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Abstract

Novel design of compact integrated 8-Channel demultiplexer based on contra-
directional Bragg assisted coupler for LAN-WDM is presented. Utilizing sub-
wavelength waveguide for not only guiding the light, but also as reflecting Bragg
structure allowing for easier parameter tuning, bigger sized structure resulting in
better precision and fabrication error tolerance. Extensive overview of electro-
magnetic field theory is addressed, to provide background for analytic description
and calculation of various parameters. Design parameters are also investigated
by simulations in Lumerical Suite software and resulting spectral characteristics
give flat top spectral responses with adjacent channel suppression better than 30
dB and insertion loss less than 1 dB.

Keywords: integrated, demultiplexer, contra-directional, coupler, silicon-on-

insulator, Bragg grating, subwavelength waveguide, LAN-WDM

Abstrakt

V této préaci je popsan navrh 8 kanalového demultiplexeru na principu kontra-
direkcionalni optické vazby s Braggovou mftizkou pro LAN-WDM vInovy mul-
tiplex. V navrhu je nové pouzit segmentovany vlnovod, jak pro vedeni svétla,
tak jako periodicka struktura. V praci je poskytnut souhrn teorie elektromag-
netického pole nezbytny pro analyticky odhad a vypocet navrhované struktury.
Parametry navrhu jsou zkoumané simulacemi v softwarové sadé Lumerical Suite.
Vysledkem je kompletni navrh pro vSechny kandly se spektralnimi charakteris-
tikami se vstupnimi ztratami mensimi nez 1 dB a potla¢enim sousednich kanalu
vice nez 30 dB.

Klicova slova: integrovany, demultiplexer, kontra-direkciondlni, vazba, silicon-

on-insulator, Braggova mrizka, segmentovany vinovod, LAN-WDM
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Chapter 1

Introduction

1.1 Background

The need for speed and communication capacity is ever increasing and silicon-
on-insulator passive devices can provide answer for many needs with great ad-
vantage of compatibility with classic CMOS fabrication technologies. One of the
most currently used techniques for high speed communication over optical fiber
is wavelength division multiplexing (WDM). WDM provides high bandwidth us-
ing data carriers of different wavelengths over one communication channel at the
same time and therefore multiplying the data rate. Grating assisted contra direc-
tional couplers are well known structure for WDM demultiplexers. Used maily
for CWDM [1], there is no design for LAN-WDM as of yet. Usual construction
includes waveguide with corrugations on sidewalls or in the slab between them.
These corrugations are of usually very small, posing challenge for fabrication
methods. From the nature of the structure, we face many trials while designing,
such as backreflections, crosstalk between channels and sensitivity to fabrication

error.

1.2 Motivation

Current solutions for LAN-WDM multi/de-multiplexing are implemented as com-

pact thin filter in a direct bounce "zig-zag” pattern. This solution has overall



very good properties, such as insertion loss less than 1.5dB and adjacent chan-
nel suppression more than 30dB, however high angular alignment of collimators
and filters +0.03 deg is needed [2]. Utilizing free space propagation and classical
optics with partially refractive mirrors and collimating lens makes it impractical
other integrated parts of communication chain.

Therefore, novel integrated 8 channel de-multiplexer is proposed in this thesis.
Based on contra-directional grating assisted couplers, this novel design involves
subwavelength grating waveguide (SWG), effectively guiding light and acts as
Bragg grating as well. The purpose of this work is to investigate this novel
technique, provide theoretical explanation derived from elementary electromag-
netic field theory, perform calculations using coupled mode theory and verify
the idea by numerical simulation in Lumerical Suite. In the process, several
design parameters will be considered and described to provide robust tool set
for de-multiplexed channel wavelength design. In the end, we will be left with
method how to precisely tune demultiplexer wavelength with variation of waveg-
uides widths and subwavelength waveguides pitch and give numerical results
corresponding to LAN-WDM channels. Resulting spectral characteristics show
insertion loss of less than 1 dB and very high adjacent channel suppression of

more than 30 dB.

1.3 Summary of content

In chapter two, we provide a brief introduction to the issues of optical telecom-
munication, multiplexing, overview of LAN-WDM standard and then continue
with extensive theoretical derivation of electromagnetic wave and waveguide the-
ory, in chapter three proposed design is introduced and calculated with analytical
approach, next, in chapter four design parameters of proposed structure are in-
vestigated with bandstructure and spectral simulation. Finally, the conclusion

with an overview of achieved results and proposal for future work is given.



Chapter 2

Theoretical Overview

2.1 Optical telecommunication

2.1.1 Multiplexing, Channel Link

Channel multiplexing over single fiber is a simple way to extend channel capacity
with current infrastructure. Multiplexing can be realized through time domain,
frequency domain, and recently investigated by mode separation. The meth-
ods are called time-division multiplexing (TDM), frequency division multiplexing
(FDM) and mode-division multiplexing (MDM) respectively. Frequency-division
multiplexing in optical systems is commonly referred to as wavelength-division
multiplexing (WDM) for the optical domain nature of transmission signals.
The basic principle behind WDM is the transmission of multiple carriers of vary-
ing wavelengths over one optical fiber. Each carrier is modulated separately in
the transmitter by either direct or indirect laser modulation.

Digital signal comprised of zeros and ones corresponding to on and off state can
be easily achieved by modulating the current through laser diode. However, the
maximum transmission frequency is limited by the frequency response of driv-
ing circuits and time constants of the laser diode. Furthermore, frequency chirp
(output frequency shift with driving signal) is introduced into the output signal
and extinction ratio is limited because laser diode current has to be kept above

threshold current so it is never truly in the off state.



By modulating the laser output light directly, we can negate the diode tran-
sient problems in exchange for higher overall complexity. The laser is operating
in continuous wave regime and the light propagates through material that can
change its optical properties by applying an electric field. Either by changing
absorption spectra so the material becomes opaque or altering a refractive index
to change phase and consequently take advantage of constructive or destructive
interference.

Next, all light signals are combined together in a multiplexer. On the receiver
side, this signal is demultiplexed back into separate carriers. [3].

Wavelength bands useful for optical communications, so-called communication
windows, are given by characteristics of the optical fiber. 2.1a shows attenuation
and dispersion of traditional fiber and its relation with communication windows.
For high-speed communications, the second and third window is used. At 1300
nm, the second window of 200 nm takes advantage of no dispersion at cost of
higher attenuation around 0.5dB/km. At 1550 nm, the third window has simi-
lar size, but attenuation is the lowest. In modern fibers, the peak at 1400 nm,
caused by hydroxyl ion OH~ impurities, is eliminated and the attenuation is
due to Rayleigh diffraction [4]. Communication windows are split into several
transmission bands, from original O-band to newest U/XL band [5]. C and L
bands are used for high-speed, long distance communication for their low atten-
uation (j0.2 dB/km)[5]. Communication bands schematic is shown in 2.1b Dense
wavelength division multpiplexing (DWDM) and Erbium Doped Fiber amplifiers
allow for unprecedented speeds and distances, but at relatively high cost. C and

L band nowadays allow channel spacing as low as 12,5 GHz [6].

2.1.2 LAN-WDM Channel Design

Until recently, there were two main standards for wavelength division multiplex-
ing; Coarse Wavelength Division Multiplex (CWDM) and Dense Wavelength
Division Multiplex (DWDM).

CWDM is designed for use with cheap solutions e.g. omitting temperature con-

trol. CWDM is used for low speed and short optical communication networks.



First window
4- -
1
£ '
2 3- [ Second window . .
o ! . Third window
c 1 [ 1 . .
il 1 1 [ 1 1 1
§ 24 1 1 1
1 1
= ' .
s 14 1 1 1 1
< 1 1 1 1
1 1
L ! IJ 1 L 1 ! L 1 1 L 1
1 1 L] T 1 L] 1 L] L] T
800 900 1000 1100 1200 1300 1400 1500 1600 1700
Wavelength M/um
(a)
5--
O-band| E-band | E-band
44 C-gand
€
< L-barjd
o 34
©
c
kel
s 2+
>
j
£ \
< 1-- \ﬁ
L L L L 'l 1 1 1 1 L
T T T T T T T T T T
1200 1250 1300 1350 1400 1450 1500 1550 1600 1650

Wavelength Mpm

(b)

Figure 2.1: (a) schematic of telecommunication windows (b) telecommunication

bands [7]

For longer and faster communication than 10km and 10Gbit/s, the cost of tem-
perature control becomes negligible compared to total cost of Transmit Optical
Sub-Assembly (TOSA). For 4x25G TOSA the TEC cost is only 1% to 4%. Each
channel has to be relatively wide and widely spaced, ITU-T Recommendation
(G.694.2 specifies channel spacing of 20nm with expected channel width better
than +6 — 7nm from center wavelength [8]. These properties limit the number
of usable channels.

DWDM is meant for maximizing communication speed in exchange for higher
cost and increased complexity. Channel spacing varies from 12.5GHz to 100GHz.
The channel spacing has evolved from historical 100GHz by consecutive dividing

by two up to 12.5GHz [6].
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Figure 2.2: Grid of LAN-WDM for 8 channels L0 - L7, with one empty channel
at 230.6THz (1300.05nm) to separate LO - L3 and L4 - L7, channel spacing is
800GHz (=~ 4.5nm) and channel width is 400GHz (= 2.3nm)

Local Area Wavelength Division Multiplexing (LAN-WDM) is a compromise be-
tween both of these technologies. LAN-WDM channel grid is set in a wider
spacing of channels 800GHz [9], which doesn’t pose strict requirements at laser
frequency stability as it is in DWDM. Our proposed LAN-WDM grid consists
of 8 channels, LO - L7, separated in two groups, LO - L3 and L4 - L7, with one
empty channel in between at 230.6 THz (1300.05 nm), viz. Figure 2.2, Tab. 2.1.
For 25G and higher communication speeds, cooled lasers have a much higher
yield as opposed to the uncooled version, which has problems with low output
power due to high operating temperature. After all, this yield difference is much

more important than added costs for cooling and packaging.



Chan. LO L1 L2 L3 X

A(pm) || 1.2822 | 1.2866 | 1.2911 | 1.2955 | 1.30005
f(rHz) | 2338 233 232.3 | 2314 230.6

Chan. 14 L5 L6 L7 -

A(pm) || 1.3045 | 1.3091 | 1.3137 | 1.3183 -
f(rHz) | 229.8 229 228.2 | 2274 -

Table 2.1: Proposed 8-Channel LAN-WDM grid LO - L7 with empty channel at
230.6THz for separation of LO - L.3 and L4 - L.7 into two groups

2.2 Waveguide Theory and Periodic structures

2.2.1 General formalism for non-stationary electromag-

netic field

In this section, brief overview of fudnamental problems in electromagnetic theory
is presented. Later in this work, this knowledge will be used for an analytical
derivation of the proposed structure. Such derivations have been done in numer-

ous literature, here mainly [10-12] are used as source of information.

Two fundamental relationships, often called Maxwell’s equations, are given

for electromagnetic field,

0B
VXH:J+08—1: (2.2)

All components of electromagnetic field in these equations are vector func-
tions, describing vectors in all points of space and time. We can rewrite them
using scalar functions for each z, y and z component, giving us instantaneous

value of vector in given space. For electric field written in Cartesian coordinate



system

E =E(z,y,2,t) = xo By (2, y, 2, t) + yoLoy(z,y, 2, t) + 2o E.(2,y, 2, 1)

and vector operator Nabla

o 0 0
V—(%’a—m)

Taking left side of Eq. (2.1) and rewriting we get

Xo Yo Zg
VxE=VxE(y,zt)= a% a% %

E$(x7y7 Z? t) Ey(x7 y7 Z? t) EZ('ZE’ y? Z’ t)

8EZ 77’t aE 77’t
o (2lnt)_OBmn)

dy 0z
8E.’13 9 ? )t aEZ Y 7 7t
Yo @42t OByt
0z Ox

ox oy

, (8Ey(x, y,z,t)  OE,(x,y,2,1)
0

and right side of Eq. (2.1) can be rewritten

oB 0

0
ot EB(xvy,z,t) = X0 Bu(7,y, 2, 1)+

ot
Yoo ot

Electromagnetic field components are bound by to each other by

D=¢cF
J=0cF
B=uH

(2.3)

) @)

0 0
By(z,y,2,t) + z2o=—B.(x,y, z,t) (2.6)

where D is electric displacement, E is electric field, J is current density, B is

magnetic field, H is called magnetic field strength. With assumption of homo-

geneous, isotropic, non-conductive (lossless), dielectric (non-magnetic) medium,

then
D = 6087«E

8

(2.10)



where ¢( is permittivity of vacuum

1
~— 1077 2.11
0% 36 (2.11)

and e, is relative permittivity of the medium, in optics often written as index of

refraction
n=./c, (2.12)

which is a ratio of phase speed of light in dielectric material vs vacuum. Next
B = o HIT] (2.13)
where g is permeability of vacuum
po = 4w - 1077 (2.14)
and due to electrically non-conductive material we have
c0=0,J=0E=0 (2.15)

Permittivity and permeability are bound together by mutual equation with speed

of light

! Bms
=== 3 10/ (2.16)

Equations (2.1) and (2.2) can be rewritten using only E and H

0H OE
E=—puy— H = — 2.1
V x Hopy V x E0Er 5 (2.17)
which can be solved using another ”Nabla” operator
0
Vx(VxE)= —,uoav x H (2.18)
and equivalently vector identity
Vx(VxE)=V(V-E)-V’E (2.19)
In case we ignore all sources, we can set the following
V(V-E)=0 (2.20)



and final formula in partial derivative form for E is

0’E
VQE - M0€0€TW =0 (221)

The final differential equation for E

VQE(a:,y,z,t) =
PE(x,y,2,t) O*E(z,y,2,t) O0*E(x,y,2,1)
o ( Ox? * oy? * 02?2 ) -
O*Ey(x,y,z,t)  O*Ey(x,y,2,t) 0*Ey(z,y,2,t)
Yo ( Ox? + oy? * 02?2 ) *

PE,(z,y,z,t) O0*E,(x,y,2,t) O0*E,(v,y,2,1)
2.22
“0 ( Ox? * dy? * 022 ) (222)

assuming only harmonic signals in time domain then for each spacial component

applies
Ey(2,y,2,t) = Ema(2,y,2) sin(Wt + @u(y ) (2.23)
Ey(x,y,2,t) = Eny(z,y,2) sin(wt + ¢y, ) (2.24)
E.(2,y,2,1) = Ep.(7,y,2) sin(wt + ¢z, ) (2.25)

where F,,; is amplitude of each component and ¢; is phase shift. Equations are

possible to further simplify using phasors
Ei(z,y,2) = Epe??i@u (2.26)
and the vector functions becomes
E(z,y,2) = xoEu(2,y,2) + yoEy(z,y,2) + 20 E.(2,y, 2) (2.27)

and the relationship between phasors and time domain function

Ey(z,y,2,t) = Im (B (z,y, 2) &) (2.28)
Ey(z,y,2,t) = Im (Eny(z,y, 2) ) (2.29)
E.(z,y,2,t) = Im (E,.(z,y, 2) ) (2.30)

Using phasors and solving the second time derivative the Equation (2.21) will be

V2E + w’lpgoe, E = 0 (2.31)
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then we define constant, called propagation constant
k = w./iogoe, = %\/g— (2.32)
and Equation (2.31) can be rewritten
V2E+E’E = 0 (2.33)

This is so called homogeneous Helmholtz equation and rewritten for each spatial

component looks like

V?E+EkE =
OB, ( 2 2
(2,9,2) A OE (ny,)+3 x(1,9,2))
(91:2 0y? 072
PEy(x,y, 2 82 Ey(x,y,2) N O*Fy(x,y, 2) N
(%’2 0y? 022
(2,y,2)  OEz,y,2)  OE(ry2)
( 8x2 0y? * 022 N
+ k2 (XOE (JI Y,z ) + y()Ey<I?y7 Z) + Z()EZ(CL’,y, Z)) =0 (234)

2.2.2 Solution to Helmholtz equation for electromagnetic

plane wave

Harmonic electromagnetic plane wave is the simplest solution for this equation.
With assumption that electric field has only 2 component which is changing only

in z direction, then

E,.E,=0,E,=0 (2.35)
and Equation (2.33) is simplified into
d’Ey(z) 2
7.2 + k“Ex(2) =0 (2.37)

representing plane wave propagating in z direction. Solution to this equation is

phasor of electric field
E(z) = Epe 7k* (2.38)
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where

By = Ejel #0 (2.39)

is magnitude of phasor on z = 0. Transforming the phasor to time domain, we
get
Ey(z,t) = Eysin(wt — k 2 + o) (2.40)

Phasor of intensity of magnetic field is derived back from Equation (2.17) by
substitution for electric field

EX(’Z) _ @e—jkz

y(2) =—— =~ = Hoe 7"* (2.41)

Intensity of magnetic field will only have component in y direction. Phasors of
electric and magnetic field are bound by so called characteristic impedance of

unbounded space
Wl 1 po 120w

k- VaVe e

(2.42)

2.2.3 Solution of Helmholtz equation pro electromagnetic
wave propagating in general direction

Equation (2.34) can be separated into three identical equations, one for each

individual components i = x, ¥, 2

82Ez‘($7?/a Z) + 82Ei($,y,2) + 62Ei(x,y,z)
0x? Oy? 022

+ K Ei(2,y,2) =0 (2.43)

Under assumption, that we can get solution of this equation in form of multipli-

cation of these three functions for z,y, 2
Ei(z,y,z) = X(2)Y (y)Z(2) (2.44)

Plugging expected solution (2.44) back into (2.43), we can get following differ-
ential equations

1 0*X(x) 1 9*Y(y) 1 0%Z(z)

Xa) o2 V@) ap 7 o= T (2.45)
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where each part represents partial equation whose right side has to remain zero.

We can write thee equations using so called separation coefficient this form

1 0*X(x)

X o - (2.46)
L@QY(y)__ 2

MO ky, (2.47)
1 0%%(z) 9

B (2.48)

To ensure equality and zero of the Equation (2.45), each coefficient has to be
kK =k + ky* +k,° (2.49)

After solving each partial equation from (2.46), we get the sought functions

X(.l’) = Cle_jkx.m + C2€+jkx.z (250)
Y(y) = Cze 7Y 4 Cyetihn? (2.51)
Z(z) = Cse ™% + CetVie* (2.52)

and the final solution for phasors of each component is

Ei(z,y,2) = X(2)Y(y)Z(2) =

(Cle_jkxlm + 026+jkx'$) (Cge_jky’y + C4€+jky'y) (C5e_jkz'z + C66+jkzlz) (253)
and assuming only forward propagating wave without reflections

Ei(z,y,2) = C,C3Cse Thxemikyypmikez — Eje 7 kertkyytkes) — g =ik
(2.54)
where Fjq is phasor at the origin of coordinates. The exponent can also be written
as a dot product of vectors k and r, where k is so called wave vector, showing
direction of propagation of electromagnetic wave, perpendicular to wave plane
and its absolute value is equal to propagation constant (2.32). Its components
can be understood as projection of k onto the axes, because then Equation (2.49)
will hold true
k = (ky, ky, k) (2.55)
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r is so called position vector or radius vector and it specifies spatial position of
the field calculation
r=(z,y,2) (2.56)

Resulting equation for phasor of intensity of electric field can be written as

E(z,y,2) = (xoExo + YoEyo + 2oE,) € %" = Ege /%~ (2.57)

2.2.4 Electromagnetic wave incident on material interface

- reflection, refraction and evanescent wave

Electromagnetic wave incident on interface of dielectric materials at angle 6;

behaves according to Snell’s laws

Or = 0; (2.58)
ki sin(6;) = ko sin(fr) (2.59)

It can be rewritten using permittivity

ensin(v;) = v/epesin(dr) (2.60)
For angle of refraction then
. Er1 .
Y = arcsin < 6 sm(ﬁi)) (2.61)
r2

Magnitude of phasor of reflected and transmitted wave in relation to the incident

wave is given by coefficient of reflection and transmission respectively

Ero

R = 2.62
o (2.62)
ETO

T = 2.63
o (2.63)

Magnitude of reflection coefficient is dependent on the polarization of electro-
magnetic wave, which corresponds to orientation of vector of electric field to the
normal of the interface. We recognize two types of polarization, horizontal and
normal. Horizontal polarization has vector of electric field perpendicular to the
plane of incidence and in normal polarization, orientation of electric field is par-

allel to the plane of incidence. Naturally, light doesn’t have to adhere to these

14



two situations and the electric field can be oriented in any direction. Reflection

and transmission coefficients for each polarization are defined as

£r1 cos(Ur) — \/Era cos(V;) £r1 c08(0;) — \/Epg cos(Vr)
R = L= (2.64)
er1 cos(Vr) + /Ep2 cos(V;) er1 cos(¥;) + \/Era cos(Vr)
2,/E, ¥ 2,/e, V;
T — 1 cos(Ur) - €1 cos(V;) (2.65)

£r1 cos(Ur) + /Era cos(V;) €1 cos(V;) + \/Era cos(V)

If incident wave transmits into medium with higher permittivity ,; < €, then

L sin(9;) < 1 (2.66)
Er2

and angle of refraction is then smaller than angle of incidence ¥y < ¥J; and the

light is bent "towards normal”, viz. Figure 2.3. In the other case, where wave is

Figure 2.3: Reflection and transmission towards normal

propagating into material with higher permittivity,e,q > &,9, then from (2.62)

and light bends ”from normal”, viz. Figure 2.4. At one specific angle of incidence,

called critical angle

¥; = U, = arcsin Er2 (2.68)
€r1

the angle is vp = 7, viz. Figure 2.5 From this angle, there is so called total

15



Figure 2.4: Reflection and transmission from normal

reflection effect, after plugging cos(r) = cos(3) = 0 to (2.64), we get

Ry =~
R, =1
Therefore, for angle bigger than critical, argument of complex reflection coef-
ficient changes, but its magnitude stays the same, equal to 1. Reflected and
transmitted waves are changing their mutual phase, but the reflection is still

complete

In area under interface, so called evanescent wave will be propagating and its

properties can be assessed by plugging transmission angle into Equation (2.54)
ET((E, n Z) — ETOefjkz(sin(ﬁT)-x+cos(19T)-z) (270)
For incident angle 0 < v; < pi/2 is

sin(dr) = \/E::;sin(ﬁi) =p (2.71)

real number and cos(dr) is for €,1 > €, and ¥; > V.. purely imaginary

cos(Vr) = 1/1 — sin?(Vr) = \/1——sm2 ;) ==£j —san(ﬁ)—lzj:jq

Ero Er2
(2.72)
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. 61 | Or

<
0T = 1/2

Figure 2.5: Critical angle of reflection

Solving the equation, we will find out, that amplitude is declining perpendicular
to the interface with coefficient k9q, and phase is changing along the interface x

with kop. Such wave is called non-uniform.

Er(z,y,z) = EToe—jkz(p~w—jq'Z) — EToe—kzq~ze—jkzp~x (2.73)

2.2.5 Guided wave

When electromagnetic wave is propagated along a structure with constant trans-
verse dimensions z and y, formation of field with standing waves in transverse
direction and traveling wave along z direction can be expected. From Helmholtz

equation (2.34) we can then seek solution to partial functions (2.50) as

X(z) = Cycos(ky - ) + Cosin(ky - 2) (2.74)
Y(z) = Czcos(ky, - y) + Cysin(k, - y) (2.75)
7(z) = Cye Jkr* (2.76)

Yet unknown coefficient ky k, characterize shape of the standing wave in trans-
verse direction, coefficient k, is phase constant of guided wave along z direction.

For these constants, separation equation has to hold
kK =k’+k’+k, (2.77)
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where k is unbound space propagation constant as in (2.32). General solution
for each spatial component i = x,y, z of electromagnetic field will be similar to

(2.53)

Ei(z,y, 2) = X(2)Y(y)Z(2) =
= (Cq cos(ky - ) + Cosin(ky - z)) (Cs cos(ky, - ) + Cysin(ky, - z)) Qe Ika

(2.78)

General mutual relationship between electric and magnetic fields (2.5) can be

rewritten with derivative along z direction z : —jk, into

Xo Yo <0
VXE=VxE(zvy,z2) = a% 0% —j k. = —jwuoH

E$(xay7z> Ey(aj)yaz) Ez(x7y7 Z)
(2.79)

and for each spatial component

XO (aEZ('CL" y7 Z)

OFE,(z,y, 2)
: o),

+] szy(‘rayVZ)) + Yo < _ijE$<x7yaz) - ox

0E,(x,y, 2) B OE,(v,y,2)\
20 ( Ox dy B

- jw,uo (XOHJ:(xa Y, Z) + yOHy(x7 Y, Z) + ZOHZ(:Ea Y, Z)) (280)

2.2.6 Wave guided between dielectric layers

Assuming formation of TE modes, then electric field intensity has component

only y direction and the other is zero. Considering the
E,(z,z)
E.=F, =0

using (2.80) we will find out, that intensity of magnetic field has to have these

components
k.
H(r,2) = ——FE,(x, 2 2.81
(,2) = = =By (2 2) (281)
| OFE
H.(z,2) = LM (2.82)
wiyg  Ox



Final solution of all coefficients can be found by writing general equations for
each component and setting their mutual conditions. From (2.78) we can write
basic relationship for y component of electric field intensity in the central, guiding

layer. All constants C; are joined together into constant FE,,,; and ¢

Eji(x,y,2) = C5 (Cy cos(ky - ) + Cysin(ky - x)) PR cos(kx-w+¢)e_jkz’z

(2.83)
Analogically, for components of magnetic fields
Hy(z,2) = — i E,(z,z)= _ Lt cos(kyy - = + @)e F2 (2.84)
zl\4y - wilo y\4&y - wilo myl x1 .
j aEyl(l‘az) jkxl . —k
H, (x,2) = =-—"—F, Kyq - = 2.
1(z, 2) i 0 g sin(ky - + @)e (2.85)

In outer layers labeled as 2, electromagnetic wave will have evanescent wave form
as in (2.73), where k,» is the attenuation constant in transverse direction z, phase

constant in z direction is the same as the guiding layer 1
Ep(z, z) = Emyge’k“'x e Ikez (2.86)

Each component of magnetic field in layer 2 will according to (2.81), (2.82) be
ks k.

Hyo(x, z) = — Epo(r,z)=— E,ppe Fe2® gmik=z 2.87
2( ) W y2( ) W Y2 ( )
| OF 1k ,

HZQ (3:, Z) — j y2 (xa Z) — _j 2Emy2€ka2-m ef]kzz (288)

wpo Oz Wk

Boundary conditions on the interface of layers 1 and 2 arise from continuity of
electromagnetic fields. Tangent component of intensity of electric and magnetic
field at the boundary has to be the same from each side. For magnetic field and

lower boundary z = a
Ha(r=a,2) =Hpa(x=a,z) (2.89)
From (2.85) and (2.88) we then get
. h —koo- R
kxlEmyl sm(kxl . 5 + gb) = kxgEmyQG ©2'2 (290)
For electric field at the same boundary x = a = h/2
h h

=, 2)=Ep(r = B z) (2.91)

B _
y(x 9
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Figure 2.6: Ilustration of slab waveguide
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Figure 2.7: Cross section of slab waveguide structure with propagating TE mode

From (2.83) and (2.86) for this condition we have
h koo
Ery1 cos(ky - 3 + @) = Epype 22 (2.92)

By dividing equations (2.90) and (2.92) we get

h ky
tan (ks - 5 + ) = k—j (2.93)
and very similarly for x = —h/2
h ky
—tan(—ky - = + @) = — (2.94)
2 kxl

Subtracting Equations (2.93) and (2.94) we can eliminate parameter ¢ and we

get so called dispersion equation, which gives us relationship between coefficients
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in transverse direction

Ky
Ky - h =2 tan~" (k—2) +m-T (2.95)

x1

where m - 7 represents period of function tan(—1) and it is mode number as well.

2.2.7 Generalized parameters

According to (2.77) following must hold true
ka = VkiZ—k? | ko = Vk,> — ky? (2.96)

k1, ko are propagation constants of plane wave of the same frequency in free space
with same parameters, as in (2.32)

w W

k1 = —+/&r1 , k2 = —/&r2 (297)

Cc Cc

From (2.96) then
ke -h=hVEk?*—k? |,  ko-h=hVk> -k’ (2.98)

By adding both equations (2.98), we can eliminate longitudinal constant k, and
we define new parameter V', which frequency, layer parameters and dimension h

dependent, called generalized frequency
Wk + ke’ = WVk” + k% = hoen —ea =V (2.99)
c

dividing Equation (2.99) by V we can rewrite it

\/(h‘EXl)z + (h%;“)z =1 (2.100)

Then we can define new parameter b called generalized guide index

2 (w w 2
(kX2 : h)Q Pk P EVER) - (2vN) o, oW
4 v2 (h%} VEr:T — 87“2)2 €r1 — Er2

(2.101)
where N is equivalent permittivity and it is equal to magnitude of k, of plane
wave in unbound space.

Using these new parameters, we can rewrite first part of (2.100) as

ke -h\>
=1-9b 2.102
( > ) (2.102)
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Figure 2.8: Graphic representation of b V relation for first 7 TE modes

and sought transverse propagation constants can be given by
kg h=VV1I—b (2.103)

ke -h =V Vb (2.104)

Propagation constant of wave guided in central layer k£, can be derived from

following equations

k, = VEi® — k2 = Vko? — k2 = %\/N (2.105)

Dispersion relation from (2.95) will be in final form as following

V1—b [ b
VT = tan " T tme (2.106)

2.2.8 Transverse Magnetic Modes

We can derive dispersion relation for TM modes in very similar way. Resulting

equation is identical to (2.95) with added permittivity ratio

T kX
K -h=2tan™! <u> +m-m (2.107)
EraKx1
Generalized prameters will be also very similar, however we add new parameter
Er2
= = 2.108
¢ €r1 ( )
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Dispersion relation for generalized parameters will be

vV1—> 1 b
VT = tanflz 1——() +m-m (2109)

2.2.9 Rectangular dielectric waveguide
Components of electromagnetic field for £, modes

Previously, in slab waveguide we assumed one of the dimensions much bigger
than wavelength to simplify our problem by setting £, = 0 for TE mode and
H, =0 for TM mode. Setting transverse dimension finite, leads to 3D solution,
because electric and magnetic field is now dependent on y as well. Components
E., H, will be non-zero and modes are now so-called hybrid modes.
Assumption that electromagnetic wave dependency in z direction for all com-
ponents of the field is still in form describing harmonic wave propagating in z
direction with coefficient e /%2 where k, is phase constant along z. If that holds
true, we can then seek solution for z,y, z in the same way as before, utilizing
separation of variables as in (2.78).

It is also possible to show, that one of the components of the intensity of electric
wave in the transverse direction is substantially smaller than the dominant com-
ponent and it is possible to omit it. Even though z component of electric field
is smaller than the dominant one, we can’t omit it as it is not negligible. Also if
we would omit it the result would be the same solution as for slab waveguide.
Hybrid modes are often labeled by orientation of dominant component of electric
field as £ and EY. It is further specified by two indices EJ , where p — 1 is
number of zeros in x direction and ¢ — 1 are zeros in y direction.

Clearly, in EY modes E, will be the dominant one. Assuming weakly guided
wave, meaning that permittivities of all media are close, if we reduced the con-
trast to zero, the wave would become linearly polarized with only F, and H,
components and rest zero. Therefore, for weakly guided waveguides, the F, and
H, will be relatively small. For solving the problem, we first assume that H,

is negligible and with further evaluation, we will arrive to conclusion that such

assumption was justified [10].
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From this point, we will not be able to compare electric and magnetic field due
to difference in units, so we write electric field in terms of magnetic field and

unbound space impedance

E E
A R 2.11
Z = Z,V (2.110)

where Z is impedance of wave in unbound space (2.42), Z, in vacuum

Zo = |2 ~ 1207 (2.111)
€0
This is equivalent magnetic field intensity of a wave in medium with same pa-
rameters in free space.

With assumption of H, negligible as starting point, we can calculate the magni-

tude of H, from Maxwell equation
V-B=uV-H=0 (2.112)

Rewriting the divergence into components

OH,(x,y, z) N 0H,(x,y, 2) N OH,(z,y,2)
ox oy 0z

~0 (2.113)

and derivating for z, where all has dependency on e 7*:* and setting H, = 0

0H,(z,y,z) N 0H,(z,y, z)

k. H.(z,y,2) =0 2.114
= L gt (a2 (2114)
0
we get H, as a function of H,
Jj OH.(x,y, 2)
H.(z,y,z2) = -2 —20h=) 2.115
(2,9, 2) — (2.115)

By comparing the amplitudes (not phases) of H,, H, in (2.115) and assuming
new transverse propagation constant in x direction will arise after derivation for
T, we get

k. k,

This means, that amplitude of H, is always lower than H, by a factor of ,’j—: This

generally ensues from the separation to partial functions
k? =k + ky* + k.’ (2.117)
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According to [10] in weakly guided waveguide k., propagation constant for trav-
eling wave in waveguide, is comparable to k, propagation constant for plane wave
in free space with the same permittivity. Constants k, and &, which describe
the field in transverse direction are considerably smaller. This is intuitive from
the same idea of diminishing permittivity contrast, where in limit case of zero
contrast, wave will not be guided and becomes plane wave, whose propagation
constant k = k.

Setting amplitude of H, = 1 as a reference value, than H, will be ¢ times smaller
(first order of §)

§ k—; <1 (2.118)

Further, from adjusted Maxwell equation for wave guided in z direction we can
proceed similarly as in (2.79), where after derivation for z direction, we are left

with —jkz and with consideration of H, = 0

Xo Yo 20
X<l 9 —ik .
VxH=V xH(z,y,z2) = oz dy J R | = jwepe, E

(2.119)
then
OH,(z,y, 2) . 0H (z,y, 2)
oy ox
OH,(x,y,z .
2o (_%) :]wgoe’ir (XOEI<x,y,Z> +y0Ey(.1',y,Z) +Z0EZ($7y7Z))

(2.120)

Now we can start to evaluate each component of the field and estimate its mag-

nitude. For £, from (2.120) we can write

O0H.(x,y, z)

2.121
e (2.121)

Jjweoer By(x,y, 2) = —jk,Hy(z,y, 2) —

If we want to compare magnitude of amplitudes, it would be useful to modify F
into form from (2.110). We achieve that by dividing with jk

i@HZ(x,y, 2)

o (2.122)

1 1
j—kjwsoery(x,y,z) = —j—kjszm(:z;,y,z) —
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and the result is

E,(z,y,2) k. jOH, (z,y,2)
2 Ry gy, ) 4 102 2.123
7 ? (z,y,2) + R ( )

Left side of the equation is derived as follows

weep Lo L VE_ Ve ] (2.124)
Eo2ya T me/e B 7y 2 '

When analyzing the magnitude second part of the right side in (2.123), we can

notice the derivative for x. From (2.116) we will get factor 4% and therefore we

can assume the second part negligible compared to the first component.

k>
= ﬁ |Hx($,y,2)| R 62 ‘Hx<l’,y, Z)‘

(2.125)

Ky

k

1|0H,(x,y,2)
et EANT TN PR LERT )
| L0 1K )

k ox

Afer all, we arrive to conclusion that £, is of the same order as H, and can be
calculated from

Ey(ZE,y,Z) o ka

E, and H,are therefore the main components of £¥ mode.

Rest of the components are calculated very similarly [10]. From (2.120), for E,

Hx ) Y
Jjweoer Er(x,y, 2) = —W (2.127)
Y
divided by jk as before
Ep(z,y,2) 1 OHy(x,y,2) (2.128)
Z jk dy '

While comparing the amplitudes we assume k, ~ k, and therefore £, is smaller

with factor of 6% (2.118)

By (2,y,2)
Z

— l ‘aHx(;B,y,z) —
k 9

b | H, (2, )| =
kok,
kQ

v
k

H,(2,y.2)] = 8|y, 2)| (2129

component F, is therefore negligible in 7% mode. Lastly, F, from (2.120)

_O0Hy(z,y,2)

Jweoe B, (1, y,2) = o

(2.130)
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divided by jk again

Z jk oy '
and in form as before
E.(x,y,z) 1 0H,(x,y, 2) k,
N e Y H ~0|H 2.132
)| | OS] B ) 0 )] (2132

we can see that E, is smaller by factor of 9.
To summarize, when evaluating £Y mode, we take F, and H, as main compo-
nents, next we consider F, and H, smaller with factor ¢ and omit E, and H,

smaller with factor 82 than reference values.

2.2.10 Rectangular waveguide with £Y modes calculation

In previous section we derived, that rectangular waveguide with EY modes has
E,, H,, E,, H, components and all of them are possible to write in terms of H,.
From Marcatili method [13], we can mark rectangular areas above and next to
inner part of the waveguide and write their equations, viz. Figure 2.9a. Areas
around corners are ignored. Boundary conditions are assumed to be unchanging
along the interface and the effect of corners is again neglected. Setting both
horizontal and vertical outer areas with the same permittivity, we can solve the
field distribution only for the top and right side (z, y > 0) and take advantage
of symmetricity. In the inner section of the waveguide, traveling wave with
coefficient k, and standing wave in transverse direction x,y is formed. Solution
is similar to (2.83), but now add distribution along the y axis as well. Solving
these partial functions always leads to sum of sine and cosine, so even and odd
solution respectively [13]. We evidently can rewrite it using complex exponential

as well
H.i(z,y, 2) = Cy cos(ks - 4 ¢p1) cos(kyr -y + gbyl)e_jkz"z (2.133)

In are 2 above the core, field distribution will be in a form of evanescent wave,

in layer below, symmetrical relationship hold true
Hao(z,y, 2) = Cycos(kyg - & + ¢go)e 02 Y g77ke = (2.134)
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Form of these equations comes from boundary condition of the traveling and
standing wave along the z axis, thus the same cosine function for x and complex
exponential for z.

In section 3 on the right side, we have equivalent solution
Hos(w,y,2) = Cycos(kys - y + ¢yz)e 37 e ik = (2.135)

For interface between 1 and 2 we know, that to satisfy boundary conditions,

following constants have to be equal
kg = ke = kxa ¢x1 = ¢x2 = ¢X (2136)
Analogically for interface 1 and 3

kyr = ky3 = ky, by1 = Py3 = @, (2.137)

Equations are simplified into

H,i(7,y,2) = Cy cos(ky - @ + ¢,) cos(ky -y + ¢, )e 957 (2.138)
Hao(2,y, 2) = Cycos(ky - o + ¢, )e 02 e7dke2 (2.139)
Hya(o,, 2) = Co cos(ky -y + g, )e™= ¢~k (2140

Next we can set the boundary conditions on the two interfaces. For these con-
ditions to be satisfied, tangential component of intensity of electric field E and
tangential component of magnetic field H have have to be the same on the inter-
face. Equivalently, same holds true for normal components of electric induction
D and magnetic induction B.

First, we take a look at the top boundary between 1 and 2. For tangential
components of F,, H,, E,, H, [13]

H,(z,y,z) (2.141)
] 8HI ) ?

E.(x,y,2) = —2 (2, 2) (2.142)

Jweoe, oy

j OH.(2,y,2)
H.(z,y,z2) = —L L0 82) 2.143
(@3,2) = — L 2 (2,143
and for normal components of F., H,, E., H,

—k,
Dy(z,y,2) = coe,r By(x,y, 2) = — Hy(x,y, 2) (2.144)

w
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From these equations it is possible to see that if values at boundary of (2.141)
H.(x,y,z) and (2.142)

1 0H
Hao.9) = = 25D, fory — by (2.145)

are equal, the rest components will be equal automatically. Next we can apply

conditions from (2.145) to find field components at upper interface for y = h/2,
for H, from (2.138), (2.139)

h
Cy cos(ky - 5 + ¢y) = Cpe ko2 (2.146)
iaHzl(x7y7 Z) — iaHaﬁ("Euy?Z) (2147)
Erl ay Er2 ay
then

k k

— 2L Cy sin(ky - h +¢y) = — Y2 Cpe kv (2.148)
Er1 2 €r2

Dividing (2.148) and (2.146), we apply the same process as before for slab waveg-

uide, we eliminate constants C'

h 1k
tan(k, - 5 +,) = i—;kﬂ (2.149)
T y

Plugging y = —h/2 for lower boundary, we get very similar result as (2.149)

_g,) = ke (2.150)

h
tan(k
an( o K,

Y2
Rewriting (2.149) and (2.150) and putting them together, we get dispersion

relation to one half of the solution for unknown constant &, and ks
kyh = 2tan~! (5—1@) +qm (2.151)

er2 ky
We can notice that the resulting relation is completely identical to (2.107), rep-
resenting TM mode in 2D waveguide. Here we define it as so called W waveguide
[13], viz. Figure 2.9b Applying the same procedure for side boundary, we come
to a conclusion that resulting dispersion relation is identical to TE mode in 2D
waveguide (2.95), viz. Figure 2.9¢

k,w = 2tan”! (%) +p7 (2.152)

T

29



Ez,Hz Hx

&I €12

E
€ €I €
0

<> lc——> X
w/2 w/2
e W -
/\\/\
(b)
A
y
&Iz
N Iy
N y 0 E T <>
\ X
> \ h/2 K €r1 (
&Iz

(c)

Figure 2.9: (a) Diagram of rectangular waveguide with core width w height h,
core and cladding permittivity €,1, €2 respectively, (b) equivalent 2D waveguide

W, (c) equivalent waveguide H, images redrawn from [10]
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2.2.11 1-D periodic structure

From the theory of quantum mechanics, we know that electrons can propagate
through perfect crystal lattice periodic potential as waves, without scattering if
they meet certain criteria. However, such lattice can also prevent propagation
of waves of certain energy level in a certain direction. This phenomenon is de-
scribed as energy band gaps (forbidden bands) in the band structure of solids.
Having strong enough potential, the crystal lattice forbidden gap can and pre-
vent propagation in all directions and forming a complete band gap. An example
of complete bandgap could be in semiconductor, between valence and conductive
energy bands. Analogically, structures with a periodical arrangement of differing
dielectric constants (or index of refraction) can exhibit similar behavior for pho-
tons. If the difference in dielectric constants is adequate and the material loss
is small we can produce a lot of the same phenomena as electrons show in the
crystal. One of the main uses for such periodic structures is a formation of pho-
tonic band gaps - restricting propagation and reflecting certain wavelength band.
Quarter wave stack, also known by may more names, such as distributed Bragg
reflector, Bragg grating, one-dimensional photonic crystal, consists of stacked
layers of material with alternating reflective index. An incident light wave of an
appropriate wavelength corresponding to the structure period is in part reflected
at each interface. If the structure is periodical the multiple reflections destruc-
tively interfere with propagating wave and thus eliminate it. This principle is
utilized in many present-day devices, such as Distributed Feedback Lasers, fiber
grating filters and Bragg assisted contra-directional couplers to name but a few.
All of these structures are periodical in one dimension, therefore by definition,
they are called one-dimensional photonic crystals.

Reciprocal lattice is defined as Fourier transform of a lattice. Lattice is a

periodic spatial function also called direct lattice. If we define
f(r)
as a periodic function on such lattice, then
f(r)=f(r+R)
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Figure 2.10: Wigner-Seitz cell of proposed contra-directional coupled structure

where

R

is so called lattice vector and it translates the lattice onto itself [14]. Given
reciprocal lattice, we can define unit cell sized one period called Wigner—Seitz
cell or first Brillouin zone.

Schematic of Wigner-Seitz cell of contra-directional coupler structure is shown

in 2.10

2.3 Coupled Mode Theory, Perturbation The-
ory

Many structures can be derived from coupled mode theory, including filters,
co- and contra-directional couplers with and without periodic perturbation, etc.
Let’s consider two electromagnetic modes with complex amplitudes A and B and

propagation constants [5; and fs.

Ea(x,2) = A-exp—jf12Ep(z,2) = B - exp —jfaz (2.153)
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where A and B are constant.

Faced with perturbation, such as periodic field or waveguide corrugation,
power is partially or fully exchanged between the modes. In such case, the
modes amplitude A and B is no longer constant but they will be dependent on

propagation, z, direction

dA :

_d = k1o B exp_]éﬂz (2154)
z

dB :

— = A exp 4992 (2.155)
y4

where k12 and k9 are coupling coefficients are derived from physical structure
under consideration, 03 is detuning parameter depending on both i, f; and

spatial characteristic of the perturbation. There are couple situations

2.3.1 Co-directional Coupling

In case of co-directional coupling, modes E, and E, propagate in the same
direction. If we set |A|*> and |BJ? to be equal to the power of the modes E,
and Ey, respectively, the we can express power conservation over propagation

direction z as

d
(A2 +|BI*) =0 2.156
Z (AP + |BP) (2156)
it can be shown, that this is satisfied for
K192 = —Iisl (2157)

Then, if we set initial conditions so one mode is incident on the structure in

z = 0 while the other is zero

E,(0) = Ay Ey(0) =0 (2.158)



2’iab —j88= . 1 2 )
B(z) = Ag———=¢"72 sin | =\/4r2+ 65" - 2 2.160
(2) 0 4k%2 +6p (2 b ( )

where k = |k13|. When 05 = 0, the phase matching condition is satisfied and
power is fully transferred between the modes with spatial periodicity. Modes can

them be written as

E.(2) = Age™"* cos(kz2) (2.161)

2 .
E, = Aoﬂe*zﬁz sin(kz) (2.162)
K

2.3.2 Contra-directional Coupling

Contra-directional coupling principle is used for device design in this work,
therefore more attention is paid to this subject. Bragg grating assisted contra-
directional couplers (CDC) are extensively utilized as wavelength selective add-
drop filters. Conventional CDC consists of 2 dissimilar waveguides and periodic
perturbation realized either by corrugating waveguide sidewalls or the slab be-
tween waveguides. Due to the waveguide asymmetry, there is little to no con-
ventional directional coupling and contra-directional coupling is utilized instead.
The Bragg grating matches the phase and provides necessary momentum for
coupling the forward propagating mode in one waveguide into the backwards
propagating mode in the other. There are two conditions allowing for mode cou-
pling - direct Bragg coupling and exchange Bragg coupling.

Direct coupling occurs between modes of the same waveguide and it is a coupling
of forward propagating mode back into the backwards propagating mode, caused
by constructive reflection by Bragg grating. It occurs when one of the following

conditions is satisfied [15]:

261 (wy) = (2m) /A 205 (w2) = (2m) /A (2.163)

where (1, P2 are the propagation constants of first and second mode of the
coupler structure, w; ,wo are central frequencies of reflected light, and A is grat-

ing period. This causes back reflection, limits spectral range of coupler and is
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therefore unwanted. To increase free spectral range wo — w; high asymmetry is
usually required.

In the proposed structure, showed in , input waveguide with multiple wave-
lengths is simple strip waveguide containing no perturbations, therefore will be
very little back reflection. Nevertheless, there still will be back reflection from

the subwavelength waveguide at wavelength
P2 =~ (2.164)

In exchange coupling, mode of the first waveguide is reflected and coupled
into back-propagating mode of second waveguide. Bragg exchange condition is

as follows[15]:

Pr(w) + P2 (w) = (2m)/A (2.165)

where w is reflection central frequency. In this case Bragg grating is providing
necessary momentum to transfer first (forward propagating) mode into second
(contra-directional) mode.
This approach is approximation with assumption of big separation of the cou-
pled waveguides and therefore orthogonality of the propagated modes. Now we
define four modes of the structure, with amplitudes A; and B; where ¢ = 1,2
corresponding to waveguide 1 and 2. Amplitudes denoted with A are of forward
propagated modes and B are of backward propagated modes. Electric field in

the structure can therefore be expressed as
E = (Ai(2)e 7 + B1e/™) - Ui (z) + (As(2)e 7 + Boe!™) - Us(z)  (2.166)

where (31, (o are propagation constants of waveguide 1 and 2 respectively,
and U, Uy are transverse distributions of electromagnetic field. The mode am-

plitudes are z dependent, due to the coupling introduced by Bragg grating.
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Chapter 3

Device Design and Description

3.1 Device characterization and analytical ap-
proximation

From contra-directional phase matching condition (2.165), we can predict several
ways to adjust center wavelength. First, on the left side of the equation, there
are propagation constants of the two waveguides in the structure. By changing
the dimensions of the strip waveguide, effective index of refraction is modified
and therefore propagation changes. In this work, we use relatively narrow strip
waveguide and thus the light is not perfectly confined in the core and we can
expect notable change with the change of the width. Propagation constant of
subwavelength waveguide can be changed either bu changing its dimensions, as
in strip waveguide, or by changing its duty cycle. In this work, modulation
of duty cycle is not investigated due to possible difficulties later in fabrication
process. Since light is much less confined than in traditional waveguide, the
change of effective index with change of dimensions is expected to be much less
pronounced. Lastly, we can adjust the Bragg reflection condition by varying the

pitch of the SWG. Pitch has traditionally strong effect on the reflected waveguide.
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3.1.1 Demultiplexer Overall Design

The demultiplexer block schematic is shown in Figure 3.2. It is comprised of
Mach-Zehnder Interferometer (MZI), and four channel dropping segments. MZI
is a band pass filter to separate the 8 channels (L0 - L7) into 2 groups of 4 (L0 - L3
and L4 - L7), each group continues to contra-directional coupler segments. There
are 2 segments in each branch and each segment is able to drop 2 channels. To
ensure good separation of dropped channels and to limit crosstalk, each segment
drop either odd or even channels, i.e. first segment in upper branch drops channel
L0 and L2, the second one L1 and L.3 and analogically in the lower branch. Input
and output signals are coupled by Bragg grating couplers.

3.1.2 Mach-Zehnder Interferometer

Schematic of Mach-Zehnder interferometer schematic is in Figure 3.1. It consists
of 3 directional couplers, C1, C2 and C3 with coupling length CL1 = 7.03um,
CL2 = 4.27um and C'L3 = 1.73umrespectively, coupler gap g = 0.2um and
waveguide width w = 0.32um. Interferometer arms M1 and M2, longer arm
comprised of 4 quarter circle segments with radius » = 6um and length ad-
justing segments al = Oum and a2 = 10pum. Arm difference is therefore

Aly = (27 + 2a;) — 4r and Aly = 2Al4.

Input W ) II' |&I
_—>
: ) N—S
_/C@\ Iﬁl clz cls
Yoy O T
y

Figure 3.1: Schematic of 2 stage Mach-Zehnder interferometer bandpass filter

First stage of Mach-Zehnder interferometer was simulated and optimized to
set the —3dB band crossing to the LAN-WDM empty channel at 230.67 H z(1300.05um).

Result is plotted in Figure
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Figure 3.2: Block diagram of de/multiplexer

3.1.3 Contra-Directional Coupler Segment

The schematic of contra-directional coupler segment is in Figure 3.4. It consists
of throughput channel (7") with width W and two drop channels on each side(D;
and Ds) with width Wp; and Wpy. G and Gy are gaps between T and D,
Dy respectively. Throughput channel 7" is strip waveguide and drop channels D,
and D, are subwavelength waveguides with pitch Ap; = Apy = 340nm , number
of periods Np; = Npz = 1300 and duty cycle DC = 50%. Cladding for the
whole device is Si05. The height of all waveguides is 220nm, as a standard in
SOI technology for passive optical devices. W was chosen 280nm, W, and
W s are variable to adjust demultiplexing channels. Subwavelength waveguides
are shifted relative to each other by A/2 to minize their mutual interaction and
thus reduce crosstalk.

In the last 50 periods of the segmented waveguide D and D, taper is realized
to couple light into conventional strip waveguide P; and Ps [16]. Waveguides
W1 and W, are linearly decreased over the 50 periods until the widths match.
In last 10 periods, bridging elements are introduced to help make the mode
transition smoother. Width of these elements is increasing from 150nm to Wp;

or Wpy. Taper is linearly chirped to period of 300nm.
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Figure 3.3: Simulated spectrum of first stage of Mach-Zehnder interferometer
with -3 dB band crossing at 230.67 H z(1300.05um) corresponding to empty chan-
nel of proposed LAN-WDM grid

3.1.4 Apodization

Bragg reflector is an attractive solution for integrated filters. However, Bragg
grating on its own doesn’t have sufficient spectral properties such as large side
lobes, which is undesirable. Side lobes are a result of reflections from ends of
the grating and making Fabry-Perot resonator and in contra-directional coupler,
they cause crosstalk between adjacent channels. Apodization of Bragg grating
structures is a gradual modification of perturbations along the length of the struc-
ture. Modulating coupling coefficient is an effective way of suppressing the side
lobes. There are number different ways practical realization, i.e. sampled grating
[17] varying etch depth or perturbation size for side wall corrugated waveguide
[1]. Lastly, for contra-directional coupler, there is the possibility to control cou-
pling coefficient by modulating gap between through and drop waveguide. It
has been shown that for best results Gaussian profile of coupling coefficient is
recommended.

Each segment of SWG is shifted in transverse direction over longitudinal direc-
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Figure 3.4: Schematic of Drop Channel Segment

tion. Gaussian distribution can be expressed

_ (z—7p)*

flz) =A-e 22 (3.1)
where A is the amplitude, Z,, is maximum length, and c is variance, giving

shape of the curve.

Therefore x coordinate of ith segment of SWG is given by

. _(i=N/2)?
(1) = Toaz - € 22 — Tpax — G (3.2)

where z; is x position of ith segment, x,,,, is magnitude of the apodization, N
number of periods, ¢ variation parameter, and G is the smallest gap between the
center waveguide and SWG. The gap in the center of the structure is varied from
0.36um to 0.42um to account for increasing reflection bandwidth with increasing

center wavelength.

3.1.5 Analytical approach utilizing Marcatili method and
Coupled Mode Analysis

To analytically describe our design of contradirectional coupler, Marcatili method
derived before was utilized. To employ Marcatili and Coupled Mode Analysis,
subwavelength waveguide had to be approximated by a rectangular waveguide.
However, it has proven very difficult to accommodate all properties of SWG

using only one equivalent waveguide. For example, if we match propagation

40



constant, the electric field will be much more confined inside the waveguide,
limiting coupling coefficient between the waveguides. Furthermore, it will be
shown, that using basic formula to calculate effective index of refraction of SWG
from [18]

ness = V-(Dni + (1= D) - n3) (33)

will not give appropriate results, since it doesn’t take transverse dimensions into
account. With these considerations taken into account, subwavelength waveg-
uide was approximated by two different waveguides, first, for propagation con-
stant calculation and second for mode profile to be used in coupling coefficient

estimation.

Calculation of waveguide parameters for center strip waveguide

The central strip waveguide has known dimensions width w = 280nm and height
h = 220nm, relative permittivities of core €,1 = n? = 12.2 and cladding ¢,2 =
n2 = 2.1025.

First, we calculate propagation constant in y axis, the H waveguide.

Taking equation from (2.151)

1 [ Eri Ky
kyh = 2tan™! | =& 3.4
b= (2232 (3.4)
and rewriting for ko
€2 k,h
kyo = kye,,l tan (%) (3.5)

Using basic relations

ky = \/k} + K2y, kyo = \/ K2y — K3 (3.6)

where k,H is sought propagation constant.

Adding equations from (3.6), we can eliminate k, H and get following relation

sqrik; + kiy = \/ ki — k3 = %j €12 — €,22 (3.7)
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Plugging (3.5) to (3.7)

.2 k,h\ 12
sqrtkz + k‘§2 = sqrtk‘; + [k:f tan (L)} = %\/erﬂ — €22 (3.8)

€1 2

From Equation (3.8) we get transcendental equation for k, which we have to

solve numerically

"2 k,h\1°
sqrtk; + {kyz [ tan (%)} = % €12 — ¢,22 (3.9)

For w = 230.67THz(1.3um) and previously stated aterial and dimensional
parameters, we get

1
k, = 10.153 - 10°— (3.10)
m

Having found k,, we can now calculate propagation constant for H waveguide

k. = /K — k2 =13.531 - 10° (3.11)

where ky = kov/€,1 and ky = ¢ is free space propagation constant.
Propagation constant for equivalent W waveguide can be obtained in similar

way from dispersion relation for TE mode, viz. (2.152)

k
k,w = 2tan™! (kﬂ> (3.12)
again rewrite for k.o
k,
k.o = k, tan ( 211)) (3.13)

basic equations for W waveguide propagation constant
ky = k12 - sz27 Keo = v kZW2 - k22 (314)

adding them together

w
\/kx2 -+ k$22 = \/k12 — k22 = E\/ Erl — Er2 (315)

substituting for k.o we get transcendental equations for k,

kow\ 1>
\/kx2 + {kx tan ( w)} = %\/arl — &0 (3.16)



and numerically solved

1
k, =8.77- 106% (3.17)

and finally, propgation constant k,y, of W waveguide

1
kaw = 1/ki® — k,* = 14.465 - 10°— (3.18)
m

Combining k. and k.yy we get total propagation constant of the calculated

waveguide

1
k,=p8= \/kZH2 + k'’ - k= \/k12 — k¢ K =10.304-10° (3.19)

Approximation of propagation constant of subwavelength waveguide

Previously referenced formula for estimating effective refractive index [18] n.ss =

VD -n2,. + (1— D) n?,, requires slabs with infinite transverse dimensions and
thus yields substantial error for narrow SWGs. The electric field in high-index
part of SWG isn’t completely confined and the electric wave will propagate with
an effective index of refraction lower than the index of refraction of the high-index

material. Therefore, we propose to calculate the approximate effective index of

SWG with the following edit

Neff = \/D ’ ngffwg + (1 - D) : nglad (320)

where negpyg is an effective index of refraction of the equivalent rectangular
waveguide with same transverse dimensions.

We can now compare approximations and numerical solution of the propaga-
tion constants. Four methods were employed. The first method is analytical,
calculating the equivalent waveguide effective index from propagation constant

obtained by Marcatili method described before

s
neffwg = /{2_0 (321)

and plug in (3.20).

Second, similarly as the first method, but we use Lumerical FDE solver to obtain
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Figure 3.5: Comparison of subwavelength waveguide effective index of refraction
approximation to numerical method for SWG width from 0.25um to 0.4pum and
frequency f = 230.67THz

the equivalent waveguide effective index. Third, the approximate average is
calculated by the formula from [18]. Lastly, we compare all the approximations to
propagation constant of SWG directly calculated in Lumerical FDTD Solutions
by bandstructure simulation.

In Figure 3.5 we can see the resulted propagation constants for SWG width
from 0.25um to 0.4pum and frequency f = 230.67'Hz. The method of averag-
ing material yields the biggest difference compared to numerical bandstructure
simulation and doesn’t show the relationship between the width of SWG and its
propagation constant. Proposed new method closely follows the rising trend seen
in numeric simulation. Difference between approximations and the simulation
can be seen in Figure 3.6

Average index of refraction method shows as much as 80% difference for
SWG width 0.25um and around 40% for 0.4um, whereas proposed method of
calculation is better than 20% for all widths. This new method of calculating
the effective refractive index of the subwavelength waveguide will be of great use

for analytically describing proposed contra-directional coupler structure.
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Figure 3.6: Difference between simulation and calculated approximation of SWG

effective refractive index

Calculating central wavelengths of signal transmission

Having both, central waveguide and SWG, analytically described, we can calcu-
late propagation constants for any chosen waveguide dimension and frequency.
In propagation constants for strip waveguide of width w = 280nm and four SWG
widths w1l = 250nm,w2 = 300nm,w3 = 350nm,w4 = 400nm are plotted.

To get desired frequency of power transmission, we can graphically display

contra-directional coupling condition

Bswa + Bwa = Krefiected (3.22)

where Ssw g and By are propagation of subwavelength waveguide and strip
waveguide respectively. kyefiectea = %’“ is Bragg reflection condition and A =
340nm chosen period of SWG, in our case we calculate with 340nm. In Figure
we can see propagation constant sum of each SWG with strip waveguide giving
us left side of equation (3.22) and line kyefrectea = 18.48 - 10%(1/m) representing
right side of (3.22). Crossing of the lines means fulfillment of condition (3.22)
and transmission of energy from strip waveguide to SWG.

Finally, we can plot the resulting transmission frequencies, converted to wave-

lengths for convenience, against SWG width, viz. Figure 3.9.
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Figure 3.7: Calculated propagation constants for four different SWGs and one
strip waveguide. Widths of SWGs are SWG, = 250nm, SWGEy = 300nm,
SW Gz = 350nm, SWG = 400nm, strip waveguide width is 280nm
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Figure 3.8: Graphical representation of contra-directional coupling condition
(3.22) for four SWGs SWG; = 250nm, SWGy = 300nm, SWGs = 350nm,
SW (G4 = 400nm and strip waveguide WG with width 280nm
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Figure 3.9: Transmission frequencies of contra-directional coupling for four

SWGs SWG, = 250nm, SWGEy = 300nm, SWGs = 350nm, SWGE, = 400nm
and strip waveguide WG with width 280nm

In this section, we have analytically described dependency of transmitted fre-
quency of contra-directional coupler structure with strip waveguide and a sub-
wavelength waveguide on the width of the SWG. Analogically, we could plot
the same relationship for different widths of the central waveguide, different
materials, or SWG pitch. This gives us all the tools we need to engineer our

contra-directional coupler from wavelength point of view.

Mode shapes based on Marcatili method

To calculate field distribution in a rectangular waveguide using the Marcatili
method, we split it into sectors, viz. Figure 2.9a. Taking advantage of symmetry
of the structure, where all cladding sectors have the same €,2, we can calculate
from 0 — w/2 for x and 0 — h/2 for y and mirror the rest along the axes.

As derived before, modes are calculated as superposition of two slab waveguide
modes, TM and TE, each of them is either along z axis or y axis. Field in core,

sector 1, can therefore be expressed as

Ui(z,y) = C cos(kyx) cos(kyy) (3.23)
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where each cosine represents field distribution of 2D, TE or TM mode.

In upper cladding, sector 2, field distribution is given by
Us(x,y) = Cy cos(k,x)e” kyay (3.24)

where first cosine is representation of mode in = direction and the exponential is
evanescent part of mode in y direction.

Analogically for sector 3, with swapped x and y.
Us(z,y) = Cscos(kyy)e kysx (3.25)

where k,, kyo and k,3 are propagation constants for y or x direction in sector 1,
sctor 2 and sector 3 respectively. These constants can be calculated by plugging
k, or k, from previous section back into dispersion relation.

r2 h
Ky = b, tam (ky§> s =k, tan (k%) (3.26)

For our case of rectangular waveguide of width w = 280nm and h = 220nm
with core material €,1 = 12.25 and cladding €,2 = 2.1025 and working frequency
f =230.6TH z result is

kyo = 11.574 - 10%, kpg = 12.654 - 10° 3.27
Y

We can notice three constants C',Cy and C'3. The first constant C represents
amplitude of the field for x,y = 0. We can set C| = 1 for now. C5 and C} are
calculated so boundary conditions on upper and right interfaced are fulfilled.
(3.23) has to be equal (3.24) for y = h/2 and 0 < z < w/2. If we set © = 0 and
y = h/2, we get following relation

Ui(z,y) = Us(,y) (3.28)
C cos(kyx) cos(kyy) = Cy cos(kyx)e” kyy (3.29)
cos(k‘yg) = Cge_kyg (3.30)
ko h
¢y = OWua) 7o (3.31)
€ Ry

Similarly for Cs, (3.23) has to be equal (3.25) for 0 <y < h/2 and z = w/2.
If we set y = 0 and = = w/2 then
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Ur(,y) = Us(z,y) (3.32)

C cos(kyx) cos(kyy) = Cs cos(k‘yy)e kysx (3.33)
cos(k, %) Cse™ l<: 2 (3.34)

- %k? —2.291 (3.35)

Now we can calculate the field profile for each sector and put them together
to form one mode. Of course this method is limited to sectors in vertical or
horizontal direction from core and we cannot solve the field profile in corner
sections. Calculated mode profile is in

Field in SWG is generally very loosely confined, therefore to simulate its
properties, we need to approximate it with very thin waveguide. For field profile
calculations, we will replace the SWGs profile with rectangular waveguide of
width merely w = 170nm and height h = 220nm, its mode profile is in Figure

Before we move on, we need to normalize the modes to a power of 1W. To do
that, we begin with electromagnetic field power formula, for electric and magnetic

fields perpendicular.

P =

=1 .
2wuo/ \U(z,y)Pdxdy = (3.36)

where U(z,y) is electroomagnetic field distribution, f is propagation constant

and o permeability of free space. Therefore we need a coefficient K for which

dxdy =1 .
Ky //|Uasy| vdy (3.37)

2 _ 2wpo
K//]U(a:,y)] dxdy = 3 (3.38)

2wpio
B [ 1U (. y) Pdzdy

With field distributions power normalized, we can move on to calculating

K —

(3.39)

coupling coefficients.
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Figure 3.10: Calculated mode shape for rectangular waveguide with width w =
280nm and height h = 220nm using Marcatili method (a) surface plot (b) and
2D image

20



50

100

150

200

250

300

50 100 150 200 250 300

Figure 3.11: Calculated mode shape for rectangular waveguide with width w =

170nm and height h = 220nm using Marcatili method

Coupling coefficients x of contra-directional coupler

Coupling coefficients represent field overlaps between modes. In this case, we
are interested in mode interactions in the area of Bragg grating structure, which
is the whole subwavelength waveguide cross section. We will calculate xq; -
coupling of center strip waveguide mode into it own, causing backreflection in
the waveguide, k15 = K3, coupling between strip waveguide and SWG and vice

versa, and finally x99 back reflections in SWG.

K11 = % // Uy(z,y) - 06, (x,y) Uy (z,y)dxdy (3.40)
2 =5, = 50 [ [ Ui(a0) - 860 9) Vsl ) dody (3.41)
Koo = % // Us(x,y) - de,(x,y)Us(z, y)dxdy (3.42)

where w is angular frequency, U; (z,y),Us(z, y) are field profiles of waveguide and
SWG respectively, and de,.(z,y) is Fourier expansion of perturbation function.
We can notice that the perturbation function isn’t a function of z, because it
isn’t the perturbation amplitude, but a Fourier coefficient.

We can calculate it is this way
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de (z,y, 2 Z de (z,y) (3.43)

m=—1,1

der(z,y) / Sep(2,y, 2) - dmR)= (3.44)

de.(x,y, z) is function of permittivity in all spatial directions. In our case,the
perturbation is constant over x, y, because SWG is perceived as two homogeneous
blocks with relative permittivity €,; and €,5. The relative permittivities are also

constant in z direction for each half of the period. We will define new constant

€r1 + €r2

€ravg = T (345)

so permittivity in the first half of period will be

€r_first — €r1 — €ravg (346)
and second half

€r_second = €r2 — €raug (347)

Plugging these into (3.43), we get

1M -
561"(:177?/) - _/ 567«(1',:% Z) 'R zdz =
A Jy
1| A2 - A o
— / €r_first - €N zdz + / 0€r_second - €8 szdz | (3.48)
Ao A/2
therefore
o — 61 122521025
Aey, = jr2— g — j3.23 (3.49)
™ i
for m = 1 and previously specified materials. We can derive it for m = —1

as well and come up with similar result

Ae | = ﬁ% = . — j3.23 (3.50)
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Figure 3.12: Two modes in close proximity for coupling coefficient calculation

Now we can calculate each coupling coefficient by integrating given mode
shape over the SWG cross section. We place modes in Figure3.10b and Figure
3.11 in close proximity along the z axis, viz. Figure 3.12

Numerical values for each coupling coefficient, for €, = 12.25 €,, = 2.1025,
SWG dimensions w = 300nm, h = 220nm and gap between the waveguides

g = 100nm are

K1y = Ky, = j18.872 - 10° (3.52)
Koy = j1.911 - 10° (3.53)

We can see that k11 is very small, that is because the evanescent field of strip
waveguide isn’t very strong in the SWG cross section, whereas koo is very big

due to coupling of SWGs mode into itself. k15 is around expected value.

Utilizing transfer matrix method to solve field amplitudes along 2 di-

rection

To solve field at any place in space z,y, z, we can write it as a superposition of

modes propagating in both waveguides. We will have modes propagating in the
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forward direction, denoted with plus sign and in the backward direction, denoted

with minus sign. The field equation is then written [1, 19, 20]

E(r,y,2) = [AT(2)e 7P + A7 (2)e77 | U(a,y)+

[Bﬂz)e*jﬂ?z + B’(z)e’jgz] Us(z,y) (3.54)

where f; is generally complex propagation constant and is given by f; =
Bi; — ja. We will consider only lossless waveguides, therefore o will be zero and
real phase propagation constant § will remain. We can see the modes amplitudes
A" and B? are function of z direction now. Differential equation for each mode

are given [1, 19, 20]

dA*

= —j/fllA_QJQAEZ _ jmgB—ej(AEJrAE)z (3.55)
dBT . — _i(AB1+AB2)z . — j2ABaz
2
dA™ L ABs | o ox e —i(AB4AB)
7 = jKk]ATe + jrij,BTe (3.57)
AB™ . b —j(AFAB)s |, ok it —i28Ts:
— = JR] AT e ENTARIE 4 it BTe IR0 (3.58)
2

where AfB; = 3; — 4 1s detuning parameter. The differential equations can be
solved using transfer matrix method, where longitudinal relationship between z;

and zy is givem by [1, 19, 20]

E(z0) = C(20,21)E(21) (3.59)
where
_A+(Z)_
B = |FE| 2 Bi(z) (3.60)
E~(2) A~ (z)
_B*(z)_
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and C' is the transfer matrix. Its form can be analytically obtained from

solution of (3.55) and was done in [19]

C(20, z1) = 51(z:1770) g52(z120) (3.61)

and the matrices S; and Sy are given by [19]

JABy 0 0 0
0 A By 0 0
S = JAP: - (3.62)
0 0 —jAB, 0
0 0 0 —jiABy
and
SQ ==
—iABy 0 — Ky ed2AP12 — jKyged (APLFAB)2
0 —jAB, — jh1pel(AFIHAR)= — jripgel?A02
JRLETIABE eI (ARtAR): JAB 0
jrige VBIFARE gyemiaan 0 JAB:

(3.59) can be rewritten to [1, 19]

E*(2) Mt M*T | |ET (%)
E(z) = x E(z) = (3.64)
Ei(Z()) M—+ M~ Ei(Zl)
where matrix M is total transfer matrix, in case of uniform grating M = C'. If
we are interested in through and drop channel, Equation (3.59) in this form isn’t
very useful, because it has inputs and outputs on both sides. We can rewrite the

equation and separate inputs to right side and outputs to the left side. Matrix

C will get transformed into the following form

At (z) At (z)
Bre| _ [P0 (3.65)
A~ (20) A7 (z1)
_B‘(zo)_ _B_(zl)_
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where M’ is transformed matrix M and defined from [1, 19]

o M+ — M= (M+)tM—+ Mt (M)
N 1

(3.66)
() (M=)

Assuming input only from left side, A*(z) and BT (z), then A™(z;) and

B~ (z) will be zero. Finally, we can write the relationship between inputs and

outputs for uniform grating

[ A+(20) ] [ A*+(0) ]

B (1) _ B*(2) (3.67)
A~ (20) 0 .
| B~ (%) | 0]

To simulate apodized grating, we have to split the transfer matrix into partial

matrices aong the z direction [20]

Mtotal(07 L) = M<Lnfl> Ln) : M(Ln727 Lnfl)-'-M<L07 Ll) (368)

and each of the partial matrices will have its own calculated parameters, such
as modified coupling coefficient. With the total matrix calculated, the process is

then the same as for uniform grating.

Simulated spectral characteristics using coupled mode theory with

transfer matrix method

With all waveguide parameters known from previous calculations, we can now
numerically solve the transfer matrix from previous section. Again, we use the
strip waveguide width of wy g = 0.28um and four different SWGs with widths
wswar = 0.25, wswaz = 0.3, wswas = 0.35, wgwwags = 0.4 and period A =
0.34pum. At first, we will look at calculated spectral characteristics for uniform
grating, viz. Figure 3.13

We can see peaks of transmission for each SWG width in agreement with
previously calculated result, viz. Figure 3.9. Calculation for apodized grating

was also performed
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Figure 3.13: Calculated spectra for wyg = 0.28um, period A = 0.34pum and
wswar = 0.25um, wswage = 0.3um, wswas = 0.35um, wswas = 0.4pum using

transfer matrix for uniform grating method
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wswaz = 0.35um (d) wsweas = 0.4um
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Chapter 4

Simulation Results

4.0.1 Simulation Setup

To verify designed structure, analytic approximation and various numerical sim-
ulations were performed. Derived analytic approximation using Coupled Mode
Theory with transfer matrix method was calculated in Matlab and most numeri-
cal simulations in this work were done in Lumerical MODE Solutions, Lumerical
FDTD Solutions, and Lumerical Interconnect. Lastly, the design was also verified
in IMT Photonic Bands using a different method of obtaining band diagrams.
MODE Solutions is design environment for analysis and optimization of various
passive optical components, such as integrated optics, tapers, couplers and res-
onators, Bragg gratings and more. It features modal analysis for investigation
of spatial fields, modal frequency analysis, confinement factor etc., Bidirectional
Eigenmode Expansion (EME) propagation ideal for long periodic structures and
large propagation length and variational FDTD (varFDTD) for very fast analysis
of structures with planar waveguide geometries|21].

Finite-difference time-domain (FDTD) method of simulation is very accurate and
versatile technique for simulating various problems in nanophotonics. However,
it can be very computationally exhaustive when large amount calculation points
are used. This mainly is a problem of 3D FDTD, which makes it difficult to sim-
ulate large structures. The varFDTD provides comparable accuracy, but with

speeds only slightly bigger than 2D FDTD. The method involves collapsing 3D
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(a)

Figure 4.1: (a) XY and (b) YZ views for bandstructure simulation in Lumerical

FDTD

structures into 2D, converting the third dimension into dispersive materials that
account for classic material properties as well as waveguide dispersion [21]. As
opposed to Lumerical Suite, IMT Photonic bands use simulations in frequency

domain.

Lumerical FDTD bandstructure simulations setup

To calculate bandstructure simulations in Lumerical FDTD, we set simulation
region length in z direction to the length of one period of SWG and boundary
conditions set to be periodic, basically copying resulting fields at the end back
to the beginning and applying phase correction at the same time. XY and YZ
views exported from Lumerical FDTD are shown in Figure 4.1. Mesh is selected
to be dividing the simulation region in z direction into 16 equal lengths to make
sure that period is calculated correctly. In z and y direction, mesh is set to
automatically accommodate the structure dimensions. Simulation time is set
2000ps for spectral peaks to develop correctly and minimize noise. There are
10 time domain point monitors scattered in the simulation region, for any given
k, Bloch, vector, each of them is evaluated by a script and result converted to
frequency by Fourier transformation. Sweeping the Bloch vectors will result in

bandstructure plot.
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Figure 4.2: XY view of spectral 3D FDTD Simulation

Spectral simulation with Lumerical FDTD and Mode

Simulating long structures by FDTD simulation is very time inefficient, therefore
we try to utilize the bandstructure simulation technique as often as we can. For
simulating spectral properties, there are not many other choices left. Especially,
if we want to simulate non-uniform grating, such as apodized or chirped. To un-
derstand spectral properties, we utilized mainly Mode Solutions 2.5D varFDTD.
With speeds close to 2D FDTD, it gives better results. However, it will be
shown later that we cannot rely on the frequency results, however, the overall
spectral shape is still useful. Thus, we use 2.5D to show spectral shape prop-
erties with high-resolution mesh and 1300 periods, and 3D FDTD to compare
the peak reflected wavelengths with bandstructure simulation. However, even
with low amount of periods, we can not afford very high-resolution mesh. It will
be shown that reflected wavelength and spectral shape is strongly dependent on
mesh size. For this reason, bandstructure simulation is regarded as the one clos-
est to the real characteristics of proposed structure. XY image from simulation

of our apodized contra-directional coupler segment is in Figure 4.2

4.0.2 Simulation Results and Optimization of parameters

When analyzing and optimizing presented structure, we have to consider the

basic condition for contra directional coupling (2.165)

2m
b1+ P2 = n (4.1)

and Bragg reflection condition (2.164)

™

BTeflected = (42)

= |
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To achieve good spectral results we need to keep propagation constants 3,

and [, dissimilar enough so unwanted backreflection (4.2) is not satisfied in wave-
length band satisfying (4.1). The propagation constant of the strip waveguide
is adjusted by changing the width, the propagation constant of SWG can be
adjusted either by modulating a duty cycle of segments or similarly to a regular
waveguide by adjusting the width of segments. In this design, the latter was
chosen for simplicity and necessity to follow fabrication design rules. Finally, we
can adjust the pitch of SWG segments to control Bragg reflected wavelength. It
will be shown, that pitch and width of the center strip waveguide both have very
big impact on the wavelength of reflected mode, therefore we use them to set the
overall channel wavelength band (in this case around 1300nm for O-band). The
width of SWG has less pronounced effect so we can utilize it to tune the final
wavelength for each channel.
In this section, simulation results for the design parameters are shown. Simula-
tion is done with 3D FDTD by bandstructure simulation method. This kind of
simulation allows us to see excited modes of each subwavelength waveguide and
strip waveguide.

In following graphs of this chapter, we will see propagation constants of strip
waveguide plotted against propagation constants of subwavelength waveguides.
From the nature of SWGs and all periodic structures, diffraction graphs will
mirror along the irreducible Brillouin zones. Even though simple strip waveguide
isn’t a periodic structure by itself, we introduce artificial periodicity by limiting
simulation length to one period of SWG. We can take advantage of this mirroring
for evaluation of the results by plotting diffraction graphs for 0 < k3= < 0.5
and determining the reflected frequency by observing the crossings of diffraction
lines of SWG and mirrored waveguide plots. When the lines cross they will have

following propagation constants

knorm,SWG =4q- in, 0< q < 0.5 (43)
T
a a a a a
knorm mirred — Y.9 T ( WD — (- k_> = — —q-k— 4.4
G- a=0 527T 0 527T 4 2 2 q 2 (44)
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if we add these normalized propagation constants together

2 k=2 5)

a
knorm = knorm knorm mirred — ¢ * k—
swe + W 4= 2w + 2 2r 2w

and the contra-directional coupling condition (4.1) is satisfied. This principle

will be utilized in all bandstructure simulations.

Period of subwavelength waveguide

Period modulation is a standard method to control the wavelength of contra-
directional coupler [1]. This approach is well suited for large scale wavelength
tuning, however, it could prove difficult to fabricate minute changes in pitch to
ensure a good accuracy of each channel center wavelength. In this simulation,
we investigated the effect of period modulation on central reflected wavelength.
For this simulation, bandstructure method was used. In Figure 4.3a, we can see
the resulting dispersion curves. For each simulated period, there are two SWGs
and one strip waveguide with widths wswg1 = 0.3um, wswge = 0.4um and
wwa = 0.28um. Each such dispersion curve triplet is labeled with a different
symbol in the graph. From the nature of the simulation, we can see the shift
of first Brillouin zone due to the change in period. To better show the trend,
points, where the contra-directional condition is satisfied, are plotted in Figure
4.3b. Both SWGs show similar and expected rising trend of center reflected
wavelength with the period. To assess the magnitude of change, both curves are
linearly fitted, and the ratio of change is found to be 2.043 for SW G and 1.987 for
SW (G,. This means, that if we change period by 1nm, the central wavelength will
shift by 2nm, therefore to change the channel of the LAN-WDM demultiplexer
to one higher, we would need change period of SWG by approximately 2.25nm,
which could prove difficult to fabricate. For this reason, we decided to keep all
periods fixed at A = 0.34um, where we can fit all eight LAN-WDM channels.
Furthermore, keeping period constant, we can mutually shift the two SWGs by
A/2 to minimize their interaction and therefore reduce crosstalk. Lastly, there
is also one practical advantage, we can set simulation mesh to precisely match

the SWGs material boundary at any point in the structure, to maximize the
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calculated precision.
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Figure 4.3: Simulation of two SWGs with width wswgr = 0.3um, wswage =
0.4um and strip waveguide with width wy¢ = 0.28um for periods of SWG
0.33um, 0.335um, 0.34pum, 0.345um and 0.35um plotted as diffraction curves
(a) and relation between period of SWG and reflected wavelength (b)
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Width of center strip waveguide

By adjusting the width of center strip waveguide, we change its propagation
constant and therefore reflected frequency. To get the propagation constant in a
usable area, we use relatively narrow strip waveguide, around 280nm, which has
confinement factor of are 85% (calculated by Lumerical FDE Solver), therefore,
change of the propagation constant with the change of width will be signifi-
cant. To learn more about the trend, bandstructure calculation for 5 differ-
ent widths of the center strip waveguide, wy g = 0.25um, wyge = 0.265um,
wwaz = 0.28um, wwas = 0.295um, wyas = 0.31um, was simulated. Widths of
SWGs are wswer = 0.3um, wswae = 0.4um and their period is A = 0.34um.
Simulated dispersion curves are in the Figure 4.4a. We can see propagation con-
stant rises with increased width of strip waveguide, which is to be expected since
the light is getting more and more confined in waveguide core which has a higher
index of refraction than the cladding. For strip waveguide WG1 and SWG2, we
notice that their propagation constants are almost matched, which causes two
problems, reflected wavelength is getting close to the bandgap of SWG, limit-
ing the bandwidth due to its back reflection. The second problem could arise,
if strip waveguide and SWG get phase matched, the structure would start to
behave like a directional, not contra-directional, coupler. Therefore, we need to
be aware of these parameters when designing our contra-directional coupler and
keep the waveguides sufficiently asymmetric. In Figure 4.4b relationship between
the width of strip waveguide width and reflected wavelength. For both SWG1
and SWG2 the trend seems fairly linear with a slightly lower rate for SWG2.
Fitted linear curve gives us a rate of change for SWG1 0.9618 and SWG2 0.7253,
thus change in width of strip waveguide causes a shift of reflected wavelength
by 0.96nm in SWG1 and 0.72nm in SWG2. While this rate of change is smaller
than that of changing period, it is still fairly high and it would be inconvenient to
try and match it for both SWGs, therefore we keep the width of strip waveguide

constant at wy ¢ = 0.28um.
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Width of subwavelength waveguide

Similarly to the strip waveguide, changing the width of subwavelength waveg-
uide affects propagation constant. In the previous chapter, we showed that it
can be explained as a change in propagation constant of the high-index part of
SWG. Bandstructure simulation was utilized again to get insight on the trend.
Simulation was done for SWG widths wswagr = 0.25um, wswage = 0.3um,
wswaz = 0.35um, wswas = 0.4um, period constant A = 0.34um and strip
waveguide wy g = 0.28um. Resulting dispersion curves are in Figure 4.5. Given
the parameters of strip waveguide and SWGs, we can see good asymmetricity for
SWG width from 0.3um to 0.4um, corresponding to the whole range of 8 channel
LAN-WDM. Corresponding reflected wavelength as a function of SWG width is
plotted in Figure 4.3b. The resulting trend seems to be linear for SWG width
more than 0.3um. Fitting linearly, we get a coefficient of 0.322, therefore change
in width of SWG by 1nm will cause a shift in reflected wavelength by 0.322nm.
From all the parameters simulated before, this rate is by far the smallest, and
thus we utilize it to precisely set up LAN-WDM channels, with more immunity
to fabrication error. Adjusting subwavelength width is preferred the method to
set the reflected wavelength of proposed contra-directional coupler.

With all the design parameters described, we can now plot dispersion curves
for all LAN-WDM channels, viz. Figure 4.6 For strip waveguide width set
wwg = 0.28um, SWG period constant across all channels A = 0.34um we can
calculate all the widths of SWGs listed in Table 4.1, where A and f are wave-
length and frequency of each channel respectively, and wgwg is corresponding

width of SWG.

Comparison of analytical and numerical results

To assess the accuracy of our proposed analytical solution, we compare the calcu-
lated and simulated central wavelengths as a function of SWG width, viz. Figure
4.7. We can observe, that calculation gives us higher values and slightly differ-
ent trend. This is attributed to the approximation of subwavelength waveguides

propagation constant (3.20). In Figure 4.8, difference of both results is plotted.
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Chan. 1 2 3 4 ) 6 7 8

A(pm) 1.2822 | 1.2866 | 1.2911 | 1.2955 | 1.3045 | 1.3091 | 1.3137 | 1.3183

f(T'H=z) 233.8 233 2323 | 2314 | 229.8 229 2282 | 2274

wswe(pwm) || 0.2995 | 0.3128 | 0.3251 | 0.3371 | 0.3601 | 0.3712 | 0.3821 | 0.3927

Table 4.1: Simulated widths of SWG corresponding to LAN-WDM grid, viz.
Table 2.1

We can see deviation varying from 32nm to 55nm. Therefore, to use this ana-
lytical solution for actual demultiplexer design, we would need to find an even
better approximation of subwavelength waveguide propagation properties.

In real world we have to think about fabrication processes and tolerances.
While adjusting the width of waveguides in simulation looks as a preferable
approach, the tolerances are considerable higher than those of pitch between tho
waveguides. Thus, the advantages of low sensitivity to change of the width of

the SWG might be reduced by higher fabrication error.

Spectral simulations of contra-directional coupler

For spectral simulations, we employed both 3D ad 2.5D FDTD. To verify results
from previous bandstructure simulation, we tried to use more accurate, however
very computational power demanding 3D FDTD. To keep simulation time rea-
sonable, we had to keep mesh very rough even when we are only simulating each
segment containing one strip waveguide and two SWGs. Therefore four sepa-
rate simulations were made to obtain the full spectrum. Parameters obtained
from previous bandstructure simulations were used to compare the spectral peaks
wavelengths. Some difference is to be expected given the discrepancy in mesh
accuracy, as well as poor spectral shape. Result of rough mesh 3D FDTD simu-

lations of all 4 segments is in Figure 4.9.

As expected, we can see poor spectral shape and central wavelengths de-

viating from expected results for SWGs widths given by Table 4.1. Deviation
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Chan. 1 2 3 |4]15] 6 7 8

AX(nm) || -6.7 | -5.3 | -6.5 | -5 |-7|-54 | -6.6 | -4.6

Table 4.2: Deviation of 3D FDTD spectral simulation with coarse mesh from

bandstructure simulation.

of central wavelengths from expected value is written in Table 4.2 and plotted
in Figure 4.10, where AN = Aczpected — Asimuiatea- 1The simulated results show
consistently lower center wavelength, oscillating around A\ = 6nm.

To verify, the discrepancy is indeed result of coarse mesh, we made two other
simulations for L0 and L2, with medium and fine mesh. Number of simulated
periods had to be lowered with each mesh definition increment to keep simulation
times reasonable. For coarse mesh N = 1200 periods were used, for medium mesh
N = 450, and fine mesh N = 200. Due to the varying number of periods, spectral
shape is different. Result of these simulations is in Figure 4.11

and deviation A\ plotted again in Figure 4.12

We can see the clear trend of decreasing deviation with lower mesh size, which
gives us confidence in previous bandstructure simulation, where the mesh is even
finer than the finest in the spectral simulation. However, it is very hard to assess
real spectral performance without simulating all N = 1300 periods while having
fine mesh. For this reason, we also utilized Lumerical’s Mode 2.5D varFDTD.
3D FDTD is obviously superior to the 2.5D varFDTD in accuracy and would be
the preferred method of calculation. However, in our case, to use the 3D FDTD,
we have to choose between number of periods, therefore length of the structure,
or simulation precision otherwise simulation time and requirements would not
be manageable. Thus, we concluded, that even though 2.5D varFDTD is inferior
to 3D FDTD in all parameters, we can simulate whole length of the structure
with ultra-fine mesh and the result will be better representation of real spectral
behavior.

To save computational time, the 2.D varFDTD has to make many approximations

of the 3D structure into 2D space. In our simulation, we noticed bigger calculated
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propagation constants, therefore resulted central wavelengths were higher than
those by 3D FDTD bandstructure and spectral simulations. To account for that,
period of subwavelength grating was lowered from Asp = 0.34um to Assp =
0.315um. Thus, this simulation is mainly verification of spectral shape and not
of the absolute values of central wavelengths. Simulated spectrum is shown in
Figure 4.13. We can see spectral characteristics with flat top and insertion loss
less than 1dB and very good adjacent channel suppression of more than 30dB.
This simulation does not take into account possible losses in MZI separating the

channels into two groups.
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Chapter 5

Conclusion

In this thesis, novel 8-channel demultiplexer based on grating-assisted couplers
was investigated. Consisting of strip waveguide and a subwavelength waveguide,
proposed structure is an evolution of currently used structures, such as in [1].
The motivation for this work was given by the lack of integrated solutions for new
metropolitan network system LAN-WDM, being a compromise between previ-
ously extensively used CWDM and DVDM. Therefore, such solution is provided
with theoretical analysis and numerical calculations.

Analytical approximation, utilizing Marcatili’s method for waveguide properties
definition and coupled mode theory used for calculation of spectral characteris-
tics, is described. Novel approximation technique of subwavelength waveguide
effective index was used to explain the principle of operation. From this analysis,
we can obtain relationship between center wavelength of demultiplexed signal and
various design parameters, such as center strip waveguide as well as SWG width
and thickness, materials, or SWG period. For obtained wavelengths, we can plot
the spectrum of uniform or apodized grating. Structure with four different widths
of subwavelength waveguides was calculated, for period A = 0.34um and width
of the strip waveguide wy ¢ = 0.28um. Resulted calculated central wavelengths
of demultiplexed signals were A\; = 1.301um, Ao = 1.332um,\3 = 1.354um
and Ay = 1.368um for SWG widths wgwgr = 0.25um, wswge = 0.30um,
wswasz = 0.35um and wgwags = 0.40um respectively. Numerical bandstructure

simulation in Lumerical FDTD was performed to precisely assess effect of period,
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and waveguide properties on center wavelength. It was shown, that change of
Inm in period results in around 2nm change in center wavelength, for change
in width of the strip waveguide it was 0.7nm and 1nm for wswagi = 0.3um,
wswar = 0.4um respectively and 0.33nm per 1nm change in width of SWG.
The period has, therefore, the biggest impact, followed by the width of the strip
waveguide and the least effect has the width of SWG. Consequently, following
approach to design was taken - using period and width of the strip waveguide
to set adequate band (in our case wavelength around 1300nm), to assure good
asymmetricity and then use the SWG width to precisely set each channels’ de-
multiplexing wavelength. Final parameters of the structure are - width of strip
waveguide wy g = 0.28um, period of subwavelelngth waveguide A = 0.34um,
and SWG with varying widths 0.3um < wswg < 0.4um. After obtaining pre-
cise parameters, a spectral simulation was done to verify previous results and
show spectra properties. Due to the difficulty of simulation, 3D FDTD was only
used to verify predictions of bandstructure simulation, however, the computa-
tional complexity limited the accuracy. The dependency of simulated central
wavelength on mesh size was demonstrated, when simulation with coarse mesh
showed a deviation of around 6nm, lowered to around 3.5nm with medium sized
mesh and finally to about 2nm for the fine mesh. Since the previous band-
structure simulation had even finer mesh, we can have good confidence in those
results. To show the spectral shape of each channel, 2.5D varFDTD was utilized,
allowing for fine mesh and big simulation region in exchange of absolute accu-
racy. The period had to be modified to fit within the bandwidth of LAN-WDM,
however, in this simulation, we are interested in the shape of the spectrum, not
its absolute value in terms of wavelength. Resulting spectrum shows insertion
loss of less than 1 dB and great suppression of adjacent channel of more than 30
dB.

Work in this thesis can be used for understanding and design of a new type of
integrated contra-directional grating assisted gratings, showing evidence of great

tunability and spectral properties.
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