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Abstract and contributions

This dissertation thesis deals with automatic scaling in cloud computing, mainly focusing
on the performance of interactive workloads, that is web servers and services, running in an
elastic cloud environment. In the first part of the thesis, the possibility of forecasting the
daily curve of workload is evaluated using long-range seasonal techniques of statistical time
series analysis. The accuracy is high enough to enable either green computing or filling
the unused capacity with batch jobs, hence the need for long-range forecasts. The second
part focuses on simulations of automatic scaling, which is necessary for the interactive
workload to actually free up space when it is not being utilized at peak capacity. Cloud
users are mostly scared of letting a machine control their servers, which is why realistic
simulations are needed. We have explored two methods, event-driven simulation and queue-
theoretic models. During work on the first, we have extended the widely-used CloudSim
simulation package to be able to dynamically scale the simulation setup at run time and
have corrected its engine using knowledge from queueing theory. Our own simulator then
relies solely on theoretical models, making it much more precise and much faster than the
more general CloudSim. The tools from the two parts together constitute the theoretical
foundation which, once implemented in practice, can help leverage cloud technology to
actually increase the efficiency of data center hardware.

In particular, the main contributions of the dissertation thesis are as follows:
1. New methodology for forecasting time series of web server load and its validation

2. Extension of the often-used simulator CloudSim for interactive load and increasing
the accuracy of its output

3. Design and implementation of a fast and accurate simulator of automatic scaling
using queueing theory

Keywords:
cloud computing, autoscaling, time series forecasting, green computing, simulation
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Abstrakt a pfinos prace

Tato dizertacni prace se zabyva cloud computingem, konkrétné se zaméruje na vykon in-
teraktivni zatéze, napriklad webovych serveru a sluzeb, které bézi v elastickém cloudovém
prostiedi. V prvni ¢asti prace je zhodnocena moznost predpovidani denni kiivky zatéze
pomoci metod statistické analyzy casovych fad se sezonnim prvkem a dlouhym dosa-
hem. Pfesnost je dostateéné vysokd, aby umoznila bud Setfeni energii nebo vypliovani
nevyuzité kapacity davkovymi ilohami, jejichz doba béhu je hlavnim divodem pro potiebu
dlouhodobé ptredpovédi. Druhda ¢ast se zaméfuje na simulace automatického skalovani,
které je nutné, aby interaktivni zatéz skutec¢né uvolnila prostor, pokud neni vytézovana na
plnou kapacitu. Uzivatelé cloudu se prevazné boji nechat stroj, aby ovladal jejich servery,
a prave proto jsou potieba realistické simulace. Prozkoumali jsme dvé metody, konkrétné
simulaci s proménnym casovym krokem tizenym udalostmi a modely z teorie hromadné ob-
sluhy. Béhem prace na prvni z téchto metod jsme rozsitili Siroce pouzivany simulacni balik
CloudSim o moznost dynamicky skalovat simulovany systém za béhu a opravili jsme jeho
jadro za pomoci znalosti z teorie hromadné obsluhy. Nas vlastni simulator se pak spoléha
pouze na teoretické modely, coz ho ¢ini presnéjsim a mnohem rychlejSim nezli obecnéjsi
CloudSim. Néstroje z obou ¢asti prace tvori dohromady teoreticky zdklad, ktery, pokud
bude implementovan v praxi, pomuze vyuzit technologii cloudu tak, aby se skute¢né zvysila
efektivita vyuziti hardwaru datovych center.

Hlavni piinosy této dizertaéni prace jsou nasledujici:

1. Stanoveni metodologie pro predpovidani casovych fad zatéze webovych serveru a jeji
validace

2. Rozsiteni c¢asto citovaného simulatoru CloudSim o moznost simulace interaktivni
zatéze a zptresnéni jeho vysledku

3. Navrh a implementace rychlého a pfesného simulatoru automatického skalovani vyuzivajiciho
teorii hromadné obsluhy

Kliéova slova:



cloud computing, automatické skalovani, predpovidani ¢asovych fad, isporné vypocty,
simulace
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CHAPTER ].

Introduction

1.1 Motivation

The Cloud is becoming ubiquitous. It is considered as a deployment option with nearly
any software project nowadays. Nevertheless, the workloads on the cloud are very often
legacy static applications.

The properties of the Cloud, mainly the elasticity in the amount of resources used by an
application and the agility in the reuse of physical resources between different applications
and even different users, which were not present in server virtualization products before
the cloud age, can only be used if applications are engineered with them in mind.

Elasticity can be exploited only if there is an autoscaling element in the applications,
which monitors their resource usage and changes the amount of used resources accordingly.
This element is also known as the self-adaptive load balancer. From our experience, ap-
plication developers and deployers do not have enough knowledge of cloud performance
engineering and are likely to commit too much resources rather than risk wrong autoscaler
settings. In this work, we present a way to simulate the autoscaler with different algo-
rithms and settings, which should help alleviate fears associated with its use and help with
estimation of cloud service costs.

If there is an autoscaler on every interactive workload in a cloud (we are mostly con-
cerned with Private Cloud clusters), resources will get properly released in periods of low
usage. This will allow the provider to shut down inactive compute resources, which is a key
element of Green Computing, which we define as a drive towards consolidating workload
to as few machines as possible while maintaining SLA (Service Level Agreements).

Green computing is a part of the provider’s view on the cloud. Embracing the concept
of IaaS (Infrastructure as a Service), i.e. offering computing power as a service between
subjects (be it two companies or just departments inside the same one), optimization
can be done either on the side of the provider or the customer. The provider of cloud
services wants to minimize the running costs of the system while maintaining GoS (Grade
of Service) for the customer, which at the level of laaS means availability of memory, CPU
cycles and network and disk bandwidth in agreed upon amount and quality.
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The running costs can be best minimized by turning off excess physical computers
(frequency scaling of CPUs is more agile, but has lower power impact, see Section
Subsection . To maintain GoS and avoid unnecessary on/off cycles, load prediction
can be implemented at the level of the data center.

Leaving compute resources active even in periods of low loads enables a data center
to achieve good values of PUE (Power Usage Effectiveness), which is a measure of data
center efficiency comparing the total power draw to the power draw of only the computing
components (mainly excluding cooling and power supply power usage). When servers are
shut down at night, this indicator will become worse, but the total energy usage should be
lower, which is what matters the most.

In our article [3], we proposed to exploit cloud agility between interactive and batch
computations. To do this, a service which forecasts the usage of resources of the interactive
tasks would be needed, so that long-running grid-type tasks could be run without the risk
of being terminated because the interactive workloads need more computing power.

The forecasting service would use data about resources used on the cluster by interactive
traffic (taken from the autoscalers), do a prediction on that, and fill the unused resources
by batch jobs, yielding a cluster that is highly utilized all the time, but with minimal
job preemptions or terminations (depending on the batch queue used). In this work, we
demonstrate the feasibility of forecasting the load of several different purpose web services
using statistical methods. The result can be utilized not only on the provider’s side to
turn computers off at night or schedule batch jobs in periods of low activity but also on
the client’s side for predictive autoscaling, decreasing their cloud service costs. It answers
the question: “How many slots for VMs will be used for the next X hours with probability
p?”

The proposed forecasting service was not implemented yet because of a lack of demand.
From conversations with multiple companies, the most desired place to apply optimization
is currently the customer side of IaaS. It also correlates with the lower proliferation of pri-
vate cloud, particularly in the Czech Republic. The companies are mostly clients of public
clouds and would like advice in the form of performance models or autoscaler deployment
settings that would let them save on cloud costs. Moreover, the client-side optimization
can also be employed in a private cloud, once they build it. On the side of the cloud client,
who does not see the infrastructure, there is space for optimization inside the autoscaler,
which is where the proposed simulation platform comes in. The goal is to minimize the
cost the customer pays for cloud resources while maintaining GoS for end users. The end
user GoS is defined as the response time distribution of the web application.

We think that performance prediction will also make a significant contribution to au-
toscaler quality and will be implemented in the simulation framework in the next release,
which is, however, out of the scope of this work. Current autoscalers available for both
private and public clouds are reactive, meaning that they can add resources after a thresh-
old of some monitored performance variable is breached. If the autoscaler contained some
prediction mechanism, it could add resources before the threshold was breached. That
would allow the thresholds to be set higher without affecting GoS.

The prediction methods for entire data centers and single applications may not be the
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same and may require different parameter settings. However, datacenter-scale data is not
easy to obtain. We tried negotiating with Czech companies offering cloud computing,
such as TC Pisek, Odorik, Master Internet, Forpsi, and PonyCloud. The problems we
encountered were mostly that their systems are too small and are not ready for autoscaling
or virtual machine migration. We did not get any response from other European cloud
companies except one, which offers Cloud Foundry, which in its open-source version lacks
any monitoring functions, which are a prerequisite for autoscaling. With emerging global
cloud providers such as Mega and Digital Ocean, there was already a problem with data
privacy concerns. Our only source of data remains at the Masaryk University in Brno,
which operates the Czech national grid Metacentrum and, as an associated service, a large
OpenNebula cluster MetaCloudE]. The problem with this data is that, in contrast with a
business cloud, a scientific cloud lacks any interactive services (only about 1% of the virtual
machine traces have daily seasonality, which indicates human interactive use). Therefore,
the methods presented in this work are evaluated on data from a static web server farm
of a web hosting company. However, the data contains several different purpose and scale
servers and both normal and Christmas holiday periods, making it quite interesting.

1.2 Problem Statement

This dissertation thesis studies the ways to either increase the utilization of a private cloud
or reduce the operating costs of a client in the public cloud, where the latter is actually a
subproblem of the former. The problem is that cloud offerings claim that using them will
bring cost reductions over owned hardware with virtualization in the case of the private
cloud or IT outsourcing in the case of the public cloud. However, the main advantage of
the cloud over the older technologies is the possibility of automation using web services
and elasticity with pay-as-you-go billing. In practice, the cloud infrastructure is still being
used statically, which prevents the realization of its potential.

1.3 Goals of the Dissertation Thesis

1. Study the nature of interactive cloud workloads to be able to scale them to match
demand

2. Study the properties of automatic scaling and simulate autoscaler deployments

3. Propose the strategies to a) increase the utilization of private clouds and b) the
scaling settings to reduce the operating costs in the public cloud.

Ihttp://www.metacentrum.cz/en/cloud
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1.4 Theoretical Background

Cloud computing is the last advance in data center management. In its laaS (Infrastructure
as a Service) form, it allows for rapid provisioning of virtualized server, storage and network
resources with minimal user interaction. Using add-on configuration and deployment tools,
or the next layer of cloud, PaaS (Platform as a Service), applications can be deployed to
these server instances. The automation possibilities given by cloud APIs (Application
Programming Interfaces) offer lots of ground for research on how to use the resources
optimally and for better user satisfaction.

As the term “as a service” suggests, a common property of cloud technologies is the
separation of two entities, the provider and the consumer of a service. In IaaS, the com-
modity is computing power (and also memory, storage space, and network bandwidth) in
the form of virtual machines. Therefore, the cloud is really a set of new features over
server virtualization. Depending on the relationship between the producer and consumer
of the service, we distinguish between the private and the public cloud. When they are
used together, we speak of the hybrid cloud.

A public cloud provider offers a generally available service, where users can run a large
number of instances, and for all practical purposes, it offers them the illusion of infinite
supply. The pay-as-you-go billing model then offers high flexibility — using the cloud does
not entail any capital expenditure at all, only operating costs. However, according to our
experience, the costs of the major providers are higher than those of owned hardware for
long-term usage.

The cloud, private or public, besides being a platform for web applications, can also
take the role previously occupied by the grid, that is being a batch computing platform.
The upside is that when the demand for computations is not constant, instances can be
created for the job and then terminated, along with the associated costs. The downside
is that traditional computing tools are not ready for the cloud, but expect a dedicated
cluster of machines. Launching them in the cloud is possible, but it wastes resources. New
cloud-aware tools are needed. One of them is Cloud Gunther.

1.4.1 Private Cloud

The private cloud is built by the same company that is using it (we are excluding the
“virtual private clouds,” which are actually a section of a public cloud separated by network
virtualization). The advantage of a private cloud over a physical or virtualized data center
is the agility of infrastructure. The automation of IaaS offers to create and destroy virtual
machines easily, and it can be done algorithmically.

The same features as stated above for the public cloud apply here. However, the
capacity of the private cloud is not (even seemingly) infinite and is a known quantity. If it
is not sufficient (all of the time or, perhaps, only on peak hours), then the user can turn to
hybrid cloud and cloudbursting. Also, whereas the user is not interested in how a public
cloud provider uses excess capacity, in a private cloud, the owner may desire to use some
capacity also for secondary tasks.

4
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The private cloud infrastructure may be used to run static virtual servers, where each of
them is assigned compute resources (CPU and memory) based on its expected peak usage.
The cloud operating system then starts it on an available physical machine based on its
scheduling algorithm, and it will run there permanently. However, with this approach,
the private cloud will probably fail to satisfy expectations regarding resource savings over
traditional virtualization.

With server virtualization, the administrator knows, which virtual machines share com-
mon hardware and is aware of their performance profiles. Therefore, he or she can assign
more resources to the virtual machines, than what the physical machine actually has (over-
commitment). In the case of overload, some VMs may be migrated elsewhere.

With the automatic resource assignment present in the cloud, one can also expect
savings due to resource sharing, but overcommitment is also automatic, managed by the
cloud scheduler, and therefore riskier because we do not know the assignment between
virtual and physical machines in advance. While live migration is possible, it is mostly
used to hide planned outages from clients, not for performance optimization. That would
require the cloud administrators to know the performance profile of the applications, which
is not a concern of theirs, but of the application administrators. Automatic workload
consolidation tools are, sadly, still in the realm of scientific papers.

However, cloud computing has its advantages. The most important one is the elasticity
of compute resources, which is connected with the illusion of infinite supply. An application
running in the cloud can elastically increase or decrease the amount of resources assigned
to it based on the actual user demand for it. The illusion, of course, ends, when all
resources on the cloud cluster are exhausted, but until then, it is a powerful capability.
Because the same way as applications share resources on a single machine with static server
virtualization, in the cloud, we can imagine application resource allocations flowing over
the whole cluster or datacenter, based on their individual resource demands.

This key property allows for significant savings on compute infrastructure, because
it is no longer necessary to procure enough servers to cover the resource spikes of each
application, even if they are not occurring at the same time, as when each had its dedicated
server farm. Rather, the infrastructure is common for all applications, yet it ensures
separation of users and applications (multi-tenancy), and it may be dimensioned to suit
the sum of resource demands of all the tenants in worst case / at the worst time.

Moreover, if the computing power is not required by any application at some point, the
physical servers may shut down automatically to save energy, only to be powered on again,
when the demand rises. It is irrelevant if a particular server fails at power-on because they
are all identical and do not store valuable data.

The elastic scaling of cloud resources (both up and down) can be performed either by
the application administrator by hand, or, better, delegated to an automatic tool.

Because private clouds emerged only after the public offerings, the public clouds offer
a much broader functionality and service set than their private counterparts (compare e.g.
Amazon Web Services and Eucalyptus, which have a compatible API.). Most importantly,
there are not many autoscaling applications for private clouds, one of them being our
project ScaleGuru.
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1.4.2 Public Cloud

The Public Cloud brings the illusion of infinite supply, meaning that any application may
use as much resources of the provider’s datacenter as required by its users, and will probably
never reach a limit. To discourage users from allocating excessive resources, a metering
and billing system is in place. Therefore, it is beneficial to release resources in times of low
usage to conserve costs.

In a public cloud, the provider’s side, including power costs and hardware wear, is
not visible, and the only concern of the user is to minimize the service cost. The billing
intervals are an added complexity. They limit the speed at which scaling decisions can be
made and still have a positive economic impact. Most of the public services are billed in
hourly intervals, some (Google Compute Engine) use shorter intervals.

The cloud is, by definition, tightly integrated with web services, so the changes in
capacity may be done through a browser or using an automatic tool that both monitors
the application and takes scaling actions through the cloud’s API.

In the cloud, processor power and memory are rationed in units of virtual machine
instances. There are of course several instance sizes available with every provider, and
the hourly cost varies with size. Most providers have fixed sizes, and some allow the
customer to specify custom amounts of CPU and RAM (CloudSigma). (But, internally,
that complicates the work of the cloud scheduler.)

Other commodities are also billed, such as storage space (the amount of time it is
taken is also accounted for), network transfers in and out of the data center or between
data centers of the same providers (usually at a cheaper rate), and intensity of disk accesses.
These variables may theoretically also be monitored and used in autoscaling, but it is much
less common than with CPU cycles. The associated costs are mostly taken as unavoidable
(except by a radical change in application architecture).

Because the compute power is billed in total machine-hours, computing a batch job on
one instance for 1000 hours will theoretically cost the same as computing it for one hour
on 1000 instances. In practice, it is not ideal, as the secondary costs (e.g. for data loading)
will be much higher. Some providers (Amazon) also bill an hour for starting a machine.
Nevertheless, the possibility is there.

This allows for practically limitless possibilities for application scaling. If we have before
insisted that building applications for elasticity be advisable in the private cloud, in the
public one, it is an economic necessity. An article by the Czech server Lupa.cz [4] may
serve as a cautionary tale. It talks about the economic disadvantages of cloud computing
and illustrates it on a study of the migration of a large web service running on four servers
with four processors each to the Amazon cloud. The author states that the equivalent
computing power would cost ten times the cost of the physical servers in 3 years.

However, the author committed a logical error. His 16-processor server was planned to
be the only machine that would be running the service in the next three years. Therefore,
it was surely dimensioned to withstand any traffic spike during that period. We infer that
most of the time, it will run at a fraction of that maximum capacity. If we dare to say
that the average utilization will be 10%, we suddenly see that the tenfold increase in cost
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after migrating the application to the cloud would probably be needless, if the application
were modified to allow running on a variable number of servers and to employ elasticity.
If the author included indirect costs (such as space rental, hardware administration, and
upgrades), the outcome of the estimation could turn out to be in favor of the cloud.

It is evident that capacity planning for the Cloud is different from capacity planning
for classical deployments. Estimating the maximum capacity is not nearly as important
as estimating the curve of the workload in time. Only that way can the cost of a cloud
deployment be estimated correctly, without resulting in too large numbers as in the case
of the Lupa article, which did not take elasticity into account.

On the other hand, even if a cost calculation showed that the operation of a service
is more efficient on owned hardware, it is possible to save on that hardware using cloud
services. If we take the performance profile of that service into account and dimension
the private cloud or server only for normal load, we get a service that runs on in-house
resources most of the time and, in the case of increased demand, it is possible to add
compute resources from external sources to cover the spike. This is called cloudbursting
and is the performance engineer’s way of using the hybrid cloud.

1.4.3 Technical limitations

Here, we made a digression from the reality of cloud technologies towards the idealist image
of the Cloud. Unfortunately, the elastic changes of compute resources cannot change
CPU power and the amount of memory at runtime. (There are technologies of CPU
and memory hotplugging, but they are not being employed in the cloud, and neither is
memory ballooning.) It is also not possible to exceed the capacity of one hardware node
of the cloud (that would get us into the realm of virtual shared memory supercomputing
clusters). Resources are rationed in fixed units of virtual machine instances.

In the cloud, the reaction to high load of some application is not to buy a more powerful
server, but rather to run more instances of the server serving the application. When the
demand subsides, it is possible to terminate them again to save on costs.

The user can do whatever he or she pleases with these instances, beginning with the
installation of their favorite operating system and programs. The programs are usually
web servers, database machines, but may also be a scientific simulation or anything else.

As the word “instance” signifies, the virtual machines are mostly created from a tem-
plate, which allows for quick deployment of larger amounts of servers of the same type.
These templates have read-only disks, and the instances are created as disposable clones.
The cloud provider usually allows access to a range of predefined images of the most com-
mon operating systems, so even OS installation from scratch is very unusual. Customized
templates are perfect for quick increases of computing power for an application. It is also
possible to save the customization as a script to be run against a clean OS image after
start. This scripting, along with access to a central configuration repository, is the core of
the DevOps approach to cloud computing.

The time resolution (granularity) of elasticity in IaaS is also limited by the boot time
of an instance. This is not only the time to boot an OS, but also includes overhead of
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the cloud system, such as copying of the template from central storage, preallocation of
temporary disks and set-up of virtual networking. The time range can be from tens of
seconds to tens of minutes, depending mostly on the cloud system used, instance size and
the cloud controller and storage network load, as measured in a thesis by Klepac [5].

For the user to be able to access all the autoscaled instances, the number of which
is unknown in advance, they are added as backends to a load balancer. This is either a
stateful NAT (Network Address Translation) device, which assigns each OSI (Open Systems
Interconnect) Layer 4 connection to one backend, or, more often, a HTTP (Hypertext
Transfer Protocol) proxy, which, as a Layer 7 device, can preserve mapping of application
layer sessions to backends using HTTP Cookies. It can also terminate SSL (Secure Socket
Layer) connections and buffer server replies, saving server connections (which in some
technologies translate to allocated memory) at the backend. The load balancer is usually
lightweight, so only one of a small constant number of them are serving an application
and act as a single entry point for the users. These are added to the DNS (Domain Name
System). Direct addition of the instances there would not work reliably, as they can change
often and DNS may be cached at clients.

It is desirable to adapt application development to these IaaS specifics, mainly to the
tendency to higher numbers of less powerful servers and to changes in their number, which
has higher demands of the developers. It basically amounts to parallel shared-nothing
programming. If there is state that needs to be shared between the servers, it should
be stored in another tier of the application, perhaps a database server, memory cache or
message queue. Luckily, these practices are already common when building web servers
for high loads.

1.4.4 Capacity Planning

Classical capacity planning involved the estimation of performance requirements of an ap-
plication for its whole lifetime. The reason was that the application was tightly bound
to the hardware it was to be run on. After the capacity was estimated, a machine corre-
sponding to the requirements was bought, and the application installed on it. It was to
remain that way until the scheduled end of life for the machine or the application.

Looking at a daily load graph, such as Figure the most interesting point was the
peak hour, similar to capacity planning in telecommunications. The peak hour is defined
as the interval of one hour, where the number of requests is maximal. The capacity planner
would ask for an estimate of the number of users per day from marketing and guess at
their distribution throughout the day based on the purpose of the application. Also, any
anticipated spikes, such as Christmas sales, were crucial. The server dimensioning was
therefore done for the peak hour of the year, plus some allowance for growth during the
lifetime of the hardware.

After the demand was known, the application would be benchmarked, and a perfor-
mance model built so that the demand of users on the application could be translated into
the demand of the application on the hardware.
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Figure 1.2: Amount of server instances serving a website during a day

In the cloud, this approach leads to unnecessary costs associated with allocated but
unused resources. As we can see from the daily load graph, even for a server that is tightly
dimensioned for its application, there are times when it is mostly idle. With services, which
are serving mostly local clientele, it is during the night.

A more sensible way is to make use of cloud elasticity. For best results with uninformed
load balancers (with round-robin or random allocation of requests to backends), the ap-
plication should be run on a cluster of instances of the same type. The type is chosen
from those offered by the cloud provider and should a) be small, as to not waste too many
resources during the times of low demand and b) have a good performance/cost ratio for
the application. With scaling in effect, the load graph is basically quantized by the number
of instances serving the application, like in Figure (This is then the load as seen by
the cloud provider, who counts the allocated resources and does not see inside them.)

The marketing step is not really necessary from the dimensioning standpoint because,
with scaling, we do not need to know the peak demand in advance. However, due to the
pay-per-use model, it is much more necessary for cost estimation. The benchmarking step
is more important, with the goal to find out the right type of instance for the application.
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The providers usually have a main line of instances, where the CPU/memory ratio is fixed
and increases by a factor of two (which leads to more optimal scheduling of instances to

physical machines on the provider’s side), but some also have lines with more CPU and
less RAM or more RAM and less CPU for the same price.

1.4.5 Automatic scaling

It is impractical to set the amount of virtual machines serving an application by hand,
because the workload profile might change. If, at any time, the resources are underpro-
visioned, it will result in a decrease of GoS (Grade of Service) for the end user (the GoS
here is expressed as the response time distribution of the web application), or in the worst
case, in its unavailability. Overprovisioning leads to wasted costs. An autoscaler is able to
manage the amount of instances automatically.

Autoscaling is in this case defined as the ability to increase or decrease the number of
application instances serving an (in most cases) interactive workload, whose characteristics
are changing in time. It is dependent on performance metric monitoring and a cloud API
(Application Programming Interface) to effect the changes in the number of instances and
load balancer configuration. An equivalent term is self-adaptive load-balancing.

In the Public Cloud, autoscalers are either available from the provider or as a third
party service. They offer the possibility to run a small number of application instances
persistently and to boost the computing power when the offered load demands it. Some
private clouds (OpenStack, Eucalyptus) have already integrated autoscalers as well. It is
also possible to use an autoscaling system that can be deployed in a virtual machine in the
Private TaaS Cloud and is able to automatically manage instances of other applications on
it. One such application is ScaleGuru.

Private Clouds are good for experiments as those do not cost money and the repro-
ducibility is much better than in the shared environment of a public cloud. The problem
is that they do not offer the same level of services yet. Particularly, automatic scaling is
necessary if data about variable load are to be collected for forecasting experiments. At the
time of writing of the ScaleGuru tool, the autoscalers for Eucalyptus and OpenStack were
not yet ready. This autoscaler still has the added benefit of simplicity and expandability.
It also has integrated monitoring and performance logging.

Due to the metered approach to billing in Cloud Computing, some monitoring is always
available. For the purpose of billing, a granularity of one hour is perhaps enough, but for
automatic scaling, a finer granularity is needed. Practical autoscalers operate on 1, 5, or
15 minute average values. The finer the monitoring granularity, the faster the reaction to
a high load situation, but also the risk of oscillations.

The monitored metric varies by implementation. An autoscaler may use latency (as
the primary GoS indicator) directly (as in Google App Engine), but in TaaS it most of-
ten operates on a lower level of CPU load, disk and network measurements (such as in
Amazon Web Services). There are also Autoscalers working on load balancer queue length
(OpenShift). The client sets the scaling thresholds for these parameters based on his or
her understanding of the application and its performance model.

10
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The thresholds work similar as performance alarms in traditional monitoring tools. For
example, an alarm could be defined on the the CPU load metric and would fire if the
average value from the instances serving an application was over 70% for 5 minutes. The
result of this alarm would then be defined by a policy, such as to add a fixed number of
instances or an amount expressed by a percentage of currently running instances. Using
multiple rules, it is possible to create a dynamic response curve. There is also a setting for
the minimum and maximum number of instances, as a safety measure against oscillations
(the lower limit) or performance runaway errors (the upper limit).

1.4.6 Predictive scaling

Scaling the amount of resources dedicated to an application depending on the workload
can lower the costs of the infrastructure, as the capacity does not have to be provisioned
for peak loads, which was the case in traditional static virtualization. However, that means
that quick reaction to an increase in demand for an application is highly desirable so that
the users will never feel that the provider is saving on server capacity.

The available scaling services are mostly reactive — they react to the measured level of
resource utilization in the virtual machines or to the measured latency of the application.

The downside of reactive autoscaling is that the provisioned capacity lags after the
demand, meaning that extra resources will get allocated after an overload situation has
started. There is a trade-off between overprovisioning and the possibility of SLO (Service
Level Objective) violation, which is controlled by setting the upscaling threshold of the
autoscaler. In downscaling, the reactive approach is prone to oscillation, which happens
when the system load goes back over the upscaling threshold a short time after resources
have been released.

If proactive scaling methods employing load forecasting were used, the autoscaling
service could avoid overload situations, and thus the GoS (Grade of Service) could be
raised and prevent oscillations that can arise in reactive autoscaling.

Workload forecasting can be used to predict a daily curve of the autoscaled service. A
pro-active autoscaler with forecasting can then mitigate both the provisioning lag and the
oscillation. It still has to be combined with reactive scaling in case of an unpredictable
spike. An example of this approach can be found in an article by Moore, Bean, and
Ellahi [6].

The demand can take an unpredictable leap for example as a reaction to a marketing
campaign, and if the capacity of the application is not sufficient to cover the spike in
request intensity, it means an increase in response time or temporary unavailability of the
application. That can not only endanger the campaign but the reputation of the company
because some impatient customers may never return and spread the tale of the broken
website to others.

This problem is addressed by anomaly detectors that can detect these spikes early and
also use prediction techniques. In reality, the spikes caused by human activity are rarely
abrupt, but have a distinct onset, which can be detected.

11
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A survey of prediction techniques for autoscaling is available from Weingartner, Brascher,
and Westphall [7] and Lorido-Botran, Miguel-Alonso, and Lozano [§].

1.4.7 Evaluation and Metrics

In order to evaluate different autoscaling algorithms or threshold settings, we need to
have measurable metrics to compare them. Firstly, when comparing autoscalers, we need
to run them on the same workload. That means either to set up an experiment with
several load-balancers and backend pools, to which the same traffic is mirrored, or to use
simulation. It is next to impossible to find someone with real traffic who would allow
scientists to run autoscaling experiments. The service providers are mostly concerned with
risks of unavailability of their applications, and then there are concerns with request data
confidentiality. In the end, simulation is practically the only choice.

Even request intensity traces, which are in fact just time series graphs with no confiden-
tial data in them, are very hard to come by. There are a few traces in the Internet Traffic
Archivd] but they are more than 15 years old, mostly too short to perform learning of
forecasting algorithms, and of anomalous traffic (like a football match or Olympic games),
not well predictable steady state traffic.

Studies of autoscaling techniques have been criticized for a lack of verifiability because
they are not evaluated on publicly available workload traces (i.e. in a survey by Weingart-
ner [7]). The problem in the field of Cloud Computing is that while the Grid is mostly
operated by academic institutions, which are not afraid to share their data (see the Grid
Workload Archive (GWA) [9]), the Cloud is run mostly by commercial subjects, which are
bound by various privacy agreements and will not publish their data. We have tried to
obtain it and failed, as have probably most of our colleagues cited in the survey. Scientific
clouds, which are indeed in existence, do not help the matter, as their workload is mostly
comprised of high-performance computing tasks not suitable for the Grid, and not web
traffic. This was observed e.g. on MetaCloud?|

Moreover, the available cloud traces (we know only of the Bitbrains 2012 trace from
GWA) are of server utilization, and autoscaling simulation using QN models requires a
request intensity trace, simply because by introducing autoscaling, one is changing the
utilization and trying to keep it inside some preset bounds. The data from the trace is
made obsolete after the first scaling action. Much more interesting data would be that
collected from logs of individual services, not basic system monitoring data available to a
cloud provider, who does not see inside clients’ virtual machines.

Along with the request intensity trace, a simple performance model is necessary to be
able to translate the requests to load on the backend servers. With that, it is possible to
create a baseline. That would be the cost of running the application on a constant number
of instances which are enough to serve the peak hour.

"http://ita.ee.1bl.gov/
’http://www.metacentrum.cz/en/cloud
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The running cost can be expressed in money, but it is sufficient to use time units to
measure e.g. the number of instances times the number of hours each of them was running.
The cost of the baseline will be the greatest and different autoscalers/threshold settings
can be ordered by the cost reduction they achieve.

The autoscaler works by starting and stopping virtual machines. Doing it too frequently
is undesirable, because, with some public clouds (Amazon), starts and stops are billed. In
the private cloud, it creates extra load on the cloud controller nodes, storage subsystems,
and network. Also, there is a delay after starting a virtual machine before it is ready to
serve requests. Therefore, start/stops caused by the autoscaler should be measured and
used as a measure of its performance. Too many signify some kind of instability of the
algorithm.

Because the goal of autoscaling is to minimize cost while keeping the end user GoS
within bounds, a way of quantifying the GoS is needed. We have defined it as the latency
distribution of the application, but distributions are not easy to compare. It is necessary
to either take a quantile from them, which will tell us the maximum time that, e.g., 95%
of the users will see, or to set a GoS goal in time units and ask for the percentage of users
that will see that time or less.

Both versions are used in practice. The first choice is good for graphing a live system,
but if we keep to the definition of autoscaling optimization from the previous paragraph,
we see that the second variant is more suitable for specifying boundary conditions (or SLAs
in business).

1.4.8 Queueing Theory

The queuing theory was founded at the beginning of 20th century by A.K.Erlang to calcu-
late the capacity of Danish telephone exchanges. It has application not only in telephony,
but also in transportation, manufacturing, and customer servicd] It has also been ap-
plied to computing, mainly for server dimensioning in client-server architectures. On the
Internet, most traffic (excluding file sharing peer to peer services) is due to the HTTP
protocol. The World Wide Web carried on it is also based on the client-server model and
with dynamic web pages, most of the intelligence and computational complexity is on the
side of the server. That places high importance on server dimensioning so that adequate
response time is guaranteed for all users, who may be using the server at once. Queuing
theory is one of the best instruments for that.

When deploying a web application, it is necessary to correctly estimate its demands
for compute resources, such as processor time, operating memory size, storage space and
network throughput, and to choose the best way to provide the infrastructure, with respect
to cost, reliability, and room for growth.

Queueing theory works with exactly these terms. It defines the relation between request
arrival rate, response time, throughput and utilization, enables the creation of models of
availability, reliability, and security (if we want to predict breach frequency and time to

'http://en.wikipedia.org/wiki/Queueing_theory
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Figure 1.3: Diagram of a queueing system

resolution). Every performance engineer needs to know basic conclusions on lower bounds
on service time depending on service demand and how to calculate maximum throughput
from queue length and response time.

Queueing theory is based on the model of a service system, which consists of an input
flow of service requests (from a finite or infinite amount of users) and a number of service
lines that serve these requests. Both the input flow and the service times of the lines are
stochastic processes, and the theory can analytically provide answers to questions like what
is the distribution of waiting times of the requests in a queue, or what is the probability of
denial if queueing is not allowed. Inversely, knowing SLOs, one can compute the number
and speed of service lines necessary to achieve it with a certain probability.

Other components of the service system (see Figure are the already mentioned
queue, a control system, which assigns requests from the queue to the service lines. The
serviced customers constitute the output flow, and there may also be a flow of rejected
requests. Alternative names are the offered flow, the transferred flow, and the error flow.
A request may be rejected when all the service lines in a service system without a queue
are busy, when these queues are full if their maximum capacity was defined, or when a
maximum waiting time is exceeded.

The input flow needs to satisfy the following three conditionsﬂ:

o Stationarity — the character of the input flow is constant in time and the system
being described will eventually reach a statistically steady state.

o Ordinarity — in a given instant, there is no more than one incoming request. The
flow can be described using interarrival intervals. (Although batch arrival models
also exist, they will not be discussed here.)

o Independence — request arrivals and service times are statistically independent.

'http://ecoursesonline.iasri.res.in/pluginfile.php/5591/mod _resource/content/1/
Lesson_16.htm
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The most important parameter, for which the queueing models are solved, is request
satisfaction, which can be expressed in percent, or quality thereof (e.g. waiting time in a
queue). Quantitative parameters are request intensity expressed as the number of request
per unit of time, and operational load intensity, which is expressed in erlangs. One erlang is
the request intensity that can be transferred by one service line working at 100% utilization.

As queueing theory has its roots in statistics, various types of service systems are
mostly differentiated by statistical distributions of interarrival and service times, and also
the number of service lines. D.G.Kendall designed this classification and also its shortened
notation:

According to the introduction at [I0], the type of a service system is given by a three-
tuple A/B/n, where A is the distribution of interarrival times, B the distribution of service
times and n the number of service lines. An extended version of the notation can also be
used, which adds a fourth element — the maximum size of the queue, and a fifth one — the
queue discipline. A and B may be replaced by one of:

o D — deterministic (constant time)

o M — Markovian (Poisson arrival process or exponential interarrival times)

(0]

G — General (specified by mean and variance)

o}

GI — General Independent
o Ek — Erlang with parameter k, and perhaps others

The queue discipline may be:
o FIFO (First In First Out, or also FCFS (First Come First Served))
o LIFO (Last In First Out)

o PS (Processor Sharing, i.e. all concurrent requests are being processed at once with
proportionally extended service times)

o Random

To describe the arrival of requests into the service system, the Poisson process is most
often used. It describes real-life situations with adequate precision and is easy to solve
analytically (using it removes the need for step-by-step simulation). It describes requests
coming from a memoryless stochastic process. The requests are generated randomly with
exponential interarrival times. Memorylessness is a property of the exponential distribu-
tion and means that the probability, with which the source generates another request, is
independent of the time or quantity of requests in the past. The request intensity can be
regulated by setting the mean of the exponential distribution.

If the requirements on the input flow are satisfied, the observer at the input of the
service system will see a flow, whose number of requests per unit of time follows the
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Poisson distribution. The interarrival times at a queue, which is fed by several exponential
request generators, are governed by the Erlang distribution. If the service times are also
exponentially distributed, the output flow has the same properties as the input one.

The load or utilization is one of the most important and least understood quantities of
queueing theory (at least by people specializing in computing). It is dimensionless, because
it is defined as time by time, or more comprehensibly, the busy time divided by the total
measurement period, i.e.

B
V=7

That also means that there is no utilization at a distinct point in time. The service line is
either busy or not busy. In the case of a single service line, the utilization is equal to the
probability that a request will have to queue because the line was busy.

One of the most interesting results are the lower bounds on latency and corresponding
higher bounds on throughput. These are asymptotes that a system defined by its service
demand, i.e. the minimum service time, may never exceed. There exists a lower bound for
a lightly loaded system, which is equal to the service demand, because the service line was
mostly free, and the requests were served immediately, and one for a heavily loaded system,
which has utilization near 1, and whose service time is linearly increasing with the arrival
intensity and reflects the time the requests are waiting in queue. See e.g. Menasce[l]]
for the formulas. In reality, there is a knee between these two modes of operation, see

FigurdL.4]

1.4.9 Queueing Networks

These basic service system models may be chained together into a graph to create more
complex queuing network models. They can, for example, model a situation where a
request will be first served at the CPU, then with a certain probability will wait for a hard
disk, then return to the CPU queue, and finally go to the network card to be sent out,
such as in Figur.

When all the input flows and service times are Markovian, it is possible to analytically
solve the model by transforming it to a Markov chain. The downside is a quick expansion of
state space of the chain. There are also other solution methods, such as the MVA (Mean
Value Analysis), which have lower complexity. MVA works inductively, by modeling a
network with zero requests, and a network with M + 1 requests, until the desired load is
achieved. For all the relevant algorithms, see [I2]. Concretely, MVA for a closed queueing

"http://perfdynamics.blogspot.nl1/2010/03/bandwidth-vs-latency-world-is-curved.html
’http://www.simalytic.com/CMG96/CMGI6htm.htm
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network looks like this:

TS Wim)u, (12)

where m = 1..M is the number of customers in the system, £ = 1.. K denotes the nodes of
the network, W are waiting times, L are queue lengths, \ are arrival rates, p are service
rates, and v are visit counts of customers to each node.

There are two types of queueing networks, as well as of single service systems, namely
open and closed. In an open model, requests enter the system, traverse the network, and
exit. In a closed system, there is a constant number of requests in the system, which are
most commonly buffered at a dedicated service station, where the clients “think”. This
model is most commonly used in interactive systems where the clients alternate between
thinking and waiting for service. That means that the arrival rate from the buffer station
into the rest of the system gets lower when the clients are queued elsewhere. It is a
self-regulating system.

Please note that the diagram of the lower bounds is valid for a closed system. In an
open system, when the utilization reaches 1, the queue length and service time approach
infinity because the model describes a statistical equilibrium and cannot model the slow
rise of the queue length that would happen in practice. The input flow of an open system
is characterized only by the arrival rate, whereas that of the closed system by the number
of clients and think time. A batch job system works similarly to an interactive system;
only its think time is zero because requests are issued from a batch job queue (which is
deemed infinite).

In particular for modeling autoscaled web servers in the cloud, we find that queueing
networks are a great abstraction because they can model multiple service stations, their
number equal to the number of servers in an application tier. Secondly, chaining the service
stations together can model multiple tiers. Using routing probabilities, one can model that
e.g. between a web server and a database server, not every request from the user will
make it to the database, or, the other way around, that one web request will result in
several requests to the database (as is the case with our favorite benchmark application,
Wordpress).

Also interesting is the ability of most simulation tools to work with multiple client
classes with distinct flow rates and service demands. This is useful when the real situation
that is being modeled has a multimodal service time distribution, as is the case with web
servers which serve both dynamic and static content.

The downside of queueing network models is that they model the system in a stochastic
steady state. It is impossible to capture individual requests in the model, only time interval
averages. However, this plays well with practical performance monitoring tools, which
sample the measured system and save averaged values in a time series database. It is
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also not possible to solve an overloaded open queueing system using the modeling tools.
However, extrapolation using simple formulas is found to sufficiently capture the slow rise
in queue length and service time and the model is able to carry on when the overload
subsides.

1.5 Structure of the Dissertation Thesis

The thesis is organized into five chapters as follows:

1.

Introduction: Describes the motivation behind our efforts together with our goals.
There is also a list of contributions of this dissertation thesis and theoretical back-
ground.

State-of-the-Art and Related Work: Introduces the reader to the necessary theoret-
ical background and surveys the current state-of-the-art in two areas, those being
Performance Prediction and Autoscaling Simulation.

Overview of Our Approach: Summarizes the main points and methods employed in
this research.

Main Results: Is further divided into three chapters that detail the experiments
performed and their results, namely Fesibility of Interactive Workload Prediction,
CloudSim Modification for Interactive Traffic, and Cloud Simulator based on Queue-
ing Theory. All three have been previously published in reviewed journals.

Conclusions: Summarizes the results of our research, suggests possible topics for
further research, and concludes the thesis.
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CHAPTER 2

State-of-the-Art and Related Work

2.1 Performance Prediction

This section presents a study of scientific articles concerning performance prediction and
cloud computing. Although load prediction articles existed for a longer time, mainly
dealing with grids or server clusters, the keyword cloud computing limits the results to
no older than 2011. About 250 article abstracts have been examined, of those 20 were
found highly relevant and were studied in detail. The most articles (10) were concerned
with automatic scaling, 9 dealt with performance simulation, 6 with resource allocation, 4
with task scheduling, 4 with anomaly detection and 3 presented new forecasting methods.
As to the methods identified, time series analysis was performed using statistical means
(averaging and regressive methods), using machine learning (neural networks and Markov
models), or by pattern matching. Other prediction approaches that are not time series
analysis methods include supervised and unsupervised machine learning, queueing theory
models, control theory controllers, game theory optimization and general heuristics. This
literature research should give a good overview of prediction tasks that are present in clouds
and methods available to solve them.

This section has two main subsections, Subsection [2.1.1] presents the research from
the view of the research goals (e.g. saving power, optimizing resource allocation), Sub-
section views the works from the standpoint of used methods (time series analysis,
machine learning, etc.), and the last subsection is Summary.

2.1.1 Research topics

This subsection attempts to classify the studied articles by the main topic of the work.
Some of them may use prediction only marginally or use another form of prediction than
performance forecasting.
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2.1.1.1 Forecasting methods

Several articles present new forecasting methods and compare them with others using
workload traces. There are several such traces that are widely cited, most notably World
Cup 1998 web request trace and Google cluster batch workload trace. These are available
in [I3] and [14], respectively.

Articles in this category are [15], which presents a method to enhance the Network
Weather Service [16], a prediction framework from 1999, which currently seems to be
discontinued. Article [I7] presents a method from the area of pattern matching, see next
section.

An interesting work is by Herbst [18], which holds a summary of forecasting methods
implemented in the R statistic language, along with their strong and weak points, and
presents an algorithm for automatic selection of method based on prediction goals and, to
a lesser degree, input data. It contains, by increasing complexity, moving average, simple
exponential smoothing, Croston’s method, cubic smoothing, ETS, ARIMA, SARIMA and
tBATS.

2.1.1.2 Resource allocation optimization

A popular theme in cloud computing is placement optimization in all its varieties and goals.
Most prevalent is the drive towards Green computing, that is consolidating workload to
as few machines as possible while maintaining SLA (Service Level Agreements). Another
optimization problem lies in hybrid clouds. There are works that try to compute best
routing of requests between multiple distributed replicas of a server, perhaps in a multi-
tier or mash-up infrastructure. Also cost vs. latency optimization between providers is an
open problem.

Articles from this class mostly don’t contain any forecasting methods, rather optimiza-
tion algorithms such as support vector regression and genetic algorithm used to compute
VM to PM allocations in [19].

2.1.1.3 Task scheduling

If this research wasn’t focused on cloud, but rather on grid, this would be the prevalent
class of articles. Even in the area of cloud, there were 4 relevant articles that dealt with
optimization of batch job queues. The quantities predicted in this field are several. Firstly,
to optimize a batch job system, the run time of a task needs to be known as precisely as
possible. With job durations estimated, one can predict the run time of the entire queue
and if the jobs also have deadlines, one may compute the necessary amount of resources
for the jobs to complete on time.

In the context of cloud, this can be used to automatically start a cluster of the right
proportions. This approach is, arguably, outdated, since in cloud computing, the amount
of resources is ideally changed dynamically, not allocated once at the beginning. Some
classic cluster computing tools, sadly including the currently popular Hadoop, are difficult
to scale, so this static sizing approach is still used.
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Zhang in [20] uses model predictive control and ARIMA to predict task durations
and then optimizes the cluster cost between the electricity costs and costs for deadline
violations. An interesting observation is that he first fitted the model to the data, and
after that specified the forecast horizon as the time when the accuracy of the method fell
below that of the naive predictor (which copies the last observed value). The reported
horizon was 33h in 5 minute steps. Eldin [2I] presents a simulation of a reactive-predictive
autoscaler for compute clusters using control theory.

2.1.1.4 Automatic scaling

Automatic scaling is currently one of the most prominent topics in cloud research, both
academic and commercial. Scaling the amount of resources dedicated to an application de-
pending on the workload can lower the costs of the infrastructure, as the capacity doesn’t
have to be provisioned for peak loads, which was the case in classical static virtualiza-
tion. The downside of reactive autoscaling is that the provisioned capacity lags after the
demand, meaning that extra resources will get allocated after an overload situation has
started. There is a trade-off between overprovisioning and the possibility of SLO (service
level objective) violation. In downscaling, the reactive approach is prone to oscillation,
which happens when the system load goes over the upscaling threshold a short time after
resources have been released. Automatic scaling employing some kind of load prediction
could mitigate both these problems. It still has to be combined with reactive scaling in
case of an unpredictable spike. This problem is further addressed by anomaly detectors
that can detect these spikes early and also use prediction techniques.

Overloaded infrastructure Specific subproblems within this class are how to deal with
overloaded infrastructure, where the peak workload is at or over the cluster capacity. It
is then possible to dynamically migrate VMs to less loaded PMs or to actuate allocation
of CPU cycles or VM priorities (depending on hypervisor), so that the more important
services don’t suffer. This is also an optimization problem. When the load of a VM hits
the cap, the prediction is likely to be inaccurate, as it captures the amount of resources
used, not the resource demand.

Hybrid cloud with spillover Two articles also dealt with a hybrid cloud, where au-
tomatic scaling works in longer intervals and traffic may spill over from one location to
the other in the case of a traffic spike. One of them is [22], which uses simple exponential
smoothing as its predictor. The downside is that the spillover traffic coming from the other
site is rather unpredictable (this is also a hard problem in queueing theory).

Green computing There is also a tendency towards green computing in this category.
There are two or three approaches to lowering the power draw of a virtualization cluster.
The first is powering machines on and off, which has the downside of a longer reaction
time and higher possibility of node failure. The time to turn the machine back on can
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be significantly lowered by using suspend to RAM. The second approach is to use DVFS
(Dynamic Voltage and Frequency Scaling) to lower the energy required by the CPU. The
downsides here are that the savings are much lower, as most of the power used by the
servers is static and not dependent on CPU load. Secondly, response times of application
running on downscaled processors can be slightly higher.

The first category is represented by three articles. In [23], a queueing network simulation
is created that monitors throughputs and queue lengths at load balancers and reacts by
adding or removing VMs every 10 minutes and powering on or off machines every 2 hours.
It doesn’t contain an actual forecasting method. Article [24] develops a pattern-based
prediction method that decides the number of needed machines in the next 5 minutes.
The authors of [25] use a neural network to exactly the same ends.

A proponent of DVFS is Shen with the CloudScale system [26], which uses both migra-
tion and frequency scaling to lower the power usage of a cluster. It uses a Markov chain
predictor on FFT signatures and predicts 10s ahead for frequency scaling and 100s ahead
for migration. It is designed for the Xen hypervisor and uses its credit CPU scheduler
to dynamically cap processor and memory usage of VMs in order to ensure good multi-
tenancy. The article also describes how to deal with underestimation errors in prediction
and with prediction after overload situations.

Both DVFS and power actuation is used in [27], where Holt’s double exponential
smoothing is used with a frequency of 5s and forecast horizon of 10 minutes. The cluster
used in the experiment was heterogeneous, so the authors pre-computed a table of which
servers and at what frequency should be running for different workload intensities. In the
evaluation, a server was started of stopped tens of times per hour.

In public cloud The previous articles in this category dealt with a private cloud, vir-
tualization or bare metal cluster. They used this fact to control both the client a provider
side of the TaaS model from one application. In public cloud, the provider side, including
power costs and hardware wear, is not visible and the only concern of the user is to mini-
mize the service cost. An added complexity are the billing intervals, which limit the speed
at which scaling decisions can be made and still have a positive economic impact.

Only one predictive autoscaler for public clouds was found in the articles, as part of a
complete automated load and scalability testing framework by Vasar [28]. The autoscaling
component uses Holt’s double exponential smoothing to predict the workload, which is
however rather specific as it is driven by a ramp-up traffic pattern. The scaling granularity
of the system is 1 hour as dictated by Amazon EC2 billing. All instances are started after
full hour and terminated minutes before, to work around the problem of selection of the
instance nearest to full hour. The predicted quantity is requests at the load balancer,
which is converted to load by a simple queueing theory model.

2.1.1.5 Performance simulation

Another class of articles found during the study deals with queue theoretic models of
applications in the cloud. Mostly, the applications are first profiled, a performance model
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is constructed, and an estimate of how many nodes are required for a certain load on the
cloud infrastructure is given. Four articles dealt with server applications, four with sizing
of a compute cluster, including Hadoop, one article presented a profiling and simulation
tool.

The article by Iverson [29] deals with heterogeneous grid computing and statistical
prediction of task execution times in this environment. A benchmark of different machine
types and workloads has been conducted and analyzed by k-means regression. The model
could then estimate the run time of a profiled task on different machines. More articles of
this kind have not been studied as performance models were not the goal of this analysis.

2.1.1.6 Economic models

Prediction can also be used from the perspective of a public cloud provider. For example,
the price of a certain commodity may be set based on demand. If the demand is predicted
in advance, the so called spot price can be set more accurately than by manual means,
and thus regulate the availability of said resource by market mechanics. One article of this
kind was found, but not investigated beyond the abstract.

2.1.1.7 Anomaly detection

Anomaly detection is an approach that utilizes a prediction method over a small forecast-
ing horizon and raises an alert when the actual value is significantly different from the
prediction. It is already employed in commercially available system monitoring tools. It
augments usual availability measures and performance threshold alerts and is able to point
out to the administrator that something is not behaving normally. In contrast to threshold
alerts, it can also alert when the usage of some resource is exceptionally low, which may
for example mean that users are unable to access the site or have been redirected elsewhere
by an attacker.

A good example of anomaly detection is in Dean [30], who uses self organizing maps
to detect when the system parameters get outside their normal parameters. The author
claims this is a prediction technique, in contrast to detection, but the effect is actually
closer to detection of pre-failure states and works in the horizon of tens of seconds. The
PREPARE system [31] uses a 2-dependent Markov model to track the monitored system
in discrete performance steps and uses a naive Bayes tree to classify the states as normal
or abnormal. The system has means to prevent a predicted anomaly by migrating virtual
machines or increasing their memory or CPU allocations.

The literature search also contained two articles on anomaly source identification in
multi-tier systems, but they contained no predictive algorithms per se.

2.1.1.8 Low-level Infrastructure performance

As the modern computers are becoming so complex that the execution of a program is an
unknown quantity and must be evaluated by statistical means, there is a field of computer
science that studies factors that influence the run time of a program. In virtualization,
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this is most notably scheduling of VMs to CPUs and sharing of the memory hierarchy
by workload that runs inside the VMs. This study discovered one article that deals with
profiling VMs and predicting slowdowns stemming from co-location of different VMs.

2.1.1.9 Cloud service optimization

Beside users VMs, a cloud may also contain shared services, such as databases. If these are
to serve multiple customers, it must be ensured that one user cannot saturate the service
and make it unavailable or poorly performing for others. One article shows an approach
that places a proxy in front of a shared database and, based on a prediction of duration of
incoming requests, only admits requests that won’t overload the service.

2.1.2 Employed methods

In this subsection, the prediction or classification methods employed in the studied articles
are classified and discussed in more detail.

2.1.2.1 Statistical time series analysis

A time series is a set of observations of a certain quantity that are ordered in time. For the
purpose of computer system monitoring, the time intervals are mostly equidistant. The
purpose of time series analysis is most of the time to create a forecast of the series in the
future. All forecast methods may be compared to the so called naive forecast, which is
equal to the last observed value. A time series can be analyzed by several methods, the
most thoroughly studied are from the area of statistics.

One of the useful tools it provides is time series decomposition. A time series is formed
from three main components, the first is a seasonal pattern, which may or may not be
present. It is most prominent if the data contains a daily, weekly, etc. cycle of natural or
human behavior. In computer systems, seasonality is mostly created by interactive user
activity and the shape of the cycle depends on the nature of the system, e.g. whether
it is a business system or one that people mostly use in their free time. The second
component is trend, which signifies the slope of the time plot in a longer term. It may be
modeled by linear segments, splines, or simply as a moving average of the data with the
seasonal effect already removed. The remainder of the data after the first two components
are subtracted is the error term. Ideally, when the time series is a stationary stochastic
process (a requirement of most statistical analysis methods), the error term is white noise.
The seasonality and trend may be of additive or multiplicative nature.

Averaging Time series models that may be used for forecasting are built either on
moving averages or on autoregression. The most basic averaging model is the simple
moving average. It takes a sliding window and runs it over the time series. It produces
a smoothed time series by substituting the average of the observations in the window for

26



2.1. Performance Prediction

the measured value. Its forecast is the average of the last window. Used as the cheapest
algorithm of the adaptive approach in [I§].

Simple exponential smoothing gives more weight to more recent observation while hav-
ing infinite memory. It is implemented as one variable that holds the average, and is
updated by each new value with a given weight «, while the last value of the variable has
weight 1 — . The smoothed value s at time t is given by the formulas

So = Xo (21)
s =ax;+ (1 —a)si—q, £ >0

where x is the original value of the time series.

It can also be used to smooth a time series, the forecast is the last value of the average,
so it looks like a straight line in the mean. It is good for time series that do not exhibit
trend or seasonality. The weight can be calculated automatically from training data using
linear least squares. Used in [I§] and in [22] for automatic scaling.

Double exponential smoothing or Holt’s method improves exponential smoothing by
adding a second variable holding the difference of the current value from the smoothed
average, which captures the slope. The slope is calculated as an exponentially smoothed
difference between the current value and predicted mean. It also has 2 weight parameters,
«a and (. This way, the trend of a time series is captured. It is given by the formulas

51 = 1 (
by = 1 — xo (

t>2: (
sp = awy + (1 — a)(5e-1 + b—1) (
by = B(st — si-1) + (1 = B)b—1 (
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where b, is the best forecast of the trend. The forecast at time ¢ plus m steps into the
future is given by

E—l—m = S + mbt (28)

It can be used for short term forecasts or when the time series is not seasonal. The forecast
looks like a line at the average with a slope equaling the trend. Used in [28] for predicting
the effect of a ramp-up traffic pattern and in [27] for turning on/off servers in rather short
intervals.

Croston’s method was created for forecasting time series of intermittent demand. It
splits non-zero and zero parts of the series and performs forecasts separately using simple
exponential smoothing. Referenced in [18].

Cubic smoothing uses a linear forecast function to extrapolate a steep trend. Good for
short term forecast on non-seasonal data. Referenced in [1§].

Triple exponential smoothing or Holt-Winters method extends Holt’s method to capture
seasonality. To this end, an array of seasonal coefficients is added. The seasonal memory
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array holds the factor or addend (depending on whether multiplicative or additive season-
ality is used) of each observation point in the season to the exponentially smoothed value,
and is itself updated through exponential smoothing. All points use the same smoothing
weight, v. The formulas look like this for multiplicative seasonality:

So = X (29)
st = a— + (1 — a)(se1 + 1) (2.10)
Ct—L

bt = B(St - Stfl) + (1 - B)bt,1 (211)

x
= vs—t + (1 —7)eir (2.12)

t
F1t+m = <3t + mbt)ct—L+1+(m—1) mod L (213)

and for additive seasonality:

So = Xo (214)
ss=a(xy—cp)+ (1 —a)(se—1+ bi—1) (2.15)
bt = B(St — St—l) + (1 — 5)bt_1 (216)
=@ —s-1— b))+ (1 —)e—r (2.17)
F’t—i—m = S5t + mbt + cth+1+(m71) mod L (218)

where c is the array of seasonal correction factors and L is the length of the cycle. The
weights are often initialized like this:

I fxppr—x1 Tpgo — X Tpip — TL
by = — 2.19
0 L< L L ot (2.19)
1 N TL(q ;
CZ:NE % Vi=1,2,...,L (2.20)
=1 !
S TL(1)4i
Aj = @—1LJ Vi=1,2,...,N (2.21)

where N is the number of complete cycles in the training data.

The forecast contains the seasonal pattern repeated over and over, superimposed on
the trend, starting at the average. It can be used for medium range forecasts and for
seasonal series. There is also a function called dshw() (for Doubly-Seasonal Holt-Winters)
in R, which can capture two combined seasonal effects, such as daily and weekly. It is
not referenced by any examined article, however [18] cites ETS (Extended exponenTial
Smoothing), which is a generalization covering simple to triple exponential smoothing
with additive or multiplicative trend and seasonality and can automatically select a model
from this class.
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Regressive A generally stronger but more computationally intensive class of models
uses regression. Basic linear regression fits a line through the data using least squares
and can predict any value between the observed data points or extrapolate beyond the
measurement. Can also be used as a simple time series forecasting method. Referenced by
one article abstract.

Autoregression is a regression of the time series with the lagged values of itself. It
quantifies the so-called self-similarity of a time series in a statistical fashion. An autore-
gressive (AR) model has a number of coefficients equal to its order. The next value of
a time series is forecasted as a sum of the lags multiplied by corresponding coefficients.
An AR(3) model therefore takes into account a history of 3 time units. The coefficients
are fitted numerically using the least squares method. It models trend and with order ; 1
can also have cyclic behavior, although there is a special class of models for more general
seasonal series.

Moving average (MA) models extend the simple moving average by measuring errors
not only from the last data point but from as many points from the history as the order
of the model. The next data point is computed as the sum of these errors multiplied by
corresponding coefficients. The estimation of those is more difficult than in case of AR
models and requires non-linear least squares or maximum likelihood methods.

The ARMA(p,q) model class contains as additive terms both an AR(p) model and a
MA(q) model. This class of models is however sensitive to the stationarity of the time
series. As per Box-Jenkins, a method to bring a time series closer to stationarity is to
apply differencing, that is to create a new time series containing differences of adjacent
members of the original. This is done inside an ARIMA (p,d,q) model, where I stands for
integrated and the parameter d specifies the number of differencing steps applied. It can
be used for medium term forecasts. The ARIMA method, as a generalization of both AR
and MA, is used in [I8] and in [20] along with a control theoretic approach to predict batch
queue duration. A more mathematical description of ARIMA can be found in this thesis
in subsection B.1.2

SARIMA(p,d,q)(P,D,Q) is the seasonal version of ARIMA. The first three parameters
control the first lags similar to ARIMA. The other three parameters control the number of
seasonal lags and differencing. Seasonality is, similarly to Holt-Winters, modeled separately
for each point in the seasonal pattern. An ARIMA(P,D,Q) model is fitted for lags that
are multiple of the seasonal frequency. This class of models can be used for long term
forecasts if the time series is seasonal. There is a function auto.arima() in R which tries
to automatically find the right number of lags for a (S)ARIMA model. Its use is, however,
rather time-consuming. Referenced in [18].

Hybrid There is also a class of models that combines several approaches. One such is
tBATS (trigonometric Exponential smoothing state space model with Box-Cox transfor-
mation, ARMA errors, Trend and Seasonal components). This model combines seasonality
expressed using a Fourier series (which is frequency-domain analysis using trigonometric
functions), an ETS model augmented with Box-Cox transform (a generalization of logarith-
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mic and power transforms used to bring any non-linear trend to linear, which is capturable
by ETS) and works around the limitations of exponential smoothing, which cannot cap-
ture self-similarity, by using ARMA on its residuals. It seems to be the state of the art in
statistical methods and can be used for long term forecasts. Reportedly takes a long time
to fit, but not as long as auto.arima(), whose execution time is also highly dependent on
input data [1§].

2.1.2.2 Machine learning

Other approaches for time series analysis come from the area of machine learning and can
also be used for other kinds of data, for example spatial observations.

Time series analysis One popular class of algorithms that can also be used on time
series is simulated neural networks. A neuron is simulated as function with one output and
many inputs. The output is a linear combination of its inputs, gated through an activation
function, which can be for example a threshold or sigmoid (smoothed threshold). A neural
network with three layers can approximate any function, and the most interesting property
is that neural networks can automatically learn from errors and update their coefficients at
runtime. In the context of time series prediction, the inputs of the first layer of neurons are
mapped to successive lagged values of the time series, the second layer is hidden and the
output layer of one neuron is connected to the predicted value. The power of this model is
the same as that of ARIMA, however neural networks have the ability to adapt to changes
in the time series, whereas statistical methods demand stationarity. The drawback is that
the mechanism of learning is rather heuristic in nature and the selection of parameters
is an optimization problem in itself. It was used in four articles, one of them being [25],
where a network with 20 inputs and one output was used for one-step-ahead prediction of
a time series with 5 minute frequency to decide when to turn off physical machines in a
cloud.

Another class of models that can be used for time series analysis is Markov models.
They are backed by Markov chains, which are a comprised of states and transitions. Each
transition is dependent only on input and current state, when trained on input data,
probabilities can be assigned to each transition. Therefore, from a given state, the most
probable future evolution of the system can be predicted. Markov chains are best used if
the input space is discretized, so the prediction will also be given in discrete steps. In [31],
a generalized version of Markov chains is used that is dependent not only on current state
but also on one previous state. It predicts system state in a short forecast horizon for
anomaly detection. In [26], a Markov chain is trained not directly on the values of a time
series, but on FFT signatures of its frequency domain. It can forecast 10 samples ahead
and is used for frequency scaling and VM migration.

Classification Other kinds of prediction than time series forecasting have been found in
the studied literature. For example anomaly detectors used machine learning approaches
to detect abnormal states. In [31] a naive Bayes classificator is used to classify states as
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normal or abnormal. It is a supervised learning method, meaning that before classification,
samples labeled with desired output have to be given to the system by other means. It is
also possible to continue teaching the model at run time. In the learning anomaly detectors,
abnormal states are identified by monitoring SLO violations and presenting samples from
such times as abnormal. The system can then ideally identify the abnormal state ahead of
the SLO violation and take corrective action.

The article [30] then uses a self-organizing map to the same ends. The SOM is a
non-supervised learning technique; it is a 2-dimensional neural network which learns from
incoming samples. The authors gave each sample 8 parameters from the measured sys-
tem. Each neuron has its coordinates, initially randomly generated. An incoming sample
is passed to the neuron with nearest coordinates, which are then modified towards the
parameters of the sample by exponential smoothing. The neighboring neurons are also
updated, but with lower weight. The result is mapping of the 8-dimensional input space
to two dimensions, where similar parameters of the input will be also near in the map.
The normal/abnormal classification was done by judging how many times each neuron was
updated. The often used neurons represented normal system state, while the less used
were outliers.

The article [29] was on profiling grid tasks and predicting their run times on different
machines. It employed k-means regression. This is another unsupervised learning tech-
nique. First, the k-means algorithm for data clustering was used on the profiled data to
find the characteristics of different profiles on different machines, then regression was used
to predict the run times of new traces.

2.1.2.3 Pattern matching

Time series analysis can also be done by algorithms inspired by stringology, which has
strong tools for non-exact matching of strings. This requires discretization of the values of
the time series, so that strings of states may be compared. The recently observed pattern in
a time series is searched in its history (with limited lookback), the results are then ordered
by the closeness of the match, and the prediction is based on what values came next after
the historically observed samples. These algorithms will be very strong on time series that
show little autocorrelation, but exhibit repeating patterns of behavior. The article [24]
uses such a technique, where the strings are composed of some defined levels of slope from
the time series plot. Strings of symbols -4..4-4 are obtained by grading the slopes observed
during 5 minute measurement intervals. The prediction of the model is used to turn on
and off physical hosts in a cloud.

Article [I7] uses a modified Knuth-Morris-Pratt algorithm. The original KMP speeds
up searching substrings in a text by intelligently skipping comparison of characters that
cannot match. It pre-computes a state machine based on the searched word to find out how
many characters to safely skip when a mismatch occurs at each position of the compared
word. The said modification was to enable non-exact matching and is the topic of the
article. The resulting predictor was used with a resolution of 100s and lookback of 100
samples and tested on server load traces.
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2.1.2.4 Game theory

One article abstract described a method of resource allocation in overloaded clusters that
employed game theory. Each tenant had his performance goals and a penalty of not meeting
them and an iterative algorithm was devised to compute an allocation of VMs to PMs in a
way that as many goals as possible will be fulfilled and the total penalty will be minimal.

2.1.2.5 Queueing theory models

Queueing theory was originally focused on problems in telecommunication, but can be
applied to problems computer science, transportation, or even real life. It constructs
models of queueing systems, which have an input flow of service requests (from a finite
or infinite amount of users) and a number of service lines that serve these requests. Both
the input flow and the service times of the lines are stochastic processes, and the theory
can analytically provide answers to questions like what will be the distribution of waiting
times of the requests in a queue, or what will be the probability of denial if queueing is
not allowed. Inversely, knowing SLOs, one can compute the number and speed of service
lines necessary to achieve it with a certain probability.

These basic service system models may be chained together using Markov chains to
create queueing network models. They can for example model a situation where a request
will be first served at the CPU, then with a certain probability will wait for a hard disk,
then return to the CPU queue, and finally go to the network card to be sent out.

Three uses of queueing theory models have been found in literature. Four articles
have used it to create a simulation of an application in the cloud after having profiled it.
For example, in [21], a simulation of a batch job system with autoscaling is performed.
Two articles proposed queueing network models of multi-tier application in the cloud,
for example [23] simulated a system with load balancers, and it made autoscaling decision
based on the lengths and throughputs of these queues, without having constructed a model
by profiling. Two articles used queueing theory for modeling grid workloads. For an
overview of modeling problems in grids, a doctoral thesis abstract on the topic [32] is
recommended.

2.1.2.6 Control theory

Control theory is a discipline that was originally used in manufacturing, but is also applied
in mechanical engineering and computer science. It studies dynamical systems and the
means of their control, that is keeping a possibly unstable system in a desired state. Most
models have architecture with a feedback loop, where a controller drives the controlled sys-
tem based on the desired state and the current state of the system based on measurement.
The system is described using a mathematical model and the controller uses the model
to drive the real system. Model predictive control, referenced in an article abstract, is a
controller that predicts several steps ahead based on the current state and tries to bring
the system to the desired state using minimal intervention. Article [21] uses a controller
to drive a queueing theory model of and autoscaling cloud system.
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2.1.2.7 Heuristics

Several articles used a heuristic approach, that is a method derived from common sense
and turned into an algorithm. For example an automatic resource allocation scheme can be
based on the detection of maximal values from load traces. Article [I5] present a combined
homeostatic and tendency based predictor. It assigns weights to two observations. First,
a time series may return to its average soon after a spike occurred. Second, a time series
that had a trend for several past observations may continue to exhibit that trend. Tuning
this predictor, the authors outperformed other approaches present in the Network Weather
Service.

2.1.3 Summary

In this section, a study of existing scientific articles with the topic performance prediction
in cloud computing has been performed. Although the original idea was to summarize
time series forecasting methods used in automatic scaling, the study also contains other
approaches such as classification, queueing and control theory. Also other research goals
than green computing have been found, for example anomaly detection, VM placement
optimization, market regulation and performance simulation. While the list of articles is
not conclusive, as some authors may have used different key words from those that were
searched, the list of goals and methods should be sufficient to give a good overview of the
state of the art and help in deciding which research topic to pursue.

Overall, looking at the methods, we can see methods that are best used in one-step-
ahead mode. These simpler methods have the advantage of speed, but lack accuracy at
longer forecast horizons. They are best used in anomaly detectors, where this horizon is
sufficient, or to augment more complex long-range methods, forming an ensemble.

The second class would be methods that capture trend and are good for medium range
forecasts or for data that do not have seasonality. Whether this class is or is not sufficient
depends on what forecast horizon is required by the application. They should still offer
good speed and are thus well suited for situations, where the action can be done frequently
based on the prediction, such as with DVFS.

The seasonal models then exploit cyclic behavior in data to provide long term forecasts,
meaning several periods of the repetitive pattern. This capability is appealing, but is still
remains to be seen if it will be necessary in the context of cloud computing problems.
These models were not used in any of the researched articles, but could be interesting in
scenarios when, e.g., frequent turning on and off of machines or VMs in a public cloud is
costly and thus a longer forecast horizon is needed.

For some special time series, which exhibit repetitive behavior, which is not exactly
seasonal, pattern matching approaches will probably provide the best predictions. However,
it will be more difficult to obtain confidence intervals as these models are not backed by
statistics.

The strength of machine learning approaches is hard to judge. Neural networks used
directly on time series have the same power as ARIMA models, however the process of
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model fitting is vastly different and it will depend on the input data, which will perform
better. Likely, they will perform better on series that are quickly changing and thus
violating the principle of stationarity required by the autoregressive models, which in that
case need short learning history and frequent re-training.

2.2 Autoscaling Simulation

This section attempts to be an exhaustive study of available possibilities to implement a
simulation of a cloud autoscaler. It starts with the most specific tools, which are focused on
the simulation of clouds and data centers, continues with more generic tools for performance
analysis, and ends in a list of simulation languages for discrete event simulation, which
would have to be used when none of the previous possibilities was found to offer the
needed features and flexibility.

2.2.1 CloudSim and other cloud simulators

During an earlier state-of-the-art analysis of cloud computing in general, CloudSim was
found to be cited by several articles dealing with optimal resource allocation in clouds.
One is written by Beloglazov, Abawajy, and Buyya [33], the authors of CloudSim, and
deals with optimizing data center power usage through heuristic VM placement. Jeyarani,
Nagaveni, and Ram [34] approached the same problem using particle swarm optimization
algorithms. Both these articles work with SLA (Service Level Agreement) defined as a
certain amount of MIPS (Millions Instructions Per Second) of processing power and focus
on static allocation of VMs and their migration, whereas we attempt to use the simulator
to calculate actual latencies of web application requests and need to change the number of
VMs at runtime.

De Oliveira, Ogasawara, Ocana, Baiao, and Mattoso [35] used CloudSim to prove an
adaptive scheduling strategy for the SciCumulus workflow engine; however, details of the
simulation are unclear from the paper.

Zhao, Peng, Xie, and Dai [30] present a review of available simulation tools for Cloud
Computing. Contained in the survey are CloudSim, CloudAnalyst, SPECI, GreenCloud,
GroudSim, NetworkCloudSim, EMUSIM, DCSim, iCanCloud, and some real testbed clouds.
All these simulators are based on the discrete event model. GroudSim focuses on simulation
of batch computations; SPECI and DCSim seem to be focused on data center simulation
and will probably be unsuitable for autoscaled application simulation. GreenCloud is based
on the NS2 packet-level network simulator and could potentially have high accuracy. iCan-
Cloud is the most recent of the projects and is actively developed, but will also likely lack
the functionality we need. Our questions sent to the authors about the matter have not
been answered. The other projects are related to CloudSim.

Going beyond the survey looking for articles on CloudSim accuracy, one can find the
introduction of the simulator SimIC [37] for interclouds, which builds upon the same sim-
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ulation event engine as CloudSim and compares its precision to CloudSim, trusting its
design to be the etalon of accuracy.

The IBM technical report [38] on the other hand states: “CloudSim does not meet
our requirements in terms of scalability, accuracy (especially of the hardware modelling)
and modularity”. They have developed their own simulator and tested it on infrastructure
operation workflows in OpenStack. They dismiss DCSim, GreenCloud and SPECI as too
specialized and iCanCloud as lacking queueing for software resources.

The newest project based on CloudSim is probably CDOSim [39], where CDO stands for
Cloud Deployment Option. According to the article, it enhances the user-centric features
of CloudSim. It includes the ability to start and stop VMs at runtime, an auto-scaling
function, a CPU utilization model, allows application architecture and performance model
to be imported and allows multi-tier application to be modeled. Most notably, it is the
only other paper found, which includes an accuracy test of the CloudSim engine. The test
is done on a Java web application under automatic scaling and the authors report relative
error of 30.64% on CPU utilization and 37.57% on latency, averaged over a daily traffic
pattern. The authors state that the highest error was observed during a traffic spike.
Perhaps the simulation engine cannot reliably model overload situations. The problem
with CDOSim is that it was only used as a component of CloudMig Xpress, which seems
to be discontinued. Source code is not freely available and the compiled Java application
does not allow direct access to CDOSim functions, so no verification is possible.

2.2.2 Analytical solvers for queueing network and other formal models

Another family of simulators that could be useful is Queueing Network Simulators. The
advantage is that these models have firm theoretical grounds, the system to be solved is
described declaratively, not procedurally as in discrete event simulators, and the user is less
constrained by the assumptions of the simulation environment’s authors. The downside is
that the models employed describe steady state only. Therefore, to simulate an autoscaled
application, we would have to find all the steady states the system goes through and
run the simulation for each of them. Transitional effects of adding or removing VMs at
runtime would not be captured. Also, the simpler models expect exponentially distributed
interarrival and service times, which can cause them to diverge from reality if the traffic
pattern is very bursty.

The starting point for a list of available QN solvers were chapters 11 and 12 of the
book [12], which also contains a comprehensive study of all formulas for solving QNs,
Markov Chains, and Stochastic Petri Networks. The list can be categorized by the formal-
ism used in the simulator or solver. We also went through links in articles describing the
software pieces and public link collections such as the one by Hlynkal| to find out which of
the tools are still being developed or at least made available.

The first category is software that introduces its own simulation language that is not

'http://web2.uwindsor.ca/math/hlynka/qsoft.html
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based on any formal language. Among those are languages developed by Alan Pritskerﬂ
— Q-Gert (1977) and SLAM II (1986), and the last one, Visual SLAM/AweSim (1997).
These had applications in the army, and in industrial and commercial modeling. The
languages had some properties of queueing theory, but the simulations were event-based
and supported discrete and continuous state space. Currently, there is a project and a
company called AweSim at the Ohio Supercomputing Centerf specializing in industrial
simulation, though we could not find a connection to Alan Pritsker on their site.

GPSS (1965) is a modeling language with properties of QN and Petri nets, meaning
that it can simulate queues and, additionally, model contention and locking of other re-
sources. Therefore, it must be interpreted by discrete event simulation. It was designed for
manufacturing but had broader application. The original implementation was by IBM; now
there are at least three commercial implementations and one for academic purposesE] [40].

Moving forward to simulation languages that build on the Queueing Network formalism,
the first we could find is RESQ (1977), which was developed at IBM. It was probably used
through the 90s, but we could not find a current version of it.

QNAP2 (1984) was a queueing network simulator developed at INRIA. It was sold to
the spin-off Simulog and used as part of its product MODLINEE]. Simulog was itself sold
more than one timd’] and no current version of QNAP2 or MODLINE was found.

The system with the highest number of solution methods to date is PEPSY-QNS
(1994)@. It claims to have 50 methods implemented, probably covering all algorithms
described in the book [12], one of them being discrete event simulation. Most notably, it
can model non product-form QNs with arrival and service time distributions specified by
mean and variance. There was a command-line version and an X-Window interface, which
do not seem to be available anymore. The WinPEPSY version [41], although it does not
contain all the algorithms from the Unix version, is still availabld’| However, it is focused
on GUI and is not likely to be usable from the command line.

PDQ (2000, last version 2013)f| is described in the book [42]. It is written in C but
provides integrations for other programming languages, namely Perl, Python, R, Java and
(unmaintained) PHP. Being a library, it has no user interface itself, but its strong point is
the ease of integration into other projects. It is capable of solving open and closed single
or multi-class product-form queueing networks. It only contains three algorithms and is
limited to exponential arrival and service distributions. However, from our experience,
that is enough for most purposes. We are using this library in our autoscaling simulator
in R and have integrated it into a web tool for cloud capacity planning.

"https://en.wikipedia.org/wiki/Alan Pritsker#Discrete-continuous_system_simulation
Zhttps://www.osc.edu/content/the_awesim_advantage

3http://jgpss.liam.upc.edu/about

‘http://www.ercim.eu/publication/Ercim News/enw24/simulog.html
Shttp://en.wikipedia.org/wiki/Esterel _Technologies
Shttps://www4.cs.fau.de/Projects/PEPSY/en/pepsy.html
"http://www7old.informatik.uni-erlangen.de/~prbazan/pepsy/
Shttp://www.perfdynamics.com/Tools/PDQcode.html
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JMT (2006, last version 2013)] [43] was developed at Politecnico di Milano and Imperial
College London and is a collection of tools written in Java for simulation and analytical
solving of queueing networks. It contains six tools, namely JSIMGraph for graphical model
specification, JSIMWiz and JMVA for textual model specification, where the second in-
terface is constrained by the possibilities of analytical solvers. There are nine algorithms
available. Using both simulation and analytical approaches, a wide variety of model types
are specifiable, including non-exponential arrival and service times, load-dependent servers,
fork-join operations, various load-balancing strategies. Further, there is JABA for bounds
analysis, JMCH for Markov-chain visualization and JWAT for logfile analysis. The tools
also have a command-line interface, which accepts models in XML files, and, due to the
GPL license, could lend themselves to integration into other Java projects. From personal
experience, we must say that their strongest point is the graphical interface, which includes
what-if analysis to vary parameters and result graphing, making it excellent for teaching
or quick manual model evaluations.

queueingﬂ originally qnetworks [44] (also still listed as such in Hlynka’s links), is a
plugin for GNU Octave that implements algorithms for the analysis of Markov chains,
classical single-station queueing systems and analytical solving of single or multi-class open
or closed product-form queueing networks. It has the ambition to cover the book [12] and
is in active development.

Another formalism used in performance engineering is Stochastic Petri Networks. They
have higher expressive power at the cost of lower intuitiveness. SPNs can be used to model
inter-process blocking, simultaneous resource possession, and can capture transient events,
not only steady state. This makes them suitable for reliability analysis as well as for
modeling performance engineering scenarios. A well-known package for SPN modeling is
SPNP (1989) [45] from Duke Universityﬁ. The model input is in a special C-like language
CSPL. Markovian SPNs can be analytically solved, and others are simulated. The downside
of this tool that it has an academic-only license.

From mixed-model tools, we mention SHARPE (2000) [46] from the same team and
with the same license, which is a multi-model simulation tool that can process Markov
chains, Reliability Block Diagrams, Fault Trees, Queueing Networks, and Petri Nets. It
has a simpler language and features a GUI.

MOSEL-2 (1995) [47] from Universitit Erlangen-Niirnberg[]| defines its own language
that is based on queueing networks and translates it to input for SPNP and other tools.
Based on model parameters, either analytical methods or simulation is used to solve the
model.

A new formal specification for performance engineering was found when examining the
Palladio Component Model (2007) [48] from Karlsruhe Institute of Technologyﬂ PCM
is a modification of the Eclipse development platform targeted at software architecture

Ihttp://jmt.sourceforge.net/

Zhttp://www.moreno.marzolla.name/software/queueing/
3http://people.ce.duke.edu/~kst/software_packages.html

‘https://wwwé.cs.fau.de/Projects/MOSEL/
Shttps://sdqueb.ipd.kit.edu/wiki/Palladio_Component Model/Documentation, Tutorials, and Screencasts
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modeling, including deployment diagrams. The models can then be evaluated in four
dimensions - performance, reliability, maintainability and costs. For analysis, the models
can either be simulated by the discrete event approach, executed on the target platform
in the form of a performance prototype generated by the ProtoCom module, or using the
PCM2LQN module converted to a Layered Queueing Network.

LQNs were developed at Carleton UniversityE] as an extension of QNs [49]. They move
the expressive power of QNs closer to SPNs, while having better readability. They model
simultaneous resource possession in systems that can be split into layers. E.g., by modeling
contention for software resources that are constrained by hardware resources and need to
wait for external services. Modeling of post-reply processing and reliability predictions are
also possible. The downside is that the original LQNS package has a restrictive license.
There is also the LINE solver [50] that accepts the same input format and is distributed
under GPIJ]

Reading the documentation of PCM, the SimuLizar plugin [51] was found? It is an
extension to simulate self-adaptive systems, which are in the software engineering world
an equivalent to our cloud computing term autoscaler. They present a fuzzy temporal
logic language to express relaxed non-functional constraints and extend PCM to adapt the
model when the constraints are not met. The evaluation section assumes a system which
contains one private server and one rented server, which is paid by fine CPU time. This
is not very realistic in the cloud world. We only know one provider, which works this
way. It is a local cloud providelﬁ who uses container-based virtualization for their service
and bills by CPU-cycles, not hours. The authors probably omitted a scale-down rule, so
the provider bill with more frequent adaptations was higher than with less frequent. An
autoscaler with a higher granularity should be faster not only to allocate resources but also
to release them, which does not occur in the shown traces. Without knowing the input
time series that drove the simulation, it is not possible to say this with certainty.

2.2.3 Languages for discrete event simulation

When no existing simulators for cloud computing or general performance model solvers
would fit a particular purpose, one could write his or her own simulation using some
existing discrete event simulation framework. The starting point for the survey is the book
Queueing Networks and Markov Chains [12].

The first such package was probably SimScript (1963), at that time written in Fortran.
The current version III [52] is commercialﬂ and is an object-oriented 64bit language with
graphical functions.

GASP (1964) was also written in Fortran and was being developed by Alan Pritsker.
The last version is likely GASP-V from 1979.

'http://www.sce.carleton.ca/rads/lqns/lgn-documentation/
2https://code.google.com/p/line/
3https://sdqueb.ipd.kit.edu/wiki/SimuLizar

44smart.cz
Shttp://www.simscript.com/products/products.html
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CSIM (1985) is a simulation library for the C language. The current version 20 [53] is
commercial [1]

MATLAB (1984) is a mathematical programming suite. It also contains Simulink for
various simulations including the SimEvents package for discrete event simulation | It is
a commercial product.

OPNET (1986) is an discrete event simulator for communication networks. It was
commercial before, but most recently is has been bought in 2012 by Riverbed and rebranded
SteelCentral NetModeler Suite [l

ns is an open-source project with the first version ns-1 from (1995). The current version
ns-3 (2008) [54] is written in C and Python and is in active development [ It is focused
on network and wireless protocol simulation. It is not compatible with previous versions
and has no GUI.

OMNeT++ (1999)E] [55] is another open-source discrete event simulator for communi-
cation networks that is in active development. It is written in C++ and has a GUI based
on Eclipse as well as a command-line interface accepting input in the NED simulation
language. There is a manual on queueing simulation in OMNeT++ E]

SimJava (1996) [56] from the University of Edinburgh is a low-level discrete event
simulation engine in Java. It was the base of GridSim and earlier versions of CloudSim.
The last version is from 2004.

SimPy (2002) [57] is a low-level discrete event simulation engine in Python] It is an
open-source project in active development.

"http://www.mesquite.com/products/csim20.htm
Zhttp://www.mathworks.com/discovery/queuing-theory.html
3http://www.riverbed.com/products/performance-management-control/opnet.html
4https://www.nsnam.org/

Shttp://www.omnetpp.org/

Shttp://omnetpp.org/doc/queueing-tutorial.pdf
"http://simpy.readthedocs.org/en/latest/
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CHAPTER 3

Overview of Our Approach

3.1 Interactive Workload Prediction

While the theoretical advantages of cloud computing are widely known — private clouds
build on the foundations of virtualization technology and add automation, which should
result in savings on administration while improving availability. They provide elasticity,
which means that an application deployed to the cloud can dynamically change the amount
of resources it uses. Another connected term is agility, meaning that the infrastructure can
be used for multiple purposes depending on current needs. Lastly, the cloud should provide
self-service, so that the customer can provision his infrastructure at will, and pay-per-use,
so he will pay exactly for what he consumed.

A private cloud can be used for multiple tasks, which all draw resources from a common
pool. This heterogenous load can basically be broken down into two parts, interactive
processes and batch processes. An example of the first are web applications, which are
probably the major way of interactive remote computer use nowadays, the second could
be related to scientific computations or, in the corporate world, data mining.

This division was chosen because of different service level measures used in both the
fields. While web servers need to be running all the time and have response times in
seconds, in batch job scheduling, the task deadlines are generally in units ranging from
tens of minutes to days. This allows a much higher amount of flexibility in allocating
resources to these kinds of workloads. In other words, while resources for interactive
workloads need to always be provisioned in at least the amount required by the offered
load, a job scheduler can decide on when and where to run tasks that are in its queue.

When building a data center, which of course includes private clouds, the investor will
probably want to ensure that it is utilized as much as possible. The private cloud can
help achieve that, but not when the entire load is interactive. This is due to the fact
that interactive load depends on user activity, which varies throughout the day, as seen in
Figure [I.1] in Section [1.4.4]

In our opinion, the only way to increase the utilization of a private cloud is to introduce
non-interactive tasks that will fill in the white parts of the graph, i.e., capacity left unused
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by interactive traffic (which of course needs to have priority over batch jobs).

The goal is that the scheduler will be fed with data about the likely amount of free
resources left on the cluster by interactive processes several hours into the future by a
predictor. This will ensure that the cluster is always fully loaded, but the interactive load
is never starved for resources. It is also the reason why we have investigated the two
long-range seasonal forecasting methods described below.

With a predictor, instead of seeing only the current amount of free resources in the
cloud, the batch job scheduler could be able to ask: “May I allocate 10 large instances to
a parallel job for the next 4 hours with 80% probability of it not being killed?”

Prediction of load or any other quantity in time is studied in a branch of statistics
called Time Series Analysis and Forecasting. This discipline has also been studied as part
of this project and the results are presented in this section.

A good tutorial on Time Series Analysis is written by Keogh [58]. It has very wide cov-
erage, mainly on filtering, similarity measures, Dynamic Time Warping and lower bounds
on similarity. However, the solution was found elsewhere, although clustering on particular
days and offering the next day after the best match as forecast is also a valid approach
and was evaluated as better than the two others presented here in the bachelor thesis of
Babka [59] on photovoltaic power plant output prediction.

3.1.1 Holt-Winters exponential smoothing

Due to the fact that did not have real data from an autoscaled cloud environment, it
was decided to obtain experimental data from single servers of a web hosting company.
These are monitored by Collectd and time series data stored in RRDTool’s Round Robin
Databases. While examining the documentation for export possibilities, a function by
Brutlag [60] was discovered, which uses Holt-Winters exponential smoothing to predict the
time series one step ahead and then raise an alarm if the real value is too different from
the prediction. This allows to automatically detect spikes in server of network activity.

A good description of exponential smoothing methods including mathematical nota-
tion is written by Kalekar [61]. In this document, a summary is presented in the Para-
graph

Estimation of the parameters can either be done by hand and evaluated using MSE
(Mean Squared Error) or MAPE (Mean Average Percentage Error) on the training data
(a quick explanation of their significance is in Hyndman [62] or in this document in Sub-
section , or it can be left to statistics software, which can do fitting by least square
error. For the experiments in this work, the R statistics package [63] was used, particularly
the forecast package by Hyndman [64]. The RRDTool implementation is not suitable as it
only forecasts one point into the future for spike detection.

An introduction to time series in R, including loading of data, creating time series
objects, extracting subsets, performing lags and differences, fitting linear models, and
using the zoo library is written by Lundholm [65]. A summary of all available time series
functions is in the time series task view [66], while a more mathematical view of the
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capabilities including citations of the authors of particular packages is in McLeod, Yu and
Mahdi [67].

3.1.2 Box-Jenkins / ARIMA models

ARIMA (Autoregressive, Integrated, Moving average) models are intrinsically based on
autocorrelation. They seem to be the state of the art in time series modeling and are a
standard in economic prediction (e.g., [68] is a textbook for business schools and MBA).

Neural network methods were also studied, but, as Crone’s presentation, which is also
a good source on time series decomposition and ARIMA [69], suggests, their forecasting
power is equal to ARIMA, only the fitting method is different. It may be more powerful
in that it is non-linear and adaptive, but has many degrees of freedom in settings and the
result is not interpretable.

As per the NIST Engineering Statistics Handbook [70], chapter 6.4.4.4], which is a good
practical source on all methods discussed here, the autoregressive and moving average
models were known before, but Box and Jenkins have combined them together and created
a methodology for their use.

There are three major steps in the methodology: model selection based mainly on the
examination of autocorrelograms (ACF) and partial autocorrelograms (PACF), then model
estimation, which uses non-linear least square fitting and/or maximum likelihood and is
best left to statistical software, and lastly model validation, which uses ACF and PACF of
residuals and the Ljung-Box test.

An autoregressive (AR) model computes the next data point X; as a linear combination
of previous ones, where the number of lagged values considered is determined by the order
p of the model.

p
Xt =c+ Z@ithi + &

i=1

The parameters are the constant mean ¢ and the coefficients ¢ of each lag. They can be
computed by linear least squares fitting. A model of order greater than one with some
coefficients negative can exhibit cyclic behavior. The term ¢ represents the residuals of the
model, which should ideally be white noise.

A moving average (MA) model works further with the errors. The next data point is a
linear combination of differences of past lags from the moving average u, where the number
of lags considered is the order ¢ of the model.

q
Xt =u+e+ Z@ist_i
=1

Again, each term has a parameter 6 that needs to be estimated. The estimation is more
difficult as the errors cannot be known before the model exists, which calls for an iterative
non-linear fitting procedure.
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When both of these models are used together, an ARMA model is obtained:

P q
Xy =c+e+ Z 0iXi_i + Z Oici—i

i=1 i=1

The I in ARIMA stands for integrated, which represents the inverse operation to differ-
encing, which is simply creating a new time series from the differences between the values
of the original one:

X, =X, — X

As the AR and MA models assume that the time series is stationary, meaning that it has
stable location and variance, the difference operator can often be used to transform a series
to stationary. Sometimes, the operation has to be performed more than once, d times, to
coerce the time series to stationarity. The model is fitted to the transformed series and
an inverse transform is used on the resulting forecast. Other useful transformations are
logarithms and power transforms, which may help if the variance depends on the level.
They are both covered by the Box-Cox transform (see [68, chapter 2/4]).

3.2 Simulation of Cloud Autoscaling

The lack of large scale data and experimental environments with live traffic led us to focus
our project on the client side of TaaS (Infrastructure as a Service), instead of the provider
side and Green Computing, or the maximization of utilization in private clouds through
heterogeneous load proposed in our earlier articles, and to develop the hereby presented
simulation method, with the goal to alleviate fears associated with automatic scaling. Even
if there is data, the proposed forecasting algorithms from our previous work need to be
tested and tuned in a simulation environment before being implemented in a real scaling
application.

As a widely referenced work (See Section [2.2.1]), the CloudSim event-based simulator
was the first candidate for a simulation platform. One part of our work focused on im-
plementing a reactive autoscaling policy inside of CloudSim, which required us to write
methods to add and remove VMs at run time and to provide improved statistics gathering.
We have observed poor accuracy in load test experiments (Section , and therefore
did not implement the predictive autoscaler in the simulator, but instead a) redirected our
efforts to fixing CloudSim and b) creating a suitable replacement simulation platform.

After performing a load test, we suspected that the problems in the simulator were due
to erroneous queueing logic. We have rewritten that, and also the traffic generation code,
getting a version of CloudSim that is capable of reproducing a load test experiment with
reasonable accuracy and in a manner consistent with queueing theory.

It is necessary to state in advance that the difficulties we have had with CloudSim are
mainly due to the fact that it was not primarily designed to simulate interactive traffic. As
seen from the examples on its website, it is intended to simulate batch computations on
virtualized infrastructure. It is mostly used with Cloudlet durations in hundreds of seconds,
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while we need to work in millisecond ranges with submission rates in tens to thousands of
jobs per second, which is why the described errors have surfaced. The current version of
the main distribution is 3. The CloudAnalyst distribution is actually designed to simulate
world-scale interactive services and implements some features such as higher time resolution
and a traffic generator to that end. It is based on CloudSim version 1 beta. It should not
be used either for that nor for any other purpose unless our modifications are applied.

We believe that the latest CloudSim could also benefit from an audit of its queueing
code. However, it should be fit for its purpose of simulating VM placement strategies,
datacenter power optimizations and cooperation of compute and networking. However,
we find it even less suitable for autoscaling experiments on interactive traffic than the
older CloudAnalyst, because it operates on a larger time scale. Also, important functions
for latency and throughput measurement have been removed when the simulation core
SimJava was replaced by a custom one.

Due to the difficulties with CloudSim, we have decided to write our own simulator
for automatic scaling and to base it on a queueing network model. The implementation is
written in the R language and uses the PD(Q open-source queueing network analyzer library
by Gunther [42] as its engine. The use of R also allows for a much simpler integration
of forecasting methods than Java and leverages R’s graphing capabilities. Several other
modeling tools were also studied (See Section [2.2.2)). This queue-theoretical model is
also found to be consistent with the practical load test experiment, even better than the
modified version of CloudSim we created for the purpose [71]. It is also several orders of
magnitude faster. We show the possibilities of the model by simulating several threshold-
based autoscaling algorithms on a trace from an e-commerce website under fluctuating
load before and during Christmas holidays. By doing this evaluation, we have found that
using a combination of latency and utilization or latency and queue length as autoscaling
metrics may be better than using any single one.

3.2.1 CloudSim and Changes to implement Autoscaling

As seen in the previous section, CloudSim [2] is a well-known simulator in the cloud com-
puting research community. It is developed at the University of Melbourne and is based
on their previous work, GridSim. It was decided to install this simulator and test it on a
threshold-based autoscaling algorithm, before moving to predictive scaling experiments.

The simulator is rather complex. It builds on the event-based simulation framework
SimJava, which provides message scheduling and statistics, and has some relics from Grid-
Sim (like an application being called Cloudlet, which is a class extending Gridlet). Doc-
umentation is rather scarce, apart from journal articles and function headers inside the
source code.

The layered structure of the project proved to be a hindrance to its usage. While the
framework expects the user to override or modify certain classes of CloudSim to imple-
ment desired functionality, most of the classes are inheriting from their counterparts in
GridSim, which is only included as a pre-compiled .jar package. Therefore, it is not easy
to understand their functionality without downloading the GridSim project and browsing
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its code on the side. The numbers and tags of events sent between entities are also un-
documented and their declaration is spread between the two projects. Understanding of
statistics collection then requires the user to go further, into SimJava documentation.

Concretely, it took us an inordinate amount of time to locate the place in the code
where the latency of a request is computed. The articles about the project do not go
nearly deep enough to guide the user in how to modify the simulator to his or her needs
and what are the open possibilities. When there was a problem with wrong messages being
passed, the authors did not comment, neither did the discussion group.

To dampen the learning curve, the CloudAnalyst [72] package was used. It provides a
graphical interface to CloudSim and helps set the basic entities of User Bases and Data
Centers and their parameters, such as the number of hosts and VMs, balancing policies,
computational requirements of Cloudlets, amount of user requests, etc. It was originally
developed to simulate worldwide deployments of social network sites. Once it is set up,
the software allows to set a workload defined as the number of requests per hour of the
users of each User Base, different for peak hours and off peak hours in each region. Once
the simulation is finished, it shows some statistics such as the response times seen at each
Datacenter and User Base, and the estimated cost for using the simulated cloud system.

Please note once more that the described version of CloudSim here is 1 beta. The
latest version has been rewritten to no longer reference GridSim classes. It also dropped
SimJava and does event handling on its own. The problem with the lack of developer
documentation and unhelpfulness of the discussion group persists. However, the main
distribution of CloudSim lacks some important features for autoscaling simulation, such as
the UserBase, which actually is a load generator. The main distribution expects the user
to specify the submission times and service demands of all Cloudlets in advance, which is
not possible for interactive services, where the input flow is specified in statistical terms.

An unexpected surprise was that CloudSim does not provide a function to add or
remove VMs while the simulation is running, which is necessary to the implementation of
an autoscaler. Normally, all the simulation entities are instantiated at the beginning and
terminated at the end of the simulation, see Figure 5 in [I]. It was also necessary to trace
the exchange of messages at VM creation and deletion and write functions that inject these
messages at run time, even the counters for VM usage in terms of time and money paid
to the cloud provider present in CloudAnalyst do not take VM deletion in account. That
was fixed as well.

An alternative to implementing VM addition and deletion would be to employ the
migration function of CloudSim to move pre-created VMs from a pool that is not serving
requests to an active one, such as done by Bessis, Sotiriadis, Xhafa, and Asimakopoulou
in [73].

One more problem was with the granularity of offered load levels settings and statistics
collection. CloudAnalyst can only specify two load levels per User Base. This is not ideal
for an autoscaling experiment. Therefore, a function that provides load levels from an
hourly series was created. For some reason, the simulation always stops after one day, even
if the simulation length is set to a longer time, so even 24 values may prove to be too few
to induce a reasonable number of dynamic changes of the number of VMs.
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In addition, statistics collection in CloudAnalyst is done on an hourly basis, which
does not allow to capture the transitional effect on VM addition/deletion. However, the
SimJava class Sim stat [74] provides several event counters that can count latencies and
rates and compute simple statistical functions on them while the simulation is running. A
latency recorder with 5-minute granularity was implemented using this functionality.

With these modifications in place, a simple threshold-based autoscaler reacting to la-
tency (Google App Engine style) has been implemented. Being able to measure average
latency and request throughput, it is also possible to compute data center utilization from
the Utilization Law and implement a load-based autoscaler (Amazon Web Services style).

Unfortunately, the newest CloudSim dropped the SimJava engine and does not offer a
replacement for its statistics collection functions, making our changes difficult to port to it
without modifying the new event passing engine. What is available is the submit and finish
time for every Cloudlet. SimJava offered to place a counter or time interval collector at any
place. Therefore, CloudAnalyst can measure separately the service time at the DataCenter
or the perceived response time at the UserBase. Throughputs at various places could be
captured by just placing a counter. Counters can be filtered by time intervals when being
read, allowing to create time plots easily.

3.2.2 Verification of CloudSim using Load Testing

During the experiments with CloudSim, which led to the work presented in article [71],
a question has arisen about the accuracy of the simulation. It was decided to compare a
small scale load testing experiment with the simulator. The design of the experiment was
chosen to verify the possibility of autoscaling simulation. It creates a constant load on a
load-balanced website running on a number of VMS. The VMs are being removed at regular
intervals during the experiment. Removal was used instead of addition so that effects like
VM start-up time, performance impact on the hypervisor, and cold caches do not affect
the outcome. These effects are not simulated in CloudSim or the presented solution. By
proving the precision of the model on this simple example, it should be possible to reason
about the accuracy of more complex scenarios.

The load testing experiment measures the latency of a web application running in a
small cloud. The offered load by the User Base is constant, while the number of VMs
serving the application is decreasing from the maximum number down to one. One VM is
removed every 15 minutes; the total experiment duration is 2 hours. The load is chosen to
be the maximum that can be handled by one instance.

The maximum number of VMs was set to 8 with 1 virtual CPU each, as the available
hardware for the experiment consisted of one server, virtualized with Citrix XCP (Xen
Cloud Platform) version 1.6, having a 4-core 8-thread “Intel(R) Core(TM) i7-3770K CPU
@ 3.50GHz” processor, 32 GB of DDR3 RAM and a 120 GB SSD hard drive. The web
application used was a basic installation of Wordpress, which has been used earlier for the
evaluation of ScaleGuru.

The Tsung load generator was used for the experiment because of its modern design and
features. It is highly scalable due to its use of the Erlang language, capable of distributed
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testing, can simulate an open or closed performance model, the load can be scripted in
terms of both scenarios and the load curve, and finally, it has good graphical reporting.
It was installed on a separate 2-core machine connected to the XCP server through a 100
Mb/s switch.

Between the load generator and the Apache + mod_php web servers, an Nginx load
balancer was placed. It had a request queue of 1000 slots and was set to automatically
detect removed web server instances. The queue at the Apache server has 511 slots by
default. The MySQL database used by Wordpress was installed on each of the 8 virtual
machines for simplicity. It is not possible to simulate multi-tier applications in CloudSim,
at least not easily. It could be possible rewrite queueing logic to pause a cloudlet at some
point, submit another and wait for a message of its finish to unpause.

Beside the reporting capabilities of Tsung, additional instrumentation was created
around the application stack. The Collectd monitoring system was used for data col-
lection. Its standard plugins cover raw hardware statistics, as well as Apache, Nginx and
MySQL internals. Custom added were observations of latency at all 3 tiers if the stack.
The database was monitored on the transport layer using the tcprstat utility; the web
server and load balancer were set to log latencies to a file, which was read by collectd. The
latency logs captured every transaction, while the throughputs and concurrencies were
sampled from server status outputs. The sampling interval was set to 30 seconds and data
was routed to a central server.

As the first step in the scaling experiment, a load test was run against one server with
default configuration, with a stair-step pattern, until overload. It was found out that
for the PHP application without any acceleration or caching, the CPU is the bottleneck.
To prevent server crashes, the number of concurrent processes was limited to 20, which
was obtained as the total amount of memory per VM (360 MB) divided by the memory
consumption of one process, using the formula

M Total

NP'rocesses - M
Process

A further test against the tuned server showed that at 100% utilization, the server could
handle 9 requests per second.

The virtual machine was then cloned 7 times and all resulting instances added to the
load balancer. Due to the server not having 8 physical CPU cores and needing to handle
internal network communications and other hypervisor overhead, the maximum capacity
was only around 40 req/s. However, that did not matter in the final experiment, which was
focused on latency and ran with a constant load of 9 req/s. Figures and illustrate
the nature of the load test. The load balancer was seeing an average load of 9 req/s as
drawn from an exponential distribution by the load generator. The load at the web server
was increasing as the other servers were being shut down, until it received the whole load.

In the second step, the experiment was recreated as closely as possible in CloudAnalyst.
One User Base was created with 1012 users, each producing 32 requests per hour. There
was one Datacenter with one 8-processor machine and 8 VMs. The Internet between their
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Figure 3.3: Latency at the Tsung load generator, last step average highlighted

locations was set to have a bandwidth of 100 Mb/s and latency of 0.25 ms. One request
from the User Base had 300 B and response 7 kB, as measured during the experiment.

The most difficult part was to estimate the computational complexity, which CloudSim
expects in millions of instructions (MI), while the machines have power specified in MIPS.
From real measurements, only the service demand of a request could be obtained (as
minimal latency measured at the web server, including the work done by the database
server). The BogoMIPS value of the CPU (7007 MIPS) was taken and, multiplied by the
minimal latency of 96 ms, the complexity of 672 MI was input. Interestingly, the resulting
minimal latency was too low, so the CPU power had to be decreased to 5500 MIPS for the
simulation to match the experiment at least in the first steps.

3.2.2.1 Analysis of discrepancies

As apparent from Figures [3.3] and [3.4] the simulation result is quite different from the real
world measurement. The load testing experiment gave a rather stable latency of around
105 ms. The higher values of the first step should be disregarded, as the CPUs of the
virtualization server were shared at that point, while the simulation did not consider that.
The last three steps had average latencies of 106, 127, and 3181 ms. The last step shows
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Figure 3.4: Latency results from CloudSim
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that a queue has built at the load balancer, because the remaining web server ran at 100%
utilization. The state of the system was still steady, though, and the queue length was
dropping after the web server warmed up all threads (see Figure . With any more
load, the queue would have filled all slots, and then the load balancer would start dropping
connections.

The resulting latency from the simulator, on the other hand, is increasing every step,
proportionally to the load on the web servers. The values in milliseconds are: 89, 106,
138, 178, 267, 332, 581, and 1193. The relative errors are therefore: -19%, 4%, 32%, 73%,
133%, 225%, 333%, and 172%. They were calculated as:

Zfsim - ttest
ttest

The quick conclusion from this is that the simulator diverges from reality by several times
and does not predict overload situations.

The only possible conclusion from this test is that there must be significant difference
between the messaging and queueing logic of the real setup and the simulator, and it
should be the reality that the simulator should attempt to emulate. From Figure (3.6} it is
apparent that the concurrency at the web server was mostly 0 or 1, except at the end of
the test run. Therefore, there is no cause for its latency to be proportional to the load as
in the simulation.
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Figure 3.7: Result from CloudSim plotted against load

Plotting the latency results from CloudSim against incoming load instead of time, as
seen in Figure [3.7] shows that, indeed, it simulates an overloaded system. When the same
experiment is set up in R using the PDQ library for queue network solving, a result close
to that from the load test is obtained, see Figure [3.§|

We have identified the problems preventing CloudSim from working on interactive traffic
and fixed them, as described in Section [1.2.2] The work was previously published in the
article [71].

3.3 Custom Simulator Design based on Queueing Theory

Due to the difficulties getting existing cloud computing oriented simulators to simulate
automatic scaling, and the success in verifying the load testing experiment with queue-
theoretic models, we decided to implement a simulator specifically for automatic scaling
scenarios using a QN model at the core instead of discrete event simulation.

By basing the simulator on queueing theory, we avoid the problem of bad queueing
logic implementation in discrete event simulators. Writing it correctly is prone to errors,
as we have seen on the example of CloudSim, and even if done with a due understanding
of queueing theory, one will run into problems with rounding errors when small time steps
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Figure 3.8: Results from PDQ in R

are used. Using a QN model as the engine will also make the simulator much smaller and
faster than its discrete event counterparts.

The proposed simulator should be able to take a trace of incoming requests and compute
the observed latencies based on the supplied system model. Due to the choice of the QN
formalism for the model, we are theoretically limited to modeling the system in steady
state. However, in practice, the QN models are commonly used to describe real systems
by taking e.g. the average input request rate in a peak hour and declaring that the system
was statistically steady during that hour. We argue that in real cloud systems, the input
rate will change gradually, not abruptly, so that if we discretize the input time series in
small enough steps, we can declare the system as statistically steady in each of those steps,
which will allow us to create a QN model for every step of our simulation.

To simulate automatic scaling, our initial choice of time granularity will be 15 minutes,
for multiple reasons. It is a useful constant for drawing graphs of daily load curves, which
are one of the leading causes for the implementation of autoscaling. (The second cause
being sudden spikes in traffic.) Our previous work [3] is concerned with prediction of daily
load curves and also uses a granularity of 15 minutes, grounded in the maximum allowed
lags of autoregressive time series forecasting algorithms in R. Due to most cloud computing
services being billed in hourly cycles, granularity equal to a fraction of an hour makes sense
in modeling of the cloud. With instance start-up times, including perhaps some DevOps
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Figure 3.9: Flowchart of the autoscaling simulator

setup steps after the actual instantiation, being close to 10 minutes, and load average
measurement intervals in automatic scalers defaulting to 5 minutes, this constant gives the
model a realistic lag when adding new instances. Nothing is hindering users from choosing
a smaller interval if they have corresponding input data.

The model is recomputed each time interval, and its output latency is given as input to
an user-defined autoscaling algorithm, which decides on parameters for the next time in-
terval, mainly the number of machines serving requests. This is equivalent to the MAPE-K
(Measure, Analyze, Plan, Execute using Knowledge) loop of self-adaptive systems refer-
enced in other articles.

A flowchart of the actual algorithm is shown in Figure [3.9] First, the model variables
are initialized. The system then enters the main loop. Because the PD(Q QN analyzer
cannot model overload situations of open queueing networks (a system where the queue
length approaches infinity is not steady), the situation when the incoming load is higher
than the system capacity A > p is detected and the latency extrapolated from the last
simulation step using the expression

Q) =Q(t = 1) + AT+ (A — p)

where Q(t) and Q(t — 1) are queue lengths at current and previous time steps, respectively,
AT is time step size, A is incoming request rate and g maximum service rate. This formula
gives the queue length at the end of the time interval when the system was overloaded.
We get the response time as

R=(Q+1)D
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where (@ + 1) is the queue length plus 1 for the request currently in service, under the
memoryless property of exponential distribution), and D the service demand. This is a
pessimistic estimate as it assigns the value at the end of an interval of overload for its
whole length.

The values from the model are then extracted and fed into the autoscaling algorithm,
which produces machine counts for the next iteration. When the defined simulation time
is reached, charts with the results are plotted and output values printed to the terminal in
textual form.

The QN solving library used is PDQ, mainly because its ease of integration into other
applications and scripts. With other solvers, it would be necessary to generate model
specifications in XML (in the case of JMT) or another language, execute the external
application, and parse the results. PDQ can be called from within the language. The
solution algorithm used is known as the Canonical method for open queueing networks. It
is not exactly specified in [42], but probably is the one described in [12] page 363], based on
the BCMP (Baskett, Chandy, Muntz, Palacios) and Jackson’s theorems. While the library
also has the exact and approximate MVA methods for closed QN systems, an open system
is a better choice for cloud simulations driven by a request intensity trace. Otherwise, we
would need a trace of the number of users accessing the system in time (Like the input
parameters of CloudAnalyst, whose load generator creates an open flow anyway.).

The simulator script itself is written in R, as it is our platform of choice for time series
analysis. It has a range of functions for data import and preprocessing, a vast library of
statistical analysis tools and excellent graphing and reporting capabilities. Using the PDQ
library in a cycle was inspired by a blog article by Gunther'] As seen there, while the first
version of our script simulates a single autoscaled tier, it is trivial to extend it to simulate
a multi-tier system (in fact, it has already been done, see the GitHub page E[) Several
input streams of different service demands can be created, as long as there is input data
for these streams. However, with the tendency of cloud-based applications to separate
different functions into different instances, we do not think the multi-stream feature will
be necessary.

The input request intensity traces are expected as R time series objects. These are
simple vectors of equidistant observations (they may contain multiple vectors), which can
also have metadata like starting index, time units, and sampling frequency. Another input
parameter is the service demand of one request (at each tier and request class). The
simulator then creates similar time series traces of utilization, the number of VMs in
service, and the request latency computed from the QN model.

All historical values of the traces are available to the autoscaling decision algorithm,
which is written as a function block in the script. Therefore. It is possible to implement an
autoscaler of Google type, operating by setting thresholds on latency, or of Amazon type,
which measures average utilization in time intervals of specified length and compares its
thresholds against those. The queue length trace is also available enabling the simulation

Ihttp://www.r-bloggers.com/applying-pdq-in-r-to-load-testing
’https://github.com/vondrt4/cloud-sim
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of PaaS autoscalers, which react on the queue length at the load balancer (reportedly
implemented in OpenShift).

It is not possible to implement the RightScale voting protocol, which computes thresh-
olds on each individual node and adds or removes nodes based on majority vote, as all
nodes in the model have the same utilization. It cannot model effects of different load-
balancing strategies because it does not work with individual requests, but averages under
steady state.

What it can do is to run the simulation from an arbitrary point in the input time
series, which leaves historical data to run time series forecasts. The forecast values can
be used as input for autoscaler rules, making the simulator suitable for evaluation of pro-
active autoscaler designs. Most existing forecast algorithms are already implemented in R,
rendering the task even simpler.
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CHAPTER 4

Main Results

4.1 Feasibility of Interactive Workload Prediction

4.1.1 Loading of data

The evaluation of the forecasting methods was done on six time series from servers running
different kinds of load. The data was first extracted from RRDTool and pushed into MySQL
by a bash script, which was being run every day to get data at the desired resolution. The
RRD format automatically aggregates data points using maximum, minimum and average,
after they overflow the configured age boundaries. Those were (in files created by Collectd)
10 hours in 30 second intervals, 24 h in 60 s, 8 days in 8 minutes, 1 month in 37 min, and
1 year in 7.3 hours.

The chosen initial resolution for experiments was 15 minutes, as the aim is to forecast
a) for TaaS clouds, where instance start up takes about 5 minutes, plus user initialization,
and accounting is done in hours, and b) for batch jobs, where the user will probably give
task durations in hours or their fractions. Later, it will be evident that this resolution is
appropriate for forecasts with the horizon of days, which was the goal of the selection.

The data was then loaded into R (using manual [75]). There was a total of 8159 ob-
servations or 2.8 months of data. Time series objects (ts) were created. Their drawback
is that observations need to be strictly periodic and the x axis is indexed only by num-
bers. Any missing values have been interpolated (there was no larger consecutive missing
interval). For uneven observation intervals, the “zoo” library may be used, which indexes
observations with time stamps [76]. It was not used here, so for clarification: The measure-
ment interval starts with time stamp 1128, which was November 28, and then the count
increases every day by 1 irrespective of the calendar as the seasonal frequency was set to
1 day. Therefore, the interval contains Christmas at about 1/3, and it ends on Thursday.
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4.1.2 Time series diagnostics

The servers included in the experiments have code names oe, bender, Im, real, wn, gaff.
In the next paragraph follow their designations and the result of examinations of the time
plots of their CPU load time series. These series were also filtered by simple moving average
(SMA) with window set to 1 day to obtain deseasonalized trend. The time plots of the
series along with best forecasts from both methods are attached in Subsection [4.1.7]

oe is a large web shop. It has a clear and predictable daily curve with one weekday
higher and weekend and holidays lower (incl. Christmas). Trend is stationary (except
Christmas).

bender is shared PHP webhosting. It has a visible daily curve with occasional spikes. First
month shows a decreasing trend, and then it stabilizes.

In is a discount server. The low user traffic creates a noisy background load that is
dominated by spikes of periodic updates. Trend alternates irregularly between two
levels; the duration is on the scale of weeks.

real is a map overlay service, not much used but CPU intensive (as one map display
operation fetches many objects in separate requests). The time plot is a collection of
spikes, more frequent during day than night. There are 2 stationary levels, where the
first month the load was higher, and then the site was optimized so it went lower.

wn is PHP hosting of web shops. It has low traffic with a visible daily curve. There is a
slow linear additive trend after the first month.

gaff is a web shop aggregator and search engine. Its daily curve is inverted with users
creating background load in the day and a period of high activity due to batch
imports during the night. Trend is stationary.

As suggested in the tutorial by Coghlan [77], which also covers installation of R and
packages, as well as Holt-Winters and ARIMA models, the time series were run through
seasonal decomposition. For oe, bender and wn, the daily curve was as expected; with gaff,
the nightly spike also showed nicely. Im and real surprisingly also show daily seasonality
as the spikes are apparently due to periodic jobs. Decomposition of the first month of oe
is in Figure 4.1 We can clearly see the repeated daily curve and a change in trend during
Christmas.

Another tool to diagnose time series is the seasonal subseries plot. When applied to
the test data, only oe shows clean seasonal behavior. In the bender series, noise may
be more dominant than seasonality. The Im series seasonal subseries is also not clearly
visible. real clearly shows that traffic on certain hours is higher. For wn, the upward trend
is visible in each hourly subseries. gaff shows that the duration of the batch jobs is not
always the same so there are large spikes in the morning hours, mainly at the start of the
measurement interval. This plot is in Figure It contains 96 subseries because of the
15 min frequency, index 0 is midnight.
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Figure 4.1: oe series decomposition, from top to bottom: overall time plot, trend, seasonal
and random compoment,

Figure 4.2: gaff series seasonal subseries plot
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4.1.3 Holt-Winters model fitting and evaluation

A modified script from Hyndman and Athanasopoulos [68], chapter 8/9] was used for model
fitting and validation. The algorithm first shortens the time series by 3 days at the end and
fits a model on it. Then forecasts are created for 6, 24, and 96 hour horizons and compared
with the withheld validation data. The result is a table of standard model efficiency
measures for each series and interval (“in” meaning in-sample). One more measure was
defined in accordance with the goal specified at the beginning of this section — how many
validation data points missed the computed 80% prediction intervals in the 3-day forecast
(that is 288 points in total).
As to the forecast error measures, the following ones are used:

ME The Mean Error is a measure of error in absolute scale; it is signed, so it can be
used to see a bias in forecasts, but cannot be used for comparison of time series with
different scale.

RMSE The Root Mean Squared Error measures squared error and is thus more sensitive
to outliers. It is best used when the scale of errors is significant. The square root
operation returns the dimension to that of the original data.

MAE Mean Absolute Error is similar to ME, but ignores the direction of the error by using
absolute values.

MPE Mean Percentage Error removes the influence of scale from ME by dividing error by
the value,

MAPE Mean Absolute Percentage Error does the same to MPE. It is probably the best
measure for human evaluation.

MASE The Mean Absolute Scaled Error is different from the others in that it does not
compare the error to the original data, but to the error of the naive “copy the
previous value” forecast method.

For one-step-ahead forecasts, MASE values below one indicate that the evaluated
method is better. For larger horizons, this is not true, as the naive method has more
information than the one under evaluation (i.e., always the previous data point). Nor-
mally, ME, RMSE, and MAE have the dimension of the original data, MPE and MAPE
are in percent and MASE is dimensionless. Here, all values are dimensionless as the input
data is a time series of CPU load percentages.

The result can be seen in Table {.1 For lm, two result sets are included. The first
is from a triple exponential smoothing model, but as there was a spike at the end of the
fitting data, the function predicted an upward trend while the data was in fact stationary.
Simple exponential smoothing was then tried, which gave lower error measures and fewer
points outside confidence intervals.

A similar problem existed with real. The spikes predicted by the seasonal model missed
the actual traffic spikes most of the time. It seems that the series is not seasonal after all,
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Table 4.1: Evaluation of the Holt-Winters model on out-of-sample data

ME | RMSE | MAE | MPE | MAPE | MASE | miss ME | RMSE | MAE | MPE | MAPE | MASE | miss
oe in 0.003 1.109 | 0.798 | 2.776 17.91 1.036 real in | -0.03 4.836 | 3.029 | -18.2 38.47 0.398
oe 6 0.691 1.11 | 0.829 | 6.111 7.623 1.076 real 6 | -1.54 7.206 | 4.878 | -68.3 86.06 0.641
oe 24 0.5 2461 | 1.985| -30.4 62.34 2.575 real 24 | -0.28 6.843 4.77 | -50.2 71.75 0.627
oe 96 1.843 4.238 | 3.223 | -26.1 75.49 4.181 2 | real 96 | -0.31 7.004 | 4.916 | -56.3 7T 0.646 84
bend in | -0.06 1.699 | 1.176 | -7.38 23.45 1.11 rea2 in | -0.11 7.515 | 5973 | -68.4 95.76 0.785
bend 6 | 0.015 1.28 | 1.068 | -2.11 14.47 1.009 rea2 6 | -1.78 6.866 | 5.485 -105 1221 0.721
bend 24 | -0.36 1.436 1.2 -179 27.39 1.133 rea2 24 | -0.28 8.304 | 6.619 | -88.9 115.6 0.87
bend 96 | -1.33 2.385 | 1.934 | -35.7 41.42 1.826 2 |rea2 96 | -0.3 8.387 | 6.713 | -95.1 122 0.883 44
Im1 in -0.35 5.408 | 3.832 | -10.3 31.63 0.801 wn in -0.01 2.469 1.6 | -15.2 43.31 1.047
Im1 6 3.408 4.839 | 3.713 | 18.09 20.46 0.777 wn 6 -0.35 1.88 | 1.553 | -11.4 24.44 1.016
Im1 24 -12.9 17.78 | 14.81 -119 129.4 3.099 wn 24 -1.42 3.617 298 | -74.8 87.18 1.95
Im1 96 -27.2 32.23 | 27.86 -248 251.4 5.83 97 | wn 96 -1.29 5.151 | 3.995 | -86.4 102.8 2.614 0
Im2 in 0.002 5.638 | 3.856 | -13.5 31.52 0.806 gaff in | -0.01 3.562 | 2.039 -8.9 57.79 1.158
Im2 6 0.639 5.667 | 4.625 | -6.41 28.14 0.967 gaff 6 0.191 7.099 | 6.449 | 63.97 465.5 3.663
Im2 24 -1.04 6.939 | 5104 | -24.7 40.55 1.068 gaff 24 | -0.01 6.835 | 4.308 | -8.97 189.3 2.447
Im2 96 -1.04 7.666 | 5.624 | -294 45.83 1.176 14 | gaff 96 | 0.622 5.927 | 4.002 | 5.364 157.7 2.274 4

but rather cyclic. The cause for the spikes is random arrivals of requests, as per queuing
theory. Cyclicity is discussed in Hyndman [78]. The important outcome is that exponential
smoothing models cannot capture it, while autoregressive models can.

The second model for real in the table is double exponential smoothing, which, in-
terestingly, shows higher error measures, but lower number of missed observations. The
cause is that the confidence intervals are computed based on the variance of in-sample
errors. Therefore, the closer the error magnitude is between in-sample and out-of sample
measurement, the more accurate the model is in the “misses” measure.

Automatic model fitting also failed for gaff. The transition from the nightly spike to
daily traffic caused the predicted values to be below zero. A manual adjustment of Alpha
parameter was necessary. Computed a = 0.22, set @ = 0.69. The problem probably is
that the algorithm optimizes in-sample squared error (MSE) and thus it preferred a slower
reaction, which mostly missed the spike. The computed trend from this mean was therefore
strongly negative. A quicker reaction to the change in mean improved the model, but even
then, series with abrupt changes in mean are not good for the Holt-Winters model.

From Table|.1], we can see that with the Holt-Winters method, some series are predicted
well even for the 3 day interval (bender, lm method 2), for some, the forecast is reasonably
accurate for the first 6 hour interval and then deteriorates (oe, Im method 1, wn), for
others it is inaccurate (real, gaff).

In addition, when the error measures for in-sample data are worse than for out-of-
sample, it is a sign of overtraining - the validation data set was closer to ”average” than the
training data. This is because we were training on a long period including Christmas and
verifying on a normal week. Perhaps shortening the training window would be appropriate.

The tutorial [T7] suggests using autocorrelation plot on the residuals of the Holt-Winters
model. A significant autocorrelation of the residuals means that they have a structure to
them and do not follow the character of white noise. All the models showed significant
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Figure 4.3: Autocorrelogram of residuals of the H-W model on bender

autocorrelation of residuals at both low lags and lags near the period. The Ljung-Box test
is a more rigorous proof of randomness of a time series as its null hypothesis is that a group
of autocorrelations up to a certain lag is non-significant. It can thus ignore a random spike
in the ACF. All the models failed the test in the first few lags.

Having seen autocorrelation plots such as in Figure 4.3} it was decided to move to
better, autoregressive, models.

4.1.4 ARIMA model selection
4.1.4.1 Differencing order

The prerequisite for ARIMA is that the time series is stationary. Manually, stationarity can
be detected from the time plot. A stationary time series has constant level and variance,
and may not exhibit trend or seasonality. The two last effects should be removed for
identification of model order, but are covered by ARIMA models with non-zero differencing
order and SARIMA (Seasonal ARIMA), respectively. For series with non-linear trend or
multiplicative seasonality, the Box-Cox transform should be used, but that was not the
case with the series studied here. Additionally, a non-stationary series will have ACF or
PACF plots that do not decay to zero.

The statistical approach to identification of differencing order is through unit root tests
(see Nielsen [79]). The root referred to here is the root of the polynomial function of
the autoregressive model. If it is near one, any shocks to the function will permanently
change the level and thus the resulting series will not be stationary. The standard test
for this is Augmented Dickey-Fuller (ADF), which has the null hypothesis of unit root.
A reversed test is Kwiatkowski-Phillips-Schmidt-Shin (KPSS), where the null hypothesis
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is stationarity. There is also a class of seasonal unit root tests that can help specify the
differencing order for SARIMA, these are Canova-Hansen (CH) and Osborn-Chui-Smith-
Birchenhall (OCSB).

Table 4.2: Order of differencing based on unit root tests

oe | bender | Im | Im4 | real | reald | wn | gaff

ADF 0 0 0 0 0 0 0 0
KPSS | 0 1 1 1 1 1 1 0
OCSB | 0 0 0 0 0 0 0 0
CH 0 0 0 1 0 1 0 0

In R, there exist functions ndiffs() and nsdiffs(), which automatically search for the
differencing and seasonal differencing order, respectively, by repeatedly using these tests
and applying differences until the tests pass (for KPSS and CH), or stop failing (for ADF
and OCSB). The default confidence level is 5%. The recommended amount of differencing
of the experimental time series obtained from the tests is in Table Columns Im4 and
real4 will be explained later.

It is evident that the ADF and KPSS tests did not agree with each other with the
exception of oe and gaff. According to [79], ADF should be considered primary and KPSS
confirmatory. The same is said by Stigler in discussion [80], adding that unit root tests
have lower sensitivity than KPSS. In the same discussion, Frain says KPSS may be more
relevant as a test concretely for stationarity (there may be non-stationary series without a
unit root), if we do not assume a unit root based on underlying theory of the time series. It
was also used by Hyndman in the auto.arima() function for iterative model identification.

According to manual heuristic approaches, such as presented by Nau [81], an order of
seasonal differencing should always be used if there is a visible seasonal pattern. It also
suggests applying a first difference if the ACF does not decay to zero. An example of the
impact of first and seasonal differencing on stationarity and thus legibility of an ACF plot
is in Figure [4.4]

The ACF and PACF functions on the test data were looked at with and without
differencing with the result that differencing rapidly increases the decay of the ACF function
on all series except real.

Moreover, from the ACF of Im and real, it seems there is a strong periodicity of 4
hours. These two series will be also tested with models of this seasonal frequency and will
be denoted as Im4 and real4, as in Table [4.2]

For the purpose of order identification, seasonal and then first differences have been
taken. It was decided to test if the models fitted with this order of differencing, following
the heuristic approach, are better or worse than those with differencing order identified by
statistical tests.
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Figure 4.4: ACF of oe without and with differencing

4.1.4.2 Order identification

Identification of model order was done using heuristic techniques from [68] [70, [8T], 82]. After
seasonal and first differencing is applied in the necessary amount to make the time series
look stationary to the naked eye, so that its autocorrelograms converge to zero, the ACF
and PACF functions are looked at. The number of the last lag from the beginning where
PACF is significant specifies the maximum reasonable order of the AR term, similarly the
last significant lag on ACF specifies the MA order. The order of the seasonal autoregressive
and moving average terms is obtained likewise, but looking at lags that are multiplies of
the seasonal period.

The observed last significant lags and resulting maximum model orders are summed
in Table Model parameters are denoted as ARIMA(p, d, q)(P, D, Q), where p is the
order of the AR term, d is the amount of differencing and q is the order of the MA term.
The second parenthesis specifies the seasonal model orders.
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Table 4.3: Last significant lags and model orders

PACF | ACF | seas. PACF | seas. ACF | est. max. model params

oe 5 3 11 1 ARIMA(5,1,3)(11,1,1)
bender 17 4 1 ARIMA(17,1,4)(9,1,1)
Im 15 16 1 ARIMA(15,1,16)(8,1,1)
Im4 9 2 11 00 ARIMA(9,1,2)(11,1,0)
real 1 2 11 1 ARIMA(1,0,2)(11,1,1)
real4 13 2 11 1 ARIMA(13,1,2)(11,1,1)
wn 39 3 10 1 ARIMA(39,1,3)(10,1,1)
gaff 18 2 6 1 ARIMA(18,1,2)(6,1,1)

Looking at the two variants of Im, the expectation is that the first will perform better,
as the non-seasonal part covers the second period of 4 hours. This is not true for real vs.
reald.

4.1.4.3 Model estimation

When trying to fit models with high seasonal order, a limitation of the ARIMA implemen-
tation in R was found. The maximal supported lag is 350, which with a period of 96 (24
hours * 4 observation per hour) means that the seasonal lag is limited to 3.

Furthermore, the memory requirements of seasonal ARIMA seem to be exponential
with the number of data points. A machine with 1 GB of RAM could not handle the 2.8
months of data with lag 288. This constraint is not documented. The experiment had to
move to a machine with 32 GB RAM, where computing a model with seasonal order 3
took 7.6 GB RAM, more on subsequent runs as R is a garbage collected language.

For the course of this experiment, the order of the seasonal components will be limited
to three, as it should be sufficient when forecasting for a horizon of about a day. The
alternatives, which will be examined in further experiments, are to reduce the resolution
to 1 hour, which will enable lags up to 12 days.

A model of this sort was fitted on oe, and it did not lead to a better expression of the
weekly curve (at least not by visual inspection). With this resolution, it will be however
possible to use a seasonal period of one week, which should be able to capture the day-
to-day fluctuations. Similarly, we would reduce resolution is we were trying to capture
monthly or yearly seasonality.

Another approach, suggested by Hyndman [83], is to model the seasonality using a
Fourier series and to use non-seasonal ARIMA on the residuals of that model. This should
enable fitting on arbitrarily long seasonal data. This may lead to overfitting, though, as
the character of the time series is subject to change over longer time periods.
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For the actual parameter estimation, the Arima() function with the model order as
parameter can be used. There is however a way to automate a part of the identification-
estimation-validation cycle and that is the auto.arima() function. This function repeatedly
fits models with different parameters and then returns the one that has minimal Akaike
Information Criterion (AIC). This criterion prefers models with lower likelihood function
and contains a penalization for the number of degrees of freedom of the model; therefore,
it should select the model that best fits the data, but not variations of the same model
with superfluous parameters.

The auto.arima() function has two modes depending on the “stepwise” parameter (see
help(auto.arima) in R). With this set to TRUE, it does a greedy local search, which selects
the best model from previous step and examines its neighborhood in the state space given
by adding or subtracting one to each parameter. It continues, until no model in the
neighborhood has lower AIC.

The second mode searches from ARIMA(0,0,0)(0,0,0) upwards and based on the de-
scription, it should search until the ceiling set for each parameter. The actual behavior
however seems to be that is stops when the last iteration examined did not bring any gain.
Both search modes are thus prone to getting stuck in a local minimum.

To better specify the models, the auto.arima() function was used on each time se-
ries with three sets of parameters. In the first run, it was started from zero with step-
wise=FALSE and with ceilings set to the parameters estimated in Table[4.3] In the second
run, stepwise was set to TRUE and the ceilings were left at the pre-estimated parameters
plus one to account for differencing; the starting values were set to be the same as the
ceilings, as, theoretically, the parameters in Table [4.3| should be the maximal meaningful
numbers, but a model with lower orders might be better. This was tested in the third run,
where the starting values remained and the ceilings were effectively removed.

The same procedure was then repeated with the differencing orders computed by OCSB
and KPSS. As it is difficult to identify model parameters by naked eye without differencing,
the same initial parameters have been used. Please note that the AIC values of models
with unequal differencing order are not comparable, while goodness-of-fit test results and
prediction errors are.

4.1.5 Model validation

As already discussed in Subsection [3.1.2] “Box-Jenkins models”, the validation entails man-
ual examination of the autocorrelation plot of residuals and use of the Ljung-Box goodness-
of-fit (GOF) test. Table contains the models that resulted from the three runs of
auto.arima() as described, along with their AIC values, the lag of the first significant auto-
correlation and the lag after which the Ljung-Box test failed. Left side is for models with
differencing order set to one, right side has differencing set by unit root tests.

The outcome from Table 4.4} is, that is cannot be conclusively said whether it is better
to always use seasonal differencing or not. Of the six time series, three have the best
fitting model in the left half of the table and three in the right half. However, it seems that
in the cases where the non-differenced models were better, the gain in the goodness-of-fit
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Table 4.4: Parameters of the estimated ARIMA models and their validation measures

model AIC sig. ACF | fail. GOF model AIC sig. ACF | fail. GOF

oe ARIMA(0,1,2)(1,1,2) | 23016.97 12 14 oe ARIMA(4,0,3)(2,0,2) | 23231.26 22 23

ARIMA(6,1,1)(1,1,2) | 23109.12 12 15 ARIMA(5,0,4)(3,0,2) | 23259.8 21 27

ARIMA(5,1,3)(2,1,3) | 23066.43 16 20 ARIMA(5,0,3)(3,0,3) | 23220.86 21 27

bend ARIMA(1,1,1)(2,1,1) | 28082.19 4 6 | bend ARIMA(1,1,1)(3,0,2) | 27989.07 22 6

ARIMA(17,1,5)(3,1,2) | 27580.45 52 129 ARIMA(17,1,4)(3,0,2) | 27812.25 2 60

ARIMA(17,1,3)(5,1,3) | 27504.15 58 172 ARIMA(14,1,1)(3,0,3) | 27801.06 17 58

Im ARIMA(1,1,1)(2,1,1) | 47569.93 5 5 Im ARIMA(1,1,3)(1,0,2) | 48517.21 5 4

ARIMA(16,1,17)(2,1,2) | 47210.57 94 144 ARIMA(15,1,17)(3,0,1) | 48155.89 43 144

ARIMA(17,1,17)(2,1,3) | 47195.88 98 500+ ARIMA(15,1,18)(3,0,1) | 48152.6 70 144

Im4 ARIMA(2,1,1)(1,1,1) | 49151.84 5 5| lm4 ARIMA(1,1,3)(0,0,2) | 50789.93 4 4

ARIMAC(10,1,3)(12,1,1) | 48398.45 11 14 ARIMA(10,1,2)(12,0,2) | 48570.04 10 28

ARIMA(11,1,2)(16,1,5) | 48138.57 21 30 ARIMA(12,1,2)(15,0,4) | 48342.89 21 30

real ARIMA(1,1,1)(2,1,1) | 47872.32 4 3| real ARIMA(0,1,2)(3,0,0) | 48873.62 4 4
ARIMA(2,1,3)(2,1,2) | 47800.56 1 1 ARIMA(2,1,3)(3,0,2) | 48732.74

ARIMA(6,1,8)(3,1,3) | 46972.94 6 6 ARIMA(10,1,12)(3,0,3) | 47344.03 8 9

read ARIMA(2,1,1)(1,1,1) | 47574.67 3 3| read ARIMA(1,1,1)(3,0,0) | 48897.42 3 3

ARIMA(1,1,3)(1,1,2) | 47612.58 2 2 ARIMA(12,1,2)(11,0,1) | 47438.97 21 24

ARIMA(4,1,5)(1,1,7) | 47373.03 8 7 ARIMA(12,1,2)(11,0,1) | 47438.97 21 24

wn ARIMA(4,1,2)(2,1,2) | 35599.79 9 14| wn | ARIMA(2,1,3) with drift | 36214.64 10 9

ARIMA(40,1,2)(2,1,2) | 35608.54 55 500+ ARIMA(39,1,4)(1,0,2) | 36177.56 59 95

ARIMA(89,1,1)(2,1,3) | 35596.67 55 500+ ARIMA(38,1,5)(1,0,3) | 36146.1 64 191

gaff ARIMA(2,1,3)(0,1,2) | 21501.92 5 5| gaff ARIMA(3,0,0)(1,0,1) | 21847.8 5 5

ARIMA(19,1,3)(0,1,2) | 21387.26 42 52 ARIMA(18,0,3)(1,0,2) | 21717.96 48 88

ARIMA(17,1,4)(0,1,3) | 21118.64 42 88 ARIMA(18,0,3)(1,0,2) | 21717.96 48 88

functions was lower than the other way round. It is also interesting that in two of the three
cases (oe and gaff), the difference is not only in seasonal, but also in first differencing. It
may be a good idea to follow the recommendation of the KPSS test, but always use seasonal
differencing, but there is not enough data to say it with certainty.

A more solid fact is that all the best models come from the third row of the table.
Of the three tried here, the best algorithm for model selection is to use auto.arima() in
greedy mode, starting with parameters identified from ACF and PACF, and leave it room
to adjust the parameters upwards.

4.1.6 Comparison of the two model families

The last part of the experiment entailed computing forecasts based on the fitted ARIMA
models and comparing them with out-of-sample data. The same validation algorithm was
used as in the case of Holt-Winters models, to facilitate model comparison. The result is in
Table To conserve space, only MAPE (Mean Average Percentage Error) is shown. The
four columns are for in-sample error and forecast errors in horizons 6, 24, and 96 hours.
The ordering of models is the same as in Table [£.4]

Fitting of the forecasts was something of a disappointment, as all of the models with
seasonal differencing (the left half of Table that were selected as best using the GOF
measures have failed to produce forecasts. The cause was likely the seasonal MA part of the
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Table 4.5: Evaluation of the ARIMA models on out-of-sample data

MAPE in | MAPE 6 | MAPE 24 | MAPE 96 | miss MAPE in | MAPE 6 | MAPE 24 | MAPE 96 | miss

oe 13.43 7.12 75.27 94.99 8| oe 13.4 8.13 37.52 53.16 22

13.39 7.13 77.74 98.23 7 13.22 8.71 33.96 48.88 22

failed 13.16 8.85 31.41 46.35 24

bend 19.32 14.56 22.18 22.21 25 | bend 18.28 15.34 45.21 41.32 13
18.51 15.51 20.58 21.3 42 18.79 21.42 36.53 34.38 87

failed failed

Im 24.93 19.14 19.7 22.54 17 | Im 25.49 17.23 19.8 23.22 19

23.94 14.79 20.1 25.15 20 23.98 15.74 21.01 26.91 21

failed 23.97 15.98 21.11 27.02 21

Im4 25.5 13.22 23.36 28.93 8| Im4 28.77 26.94 44.3 51.17 7
24.73 11.66 22.19 30.21 24 24.61 12.93 21.81 29.02 21

24.16 15.57 20.29 23.45 19 24.47 12.51 19.88 25.73 21

real 36.26 85.66 73.58 80.2 85 | real 38.18 72.49 62.91 64.49 59
37.13 88.91 76.86 83.95 94 38.18 87.33 74.95 81.07 81

failed 37.56 69.18 52.74 58.08 39

read 37.67 58.08 48.3 54.23 59 | read 40.83 53.41 47.86 70.73 43
37.99 53.44 43.22 45.75 40 36.1 50.4 41.59 46.06 49

37.03 55.33 43.54 46.34 61 36.1 50.4 41.59 46.06 49

wn failed | wn 42.03 24.8 78.8 82.33 102

37.68 36.26 51.12 50.25 59 38.92 24.36 64.94 71.68 79

failed 38.96 26.33 64.16 70.09 78

gaff 37.62 160.67 128.23 112.77 61 | gaff 37.65 170.08 136.91 124.57 59
38.19 165.29 125.89 109.42 60 38.26 165.48 133.85 119.44 59

38.56 187.57 129.88 110.55 61 38.26 165.48 133.85 119.44 59

model that was one or two orders higher that the originally identified ceiling. That resulted
in an overspecified model where the MA polynomial was not invertible. Invertibility is a
prerequisite for the computation of variances of the parameters [84], which in turn are
needed to compute confidence intervals for a prediction. Hence, these models were fitted
and had a likelihood function and in-sample errors, but could not be used for forecasts
with confidence bounds.

When fitting ARIMA models in R, one needs to carefully observe the output for warn-

ings

such as:

In sqrt(z[[2]] * object$sigma?2)
for least-squares fitting, or for maximum likelihood:
Error in optim(init[mask], armafn, method = optim.method, hessian = TRUE,

non-finite finite-difference value [1]

In log(s2)

NaNs produced

NaNs produced

because then the prediction will produce wrong results or fail:

MA part of model is not invertible
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Therefore, if using auto.arima() beyond the ceiling identified from ACF and PACF,
there is a high risk of the model failing and thus it may not be a good idea for automatic
forecasts. If that happens, lowering the order or the seasonal MA or MA part should help.

As to the selection of the best model for forecasts, the selection based on out-of sample
forecast errors (mainly looking at the 24 and 96-hour horizons) corresponds to the one
based on goodness-of-fit criteria. In the case where the model fails to produce forecasts,
the next-best one based on GOF can be selected. The second row (ceilings from ACF and
PACF adjusted downward by auto.arima()) produced the best result, except on oe and Im,
where, however, the difference is seems to be small.

As whether to always use seasonal differencing, the experiment is inconclusive. In the
case of oe, there was a significant gain in accuracy by not using it, in the case of wn and
bender, the opposite is true.

Looking at the “misses” criterion, one could say that Holt-Winters is better. However,
that outcome might be skewed. The criterion counts the number of data points that missed
the 80% confidence bounds in the 3-day forecast. That time period contains a total of 288
points, 20% of that is 57.6, and that is the count of data points that are by definition
allowed to miss the bounds.

Therefore, the result of this comparison is that the confidence bounds on ARIMA are
more accurate, or at least tighter than on Holt-Winters. If this method is to be used as
proposed by this article, the confidence level used has to be adjusted upwards to 95 or
99%, depending on the overload sensitivity of the computer infrastructure.

Comparing the two model families using the MAPE error measure, the outcome is that
ARIMA did produce better forecasts than Holt-Winters, except for the 6-hour forecasts on
oe and bender, and also that simple exponential smoothing outperformed both seasonal
methods on 24 and 96-hour forecasts on Im.

As it is expected that the cloud will contain mostly load-balanced web servers as the
variable component, we think that these methods are viable for further research in the
optimization of cloud computing.

4.1.7 Forecast plots

The next page contains the forecasts of each examined time series from the best model of
exponential smoothing and ARIMA methods.

The exponential smoothing on in the left half of the page, ARIMA on the right. The
series are, from top to bottom: oe, bender, Im, real, wn, gaff.

The graphs contain the last week of the time series to present their character. The
blue line then represents the point forecasts; the orange area is the 80% confidence band
and the yellow area the 95% confidence band. Overlaid as “o” symbols are the actual data
points, which were recorded during the forecast horizon.

It is not important to read the axes of the graphs, the scale is 2 days per tick on the
x axis and in percent of an unspecified CPU on y. The character of the time plot and the
response of the forecasting algorithms is important.
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4.2. CloudSim Modifications for Interactive Traffic

4.2 CloudSim Moaodifications for Interactive Traffic

This section presents some details about the implementation of the VM addition function
and the results of the autoscaler that was implemented upon it. Figures{4.5|and [4.6| present
the class diagrams of the CloudAnalyst extension and CloudSim, respectively. The classes
modified during this work are highlighted.

To be concrete, DataCenterBroker contains code to add and remove VMs, DataCenter-
Controller contains the autoscaler and its latency and throughput counters, and class Extra
was added to provide hourly workload levels. In the second part of the section, which fo-
cuses on improving accuracy, we added CloudletSchedulerFTFO, worked on CloudletSched-
ulerTimeShared and DataCenter, which contain computation of cloudlet duration, and
UserBase, which is the load generator.

4.2.1 Autoscaler implementation in CloudSim
4.2.1.1 VM Addition Implementation

To be able to add Virtual Machines dynamically, it was necessary to simulate the messages
received by the DataCenterController from the DataCenterBroker, which controls where
the VMs are instantiated. To do so, code was added into the main loop the DataCenter-
Controller entity, triggering a function as follows:

boolean flag=true;
while(Sim_system.running()){
if (flag && GridSim.clock()>8+*Constants.MILLI_SECONDS_TO_HOURS){
flag=false;
this.addVMs(5) ;
1}

This code will call the function addVMs() in DataCenterBroker, when the simulation time
reaches 8 hours. Triggering a function like this does not guarantee that it will wake up
exactly at the specified moment, but as the frequency of events is rather high, it did not pose
a problem. The entities in SimJava are long-running Java threads that react to messages.
Only some classes are entities and can process simulation events. That means, e.g., that a
Host or Cloudlet cannot actively send a message, all initiative must be programmed in the
Datacenters, User Bases, and Brokers. It also makes the code for request handling very
complex and rather illegible.

The function addVM(int number) is based on the original submitVMList(), but with
slight modifications. It defines the characteristics of the new VMs that will be created,
and adds them to the existing list of VMs vmlist. Then, it modifies the vector of VM to
Datacenter mappings, setting it to -1 for all the new machines. Then the function pro-
cessMyResourceCharacteristics() is used to call CreateVMInDatacenter(0), shortcutting
the decision functionality of the broker and scheduling a message to the Datacenter entity
number 0. Lastly, we will create a 3-position vector for each of the new VMs, where the
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Figure 4.5: Class diagram of CloudAnalyst [I]
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Figure 4.6: Class diagram of CloudSim [2]

parameter meanings are: The id of the sender of the message (5 in the case of DataCen-
terBroker), the id of the new VM we want to add, and a flag that differentiates a VM
request message from its acknowledgment counterpart. With processMyVMCreate(), we
go through the rest of the normal code path of the broker in processVMCreate(), which is
normally triggered by an event. Here, we supply the message parameters in the 3-position
vector.

public void addVMs(int number){
long size = 10000; //image size (MB)
int memory = 512; //vm memory (MB)

int actual=vmlist.size();
for (int i = 0; i < number; i++) {

VirtualMachine aux = new VirtualMachine(new VMCharacteristics(
actual+i, 6, size,memory, bw, vcpus, priority, vmm,
new TimeSharedVMScheduler()));

vmlist.add(aux) ;

}

int [] auxMap=this.vmMapping;
this.vmMapping = new int[vmlist.size()];
for(int i=0;i<auxMap.length;i++)
vmMapping [i]=auxMap[i];
for(int i=actual;i<this.vmlist.size() ;i++)
vmMapping[i]=-1;
processMyResourceCharacteristics(datacenterChar[0]);
for(int i=actual;i<this.vmlist.size();i++){
int[] array = new int[3];
array[0]=5;
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array[1]=i;

array[2]=1;

processMyVMCreate (array) ;
1}

The code above is the result of trial and error due to lack of documentation. The sequence
necessary was learned by adding a debugging function to the CloudSim class to trace the
event exchange and observing the start of a simulation. The resulting output on the console
showed a message from the DataCenter (id 6) to DataCenterBroker (id 5) with tag 1002,
which is VM creation, containing a VMCharacteristics object, and the acknowledgment
back:

Starting internet 9
5.0: DC1-Broker: Cloud Resource List received with 1 resource(s)
5.0: DC1-Broker: Trying to Create VM #0
Message—> destID:5 delay:0 gridSimTag:1002 this.Sim_id:6
entityName: *No_entity* message:null
data:cloudsim.VMCharacteristics@l2ee2a destPort:null
Message—> destID:6 delay:0 gridSimTag:1002 this.Sim_id:5
entityName: *No_entity* message:null data:[I@1880b02 destPort:null

4.2.1.2 VM Addition Testing

Having implemented VM addition, an experiment was devised to test it. It observes the
simulated latency of requests coming at a fixed rate of 2000 requests an hour, while the
number of VMs in the datacenter is rising. It starts with 20 VM and adds one each 5 min-
utes during one day. Internet Characteristics, Cloudlet complexity, and Host properties are
left at their defaults. The number of Hosts in the datacenter was constant. Measurements
are taken each 5 minutes. The data obtained from this simulation is in Figure [4.7

As seen on the figure, the average response time at the beginning with 20 machines is
almost 1000 ms. It is falling as VMs are added. Once the number of VMs reaches about
160, the response time reaches its minimum, with a response time slightly higher than 100
ms. From this moment, anomalous behavior is observed. The more VMs are added, the
higher the response time. In a practical system, it could be attributed to overhead at the
load balancer or the cost of VM switching and CPU sharing, however, as far as we know,
no such effects are simulated by CloudSim, so the expected curve would be constant once
the minimum is reached.

As was learned later, when working on the queueing logic of CloudSim, the source of
the anomaly likely lies in the way processor power of physical hosts is distributed among
VMs. The queueing logic only works inside a VM, and to know how many instructions
each VM can execute per time quantum, a value called mipsShare is computed by di-
viding the available power by the number of running VMs. It is computed in the class
TimeSharedVMScheduler. That way, when adding VMs, once there are more VMs than
physical processors, the computing power of one VM is getting lower.
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Figure 4.7: Simulated latency when adding VMs while keeping load constant

In reality, an idle VM on a hypervisor does not consume any processor cycles and a
running VM on the processor will get its whole power (minus context switching overhead).
As it is possible to query whether there are some cloudlets in a VM’s run queue, it is
conceivable to write more realistic VM schedulers. Until then, processor oversubscription
in CloudSim may result in incorrect results. We believe that it applies to all versions.

It is possible that this inconsistency between simulation and reality may have affected
other authors as well. The Figure 6 of the article [73] by Bessis et al. somewhat resembles
Figure here. The experiment is also very similar, as it adds VMs over the capacity
of physical hosts, which results in an increase of service times. The authors state at the
end of Section 4.1 of the article that a cloud typically has two levels of schedulers, which
leads us to believe that they did not expect the outer level of the CloudSim scheduler to
be static.

4.2.1.3 Autoscaler implementation

Afterwards, VM deletion was implemented in a similar way to addition and a simple au-
toscaler was implemented. Instead of adding a VM every 5 minutes, the function checks
the 5-minute average response time at a Datacenter. It compares the value to an upscaling
and a downscaling threshold and adds/removes one VM based on the result. An approx-
imation of a daily load curve was input and the thresholds were set to 330 ms and 190
ms. No VM set-up time was simulated, but it could be done by simply not counting the
last 5 minutes of the statistics. Figure 4.8 shows the number of request an hour simulated
during the day.

When the Datacenter contained a constant 20 VMs, the response time followed the
load, as seen in Figure 4.9, The spikes at the beginning of each hour are a mainly due to
high variance of the incoming request flow due to a design flaw in UserBase code, as was
learned later and explained near the end of Section [3.2.2]
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Figure 4.8: Simulated daily load curve, amount in requests per hour

w0 =Y 2
200 “‘A‘L

012 3 45 6 7 8 9 101112 13 14 15 16 17 18 19 20 21 22 23 24
time [h]

Figure 4.9: Simulated latency with a constant number of VMs

According to the statistics, the processing time was 949 ms on average, with a minimum
of 110 ms and a maximum of 2094 ms. If the threshold function described above is applied
to the same input, the result on Figure is received.

As we can see, the latency plot begins at the same point as in the previous figure, but
the scaling function immediately starts adding VMs to keep the latency inside the limits.
Also, we may observe a decreasing slope after the latency rises over 330 ms at hour 12
and an increasing slope when VMs are being removed after hour 16. The average response
time has decreased down to 280 ms, the minimum is still at 110ms and the maximum has
gone down to 700 ms, which lies at the start of the simulation, where the parameters were

outside the autoscaler’s control. On average, the processing time decreased by 70% from
the static case.
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Figure 4.10: Simulated latency with automatic scaling

4.2.2 Maodifications to increase accuracy

Seeing these discrepancies, we decided to delve deeper into the queueing code of CloudSim.
The most important class, and the only one where Cloudlets are “computed”, i.e. their in-
struction counts decreased based on time and allocated processing power, is CloudletSched-
ulerTimeShared, called TimeSharedVMScheduler in version 1. The return values from the
two most important methods, cloudletSubmit() and updateVMprocessing() are expected
finish times of the next cloudlet, so that the firing time for an event in the discrete event
simulation engine can be set.

Browsing through the CloudSim changelogsﬂ to see whether there have been any bugs
fixed, we have seen that there were at least 12 changes, some referencing precision fixes
and rounding issues. The changelog does not even go back to version 1 beta. Indeed, the
code seemed to count instruction counts multiple times in cases when there was more than
one cloudlet in execution, making the system much more loaded than it should be.

Because, as stated earlier, the new version of CloudSim lacks features we used to imple-
ment the instrumentation necessary for autoscaling, we decided to backport the queueing
logic to CloudAnalyst. It was mostly compatible. There were some type changes and the
rather annoying need to edit every occurrence of the class Cloudlet back to Gridlet. A
significant change was that cloudletSubmit() previously returned available capacity and
the time of the next event was computed elsewhere. The new version returns the time
directly. We backported that change as well for consistency.

Unfortunately, just porting the code did not suffice. We found the computations were
off by several orders. After a long investigation of the code of CloudAnalyst and CloudSim
3, we found that the new version counts time in seconds and the minimum time between
events is 0.1 by default. (This number is intentionally left without units to illustrate how

"https://code.google.com/p/cloudsim/source/list?path=/trunk/modules/cloudsim/src/
main/java/org/cloudbus/cloudsim/CloudletSchedulerTimeShared.java
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hard it is to orient yourself in code where no quantity has documented units, except perhaps
MIPS, which you can use to orient yourself.) CloudAnalyst uses milliseconds and has no
minimum. This is consistent with CloudSim being designed for simulation of batch jobs
and CloudAnalyst for interactive services. We had to adapt all formulas in the backported
class to reflect this. A side effect is that in order to fix the broken CloudSim, we had to
put its processing power in Gips (German readers, forgive the pun).

A big problem of CloudSim in both examined versions is rounding errors. As time is
stored as a double precision floating point variable, zero sometimes is not exactly zero.
Mainly when there is a small fraction of a Cloudlet left to process, this fraction is divided
by available MIPS and the next event scheduled based on that value, such as:

M

Tnex event — Tnow +
fevent MIPSsuare

An underflow occurs and in the next time interval, the cloudlet is again not finished. This
not only makes the simulation take longer because of excessive events, but also does weird
things to Cloudlet durations. To be more concrete, we think it extends their duration an
unknown number of times by a time interval that is about one to three orders of magnitude
(depending on the MIPS value) above the minimum number that can be represented by a
Java double on a particular Java implementation.

Solving this by introducing a minimum time between events is in our opinion wrong,
because the time-shared scheduler will first compute the mipsShare of running cloudlets
and then run the time quantum. A cloudlet that was supposed to finish will not only
continue running up to minTimeBetweenEvents longer, but will also increase the runtime
of all other concurrent cloudlets, because less MIPS will be available to the for the one
quantum. If a lot of cloudlets are running on a particular VM, this could become a problem.
We solved it by forcefully finishing cloudlets that have estimated remaining time less than
0.1 ms. They are also immediately removed from the queue and the mipsShare recomputed.
Depending on the length of cloudlets processed, the reader is encouraged to set it lower,
but not above the threshold, where rounding errors may appear. In our case of cloudlets
running over 100 ms, this introduces an error of at most 0.1%.

To get rid of all errors with rounding and concurrent execution, we have also imple-
mented a reference FIFO queueing discipline, which in our opinion (perhaps biased by
study of queueing theory), should have been there from the start, instead of the PS (Pro-
cessor Sharing) CloudletScheduler. It runs the Cloudlets one by one without any concerns
about mipsShares, and correctly computes the run time of the whole queue on cloudlet-
Submit(). With the removal of near-finished Cloudlets to fix rounding errors, it computes
the finish times precisely, and events are scheduled exactly to the end of the next CloudLet,
which runs to completion in one time step, unless interrupted by arrival of a new request
from a UserBase. The event flow is very clean. The modified PS queueing discipline gives
nearly identical results to FIFO in our experiment.
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Figure 4.11: Simulation results from modified Figure 4.12: Result from modified CloudSim
CloudSim plotted against load

4.2.2.1 Load generator rewrite

After the last two modifications, CloudSim was already giving correct average latencies,
but when writing more granular output to the terminal, we noticed large spikes of incoming
requests. Looking closer at the load generator in the class UserBase, we noticed that when
the user count is set to 1012 and requests per user per hour to 32, it does not generate a
Poisson process of about 9 req/s, as we expected, but rather sends 1012 requests at once 32
times an hour (randomized by Poisson distribution). We fixed the load generator to work
as expected. As a final addition, we also randomized the length of submitted Cloudlets to
get from uniform service time to a M/M/N queue.

Later, we have found a technical report by the Cloud Analyst author [I], which describes
its design in more depth than the conference article. The grouping of requests was appar-
ently added to increase the speed of the simulation, but in doing so, the author changed
the request arrival model from random with exponential interarrival times, which is usually
employed to simulate a group of independent users, to batched, which models thousands
of users, who click their mouse in unison. It will produce the same average latencies for
hourly reporting, but is not usable for higher granularities, which we needed in order to
simulate autoscaling.

The results on the preceding Figures and were obtained from the modified
CloudSim with parameters Cloudlet complexity 715 MI, processor power 7 GIPS, incoming
load of 1086 users generating 32 req/h, that is 9.65 req/s, number of processors again
decreasing from 8 to 1.

Table [4.6|summarizes the results of the experiments. The first line contains the result of
the real load test. Following are results from CloudSim and their errors from the load test,
in the following order: The unmodified version with the original queueing logic, the fixed
version and the version with added randomization. As can be seen, the randomization of
service times is very important for correct results. For comparison, the results from the
PDQ queueing network model shown in Figure [3.8| are also presented in table form. To
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Table 4.6: Simulation and Load Test Results

Step 1 2 3 4 5 6 7 8

Real 108.41 | 106.12 | 105.14 | 104.42 | 103.86 | 106.60 | 127.54 | 3181.2
Original | 87.64 | 110.07 | 139.31 | 180.70 | 242.43 | 346.05 | 552.12 | 1171.4
error[%] | -19.15 | 3.72 | 32.49 | 73.05 | 133.41 | 224.60 | 332.89 | 171.56
Fixed | 102.46 | 102.46 | 102.46 | 102.46 | 102.46 | 102.46 | 116.84 | 281.34
error[%)] | 5.48 | 3.44 | 255 | -1.87 |-1.35 |-3.88 | -8.38 | 1030.7
Random | 102.26 | 102.23 | 102.34 | 102.41 | 102.32 | 102.46 | 123.15 | 2771.9
error[%] | -5.67 | -3.66 | 2.66 |-1.92 |-147 | -3.88 |-3.44 | 14.76
PDQ 102.14 | 102.14 | 102.15 | 102.22 | 102.75 | 106.35 | 133.37 | 3172.5
error[%] | 6.14 | 3.89 | 293 |215 |1.08 |024 |-436 |-0.27

get this close to the load test, the incoming flow was parameterized at 9.45 req/s. Service
demand is the same as in CloudSim. Results from both methods are sufficiently close to
reality for practical applications. (Once again, the first steps of the real experiment are
burdened with additional overhead from hyperthreading and VM context switching.)

4.3 Cloud Simulator based on Queueing Theory

We propose a new simulator of cloud automatic scaling that is a much improved version of
the loop calling the PDQ QN model, which was used to produce the last line of Table [4.6

To demonstrate how a user would use our simulator to tune an autoscaler to their
application, we will present its results when implementing standard threshold-based algo-
rithms with different threshold settings. All three threshold-based autoscaling strategies
(utilization, latency, and queue length based) will be implemented.

4.3.1 Definitions of data and metrics

The data used for the evaluation is the same as in the previous Section [{.I] The data
came from a small Czech web hosting company and was collected in nearly three months
starting in the period around Christmas, meaning there are both areas of normal traffic
and anomalous holiday traffic.

In this experiment, we will use the series oe, which is a large web shop. It has a clean
curve of traffic with nearly 0 req/s at night, around 100 req/s on normal days and spikes up
to 300 req/s. Its character is a prototype of an interactive business site. The trace collected
is of CPU load while the simulator needs request intensities. However, we know that the
server is never overloaded, so the dependency of load on intensity is linear. Therefore, the
character of the traces is the same. The exact values are irrelevant because we will create
a what-if scenario of 16 times the traffic to induce the need for scaling of the number of
servers. Otherwise, the simulation of one underloaded server would not be very interesting.
The service demand of 30.6 ms was calculated from the Utilization Law, which states that
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the average utilization of individual servers equals the request throughput multiplied by
the service demand, divided by the number of servers

XS
U=—+x

The necessary values were taken recently from weekly averages of typical weeks without
traffic spikes. The experiment will use the period of 14 days from 24.12.2012, which is the
least busy day of the year. On the other hand, on 3.1.2013, there is a big spike in demand,
probably caused by a discount after Christmas.

The second time series used will be bender, which is a shared web hosting. It also has
a visible daily curve, but with significantly more noise, as the level is usually only 5 req/s
with 10 req/s spikes. It was also never overloaded in the measurement period. A weekly
average response time of 150 ms will be used as service demand and the traffic intensity
will be amplified 16 times. The chosen time interval is two weeks starting 1.1.2013, as the
holiday traffic was uninteresting and demand rose after the start of the first work week.

The last series used will be gaff, which is a web shop aggregator and search engine. Its
load curve is atypical because it is dominated by long-running spikes of data imports, but
it has proven to be predictable using time series analysis methods. The service has been
discontinued, so we do not have access to more information than the collected CPU load
trace. The service demand will be set to 35 ms and amplification to 8. The most interesting
period seems to be 14 days ending at 24.12.2012 because there is some interactive search
traffic besides the spikes caused by scheduled jobs.

To evaluate the efficiency of different autoscaling strategies, we define two cost metrics.
The first will be the cost of running the cloud service expressed in machine-hours. The
second will be the number of virtual machine boots per the observation period. It is
the same as the number of shutdowns, or differs by a very small number, because the
measurement period is aligned to start and end at the same time of day.

As the tuning of an autoscaler is a compromise between cost and performance, we will
measure the fulfillment of an SLO (Service Level Objective). A modern way to quantify
user satisfaction with an interactive service is Apdex [85][] It is a simple formula which
operates on response times. Users are divided into three groups - satisfied, tolerating, and
frustrated, using two response time thresholds, T and F. T is chosen by the user and

F =4T
The resulting index is computed as the ratio of satisfied and tolerating requests to the

whole, where tolerating are counted as half, such as:

Re‘holerating

Re(hatisfied + 2

Apdex =
b Reqqu

As to the setting of the T threshold, the specification does not say anything. The
practitioners of the method are divided into two camps. The stricter one is represented by
New Relid]] and says that the threshold is to be set close above the average response time,

"http://apdex.org/index.php/alliance/specifications/
Zhttp://blog.newrelic.com/2011/01/21/what-should-i-set-my-apdex-goal-to/
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to better capture any fluctuations and performance problems. The more conservative one
is represented, e.g., by CoscaleE] and proposes to set it between 1 and 3 seconds, which is
the time when the average web user will actually begin to get frustrated by the response
time. We will include both and label them ApdexS for strict and ApdexC for conservative.
ApdexS T threshold will be set to the service demand, rounded up on its first significant
digit. ApdexC T threshold will be set to 1 s.

We will not be computing the values on individual requests because the model does
not see them, but on whole time intervals, because the result of the model is the average
service time. However, there is more information available — the resulting service time is
exponentially distributed in case of a single server and is governed by the Erlang C formula
in case of multiple servers.

Inspired by the article by PDQ’s authorﬂ which explains how to add confidence intervals
to PDQ output, we will use the Erlang C formula to extend the model. The formula itself
calculates the probability of waiting p(> 0) in a multi-server open queueing system as
function of the utilization A (in Erlangs, A = NU, that is utilization of a single server
times the number of servers) and number of servers N. It serves as the basis of other
calculations on these systems, most notably the average waiting time and the service level
(or GoS). The service level here is a probability that a request will wait for less than a
specified time threshold. Besides the inputs of Erlang C, it depends on the service rate p.
The GoS formula is:

P(T, <t)=1—p(> 0)e”NV-ut

An example of a manual calculation of GoS is found in a web page by Tannerf] The
Erlang C formula itself was taken from the “queueing” library for R [86].

This well-known formula only deals with the time a request spends in the queue, which
is not what we need to calculate the Apdex value from the model. It was designed for
call center dimensioning, where a customer is satisfied when an operator answers his or
her call. To compute the time when a web user begins to see the results of a request, we
must consider the sum of waiting and service time. The formula to calculate a point in its
distribution function is:

A£N -1 (4.1)
P{D > t}FIFO = —A]—){fj E)N[e_(N_A)“t - G_ut] + 6_/“ (42)
A=N-1 (4.3)
P{D > t}rrro = (ut p(> 0) + 1)e " (4.4)
P(D<tl=1-P{D >t} (4.5)

Calculation of the average Apdex value for a time interval from this is straightforward.
As a performance metric of autoscaling algorithms, we will count the absolute number of

"http://www.coscale.com/blog/web-application-performance-what-apdex-doesnt-tell-you
2http://perfdynamics.blogspot.nl1/2013/04/adding-percentiles-to-pdq.html
3http://www.mitan.co.uk/erlang/elgcmath.htm

82


http://www.coscale.com/blog/web-application-performance-what-apdex-doesnt-tell-you
http://perfdynamics.blogspot.nl/2013/04/adding-percentiles-to-pdq.html
http://www.mitan.co.uk/erlang/elgcmath.htm
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time intervals, when ApdexC was below 0.95 (and users were seeing significant latencies)
and the percentage of intervals when ApdexS was below 0.7 (and the system was overloaded
from a performance engineering standpoint).

In the two-tier version of the simulator, we also use this formula. The distribution
function that it represents is sampled for each tier and a fast linear convolution function
from R "stats” library is used to obtain the distribution of the sum of the two random
delays.

With the performance metrics defined, we conducted a parameter sweep experiment to
evaluate the three different threshold-based algorithms on our three example series. The
input parameters were the upscaling and the downscaling threshold, within reasonable
bounds for the respective workloads.

The resulting tables of the output metrics have been analyzed by hand to identify
acceptable bounds for the metrics. The tables have been marked with bold font for good
values, normal for acceptable and italic for bad. The Apdex metrics’ thresholds for this
marking are set uniformly for all three series to 5 and 10 percent for Apdex S below 0.7 and
10 and 25 occurrences for ApdexC below 0.95. The machine hours and start-stops are set
individually based on the results of each experiment. The resulting tables can be used to
select a right threshold combination for a particular workload by quick visual inspection.

4.3.2 The utilization-based autoscaler

The first evaluated algorithm will be the most standard one used in most laaS clouds. It
is also referred to throughout this work as the Amazon Web Services type.

For illustration, in Table we can see the results of the parameter sweep on the
utilization-based autoscaler working on the series oe with different thresholds. The up
threshold was varied from 50 to 90 and the down threshold from 10 to the up threshold
minus 10. Due to the smooth nature of the time series, we have a good example of what the
result table should look like. With lower utilizations, the number of used machine-hours
tends to be higher, and as the machines are utilized more, there is a greater risk of SLO
violations. The number of starts/stops is nearly constant across the table, except when
the thresholds were too close together or in cases, where the down threshold was 50 and
more, which caused the system to oscillate. Larger values have been trimmed from the
table. The starts/stops metric seems to serve as a good indication of unstable autoscaler
parameters.

If the gentle reader agrees with our bold/italic marking of the table, then it is evident
that 70/20 or 80/20 would be good choices of parameters for this workload. We observe
that the biggest strength of the utilization-based autoscalers is that these choices are more
or less universal. The user will not make a great mistake when he or she applies them to
any workload. This is probably due to utilization being a derived metric of the workload
intensity. The latency is also closely tied to it. With workloads of this type, it is important
to keep the system in light load mode with minimal queueing. It is important to remember
the utilization-latency characteristic of the M/M/N queueing system we are working with
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Table 4.7: Utilization-based autoscalers on

[13 7

oe

Table 4.8: Utilization-based autoscalers on
“bender”

up down hours starts stops ApdexC ApdexS

up down hours starts stops ApdexC ApdexS

50
50
50
50
60
60
60
60
60
70
70
70
70
70
30
80
80
80
80
90
90
90
90
90

10
20
30
40
10
20
30
40
50
10
20
30
40
50
10
20
30
40
50
10
20
30
40
50

1240
1162
1116
1072
108
1017
980
946
938
980
918
885
856
852
899
844
817
790
799
1015
921
835
775
769

69
73
88
132
57
58
64
83
144
50
51
55
66
103
45
46
48
51
87
49
49
50
59
84

62
70
87

131
51
55
63
82

143
45
48
54
65

102
40
43
47
50
86
45
46
49
58
84

o)

WHFEFFHFFRFWLONOOCOCOUHE OO OFKEOO

1.04
1.26
2.01

2.6
2.9
3.12
4.01
4.68
5.28
4.61
4.83
6.1
7.51
8.55
8.85
9.07

11.08

13.01

14.35

13.75

14.05

16.21

19.93

23.49

20
20
50
50
60
60
60
60
60
70
70
70
70
70
80
80
80
80
80
90
90
90
90
90

10
20
30
40
10
20
30
40
50
10
20
30
40
50
10
20
30
40
50
10
20
30
40
50

1211
948
858
847

1077
840
761

749
783
987
791

720

697
755
968
765

690

700
759
878
759

718

725
799

16
62
154
245
9
44
111
199
263
7
34
94
163
250
7
35
94
162
2/8
6
40
119
175
267

14
61
15/
244
7
43
110
198
262

33
93
163
249
6
34
93
161
247
5
39
119
175
267

0
8
27
70
0
15
42
91
121

20
75
187
168

36
127
195
229

9

75
203
275
323

0.15
1.34
4.46
8.18
0.45
2.68
7.73
12.12
14.8
0.89
4.83
12.57
18.59
20.67
1.19
6.17
19.11
25.8
28.48
2.75
10.26
25.06
32.3/
35.32

(The first example we could find is again by the author of PDQ] but this characteristic
is well known.). With more servers, the knee between the light load and heavy load mode
moves to higher values. The mentioned thresholds may very well stop working if we go
beyond eight servers. The utilization-based autoscaling model will become harder to tune

right the more servers we add.

Looking at the results for time series bender, we note that the model is much more
sensitive to changes in the autoscaling thresholds, particularly the down one. Models with
the threshold above 20 exhibit many oscillations, probably due to the noisy nature of
the data. With the smoother series oe, this effect manifested itself above 50. Still, the
combination 70/20 would be viable. 80/10 could be used if we had strict requirements on

ApdexC violations and were willing to pay more for computing costs.

Ihttp://perfdynamics.blogspot.nl/2009/07/remembering-mr-erlang-as-unit_29.html
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The results on series gaff clearly show that while using reactive threshold-based au-

toscalers, it is impossible to match the abrupt changes in the level of the series. The rising
trend of SLO violations against falling machine hours is still present, although it is not as
pronounced as with the other series. The values of choice would likely be 70/50 or 70/10.

4.3.3 The latency-based autoscaler

The second evaluated algorithm is found in some PaaS clouds. It is also referred to as the
Google App Engine type.

Table 4.9: Latency based autoscalers on

¢ 7

‘oe

Table 4.10: Latency-based autoscalers on
“bender”

up down hours starts stops ApdexC ApdexS

up down hours starts stops ApdexC ApdexS

40
40
40
40
40
50
50
50
50
50
50
60
60
60
60
60
60
70
70
70
70
70
70

30
32
34
36
38
30
32
34
36
38
40
30
32
34
36
38
40
30
32
34
36
38
40

1612

972
956
949
944

1417

878
853
847
840
836

1560

829
807
801
800
795

1505

801
773
769
769
768

5
91
163
196
208
5
56
85
121
152
165

45
66
91

116

137

4
42
50
74
96
114

0
90
162
195
208

55
84
120
152
165

44
65
90

116

187

0
41
49
73
96
11/

)

—_

—_
B W INNHKEFEOONOOOO WwNh OO OO OOoOOoOOo

—_

0
0.07
1.56
3.72
4.83

0
0.74
1.86
4.01

6.32
7.51
0.37
3.35
4.83
6.62
8.48
10.04
0.67
6.77
8.33
10.26
11.97
13.09

300

300
300
300
300
300
300
200
200
200
200
500
200
200
200
700
700
700
700
700
700
700
700

150

300 152

154
156
158
160
162
164
150
152
154
156
158
160
162
164
150
152
154
156
158
160
162
164

1112

773
752
716
702
694
688
684

1080

724
705
672
656
642
633
631

1029

697
677
656
635
617
609
603

3
15
22
40
55
70
81
91

3

7
14
23
33
45
55
63

3

5
12
19
27
35
42
48

0
14
21
39
54
69
81
91

0

6
13
22
32
44
54
62

0

4
11
18
26
34
41
47

1
5
6

13

21

27

28

35
5

10
19

32

45

63

74

84

12
15

29

46

68

94

108
125

0.3
1.19
1.64

2.9
4.01
5.06
5.87
6.77
0.97
2.53
4.39
6.25
9.22

11.82

13.75

1/.18
2.38
3.79

6.25
8.25

12.49

16.06

18.29

19.85

The character of the result table of latency-based autoscalers on the series oe is a little

different from the utilization-based case. We do not see a clear trend throughout the table,
rather the cost decreases and SLO violations increase in every subseries characterized by
a different up threshold. Also, when the up threshold is low, there is a tendency for
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oscillations. Higher up thresholds tend to have lower cost and cause lower performance.
The values of choice would be 60/34 or 70/34 ms. Compared to the utilization-based
autoscaler, these settings mean significantly less used machine hours with the same Apdex
scores — 807 and 773 versus 918 and 844 hours.

The character of the result table for time series bender is very similar to the previous
one. However, the change from the utilization-based case is different. We can see a lower
number of extreme values of both starts/stops and hard SLO violations (ApdexC), while
the ApdexS values are in the same range. Also, the number of machine-hours used tends
to be lower. The values of choice would be 700/152, or 300/152 ms for minimal ApdexC
violations. Compared to the choices mentioned for the utilization-based autoscaler, the
user would again save computing power — 697 and 773 versus 791 and 968 hours. In the
case with lower performance requirements, the number of machine starts and stops is also
significantly lower.

Table 4.11: Utilization-based autoscalerson  Table 4.12: Latency-based autoscalers on
(Lgaﬁ” L(gaﬁV7

up down hours starts stops ApdexC ApdexS

up down hours starts stops ApdexC ApdexS

50 10 658 83 83 14 275 50 35 1341 3 0 2 0.22
50 20 569 105 103 17 543 50 36 556 100 100 19 3.2
50 30 566 107 107 17 5.8 50 37 553 122 122 17 3.79
50 40 569 112 112 18 587 50 38 551 124 124 19  3.87
60 10 628 70 70 14 2.83 50 39 555 128 128 19  4.31
60 20 531 85 85 17 6.62 50 40 562 131 151 21 4.39
60 30 529 89 89 17 6.99 50 41 564 135 135 21 491
60 40 524 90 90 17 714 50 42 573 137 137 21 5.2
60 50 511 92 92 17 7.66 60 35 1341 3 0 2 0.22
70 10 618 67 67 16 3.87 60 36 509 | T8 32 5.06
70 20 514 [ 17 7.81 60 37 500 92 92 31 5.95
70 30 511 380 80 17 8.62 60 38 499 92 92 31 5.95
70 40 508 80 80 17 87 60 39 498 94 94 31 6.25
70 50 491 80 80 17 9.07 60 40 498 97 97 31 6.32
80 10 619 69 69 18 4.16 60 41 499 101 101 32 6.54
80 20 515 78 T8 20 877 60 42 506 103 103 32 6.69
80 30 510 9 79 21 981 70 35 1341 3 0 2 0.22
80 40 507 79 79 21 981 70 36 491 68 68 36 6.84
80 50 488 9 79 21 1026 70 37 481 (A 36 8.1
90 10 619 69 69 18  4.16 70 38 480 T 36 8.1
90 20 523 82 82 22 9.07 70 39 475 | T8 36 8.62
90 30 518 83 83 23 10.11 70 40 473 78 T8 36 8.62
90 40 515 83 83 23 10.11 70 41 472 80 80 37 8.77
90 50 496 83 83 23 10.56 70 42 476 82 82 38 8.92
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With the series gaff, the latency-based autoscaler exhibits similar characteristics to
oe, that is instability with low up thresholds and a tendency for a higher number of VM
starts. Compared to the utilization-based autoscaler, it can achieve slightly lower counts
of machine-hours with similar start/stop counts and soft SLO violations (ApdexS), but at
the cost of a higher number of hard SLO violations. It is very difficult to select a parameter
combination that would satisfy all our criteria. 50/36 with its 556 machine-hours beats
the utilization-based autoscaler second variant with 618 h, at the cost of more start/stops
100 vs. 67.

It would seem that the latency-based autoscaler is better, as we were able to point
out parameters with lower cost for every time series analyzed. However, it also has its
downsides, mainly greater sensitivity to the threshold settings. Where the utilization-
based autoscaler has a near-universal working point that is dependent only on the number
of servers, setting the latency thresholds requires the user to have sound knowledge of the
resource demands of the application being scaled.

Please note that the down thresholds are very close to the service demand and that
the stops value for the lowest down thresholds in every table is always 0. That is because
the down threshold was set below the service demand and was never triggered. (The
model then accidentally calculated a benchmark value of the maximum possible number
of machine-hours used when VMs are never removed. The number of starts plus one (the
starting value) equals the number of VMs needed at peak traffic intensity with the specified
up threshold as SLO.) The situation when the service demand would rise above the set
down threshold of the latency-based autoscaler could happen if there was background load
on the cloud that would cause the perceived service demand of the application on the cloud
platform to rise. The result would be a non-working autoscaler and wasted money.

On the other hand, if the average resource demand were to fall, the down threshold
would suddenly be too high, and, based on the experiment, the margin for error is in
single milliseconds. The result would be more oscillations and SLO violations. The pos-
sible causes of this situation could be a new, optimized version of the application. This
means that autoscaler tuning would have to be integrated into the application testing pro-
cess. Another approach is shown by Spinner et.al. [87], who train an on-line model of the
application service demand.

Another cause could be a change of the workload mix in the case of an application that
serves different types of content. In this simulation, we are taking a trace and working with
its average service demand. In reality, the measured servers offer both static and dynamic
content and therefore, the distribution of service demands is multimodal. If the mix of the
modes (i.e. the ratio of served web pages and pictures) were to change, the latency-based
autoscaler would probably break. In this light, we only recommend using a latency-based
autoscaler to web services that offer a single type of content.

4.3.4 The queue length-based autoscaler

The third evaluated algorithm is found quite rarely in some PaaS clouds. It is also referred
to as the Red Hat OpenShift type.
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Table 4.13: Queue length-based autoscalers
on “0677

Table 4.14: Queue length-based autoscalers
on “bender”

up down hours starts stops ApdexC ApdexS

up down hours starts stops ApdexC ApdexS

2 0.13 1871 54 47 0 074 2 0.13 1880 7 0 2 0.59
2 0.25 1541 87 80 0 342 2 0.25 1826 8 1 2 0.99
2 0.38 1488 87 80 0 342 2 038 1397 21 19 8 1.56
2 0.5 1444 87 80 0 349 2 0.5 972 55 53 31 5.13
2 0.63 1406 91 &4 0 4.01 25 0.13 1684 7 0 3 0.74
2 075 1877 95 88 1 4.61 25 0.25 1651 8 1 3 0.74
2 0.88 1359 96 90 0 4.54 25 0.38 1201 17 16 11 2.01
2 1 1342 97 93 1 498 25 05 85 42 41 44 7.81
4 013 1180 37 30 0 6.62 3 0.13 1462 5 0 3 0.74
4 025 991 51 44 0 788 3 0.25 1411 6 1 3 0.74
4 038 960 51 44 0 796 3 0.38 1065 15 14 12 2.08
4 05 936 51 44 0 803 3 05 810 38 37 50 8.55
4 0.65 913 53 46 0 9.52

4 075 892 56 49 1 10.56

4 088 882 56 50 1 10.86

4 1 876 57 53 1 11.08

The last parameter calculated by the queueing network model is average queue length.
Let us see, what happens, when a threshold-based autoscaling algorithm is used on this
parameter. The result table for series oe looks similar in character to the utilization-based
autoscaler on the same series, having a single trend in the hours and Apdex columns, with
the exception that the values for used machine-hours are higher for the same ApdexS.
Therefore, it is not possible to select a combination of parameters that would have ac-
ceptable hours and start/stops metrics with ApdexS violations lower than 5%. Even the
combination 4/0.63 results in somewhat higher cost (913 vs. 844 h ). Compared to the
latency-based case, it cannot compete in cost or achieved performance, but has higher
stability. There are no extreme values for start/stops in the table.

The results of the queue length-based autoscaler on series bender are not very good,
probably because of its noisy nature. There would be no feasible parameters if the user
needed to avoid ApdexC violations. The combination 2/0.5 results in significantly higher
cost than the utilization-based case (972 vs. 791 h). The parameters 300/160 ms of the
latency-based autoscaler, which produce similar performance, result in only 694 h. Even
the start/stops count is higher. In most parts of the table, the start/stop counts are low,
resulting in fewer changes performed and high cost. Parts of the table with down thresholds
above 0.5 were trimmed because of excessive ApdexC violations.

The last examined series, gaff, when used with the queue length-based autoscaler, again
shows the tendency of the algorithm to be unstable with low up threshold setting, similar
to the latency-based autoscaler on the same series. While the number of machine-hours is
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similar to the two other algorithms and the start/stop counts are lower by a factor of two,
the ApdexC (hard SLO) violations are more frequent, also by a factor of two, making the
algorithm unsuitable.

4.3.5 Second threshold for overload detection

However, while examining the results on virtually all three versions of the threshold-based
autoscaler on the series gaff, we noted that the abrupt changes in level lead to extremely
large queue lengths. The addition of only one machine still does not stop it from increasing.
Actually, it is this series that forced us to implement the logic that estimates queue length
in overload situations spanning multiple time intervals.

It is only logical to try to add more machines at once to prevent this from happening.
We added a second, fixed, up threshold that adds four machines when the queue length is
longer than 1000. Similarly, we have modified the latency-based algorithm with threshold
35s and the utilization-based one with threshold 90%.

Table 4.15: Queue length-based autoscalers  Table 4.16: Queue length-based autoscalers
on “gaft” with overload detection on “gaft”

up down hours starts stops ApdexC ApdexS up down hours starts stops ApdexC ApdexS

2 0.13 1595 89 &9 32 3.2 2 0.13 15351 92 92 11 1.86
2 025 1030 103 103 40 043 2 0.25 1013 108 108 16 3.35
2 038 799 106 106 42 6.02 2 038 807 114 114 17 4.24
2 05 680 118 113 42 892 2 0.5 677 120 120 17 7.06
4 013 764 44 44 40 52 4 0.13 937 56 56 14 2.9
4 025 594 47 47 43 6.32 4 0.25 687 63 63 16  3.94
4 038 497 52 52 40 914 4 038 574 70 70 18 6.25
4 05 459 55 55 47 10.93 4 0.5 526 76 76 19 8.4
6 013 723 43 43 41 558 6 0.13 937 56 56 14 2.9
6 0.25 570 46 46 44 6.62 6 025 700 65 65 17 3.94
6 038 489 51 51 48 952 6 038 588 74 74 19 6.17
6 05 452 54 54 50 11.45 6 0.5 538 81 81 22 8.9

The result for series gaff was promising, as it significantly reduced the numbers of
ApdexC violations and also improved ApdexS. The downside is a slight increase of machine
starts and consumed machine-hours. The change made the algorithm competitive with the
utilization-based one, although it is still worse. The settings 4/0.25 and 6/0.5 have similar
metrics to the respective settings of the utilization-based autoscaler, but slightly higher
cost: 687 and 538 vs. 618 and 491 h. The cost of the latency-based algorithm for the
higher performing variant was only 556 h.

The effect of the additional threshold on other algorithms and series was mostly nega-
tive. It increases the number of machine starts and the cost with minimal impact on the
grade of service, at least in areas of suitable configurations. There was no case, where this
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modification would enable another solution or significantly improve the current ones. The
only exception was again the series gaff and the latency-based algorithm. The effect there
was a decrease in ApdexC violations across the table, similar to the queue length-based
case. It enabled the solution 70/36 ms with 542 h, 91 starts, 17 ApdexC and just under
5% ApdexS violations. We infer that is only beneficial for series with abrupt changes in
level and does not work well in the utilization-based case.

To conclude our experiment with the threshold-based autoscaler working on the queue
length metric, we find it more stable (having less machine starts) than the other algorithms,
which results in less hard and soft SLO violations, but at the cost of more consumed
machine-hours. Also, similar to utilization, queue length serves as an early warning before
a serious overload. This was best seen on series oe when contrasted with the latency-based
algorithm, and on the experiment with overload detection on the series gaff.

The function of the up thresholds of the latency and queue length-based autoscalers
are comparable, as there is a simple dependency between the two quantities, at least for
Markovian service times:

PECERIE) )

Q>N (4.7)

where R is the response time, QQ the queue length, SD the service demand, and N the
number of servers. Nevertheless, specifying the down threshold in terms of queue length
eliminates the biggest shortcoming of the latency-based autoscaler, that is the need to
exactly specify the service demand of the application. The queue length-based autoscaler
is remarkably insensitive to the down threshold setting. Any value between 0 and 1 basically
means that the server is not overloaded. For an M/M/1 queueing system, it is precisely
equal to the single server’s utilization. A wrong setting will increase the cost and slightly
decrease the user experience, but will not result in hard SLO violations.

4.3.6 The latency-queue hybrid autoscaler

We think that scaling up based on latency and down based on queue length should result
in a low cost and high stability autoscaler. To support these claims, we have performed
two more simulations of hybrid threshold-based autoscalers. The first proposed algorithm
scales up based on latency and down based on queue length, with queue length used for
level change detection on the series gaff, the second one scales up based on latency and
down based on utilization, with queue length for level change detection on the series gaff.

The results table of the first proposed algorithm on the series oe seems to confirm the
hypothesis. The algorithm takes the good properties from the latency and queue length-
based algorithms, that is low cost and stability, respectively. The table has a single clear
trend in both cost and performance metrics, similar to the utilization-based version, but
has a wider band of feasible parameters, due to slightly lower achieved cost for the same
performance. Concretely, the settings 60/1 and 70/1 result in 853 and 813 h, which is
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Table 4.17:

toscalers on “oe”

Latency-Queue hybrid au-

Table 4.18:

Latency-Queue hybrid au-
toscalers on “bender”

up down hours starts stops ApdexC ApdexS

up down hours starts stops ApdexC ApdexS

50 0.25 997 49 44 0 0.52 300 0.13 1112 3 0 1 0.3
50 0.5 947 53 48 0 0.67 300 0.25 1107 4 1 1 037
50 0.75 923 70 65 0 1.71 300 0.38 R893 14 13 5 1.04
50 1 907 81 79 2 238 300 05 792 45 44 19  3.27
60 0.25 937 42 38 0 3.2 500 0.13 1080 3 0 5 0.97
60 05 891 44 40 0 3.27 500 0.25 1029 4 1 6 1.64
60 0.75 867 58 54 0 431 500 038 826 13 12 16 3.12
60 1 83 66 65 0 476 500 05 713 33 32 47 9
70 025 889 39 35 1 6.54 700 0.13 1029 3 0 12 2.38
70 0.5 80 41 37 1 6.77 700 0.25 978 4 1 13 3.05
70 0.75 824 50 46 1 781 700 0.38 779 11 10 20 5.13
70 1 813 57 56 1 84 700 05 672 28 27 74 12.49

900 0.13 1022 3 0 13 3.05

900 0.25 971 4 1 14 3.72

900 038 770 11 10 33 6.32

900 0.5 660 28 27 89  14.28

lower than 918 and 844 h in the reference algorithm. The latency-based version is still
better with 807 and 773 h.

Similar results were obtained for the series bender with the first hybrid algorithm.
The chosen settings of 300/0.375 and 700/0.375 exactly match the selected settings of the
utilization-based algorithm in the ApdexC metric and have lower cost in machine-hours:
892 and 779 h vs. 968 and 791 h. The latency-based algorithm was again better with 773
and 697 h.

The results of the first hybrid algorithm on series gaff only support the previous con-
clusion that it performs slightly better than the utilization-based version. The results for
settings 70/0.375 and 130/1 are 617 and 510 h, which is not significantly worse than 618
and 491 h. The latency-based autoscaler with overload detection achieved 542 h in the
first case (ApdexS violations below 5%). This hybrid algorithm was also better than the
clean queue length-based variant on all tested time-series and fulfilled the expectation of
lower sensitivity to the down threshold setting compared to the latency-based algorithm.

4.3.7 The latency-utilization hybrid autoscaler

The last model was created to test the hypothesis that queue length (when < 1) has similar

properties as utilization. It uses latency for scaling up and utilization for scaling down.
As seen in the result table for series oe, this is not entirely true. While queue length

provides high stability, utilization values over 50 resulted in oscillations and were trimmed
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Table 4.19: Latency-Utilization hybrid au-  Table 4.20: Latency-Utilization hybrid au-
toscalers on “oe” toscalers on “bender”

up down hours starts stops ApdexC ApdexS  up down hours starts stops ApdexC ApdexS

45 10 1013 52 47 0 0.22 200 10 1055 6 4 0 0
45 20 962 65 62 0 037 200 20 843 58 57 5 0.74
45 30 938 81 80 0 1.26 200 30 781 148 147 30  4.24
45 40 910 103 102 2 245 300 10 929 2 0 0 0.15
45 50 890 136 135 3 3.72 300 20 727 35 34 10 2.23
55 10 937 45 41 0 1.86 300 30 680 109 108 44 7.66
55 20 886 49 46 0 2.01 400 10 929 2 0 1 0.22
55 30 869 62 61 0 2.68 400 20 693 27 26 22 3.79
55 40 844 76 75 1 3.72 400 30 642 87 86 67 11.82
55 50 825 104 103 12 5.58 500 10 928 2 0 2 0.3
65 10 890 40 36 1 5.06 500 20 683 24 23 30 5.06
65 20 843 43 40 1 5.28 500 30 620 7776 96  15.61
65 30 823 51 50 1 6.02 600 10 928 2 0 2 0.3
65 40 804 64 63 2 6.99 600 20 665 23 22 39 7.06
65 50 790 8 84 12 8.62 600 30 595 67 67 126 19.33
7 10 866 39 35 1 7.88

7 20 821 41 38 1 8.1

7 30 802 46 45 1 9

75 40 789 57 56 2 9.67

7 50 768 73 72 11 11.5

from the published version of the table. After the range of the down parameter was thus
adjusted, the table looks clean enough. Moreover, the results with settings 55/40 and
75/40 are slightly better than the previous algorithm, 844 and 789 h for the higher and
lower performance goal, respectively.

Similar properties were observed with the second hybrid algorithm on the series bender.
The result table before trimming was mostly in italics, because the algorithm was unstable
for down thresholds above 30. Using settings 200/20 and 400/20 again yields lower cost
than the previous algorithm, 842 and 693 h. The second value is on the same level as 697 h
of the clean latency-based autoscaler.

The results of the second hybrid algorithm on series gaff were trimmed not because it
would be unstable at high down thresholds, but simply because the table is very flat and
uninteresting. On the other hand, that means the algorithm was insensitive to its settings,
which was our goal. One cause might be that the overload detection based on queue length
is active and is performing most of the scale-up operations. The character of the table is
very similar to that of the utilization-based autoscaler on this series, even the results are
practically identical, settings 130/10 and 130/50 lead to 622 and 489 h vs. 618 and 491 h.
Against the previous version, the results are also very close, so the conclusion is that with
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Table 4.21: Latency-Queue hybrid au-  Table 4.22: Latency-Utilization hybrid au-
toscalers with overload detection on “gaft” toscalers with overload detection on “gaff”

up down hours starts stops ApdexC ApdexS up down hours starts stops ApdexC ApdexS

70 0.13 1008 63 63 13 2.01 70 10 642 8 T8 15 2.9
70 0.25 731 76 76 16 29 70 20 545 95 95 17 5.58
70 0.38 617 89 89 17 4.09 70 30 542 98 98 17 5.95
70 0.5 559 95 95 17 5.8 70 40 539 102 102 18 6.17
70 0.63 547 96 96 17 6.02 70 50 525 105 105 19 6.54
70 0.75 545 99 99 17 6.02130 10 623 71 71 18 4.09
70 0.88 542 99 99 17 6.02 130 20 518 78 T8 18 7.88
70 1 545 102 102 18 6.1 130 30 513 81 81 18 8.77
130 0.13 964 58 58 14 2.83 130 40 508 81 81 18 8.77
130 0.25 705 67 67 17 3.94 130 50 490 81 81 18 9.22
130 0.38 588 73 73 18 5.95
130 0.5 533 78 T8 18 8.18
130 0.63 520 9 79 18 8.77
130 0.75 516 80 80 18 8.85
130 0.88 510 80 80 18 9
150 1 510 81 81 18 8.77

this series, these three algorithms perform the same.

Even considering the fact that down thresholds higher than 50 are unusable, the sta-
bility of the latency-utilization hybrid is still better than that of the clean latency-based
algorithm, and the cost per performance is better than the reference utilization-based al-
gorithm and the previous hybrid one, making it the best algorithm in this study. It is also
more feasible than the latency-queue length autoscaler from an implementation perspec-
tive. It is much more commonplace to monitor the utilization of servers and latency of
applications than to monitor average queue lengths on load balancers.

4.3.8 Summary of results

In this subsection, we present Table [4.23] which summarizes the results of the different
autoscaler algorithms working on our three sample time series. The chosen settings were
already presented in bold and italic on the left side of each table and represent the low-
est cost in machine hours attainable using the particular algorithm, which had soft SLO
violations in less than a) 5% and b) 10% of the 15-minute intervals. Only in the case of
bender, the criterion for selection was the ApdexC, or hard SLO violations, as explained
in the text.
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Table 4.23: Summary table

series alg up down hours starts stops ApdexC ApdexS
oe utilization 70 20 918 51 48 0 4.83
oe latency 60 34 807 66 65 0 4.83
oe queue N/A N/A
oe lat-que 60 1 853 66 65 0 4.76
oe lat-util 55 40 844 76 75 1 3.72
oe utilization 80 20 844 46 43 1 9.07
oe latency 70 34 773 50 49 2 8.33
oe queue 4 0.63 913 53 46 0 9.52
oe lat-que 70 1 813 57 56 1 8.4
oe lat-util 75 40 789 57 56 2 9.67
bender utilization 80 10 968 7 6 5 1.19
bender latency 300 152 773 15 14 5 1.19
bender queue N/A N/A
bender lat-que 300 0.38 893 14 13 5 1.04
bender lat-util 200 20 843 58 57 5 0.74
bender utilization 70 20 791 34 33 26 4.83
bender latency 700 152 697 5 4 15 3.79
bender queue 2 0.5 972 55 53 31 5.13
bender lat-que 700  0.38 779 11 10 26 5.13
bender lat-util 400 20 693 27 26 22 3.79
gaff utilization 70 10 618 67 67 16 3.87
gaff latency 50 36 556 100 100 19 3.2
gaff latency-ol 70 36 542 91 91 17 4.98
gaff  queue-ol 4 0.25 687 63 63 16 3.94
gaff lat-que-ol 70 0.38 617 89 89 17 4.09
gaff lat-util-ol 130 10 623 71 71 18 4.09
gaff utilization 70 50 491 80 80 17 9.07
gaff latency N/A N/A
gaff latency-ol N/A N/A
gaff queue-ol o 0.5 538 81 81 22 8.55
gaff lat-que-ol 130 1 510 81 81 18 8.77
gaff lat-util-ol 130 50 490 81 81 18 9.22

4.3.9 Stability of the hybrid algorithms with increased load

New autoscaling methods should be investigated, because, as we have theoretically shown,
the most commonplace utilization-based autoscaler will become unusable with machine
counts over about 32, when the utilization-latency plot of the M/M/N model becomes
very close to the axes and finding a right setting for the up threshold in the utilization
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metric will become hard.

We have simulated this in our model by multiplying the first tested time series with
powers of 2. The multiplier used in the study was 16. When set to 8, the optimal up
threshold to get the ApdexS under 75% violations below 5% of the time was 60%. At 16,
it was 70%, at 64, it was 80%, at 128, it was 90%, and at 256, the optimal value was not
present in the table. We would have to search for it between 90 and 100%. Lower up
thresholds of course work, but result in wasted processing power and money. At the last
traffic level and settings 90/50, the 95% percentile of machines used was 63.

When the same experiment was repeated with the proposed hybrid threshold-based
autoscalers, it was noted that the average queue length is a function of the load (as the
mean arrival rate increases, so do the “spikes”, or better said the variance of the Pois-
son distribution that governs the arrival rate). This caused the latency-queue autoscaler
to quickly stop scaling down correctly as the incoming traffic was increased. The down
threshold had to be increased up to about five at the highest traffic setting.

On the other hand, the latency-utilization autoscaler worked with the same settings for
all tested traffic levels, which confirms that the latency, as a function of the application
and SLO, and utilization, at light loads only weakly dependent on the number of nodes,
are the best choices for thresholding metrics at any incoming traffic level.

4.3.10 Simulation plots

In the section, we present the plots that are the output of the simulator when used in-
teractively. They show the user the input time series along with all computed variables:
utilization, queue length, response time, the number of machines used, and the simulated
user satisfaction expressed using Apdex.

The plot is of the time series oe and the latency-queue hybrid autoscaler with
settings 60 ms up and 1 req down. It presents a good compromise between cost and
performance as it keeps the response time very low, but not at the absolute minimum.
The only downside is oscillations that happen during periods of low load.

The next two plots show the time series bender and the classic latency-based autoscaler
with settings 300 ms up and 152 ms down. This time series has a much lower seasonal
component and also lower request intensity, so there are fewer scaling actions. However,
the more conservative autoscaler results in gradual increases in response time, which falls
abruptly after each scaling action. Sometimes, the action comes too late, and the growth
in latency is felt by the customers. The first plot shows another output mode of the appli-
cation, while the second shows a diagnostic printout of the different Apdex components.
As a reminder, ApdexS has thresholds T=200 ms and F=1 s, while ApdexC is set up with
T=1s and F=4s.

The plot represents the time series gaff and the latency-utilization hybrid autoscaler
with parameters 130 ms up and 10% down. The overload detection is on and reacts to queue
lengths above 1000 req by adding four instances at once. This load profile is impossible to
scale without overloads using a reactive autoscaler, but the long queue detection at least
reduces the time the system is overloaded.
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Figure 4.13: Time series oe and the latency-queue hybrid autoscaler with settings 60 ms
up and 1 req down. Six figure plot mode.
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Figure 4.14: Time series bender and the classic latency-based autoscaler with settings
300 ms up and 152 ms down. Five figure plot mode.
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Figure 4.15: Time series bender and the classic latency-based autoscaler with settings
300 ms up and 152 ms down. Apdex component plot.
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Figure 4.16: Time series gaff and the latency-utilization hybrid autoscaler with parameters
130 ms up and 10% down with overload detection. Five figure plot mode.
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4.4 Minor results and developed software

Besides the main results detailed in this chapter, several analyses and software packages
have been developed around the main line of work, mainly as master’s and bachelor’s theses
where the author of this work posing as either the supervisor or a consultant (mentioned
in Acknowledgements). They will be presented briefly in this section.

4.4.1 Cloud Gunther

The Cloud Gunther is a batch job queuing engine that has integrated cloud instance
management. It was first presented at the POSTER conference [88] and later, along with
the research idea of using heterogeneous load to maximize cloud utilization at the ITARIA
CLOUD COMPUTING conference [89].

The program has been designed to make use of spare computing power of lab work-
stations for scientific computations. There are several tools that can be utilized for that
purpose, but we have chosen to use cloud technology because it allows running a broad
spectrum of computations utilizing different languages and libraries. At the same time, it
does not require any further modifications to the lab workstations bar the installation of
the cloud software, as all computations are run inside virtual machines whose templates
can be prepared by the users. This is an improvement over grids and clusters, where every
software package has to be installed by the administrator directly on the nodes.

The program itself is written in Ruby on Rails and consists of a web application for
job submission and monitoring, several daemons that handle job scheduling and output
collection and a messaging service to deliver jobs to instances. The design is detailed in
the master’s thesis of Josef Sin [90].

The queuing logic is rather simple and is outperformed by traditional cluster computing
tools. The differentiating feature of the program is its ability to provision cloud instances
just before they are needed and to delete them afterwards. More specifically, it launches
a specified number of instances from a certain template for a certain user and will use
them to run tasks as long as there are suitable jobs in the queue. It can also monitor the
remaining amount of resources in a private cloud and only launch jobs if there are enough
VM slots left. The system also has the property of multitenancy, meaning that it can serve
multiple users without mixing their jobs and virtual machines. Different job priorities for
different users are also implemented.

The system was developed on the now outdated Eucalyptus v2 private cloud, which
ran on about 20 workstations. This cloud implements the Amazon Web Services API, so
Cloud Gunther can also be used in the public cloud or, with slight modifications, for other
private clouds. They differ mainly in the function for presenting the available capacity,
which is not a part of the (public cloud) standard. The component for reading available
capacity directly from the cloud could also be easily replaced by a reading a prediction of
free resources to accommodate other load on the cluster and leave room for its fluctuations.

Cloud Gunther was tested in cooperation with other researchers. The problems solved
were an image transformation that ran on tens of gigabytes of data in a pseudoparallel
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fashion and was written in Matlab. The second experiment was with a multiagent simu-
lation that required the nodes to communicate with each other. It was written in Java. A
robotics simulation was not performed in the end because it required computation-capable
graphic cards and there is no way for them to be shared between virtual machines. They
can be connected only to one at a time, and even that function is, as far as we know, absent
from private cloud software.

The project is currently dormant because there was no further demand for it and
consequently, there was no will to maintain the cloud installation on the lab workstations.

4.4.2 ScaleGuru

ScaleGuru is an automatic scaling subsystem for private clouds modelled after Amazon
Web Services’ autoscaler. It has been published in the International Journal of Systems
and Measurements [3] and details are also available in Karol Danko’s thesis [91].

As already mentioned, private clouds are useful for experiments as those do not cost
money and can be much better reproducible than in the shared environment of a public
cloud. The problem is that they do not yet offer the same level of services. Particularly,
automatic scaling is necessary if data about variable load is to be collected for forecasting
experiments. At the time of writing of the software, there were autoscalers being written
for at least Eucalyptus and OpenStack but were not yet finished. Creating an in-house
autoscaler had the added benefit of greater simplicity of expansion.

The program can be deployed either by the cloud administrator on a controller ma-
chine or even by the client himself in a virtual machine. It is a web application written
in Node.JS with the MongoDB database for settings and performance data. It utilizes
Nginx as the load balancer and automatically creates configuration files for it on every
topology change. It can manage multiple applications at once. Instance monitoring is
done through injecting a small script that periodically sends low-level system statistics to
a web application endpoint. The cloud is controlled through a wrapper to eucaZools, a
package of Amazon Web Services-compatible command-line utilities from Eucalyptus. All
these components are modular and can be extended if necessary.

The autoscaling logic itself is defined in terms of Autoscaling Groups, which define
applications and their usage limits, Load Balancers, which describe the ports and domain
names of applications, and in Autoscaling Policies, which react to Autoscaling Alarms set
on monitoring data. For example, an alarm could fire, if the CPU load average of the
instances serving an application was over 70% for 5 minutes. A policy for this alarm would
then add a predefined number or a percentage of instances.

This scheme has the benefit of being well known and tried from the public cloud im-
plementation at Amazon, and thus enables a seamless transition from public to private
cloud. Using ScaleGuru for experiments has the benefit of knowing its code and being
able to modify it if necessary. Also, all performance data is saved in the database for later
analysis.

The program was so far only evaluated in a synthetic setup consisting of a load gener-
ator, the ScaleGuru VM also hosting the load balancer and a Eucalyptus v2 private cloud
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of 8 nodes. The managed applications were a static file, a synthetic CPU bound task and
a bare installation of Wordpress. In the first case, the load generator overloaded first, after
creating about 10000 simultaneous users. The second variant was used more during the
development of the monitoring and scaling components, and the web application was then
used to verify the functionality.

During the experiments, the autoscaler was capable of scaling the application from one
to eight virtual machines and back, the load varied from 1 to 50 simulated users, each
issuing a request about 2x per second. The load balancer was only lightly loaded, but
higher traffic could not be verified because of the small scale of the private cloud. The
base latency was about 100 ms, and it remained below 2 seconds. If less was desired, the
up-scaling threshold could be set lower to compensate for the time it takes to launch a new
virtual machine, but that would lead to more wasted resources in steady load states.

4.4.3 Private laaS cloud comparison

Traditional virtualization tools employed in large data centers are competing against in-
creasingly popular cloud counterparts. The bachelor’s thesis of Martin Klepac [5] focuses
on a subset of cloud systems — private IaaS clouds, which allow running virtual machines
at a large scale. As the overall private TaaS industry is fast-growing, new versions of the
established systems arise very quickly, and therefore it is easy to lose track of the supported
features. Additionally, some large IT players are waiting in the background to promote
their favorite product without hesitating to influence the media attention.

Hence, to provide an unbiased overview, the thesis has performed a comparison of pri-
vate [aaS cloud systems based on a range of supported features, installation and subsequent
configuration complexity, quality of provided documentation and last but not least, on a
quantitative measurement of virtual machines boot up time. The result of this is a list of
fields, in which respective systems excel and on the other hand, fields in which they do not
particularly succeed.

The results are very relevant to the process of selecting a private cloud implementation
and as such the thesis has won a prize from the Czech ICT Alliance.

4.4.4 Private PaaS cloud comparison

Likewise, the master thesis of Pavel Pulec [92] attempts a study of available platform clouds.
PaaS is a very young category of the cloud which allows developers to concentrate just on
the implementation of web applications and does not bother them with the preparation of
the platform. The goal of the thesis was a comparison of current PaaS clouds with emphasis
on their advantages and disadvantages. A part of the thesis is also a demonstration of
overload and analysis of behavior during the scaling of applications, which should be a
part of every cloud platform.

During this work, we have discovered that the selection of PaaS systems is very limited
and that their maturity considering mainly documentation, ease of deployment and opera-
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tion, and functions, is severely lacking. Nevertheless, the author of this dissertation thesis
is currently working on implementing a public installation of the Cloud Foundry PaaS.

4.4.5 Scheduling algorithms in job queues

The master’s thesis of Jakub Tkadlecek [93] addresses the problem of scheduling jobs in
queues, focusing on the fairness of the planning. The work includes efforts to define a
common structure of jobs arriving at the scheduler and evaluation of the impact of this
structure on the planning process.

This work was an attempt to extend the Cloud Gunther job scheduler with more com-
plex scheduling algorithms. The results are mainly a theoretical research of existing job
scheduling algorithms and an analysis of data from the VIC CVUT - a supercomputing
center supporting the CTU in Prague. A simulator of several algorithms was written, and
the data was fed to it. The result was that the users’ estimates of job run time are so
inaccurate that actual scheduling algorithms will not perform better that a simple FIFO
queue with backfilling.

4.4.6 Data movement in Hybrid Clouds

The main focus of the bachelor’s thesis of Matej Uhrin [94] is on hybrid clouds and web
applications running in hybrid cloud mode. The thesis provides a method to decide whether
it is more economical to run an application in multiple locations in hybrid cloud mode with
all database accesses going through an Internet line or to replicate the database between
the locations.

This thesis further species metrics and variables used in the decision method. Moreover,
a profiling process on how to perform measurements and collect the mentioned variables
is explained. The work finishes with the method being tested on two of the most common
web applications.

The work focused on the behavior of web applications with regard to databases and the
impact of the database accesses on the operating cost of the application in a public cloud.
We have laid a methodology to measure all necessary variables and to let the deployer of
the application solve the trade-off between the cost of the public cloud infrastructure and
the quality of service for the end users.

4.4.7 Automatic cloud deployment driven by a performance model

The goal of the master’s thesis of Tom&s Kabrt [95] was to analyze the current state of laaS
(Infrastructure as a Service) cloud technologies and review the possibilities of automatic
provisioning and deployment of a two-tier application which consists of phpMyAdmin and
Percona Cluster with the Chef orchestration tool. This application was benchmarked,
and a performance model was created. The ideal number of nodes for the application was
calculated by PDQ based on the performance model. The ADT web application was created
to offer an easy way to deploy nodes with required software in the cloud automatically.
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The motivation behind the project originally called ” The Magic Cloud Provisioner” was
to be able to suggest to the user the scale of an open-source web application taken from
a catalog of benchmarked applications given his estimated of the demand for his or her
content and to deploy the application at the computed scale. This goal has been achieved
using the DevOps tool Chef for application deployment, classical performance testing of
the applications and then modeling them using the PDQ Queueing Network solver.

This model is perhaps the most important result because this algorithm would need to
be a part of a predictive autoscaler that would predict the user demand for the application
and not the utilization directly. This piece would then compute the desired scale of each
application tier and notify the autoscaler to add or remove nodes accordingly.

4.4.8 Private cloud monitoring

The goal of the bachelor’s thesis of Matéj Zidek [96] was to create an enhanced monitoring
system for the cloud platform Open-Nebula that would store data for a duration of at least
one year, and present is in graphs in a user-friendly environment.

The final solution uses the one2influx daemon to gather monitoring data from Open-
Nebula’s XML-RPC API and saves them to the InfluxDB database. The visualization is
done using the Grafana tool, and after a customization of one2influx, the solution applies
to other cloud solutions as well, e.g. OpenStack.

At the moment of the writing, the solution was in a state of limited functionality. The
problem was caused by InfluxDB, which was in heavy development at the moment. This
work thus serves more as a demonstration of what can be achieved with the use of InfluxDB
in a short period.

As far as we know, the solution has been used at the Institute of Computer Science at
Masaryk University in Brno at least as inspiration for their new solution for OpenNebula
cloud monitoring. The institute runs the cloud for the benefit of all research organizations
in the Czech Republic, and there is normally no metering and accounting in the private
cloud software. They do not do billing in monetary units, so monitoring of fair usage is
necessary to maintain the availability of the system for the community.

4.4.9 Autoscaling in Cloud Foundry

The progressive monitoring solution with the now mature InfluxDB time series database
has also been used in the bachelor’s thesis by Maros Spak [97] that worked on the higher
level of PaaS.

Cloud Foundry is an open-source cloud platform as a service. It aims to provide a
simple and a quick way to deploy, maintain and scale applications in the cloud. Currently,
Cloud Foundry supports only manual scaling of the applications via the command line tool
or the HTTP API. It also lacks the storage system to permanently store the applications
information about used system resources. That presents a problem for the automation of
application scaling. The aim of the thesis was to analyze the possibility of the application
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scaling on the Cloud Foundry platform and to design and implement the missing auto-
scaling function including retrieving and storing data from the application’s resource’s
usage monitoring.

The implemented program is written in the Python language. It monitors the applica-
tion resources usage for each of the application’s instances. The retrieved data is stored in
the InfluxDB database. With the help of the user-defined scaling rules, this data is ana-
lyzed, and the program evaluates the need for scaling the application. An algorithm used
to evaluate the collected data is implemented as a plug-in and can be replaced. The con-
figuration of the scaling, which includes scaling rule definitions, is stored in the MongoDB
database. For the purpose of changing these settings, the program provides a simple HT'TP
API, making it ideal for inclusion as a microservice into a bigger PaaS cloud management
platform.

The scaling itself is provided by the Cloud Foundry via its HT'TP API, and it is handled
by changing the number of running instances, the amount of allocated memory, or disk
space.
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CHAPTER 5

Conclusions

This dissertation thesis presented the results of our work focused on increasing the utiliza-
tion of private clouds. In particular, we have discussed the benefits of automatic scaling
for the cloud user and the impact it will have on the provider’s side. We have focused on
optimizing the client side of TaaS because of popular demand and the poor availability of
data center scale data.

5.1 Workload Forecasting

The first part of the work presented two methods of time series forecasting, used otherwise
mainly in economic forecasts, and which could be applied to server load data. These
methods were tested on six time series of CPU load, some of which are web servers with
a well defined daily curve (oe, bender, wn), and some have a load of more unpredictable
nature (Im, real, gaff).

The results of the forecasts are very promising. We believe that in practice, we should
mainly encounter series that are not difficult to forecast because computer systems with
human interactive use will always exhibit strong seasonality, which makes them easily
predictable. Secondly, those web services which actually need autoscaling will have enough
traffic for the time series to be smooth, without spikes due to random arrivals of individual
requests. Lastly, there is a trend to separate the interactive frontend and its backend
services, so time series like gaff where user accesses and database imports ran on the same
virtual machine will be less and less frequent. The series which did not have good properties
were included in the study mostly to test the limits of the forecasting methods.

Our proposal for optimizing the utilization in private clouds is to periodically evaluate
the long-range workload forecast and use the result to either shut down idle machines when
there will be no demand for them for longer than a specified threshold (to minimize stress
on the computers due to frequent on/off cycles), or to query the result of the forecast
algorithm in a batch job scheduler (including the now modern big data platforms), and
thus ensure that the unused capacity will be filled with non-interactive traffic.
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For this proposal to be viable, the cloud should contain load-balanced and autoscaled
web servers as the variable component that is to be predicted. However, during the study,
we have not found a private cloud installation that would employ cloud elasticity. We
have therefore shifted focus to cloud autoscaling simulations to prove the advantages of
autoscaling and show application administrators that the trade-off between cost and cus-
tomer satisfaction that exists in autoscaling and is probably the thing they are most afraid
of, can be controlled in advance by choosing the right parameters.

5.2 CloudSim Changes

In order to be able to evaluate autoscaling algorithms, the CloudSim simulator package
was studied and modified by adding several functions necessary for the testing of cloud
automation software, most notably VM addition and deletion at run time and more detailed
statistics collection. The modifications allowed a simple autoscaler to be implemented.

Due to concerns about the accuracy of the simulation, a load test of a dynamically
changing virtual infrastructure was set up and compared with the simulator. The results
were significantly different from the measurements on the real system.

While the simulator contains the possibility of generating traffic and thus conducting
simulated load tests, its focus is not the workload itself, but rather the testing of cloud
systems with different characteristics. This is also backed by the focus of other articles
using CloudSim for evaluation [33][34][35], which focus either on Green Computing or on
simulation batch workloads. CloudSim is arguably better suited for those than for large
numbers of small requests, because of its origin in GridSim.

The search for a more accurate simulator turned empty. Other simulators than CloudSim
and its derivatives, which are targeted specifically at cloud computing, are in most cases
specialized to infrastructure simulations and cannot simulate the kind of scenarios we need.
The only two exceptions found are CDOSim [39], a part of CloudMIG Xpress. The article
also contains the only other known comparison of CloudSim-based software with a real load
test. The software is, sadly, not available any longer. The second one is the SimulLizar
plugin [51] for PCM [48], whose evaluation in the article does not seem to show all its
possibilities. Other articles are mostly working on datacenter scale, where the cost of the
real test would be overwhelming. Nevertheless, we think that every simulation should be
verifiable, at least on a small scale.

With no viable alternative simulator, the problems with CloudSim have been resolved
by backporting queueing logic from the latest version, fixing order errors this introduced
due to different time units across CloudSim versions, mitigating rounding errors that caused
incorrect results, implementing a FIFO queueing discipline for increased correctness and
as a reference for the default PS discipline, fixing the load generation code, and including
service time randomization to simulate a Poisson process of both arrivals and departures.

The modified simulator was verified both against the results of the original load test
and against a queue theoretic model of the test setup. All three experiments give the same
results (with error percentages in single figure numbers).
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Therefore, the main contribution of this part of the work is the proof that the modified
version of CloudSim is correct and can be used to simulate interactive traffic. The steps to
add the necessary functions and the steps required to fix the queueing logic are documented.
The modified CloudAnalyst code is available on GitHuH]

For smaller scale experiments, no simulation is needed and live load testing can be per-
formed using load generators and performance monitoring tools. As seen in Section [3.2.2]
the setup of these experiments is not very demanding and the instrumentation can capture
a wide variety of variables, perhaps more than most simulations. Cloudstond?] from Cloud-
suite [98] is a standardized benchmark targeted at web serving, which is very similar to the
one presented here. It uses the PHP application Olio, a mock-up of a social site, instead
of Wordpress. Working implementations of an autoscaling controller and a job queue for
private clouds are already available at our university.

5.3 Custom simulator design

Due to the difficulties encountered with CloudSim, we have designed our own simulator
for autoscaling scenarios. It is based on the PDQ queueing network solver [42] with some
additions to compute queue lengths in overload situations. The designed queue-theoretic
model-based simulation script in R passed our small-scale verification well, in fact even
better than our best version of CloudSim. This thesis presented its design and possible
variants, as well as showing its results on basic threshold-based algorithms.

The simulator takes a workload trace of request intensity and iterates over it, computing
the queue length, latency and utilization of the service system. All these variables and their
historical values are available to the autoscaling algorithm, which decides on the number of
servers for the next iteration. This way, autoscalers reacting to latency (Google App Engine
type), utilization (Amazon Web Services Type), or queue length (RedHat OpenShift type)
can be simulated. With the time series analysis tools available in R, it is possible to test
designs of proactive autoscalers based on some form of time series forecasting.

While evaluating our model on various threshold-based autoscaling algorithms using
different metrics, we have found out that a combination of scaling up based on latency and
down based on utilization is better than using any individual metric alone regarding both
stability and cost per performance. The arguments are presented in Subsection [4.3.9|

As the used model is analytical, the resultant parameters also have known distributions.
Using formulas for GoS on an M/M/N system and the Apdex (Application Performance
Index), we can calculate the performance of the system as perceived by users. On the other
hand, the model computes the cost for running the cloud system expressed in machine-
hours. This way, the simulator helps the user choose a compromise between cost and
performance. See Subsection for explanations of the model parameters and outputs.
If the user can quantify both the cost per machine-hour and the dissatisfaction of users

"https://github.com/vondrt4/CloudAnalyst-interactive
’http://parsa.epfl.ch/cloudsuite/web.html
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with performance in the same units, e.g. money, then the model can give them a single
output metric. This was not done in our evaluation.

While the evaluation was done on a single-tier autoscaled service, the benefit of using
the QN formalism is that it supports simple extension to multiple tiers, just by adding
more service centers to the model. The code is already available. This allows simulating
autoscalers that see the utilization of all tiers at once. Otherwise, when a multi-tiered
application has autoscalers between tiers, which are only concerned with their respective
tier, one scaling action may only solve the worst bottleneck, and can move it to another tier.
Monitoring all tiers allows scheduling complex scaling actions, as shown by Urgaonkar [99].
The QN solver also allows for multiple input streams with different service demands, which
contribute to the overall utilization.

The drawbacks of the chosen model engine are that the MVA (Mean Value Analysis)
class of algorithms available in PDQ simulates a network of M/M/N queues. Therefore,
it cannot model highly bursty traffic, where arrivals are not Markovian. Other modeling
packages may, however, be chosen, which support more arrival distributions. The overall
design of the simulation script will not be changed. The list of possible choices, along with
a selection of discrete event simulation engines, is presented in Subection [2.2.2]

Forecasting of computer load time series, as presented in the first part of the thesis,
uses the effect of combined load of many requests to create a continuous curve of load.
This works if the number of requests is sufficiently high not to see the individual requests.
Continuity can be expected from measurements of an entire cloud. However, if an ap-
plication that has a low number of users but a high service demand per request were to
be autoscaled using prediction, the effect of the random arrival of requests would become
visible. In these cases, direct load forecasting methods become unreliable, and usage of
performance modeling to compute the load would be necessary for the project of predic-
tive autoscaling. In these cases, the queueing network model should be embedded in the
autoscaler. If the prediction is done on a trace of incoming requests and not on the load
trace, as usual, these problems could be mitigated.

To prove an autoscaling algorithm using our simulator, the researcher will need traces of
request intensity from a live cloud application as well as the baseline latencies, utilizations,
and virtual machine numbers. Such traces are not publicly available. The traces upon
which we tested the simulator itself also do not satisfy these conditions. They were taken
from single-machine web servers of different purposes. The requirement of having request
intensity traces was relaxed by using utilization traces and stating that the servers were
running in low-load mode all the time. We have used current readings of latency to obtain
the value of the service demand for the simulation.

We hope that the simulator will be used both in research to test new autoscaling
methods and in practice for choosing the right method and parameters for a particular
workload. The source code in R is available on GitHub/[]

Combined with our work on load prediction, it should be possible to design and simulate

'https://github.com/vondrt4/cloud-sim
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a pro-active autoscaler, which can anticipate both increases and decreases in application
demand and act accordingly.

5.4 Summary

In agreement with the goals stated in the Introduction, we have studied the nature of
interactive cloud workloads, mainly through the disciplines of Time Series Forecasting and
Queueing Theory. This study led us, in the first part, to formulate our solution for private
clouds, which is to employ autoscaling of the interactive part of the workload and forecast
the resulting curve to be able to either save power or efficiently backfill the free capacity
with batch jobs.

The dependency on the interactive workload relinquishing unused capacity led us to
study further the properties of different autoscaling algorithms working on various met-
rics available in an autoscaled system. To do that, we created two simulation methods.
One is based on the CloudSim event-driven simulation framework and can be modified to
simulate different request arrival distributions or other non-standard conditions, while the
second one based on queueing theory is much faster, although it is more constrained by
assumptions about the properties of the input streams.

Our strategy for the public cloud or generally for reducing the operating cost of interac-
tive workloads is based on this second simulator and entails measuring the computational
complexity and the workload time series of the application, running a parameter sweep
of different autoscaling algorithms and their parameters, and then choosing the one that
makes the right compromise between cost and customer satisfaction according to the cus-
tomer’s service quality needs.

5.5 Contributions of the Dissertation Thesis

In particular, the main contributions of the dissertation thesis are as follows:
1. New methodology for forecasting time series of web server load and its validation

2. Extension of the often-used simulator CloudSim for interactive load and increasing
the accuracy of its output

3. Design and implementation of a fast and accurate simulator of automatic scaling
using queueing theory

5.6 Future Work

As future work, we would like to integrate the two parts of the thesis into one project
which would enable the maximization of utilization of a private cloud. However, to do
that, we would need some real test bed with user traffic. In particular, the forecasting
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strategy currently requires some manual work before being deployed, mainly to select the
right learning horizon and retraining interval, as these depend on the rate of change of the
traffic. Therefore, it is best applied manually.

Given that the methodology for model parameter selection can rely on an algorithmic
evaluation of statistical tests at every step, it is possible to implement an automatic ver-
sion from which even layman users can benefit, for example in the form of a pro-active
autoscaler. It will probably not be as accurate as when the manual approach is used.
Retraining of the model would be done on manual request, or when a change in time series
parameter would be detected or if the prediction accuracy were to fall.

We would like to explore other ways to employ predictions in autoscaling, concretely
methods to predict spikes and other deviations from the daily curve at their early onset.
Currently, predictive autoscalers need to be paired with reactive ones to cover the times
when the load deviates from the forecast. The reaction of the autoscaler could be improved
even in these situations using some form of anomaly detection.

Alternatively, we could apply our prediction techniques to other areas, such as data
center cooling and power distribution, or use the queueing network formalism to describe
big data analytic platforms and algorithms.

This dissertation thesis has laid the groundwork for optimization in both the private
and the public cloud. What remains now is to put the recommendations into practice. The
author is currently working on building a public cloud data center in the Czech Republic.
Automatic scaling is being offered to any client with high enough resource demands. Once
the scale of the data center gets high enough, optimization strategies will, of course, be
built in.

The autoscaling simulator is a complete solution for algorithm evaluation for researchers
or parameter assessment for users.
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