 0.742 0.757 0.836

0.01 yes 0.777 0.794 0.847

' no 0.777 0.794 0.847

1.00 yes 0.717 0.730 0.742

no 0.500 0.527 0.552

0.70 yes 0.749 0.757 0.771

Edit no 0.627 0.647 0.671
0.10 yes 0.843 0.854 0.869

no 0.841 0.849 0.863

0.01 yes 0.865 0.875 0.890

no 0.865 0.875 0.890
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APPENDIX I

Generated, FwdBkw A., 5-mers

Alignment | Smoothing | Consolidate | Minimum | Average | Maximum
1.00 yes 0.735 0.753 0.775

no 0.577 0.605 0.634

0.70 yes 0.749 0.767 0.788

Local no 0.657 0.680 0.708
0.10 yes 0.812 0.826 0.841

no 0.805 0.819 0.835

0.01 yes 0.824 0.837 0.851

' no 0.824 0.837 0.851

1.00 yes 0.499 0.535 0.775

no 0.067 0.087 0.634

0.70 yes 0.546 0.574 0.788

Global no 0.263 0.308 0.708
0.10 yes 0.733 0.752 0.841

no 0.715 0.733 0.835

0.01 yes 0.775 0.791 0.851

' no 0.775 0.791 0.851

1.00 yes 0.673 0.696 0.727

no 0.336 0.382 0.432

0.70 yes 0.706 0.723 0.753

Edit no 0.514 0.542 0.586
0.10 yes 0.833 0.845 0.859

no 0.821 0.832 0.846

0.01 yes 0.862 0.872 0.882

no 0.862 0.872 0.882
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APPENDIX J

Sample 1, Viterbi Algorithm

Context | Stay | Skip | Minimum | Average | Maximum
0.001 0.547 0.608 0.650

0.4 | 0.002 0.545 0.607 0.647

0.004 0.541 0.605 0.642

0.001 0.544 0.602 0.649

3-mers | 0.5 | 0.002 0.543 0.601 0.638
0.004 0.539 0.599 0.638

0.001 0.538 0.593 0.645

0.6 | 0.002 0.538 0.593 0.640

0.004 0.536 0.592 0.637

0.001 0.607 0.731 0.793

0.4 | 0.002 0.597 0.730 0.791

0.004 0.590 0.729 0.791

0.001 0.604 0.723 0.787

4-mers | 0.5 | 0.002 0.597 0.722 0.786
0.004 0.591 0.721 0.785

0.001 0.589 0.711 0.778

0.6 | 0.002 0.588 0.710 0.777

0.004 0.583 0.708 0.775

0.001 0.608 0.752 0.823

0.4 | 0.002 0.608 0.751 0.823

0.004 0.600 0.750 0.823

0.001 0.606 0.745 0.819

5-mers | 0.5 | 0.002 0.599 0.744 0.820
0.004 0.594 0.743 0.819

0.001 0.597 0.733 0.809

0.6 | 0.002 0.590 0.732 0.809

0.004 0.585 0.730 0.807
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APPENDIX K

Sample 1, FwdBkw Algorithm

Context | Smoothing | Consolidate | Minimum | Average | Maximum
1.00 yes 0.375 0.473 0.511

no 0.269 0.380 0.436

0.70 yes 0.393 0.490 0.528

3 mers no 0.324 0.429 0.476
0.10 yes 0.465 0.547 0.578

no 0.455 0.538 0.571

0.01 yes 0.492 0.568 0.600

no 0.489 0.567 0.600

1.00 yes 0.385 0.549 0.629

no 0.156 0.307 0.411

0.70 yes 0.407 0.566 0.643

A mers no 0.254 0.412 0.520
0.10 yes 0.498 0.661 0.748

no 0.487 0.646 0.739

0.01 yes 0.554 0.699 0.764

' no 0.554 0.698 0.764

1.00 yes 0.363 0.533 0.641

' no 0.029 0.170 0.294

0.70 yes 0.389 0.550 0.636

5mers no 0.103 0.305 0.417
0.10 yes 0.490 0.662 0.740

no 0.429 0.620 0.707

0.01 yes 0.533 0.703 0.782

no 0.521 0.694 0.773
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APPENDIX L

Sample 2, Viterbi Algorithm

Context | Stay | Skip | Minimum | Average | Maximum
0.001 0.470 0.532 0.633

0.4 | 0.002 0.470 0.532 0.629

0.004 0.469 0.531 0.626

0.001 0.467 0.528 0.626

3-mers | 0.5 | 0.002 0.470 0.529 0.624
0.004 0.469 0.529 0.624

0.001 0.459 0.523 0.620

0.6 | 0.002 0.461 0.524 0.622

0.004 0.464 0.524 0.620

0.001 0.426 0.596 0.806

0.36 | 0.002 0.424 0.594 0.804

0.004 0.420 0.590 0.798

0.001 0.437 0.595 0.807

4-mers | 0.46 | 0.002 0.434 0.593 0.801
0.004 0.434 0.590 0.798

0.001 0.443 0.590 0.794

0.56 | 0.002 0.441 0.588 0.795

0.004 0.439 0.585 0.794

0.001 0.432 0.608 0.843

0.36 | 0.002 0.431 0.604 0.842

0.004 0.427 0.600 0.834

0.001 0.442 0.607 0.847

Edit 0.46 | 0.002 0.439 0.605 0.848
0.004 0.436 0.601 0.845

0.001 0.448 0.603 0.836

0.56 | 0.002 0.446 0.600 0.837

0.004 0.444 0.597 0.835
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APPENDIX M

Sample 2, FwdBkw Algorithm

Context | Smoothing | Consolidate | Minimum | Average | Maximum
1.00 yes 0.279 0.405 0.495

no 0.183 0.316 0.401

0.70 yes 0.318 0.423 0.509

5 mers no 0.257 0.366 0.449
0.10 yes 0.403 0.478 0.564

no 0.383 0.469 0.555

0.01 yes 0.417 0.497 0.585

no 0.406 0.495 0.584

1.00 yes 0.245 0.424 0.616

no 0.010 0.187 0.378

0.70 yes 0.265 0.438 0.633

A mers no 0.118 0.282 0.483
0.10 yes 0.368 0.519 0.719

no 0.342 0.502 0.710

0.01 yes 0.400 0.557 0.760

' no 0.389 0.556 0.760

1.00 yes 0.190 0.396 0.626

no 0.162 0.043 0.276

0.70 yes 0.218 0.410 0.646

5mers no 0.018 0.164 0.420
0.10 yes 0.330 0.508 0.751

no 0.274 0.462 0.712

0.01 yes 0.372 0.552 0.796

no 0.348 0.542 0.792
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APPENDIX N

Nanocall and DeepNano,
Sample 1 and 2 Results

Nanocall
Minimum | Average | Maximum | Standard Deviation
Sample 1 0.599 0.688 0.758 0.0323
Sample 2 0.441 0.702 0.781 0.0544
DeepNano
Minimum | Average | Maximum | Standard Deviation
Sample 1 0.747 0.820 0.862 0.0264
Sample 2 0.699 0.820 0.864 0.0357
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APPENDIX O

Sample 3, Error Rate

Channel | Read NBL | Nanocall | DeepNano || Metrichor
1 137 0.18191 | 0.16754 0.14761 0.11414
10 34 0.16398 | 0.17889 0.14342 0.11683
12 37 || 0.15882 | 0.19888 0.17136 0.11272
15 23 0.20556 | 0.17910 0.20288 0.14270
17 414 0.20065 | 0.20078 0.18056 0.15842
20 114 0.19372 | 0.17709 0.18946 0.11462
24 499 0.18470 | 0.17109 0.22191 0.13796
49 73 0.19018 | 0.23915 0.16356 0.13824
84 389 0.20404 | 0.16791 0.16630 0.11002
85 512 0.20443 | 0.20095 0.19699 0.14645
104 373 0.23078 | 0.22951 0.20689 0.17116
104 401 0.19799 | 0.20200 0.16253 0.15638
104 628 0.21605 | 0.23250 0.18716 0.17169
110 11 0.43600 | 0.20083 0.38763 0.13897
110 214 0.18143 | 0.16581 0.15440 0.11210
110 425 0.18535 | 0.16244 0.17827 0.14992
110 494 0.24131 | 0.21182 0.19392 0.17962
110 517 0.17374 | 0.16807 0.15778 0.11268
115 81 0.17864 | 0.17120 0.14571 0.11192
115 504 0.17231 | 0.19004 0.16855 0.12648
117 271 0.17077 | 0.18405 0.16235 0.18109
117 317 0.18790 | 0.17879 0.17020 0.14081
123 381 0.18726 | 0.18736 0.17928 0.11936
131 74 0.18994 | 0.22087 0.15831 0.13801
136 265 0.23393 | 0.19965 0.18572 0.15734
139 524 0.17307 | 0.17866 0.14870 0.10578
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O. SAMPLE 3, ERROR RATE
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Channel | Read NBL | Nanocall | DeepNano || Metrichor
141 121 0.24837 | 0.24138 0.21770 0.18492
144 391 0.21677 | 0.22697 0.18956 0.14266
146 130 || 0.18642 | 0.23814 0.21520 0.15820
151 80 0.19030 | 0.18479 0.16536 0.12322
157 401 0.28354 | 0.26462 0.18632 0.22860
163 104 0.17611 | 0.16950 0.18577 0.11838
172 28 0.18710 | 0.16250 0.14632 0.13477
173 306 0.20007 | 0.20293 0.17673 0.14771
177 152 0.16248 | 0.20434 0.14930 0.12180
177 159 || 0.19037 | 0.22333 0.19498 0.12947
186 136 || 0.16052 | 0.23372 0.16381 0.13060
195 221 0.17695 | 0.16917 0.15132 0.11273
195 429 || 0.17599 | 0.18420 0.18265 0.12418
198 105 0.17791 | 0.18514 0.17371 0.11847
198 345 0.18254 | 0.17207 0.14836 0.11301
199 186 0.17833 | 0.18053 0.16534 0.13067
213 140 0.17392 | 0.18291 0.17309 0.11354
215 13 0.17599 | 0.18694 0.16968 0.11279
218 70 0.18374 | 0.16643 0.14363 0.10863
218 334 0.21966 | 0.17103 0.18876 0.12087
219 185 0.19627 | 0.19146 0.15088 0.11114
227 431 0.22532 | 0.17893 0.15970 0.13803
227 433 0.17378 | 0.21213 0.15091 0.12808
230 177 0.17514 | 0.18984 0.17035 0.13047
231 190 0.18311 | 0.68662 0.15494 0.12669
236 13 N/A N/A 0.31904 0.43636
247 371 0.21429 | 0.17073 0.21917 0.12437
247 496 0.18387 | 0.19750 0.16723 0.13307
248 492 0.20185 | 0.23140 0.16568 0.12773
252 460 || 0.64618 | 0.77397 0.66107 0.16394
261 519 || 0.17525 | 0.19401 0.17746 0.12734
262 212 0.43739 | 0.44922 0.22008 0.17821
274 177 0.25162 | 0.23972 0.23034 0.15044
285 11 0.18215 | 0.19321 0.16417 0.10216
285 298 0.18123 | 0.16273 0.18311 0.11567
291 | 1185 0.23245 | 0.22859 0.20386 0.18128
292 3 0.20007 | 0.17775 0.19949 0.14798




Channel | Read NBL | Nanocall | DeepNano || Metrichor
292 164 0.19137 | 0.17162 0.16249 0.12069
292 396 0.18720 | 0.21531 0.14858 0.12575
293 197 0.17091 | 0.18162 0.14093 0.11484
296 562 0.19913 | 0.18386 0.16497 0.15680
298 237 0.17810 | 0.18318 0.14557 0.10625
301 13 0.20421 | 0.23654 0.16200 0.14003
303 230 0.19844 | 0.18148 0.20242 0.12200
304 498 0.20658 | 0.20238 0.19458 0.13252
306 419 0.20835 | 0.16551 0.20398 0.14338
309 | 2463 0.39327 | 0.18763 0.16642 0.14500
311 149 0.20336 | 0.28993 0.16310 0.13464
311 177 0.17977 | 0.17036 0.14937 0.11687
317 246 0.22179 | 0.16638 0.16756 0.12497
318 760 0.21398 | 0.19857 0.22549 0.17847
325 291 0.16907 | 0.19473 0.15863 0.13616
325 352 0.19225 | 0.18555 0.17217 0.12386
331 259 0.16934 | 0.22054 0.16873 0.12028
343 296 0.21090 | 0.21883 0.17092 0.13671
348 22 0.20341 | 0.20373 0.16412 0.13056
354 19 0.16393 | 0.18964 0.15928 0.11976
360 205 0.19162 | 0.18633 0.20200 0.11963
374 298 0.24584 | 0.23243 0.25402 0.20980
375 483 0.22620 | 0.30889 0.21896 0.18353
378 140 0.21185 | 0.20691 0.21782 0.14536
384 179 0.19240 | 0.18687 0.18297 0.10334
389 327 0.18582 | 0.17367 0.14560 0.12046
390 316 0.17908 | 0.16449 0.19013 0.12082
410 137 0.26052 | 0.23348 0.25912 0.15173
417 600 0.20622 | 0.16412 0.15753 0.11343
422 265 0.21130 | 0.20145 0.20186 0.15794
452 283 0.17930 | 0.18104 0.15429 0.12519
460 42 0.18112 | 0.19769 0.15718 0.12052
463 27 0.17550 | 0.19472 0.15195 0.14021
475 551 0.20988 | 0.22030 0.19106 0.15903
481 135 0.18713 | 0.18401 0.15982 0.12296
511 212 || 0.15887 | 0.17470 0.16975 0.12005
512 393 0.14968 | 0.17804 0.14648 0.10275
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