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Abstract 

The aim of this work is to investigate the current possibilities of head gaskets of the 

experimental single-cylinder engine and propose an appropriate solution. The proposed 

solution contains the required preload of the cylinder head screws, stress analysis of the 

upper mounting of the cylinder with the proposed gasket, the temperature field of the 

cylinder liner and the cylinder block with the given cylinder head gasket. The manufacturing 

documentation of the engine block and cylinder liner is made with regard to the chosen 

gasket design.  

 

Keywords: combustion engine, experimental engine, single cylinder engine, cylinder head 

gasket 

 

 

 

Abstrakt 

Cílem této práce je průzkum současných možností utěsnění hlavy válce experimentálního 

jednoválcového motoru a navrhnout vhodné řešení těsnění hlavy válce. Navrhované řešení 

obsahuje požadované předpětí hlavových šroubů, analýzu napětí horního uložení válce s 

navrženým těsněním, teplotní pole vložky válce, bloku motoru a navrženého těsnění. 

Výrobní dokumentace vložky válce a bloku motoru je vytvořena s ohledem na zvolené 

těsnění. 

 

Klíčová slova: spalovací motor, zkušební motor, jednoválcový motor, těsnění hlavy válce 
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𝐷2 pitch diameter ṁwh water mass flow in the cylinder 

head 

𝑑3 thread core diameter p maximum combustion 

 pressure 
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block 
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σ𝐸𝐵−𝐶𝐿 contact pressure between the 

engine block and the cylinder 

liner 
𝑊𝑘 torsional section modulus σm tensile stress from central 

operating force 
α thermal expansion coefficient 𝜎𝑝𝑡 tensile strength 

β thread angle 𝜎𝑟𝑒𝑑 𝑚𝑎𝑥 maximum reduced stress 
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 tensile stress from preload 

𝛾 thread pitch angle σKT yield strength 

ε strain τ torsional stress. 
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Chapter 1: Introduction 

 
Internal combustion engines are continuously developed. Companies must satisfy 

customers who want higher power and lower fuel consumption. Companies must also take 

into account requirements for the reduction of pollutant emissions. 

This work is part of a larger project that deals with the design of the new single-cylinder 

petrol engine that will be used in the laboratory. The engine will be used for many 

experimental measurements. The aim of this diploma thesis is to perform a literature 

search of contemporary cylinder head gasket designs, perform an assessment of the 

appropriate gasket design for a one cylinder research engine, perform mechanical stress 

calculations, perform thermal load calculations of the gasket and create manufacturing 

documentation of the cylinder head gasket and its assembly. Preliminary design of the 

geometry of the engine block and cylinder head was available at the beginning of this 

thesis. The engine block is designed as a closed deck. The thermal field of the cylinder head 

is available for the gasket design. The temperature, pressure and heat transfer coefficient 

in the cylinder versus crank angle graph are also available.  

The cylinder head gasket must seal the combustion chamber and subsequently the space 

where the water flows. A wet cylinder liner will be used in this experimental engine. I will 

place demands on temperature resistance, resistance to combustion pressure, chemical 

resistance and also manufacturing and affordability. 

It must be taken into account that the engine will only work in laboratory conditions and 

due to the various measurements and testing the engine will often be disassembled. 

All calculations will be performed with the boundary conditions for both the naturally 

aspirated engine and the supercharged variant. 
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1.1 Experimental Single-Cylinder Engine 

 

This is a four stroke experimental petrol engine. The engine displacement of this single-

cylinder petrol engine is 374,5 cc. Stroke is 84,9 mm and bore is 74,5 mm. The engine has 

to be dimensioned for the maximum combustion pressure of 130 bar and a maximum 

speed of 7000 rpm.  

 

 

Chart 1: Heat Release 

 

The maximum temperature of the ignited mixture in the cylinder is calculated at 2 525 K. 

Chart 1 shows the dependence of the temperature, pressure and heat coefficient on the 

crank angle. The peak of the combustion pressure is 11 degrees behind the top dead center. 

This engine has a wet cylinder liner. We must take into account the sealing of the 

combustion chamber and the water. 

The engine will be used in the laboratory. The lowest ambient temperature will therefore 

be around 20 °C.  
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Figure 1: Engine Model  

 

The engine is composed of four basic construction units (see Figure 1). At the bottom is the 

lower casing. Balance shafts are placed at the lower casing and the casing is provided with 

holes for mounting the engine to the pad. The engine has two counter-rotating balance 

shafts for balancing the sliding masses of the first order. The lower casing is bolted to the 

crankcase. The crankcase is inserted and bolted to the engine block. The engine block is 

bolted to the cylinder head with a valve cover. The water and oil system is also designed as 

an external drive independent of the combustion engine running.  

We are most interested in the engine block and cylinder head in this diploma thesis because 

the cylinder head gasket will be positioned directly between these parts. 
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Chapter 2: Head Gaskets Basics 

 

The cylinder head gasket is the most important passive sealing element in the internal 

combustion engine. It is positioned between the engine block and the cylinder head. The 

main purpose is to provide a gas tight seal between the cylinder, water jackets, oil passages 

and the ambient air, liquids and gases. It must be able to accomplish this at all engine 

temperatures and pressures without malfunction, as a failure of the engine gasket usually 

results in a failure of the full engine.  

When choosing a suitable gasket, we need to compare the advantages and disadvantages 

of the composite gaskets, metal gaskets and Viton O-rings. 

Figure 2 shows the design process of the cylinder head gasket. 

[3] 

 

Figure 2: Design Process of the Gasket [3] 
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2.1 Composite Head Gaskets 

 

Types of composite head gaskets: 

a) Thin gasket sheeting bonded to a steel core with a fire ring at the cylinder bore 

and various kinds of coatings to seal fluids. 

 

b) Perforated metal with a compressible core such as flexible graphite, again with a 

coating for sealing and a fire ring around the bores.  

 

c) Perforated metal core with facing material such as flexible graphite mechanically 

clinched to the core and fire rings around the bores. 

 

 

Figure 3: Composite Head Gasket [1] 

 

The major differences are mentioned above. Composite gaskets do not require additional 

sealants. These types of gaskets are capable of sealing less than perfect surfaces due to the 

overall compressibility and capillary sealing qualities of the facing materials. Perforated 

metal with a compressible core and perforated metal core with facing material are simple, 

strong and have a good resistance to heat.  

The disadvantages of this gasket are large deformations, which can affect the compression 

of the engine and when this overloads of the gasket can burn out. Nowadays it is used for 

repairing older engines.  

[1]  
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2.2 Metal Head Gaskets 

 

a) Shim steel is the oldest of the pure metal gaskets. It is simple, thin and has stamping 

of a special alloy that is embossed around the openings to achieve a load 

differential. These head gaskets require the use of a sealant and are coated with 

special paint. O-rings are not used.  

 

b) MLS – multi layer steel is a relatively new method. The construction consists of two 

or more embossed stainless sheets riveted to a flat metal core. This method offers 

some advantages over the shim steel, they are available in different thicknesses so 

the designer can adjust compression height and they do not require additional 

sealant due to a micro thin layer of nitrile rubber or flour elastomer sealant applied 

to the facing. Due to the hardness of stainless steel MLS gaskets require a very 

smooth finish surface or leaks may result. This method is used for diesel and high 

power petrol engines with direct injection. It has good compensation of dynamics 

oscillation. The MLS head gasket can be used only once. After removing the cylinder 

head, it is necessary to place a new head gasket. Production of MLS head gaskets is 

expensive compared to other methods, because it is necessary to produce a tool for 

production first. 

 [1] 

 

 

Figure 4: MLS Cross-section [4] 
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Expertise in MLS gaskets, layer by layer: 

 

Half beads generate two-line compression. They seal along the water and engine oil 

passages, around the screw holes, and the circumference of the outer sealing 

contour. 

Full beads generate three-line compression around the circumference of the 

combustion chamber. This elastic sealing element enables the sealing of very high 

ignition pressures, even in the presence of large dynamic sealing gap oscillations. 

 

Functional layers are elastomer-coated spring steel layers which are equipped with 

elastic beads. 

Center layer function is to adapt the gasket thickness to the installation conditions 

required by the design. 

 

The engine components are elastically prestressed by the stoppers around the 

circumference of the combustion chamber. This helps achieve a reduction in the 

sealing gap oscillations caused by the gas force, while simultaneously preventing an 

impermissible deformation of the full beads.  

[4] 

 

 

Figure 5: MLS Head Gasket [13] 
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2.3 Copper Head Gaskets 

 

Solid copper is capable of sealing more combustion pressure than shim steel or MLS head 

gaskets. It can be combined with an O-ring. Copper gaskets offer the most options to the 

engine designer for bore and thickness. Coolant leaks typically associated with copper 

gaskets are no longer an issue. Copper head gaskets can be reused several times as long as 

there are no signs of combustion leakage past the O-ring combustion seal. Leakage will be 

evidenced by carbon tracking beyond the combustion seal. Copper head gaskets are 

excellent heat conductors. It means that the block temperature and the cylinder head 

temperature will be more even.  

[1] 

 

Figure 6: Copper Head Gasket [12] 

 

Copper is stronger than any composite head gasket yet still malleable so it conforms to the 

sealing surfaces. This strength-malleability combination is, more than any other attribute, 

the ‘selling point’ of copper as a head gasket material over other materials. The advantage 

of a malleable gasket is that conformity makes a tighter seal. It will show up in lower leak 

down percentages. This metal-to-metal solution does not require coating with additional 

sealants which have less resistance to heat or combustion pressure than metal. 

The range of the thickness ranges from 0,5 mm to 2.4 mm. 

 [1]  
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2.4 O-rings 

 

An O-ring is seal of rubber. The sealing ability is dependent on the O-ring, as well as the 

installation space. It depends on axial or radial compression of the O-ring cross-section. The 

O-ring is torus, i.e. a ring with a circular cross-section. It is made of synthetic rubber in 

precise dimensional tolerances and high surface quality. Installation space is mostly a 

groove against sealing surface. The rubber material acts as an incompressible highly viscous 

liquid with high surface tension. The pressure applied and storage leads to positive changes 

in the cross-section of the O-ring. The contact surfaces between the O-ring and installation 

space is an incremental preload acting of operating pressure.   

 

Figure 7: Acting of Operating Pressure [2] 

 

O-rings can seal in a wide range of pressures, temperatures and tolerances. O-rings have 

easy maintenance and do not require tightening. They have small space requirements and 

low weight. Multiple use is possible unlike non-elastic gaskets. The lifetime, if properly 

matching the design, is of the normal period of aging rubber. O-ring failure usually 

manifests itself slowly and points to the need of replacement. It is the most economically 

advantageous design solution. 

The dimension of the O-ring is indicated as the internal diameter times the cross-sectional 

diameter (thickness) of the ring – d1 x d2. 

 

Figure 8: Dimensions of the O-ring [2] 
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For most applications, the newly proposed rectangular groove is preferred. In case 

supporting rings are not used, the bevel enabled hips 5°. If the supporting rings are used 

for reducing the leakage, the bevel side is of course not enabled. 

 

Figure 9: Rectangular Groove [2] 

[2] 

In cases where a groove cannot be used, it is possible to use a triangular installation space 

instead. The O-ring in this mounting space is seated in three sides. 

[8] 

 

Figure 10: Triangular Installation Space [8] 

 

Table 1: Operating Temperatures of the O-ring Materials [6] 

Trade Name of the O-ring Range of Operating Temperatures 

Perbunan/Europrene/Breon -30°C ÷ 100°C 

Viton/Fluorel  -20°C ÷ 250°C 

Dutral/Buna EP  -45°C ÷ 110°C 

 

Table 1 shows the operating temperatures of standard O-ring materials. 
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2.4.1 Measurement of Load Characteristics of the O-ring 

 

Measurement of load characteristics were not used in the calculation, but served as an 

informative supplement only. The O-ring was ordered at Rubena a.s. It is a O-ring with the 

trade name Viton. The O-ring with a thickness of 2mm was tested.  

The Zwick/Roell static material testing machine was used in ŠKODA-AUTO labs to measure 

the load characteristics of the O-ring. This machine can make the biggest force 5 kN.  

The force measuring sensor Xforce was also Zwick/Roell and can measure up to 5 kN. 

 

 

Chart 2: Load Characteristics of Viton O-ring 

 

This Chart 2 shows that there is some hysteresis between the measurements.  
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Figure 11: Axial Compression [6] 

 

It is necessary to take into account tolerances in the depth of the groove S in the 

calculations. Groove depth tolerance using an O-ring with a diameter 𝑑𝑆 up to 4 mm is 

0,05/0 mm. We must consider as little pressure as possible on the O-ring on the wall. The 

groove depth S = 1,5 mm. The biggest possible depth of the groove after adding the 

tolerance is 1,55 mm. 

The lowest compressive force in this case may be 848 N. 
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2.5 Comparison of Gasket Types 

 

Table 2: Comparison of Gasket Types 

 Composite Head 
Gaskets 

Metal Head 
Gaskets 

Copper Head 
Gaskets 

O-rings 

Advantages • sealing less 
than perfect 
surfaces 
 

• strength and 
good 
resistance to 
heat 

• available in 
different 
thicknesses 
 

• good 
compensation 
of dynamics 
oscillation 

 

• seals high 
pressures 

 

• resistant to 
high 
temperatures 

• seals high 
pressures 
 

• most options 
to the engine 
designer for 
bore and 
thickness 

 

• excellent 
heat 
conduction 

• seals high 
pressures 
 

• the most 
economical 
solution 

 

• can be used 
repeatedly 

 

Disadvantages • large 
deformations 
 

• when it 
overloads 
the gasket 
can burn out 

 

• necessary 
replacement 
after the 
engine head 
is 
disassembled 

• MLS head 
gaskets are 
expensive 
compared to 
others 
methods 
 

• necessary to 
produce a 
tool for 
production 

 

• necessary 
replacement 
after the 
engine head 
is 
disassembled 

• necessary 
replacement 
after 
disassembling 
of the engine 
head 

• resistant to 
temperatures 
up to 250 ° 

 

 

 

 

 



CTU in Prague, Faculty of Mechanical Engineering 25 

 

 
 

Chapter 3: Selection of Appropriate Solution  

 

Suitable type of head gasket must be selected with regard to the type of engine, production 

possibilities of the head gasket, cost and reliability. It is necessary to know the cylinder 

pressure, component structure/material, screw load, available land, operating thickness 

temperature fuel type and test specifications. 

 

3.1 Calculation of Screws 

 

We must take into account the highest pressure that may be present in the engine cylinder 

for the calculation of screws. In our case, we use the highest pressure of 130bar. This 

pressure in the cylinder causes force on the engine head. The surface of the engine head 

on which the combustion pressure acts can be derived from the surface of the cylinder 

base. The cylinder bore is 74,5 mm.  

1) Calculating the maximum force applied to the cylinder head: 

 𝐴𝑝 = 𝜋×
𝑑𝑣

2

4
= 𝜋×

74,52

4
= 4 359 [𝑚𝑚2] (3.1) 

 

Ap [mm2] is the surface of the cylinder base and the dv [mm] is the cylinder bore. 

Force 𝐹𝑎 [N] acting on the cylinder head is derived from the formula below, where 

p [MPa] is the maximum combustion pressure. 

 𝐹𝑎 = 𝐴𝑝×𝑝 = 4 359×13 = 56 667 [𝑁] (3.2) 

 

This single cylinder engine has four cylinder head screws. Fh [N] is the force acting 

on one cylinder head screw. 

 𝐹ℎ =
𝐹𝑎

4
=

56 667

4
= 14 166 [𝑁] (3.3) 
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2) Preliminary thread calculation, screw design and substitute tube design 

The value of the operating preload coefficient qz [-] was selected. Qz [N] is the 

operating preload.  

 𝑞𝑧 =
𝑄𝑧

𝐹ℎ
= 1,3 (3.4) 

 

The minimum cross-section 𝑆3
′  [𝑚𝑚2] of the thread core is determined from the 

formula below, where the ν [-] is the utilization rate of the yield strength, 

σKT [N ∙ mm−2] is the yield strength and κχ [-] is the coefficient of influence of 

torsion. d3
′  [mm] is the minimum thread core diameter. 

 
𝐹ℎ

𝑆3
′ ≤

ν ∙ 𝜎𝐾𝑇

κ𝜒 ∙ (1 + 𝑞𝑧)
 (3.5) 

 

 

𝑆3
′ =

𝜋 ∙ 𝑑3
′ 2

4
 [𝑚𝑚2] 

(3.6) 

The screws in the cylinder head in the proposed single cylinder engine have a metric 

thread M9. The strength class of these screws is 12.9. The tensile strength of this 

strength class is 1 200 MPa and yield strength is 1 080 Mpa. The thread core 

diameter 𝑑3 = 7,466 .  

 

𝑑3
′ = √

4 ∙ 𝐹ℎ ∙ κ𝜒 ∙ (1 + 𝑞𝑧)

𝜋 ∙ ν ∙ 𝜎𝐾𝑇
= √

4 ∙ 14 166 ∙ 1,2 ∙ (1 + 1,3)

𝜋 ∙ 0,85 ∙ 1 080
 

𝑑3
′ = 7,36 [𝑚𝑚] 

(3.7) 

 

I chose screws M9x1,25 strength class 12.9. 𝑆3 [mm2] is the cross-section of the 

thread core and d3 [mm] is the thread core diameter. 

 

 𝑆3 =
𝜋 ∙ 𝑑3

2

4
=

𝜋 ∙ 7,4662

4
= 43,8 [𝑚𝑚2] (3.8) 
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3) Calculation of stiffness constants 

The stiffness constants of the screw, cylinder head and engine block are calculated 

based on the idea of a substitute tube. 

 𝐶𝑠 =
𝐸

∑
𝑙𝑖

𝑆𝑖

=
2,1 ∙ 105

100
52,6

= 1,1 ∙ 105 [𝑁 ∙ 𝑚𝑚−1] (3.9) 

 

Cs [𝑁 ∙ 𝑚𝑚−1] is the coefficient of the screw stiffness, E [𝑁 ∙ 𝑚𝑚−2] is the modulus 

of elasticity, li [mm] is length of the substitute tube and Si [𝑚𝑚2] is the cross-

section of the substitute tube. 

 

 𝐷 = 2 ∙ 𝐷2 = 2 ∙ 8,188 = 16,376 [𝑚𝑚] (3.10) 

 

D [mm] is the nut diameter of the substitute tube and D2 [mm] is the pitch 

diameter.  𝑆𝑇 [𝑚𝑚2] is the surface of the nut. la [mm] is the stressed part of the 

substitute tube and lb [mm] is the released part of the substitute tube. 

 𝑆𝑇 =
𝜋

4
(𝐷2 − 𝐷2

2) =
𝜋

4
(16,3762 − 8,1882) = 157,97 [𝑚𝑚2] (3.11) 

 𝐶𝑇𝑎 =
𝐸 ∙ 𝑆𝑇

𝑙𝑎
=

2,1 ∙ 105 ∙ 157,97

10
= 33,17 [𝑁 ∙ 𝑚𝑚−1] (3.12) 

 𝐶𝑇𝑏 =
𝐸 ∙ 𝑆𝑇

𝑙𝑏
=

2,1 ∙ 105 ∙ 157,97

90
= 3,69 ∙ 105 [𝑁 ∙ 𝑚𝑚−1] (3.13) 

 

Stiffness of the stressed part of the substitute tube C1 [𝑁 ∙ 𝑚𝑚−1] and stiffness of 

the release part of the substitute tube C2 [𝑁 ∙ 𝑚𝑚−1] are determined from the 

formulas below. 

 
1

𝐶1
=

1

𝐶𝑠
+ 2

1

𝐶𝑇𝑎
→ 𝐶1 = 1,03 ∙ 105 [𝑁 ∙ 𝑚𝑚−1] (3.14) 

 𝐶2 = 𝐶𝑇𝑏 = 3,69 ∙ 105 [𝑁 ∙ 𝑚𝑚−1] (3.15) 

 



CTU in Prague, Faculty of Mechanical Engineering 28 

 

 
 

4) Calculation of the preload and operational stress of the screw 

 

Mounting preload Q′0 [N], central operation force Q1m [N] and amplitude force Q1a 

[N] are determined from the formulas below. 

𝑄′
0 = (𝑞𝑧 +

𝐶2

𝐶1 + 𝐶2
) ∙ 𝐹ℎ = (1,3 +

3,69 ∙ 105

1,03 ∙ 105 + 3,69 ∙ 105
) ∙ 14 166 

𝑄′0 = 29 490,5 [𝑁] 

(3.16) 

I define preload 𝑄0 = 31 000 [N]. 

𝑄1𝑚 = 𝑄0 +
1

2
∙

𝐶1

𝐶1 + 𝐶2
∙ 𝐹ℎ = 31 000 +

1

2
∙

1,03 ∙ 105

1,03 ∙ 105 + 3,69 ∙ 105
∙ 14 166  

𝑄1𝑚 = 32 546 [𝑁] 

(3.17) 

 

𝑄1𝑎 =
1

2
∙

𝐶1

𝐶1 + 𝐶2
∙ 𝐹ℎ =

1

2
∙

1,03 ∙ 105

1,03 ∙ 105 + 3,69 ∙ 105
∙ 14 166 = 1 545,7 [𝑁] (3.18) 

 

 

 

Figure 12: Mounting Preload [9] 

𝑡𝑔 𝜓1 ≅ 𝐶1 

𝑡𝑔 𝜓2 ≅ 𝐶2 
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Force magnitudes Q0, Q1m and Q1a correspond to the stress in the thread core. 

σQ0
 [N ∙ mm−2] is the tensile stress from preload, σm [N ∙ mm−2] is the tensile 

stress from the central operating force and 𝜎𝑎 [N ∙ mm−2] is the tensile stress from 

amplitude force.  σ1𝑚𝑎𝑥 [N ∙ mm−2] is the maximum tensile stress. 

 

 𝜎𝑄0
=

𝑄0

𝑆3
=

31 000

43,8
= 708 [𝑁 ∙ 𝑚𝑚−2] (3.19) 

 
𝜎𝑚 =

𝑄1𝑚

𝑆3
=

32 546

43,8
= 743 [𝑁 ∙ 𝑚𝑚−2] 

(3.20) 

 
𝜎𝑎 =

𝑄1𝑎

𝑆3
=

1 545,7

43,8
= 35,3 [𝑁 ∙ 𝑚𝑚−2] 

(3.21) 

 

 𝜎1𝑚𝑎𝑥 = 𝜎𝑚 + 𝜎𝑎 = 743 + 35,3 = 778 [𝑁 ∙ 𝑚𝑚−2] (3.22) 

 

Thread pitch angle 𝛾 [deg] is determined from the formula below where P [mm] is 

thread pitch and i [-] is number of threads. 

 𝑡𝑔(𝛾) =
𝑖 ∙ 𝑃

𝜋 ∙ 𝑑2
=

1 ∙ 1,25

𝜋 ∙ 8,188
= 0,0486 → 𝛾 = 2,782 [𝑑𝑒𝑔] (3.23) 

 

Flank angle profile 𝛽𝑛 [deg] is determined from the formula below where β [deg] 

is the thread angle and f [-] is the friction coefficient. 

𝑡𝑔 𝛽𝑛 = 𝑡𝑔 𝛽 ∙ cos 𝛾 = 𝑡𝑔 30 ∙ cos 2,782 = 0,577 

𝑡𝑔 𝛽𝑛 = 0,577 → 𝛽𝑛 = 29,98 [𝑑𝑒𝑔] 
(3.24) 

  

𝑡𝑔 𝜑′ =
𝑓

cos 𝛽𝑛
=

0,15

cos  (29,98)
= 0,173 → 𝜑′ = 9,82 (3.25) 

  

𝑡𝑔 (𝛾 + 𝜑′) = 𝑡𝑔 (2,782 + 9,82) = 0,22 (3.26) 
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5) Determination of fatigue strength characteristics and safety calculation 

Torsion of the screw when reaching the preload Mk [N ∙ mm] is determined below. 

Wk [mm3] is the torsional section modulus and τ [N ∙ mm−2] is the torsional stress. 

𝑀𝑘 = 𝑄0

𝑑2

2
∙ 𝑡𝑔(𝛾 + 𝜑′) = 31 000 ∙

8,188

2
∙ 0,22 

𝑀𝑘 = 27 921 [𝑁 ∙ 𝑚𝑚] 

(3.27) 

  

𝑊𝑘 =
𝜋 ∙ 𝑑3

3

16
=

𝜋 ∙ 7,4663

16
= 81,7 [𝑚𝑚3] (3.28) 

  

𝜏 =
𝑀𝑘

𝑊𝑘
=

26 561,5

81,7
= 342 [𝑁 ∙ 𝑚𝑚−2] (3.29) 

 

Torsion safety factor kτ [-] is calculated by HMH hypothesis. 𝜏𝑘 [𝑁 ∙ 𝑚𝑚−2] is the 

maximum permitted torsion. 

 𝜏𝑘 = 0,57 ∙ 𝜎𝑘𝑡 = 0,57 ∙ 1080 = 615,6 [𝑁 ∙ 𝑚𝑚−2] (3.30) 

 

 𝑘𝜏 =
𝜏𝑘

𝜏
=

615,6

342
= 1,8 (3.31) 

 

Calculation of the maximum reduced stress 𝜎𝑟𝑒𝑑 𝑚𝑎𝑥 [𝑁 ∙ 𝑚𝑚−2] for maximum 

operating load of the screw is determined in the formula below. HMH hypothesis is 

used. 𝑘𝑟𝑒𝑑 𝑚𝑎𝑥 [-] is the maximum static stress safety factor. 

𝜎𝑟𝑒𝑑 𝑚𝑎𝑥 = √𝜎1 𝑚𝑎𝑥
2 + 𝛼2 ∙ 𝜏2 = √7782 + √3

2
∙ 3422 

𝜎𝑟𝑒𝑑 𝑚𝑎𝑥 = 978 [𝑁 ∙ 𝑚𝑚−2] 

 

(3.32) 

 𝑘𝑟𝑒𝑑 𝑚𝑎𝑥 =
𝜎𝑘𝑡

𝜎𝑟𝑒𝑑 𝑚𝑎𝑥
=

1 080

978
= 1,1 (3.33) 
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σc(−1) [N ∙ mm−2] is fatigue limit for the pulsating stress, 𝜎𝑝𝑡 [N ∙ mm−2] is the 

tensile strength and ϕ [-] is overall reduction in the fatigue strength coefficient. 

𝜎𝑐(−1) = 0,61 ∙ 𝜎𝑝𝑡 = 0,61 ∙ 1 200 = 732 [𝑁 ∙ 𝑚𝑚−2] (3.34) 

 

𝜎𝑐(−1)
𝑥 =

𝜎𝑐(−1)

𝜙
=

732

5
= 146,4 [𝑁 ∙ 𝑚𝑚−2] (3.35) 

 

The influence factor of the σm is the  ψσ
x  [-]. kσ[-] is the dynamic safety coefficient 

and k [-] is the resulting dynamic safety factor.   

𝜓𝜎 = 0,02 + 2 ∙ 𝜎𝑝𝑡 ∙ 10−4 = 0,26 (3.36) 

 

𝜓𝜎
𝑥 =

𝜓𝜎

𝜙
= 0,052 (3.37) 

 

𝑘𝜎 =
𝜎𝑐(−1)

𝑥 − 𝜓𝜎
𝑥 ∙ 𝜎𝑄0

𝜎𝑎 + 𝜓𝜎
𝑥(𝜎𝑚 − 𝜎𝑄0

)
=

146,4 − 0,052 ∙ 708

35,3 + 0,052 ∙ (743 − 708)
= 2,95 (3.38) 

 

𝑘 = 𝑘𝜎 ∙ √1 − (
1

𝑘𝜏
)

2

= 2,95 ∙ √1 − (
1

1,8
)

2

= 2,45 (3.39) 

 [9] 

 

This analytical calculation is complemented by FEMFAT material fatigue calculation. 

FEMFAT (Finite Element Method Fatigue) is the engineering software tool for fatigue life 

prediction. It is used to improve reliability and robustness of components in the automotive 

and machinery industry. 

The lowest safety factors of the screws calculated by FEMFAT with supercharged (TSI) 

variants range from 2.35 to 2.87. 
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3.2 Design of Gaskets 
 

The use of composite gaskets has been ruled out with regard to seal thickness, large 

deformation and the danger of burnout when overloaded. A multi-layer metal gasket is 

unsuitable for use in single-piece engine manufacturing. The main reason is the cost of 

production that pays only for serial applications. The copper ring is able to seal high 

pressures, is inexpensive, space-saving, but after the engine has been disassembled a new 

copper gasket has to be applied due to the plastic deformation of the ring. 

For the above reasons, it was decided to use a Viton O-ring to seal the combustion and 

water space. The O-ring is the cheapest solution, can seal high pressures, can be used 

repeatedly and is space-saving. 

In the event that an O-ring that seals the combustion chamber is stressed at a higher 

temperature than the material can handle, we use a variant where the combustion 

chamber is sealed by the copper gasket. The cylinder liner, which has a groove for O-ring, 

will be also in danger of the critical stress at the point of the groove. 

In both cases, water is sealed with an O-ring that is located between the cylinder liner and 

the engine block in the triangular installation space. 

 

The O-ring cannot be in the groove in the engine block and be pressed into it by the cylinder 

head. The main reason is that a gap between the engine block and the cylinder head must 

be avoided due to the prestress of the cylinder liner. It is not possible to reduce the gap 

between the engine block and the cylinder head because there would be a risk of contact 

between these parts, which is undesirable. 

The O-ring cannot be in the groove in the vertical wall of the engine block and pressed 

inwards by the cylinder liner due to the lack of space for this solution. 

Two O-rings are used in variant A and one O-ring in combination with a copper gasket are 

used in variants B1 and B2. 
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3.2.1 Variant A 

 

The first O-ring that seals the combustion chamber sits in a groove which is milled 

into the cylinder liner. The O-ring is forced into the groove by the cylinder head. The 

second O-ring that seals water sits in the triangular installation space between the 

engine block and the cylinder liner. 

 

 

Figure 13: Variant A 

 

Editing of geometry of engine parts – Variant A: 

 

Due to the chamfering of the cylinder liner edge, the diameter of the top of the 

cylinder liner had to be increased to maintain the contact surface between the 

cylinder liner and engine block. The chamfering of the cylinder liner edge was 

required due to the location of the O-ring in the corner. Along with the cylinder 

liner, the hole in the engine block had to be extended also. 

A groove was created in the cylinder liner for the second O-ring, which sealed the 

combustion chamber. 
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3.2.2 Variant B1 

 

The O-ring that seals water sits in the triangular installation space between the 

engine block and the cylinder liner. The copper gasket that seals the combustion 

chamber sits between the cylinder liner and the engine head. The copper gasket is 

centered by the outer side of the cylinder liner. 

If the copper gasket is centered from the inside, the edge of the cylinder liner may 

begin to overheat. This can cause engine knock. If the gasket is centered on the 

outside, this danger is avoided. 

 

 

Figure 14: Variant B1  

 

Editing of geometry of engine parts – Variant B1: 

 

The engine block was modified as in variant A. 

 

The cylinder liner also had a chamfer to install the O-ring in the corner. The raised 

edge on the outside is created by centering the copper gasket. 
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3.2.3 Variant B2 

 

The O-ring that seals water sits in the triangular installation space between the 

engine block and the cylinder liner. The copper gasket that seals the combustion 

chamber sits between the cylinder liner and the engine head. The copper gasket is 

not centered. 

This option would be inappropriate when used in serial production, but in the case 

of an experimental single-cylinder engine, this can be used, although it would needs 

more care during assembly. 

 

 

Figure 15: Variant B2 

 

Editing of geometry of engine parts – Variant B2: 

 

The engine block is modified as in variant A. 

The surface of the top of the cylinder liner is straight, because the gasket is not 

centered in this variant. 

 

All dimensions of engine parts modifications are in the technical documentation 

attached to this diploma thesis. 
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Chapter 4: FEM Calculations 

4.1 Gasket Analysis Using Finite Element Methods 

 

Computer Aided Engineering (CAE) is an important tool for gasket design. It can reduce the 

time and costs of the engine development cycle. CAE can be used to make the first design 

proposal and first optimizations without using any hardware. The design process generally 

relies heavily on advanced experimental, analytical and numerical methods. It is very 

important to use the Finite Element method of the full engine assembly, including the 

gasket, in order to aid in the understanding of motion levels and deflections of the gasket 

sealing features, well before production. The pre-production analyses help the designer to 

understand the capability of the design to meet the sealing and durability requirements of 

the gasket while allowing it to be brought into production faster. The numerical simulation 

modeling allows the engineer to review multiple loading and operating conditions, which 

increase the probability of an initial design being successful.  

The main approach to the finite element method involves modeling any structure with 

small, interconnected elements called finite elements. The displacement function is 

associated with each finite element. All of the finite elements are directly or indirectly 

linked to every other element. It is possible to determine the behavior at any node in the 

structure with regards to the properties of all other elements of the structure by applying 

the stress/strain properties of the material. 

[3] 

4.2 Process of Creating a Computational Model 
 

Modifying the geometry of the engine block and the cylinder liner was necessary after 

selecting the appropriate sealing variants. Only preliminary designs of these engine parts 

were available at the beginning of the project. CAD data editing was done in CREO 

PARAMETRIC 2.0.  
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The advanced CAE pre-processing software ANSA served to prepare the calculation model. 

All CAD data of the entire model were imported into the ANSA program. When importing 

models, there were some geometry errors that needed to be corrected. The surface mesh 

was formed on the models after repairs and checking of all surfaces. The individual parts 

were positioned in the assembly. The properties of all contacts between the components 

were set. Each part was defined by material properties. The entire calculation was divided 

into individual steps describing the progress of the calculation from assembly, over the 

engine operating cycle and cooling down after the engine was switched off. The initial 

boundary condition of the motor temperature was set at room temperature of 20 °C. The 

temperatures of each model node were mapped during the calculation after the engine 

was assembled. The pressure in the combustion chamber was set in the next step after the 

engine was warmed to the operating temperature. 

All sealing variants were calculated for the boundary conditions that best describe the 

assembly and working cycle of the naturally aspirated engine as well as supercharged 

engine variant. 

The post-processing results of the computational models were evaluated in the program 

Abaqus Viewer. Stresses, contact pressures, temperatures and deformations were 

investigated in this software. 

 

4.3 Finite Element Model 
 

The finite Element Model in variant A consists of an engine block, a cylinder liner, two           

O-rings, an engine head, valve seats, valve guides and four head screws. Variants B1 and 

B2 have a copper gasket instead of one O-ring. Variants B1 and B2 also use another cylinder 

liner. Each of these parts was imported into the ANSA program in the IGES format. After 

importing each part into ANSA, geometry was checked and repaired because of an error in 

data transmission. 

Mesh density and the number of elements in the whole set are also computed with respect 

to computational capacities. 
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The engine block is discretized by 80 394 volume elements. The type of the volume 

elements is quadratic tetra C3D10. It is called the ZKG in the computational model. The 

mesh is much finer inside the block, near the combustion chamber, than the outside; 

therefore a much more accurate calculation is needed in this place. Higher stress is 

expected in the inside because of the higher temperatures and the cylinder liner which is 

pressed to the engine block.  

 

 

Figure 16: Engine Block 

 

The engine block is manufactured by machining a steel cube. The standard of this steel is 

ČSN 11 500. The engine block material was described by modulus of elasticity, Poisson 

constant and expansion coefficient. 

 

The cylinder head is discretized by 372 709 volume elements. The type of the volume 

elements is quadratic tetra C3D10. It is called the ZK in the computational model. The much 

finer mesh was created at the surface which is in the contact with the cylinder liner, in the 

holes for the screws and the valve guides and also at the surface where the valve seats fit. 

The cylinder head is made from aluminium alloy AlSi10Mg. 



CTU in Prague, Faculty of Mechanical Engineering 39 

 

 
 

 

Figure 17: Cylinder Head 

 

Chart 3 shows a Stress-strain diagram of the AlSi10Mg for different temperatures. 

 

Chart 3: Stress-strain Diagram of the AlSi10Mg  
 

The O-rings are discretized by 1 440 volume elements. The type of the volume elements is 

quadratic penta C3D15. The O-rings are made of material with the trade name Viton. 

Viton is a brand of synthetic rubber and fluoropolymer elastomer. Viton has a hardness of 

80 ShA and the heat resistance of this material ranges from -20 °C to 250 °C. 

 [6] 
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Stress-strain Diagram - AlSi10Mg
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The O-ring material was described by modulus of elasticity, Poisson constant and expansion 

coefficient. 

 

Figure 18: O-ring 96x2 

 

The cylinder head screw is discretized by 2 929 volume elements. The type of the volume 

elements is quadratic tetra C3D10. It is called the Schrauben in the computational model. 

The cylinder head screw is made of heat treatment steel. Its material code is 30CrNiMo8. 

The screw strength class is 12.9. Four screws are used in the model. 

 

Figure 19: Screw M9x100 

 

Chart 4 shows the dependence of the thermal expansion coefficient α [K-1] of the material 

30CrNiMo8 on the temperature T [°C]. 

 

Chart 4: Thermal Expansion of the 30CrNiMo8 
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α
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-1
]
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Thermal Expansion - 30CrNiMo8
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Chart 5 shows the dependence of the modulus of elasticity E [GPa] of the material 

30CrNiMo8 on the temperature T [°C]. 

 

Chart 5: Modulus of Elasticity of the 30CrNiMo8 
 

The intake valve seat is discretized by 480 volume elements. The exhaust valve seat is 

discretized by 360 volume elements. The type of the volume elements is quadratic hexa 

C3D20. It is called the SR_A (exhaust) and SR_E (intake) in the computational model. Two 

intake valve seats and two exhaust valve seats are used in the model. The valve seats 

material is the sintered steel. TL_4791 is the internal name in Volkswagen.  

 

Figure 20: Intake Valve Seat (left) and Exhaust Valve Seat 

 

The cylinder liner variant A is discretized by 62 565 volume elements. The cylinder liner 

variant B1 has 74 004 volume elements and the cylinder liner variant B2 has 67 213 volume 

elements. The type of the volume elements is quadratic tetra C3D10. It is called the Buchse 

in the computational model.  The cylinder liner is cast from the material EN-GJL-350. The 

yield strength of the material EN-GJL-350 is 228-285 MPa. 

[10] 
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Figure 21: Cylinder Liner A 

 

 

Chart 6: Stress-strain Diagram of the GJL 350. 
 
 

Chart 6 shows Stress-strain diagram of the material GJL 350 at 20°C. 

 

The intake valve guide is discretized by 4 149 volume elements and the exhaust valve guide 

is discretized by 4 357 volume elements. The type of the volume elements is quadratic tetra 

C3D10. It is called the VF_A (exhaust) and VF_E (intake) in the computational model. 
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The valve guides material is the sintered steel. TL_4791 is the internal name in Volkswagen 

for material of exhaust valve guides. TL_080 is the internal name in Volkswagen for material 

of intake valve guides.  

Two intake valve guides and two exhaust valve guides are used in the model. 

 

Figure 22: Intake Valve Guide (left) and Exhaust Valve Guide 

 

The copper gasket is discretized by 3 687 volume elements. The type of the volume 

elements is quadratic tetra C3D10. It is called the GA in the computational model.  

 

Figure 23: Copper Gasket 

 

Table 3 describes how many and what type of volume elements the individual models have. 

Table 3: Numbers and Types of Elements 

 Number of Elements Type of Volume Element 

Engine Block 80 394 quadratic tetra C3D10 

Cylinder Head 372 709 quadratic tetra C3D10 

Cylinder Liner – A 62 565 quadratic tetra C3D10 

Cylinder Liner – B1 74 004 quadratic tetra C3D10 

Cylinder Liner – B2 67 213 quadratic tetra C3D10 

O-ring Water 1 440 quadratic penta C3D15 

O-ring Combustion 1 440 quadratic penta C3D15 

Copper Gasket 3 687 quadratic tetra C3D10 

Valve Seat Exhaust 360 quadratic hexa C3D20 

Valve Seat Intake 480 quadratic hexa C3D20 

Valve Guide Exhaust 4 357 quadratic tetra C3D10 

Valve Guide Intake 4 149 quadratic tetra C3D10 

Cylinder Head Screw 2 929 quadratic tetra C3D10 
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4.4 Calculation Settings 
 

The entire calculation is divided into seven steps in all variants. These steps are pressing, 

tightening, fixing, heating, ignition, after ignition and cool engine to the room temperature. 

 

First computational step 

Six degrees of freedom are removed from the engine block by using the boundary 

conditions. One degree of freedom in axial direction is removed from the engine block on 

the bottom surface which is supported to the crankcase. The second degree of freedom is 

removed in the axial direction from the surface to which the cylinder liner is pressed. The 

rest of the degrees of freedom were removed by fixing of the screw holes in the lower part 

of the engine block in the radial and tangential direction. The engine block is fixed by means 

of boundary conditions on the spot because it is bolted to the chassis. The degrees of 

freedom of the other components take the contacts listed in Table 5. 

 

 

Figure 24: Valve Seats and Valve Guides Pressed into the Cylinder Head 
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The O-rings are pressed into the sealing area by a low force in the first step.  This force is 

set to 310 N by tightening of the screws. Pressing the O-rings with less force in the first step 

is done because of better converge of the calculation. This is due to the fact that the O-ring 

has a much lower modulus of elasticity than the engine block, cylinder liner or cylinder 

head. The seat and valve guides are pressed into the cylinder head. The temperature of all 

parts is set to a room temperature 20 °C. The wall contacts between the cylinder liner and 

the engine block are interrupted due to moving these components during assembly. If 

these contacts were active during assembly, this could cause convergence problems. 

 

Second computational step 

In the second step, the screws are tightened to the desired preload. The force applied by 

each screw to the cylinder head after tightening is 31 000 N (See Equation 3.16). All the 

parts are in the final positions after this step. 

 

 

Figure 25: Stress after Tightening to the Desired Preload 

 

 

 



CTU in Prague, Faculty of Mechanical Engineering 46 

 

 
 

Third computational step 

The setting of the third step holds the screws in place after tightening in place. This is the 

default state for the loading of the engine operating conditions. In this step the contacts 

between the cylinder liner and the engine block are turned on. 

 

Fourth computational step 

Temperatures are mapped to individual nodes in the fourth step. The thermal field is 

described in the chapter 4.6. 

 

Fifth computational step 

Part of the combustion chamber is loaded by the combustion pressure in the fifth step. Due 

to the lack of valves in the computational model, it is necessary to recalculate the pressure 

acting on the valve seats by means of the valve size and the seat contact surface. Engine 

load by combustion pressure is described in the chapter 4.7. 

 

 

Figure 26: Stress during the Highest Combustion Pressure Variant A TSI Resistance 2 
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Sixth computational step 

The sixth step simulates engine after ignition. The combustion pressures cease to operate, 

but the engine is still heated to the operating temperature. 

 

Seventh computational step 

In the last step, the engine is cooled to the initial laboratory temperature. 

 

Table 4: Boundary Conditions Summary 

Step 1 • valve seats pressed into the cylinder head 

• valves guides pressed into the cylinder head  

• partial tightening of the screws 

• all parts are set to the initial laboratory temperature 

Step 2 • tightening of the screws to the desired preload  

Step 3 • screws are fixed 

• contacts between the cylinder liner and the engine 

block are turned on 

Step 4 • operating temperatures are mapped to individual 

nodes 

Step 5 • combustion chamber is loaded by the combustion 

pressure 

Step 6 • combustion pressure cease to operate 

Step 7 • engine is cooled to the initial laboratory temperature 

 

Table 4 shows the summary of the boundary conditions in the individual computational 

steps. 
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4.5 Contacts Between Parts 
 

In a finite element analysis contact conditions are a special class of discontinuous 

constraint, allowing forces to be transmitted from one part of the model to another. The 

constraint is discontinuous because it is applied only when the two surfaces are in contact. 

When the two surfaces separate, no constraint is applied. The analysis has to be able to 

detect when two surfaces are in contact and apply the contact constraints accordingly. 

Similarly, the analysis must be able to detect when two surfaces separate and remove the 

contact constraints.  

When surfaces are in contact, they usually transmit shear as well as normal forces across 

their interface. Thus, the analysis may need to take frictional forces, which resist the 

relative sliding of the surfaces into account. Coulomb friction is a common friction model 

used to describe the interaction of contacting surfaces. The model characterizes the 

frictional behavior between the surfaces using a coefficient of friction μ. 

[11] 

 

Figure 27: Contact Pairs in the Computational Model 
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There are 30 contact pairs in each variation of the computational model. In addition to four 

tie types of the contact pair, the coefficient of friction μ  between the parts is defined. The 

coefficient of friction μ is set to 0.18 in contact between copper and steel, to 0.7 in contact 

between O-ring and steel and to 0.12 in all other contacts. 

 

Figure 28: Tie Contact Pair 

 

The tie constraint prevents surfaces initially in contact from penetrating, separating, or 

sliding relative to one another. This contact is used in our case after tightening the screws. 

The tie contact in the computational model simulates thread function. 

 

 

Figure 29: Contact Pair of the Valve Seats and the Valve Guides 
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The valve guides and valve seat are pressed with overlap. The overlap of the valve guides 

is 0.059 mm and the valve seat overlap is 0.105 mm. 

 

 

Figure 30: Contact Pair Cylinder Liner - Engine Block 

 

Figure 30 shows the contact pairs between the cylinder liner and the engine block, which 

are turned on in the third computational step at first. This is because the cylinder liner in 

the first two steps moves towards the engine block in the direction of the screws tightening. 

If these contact pairs were turned on from the start, the calculation would converge worse. 

Table 5 shows an overview of the contacts used in the computational models for all 

variants. Marking of the contacts is described in the abbreviations list. 
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Table 5: Contacts Overview 

Contact Type 

of Contact 

Friction [-] Overlap [mm] Available  

for Variants 

ZK to ZKS_A1 standard 0.12 0 A/B1/B2 

ZK to ZKS_A2 standard 0.12 0 A/B1/B2 

ZK to ZKS_E1 standard 0.12 0 A/B1/B2 

ZK to ZKS_E2 standard 0.12 0 A/B1/B2 

ZK to VF_A1 standard 0.12 0.059 A/B1/B2 

ZK to VF_A2 standard 0.12 0.059 A/B1/B2 

ZK to VF_E1 standard 0.12 0.059 A/B1/B2 

ZK to VF_E2 standard 0.12 0.059 A/B1/B2 

ZK to SR_A1_A standard 0.12 0.105 A/B1/B2 

ZK to SR_A2_A standard 0.12 0.105 A/B1/B2 

ZK to SR_E1_A standard 0.12 0.105 A/B1/B2 

ZK to SR_E2_A standard 0.12 0.105 A/B1/B2 

ZK to SR_A1_R standard 0.12 0 A/B1/B2 

ZK to SR_A2_R standard 0.12 0 A/B1/B2 

ZK to SR_E1_R standard 0.12 0 A/B1/B2 

ZK to SR_E2_R standard 0.12 0 A/B1/B2 

BUCHSE  
to ZKG_01 

standard 0.12 0 A/B1/B2 

BUCHSE  
to ZKG_02 

standard 0.12 0 A/B1/B2 
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BUCHSE  
to ZKG_03 

standard 0.12 0 A/B1/B2 

BUCHSE  
to ZKG_04 

standard 0.12 0 A/B1/B2 

BUCHSE  
to ZKG_05 

standard 0.12 0 A/B1/B2 

BUCHSE  
to ZKG_06 

standard 0.12 0 A/B1/B2 

BUCHSE  
to ZK_01 

standard 0.12 0 A 

BUCHSE  
to ZK_02 

standard 0.12 0 A 

O-RING 
GENERAL 01 

general 0.7 0 A 

O_RING 
GENERAL 02 

general 0.7 0 A/B1/B2 

ZKG to ZKS_A1 tie 0.12 0 A/B1/B2 

ZKG to ZKS_A2 tie 0.12 0 A/B1/B2 

ZKG to ZKS_E1 tie 0.12 0 A/B1/B2 

ZKG to ZKS_E2 tie 0.12 0 A/B1/B2 

BUCHSE 
to GA 01 

standard 0.18 0 B1/B2 

BUCHSE 
to GA 02 

standard 0.18 0 B1 

ZK to GA standard 0.18 0 B1/B2 
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4.6 Thermal Field of the Engine 
 

In order to verify functionality of the engine and the gaskets, it is necessary to know the 

thermal field of all parts in the engine. In our case we are interested in the thermal field of 

the engine block, cylinder liner, cylinder head, gaskets, screws, valve guides and valve seats. 

For the calculation of the thermal field, the boundary conditions of the naturally aspirated 

engines are used first. In the other variants, the boundary conditions of the supercharged 

(TSI) version are used. 

 

Figure 31: Temperature Field of the Engine Variant B1 TSI 
   

 

It is possible to assign the temperature to the individual nodes of the model by using the 

STAR CCM+ program. These temperatures are exported to the input file for Abaqus. The 

temperature field is an important component for strength calculations. 

The water input to the block and the cylinder head is defined by mass flow, density, 

dynamic viscosity, specific heat capacity, coefficient of the thermal conductivity and the 

Prandtl number.  



CTU in Prague, Faculty of Mechanical Engineering 54 

 

 
 

The inlet flow rate in the engine block V̇wb is the same as the flow at the cylinder head inlet 

V̇wh. V̇wb = V̇wh = 20 [l/min]. The density of water 𝜌𝑤 is 1 [𝑘𝑔/𝑙]. The inlet water 

temperature is 100 [°C]. The water outlet is defined by ambient pressure. Outlet pressure 

is 1 [bar]. 

𝑚̇𝑤𝑏 =
V̇wb ∙ 𝜌𝑤

60
=

20 ∙ 1

60
= 0,33 [𝑘𝑔/𝑠] (4.1) 

 

𝑚̇𝑤ℎ = 𝑚̇𝑤𝑏 = 0,33 [𝑘𝑔/𝑠] (4.2) 

 

ṁwb − water mass flow in the engine block [kg/s] 

ṁwh − water mass flow in the cylinder head [kg/s] 

 

Table 6: Coolant Parameters 

Fluid Density 
[kg/m3] 

Dynamic 
Viscosity 
[Pa∙s] 

Specific 
Heat 
Capacity 
[J/kg∙K] 

Coefficient of the 
Thermal 
Conductivity 
[W/m∙K] 

Prandtl 
Number 

Mass 

Flow 

[kg/s] 

water 1018 8.0422∙10-4 3650 0.443 0.9 0.33 

 

 

On the outer side of the model, the ambient temperature and the heat transfer coefficient 

are set. It is assumed that the ambient engine temperature is 50 [°C]. The walls between 

the cylinder head and the engine block, which are separated by a narrow gap are set as 

adiabatic. The coolant temperature input is set to 100 [°C]. We considered the maximum 

engine load in the calculation of the temperature field. 

Heat can be spread through conduction, convection and radiation. Thermal conduction is 

the transfer of heat (internal energy) by microscopic collisions of particles and movement 

of electrons within a body. Convection is the heat transfer due to bulk movement of 

molecules within fluids such as gases and liquids. Radiation is the transmission of energy in 

the form of waves or particles through space. 
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4.6.1 Thermal Resistances 

 

 

Figure 32: Contacts Containing Thermal Resistances 

 

For variant A, which uses 2 O-rings, three subvariants are considered. In the first subvariant, 

the ideal contact between the cylinder liner, the cylinder head and the engine block is 

envisaged. In the second subvariant, which is referred to as Resistance 1, the thermal 

resistance between the cylinder liner and the cylinder head is considered. In the third 

subvariant, which is referred to as Resistance 2, a thermal resistance between the cylinder 

liner and the cylinder head and also between the cylinder liner and the engine block is 

considered. 

𝑅 =
𝑑

𝜆
 [𝑚2𝐾/𝑊] (4.3) 

 

The thermal resistance R is set to 4 ∙ 10−4 𝑚2𝐾/𝑊. This value corresponds to the thermal 

resistance produced by a 1.04×10−5 𝑚 wide air layer. The thermal conductivity of the air 

is 𝜆 = 0.026 𝑊 ∙ 𝑚−1 ∙ 𝐾−1. The width of the air layer is indicated by d. 

Table 7 shows the summary of the computational variants. The cylinder liner is marked as 

a BUCHSE, the engine block as ZKG and the cylinder head as ZK in the table. 
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Table 7: Summary of the Computational Variants 

Variant Type of Engine Combustion 

Pressure [bar] 

Thermal 

Resistances 

MPI_IDEAL_CONTACT naturally aspirated 70 - 

MPI_RESISTANCE_1 naturally aspirated 70 BUCHSE – ZK 

MPI_RESISTANCE_2 naturally aspirated 70 
BUCHSE – ZK 

BUCHSE – ZKG  

TSI_IDEAL_CONTACT supercharged 130 - 

TSI_RESISTANCE_1 supercharged 130 BUCHSE – ZK 

TSI_RESISTANCE_2 supercharged 130 
BUCHSE – ZK 

BUCHSE – ZKG 

 

4.6.2 O-ring Temperatures 

 

The Viton O-ring that seals water is the same for all variants. It is an O-ring with an internal 

diameter of 96 mm and a thickness of 2 mm. Maximum temperatures for individual variants 

range from 148 °C to 186 °C. The Viton O-ring that seals the combustion chamber is used 

only in variant A. It is an O-ring with an internal diameter of 84 mm and a thickness of 2 

mm. Maximum temperatures for individual subvariants range from 160 °C to 208 °C. 

 

Figure 33: O-ring Combustion A TSI Resistance 2 



CTU in Prague, Faculty of Mechanical Engineering 57 

 

 
 

Table 8 shows the maximum and minimum O-ring temperatures for variant A. 

The O-ring reaches the highest temperatures on the side where the exhaust valves are. The 

cylinder head is heated to a higher temperature on the side of the exhaust valves. The heat 

from the cylinder liner is better transferred to the cooler part of the cylinder head. 

 

Table 8: O-ring Temperatures Variant A 

 O-ring Water O-ring Combustion 

 min. 
temperature 

max. 
temperature 

min. 
temperature 

max. 
temperature 

A_MPI_IDEAL_CONTACT 109 °C 148 °C 114 °C 160 °C 

A_MPI_RESISTANCE_1 114 °C 148 °C 114 °C 166 °C 

A_MPI_RESISTANCE_2 106 °C 164 °C 116 °C 182 °C 

A_TSI_IDEAL_CONTACT 113 °C 168 °C 118 °C 185 °C 

A_TSI_RESISTANCE_1 120 °C 165 °C 119 °C 188 °C 

A_TSI_RESISTANCE_2 108 °C 186 °C 121 °C 208 °C 
 

 

An ideal contact between the cylinder head and the cylinder liner is considered for variants 

B1 and B2, which seals the combustion chamber with a copper gasket. Copper is a metal 

with high heat conductivity. Copper is also a malleable metal, so that the surface 

imperfection of the cylinder head and cylinder liners will have no effect. 

Tables 9 and 10 shows the maximum and minimum O-ring temperatures for variants B1 

and B2.  

Table 9: O-ring Temperatures Variant B1 

 O-ring Water 

 min. temperature max. temperature 

B1_MPI 110 °C 148 °C 

B1_TSI 114 °C 168 °C 
 

 

Table 10: O-ring Temperatures Variant B2 

 O-ring Water 

 min. temperature max. temperature 

B2_MPI 109 °C 148 °C 

B2_TSI 113 °C 168 °C 
 



CTU in Prague, Faculty of Mechanical Engineering 58 

 

 
 

All O-ring temperatures are within the allowed limits. The maximum allowed O-ring 

temperature is 250 °C. This ensures that no O-ring exposed to increased wear in all 

possible working conditions. 

 

4.6.3 Cylinder Liner Temperatures 

 

The peak temperature of the cylinder liner is achieved at the top of the liner on the side of 

the exhaust valves. The highest temperature of the fuel mixture is reached due to the 

highest pressure. The highest pressure in the cylinder is at the moment the piston is 11 ° 

behind the upper dead center in the upper part of the cylinder liner. Another reason for 

the higher temperature in the top of the cylinder is that it is most distant from the water 

that cools the engine. 

 

 

 

Figure 34: Cylinder Liner A TSI Resistance 2 Temperature 
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The heating of the cylinder liner is not symmetrical because the water that cools the 

cylinder liner also does not flow symmetrically. This is due to the geometry of the engine 

block. 

The increased thermal resistance of contact between the cylinder liner, the cylinder head 

and the engine block has a large effect on the maximum temperature of the cylinder liner 

variant A. Increased thermal resistance will make it more difficult for heat to drain away 

from the top of the cylinder liner, which is most heat-stressed. The cylinder liner variant A 

has approximately 20 degrees higher maximum temperature than the B1 and B2 variants 

that transfer heat through the copper gasket. 

Table 11 shows the maximum and minimum cylinder liner temperatures for variant A. 

 

Table 11: Cylinder Liner A Temperature 

 Cylinder Liner A 

 min. temperature max. temperature 

A_MPI_IDEAL_CONTACT 104 °C 177 °C 

A_MPI_RESISTANCE_1 104 °C 187 °C 

A_MPI_RESISTANCE_2 104 °C 202 °C 

A_TSI_IDEAL_CONTACT 104 °C 207 °C 

A_TSI_RESISTANCE_1 104 °C 215 °C 

A_TSI_RESISTANCE_2 105 °C 235 °C 
 

Both variants B1 and B2 have nearly identical temperatures of the cylinder liner. The 

highest achievable temperature of these cylinder liners is 207 °C. 

 

Table 12: Cylinder Liner B1 Temperature 

 Cylinder Liner B1 

 min. temperature max. temperature 

B1_MPI 104 °C 177 °C 

B1_TSI 104 °C 207 °C 
 
 

Table 13: Cylinder Liner B2 Temperature 

 Cylinder Liner B2 

 min. temperature max. temperature 

B2_MPI 104 °C 177 °C 

B2_TSI 104 °C 207 °C 
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Figure 35: Cylinder Liner B1 TSI Temperature 

 

Tables 12 and 13 shows the maximum and minimum cylinder liner temperatures for 

variants B1 and B2.  

 

Figure 36: Cylinder Liner B2 TSI Temperature 
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4.7 Effect of Combustion Pressure 
 

The model of a single-cylinder experimental engine is loaded by the combustion pressure 

in the fifth computational step. Two values of the maximum combustion pressure are 

counted. In the first case, it is a naturally aspirated variant that achieves a maximum 

combustion pressure of 70 MPa. In the second case, it is a supercharging variant that 

achieves a maximum combustion pressure of 130 MPa. The pressure is applied to the 

cylinder wall at the top, where the piston is 11 degrees behind the top dead center. 

Pressure further affects the part of the cylinder head that is part of the combustion 

chamber. It was necessary to calculate the pressure on the seats of the valve seats because 

the intake and exhaust valves are not part of the model. 

 

Figure 37: Set of Elements Loaded by the Combustion Pressure 
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The Figure 37 shows which sets of elements are loaded by the combustion pressure. Table 

14 shows the values of pressures acting on the individual locations in the cylinder. 

 

Table 14: Combustion Chamber Pressures 

 Cylinder Wall  Cylinder Head Intake Seat Exhaust Seat 

MPI 7 [MPa] 7 [MPa] 36 [MPa] 30.5 [MPa] 

TSI 13 [MPa] 13 [MPa] 67 [MPa] 56.7 [MPa] 

 

4.7.1 Leakage Check of the O-ring for the Combustion Chamber 

 

The Viton O-ring of hardness of 80 ShA can seal the pressure up to 200 bar. The maximum 

clearance of the sealing surfaces cannot be greater than 0.1mm. This means the distance 

between the cylinder liner and the cylinder head, which sticks to each other after assembly. 

The combustion pressure in the cylinder lifts the cylinder head when the mixture is ignited. 

The Figure 38 shows the groove for the O-ring and the face of the cylinder head that pushes 

the O-ring. The lifting of the cylinder head is reflected in the direction Z. 

 

 

Figure 38: Groove for the O-ring of the Sealing Combustion Chamber 

 

 

Table 15 shows the lift of the cylinder head as soon as the combustion pressure starts to 

occur in the cylinder. The highest cylinder head lift of 0.004 mm ensures that the O-ring 

seals the combustion chamber without any problems. The highest lift of the cylinder head 

is at the place farthest from the screw. 
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Table 15: Lift the Cylinder Head Relative to the Cylinder Liner 

Variant A Displacement [mm] Limit [mm] 

A_MPI_IDEAL_CONTACT 0.002 

0.1 

A_MPI_RESISTANCE_1 0.003 

A_MPI_RESISTANCE_2 0.003 

A_TSI_IDEAL_CONTACT 0.003 

A_TSI_RESISTANCE_1 0.003 

A_TSI_RESISTANCE_2 0.004 
 

 

4.8 Stress of the Upper Mounting of the Cylinder 
 

The temperature of the components, which is included in the calculations much affects the 

stress. Some components are most loaded with burned mixture in the cylinder in the 

computational step five. Some components are loaded the most after the mixture is 

ignited, when the engine is warmed to the operating temperature but the pressure does 

not act in the cylinder in the computational step six. 

 

 

4.8.1 Stress of the Cylinder Head 

 

The cylinder head screws act on the cylinder head by tightening to the required tightening 

torque. The combustion pressure in the cylinder also affects the stress on the cylinder head. 

The most stressed place is under the screw head. The greatest stress is when the maximum 

combustion pressure is applied. The maximum pressure is in the computational step five. 

The maximum stress is in the variant A TSI Resistance 2. The maximum stress exceeds the 

yield strength, so it is necessary to check how large the cumulative plastic deformations of 

the cylinder head are. Since the compressive yield strength values are not available, the 

tensile yield strength is calculated. Tensile yield strength is always lower than compressive 

yield strength. The maximum stress values for each variant are described in the table 16. 

The gray sections in the Figure 39 show where the yield strength is exceeded. 



CTU in Prague, Faculty of Mechanical Engineering 64 

 

 
 

 

Figure 39: Stress of the Cylinder Head A TSI Resistance 2 

 

Table 16: Maximum Stress of the Cylinder Head from the Screw 

Cylinder Head Maximum Stress [MPa] 

A_MPI_IDEAL_CONTACT 230 

A_MPI_RESISTANCE_1 230 

A_MPI_RESISTANCE_2 230 

B1_MPI 230 

B2_MPI 230 

A_TSI_IDEAL_CONTACT 232 

A_TSI_RESISTANCE_1 232 

A_TSI_RESISTANCE_2 237 

B1_TSI 232 

B2_TSI 233 
 

Figure 40 shows the contact pressure between the copper gasket and the cylinder head. 

The contact pressure is the same for the variant B1 and for the variant B2. The highest 

contact pressure is in the sixth computational step. On the other hand the lowest contact 

pressure is in the fifth computation step as the pressure lifts the cylinder head and relieves 

the copper gasket. The cylinder head is the most loaded in places closest to the screws and 

on the edge of the copper gasket. The yield strength exceeds contact pressure only at the 

edge of the copper gasket. In other places the contact pressure is well below the yield 

strength. Since the compressive yield strength values are not available, the tensile yield 

strength is calculated. There is no permanent deformation of the cylinder head from the 

copper gasket in this case. 
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Analytical calculation of the contact pressure between the cooper gasket and the cylinder 

head: 

F = 4 ∙ 31 000 N = 124 000 [N] (4.4) 

 

𝑆𝐶𝑢 =
π ∙ (95.52 − 762)

4
= 2627 [mm2] (4.5) 

 

σ𝐶𝑢 =
F

𝑆𝐶𝑢
= 47.2 [MPa] (4.6) 

 

F is the force of the four preload cylinder head screws, 𝑆𝐶𝑢 is the copper gasket cross-

section and the σ𝐶𝑢 is the contact pressure between the copper gasket and the cylinder 

head. 

 

 

Figure 40: Contact Pressure between the Cylinder Head and the Copper Gasket 
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4.8.2 Stress of the Cylinder Liner 

 

The cylinder liner is most stressed when the engine is warmed to operating temperature 

and does not cause combustion pressure inside the cylinder. This state describes the sixth 

computational step. This is due to the combustion pressure not lifting the cylinder head 

and therefore the load on the cylinder liner has the greatest value. 

The yield strength of the material EN-GJL-350 is 228-285 MPa. The lowest value of 228 MPa 

is considered in the calculation. 

Figure 41 shows the cross-section view of the place with the highest stress of the cylinder 

liner variant A. Critical places that exceed the yield strength are in the groove for the O-ring 

and on the outside notch. The highest stress in the material is generated on the side where 

the exhaust valves are located because the highest temperature is at these locations. The 

place the highest stress occurs is located close to the cylinder head screw. The cylinder liner 

variant A must be checked for safety and fatigue and the magnitude of the cumulative 

plastic deformation. 

 

Figure 41: Stress of the Cylinder Liner A TSI Resistance 2 
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Table 17 shows the highest stresses for variant A. 

Table 17: Maximum Stress of the Cylinder Liner A 

Cylinder Liner Variant A Maximum Stress [MPa] 

A_MPI_IDEAL_CONTACT 290 

A_MPI_RESISTANCE_1 294 

A_MPI_RESISTANCE_2 300 

A_TSI_IDEAL_CONTACT 311 

A_TSI_RESISTANCE_1 313 

A_TSI_RESISTANCE_2 313 

 

Figure 42 shows the cross-section view of the place with the highest stress of the cylinder 

liner variant B1. Critical places that exceed the yield strength are on the outside notch. The 

highest stress in the material is generated on the side where the exhaust valves are located 

because the highest temperature is at these locations as in the variant A. The place the 

highest stress occurs is located close to the cylinder head screw.  The cylinder liner variant 

B1 must be checked for safety and fatigue and the magnitude of the cumulative plastic 

deformation.  

 

Figure 42: Stress of the Cylinder Liner B1 TSI 
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Table 18 shows the highest stresses for variant B1. 

Table 18: Maximum Stress of the Cylinder Liner B1 

Cylinder Liner Variant B1 Maximum Stress [MPa] 

B1_MPI 267 

B1_TSI 305 
 

Figure 43 shows the contact pressure between the copper gasket and the cylinder liner 

variant B1. The highest contact pressure is in the sixth computational step. The cylinder 

liner is the most loaded in places closest to the screws and on the edge of the copper 

gasket. The yield strength 228 MPa exceeds contact pressure only at the edge of the copper 

gasket. In other places the contact pressure is well below the yield strength. Since the 

compressive yield strength values are not available, the tensile yield strength is calculated. 

There is no permanent deformation of the cylinder liner from the copper gasket in this case. 

Analytical contact pressure calculation is the same as in the chapter 4.8.1. σCu = 48.2 MPa. 

 

Figure 43: Cylinder Liner B1 TSI Contact Pressure 

 

Figure 44 shows the cross-section view of the place with the highest stress of the cylinder 

liner variant B2. Critical places that exceed the yield strength are on the outside notch. The 

highest stress in the material is generated on the side where the exhaust valves are located 

because the highest temperature is at these locations as in the variants A and B1. The place 

the highest stress occurs is located close to the cylinder head screw. The cylinder liner 

variant B2 must be checked for safety and fatigue and the magnitude of the cumulative 

plastic deformation. 
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Table 19 shows the highest stresses for variant B2. 

 

Table 19: Maximum Stress of the Cylinder Liner B2 

Cylinder Liner Variant B2 Maximum Stress [MPa] 

B2_MPI 284 

B2_TSI 305 
 

Figure 45 shows the contact pressure between the copper gasket and the cylinder liner 

variant B2. This variant B2 is loaded in the same way as B1. Both variants have the same 

critical points for the same reasons. 

 

 

Figure 44: Stress of the Cylinder Liner B2 TSI 
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Figure 45: Cylinder Liner B2 TSI Contact Pressure 

 

 

All cylinder liner variants have approximately the same peak of stress on the outside notch. 

For the cylinder liner in variant A, it is apparent that the stress between the groove for the 

O-ring and the outer notch is higher than for the remaining variants. 

 

4.8.3 Stress of the Copper Gasket 

 

Figure 46 shows the locations of the highest stress of the copper gasket. The copper gasket 

is the most loaded in the sixth computational step because the engine is warmed to the 

operating temperature and the cylinder head is not lifted by the combustion pressure. The 

place the highest stress occurs is located close to the cylinder head screw. Another 

influence on the high stress of the copper gasket is that it has a high temperature which is 

higher on the side of the exhaust valves. 

Compressive yield strength of the copper is 217 MPa.  

[14] 

The yield strength is exceeded only at the edge. This prevents the screws being released, 

which would be caused by large plastic deformations. Stresses in the copper gasket are the 

same for both variants B1 and B2. 
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Figure 46: Stress of the Copper Gasket 

 

 

4.8.4 Stress of the Engine Block 

 

The most stressed part of the engine block is in places where the engine block is in contact 

with the cylinder liner. The cylinder liner pushes the engine block in the axial direction Z. 

This is caused by the pretension of the screws. The engine block is most loaded in the sixth 

computational step because the engine is warmed to the operating temperature and the 

cylinder head is not lifting by the combustion pressure. 

 

 

Figure 47: Stress of the Engine Block 

 



CTU in Prague, Faculty of Mechanical Engineering 72 

 

 
 

Yield strength of the engine block material is 260 MPa. The yield strength is not exceeded. 

[15] 

 

Analytical calculation of the contact pressure between the engine block and the cylinder 

liner: 

F = 4 ∙ 31 000 N = 124 000 [N] (4.7) 

 

𝑆𝐸𝐵−𝐶𝐿 =
π ∙ (952 − 89,72)

4
= 769 [mm2] (4.8) 

 

σ𝐸𝐵−𝐶𝐿 =
F

𝑆𝐸𝐵−𝐶𝐿
= 161 [MPa] (4.9) 

 

F is the force of the four preloaded cylinder head screws, 𝑆𝐸𝐵−𝐶𝐿 is the surface of the 

contact engine block and cylinder liner and the σ𝐸𝐵−𝐶𝐿 is the contact pressure between the 

engine block and the cylinder liner. 

 

4.9 FEMFAT Safety Calculations 
 

Fatigue safety calculations were performed in the FEMFAT program. This program 

simulates cyclic loading of the components. The components load simulation consisted in 

repeating computational steps five (ignition of the mixture)  and six (after ignition of the 

mixture). This simulation describes the largest engine load for the all variants. The 

calculation settings in the program were set identically as for fatigue calculations for the 

engine components in ŠKODA-AUTO. 
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4.9.1 Safety Factor of the Screw 

Figure 48 shows where the lowest safety factor is on the screw. The critical point is under 

the screw head. The lowest possible safety factor of the screw which can be considered as 

permissible is 1.3. The worst is the minimum safety factor of the variant B2 TSI. Minimum 

safety factor of the variant B2 TSI is 2.35. This calculation proved that the proposed M9 

screws with strength class 12.9 can be used for all variants.  

 

 

Figure 48: Cylinder Head Screw Minimum Safety Factor 

 

Table 20 shows the minimum screw safety factor for each variant. Differences in minimum 

safety factors for each variant are due to different values of maximum combustion pressure 

and also to different temperatures in the engine. 

Table 20: Cylinder Head Screw Minimum Safety Factor 

Cylinder Head Screw Minimum Safety Factor [-] 

A_MPI_IDEAL_CONTACT 5.01 

A_MPI_RESISTANCE_1 5.04 

A_MPI_RESISTANCE_2 4.96 

B1_MPI 4.53 

B2_MPI 4.51 

A_TSI_IDEAL_CONTACT 2.59 

A_TSI_RESISTANCE_1 2.61 

A_TSI_RESISTANCE_2 2.57 

B1_TSI 2.36 

B2_TSI 2.35 
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4.9.2 Safety Factor of the Cylinder Liner 

 

The lowest possible safety factor of all the cylinder liners made from material EN-GJL-350 

which can be considered as permissible is 1.3. 

Figure 49 shows where the lowest safety factor is on the cylinder liner variant A. The critical 

point is in the groove for the O-ring. The lowest safety factor is on the side of the exhaust 

valves because of the higher temperatures. The worst is the minimum safety factor of the 

variant A TSI Resistance 2. The minimum safety factor of the variant A TSI Resistance 2 is 

2.78. This calculation proved that the proposed cylinder liner variant A made from EN-GJL-

350 can be used. 

 

 

Figure 49: Cylinder Liner A Minimum Safety Factor 

 

Table 21 shows the minimum cylinder liner variant A safety factor for each variant. 

 

Table 21: Cylinder Liner A Minimum Safety Factor 

Cylinder Liner Variant A Minimum Safety Factor [-] 

A_MPI_IDEAL_CONTACT 5.25 

A_MPI_RESISTANCE_1 5.25 

A_MPI_RESISTANCE_2 5.08 

A_TSI_IDEAL_CONTACT 2.87 

A_TSI_RESISTANCE_1 2.86 

A_TSI_RESISTANCE_2 2.78 
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Figure 50 shows where the lowest safety factor is on the cylinder liner variant B1. The 

critical point is on the outside notch. The lowest safety factor is on the side of the exhaust 

valves because of the higher temperatures. The minimum safety factor of the variant B1 

TSI is 2.36. This calculation proved that the proposed cylinder liner variant B1 made from 

EN-GJL-350 can be used. 

 

 

Figure 50: Cylinder Liner B1 Minimum Safety Factor 

 

Table 22 shows the minimum cylinder liner variant B1 safety factors. 

 

Table 22: Cylinder Liner B1 Minimum Safety Factor 

Cylinder Liner Variant B1 Minimum Safety Factor [-] 

B1_MPI 5.45 

B1_TSI 2.36 

 

Figure 51 shows where the lowest safety factor is on the cylinder liner variant B2. The 

critical point is also on the outside notch as in variant B1. The lowest safety factor is on the 

side of the exhaust valves because of the higher temperatures. The minimum safety factor 

of the variant B2 TSI is 3.18. This calculation proves that the proposed cylinder liner variant 

B1 made from EN-GJL-350 can be used. 
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Figure 51: Cylinder Liner B2 Minimum Safety Factor 

 

Table 23 shows the minimum cylinder liner variant B1 safety factors. 

 

Table 23: Cylinder Liner B2 Minimum Safety Factor 

Cylinder Liner Variant B2 Minimum Safety Factor [-] 

B2_MPI 5.76 

B2_TSI 3.18 
 

 

4.10 Cumulative Plastic Deformation of Engine Parts 
 

The stress of some engine components exceeded the yield strength. The magnitude of the 

plastic deformations was calculated. The plastic deformation must not be higher than the 

elongation strength for the material. This ensures unchanged material behavior. It is 

important to determine when the plastic deformation occurred. In our case, it is important 

that the plastic deformation occurs after the assembly or the first warm-up of the engine 

to the operating temperature. If the plastic deformation arises as a result of the ignition of 

the mixture in the cylinder, there is a risk that the behavior of the material will change every 

time the engine is started. 
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4.10.1 Cumulative Plastic Deformation of the Cylinder Head 

 

Figure 52 shows the magnitude of the plastic deformation of the cylinder head. The largest 

plastic deformation occur under the screw head. Plastic deformation occurs in all variants, 

after initial engine warm-up. The highest value of plastic deformation occurred in A TSI 

Resistance 2 variant. All achieved values are within the limits that do not affect the behavior 

of the material. 

 

Figure 52: Plastic Deformation of the Cylinder Head A TSI Resistance 2 

 

 

Figure 53: Plastic Deformation of the Cylinder Head A TSI Resistance 2 - 2 
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Table 24 shows the maximum cumulative plastic deformations of the cylinder head.  

 
Table 24: Cylinder Head -  Maximum Plastic Deformation 

Cylinder Head Maximum Plastic Deformation [%] 

A_MPI_IDEAL_CONTACT 0.60 

A_MPI_RESISTANCE_1 0.60 

A_MPI_RESISTANCE_2 0.63 

B1_MPI 0.59 

B2_MPI 0.60 

A_TSI_IDEAL_CONTACT 0.73 

A_TSI_RESISTANCE_1 0.72 

A_TSI_RESISTANCE_2 0.76 

B1_TSI 0.73 

B2_TSI 0.73 
 

4.10.2 Cumulative Plastic Deformation of the Cylinder Liner 

 

The elongation strength of the material EN-GJL-350 is from 0.3 to 0.8 [%]. 

[10] 

Figure 54 shows the magnitude of plastic deformation of the cylinder liner variant A TSI 

Resistance 2. The largest plastic deformations occur on the outside notch on the side of the 

exhaust valves, close to the screw. The reason for the plastic deformation at this location 

is above all the high temperature. 

 

 

Figure 54: Cylinder Liner A TSI Resistance 2 Plastic Deformation 
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Table 25 shows the maximum cumulative plastic deformations of the cylinder liner variant 

A. All achieved values are within limits that do not affect the behavior of the material. 

 

Table 25: Cylinder Liner A  Maximum Plastic Deformation 

Cylinder Liner Variant A Maximum Plastic Deformation [%] 

A_MPI_IDEAL_CONTACT 0.02 

A_MPI_RESISTANCE_1 0.03 

A_MPI_RESISTANCE_2 0.04 

A_TSI_IDEAL_CONTACT 0.06 

A_TSI_RESISTANCE_1 0.07 

A_TSI_RESISTANCE_2 0.08 
 

Figure 55 shows the magnitude of plastic deformation of the cylinder liner variant B1 TSI. 

The largest plastic deformation occurs on the outside notch on the side of the exhaust 

valves. The reason for the plastic deformation at this location is above all the high 

temperature as in the variant A. 

 

  

Figure 55: Cylinder Liner B1 TSI Plastic Deformation 

 

 

Table 26 shows the maximum cumulative plastic deformations of the cylinder liner variant 

B1. All achieved values are within limits that do not affect the behavior of the material. 
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Table 26: Cylinder Liner B1  Maximum Plastic Deformation 

Cylinder Liner Variant B1 Maximum Plastic Deformation [%] 

B1_MPI 0.03 

B1_TSI 0.07 
 

Figure 56 shows the magnitude of plastic deformation of the cylinder liner variant B2 TSI. 

The largest plastic deformation occur at the same place as in variant B1 by the same 

reasons. 

 

  

Figure 56: Cylinder Liner B2 TSI Plastic Deformation 

 

Table 27 shows the maximum cumulative plastic deformations of the cylinder liner variant 

B2. All achieved values are within limits that do not affect the behavior of the material. 

 

Table 27: Cylinder Liner B2  Maximum Plastic Deformation 

Cylinder Liner Variant B2 Maximum Plastic Deformation [%] 

B2_MPI 0.04 

B2_TSI 0.08 
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Chapter 5: Conclusion 
 

This diploma thesis was part of a larger project that dealt with the design of the new single-

cylinder petrol engine that will be used in the laboratory. The aim of this diploma thesis 

was to design a appropriate cylinder head gasket. 

The preliminary design of the engine block, cylinder head and cylinder liner were available 

at the beginning of this thesis. These CAD data were modified in the Creo Parametric 2.0 

software, with respect to a change in the geometry of the various proposed solutions. 

The combustion chamber and the water are sealed using Viton O-rings in the first variant. 

In the other two variants, the combustion chamber is sealed using the copper gasket and 

the water is sealed using the Viton O-ring as in the first variant. The highest O-ring 

temperature is achieved in Variant A. The highest O-ring temperature reaches 208 °C. The 

manufacturer of the O-ring guarantees that the desired properties are maintained till the 

temperature 250 °C. The maximum clearance of the sealing surfaces achieved 0.004 mm. 

The manufacturer guarantees sealing of the pressure at a maximum clearance of 0.1 mm. 

Stress analysis of the gaskets, modified parts of engine and cylinder head was performed 

in the software Abaqus. FEMFAT safety calculations was performed for all variants of the 

cylinder liner. The calculation of cumulative plastic deformations was performed, where 

the yield strength was exceeded. The highest cumulative deformation of the cylinder head 

was 0.76 % in the variant A. The amount of cumulative plastic deformations must not 

exceed 1 % in the cylinder head because of maintaining the required mechanical properties 

of the material AlSi10Mg. The highest cumulative deformation of the cylinder liner was  

0.08 % in the variants A and B2. The amount of cumulative plastic deformations must not 

exceed 0.3 % in the cylinder liner because of maintaining the required mechanical 

properties of the material EN-GJL-350. 
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The safety factor and required prestressing of the cylinder head screws was calculated with 

respect to the maximum combustion pressure. This safety factor has been verified by the 

FEMFAT software calculation. The safety factor of the screw, which was calculated by 

analytical calculation, is 2.45. The lowest safety factor which was calculated using FEMFAT 

came out for variant B2 with a value of 2.35. The lowest safety factor of the cylinder liner 

which was calculated using FEMFAT came out for variant B1 with a value of 2.36. The lowest 

possible safety factor of the screw and the cylinder liner which can be considered as 

permissible is 1.3. 

All versions of the gasket, modified engine parts and proposed cylinder head screws can be 

used to construct the engine, taking into account the temperature, stress and safety results 

of the calculations. 
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