
Czech Technical University in Prague
Faculty of Electrical Engineering

Doctoral Thesis

18.9.2017 Michal Štolba

Czech Technical University in Prague

Faculty of Electrical Engineering
Department of Computer Science

REVEAL OR HIDE: INFORMATION SHARING IN
MULTI-AGENT PLANNING

Doctoral Thesis

Michal Štolba

Prague, 18.9.2017

Ph.D. Programme: Electrical Engineering and Information Technology
Branch of study: Information Science and Computer Engineering

Supervisor: Ing. Antonín Komenda, Ph.D.

Co-supervisor: Doc. Ing. Jiří Vokřínek, Ph.D.

Dedicated to my grandfather who showed me the beauty of science and sparked in me
the desire for knowledge and the need for answers to the most intriguing questions we

could think of (in the age before google).

Acknowledgments
In the first place, I would like to thank prof. Michal Pěchouček for accepting me in his research group,
providing me with support since then, and encouraging me to pursue the doctorate. My warmest thanks
go to my supervisor Antonín Komenda who constantly supported me and with whom we spent hours in
sometimes fruitful and sometimes simply enjoyable discussions.

My thanks belong to my collaborators and coauthors, especially Daniel Fišer for all the hard im-
plementation work and for fixing many errors, Jan Tožička for deep discussions about the intricacies of
privacy, and Jiří Vokřínek for continual support. I shall not forget to mention Petr Benda whose technical
support was crucial for the success of the CoDMAP competition and many experimental evaluations.

Last but not least, I would like to thank my wife Martina, son Radovan, and daughter Zora for love,
support, and for making sure I do not have too much time to work on the thesis, thus greatly improving
my efficiency.

Abstract

The ability to plan a sequence of action in order to achieve a given goal with respect to the initial
conditions of the world is one of the crucial aspects of intelligence. It is no surprise, that this aspect
has been thoroughly studied in the context of artificial intelligence since its very beginning. The same
can be said about the study of multi-agent aspects of planning in the research field of multi-agent sys-
tems. Among the most important aspects of such multi-agent planning is information sharing, that is,
which information should be shared by the agents and which not, and also how to share the information
efficiently.

We provide several perspectives on the issue of sharing or hiding information in multi-agent plan-
ning. We mostly focus on heuristic search with domain-independent heuristics which is a well-estab-
lished approach both in classical and multi-agent planning. We advance the state of the art in a number
of directions.

Firstly, we focus on the distributed computation of heuristics. The main research question is how
to achieve global heuristic guidance without explicitly communicating and revealing private parts of
the planning problems respective to the particular agents. We approach this issue by providing a num-
ber of distributed variants of classical planning heuristics, both inadmissible and admissible (which are
necessary for optimal planning). We use the acquired knowledge to design more general approaches
for distributing relaxation heuristics and finally any heuristic (in an admissible way). We theoretically
analyze the distributed heuristics (e.g., by showing their admissibility) and provide a thorough experi-
mental evaluation, showing their superiority in speed or heuristic guidance compared to the same heuris-
tics computed locally by the agents (that is, without sharing any information throughout the heuristic
computation).

Secondly, we propose a heuristic search algorithm which is able to balance the use of distributed and
local heuristics. The distributed heuristic approach is not always the best choice. In many problems,
the heuristic guidance of the locally computed heuristic is close to the distributed variant but without
the computation and communication overheads. We solve the issue by allowing the search to use the
local heuristic while computing the distributed heuristic and waiting for replies from other agents. This
technique is able to balance the information sharing in most domains and problems and practically
dominates each approach used separately. The resulting planner also improves on the state of the art in
suboptimal multi-agent planning.

Thirdly, we analyze information sharing in multi-agent planning in the context of privacy. In privacy-
preserving cooperative multi-agent planning, the agents want to cooperatively plan a sequence of actions
but do not want to reveal their private knowledge. In realistic scenarios, avoiding explicit communication
of the private information is not enough, the agents do not want to allow any other agent even to deduce
such information from the communication protocol.

The thesis builds on two major journal publications and a number of works published at the top-tier
AI conferences. The designed algorithms are both theoretically analyzed and thoroughly experimentally
evaluated. In order to allow for a more complete and rigorous comparison of existing multi-agent plan-
ners, we have co-organized the first Competition of Multi-Agent and Distributed Planners (CoDMAP)
during the work on the above research topics. We have collaborated on the design of the formal domain
and problem description language, we have designed the competition setup (in two tracks), implemented
necessary software tools, and performed the evaluation. The description of the competition and the re-
sults relevant to other presented topics are provided as a part of the thesis.

Anotace

Jedním ze základních projevů inteligence je schopnost naplánovat si posloupnost akcí vedoucí k
dosažení svého cíle. Není žádným překvapením, že tato schopnost byla předmětem studia umělé in-
teligence od samého počátku. Totéž bychom mohli říct o multi-agentních aspektech plánování stu-
dovaných v rámci multi-agentních systémů. Mezi nejzásadnější otázky takového multi-agentního pláno-
vání pak patří sdílení informací, jinými slovy, které informace je dobré mezi agenty sdílet a které ne a
také jak informace sdílet efektivně.

V této práci nabízíme několik pohledů na problematiku sdílení a skrývání informací v multi-agentním
plánování. Zejména se zaměřujeme na heuristické prohledávání s doménově nezávislou heuristikou,
což je zaběhnutý postup jak v klasickém, tak v multi-agentním plánování. Hranice vědeckého poznání
posouváme v následujících směrech.

V první řadě se zaměřujeme na distribuovaný výpočet heuristik. Hlavní výzkumnou otázkou je,
jak dosáhnout globálního vedení heuristického prohledávání bez toho, aby bylo nutné explicitně komu-
nikovat a tím odhalit privátní znalosti agentů. Jako řešení předkládáme několik distribuovaných variant
heuristik známých z klasického plánování, a to jak přípustných (což je nutné pro optimální plánování),
tak nepřípustných. Získané znalosti poté využíváme k vytvoření obecnějších postupů pro distribuci re-
laxovaných a později libovolných heuristik, a to při zachování přípustnosti. Distribuované heuristiky
teoreticky analyzujeme (např. formálním důkazem jejich přípustnosti) a zároveň nabízíme experimen-
tální evaluaci ukazující jejich výhody oproti lokálně počítaným klasickým heuristikám (tedy heuristikám
které během výpočtu nesdílejí informace mezi agenty).

Druhou oblastí přínosu této práce je nový algoritmus heuristického prohledávání, který umožňuje
vyvážit použití distribuované a lokální heuristiky. Distribuovaný výpočet heuristiky totiž není vždy tou
nejlepší volbou. V některých problémech je kvalita lokální heuristiky srovnatelná s distribuovanou, ale
bez zvýšených výpočetních a komunikačních nároků. Náš přístup k řešení tohoto problému je umožnit
prohledávání pomocí lokální heuristiky, zatímco probíhá výpočet její distribuované varianty a to během
čekání na odpovědi od ostatních agentů. Tato technika je schopná správně vyvážit sdílení informace ve
většině plánovacích domén a problémů a prakticky dominuje oba přístupy výpočtu heuristiky použité
každý zvlášt’. Výsledný plánovač pak v několika metrikách překonává dosavadní multi-agentní pláno-
vače.

Třetím tématem, na které se tato práce zaměřuje, je sdílení informací v multi-agentním plánování z
pohledu zachování soukromí jednotlivých agentů. V takovém případě sice chtějí agenti společnými sil-
ami naplánovat sekvenci akcí, ale nechtějí při tom odhalit své privátní znalosti. V realistických scénářích
však nestačí vyhnout se explicitnímu sdílení takových informací, ale je nutné zabránit ostatním agentům,
aby tyto informace mohli dedukovat z veřejně dostupných informací a z komunikačního protokolu.

Tato práce vychází ze dvou hlavních časopiseckých publikací a z řady konferenčních článků pub-
likovaných na prestižních zahraničních konferencích v oboru. Navržené algoritmy jsou jak teoreticky
analyzovány, tak experimentálně vyhodnoceny a porovnány. Abychom mohli provést úplnější a rig-
oróznější experimentální evaluaci, zorganizovali jsme během práce na výše uvedených výzkumných
tématech první ročník soutěže multi-agentních plánovačů (Competition of Multi-Agent and Distributed
Planners, CoDMAP). Spolupracovali jsme na návrhu univerzálního jazyka pro popis multi-agentních
domén a problémů, navrhli jsme hlavní principy soutěže a její rozdělení do dvou sekcí, naimplemen-
tovali jsme nezbytné softwarové nástroje a provedli samotné vyhodnocení. Popis této soutěže a jejích
výsledků je rovněž obsažen v této práci.

Contents

1 Introduction 1
1.1 Problem Statement . 1
1.2 Research Objectives and Achievements 6
1.3 Organization and Contributions . 10

2 Related Work 13
2.1 Roots of Multi-Agent Planning . 15
2.2 MA-STRIPS-based Multi-Agent Planning 17

2.2.1 MA-STRIPS-based Planners 18
2.2.2 MA-STRIPS-based Heuristics 20

2.3 Privacy in Multi-Agent Planning . 21
2.3.1 Secure Multiparty Computation 21
2.3.2 Privacy in Related Fields . 22
2.3.3 Privacy in MAP . 23
2.3.4 Privacy-Preserving Planners and Heuristics 24

3 Multi-Agent Planning 27
3.1 The MA-STRIPS Formalism . 28

3.1.1 Views of the MA-STRIPS Problem 31
3.1.2 Solution Concepts . 32

3.2 The MA-MPT Formalism . 34
3.2.1 Views of the MA-MPT Problem 36
3.2.2 Solution Concepts . 37

3.3 Multi-Agent Planning Problem as a Transition System 37
3.4 Introduction to Multi-Agent Planners and Heuristics 38
3.5 Discussion on the Complexity of Planning 40
3.6 Benchmark Domains . 41

4 Distributed Computation of Relaxation Heuristics 45
4.1 Multi-Agent Fast-Forward Heuristic 48

4.1.1 Agent Relaxed Planning Graph 48
4.1.2 Distributed Relaxed Plan Extraction 51

4.2 Recursive Distributed Relaxation Heuristics 52

ix

x CONTENTS

4.2.1 Distribution of the Additive and Max Heuristics 52
4.2.2 Recursive Distribution of the Fast-Forward Heuristic 57

4.3 Privacy-Preserving Set-Additive Fast-Forward Heuristic 57
4.4 Evaluation . 61

4.4.1 Comparison of Relaxation Heuristics 61
4.4.2 Effect of the Recursion Depth 64
4.4.3 Comparison of the Projected and Privacy-Preserving Set-Additive

FF . 66
4.4.4 Comparison of RPG-based and DTG-based Distributed FF . . 68

4.5 Summary . 70

5 Combining Distributed and Local Heuristics in a Heuristic Search 71
5.1 Heuristic Search and its Variants . 71

5.1.1 Heuristic Search . 71
5.1.2 Multi-Heuristic Search . 73
5.1.3 Multi-Agent Heuristic Search 73

5.2 The MADLA Search . 75
5.3 Formal Description of the MADLA Search 78
5.4 Properties of the MADLA Search 85

5.4.1 Proof of Soundness . 85
5.4.2 Proof of Completeness . 86
5.4.3 Projected and Privacy-Preserving Set-Additive FF in the MADLA

Search . 88
5.5 Evaluation . 89

5.5.1 Implementation of the MADLA Planner 90
5.5.2 Comparison of the Building Blocks 91
5.5.3 Detailed Analysis . 93
5.5.4 Comparison with a Centralized Planner 95
5.5.5 Comparison with the State of the Art 96

5.6 Summary . 97

6 Distributed Optimal Planning 99
6.1 Distributed Admissible Max Heuristic 100

6.1.1 Distributed Max Heuristic Algorithm 101
6.1.2 Equality of Centralized and Global Max Heuristic 101

6.2 Distributed Admissible Landmark Heuristic 103
6.2.1 The LM-Cut Heuristic . 103
6.2.2 Distributed LM-Cut Heuristic 104
6.2.3 Equality of Centralized and Distributed LM-Cut Heuristic . . 107

6.3 Distributed Search with Additive Heuristics 108
6.4 Distributed Potential Heuristics . 110

6.4.1 Potential Heuristics . 110
6.4.2 Potential Heuristics for Multi-Agent Planning 112
6.4.3 Distributed Computation of Potentials 114

CONTENTS xi

6.5 Multi-Agent Cost Partitioning . 117
6.5.1 Cost Partitioning . 118
6.5.2 Optimal Cost Partitioning 119
6.5.3 Approximate Optimal Cost Partitioning 120

6.6 Evaluation . 125
6.6.1 Evaluation of the Distributed LM-Cut Heuristic 125
6.6.2 Evaluation of the Distributed Potential Heuristics 127
6.6.3 Evaluation of Multi-Agent Cost Partitioning 132

6.7 Summary . 134

7 Privacy 137
7.1 Formal Definition of Privacy in Multi-Agent Planning 138

7.1.1 Cryptographic Assumptions 139
7.1.2 Weak and Strong Privacy . 141

7.2 Quantifying Privacy Leakage . 142
7.2.1 Privacy Leakage . 142
7.2.2 Leakage Quantification in PP-MAP 144
7.2.3 Sources of Leakage . 146
7.2.4 Leakage Estimate . 150

7.3 Privacy Analysis of Algorithms . 151
7.3.1 General Method for Search-based Algorithms 152
7.3.2 MAFS and MAD-A* . 154
7.3.3 Secure-MAFS . 158
7.3.4 Relaxation Heuristics . 161
7.3.5 Potential Heuristics . 164
7.3.6 Multi-Agent Cost-Partitioning 166

7.4 Theoretical Limits of Strong Privacy 167
7.4.1 A Strong Privacy Preserving Planner 168
7.4.2 The Limits of Strong Privacy Preserving MAP 171
7.4.3 Strong Privacy Preserving Equivalence Classes 175

7.5 Summary . 176

8 Conclusion 179

A The Competition of Distributed and Multi-Agent Planners 183
A.1 The Aims of the Competition . 183
A.2 MA-PDDL . 184

A.2.1 Unfactored MA-PDDL . 185
A.2.2 Factored MA-PDDL . 187

A.3 Competition Rules . 187
A.3.1 Centralized Track . 188
A.3.2 Distributed Track . 188

A.4 Software Infrastructure . 188
A.5 Selected Results . 189

xii CONTENTS

A.6 Summary . 192

B Publications 193

Chapter 1

Introduction

In the last couple of decades, we have witnessed the world becoming much more interconnected. Even
items of daily use are becoming connected to the Internet, intelligent and autonomous. Be it smart-
phones, autonomous cars, unmanned air vehicles (UAVs) or ordinary household items, contributing to
the so-called Internet of Things. The interconnectedness and ubiquity are expected to increase rapidly
in the near future. Such interconnected entities, which we might as well call agents, need not only to
communicate but also to coordinate and cooperate with each other. In order to do so, such agents (in-
cluding also humans) need to plan effectively in this increasingly complex and information-abundant
environment. Moreover, the agents need to consider carefully which information to share with other
agents and which information to keep for themselves, i.e., to hide. Sharing information may be benefi-
cial if the information helps the planning process, but sharing too much information may overload the
communication channels and cause the planning process to stall. Another aspect of information sharing
is that some of the information may be confidential and thus cannot be shared. Indeed, it even has to be
protected from leaking to the other agents through the execution of the planning algorithms.

The same phenomena are bound to arise in the industry even more. The concept of Industry 4.0
building upon automation and interconnected smart entities is quickly gaining ground. All such entities,
agents, and humans act in isolation no longer and thus need to take each other into account during
decision making, planning, and deliberation. Automated planning, a sub-field of classical artificial
intelligence (AI), and multi-agent planning even more so, provides the tools that can be used to solve
such complex problems.

Multi-agent planning covers a vast number of domains and problems, their models, and algorithms
and techniques for solving them. From this wealth of related work (which is covered in Chapter 2) we
carve out a concise fundamental problem closest to the classical planning literature which is domain-
independent deterministic cooperative multi-agent planning. We first state the problem informally in
the following section and provide a full formal definition in Chapter 3.

1.1 Problem Statement

This thesis is concerned with domain-independent deterministic cooperative multi-agent planning. Let
us dissect the term and define (informally, for now) each of its parts. Let us start with planning. As
already hinted, a planning problem is the problem of sequencing a number of actions performed in an
environment so that the environment is transformed from its current state to the desired goal state, that
is, any state which satisfies the goal conditions. Typically, the state of the world is described as a set
of variables with finite domains (e.g., binary) and each action is defined by some precondition over the
variables which must hold for the action to be applied and an effect on the variables. The precondition
and effect thus describe the change in the world state caused by the application of the action. The sets

1

2 CHAPTER 1. INTRODUCTION

of variables and of actions are considered finite as well. The complete planning problem can be seen as
a transition system, that is, a graph where the nodes are all possible states of the world and the edges
are all possible transitions based on the available action. There is a transition between two states s and
s′ if there is an action a which is applicable in s (its preconditions are satisfied) and the application of a
on s results in s′ (by the application of the effects of a). Finding a solution to the planning problem is
equivalent to finding a path in the transition system from the initial state to some of the goal states. In
optimal planning, the path must be the shortest (or with the lowest cost) among all such paths.

As in classical planning, we are interested in off-line planning. This means that the planning problem
definition is given to the solver up-front, the solver is allocated some time to solve the problem and
only when the solution (the plan) is ready, its execution commences. In other words, the planning
and execution phases are separated. The planning phase, which is the main focus of the thesis, comes
first. The execution phase comes next and is out of the scope of this work (the execution phase is not
considered by most of the work in classical planning as well). This contrasts with the on-line planning
model, where the planning and execution are intertwined, often putting a short planning phase after each
executed step in the plan. In that case, the complete plan is typically not prepared up-front.

Next term to be explained is deterministic. Deterministic in the context of planning means that the
effect of the application of a particular action depends only on the state it is applied in. That is, every
time we apply the same action in the same state, it always results in the same new state. This clearly is
a significant assumption and simplification, as in the real world this is often not the case. Take for an
example a robot performing some task such as putting an object on a table. Clearly, the robot expects the
object to be on the table after the execution of the action, but other things may happen. The object may
fall off the table, if it is placed too close to the edge, or if it is a ball which rolls off. Or somebody may
push the table (or the robot) during the execution and thus ruin the robot’s effort. We may argue that in
such cases, the description of the world state was not precise enough and did not take into account all
properties such as the exact position of the table. Or we may make our model more high-level in that
the planning action put-object-on-table might actually represent a more complex behavior of the robot
which always ends in successfully putting the object on the table, e.g., by picking it up from the ground
and retrying. Of course, this approach would not work if the object was a glass of water which may get
spilled or broken. Thus, although there are cases where the deterministic model is not applicable, there
are many situations where it is.

Notice that in one of the examples above, the failure of the action was due to an external agent, the
person pushing the table out of reach of the robot. In the case of presence of other autonomous entities
(agents), we talk about multi-agent systems and multi-agent planning (MAP). The necessity to consider
the actions of other agents brings us to a completely different level of complexity, the game theory. But
again, we can simplify the problem by additional assumptions. In our case, we assume that the agents
are cooperative, that is, the goals the agents want to achieve (or the utility of the solution the agents
are aiming to maximize) are common to all agents, or are not in conflict. This means that there is no
gain for any of the agents in not cooperating, or even in a stronger case, each agent cannot achieve its
goals without cooperating with others. There are plenty of examples of such situations. Imagine when
all the robots in a factory are owned by a single company, they are clearly cooperative. But even if the
robots are owned by multiple companies, e.g., in a search and rescue mission, they may be in a situation
where cooperation is needed or beneficial. Recall one of the examples presented above, where multiple
factories cooperate to produce goods or multiple companies in a consortium need to coordinate their
processes in order to fulfill the shared project goals.

An important feature in multi-agent systems is privacy. Even if we restrict our attention to cooper-
ative multi-agent planning, where the agents have common goals or utility, still, the agents are distinct
entities (such as companies) and often have concerns about privacy. In particular, in the case of plan-
ning, the agents want to coordinate their actions in order to achieve the common goal, but may not
want to share all their internal data, values, and possible processes (or actions) with the other agents. In
fact, the agents might want to disclose only as much information as is needed for successfully planning
how to achieve the common goals, even though sharing more information might help the distributed

1.1. PROBLEM STATEMENT 3

planning process. In our world model, this means that only the smallest necessary subset of the vari-
ables is shared among the agents (we call such variables public) and only the actions which interact
with such public variables are shared (that is, public actions). Moreover, only the public parts of the
public actions are necessary to be shared (a public action a restricted to the public variables is a public
projection of a). Thus in order to preserve privacy, the agents want to hide the existence and values of
private variables, the existence of private actions and the existence and values of private preconditions
and effects of public actions. We say that private information has leaked if some of that information
is either directly exposed to some other agent, or some other agent is able to deduce it from some of
the public information communicated during the execution of a planning algorithm. We say that an
algorithm is weak privacy-preserving if it does not openly communicate private information and strong
privacy-preserving if the private information cannot be deduced even from all the public information
communicated throughout the execution of the algorithm.

The last term remaining to explain is domain-independent, which rather describes our approach to
the solution than the problem itself. As in classical planning, domain-independent means that given a
general model, our approaches must be applicable to all domains and problems which can be described
using the model. In classical and multi-agent planning, the model is a finite set of finite-domain variables
and a finite set of deterministic actions defined on the basis of their preconditions and effects. Moreover,
we have such model for each agent, describing each agent’s view of the world, together composing
the complete global problem. We assume the agents to be cooperative. Any problem which can be
formulated using this model and its assumptions can be solved (given enough, possibly exponential but
finite, time), or the non-existence of a solution reported, using the techniques described in this thesis.
In other words, all the techniques can be applied on any of such problems (or domains) and thus are
domain-independent.

Problem Representations

A problem in both classical and multi-agent planning can be represented as a deterministic state-
transition system (or a transition system for short). Such transition system is a directed graph consisting
of states representing all possible states of the world and transitions representing all possible actions
applied in the states where they are applicable. Even though we restrict ourselves only to finite systems,
such transition systems may be extremely large. For example, consider a small logistics problem with
10 locations, 5 trucks, and 5 packages. The state-space contains all possible combinations of the loca-
tions of the trucks and packages, that is, 10 locations for each truck and 15 locations for each package
(including being in each of the trucks), which is 105 · 155 which is approximately 7 · 1010 states. But
the structure of the problem can be used to represent such vast numbers of states concisely.

In classical planning, there are three commonly used concise representations of the transition system.

Propositional logic representation (also known as classical representation) uses first-order literals
(atomic formulas, also known as facts) and logical connectives (e.g., and, or) to describe states,
action preconditions and effects, and the goal condition. In the logistics example, the literals
might be for example truck1-at-loc1 and package1-at-loc1 and the precondition of a load action
the conjunction truck1-at-loc1 ∧ package1-at-loc1 meaning that both literals must hold true in
order to apply the action in a state. Classical representation is useful in some theoretical work but
is not typically used internally by the planning systems.

Set-theoretic representation (also known as STRIPS representation) reduces the possibilities of the
classical representation by allowing conjunction of literals only. Such restriction leads to a concise
representation of states, preconditions and effects by sets of literals which hold true, for example
{truck1-at-loc1, package1-at-loc1}, assuming that all other literals are false (in the case of state
description) or not considered (in the case of preconditions and goal conditions). Effects typically
consist of two sets, one is a set of literals which become true by the application of the action (i.e.,

4 CHAPTER 1. INTRODUCTION

are added), the other is a set of literals which become false (i.e., are deleted). This representation
is often used internally by the planning and heuristic algorithms.

State-variable representation (also known as multi-valued representation) represents a state as a finite
set of finite-domain variables and each action as a partial function mapping a tuple of values (the
precondition) to another tuple of values (the effect). This representation is used internally in
most modern planners (including our work), but some concepts are better presented using the
set-theoretic (STRIPS) representation. The state-variable representation can be converted to the
set-theoretic representation by using the variable assignments as facts. In the logistic example,
some of the variables and their domains might be truck1-at ∈ {loc1, ..., lock} and package1-at ∈
{loc1, ..., lock, truck1, ..., truckl}. A state, precondition, or effect is then an assignment, such as
truck1-at = loc1, package1-at = loc1, ... (and each variable assignment can be considered a fact
in the set-theoretic representation).

Each of the above representations concisely represents a transition system, which is exponential in the
size of the representation (recall that the states of the transition system are all possible combinations of
the literals or variable valuations).

Even though such representations are concise compared to the complete transition system, still,
they are unwieldy to write by hand. Consider the logistics example. For each move action for each
truck and between each two locations, the problem designer needs to specify the particular precondi-
tions and effects. In order to alleviate such extensive writing, the planning research community uses
a high-level representation language called Planning Domain Description Language (PDDL) [McDer-
mott et al., 1998]. PDDL is a lifted representation with a lisp-like syntax using predicate logic instead
of propositional logic to describe general domains and particular problems. Predicate logic allows for
use of variables (often called parameters) in predicates and action definitions. For example in the lo-
gistics domain, the predicate (at ?v ?l), where the variables ?v and ?l are the parameters, is a binary
predicate which relates a vehicle with a location. By substituting the variables with particular objects
(also defined in the PDDL description), we obtain a literal (or fact) of the propositional logic which
can then be used in the propositional-logic or set-theoretic representations. This process is known as
grounding and the resulting literals are sometimes referred to as ground predicates. In the logistics
example, (at truck1 loc1) is a ground predicate equivalent to the literal truck1-at-loc1. To avoid substi-
tuting irrelevant objects (such as a truck in the place of a location), PDDL often uses typing, for example
in (at ?v − vehicle ?l − location), only the objects of correct type can be substituted for the variables.
Actions are parametrized similarly to the predicates and predicates (with matching variables) are used
to describe the preconditions and effects of such actions.

This way, PDDL allows for extremely concise descriptions. Moreover, the description is typically
divided into two files. The more general domain file describes the possible types, predicates (that is,
properties and relations of objects), and actions, thus describing the mechanics of the given domain
(e.g., logistics). The more specific problem file describes an instance of a problem for such domain
and contains an enumeration of the actual objects and their types, description of the initial state, and
description of the goal condition (which typically is a conjunction of ground predicates and negations
of ground predicates).

Note that translation from PDDL to the state-variable representation is not as straightforward as
to the other two representations. An automated translation process, used by the planners presented in
this thesis as well, was thoroughly described in [Helmert, 2006]. The basic principle is to first ground
the predicates, then to analyze invariants (such as that some facts never appear in a state together,
e.g., truck1-at-loc1 and truck1-at-loc2) and finally synthesize variables based on the invariants (in our
example, truck1-at-loc1 and truck1-at-loc2 can be values of a single variable).

In classical planning, the domain-independent approach is fostered by a wide range of PDDL bench-
marks which are typically used to test novel approaches and which are also the basis for the International

1.1. PROBLEM STATEMENT 5

Planning Competition (IPC)1. The same holds for multi-agent planning with a number of differences de-
scribed thoroughly in Appendix A.

Problem Solving by Heuristic Search

Although there are other techniques used for both classical and multi-agent planning, heuristic search
is by far the most widespread. Here we provide a brief introduction to the concepts used in heuristic
search. First of all, the search itself. As already described, a classical planning problem is represented
by a finite set of finite-domain variables and a finite set of deterministic actions, thus forming a graph
known as the transition system of the planning problem.

To find a path from the initial state to some goal state (there are typically multiple states which
satisfy the goal condition), a standard graph search algorithm, such as A* [Hart et al., 1968], can be
used. Note that the transition system is exponential in the size of the problem description (that is, in
the number of variables describing a state), we cannot use explicit graph representations such as the
adjacency matrix. Instead, an implicit search algorithm is used, built on the following principle. There
is an open list initialized to contain the initial state and a closed list initially empty. In each step of
the algorithm, a state s is extracted from the open list and checked for the goal condition. If s does
not satisfy the goal condition, s is added to the closed list. Next, the state s is expanded, that is, all
actions applicable in s are applied and the resulting states are added to the open list, except for the states
which already are in the closed list. The search continues by extracting another state from the open list
until either the open list is empty (in which case there is no solution), or a state which satisfies the goal
conditions is found. In that case, the actual plan is reconstructed from the references to the actions used
to expand the states which are stored alongside the states. The space of states and possible transitions is
also referred to as the search space.

If the open-list is a queue or a stack, the above approach basically corresponds to a breadth-first
search (BFS) or depth-first search (DFS) respectively. In planning, the structure used for the open list
is typically a priority queue (implemented as a heap) where the states are ordered according to a state
evaluation function f(s). Based on how f(s) is computed, we obtain different search schemes. If
f(s) = g(s), where g(s) is the distance (or cost) from the initial state to the goal state, the search
is again a breadth-first search (BFS). Moreover, we may introduce a heuristic function h(s) which is
an estimate of the remaining distance (or cost) from the state s to the nearest goal state. A classical
example of a heuristic function is the Euclidean straight-line distance in route planning on a road graph.
Then, if we set f(s) = h(s), we obtain a greedy best-first search (GBFS) which orders the states purely
according to the heuristic estimate. A middle ground is to set f(s) = g(s) + h(s) where the states
are sorted according to both the distance already traversed and the estimate of the distance to go. This
search scheme is commonly known as the A* search [Hart et al., 1968]. It has been shown that if the
heuristic h(s) is admissible, that is, it always underestimates the true cost, the A* search is optimal
(returns the shortest solution).

The search scheme can be easily adapted to the multi-agent case by the following (simplified) prin-
ciple. Each agent searches its own search space where the states contain only the public variables and
private variables of that particular agent and the search is restricted to the actions of the particular agent.
Only when a state is expanded by a public action, the state is sent to all other agents which add the re-
ceived state to their open lists. This way, the states on which any interaction between agents can happen
are shared among the agents, while the states which have changed only from the perspective of a single
agent are kept locally.

A question is, how the heuristic is computed in the multi-agent setting. If we aim for a distributed
computation or at least some degree of privacy, the heuristic function cannot be computed in a shared
memory, which would otherwise be the most efficient approach. Again, the question whether to share
or hide information comes to play. The first option is to compute the heuristic only locally, using the

1http://ipc.icaps-conference.org

6 CHAPTER 1. INTRODUCTION

same local problem used for the search but with the addition of the projected public actions of other
agents. This is important as it may not be possible to compute the heuristic value using the actions of
a single agent only. This approach to computing heuristics in multi-agent planning is called local or
projected heuristic. The second approach is to compute the heuristic using a distributed algorithm, that
is, to compute a distributed heuristic. Positives of the projected heuristic approach are that it is easy and
fast to compute, needs no additional communication and preserves both admissibility and privacy (with
respect to the heuristic value which may be shared or not). The negative is that the projected heuristic
might miss some important information and thus misguide the search, or in other words might not guide
the search as well as the distributed heuristic variant. The question of a privacy-preserving distributed
heuristic is much more challenging. Which information should be shared in the heuristic computation
and how is one of the main topics of this thesis.

1.2 Research Objectives and Achievements
At the beginning of my Ph.D. study in 2013, the MA-STRIPS formalism, recently introduced by Ronen
Brafman and Carmel Domshlak in [Brafman and Domshlak, 2008], was gradually gaining ground in
multi-agent planning. After a rather inefficient and literal approach to MA-STRIPS planning, Planning
First [Nissim et al., 2010], the first successful MA-STRIPS planner was MAD-A* published by Raz
Nissim and Ronen Brafman in [Nissim and Brafman, 2012]. As MAD-A* is a heuristic search, the
authors used some of the best classical planning heuristics at that time to guide the search and provide
excellent results. Building on a classical planning system, the Fast-Downward (FD) planner [Helmert,
2006], Nissim&Brafman were able to use the newest research results by simply applying the classical
off-the-shelf heuristics on the local problem views of the agents, known also as projected heuristics. The
authors have observed the following:

“Perhaps the greatest practical challenge suggested by the distributed version of MA-A*
is that of computing a global heuristic by a distributed system. In some domains, the exis-
tence of private information that is not shared leads to serious deterioration in the quality of
the heuristic function, greatly increasing the number of nodes expanded.”

At that point, I have decided to focus my research on that challenge.

Distributed Computation of Heuristics

While the computation of projected heuristics is straightforward, the distributed variant poses a much
bigger problem. There are multiple aspects that need to be considered, such as the quality of the heuris-
tic and how does it compare to a centralized solution, the communication overheads caused by the
distributed computation and the privacy-preservation of such solution. Altogether, the research question
I intended to answer was:

(Objective 1) How to compute classical planning heuristics in a distributed way?

To investigate the possibilities of distributed computation of classical planning heuristics we have first
focused on inadmissible heuristics, in particular on the well-known family of relaxation heuristics.
In [Štolba and Komenda, 2013], we have provided a distributed version of the Fast-Forward (FF) heuris-
tic which was provably equal to the centralized (global) version. As at that time, the only efficient
planner for multi-agent planning (MAP) was MAD-A*, which is an instance of optimal planner using
admissible heuristic, we have decided to develop the multi-agent version of Greedy Best-First Search
and use it to evaluate the inadmissible FF heuristic. We wanted to focus more on the distributed compu-
tation and as MAD-A* was internally built on the classical FD planner we have decided to implement
our own MAP codebase which would better support complex distributed computations. Later, out of
this effort emerged the MADLA Planner and much later on, thanks to Daniel Fišer, the MAPlan planner

1.2. RESEARCH OBJECTIVES AND ACHIEVEMENTS 7

which superseded MADLA both in efficiency and in its ability to run in a fully distributed setting. But
let us first focus on our work in the direction of the distributed heuristics.

In [Štolba and Komenda, 2014], we have presented a general approach to the effective computation
of distributed relaxation heuristics (including the FF heuristic), but without the assurances of equality
with the centralized solution. In [Štolba and Komenda, 2017], we have provided a more efficient and
privacy-preserving variant of the FF heuristic, which is also an important component of the MADLA
Planner [Štolba and Komenda, 2015]. Our work on inadmissible relaxation heuristics is summarized in
Chapter 4.

To delve into the case of admissible heuristics (that is, for optimal planning), which is even more
complex, we have first focused on the LM-Cut heuristic [Štolba et al., 2015a]. Because the LM-Cut
heuristic also falls in the class of relaxation heuristics, we were able to reuse some knowledge and ideas
learned in the previous work. The MA-LM-Cut heuristic has been shown to yield equal values in the
distributed and centralized global version and thus provide admissible estimates as well. A very different
approach was needed to distribute the family of potential heuristics, which are computed using a Linear
Program (LP) formulation. In [Štolba et al., 2016a], we have shown that potential heuristics are indeed
a very good fit for distributed computation as except for solving the initial distributed linear program
there is no additional communication necessary compared to the projected variant. The multi-agent
potential heuristic provides globally admissible estimates and provides a significant amount of privacy
preservation.

Our last effort in the direction of the Objective 1 is to provide a general approach to distributed
heuristic computation. We have based our work on the idea of cost partitioning and provided prelimi-
nary results in [Štolba and Komenda, 2016]. The results of the work on admissible heuristics and cost
partitioning are summarized in Chapter 6. The analysis of privacy of relaxation heuristics, potential
heuristics, and cost partitioning is presented in Chapter 7.

Combining Local and Distributed Heuristics

Right after our first experiments with the distributed heuristic (that was the FF heuristic at that time), it
became clear that the distributed computation of heuristics is not a silver bullet. Even though computing
a global estimate helped tremendously in some domains, it did not have much effect in others and it
even worsened the performance in some. This clearly had something to do with the concept of coupling
of the problems known from the work of Brafman&Domshlak. A low coupling means that there are not
many interactions between the agents (but the interactions might be crucial for solving the problem!).
In that cases, distributed heuristic computation helped by providing that crucial information, or at least
did not hinder the computation if the interactions were not so crucial. In contrast, high coupling means
that most (even all) of the actions of the agents interact with other agents. In that case, often even
though the additional information was helpful, the complexity of the distributed computation signifi-
cantly decreased the performance. The experimental results underpinning the presented conclusions are
summarized in Sections 4.4.1 and 4.4.3.

In general, the conclusion was that there is a trade-off in using a local or distributed heuristic. A
local heuristic is fast to compute, but provides worse search guidance, whereas the distributed heuristic
might take longer to compute as additional communication is typically involved, but provides more
precise estimates and thus better guidance. The trade-off manifests itself differently in different planning
domains and thus in some domains, it is better to use the local (projected) heuristic and in some domains,
it is better to use the distributed heuristic. We have experimented with various techniques to balance the
positive and negative effects but it soon became clear that the best way will possibly be to combine the
local and distributed heuristics in a single search scheme. The research question we were posed with
was:

(Objective 2) How to combine local and distributed heuristics?

The clear candidate technique was multi-heuristic search, which is a well-known concept in classical

8 CHAPTER 1. INTRODUCTION

planning, but at that time it was never used in multi-agent planning. But there was another twist to
the problem we were facing. In classical planning, the idea of a multi-heuristic search was used to
combine multiple different heuristics, where different means as different as possible. In practice, the
best example is the LAMA Planner [Richter and Westphal, 2010] which combined the FF heuristic
with a landmark-based heuristic which works on a completely different principle, so that the heuristics
nicely complement each other. As a result, for example, when the FF heuristic gives bad estimates,
the landmark heuristic gives good ones and vice versa. This, combined with other clever techniques,
resulted in LAMA winning two installments of the International Planning Competition (IPC).

But our case was different. In our planner, we wanted to combine two versions of essentially the
same heuristic, one computed on the local (projected) view of the problem, the other computed distribut-
edly on the global problem. One fast but less informed, the other slow, but more informed. Our efforts
culminated in the Multi-Agent Distributed and Local Asynchronous (MADLA) Search, conceived and
implemented in 2014 and later on published in [Štolba and Komenda, 2017]. MADLA Search is a
variant of multi-agent GBFS and exploits that the distributed FF heuristic is essentially asynchronous.
This means that at some times, the FF heuristic is waiting for replies from other agents. Simply put,
the MADLA Search uses this spare time to perform a fast local search using only the local projected
heuristic. The MADLA Search is the main component of the MADLA Planner [Štolba and Komenda,
2015]. The algorithm together with proofs of soundness and correctness is presented in Chapter 5. The
analysis of privacy of the algorithms and used distributed heuristic is presented in Chapter 7.

Consolidating Comparison and Benchmarking of Multi-Agent Planners

Since my first steps in the field of multi-agent planning, the interest of the research community in the
topic of multi-agent planning has grown steadily. More MAP planners and MAP approaches were
published, a specialized Distributed Multi-Agent Planning (DMAP) workshop was held as part of the
International Conference on Planning and Scheduling annually. Since our first algorithms, we were
conceptually building on the MAD-A* planner and used the same set of benchmarks and the same
language to encode them (basically extending the PDDL language with a set of objects specifying the
agents). But quite naturally, the same approach was not shared by other emerging planners. Indeed,
unlike in classical planning where the norm was PDDL and IPC, no such consensus was achieved in
multi-agent planning. Soon, it became hard to meaningfully compare the planners and the results of our
research and I knew that the next issue we needed to solve was:

To consolidate comparison and benchmarking of multi-agent planners.

We have decided to follow the approach to standardization used by the classical planning community–we
have decided to organize a planning competition. Unlike in classical planning, we were faced with a
Sisyphean task to consolidate an extremely wide area of research, where the authors did not agree even
on such fundamental issues as whether MAP should be centralized or distributed and whether MAP
planners should care about privacy or not. It must be noted that such diversity comes naturally from the
diversity of multi-agent systems and our aim was by no means to throttle it. Instead, we aimed to carve
out a subset of MAP approaches which were more or less based on the MA-STRIPS model and which
shared many common features and thus should be comparable.

We have decided that the planners will participate in two separate tracks. A centralized track was
aiming for compatibility with classical planners and planners which do not care about distribution but
are interested in other aspects of multi-agent planning. A fully distributed track was intended to set
a precedent for experimental evaluation of distributed multi-agent planners, where each agent was run
on a dedicated computer, communicating over TCP/IP. Moreover, the competition aimed to consolidate
the MAP input language, which resulted in an updated version of MA-PDDL2 including the definition
of which parts of the problem belongs to which agent (i.e, factorization) and privacy definitions. We

2There was a couple of MAP languages existing prior to the competition, but the languages were used basically only by their
authors.

1.2. RESEARCH OBJECTIVES AND ACHIEVEMENTS 9

have proposed a set of benchmarks based mostly on classical planning domains used often in the MAP
literature, but also including two novel domains.

We have co-organized the competition as a part of the DMAP workshop at the ICAPS 3 2015 con-
ference under the title Competition of Distributed and Multi-Agent Planners (CoDMAP) 4. We have
released a number of supportive tools for further organization of follow-up competitions and published
the results at a number of venues [Štolba et al., 2016b, Komenda et al., 2016, Štolba et al., 2015b].
There were 12 planners in 17 configurations from 8 teams in the centralized track and 3 planners in
6 configurations from 2 teams in the distributed track, which highly exceeded our initial expectations.
Since the competition, most of MAP papers have accepted the methodology and benchmarks proposed
by us and have compared against the CoDMAP results. As the competition is tangential to the main
topic of the thesis, but nonetheless is a significant contribution, we have summarized the used language,
setup, and results of the competition in Appendix A.

Privacy in Multi-Agent Planning

The work on the CoDMAP competition, namely on the categorization of the planners according to
various parameters including the treatment of privacy, and on some of the later papers describing the
MADLA Planner and distributed heuristics led us to a realization that privacy is not treated correctly in
most of the MAP literature, including our earlier work. Privacy is one of the commonly cited reasons
why MAP problems cannot be solved using a classical centralized planner and many published MAP
planners and techniques claim to be privacy-preserving. Unfortunately, the treatment of privacy is often
fuzzy, hand-waving, and not grounded in strong theory and even less properly implemented. One of the
earliest exceptions is the work of Nissim&Brafman in [Nissim and Brafman, 2014] where the authors
define notions of privacy-preservation based on the theory of Secure Multiparty Computation (MPC)
and a number of follow-up works by Brafman together providing first steps in the proper analysis of
privacy in MAP. Gradually, we have understood that the next crucial research question to be answered
is:

(Objective 3) How to formalize privacy and quantify privacy leakage and how to apply secure multi-
party computation techniques in multi-agent planning?

Most works in MAP considered no privacy at all or were satisfied with the weak privacy assumption
which only forbids the agents to explicitly communicate private parts of their problems, disregarding
the possibility of other agents deducing some private information from the execution of the planning
algorithms. The whole body of work in cryptography and secure MPC which fits MAP perfectly was
mostly ignored. We have decided to improve the state of the art by focusing on the wealth of literature
on the theory and practical techniques in secure MPC.

We have presented our initial work on privacy leakage quantification based on counting the number
of transition systems represented by the information obtained by the adversary agent in [Štolba et al.,
2016c]. Apart from the privacy leakage quantification, we have introduced a novel class of secure plan-
ning algorithms, Sec-MAP, which was based on combining the techniques used in privacy preserving
planners and thus obtaining the best privacy preservation out of all existing planners. In [Štolba et al.,
2016d] we have summarized how to use the Sec-MAP techniques to improve privacy preservation of
existing planners. In [Štolba et al., 2017] we have focused on the privacy leakage quantification and
provided both an in-depth theoretical analysis and a detailed analysis on a particular example.

Moreover, we have proposed a number of privacy-preserving planners, so far only in theory. The
first is the ε-Strong privacy preserving planner in [Tožička et al., 2017a] which can get arbitrarily close to
strong privacy by diluting the information by randomly generating unsystematic solutions. In [Tožička
et al., 2017b] we have provided a class of privacy-preserving planners and we have shown that for this
class of planners and for the multi-agent heuristic search class of planners it is not possible to have

3http://www.icaps-conference.org
4http://agents.fel.cvut.cz/codmap

10 CHAPTER 1. INTRODUCTION

a multi-agent planner which is effective, complete and strong privacy-preserving at once. Our results
in the definition of privacy, privacy leakage, privacy analysis of existing and novel algorithms, and
theoretical limits of privacy-preserving MAP are summarized in Chapter 7.

Summary

Whether to share or hide information is a crucial question in multi-agent planning. I have started the
work on my Ph.D. topic with the focus on information sharing in distributed heuristics for multi-agent
planning, but soon, other interesting and important topics and research questions emerged. It turned
out that sometimes it is better to hide the information in the heuristic computation and thus prevent
the overloading of communication channels. I have investigated techniques to combine local projected
and global distributed heuristics leading to a state-of-the-art distributed search scheme. As a side-
effect, I have contributed to the community effort to consolidate the comparison and benchmarking of
the multi-agent planners by co-organizing the highly successful Competition of Distributed and Multi-
Agent Planners. In the later part of my work, I have focused on the hiding of information in multi-agent
planning from the perspective of privacy. In particular, I have contributed by formulating the definition
and analysis of privacy leakage and by a number of theoretical results and possible planning schemes.

Altogether, my work resulted in seven publications in top-tier AI conferences, four journal publi-
cations, and many workshop contributions. I have authored and co-authored a number of competitive
planning systems such as the MADLA Planner and MAPlan. Finally, I have significantly contributed to
the efforts of the multi-agent planning research community in the practical aspects of planner compari-
son and in the theoretical aspects of privacy in multi-agent planning.

1.3 Organization and Contributions
In this section, we present the organization and structure of the thesis, together with specifying the
contributions of the author and referencing the publications on which the thesis builds. Many of the
ideas presented in this thesis are the result of fruitful discussions with Antonín Komenda, the author’s
supervisor, and all the papers the thesis builds on were co-authored by A. Komenda. Thus we omit the
supervisor’s contribution as his guidance is behind all of the work.

After the brief introduction, informal problem statement, and objectives of the thesis described in
this Chapter, the structure of the remaining chapters is as follows.

Chapter 2 provides a detailed overview of the related work. The related work contains outtakes
from [Štolba and Komenda, 2017, Štolba et al., 2015b, 2017] but also novel content.

Chapter 3 provides a formal definition of the MAP problem including a formal definition of privacy
and a brief discussion of complexity. The formalisms are based on the works by Domshlak,
Brafman, and Nissim ([Brafman and Domshlak, 2008, Nissim and Brafman, 2014]) but were
reformulated in our work, e.g., [Štolba and Komenda, 2017], to reflect the factored and distributed
nature of multi-agent planning better.

Chapter 4 presents our answer to the (Objective 1) in context of the inadmissible relaxation heuris-
tics. The distributed version of the Fast-Forward heuristic based on an excerpt from [Štolba and
Komenda, 2013] is described in Section 4.1. The important property of the approach is that the
distributed heuristic values are provably equal to the centralized variant. Section 4.2 focuses on
a general approach to the effective computation of distributed relaxation heuristics (including the
Fast-Forward heuristic again) based on [Štolba and Komenda, 2014]. Finally, Section 4.3 sum-
marizes the most recent approach to distributed Fast-Forward heuristic computation with more
focus on privacy, taken from [Štolba and Komenda, 2017]. Evaluation of all the approaches is
presented in Section 4.4. The relaxation heuristics are part of the MADLA Planner, conceived
and implemented by the author.

1.3. ORGANIZATION AND CONTRIBUTIONS 11

Chapter 5 details out the principles of our novel variant of multi-agent heuristic search proposed by the
author as an answer to the (Objective 2). The whole chapter is based on [Štolba and Komenda,
2017]. In Section 5.2 we present a high-level description of the search scheme and the ideas
behind it, whereas Section 5.3 provides a full formal description. The formalism is used in Sec-
tion 5.4 to show important properties of the algorithm, such as soundness and completeness. The
evaluation is presented in Section 5.5. The search scheme was implemented by the author as part
of the MADLA Planner.

Chapter 6 returns once more to the (Objective 1), but this time in the context of optimal planning.
Thus the chapter focuses mostly on distributed admissible heuristics but presents a novel search
scheme as well (Section 6.3). In particular, Section 6.1 presents an admissible distributed vari-
ant of the max relaxation heuristic published in [Štolba et al., 2015a], Section 6.2 presents an
admissible distributed landmark heuristic taken from [Štolba et al., 2015a] as well. Section 6.3
presents a search scheme using additive heuristics, whereas Section 6.4 presents an example of
such additive heuristic, an admissible (and also privacy-preserving) distributed potential heuris-
tic based on [Štolba et al., 2016a]. The admissible heuristics were created in collaboration with
Daniel Fišer, who implemented them as part of the MAPlan planner. The MAPlan planner is a
reimplementation of MAD-A* [Nissim and Brafman, 2012] by Daniel Fišer which, in contrast to
the original implementation by Raz Nissim, allows for a fully distributed planning. Section 6.5
provides an insight into a general approach to distributed heuristic computation developed by the
author and originally published in [Štolba and Komenda, 2016], including a preliminary evalua-
tion by the author. Evaluation of the admissible heuristics and the general approach is presented in
Section 6.6. The statistical evaluation of the potential heuristics and the evaluation of the general
approach is a novel content of the thesis.

Chapter 7 summarizes the results of our work on privacy in multi-agent planning, that is, the (Objec-
tive 3). Section 7.1 provides a formal framework for privacy analysis introduced by the author
in [Štolba et al., 2016d, 2017]. The particular sources of privacy leakage identified as a joint
work with Jan Tožička (in [Štolba et al., 2016d, 2017] again) are described in Section 7.2. The
analysis of privacy leakage in Section 7.3 is the work of the author, partly novel and partly taken
from [Štolba et al., 2017] and from papers about the respective algorithms. The theoretical results
about the limits of privacy-preserving planning in Section 7.4 are the result of numerous discus-
sions among the author, the author’s supervisor and Jan Tožička, originally published in [Tožička
et al., 2017b].

Chapter 8 concludes the thesis and presents hints on possible future work.

Appendix A wraps up our work on the Competition of Distributed and Multi-Agent Planners, which
was organized by the author, the author’s supervisor Antonín Komenda, and Daniel Kovacs. The
appendix is composed from the texts published in [Štolba et al., 2015b, Komenda et al., 2016,
Štolba et al., 2016b].

Appendix B presents a summary of the published work of the author.

12 CHAPTER 1. INTRODUCTION

Chapter 2

Related Work

Multi-agent planning lies at the intersection of Automated Planning and Multi-Agent Systems and re-
lates to each of the fields to a variable degree. A taxonomy of MAP formalisms can be based on many
properties, but the presence and relation of agents, the observability of the environment and the deter-
minism of the effects of actions are some of the most prominent ones. Such taxonomy is shown in
Table 2.1. The Agents axis determines whether there are no agents, which coincides with classical ap-
proaches without a relation to Multi-Agent Systems, whether there are cooperative agents, or whether
there are adversarial agents, which coincides with approaches based on Game Theory.

Observability of the environment determines whether the agent(s) can observe the entirety of the en-
vironment (e.g., in board games such as chess or in classical planning), or just part of it (e.g., in poker).
Another facet of uncertainty in the environment is the determinism of the effects of actions. Determin-
istic actions have always the same effects known to the agents, whereas the effects of nondeterministic
actions may depend on an unobservable part of the environment or may include an element of chance.
If the probability distribution of the effects of the action is known or can be presumed, we talk about
stochastic actions.

Table 2.1 shows some of the best-known formalisms related to planning, based on the taxonomy
introduced above. The most basic model is the classical planning (e.g., STRIPS [Fikes and Nilsson,
1971]), whereas the most general model is Partially Observable Stochastic Games (POSG). Let us start
from the classical planning. By allowing nondeterministic actions in planning with no agents, the related
model is either Contingent Planning (if the agent must be sure to achieve the goal) or Fault-tolerant Plan-
ning (in the case there is a limited number of possible unwanted effects). If the probability distributions
of the nondeterministic effects are known (i.e., stochastic actions) the applicable model is Markov Deci-
sion Process (MDP). In the presence of multiple cooperative agents, the model needs to change to Multi-
Agent MDP (MMDP) [Boutilier, 1999], Factored MDP [Guestrin et al., 2002], or Dec-MDP [Bernstein
et al., 2002]. In MMDP, each agent can observe the whole environment, but communication has an
associated cost or is not available. In MAP, we do not consider an explicit cost of communication, but
as communication is typically orders of magnitude slower than local computation, the communication
may become costly in terms of the solution time. In Factored MDP, each part (factor) of an MDP is
respective to one of the agents, thus each agent can perform a set of actions. The Factored MDP can
be transformed to a single monolithic MDP with an exponential number of joint actions of the agents
(i.e., single joint action consists of a single action for each agent). This idea of factorization is used
also in factored classical planning and in MA-STRIPS. In MA-STRIPS, the classical planning problem
is factored so that each factor belongs to a single agent (see Section 3.1 for detailed formal definition).
In our work (as in the majority of MA-STRIPS literature), we consider the actions of the agents to be
performed sequentially and thus there are no joint actions. This significantly simplifies the model and
algorithms and avoids an exponential blowup of the search space (see Section 3.5). Finally, Dec-MDP
allows no communication and assumes that each agent can observe its portion of the state, together

13

14 CHAPTER 2. RELATED WORK

Observ-
Actions No Agents

Cooperative Adversarial
ability Agents Agents

Partial
Nondet. POMDP Dec-POMDP POSG

Det. Conformant Planning

Full
Nondet.

MDP, MMDP,
Stochastic gamesContingent Planning, Factored MDP,

Fault-tolerant Planning Dec-MDP

Det. Classical/STRIPS
Factored Planning, Perfect Information

MA-STRIPS/MA-MPT, Games
PP-MAP

Table 2.1: Taxonomy of planning models depending on the environment (observability and action de-
terminism) and the presence and relation of agents. The model used in the thesis is in bold. Used
acronyms:
MDP - Markov Decision Process
POMDP - Partially Observable MDP
STRIPS - Stanford Research Institute Problem Solver (classical planning model)
Dec-POMDP - Decentralized POMDP
MMDP - Multi-agent MDP
Dec-MDP - Decentralized MDP
MA-STRIPS - Multi-Agent STRIPS
MA-MPT - Multi-Agent Multi-valued Planning Task
PP-MAP - Privacy-Preserving Multi-Agent Planning
POSG - Partially Observable Stochastic Games

resulting in a full observation of the state. This coincides with our view on the public and private parts
of the states. Together, the agents have a complete view of the global state, but each agent can observe
only the part accessible to it. In our case we allow communication, but the communicated information
is restricted in order to maintain privacy.

The model of sequential decision making in the presence of adversarial agents is known as Stochas-
tic Games. When the environment is partially observable, the difference between deterministic and
nondeterministic actions is often diminished for reasons already mentioned (in a partially observable
environment, the applicability and thus the effects of actions may be determined by the unobservable
part of the environment). Also as the effect of the actions may be subject to partial observability, the
agent cannot be certain that the desired effects occurred. This holds for Partially Observable MDPs
(POMDPs), their decentralized cooperative variant Dec-POMDPs [Bernstein et al., 2002] and also for
the adversarial variant, that is, POSGs. An in-depth overview of techniques for stochastic multi-agent
planning (and Dec-POMDPs in particular) can be found in [Oliehoek and Amato, 2016] together with
an implementation of various models and algorithms in the Multi-Agent Decision Process Toolbox
(MDPT) [Oliehoek et al., 2015]. Somewhat different is Conformant Planning, where the assumption
is the actions are deterministic, but there is no observability at all. In order to achieve the goal, a con-
formant plan must deal with all possible variants of the initial state, as this uncertainty encodes the
unknown about the environment.

Sometimes, privacy is considered as a special case of partial observability, where the agents can
observe only the public part of the environment and the part private to the particular agent, but cannot
observe the private parts of other agents. The difference is, that in privacy, the agents could possibly
obtain the private parts, if the respective agents were willing to provide the information. Moreover, in the
privacy setting, preventing other agents to observe the private information of an agent is not considered
enough. Instead, the agents want to prevent other agents to even infer the private information from the
public part of the executed protocol. Privacy is reasonable mostly in the context of cooperative agents

2.1. ROOTS OF MULTI-AGENT PLANNING 15

Planning For
Planning By Single Agent Multiple Agents

Multiple Agents Distributed/Factored Planning Multi-Agent Planning
Single Agent Classical Planning Classical Planning

Table 2.2: Coordination schemes of planning schemes according to [Decker, 1987].

which want to solve the planning problem together, but without providing (or leaking unintentionally)
the private information. The privacy preservation in multi-agent cooperative setting is one of the topics
of this thesis (see Chapter 7), in particular with deterministic actions, and the related work is discussed
later in this chapter. To our best knowledge, at the point of writing of this thesis, there was no such
formalism applicable to nondeterministic actions or partial observability.

2.1 Roots of Multi-Agent Planning

The first mention of Multi-Agent Planning can be traced back nearly as far as STRIPS itself – in 1980
Nillson&Konolige published a paper titled “Multiple-Agent Planning Systems” [Konolige and Nilsson,
1980], in which they presented a high-level extension of STRIPS towards multiple agents. Even a year
older is the work on the distributed NOAH planner [Corkill, 1979] which is one of the first partial-
order planning (POP) system that generates gradual refinements in the space of (abstract) plans using
a representation similar to today’s Hierarchical Task Networks (HTNs) [Nau et al., 2004]. Since then,
the topic has been active mainly in the multi-agent systems community. One of the most cited works on
distributed and multi-agent planning is [Durfee, 1999], which describes basics of possible coordination
schemes for planning agents (Table 2.2). The point of view on multi-agent planning from the multi-agent
community is extensively summarized in [De Weerdt et al., 2005, de Weerdt and Clement, 2009].

Here we mention a selection of the most prominent works in the area of MAP from the multi-agent
systems point of view and relate them to the more current approaches. In the domain-specific Partial
Global Planning (PGP) [Durfee and Lesser, 1991], agents build their partial global view of the planning
problem, and the search algorithm finds local plans in the agents’ plan-space that can be then coordinated
to meet the goals of all the agents. PGP reasons not only about plans but also roles and responsibilities
of the particular agents. PGP was first introduced only for a specific problem of a distributed sensor
network for vehicle monitoring. The Generalized PGP (GPGP) [Decker and Lesser, 1992] is a domain-
independent extension of PGP that separates the process of coordination from local scheduling, which
enables agents to communicate more abstract and hierarchically organized information and has less
coordination overhead.

The TALPlanner [Doherty and Kvarnström, 2001] is a temporal forward-chaining planner that
searches through the space of states. For efficiency reasons, TALPlanner uses additional domain-specific
information in form of temporal logic formulas. TALPlanner is also able to generate multi-agent plans
with parallel actions.

The DPGM [Pellier, 2010] is a distributed agent-based planner built on the planning graph structure
introduced in Graphplan [Blum and Furst, 1997] using a Constraint Satisfaction Problem (CSP) [Dechter,
2003] formulation both to extract the local plans and to coordinate the agents. The solving process is
iterative where in each iteration the agents add more information to the planning graph until the solution
can be reached. DPGM was implemented and experimentally evaluated by [Durkota and Komenda,
2013]. Also note that similar ideas of distributed planning graph construction were later used for the
construction of their relaxed variants [Torreño et al., 2013, Štolba and Komenda, 2013].

Another well known classical planning technique is to convert the planning problem to SAT repre-
sentation (SATPLAN [Kautz, 2006]). This technique was extended to multi-agent setting by [Dimopou-
los et al., 2012] as µ-SATPLAN. µ-SATPLAN performs an a priori distribution of the MAP task goals

16 CHAPTER 2. RELATED WORK

among the agents. Similarly to DPGM, agents follow an iterative response planning strategy, where
each participant takes the previous agent’s solution as an input and extends it to solve its assigned goals
via SATPLAN. µ-SATPLAN assumes that each agent can solve its assigned goals by itself.

Similarly to the TALPlanner, TFPOP [Kvarnström, 2011] is based on temporal reasoning and du-
rative actions where also parallel actions are commonly considered. TFPOP is a centralized approach
that synthesizes a solution for multiple executors using the techniques of forward-chaining partial-order
planning (POP). The approach based on POP planning was later used by the MAP-POP [Torreño et al.,
2012] and FMAP [Torreño et al., 2014] planners, but without the temporal reasoning.

A bridge between classical planning and MAP is factored planning (FP) [Amir and Engelhardt, 2003,
Brafman and Domshlak, 2006]. Factored planning (FP) leverages the idea of decomposing classical
planning problems into a number of mostly independent sub-problems. FP provides a direct link from
classical planning to MAP, where the factorization is based on the multi-agent structure. This link was
first proposed in [Brafman and Domshlak, 2008] where the authors focused on a precise formulation
and computational complexity guarantees of cooperative deterministic domain-independent multi-agent
planning (DMAP). The formulation was based on an extension of classical planning model STRIPS to
multi-agent setting coined MA-STRIPS. In this thesis, we focus on models of Multi-Agent Planning
based on or closely related to MA-STRIPS.

One significant difference between FP and MAP is that in MAP, the decomposition of the problem
to agent sub-problems is assumed to be given a priori, whereas in FP finding a good factorization is the
main research question. A recent advancement in this direction is the fork decompositions [Gnad and
Hoffmann, 2015]. A significant exception to this distinction is the ADP Planner [Crosby et al., 2013]
which is a centralized planner which automatically determines a decomposition on agents and then uses
a MAP algorithm to find a solution. Note that ADP neither uses a MA-STRIPS-based formalism nor
considers privacy in any way.

Other interesting works on the boundaries of FP and MAP are Distoplan [Fabre et al., 2010] and
A# [Jezequel and Fabre, 2012]. Distoplan is a factored planning approach that exploits independence
within a planning task. In Distoplan, each factor of the global task is represented as a Deterministic
Finite Automata (DFA), which recognizes the regular language formed by the local valid plan of the
component. This way, all local plans are manipulated at once and a generic distributed optimization
technique enables to limit the number of compatible local plans. A similar idea was later used in the
PSM planner [Tožička et al., 2014]. Similarly, A# is a factored A* search that finds a path to the goal
in each factor of a problem and ensures that the actions that must be performed jointly (i.e., are shared
among multiple factors) are compatible. A# runs a modified version of the A* algorithm iteratively in
parallel in each factor informing each other about promising and “useless” local plans.

Practically none of the MAP planners described above were experimentally compared against each
other. Some were not evaluated at all (e.g., A#), some were evaluated against classical planners (e.g.,
ADP). The major reasons were not only the vast diversity of incompatible models used in MAP and
often the inclusion of domain-specific knowledge (PGP, TALPlanner), but also the missing common
MAP problem definition language. In classical planning, PDDL [McDermott et al., 1998] is a widely
accepted standard. In MAP, there were attempts to formalize a multi-agent extension such as Multi-
Agent Planning Language (MAPL) in [Brenner, 2003] and Multi-Agent PDDL (MA-PDDL) in [Kovacs,
2012] but neither of those was accepted by a wider community.

Since its publication, the MA-STRIPS [Brafman and Domshlak, 2008] model has been widely ac-
cepted as a common extension of the classical planning STRIPS model, thus allowing a better compar-
ison of MA-STRIPS-based planners, but a common definition language and a set of benchmarks was
still missing. As stated in Section 1.2, tackling this issue is one of the goals of this thesis. We have co-
organized the Competition of Distributed and Multi-Agent Planners (CoDMAP) [Štolba et al., 2016b,
Komenda et al., 2016], proposed a new variant of the MA-PDDL language, modified and improved for
the CoDMAP competition by the author of the thesis in collaboration with Daniel Kovacs and Antonín
Komenda, together with a set of benchmarks. The competition successfully became a standard reference
for planner comparison and thus helped to improve the way MAP planners are experimentally evaluated.

2.2. MA-STRIPS-BASED MULTI-AGENT PLANNING 17

Details on the competition version of MA-PDDL and the competition itself are included in the thesis in
Appendix A.

Modern MAP planners not based on MA-STRIPS

The vast majority of modern MAP planners adheres to or is compatible with the MA-STRIPS model,
but there are some MAP planners which participated in the CoDMAP competition (and thus can take
MA-PDDL as input) but are not based on MA-STRIPS. ADP (Agent Decomposition-based Planner)
by [Crosby et al., 2013, Crosby, 2015] is based on the idea of automatic decomposition of classical
planning problems to multiple agents. Each agent is represented by a set of internal variables and
variables not internal to any agent are considered to be environment variables (public). The problem is
decomposed based on the structure of causal dependencies of the actions. The planning process itself
then interleaves subgoal calculation based on relaxation and search phases, until a solution is found or
its non-existence reported.

Another centralized planner which develop some aspects of MAP is the MAP-LAPKT planner
by [Muise et al., 2015] which is based on the following idea: “The task of planning for multiple agents
with heterogeneous access to fact observability can be solved by classical planners using the appropri-
ate encoding”. Thus the multi-agent planning problem is compiled into a classical planning problem
and solved by a planner from the LAPKT toolkit [Ramirez et al.]. Any action that uses a fact private to
other agent cannot be executed by the agent, therefore the compilation must make sure such actions are
excluded from the grounding. Clearly, this is satisfied by the MA-STRIPS factorization by definition
and thus MAP-LAPKT provides no added value in that case.

The MARC planner by [Sreedharan et al., 2015] is a centralized multi-agent planner designed to use
the theory of required cooperation to solve a subset of large multi-agent problems by compiling them
into problems with a smaller number of agents by using the notion of transformer agents. Transformer
agents are special virtual agents created by merging multiple agents from the original domain and prob-
lem definition. Transformer agents are then capable of transforming into any agent from the original
domain (and thus are able to use all the capabilities of the transformed agents). Transformer agent’s
actions are translated into sequences of actions of particular agents and agent-independent effects are
planned using a fast classical planner. Compiling multiple agents into one goes against the MA-STRIPS
concept of privacy and thus makes this planner less relevant to MA-STRIPS.

2.2 MA-STRIPS-based Multi-Agent Planning
The work by [Brafman and Domshlak, 2008] ignited more interest in the topic of Multi-Agent Plan-
ning based on classical formalisms. The paper formally introduced a minimalistic extension of STRIPS
known as MA-STRIPS and have shown that the complexity of MA-STRIPS-based MAP is not expo-
nentially dependent on the number of agents, but rather on the tree-width of their interaction graph and
the minimal number of interactions needed to solve the problem (see Section 3.5 for more details). Such
results suggested, that at least for loosely coupled problems (where the tree-width is low), the approach
may work well.

The first practical MA-STRIPS-based planner is Planning First [Nissim et al., 2010] which is based
on the same principles used in the theory of [Brafman and Domshlak, 2008], that is, solving a Dis-
tributed Constraint Satisfaction Problem (DCSP [Yokoo et al., 1998]) over the possible plans of each
agent. The constraints are used to ensure that the plans are coordinated, which means that they use
the same public actions in the same order. An adaptation of the well known A* algorithm [Hart et al.,
1968] for MA-STRIPS followed, denoted as Multi-Agent Distributed A* (MAD-A*) [Nissim and Braf-
man, 2012] (and a parallel version with shared memory MAP-A*). The results of MAD-A* showed
that in loosely coupled problems it can outperform the classical A* (and the parallel version MAP-A*
outperforms state-of-the-art multi-core approaches). The distributed search was later generalized to

18 CHAPTER 2. RELATED WORK

Multi-Agent Forward Search (MAFS) [Nissim and Brafman, 2014]. In 2015, the vast majority of MA-
STRIPS-based planners were compared in the Competition of Distributed and Multi-Agent Planners
(CoDMAP [Komenda et al., 2016]). The planners are presented later in this chapter and the description
of the competition itself is a part of the thesis (see Appendix A).

Taxonomy of MAP planners

From the multi-agent systems point of view, a significant property of a MA-STRIPS-based planner is
whether it is centralized or distributed. A centralized planner is using the MA-STRIPS agent factoriza-
tion, but the whole computation runs on a single computer, possibly using multiple threads, but also pos-
sibly with some shared memory or shared computation, e.g., for some preprocessing tasks. An example
of a (partially) centralized planner is the MAD-A* planner which uses a centralized preprocessing step
(translation to multi-valued variables from Fast Downward [Helmert, 2006]), but the actual planning
is performed using separate computation threads and communication via TCP/IP. A distributed planner
has to be able to run on completely separate machines, communicating only via TCP/IP (or any other
protocol). For example, the MAPlan [Fišer et al., 2015] planner (implementing the MAD-A*/MAFS
distributed search algorithm) is capable of running in such a distributed setting.

A general property of MAP planners is the coordination mechanism, which in MA-STRIPS can
either be state-based or plan-based. In state-based coordination, the agents exchange states (or parts
of states), an instance of such coordination mechanism is used in MAD-A* where some of the states
reached by an agent are sent to the other agents. In plan-based coordination, the agents exchange plans
(or partial plans), regardless of how they are found locally. An example of plan-based coordination is the
Planning-First algorithm, where the local plans are computed using the classical FF planner [Hoffmann
and Nebel, 2001] and the correct combination of plans is found using a DCSP.

We may also focus on a more general interplay between coordination part of the process, where the
agents exchange information on their constraints and possible solutions, and the plan synthesis part of
the process where the agents actually generate the global plan or local plans. Possible categories are the
following. In pre-planning coordination, the agents first exchange their constraints and then synthesize
the solution either cooperatively or locally, e.g., as in DPP [Maliah et al., 2016d]. In post-planning coor-
dination, the agents first generate their plans and subsequently attempt to coordinate them, e.g., by plan
merging [Luis and Borrajo, 2015]. In iterative (best) response coordination, the agents generate plans in
turn, taking the results of the previous process as a part of their input, e.g., the DPGM planner [Pellier,
2010]. In interleaved synthesis and coordination, both parts of the process are interleaved, e.g., as in
MAD-A*, where the states are communicated during the plan synthesis itself. Multiple approaches may
be also combined as in the PSM planner [Tožička et al., 2014], which proceeds in multiple iterations
and each iteration follows the post-planning coordination approach.

A very important property of a MAP algorithm or planner is the way how it treats privacy. The work
related to privacy is discussed in Section 2.3 and our contribution to the topic of privacy is presented in
Chapter 7.

2.2.1 MA-STRIPS-based Planners
Among the earliest MA-STRIPS planners are the Planning First and MAD-A* planners already de-
scribed. Another early planners are MAP-POP [Torreño et al., 2012] which is a partial-order planner
which later evolved into FMAP [Torreño et al., 2013, Torreño et al., 2014] and MH-FMAP [Torreño
et al., 2015]. The mentioned planners do not use MA-STRIPS explicitly, but the used formalism is a
generalization of MA-STRIPS and thus the planners can be considered MA-STRIPS-based.

State-based coordination planners The first MAP planner using state-based coordination is MAD-
A*. There is a number of MA-STRIPS planners based on the MAD-A* and MAFS principle, namely
MAPlan [Fišer et al., 2015], which is a fully distributed reimplementation of the distributed heuristic

2.2. MA-STRIPS-BASED MULTI-AGENT PLANNING 19

forward search, and the MADLA Planner [Štolba and Komenda, 2015, 2017], which is a variant of
MAFS using an intricate multi-heuristic search. The MADLA Search is a major part of this thesis, see
Chapter 5. Variants of MAFS aiming at improved privacy are Secure-MAFS [Brafman, 2015], Macro-
MAFS [Maliah et al., 2016c] and Forward-Backward MAFS [Maliah et al., 2016b].

Plan-based coordination planners Besides the Planning First a planner based purely on the plan-
based coordination scheme is PSM and its variants, PSM-VR and PSM-VRD by [Tožička et al., 2014,
2015] which are based on the idea of Planning State Machines (PSM). A PSM is basically a finite
automaton representing a set of plans. Such PSMs can be easily projected to a public part of the problem
and merged. These two operations can be used to build a public PSM consisting of merged public parts
of individual PSMs, which are gradually extended by new plans. Once the public PSM projection is not
empty, a solution to the multi-agent planning problem has been found. PSM-based planners preserve
privacy by not revealing any of the private actions and private preconditions and effects of public actions.

Somewhat related to PSM is the DPP [Maliah et al., 2016d] planner. It starts by analyzing the agent
problems using a regression and enriching the public projection of a problem by private dependencies
between public actions, and between public actions and initial state. The planner then uses a classical
planner to solve this projected problem and classical planners to fill-in the necessary private actions
for each agent. This is closely related to the process of the PSM planner, but the way how the public
solution is found differs, and also it is not guaranteed that such public solution is extensible by all agents
and thus DPP is not complete. Nevertheless, the incompleteness does not demonstrate on the CoDMAP
benchmarks where DPP performs exceptionally well. The privacy of DPP is somewhat disputable. It
clearly is weak privacy-preserving, but it would probably fail in terms of privacy leakage (e.g.,[Štolba
et al., 2017]) as the private dependencies are explicitly revealed. The authors present a notion of privacy
(object cardinality privacy), which is preserved by the planner and which essentially means, that the
number of interchangeable private objects (e.g., packages in logistics) is not revealed.

Hybrid coordination planners Whereas the MAFS-based planners are typical cases of state-based
coordination planners, the following planners lie somewhere between state-based and plan-based coor-
dination. The GPPP [Maliah et al., 2014], and PP-LAMA [Maliah et al., 2016a] planners proceed in
two phases, (i) a public plan is found using the public actions (and private actions in delete relaxation
form) while the private facts are hidden (encrypted), (ii) the public plan is attempted to be extended by
private actions in order to verify it as a global solution. If the extension fails, the planning continues
with phase (i).

Decomposition-based planners Another direction of MA-STRIPS based planners are the MAPR and
CMAP planners by [Borrajo, 2013, Borrajo and Fernández, 2015] which proceed as follows: (i) generate
an obfuscated problem and domain file for each agent, (ii) assign public goals to agents based on relaxed
reachability analysis, and (iii) plan using a state-of-the-art classical planner. The two planners differ in
the strategy used. MAPR agents augment the solution found so far in a round-robin fashion, providing
its obfuscated solution to the next agent and CMAP merges the obfuscated domains and problems into
a single domain and single problem. The PMR (Plan Merging by Reuse) planner by [Luis and Borrajo,
2014, 2015] applies some of the concepts used in MAPR and CMAP. It uses the same principle of
obfuscation and goal selection strategies, thus the first two steps of the algorithm are the same. PMR then
continues with the following: (i) each agent plans using its obfuscated domain/problem pair including
the assigned subgoals (the resulting plans from all agents are then concatenated), (ii) plan reuse (repair)
if the plan found is not sound.

Comparison of MA-STRIPS-based planners

The recent Competition of Distributed and Multiagent Planners (CoDMAP 2015) [Štolba et al., 2016b,
Komenda et al., 2016] compared the most of MA-STRIPS-based planners available at that time. The

20 CHAPTER 2. RELATED WORK

Planner complete optimal
MA-PDDL distributed privacy

coordination
factor. privacy track type

MADLA X × × × × E S

MAPR × × X X × O O

CMAP × × X X × O O

PMR × × X X × O O

FMAP/MH-FMAP X × X X X P S

MAPLan X X/× X/× X/× X E S

PSM X × X X/× X P P

MAP-LAPKT X × X X × T O

MARC X × X X × T O

GPPP X × X X - E P/S

PP-LAMA X × X X - E P/S

MAFS/MAD-A* X X/× × × - E S

Macro-MAFS X × X X - S∗ S

DPP X × X X - S† P

MAP-POP X × × × - P P

Planning First X × × × - P P

Table 2.3: Properties of MA-STRIPS-based planners with existing implementations. In the first part are the
planners competing in CoDMAP 2015. The complete and optimal columns use the common meaning of the terms.
The MA-PDDL column describes whether the planner used the definitions provided in the MA-PDDL input or
derived them based on MA-STRIPS principles. The privacy column refers to the following treatments of privacy:
S - provably strong (the planner is provably strong privacy preserving),
P - the planner respects the weak form of privacy by not communicating private facts and actions at all,
E - encryption of states (private parts of states are encrypted, at least theoretically),
O - obfuscation of PDDL (the planner hides the private parts of the complete problem either by renaming them, or
by encrypting them),
T - translation (the planner translates the problem into a different one, taking privacy into account).
The Coordination column refers to the following coordination mechanisms:
S - state-based, the agents exchange (partial) states
P - plan-based, the agents exchange (partial) plans
O - other coordination mechanism
* Only for a class of logistics problems.
† For a specialized notion of privacy (object cardinality privacy).

competition was divided into two tracks, the centralized track, where the planners were allowed to run
on a single computer for all agents (indeed, it was not even enforced to separate the memory spaces of
the agents) and the distributed track, where each agent had to run on a separate machine and communi-
cate over TCP/IP. Table 2.3 summarize the properties of planners discussed in this section which have
participated in the centralized and distributed track of CoDMAP respectively. The description of the
competition is a part of this thesis, see Appendix A. The most relevant properties of the MA-STRIPS
based planners are summarized in the Table 2.3.

2.2.2 MA-STRIPS-based Heuristics
Since MAD-A*, heuristics are a crucial part of MA-STRIPS-based planning. In MAD-A* and MAFS,
the only considered approach to heuristic computation in MAP was projected heuristic. A projected
heuristic is any heuristic computed on the projected problem of each of the agents separately, not tak-
ing the other agents in consideration. This practically equals to computing a heuristic on an abstract

2.3. PRIVACY IN MULTI-AGENT PLANNING 21

problem, where all variables of the other agents are abstracted away. This approach has considerable
positives, as it is fast to compute, independent of other agents (and their number) and maintains ad-
missibility. On the other hand, the result of projected heuristic can arbitrarily underestimate the actual
optimal heuristic of the global problem as shown in Chapter 6.

An alternative approach is to compute the heuristic in a distributed manner by all (or a subset of) the
agents. the first heuristic to undergo such treatment was the FF heuristic [Hoffmann and Nebel, 2001]
with several distributed variants ([Torreño et al., 2012, Štolba and Komenda, 2013]) and relaxation
heuristics in general by [Štolba and Komenda, 2014]. A more effective variant was proposed by [Štolba
and Komenda, 2017]. Most of the approaches are a part of this thesis, see Chapters 4 and 6.

Another classical heuristics with distributed variants are a heuristic based on Domain Transition
Graphs (DTG) [Helmert, 2006] by [Torreño et al., 2014], a number of distributed heuristics based on the
idea of landmarks ([Richter and Westphal, 2010, Helmert and Domshlak, 2009]) by [Štolba et al., 2015a,
Maliah et al., 2016a, Torreño et al., 2015], a distributed variant of abstraction heuristic by [Maliah et al.,
2015], and a distributed variant of potential heuristics ([Pommerening et al., 2015]) by [Štolba et al.,
2016a]. A general approach to distributed heuristic computation based on cost-partitioning ([Katz and
Domshlak, 2010]) was published in [Štolba and Komenda, 2016].

2.3 Privacy in Multi-Agent Planning
In this section, we give a closer look at the background and work done in the context of privacy in multi-
agent planning. First, we present the research in secure multiparty computation, then we summarize
how privacy is treated in fields related to MAP and finally we describe the work on privacy published in
multi-agent planning so far.

2.3.1 Secure Multiparty Computation

Secure multiparty computation (MPC) [Yao, 1982, 1986] is a subfield of cryptography, which studies
computing a function f by a set of n parties p1, . . . , pn such that each pi knows part of the input of f .
The goal of MPC is to compute f in a way that no party pi learns more information about the inputs of
other parties than what can be learned from the output of f . Clearly, PP-MAP is an instance of MPC,
where the respective problems of the agents are the inputs and the global plan is the desired output.

In an ideal world, assuming secure communication channels, a trusted third-party could receive
the inputs from the parties, perform the needed computation, and return the solutions to the respective
parties. Secure MPC studies whether and how such computations can be done in the real world without
the trusted third-party, and alternatively how much private information leaks in comparison to the ideal
execution. In some cases, the trusted third-party can be replaced by a relatively small number (e.g.,
three) computation agents which can be trusted not to collude as each of them is controlled by a different
party. Such approach is taken by some real-world secure MPC solutions, such as Sharemind [Bogdanov
et al., 2008].

In MPC, assumptions are typically placed on the participating parties (agents in our case) and their
communication and computation capabilities. Common assumptions are the following:

• There is no trusted third-party.

• The planning agents are semi-honest (or honest but curious).

• The computation power of the agents is either

– unbounded (information-theoretic security), or

– polynomial-time bounded (computational security).

22 CHAPTER 2. RELATED WORK

The assumption of semi-honest agents means, as opposed to malicious agents, that every agent follows
the rules of the computation protocol based on its input data, but after the computation is finished, it
is allowed to use any information it has received during the protocol to compromise the privacy. The
computation power of the agents (which can be used to infer additional knowledge from the executed
protocol) is typically seen either as unbounded, in which case we are talking about information-theoretic
security, or polynomial-time bounded, which is the case of computational security.

When applied to PP-MAP, the notion of polynomial-time bounded adversary may seem somewhat
less suitable, as the planning itself is not polynomial (but PSPACE-complete [Bylander, 1994]). Nev-
ertheless, the computation power of the agents is still polynomial, thus allowing to solve either poly-
nomial instances or small instances. For such instances of planning problems which can be practically
solved, the cryptographic assumptions (such as that the factoring of large integers is hard), for which
the polynomial-time bound is typically used are still valid.

There are basically two approaches to multi-agent planning based on the MPC techniques. The first
approach is to encode planning in some general MPC technique such as cryptographic circuits [Yao,
1986], oblivious RAM (ORAM) [Goldreich, 1987] or blind Turing machine (BlindTM) [Rass et al.,
2015]. For example, the cryptographic circuits encode the whole computation of a function into a
boolean or algebraic circuit, which can be then securely evaluated using some of the existing secure
protocols. The problem related to MAP is, that the worst-case scenario has to be encoded, that is, the
complete exploration of the search space, which itself is exponential in the size of the MAP input (e.g.,
MA-STRIPS). Therefore, it is not clear how exactly PP-MAP would be encoded in such general model,
whether it is even feasible, and what the overhead of such encoding would be.

The second approach is to devise a specific PP-MAP algorithm based on MPC primitives, such as
private set intersection [Li and Wu, 2007]. There is a number of solutions for a related problem, shortest
path in a graph [Brickell and Shmatikov, 2005]. Such techniques solve the shortest path problem for
an explicit graph, typically represented by a matrix. In classical planning and subsequently in MAP,
the explicit graph (that is, the transition system) is exponential in the problem size, which, for practical
problem sizes, makes it impossible to use such explicit (e.g., matrix) representation. So far, the only
published (theoretical) MAP planner using MPC primitives is our [Tožička et al., 2017b]. A secure
linear program computation [Dreier and Kerschbaum, 2011, Mangasarian, 2011] was used in our secure
multi-agent version [Štolba et al., 2016a] of the potential heuristic [Pommerening et al., 2015].

Moreover, the MPC literature provides tools for privacy leakage quantification, such as Quantitative
Information Flow (QIF) [Braun et al., 2009, Smith, 2009]. In QIF, the information leakage is quantified
based on the difference in the probability of guessing the right input of a function before and after the
distributed computation. A high-level formula defined in [Smith, 2009] is

information leaked = initial uncertainty − remaining uncertainty

where the initial uncertainty is related to the probability of guessing the right input without any addi-
tional knowledge gained from the execution of the algorithm, whereas the remaining uncertainty is the
probability of guessing the right input given the output of the particular execution. The QIF approach
is the basis of our theory of privacy leakage quantification for MAP [Štolba et al., 2017] presented in
Chapter 7.

2.3.2 Privacy in Related Fields

As already mentioned, there is a number of secure algorithms for related graph problems, such as the
shortest path problem. In [Brickell and Shmatikov, 2005] the authors provide a number of algorithms
for solving problems on a joint graph of two semi-honest agents such that the agents do not learn
additional information about the respective sub-graphs. The authors provide algorithms for set union,
all pairs and single source shortest distance and a minimal spanning tree. As the authors use an explicit
matrix representation of the graph, the proposed techniques are not applicable to planning, where the

2.3. PRIVACY IN MULTI-AGENT PLANNING 23

graph representing the whole transition system is too large. Moreover, the proposed techniques are not
applicable to single-source single-destination shortest path problem, which is the desired case in MAP.

The authors in [Aly et al., 2013] take the work on secure graph algorithms a step further by using
general building blocks of [Damgård and Nielsen, 2003] and [Toft, 2007] thus providing more general
algorithms, even for graphs with private structure, which corresponds to the MAP case. Nevertheless,
the algorithms are again bound to an explicit adjacency matrix representation of the graphs which is not
applicable for MAP problems in general. That said, the approach proposed by [Toft, 2007] may prove to
be a valuable tool in designing a privacy-preserving MAP planner based on secure data structures such
as priority queue [Toft, 2011].

Another related work is that on oblivious data structures and computation such as [Blanton et al.,
2013] which are in general based on the idea of Oblivious RAM (ORAM) [Goldreich, 1987]. Also, the
approach was originally used for different scenarios, it can be used to implement also oblivious and thus
secure data structures for MPC [Keller and Scholl, 2014].

A problem closely related to planning is Constraint Satisfaction Problem (CSP) [Dechter, 2003] and
Constraint Optimization Problem (COP) [Dechter, 2003]. The distributed multi-agent variant is known
as DCSP [Yokoo et al., 1998]. For DCSP the privacy has been studied in a number of works. The authors
in [Faltings et al., 2008] provide a formal definition of a number of privacy variants related to DisCSP
(e.g, agent privacy, topology privacy, etc.) and show how an existing DisCSP algorithm can be modified
to adhere to some of the privacy definitions. In [Greenstadt et al., 2006] the authors experimentally
evaluate privacy leakage of a number of existing DisCPS algorithms on a number of domains. The
authors use specific privacy leakage analysis technique for each of the DisCSP algorithms to exploit its
weaknesses.

2.3.3 Privacy in MAP
The formal treatment of privacy in MAP was for a long time neglected, with the exception of privacy
leakage quantification by [Van Der Krogt, 2009]. The author proposes a privacy measure related to ours
described in Chapter 7, but in stead of possible transition systems, the authors count the plans consistent
with the information gained. This approach has a weakness that it cannot be used to analyze the privacy
leakage from the point of view of the adversary (and to, for example, reconstruct the search tree) as the
knowledge of the possible plans is necessary to perform the analysis. Also, the approach is not based
on MA-STRIPS.

A formal treatment of privacy for MA-STRIPS was proposed in [Nissim and Brafman, 2014] and
later extended in [Brafman, 2015], loosely based on the concepts of secure MPC. First, the authors
specify what is the private information the agents are attempting to hide, second, the authors present
two degrees of privacy preservation, weak and strong privacy.

The weak privacy preservation can be rephrased as: “Any algorithm that does not communicate the
private information in a plain, understandable way is weak privacy-preserving.” This means that it is
enough to encrypt the private parts or omit them from the communication altogether. The concept of
weak privacy is rather artificial and unusable in any real scenario concerning privacy, as arbitrary private
data can be possibly deduced. Our recent work [Štolba et al., 2016c,d, 2017] aims at quantifying the
privacy leakage and thus providing a finer-grade evaluation of practical usability of planning algorithms.

The strong privacy preservation can be rephrased as: “If by execution of an algorithm, the agents do
not obtain and cannot deduce any private information additional to what can be deduced only from the
public input and public output of the algorithm, the algorithm is strong privacy-preserving.” This means
that by executing a planning algorithm, the agents learn no new private information of the other agents.
Of course, some private information may be deduced already from the structure of the public input and
public output (that is, the public actions in the plan used to coordinate the agents). It was shown that
the theoretical Secure-MAFS [Brafman, 2015] (and its implementation Macro-MAFS [Maliah et al.,
2016c]) algorithm is strong privacy-preserving on a restricted class of logistics problems, but not in
general. In a recent work [Tožička et al., 2017b], the authors have proposed a class of planners based

24 CHAPTER 2. RELATED WORK

on the PSM planner [Tožička et al., 2014] and secure finite automaton intersection [Guanciale et al.,
2014], which can guarantee to be strong privacy-preserving, but at the cost of either being incomplete,
or impractically inefficient. Indeed, the most important theoretical result of [Tožička et al., 2017b] is that
no MAP planner based on the most commonly used principles, such as distributed state-space search,
can be strong-privacy preserving, complete, and practically efficient at the same time. For more details
on the topic, see Section 7.4. In [Tožička et al., 2017a] the authors have shown, that a PSM-based
planner can get arbitrarily close to strong privacy (that is, achieve an ε-strong privacy), but again, at the
cost of gradually losing efficiency.

Other concepts of privacy have also been investigated in relation to MAP. The idea of agent privacy,
where the number and identity of agents is hidden, was first introduced in the context of DCOP by [Falt-
ings et al., 2008]. An adaptation of this concept to MAP was proposed in [Maliah et al., 2016b] together
of a variant of the MAFS algorithm [Nissim and Brafman, 2014] preserving agent privacy. Apart from
hiding the existence and identity of the agents, the proposed planner Forward-Backward MAFS also
sends significantly fewer messages and improves the overall planning speed. Another privacy variant is
object cardinality privacy [Maliah et al., 2016d], where the types of objects may be revealed, but not the
numbers of instances of each type. The authors propose a planner DPP which does preserve the object
cardinality privacy and weak privacy, but not strong privacy and which outperforms a number of MAP
planners.

2.3.4 Privacy-Preserving Planners and Heuristics
The planners (and heuristics) in the literature claiming to be privacy-preserving can be divided into three
groups based on the approach to privacy. The first group is the planners which use obfuscation as means
of hiding the private information. This means, that the private propositions and actions are renamed in
order to hide their identity. Although cases, where this approach is reasonable, can be imagined, e.g.,
when the names describe some particular business assets which should not be disclosed, in general, the
obfuscation cannot be considered to adhere even to weak privacy, as the existence of private actions
and private preconditions (i.e., an isomorphic image of the problem) is disclosed. The planners using
obfuscation are MAPR [Borrajo, 2013], CMAP [Borrajo and Fernández, 2015] and the PMR (Plan
Merging by Reuse) planner by [Luis and Borrajo, 2014, 2015].

The largest group of planners adhere to the weak privacy definition, that is, they do not communicate
the private parts of the problems in a plain, unencrypted way. There is a number of planners based on the
MAFS distributed state-space search principle ([Nissim and Brafman, 2012, 2014, Štolba and Komenda,
2015, Fišer et al., 2015]) which are in theory weak privacy preserving, but only MAPlan [Fišer et al.,
2015] adheres to the principles also in practice, using fully distributed PDDL translation and search. The
Planning First [Nissim et al., 2010] planner also theoretically fits in the weak-privacy class, whereas the
implementation violates it. The GPPP [Maliah et al., 2014], and PP-LAMA [Maliah et al., 2016a]
are weak privacy-preserving planners as in the public solution phase, the private actions are used only
locally and the private facts are hidden by encryption. The FMAP planner [Torreño et al., 2014, 2015]
is based on the forward-chaining plan space search principle, where partial plans are gradually extended
towards the final plan. Private actions, private preconditions, and private effects are hidden when the
partial plans are communicated and thus FMAP is weak privacy preserving both in theory and practice.
The PSM planner [Tožička et al., 2014, 2015] is a planner based on similar ideas as Planning First. In
PSM, the agents generate sets of plans (represented concisely as Planning State Machines), restrict them
to only the public actions and variables and performs intersection in order to find a solution acceptable
by all agents (that is, private actions can be added to the public actions so that the result is a valid global
plan, somewhat similarly to GPPP).

Planners adhering to the strong privacy definition were studies mostly theoretically. The first exam-
ple is the Secure-MAFS planner [Brafman, 2015] which is based on the MAFS principle and which was
shown to be strong privacy-preserving on a special class of logistics problems. In [Štolba et al., 2017]
it was shown, that Secure-MAFS improves the privacy leakage over MAFS in general, but is not strong

2.3. PRIVACY IN MULTI-AGENT PLANNING 25

privacy preserving in general, indeed. In [Štolba et al., 2016c,d] the authors have introduced a novel
class of privacy-preserving algorithms Sec-MAP, which albeit being not strong privacy-preserving, pre-
serve more privacy than all other planners at that time. The idea is based on the combination of the
approaches used in Secure-MAFS and PSM to prevent private information leakage, in particular, not
sending states which differ only in the private part of a single agent more than once, and not sending
states which are not a part of the local solution. A planner based on PSM which can trade-off privacy-
preservation for efficiency and thus gets arbitrarily close to strong privacy was introduced in [Tožička
et al., 2017a]. Moreover, a strong privacy-preserving planner, based on PSM again, was presented
in [Tožička et al., 2017b] together with a proof, that such planner cannot be strong privacy-preserving,
complete and efficient at the same time. The result also carries on to the MAFS-based planners.

Apart from privacy-preserving planners, there is a number of distributed heuristics which adhere to
the weak privacy definition ([Torreño et al., 2014, Maliah et al., 2015, Štolba and Komenda, 2013, 2014,
Štolba et al., 2015a]) but without any deeper analysis or theoretical guarantees. The only distributed
heuristic with privacy guarantees is [Štolba et al., 2016a] which, nevertheless, falls short to prove full
strong privacy.

26 CHAPTER 2. RELATED WORK

Chapter 3

Multi-Agent Planning

In this chapter, we present three formalisms used throughout the rest of the thesis. The first formal-
ism, MA-STRIPS by [Brafman and Domshlak, 2008], is the most basic multi-agent formalism building
on STRIPS, that is, set representation of the propositional description of the world. The MA-STRIPS
is used in the most of the thesis, in Chapter 4, Chapter 5, and Sections 6.1 and 6.2. The second for-
malism, MA-MPT, was introduced by multiple authors including us and is a direct application of the
MA-STRIPS approach to the SAS+ or multi-valued planning task (MPT) formalism. This formalism
generalizes MA-STRIPS and is used internally by both our planners, MADLA and MAPlan. It is used in
Chapter 6 as some of the described concepts are more naturally described using a multi-valued formal-
ism. The third formalism describes the transition system underlying both MA-STRIPS and MA-MPT
formalism and is important to understand many concepts throughout the thesis, most prominently in
Chapter 7.

In this chapter, in addition to the formalism definitions, we give a brief introduction to the basic
algorithms and techniques used to solve multi-agent planning problems and conclude with a brief dis-
cussion of the complexity of classical and multi-agent planning and a description of benchmarks used
in the evaluations throughout the thesis.

Before delving into the multi-agent world, we briefly define the basic classical planning formalism,
STRIPS [Fikes and Nilsson, 1971].

Definition 1. (STRIPS) A STRIPS planning problem Π is defined as a tuple Π = 〈P,A, sI , s?〉 where

P is a finite set of propositions describing the world,

A is a finite set of actions,

sI ⊆ P is an initial state, and

G ⊆ P is a goal condition.

Definition 2. (STRIPS state) In STRIPS, a state of the world is described as a set s ⊆ P of propositions
which hold true in the state of the world. All other propositions (P\s) are assumed to be false.

Definition 3. (STRIPS action) A STRIPS action a ∈ A is denoted by

pre(a) ⊆ P the set of preconditions,

add(a) ⊆ P the set of positive (add) effects, and

del(a) ⊆ P the set of negative (delete) effects.

27

28 CHAPTER 3. MULTI-AGENT PLANNING

A STRIPS state s is modified by the application of an action a = 〈pre(a), add(a), del(a)〉 as s ◦ a =
(s\del(a))∪add(a), but only if the preconditions hold, that is, pre(a) ⊆ s. Otherwise, a is not applicable
in s.

The MA-STRIPS formalism enriches STRIPS by the concepts of agents and privacy. The set A =
{αi}ni=1 of agents corresponds with a factorization of the set of actions A =

⋃n
i=1Ai, where each Ai is

a set of actions the agent αi can perform and plan with. It is assumed that the setsAi of actions of agents
are pairwise disjoint, that is, Ai ∩Aj = ∅ for each i 6= j. The MA-STRIPS formalism can be extended
to consider so called joint actions, which are actions performed by multiple agents at once, but we do
not consider such actions in this thesis. Considering joint-action space brings an exponential blow-up
in the number of actions in general. In Section 3.1 we present a detailed formal definition of our variant
of the MA-STRIPS formalism, which differs in that the multi-agent planning problem is explicitly split
into separate STRIPS agent problems. This allows us to better formalize and reason about distributed
algorithms and privacy. In Section 3.2, we extend the formalism for multi-valued variables.

Another concept introduced to STRIPS by MA-STRIPS is privacy. In MA-STRIPS, privacy is
treated as a means of factorization, that is, the propositions (and consequently actions) needed only by
one agent are private, those needed (shared) by at least two agents are public. In the original work
by Brafman&Domshlak, no other assumptions on privacy were made, but most MA-STRIPS planners
treated the definition so that private propositions and actions should not be openly shared with other
agents, whereas public propositions and actions can. Our treatment of privacy is described in more
depth in Chapter 7.

Examples
Throughout the thesis, we use several examples, two represent simplified real world problems and three
are abstract. The first example (Logistics) is a small logistics example depicted in Figure 3.0.1a. In
this example, there are two agents, a truck t and a plane a (naturally, the agents could be the drivers,
the logistic companies, etc. here we adhere to the benchmark domains commonly used in multi-agent
planning literature). They are transporting a package p from city A to city C, while the truck can move
between A and B and the plane between B and C. We use this example to illustrate the formalisms
described in the following sections. In Chapter 4, we use a slightly larger logistics example (Logistics-
3) with an additional depot location connected by road with location C and an additional truck driving
from C to the new location D.

Figure 3.0.1b shows the (UAV) example. In this example there are two agents, one is a UAV which
task is to survey locations 1 and 2, the other is the base agent which can refuel the UAV between the
survey missions. This example is used in Chapter 7 to illustrate privacy as the UAV and the base belong
each to a different coalition partner and thus do not want to disclose their private information (e.g., the
state of supplies at the base).

The three abstract examples are (LM-Cut) example, (pot) example and (CP) example, which are all
used in Chapter 6 to illustrate the computation of the respective heuristics and are introduced in detail
when due.

In addition to the small examples used to demonstrate the principles and algorithms, in Section 3.6,
we briefly introduce the benchmark domains used in the evaluation sections.

3.1 The MA-STRIPS Formalism
The global MA-STRIPS definition from [Brafman and Domshlak, 2008] becomes confusing when de-
scribing more complex distributed algorithms. To state explicitly the distributed nature of our approach
to MA-STRIPS we use a more suitable definition. The multi-agent planning problem, where each agent
is planning for itself, is defined as a set of classical STRIPS problems, one for each agent. Otherwise,
we keep the MA-STRIPS factorization and treatment of privacy described in the original work. We also

3.1. THE MA-STRIPS FORMALISM 29

a)

t

p

a

A B C

b)

location 1

location 2

base

UAV

Figure 3.0.1: a) A logistics example with two agents. b) An UAV example with two agents.

explicitly define that if a fact is a goal fact, it is public, resulting in one common public goal condition
definition. This is a simplification, but without loss of generality. A problem with a set of private goals
can be converted to an equivalent problem with a single public goal by adding a new public goal fact
and adding an action which has private preconditions on all the private goal facts and a single effect
which is the new public goal fact. This simplification is assumed by most MA-STRIPS planners, but it
is not explicitly stated in the MA-STRIPS definition by Brafman&Domshlak. The formal definition of
distributed MA-STRIPS is as follows.

Definition 4. (Multi-agent planning problem) Let A = {αi}ni=1 be a set of n agents and P be a set
of propositions describing the world, where s ⊆ P is a state of the world. Then M = {Πi}ni=1 is a
multi-agent planning problem where for each agent αi ∈ A, Πi is a STRIPS agent planning problem
for the agent αi.

Definition 5. (Agent planning problem) A STRIPS agent planning problem Πi is a quadruple

Πi = 〈Pi ⊆ P,Ai, sI ∩ Pi, G〉

where:

Pi ⊆ P is a finite set of propositions describing facts about the world relevant to agent αi.

Ai is a finite set of actions agent αi can perform.

• The sets of actions of agents are pairwise disjoint, that is ∀i 6= j : Ai ∩Aj = ∅.

• Let A =
⋃n
i=1Ai be the set of all actions inM.

sI ⊆ P is the initial state of the world, each agent observes only its part sI ∩ Pi,

G ⊆ P pub is the common goal condition defining the goal (final) states of the problem; a state s? is a
goal state iff G ⊆ s.

Definition 6. (MA-STRIPS action) A MA-STRIPS action a ∈ Ai is a tuple

a = 〈pre(a), add(a), del(a), lbl(a), αi〉

where pre(a) ⊆ Pi represent preconditions, add(a) ⊆ Pi represent add effects, and del(a) ⊆ Pi repre-
sent delete effects according to the standard STRIPS syntax and semantics (Definition 3). Additionally,
we define

lbl(a) is a label of the action a unique across all agents, and

αi is the owner of the action a.

30 CHAPTER 3. MULTI-AGENT PLANNING

We denote the application of a in a state s as s′ = s ◦ a. Each action is owned exactly by one agent
exclusively, that is, there are no joint actions (owned by multiple agents).

Definition 7. (MA-STRIPS privacy rule) MA-STRIPS defines the following rules on public facts and
actions:

• A fact p ∈ Pi is public if p ∈ Pj for some j 6= i.

• Let P pub
i ⊆ Pi be the set of public facts and P priv

i ⊆ Pi be the set of private facts, then P pub
i ∪

P priv
i = Pi and P pub

i ∩ P priv
i = ∅.

• An action a is public if either pre(a) ∩ P pub 6= ∅, add(a) ∩ P pub 6= ∅ or del(a) ∩ P pub 6= ∅.
Otherwise a is private to αi.

Let Apub
i ⊆ Ai be the set of public actions and Apriv

i = Ai\Apub
i the set of private actions of agent αi.

Each public fact p is known to all agents, that is, if p ∈ P pub
i , then also p ∈ P pub

j for all j ∈ 1..n. Thus
we can ignore the agent index and state P pub = P pub

i for all i ∈ 1..n.

Now let us demonstrate the above formal definitions on a concrete example.

Example. (Logistics) In the logistics example, the truck problem Πt consists of the following (public
facts and actions are bold):

• Pt = {truck-at-A, truck-at-B, package-at-A, package-at-B, package-in-t, package-at-C}

• At = {move-t-A-B,move-t-B-A, load-t-A, load-t-B, unload-t-A, unload-t-B}
move-t-A-B = 〈{truck-at-A}, {truck-at-B}, {truck-at-A},move-t-A-B, t〉
move-t-B-A = 〈{truck-at-B}, {truck-at-A}, {truck-at-B},move-t-B-A, t〉
load-t-A = 〈{truck-at-A, package-at-A}, {package-in-t}, {package-at-A}, load-t-A, t〉
load-t-B = 〈{truck-at-B, package-at-B}, {package-in-t}, {package-at-B}, load-t-B, t〉
unload-t-A = 〈{truck-at-A, package-in-t}, {package-at-A}, {package-in-t}, unload-t-A, t〉
unload-t-B = 〈{truck-at-B, package-in-t}, {package-at-B}, {package-in-t}, unload-t-B, t〉

• sI ∩ Pt = {truck-at-A, package-at-A}

• G = {package-at-C}

and the plane problem Πa:

• Pa = {plane-at-B, plane-at-C, package-at-B, package-in-a, package-at-C}

• Aa = {move-a-B-C,move-a-C-B, load-a-C, load-a-B, unload-a-C, unload-a-B}
move-a-B-C = 〈{plane-at-B}, {plane-at-C}, {plane-at-B},move-a-B-C, a〉
move-a-C-B = 〈{plane-at-C}, {plane-at-B}, {plane-at-C},move-a-C-B, a〉
load-a-C = 〈{plane-at-C, package-at-C}, {package-in-a}, {package-at-C}, load-a-C, a〉
load-a-B = 〈{plane-at-B, package-at-B}, {package-in-a}, {package-at-B}, load-a-B, a〉
unload-a-C = 〈{plane-at-C, package-in-a}, {package-at-C}, {package-in-a}, unload-a-C, a〉
unload-a-B = 〈{plane-at-B, package-in-a}, {package-at-B}, {package-in-a}, unload-a-B, a〉

• sI ∩ Pa = {plane-at-B}

• G = {package-at-C}

The locations of the truck and plane are private to the respective agents as well as the location of the
package unless it is in the cities B or C. The location of the package in B is public because it is shared
by the two agents, whereas the package in location C is public because package-at-C is a public goal.
Because of that, also the unload-t-B, unload-a-C and the respective load actions are public.

3.1. THE MA-STRIPS FORMALISM 31

3.1.1 Views of the MA-STRIPS Problem

The MA-STRIPS problemM = {Πi}ni=1 can be viewed from different perspectives, called projections.
We can consider the global problem, ignoring the factorization into agents, which corresponds to a
classical centralized STRIPS version ofM. Alternatively, we can be interested in a public projection of
M, which is the global problem restricted only to its public part. The view of a single agent αi on the
global problem is not restricted only to the agents problem Πi, but the public projection is available to
the agent as well. By combining the two views, we obtain an i-projected problem ΠB

i which consists of
the problem of the agent αi and public parts of the problems of other agents. In some cases we need to
consider only the private part of the agent’s problem, that is, an i-private projection ΠO

i which consists
of the agent’s problem without the public part. In the following, we formalize the above concepts. First,
we focus on how states differ in each of the problem views.

Definition 8. (Projections of a state) Let s ⊆ P be a state of the MA-STRIPS problemM, then

sB = s ∩ P pub is a public projection of s,

sBi = s ∩ Pi is an i-projection of s, and

sOi = s ∩ P priv
i is an i-private projection of s.

Next, we define the projected variants of actions.

Definition 9. (Projections of an action) Let a ∈ Apub
j be a public action of agent αj , let αi be an agent

such that i 6= j. We define

aB =
〈
pre(a) ∩ P pub, add(a) ∩ P pub, del(a) ∩ P pub, lbl(a)B, αj

〉
aBi =

〈
pre(a) ∩ Pi, add(a) ∩ Pi, del(a) ∩ Pi, lbl(a)Bi, αj

〉
aOj =

〈
pre(a) ∩ P priv

j , add(a) ∩ P priv
j , del(a) ∩ P priv

j , lbl(a)Oj , αj

〉
where aB is the public projection of a, aBi is the i-projection of a, and aOj is the j-private projection
of a.

Let a ∈ Apriv
j be a private action of agent αj , then the projections are defined as follows:

aB = aBi = ε = 〈∅, ∅, ∅, lbl(ε), αj〉

which is a no-op action, and aOj = a .

As in MA-STRIPS we do not consider joint actions, the definition of i-projected action is slightly
more general than necessary, consider

Lemma 10. Let a ∈ Ai for some agent αi, then aB = aBj for all i 6= j.

Proof. Let a ∈ Ai for some agent αi. From Definition 6 the sets pre(a), add(a), del(a) are subsets of
Pi. From the MA-STRIPS rule (Definition 7) follows that P priv

i ∩ P priv
j = ∅ for all i 6= j and thus for

pre(a) holds pre(a) ∩ Pj = pre(a) ∩ P pub and the same holds for add(a) and del(a) as well.

Now we define the projected problems themselves, that is, the views on the MA-STRIPS problem
M.

32 CHAPTER 3. MULTI-AGENT PLANNING

Definition 11. (Projections of the problem) LetM = {Πi}ni=1 be a MA-STRIPS problem. Then we
define

ΠG =

〈
P,A =

⋃
i∈1..n

Ai, sI , G

〉

MB =

〈
P, {aB|a ∈

⋃
i∈1..n

Apub
i , sBI , G}

〉

ΠB
i =

〈
Pi, A

B
i = Ai ∪ {aB|a ∈

⋃
j∈1...n∧j 6=i

Apub
j }, s

Bi
I , G

〉
ΠO
i =

〈
Pi, A

O
i = {aOi|a ∈ Ai}, sOiI , ∅

〉
where the STRIPS problem ΠG is the global problem respective toM, the STRIPS problemMB is the
public projection ofM, the STRIPS problem ΠB

i is the i-projection ofM, and the STRIPS problem
ΠO
i is the i-private projection ofM.

Although the agent αi cannot plan using ΠB
i , as the resulting plan might not be executable in the

multi-agent problemM, it can be used for heuristic computation (the projected problem is, in fact, an
abstraction ofM, see Theorem 36). On the contrary, the i-private projection cannot be used on its own
even to compute a heuristic estimate as the goals are public and thus are not present in the projection.

Example. (Logistics) In the example, the problem ΠB
t projected to agent t differs from Πt in that it

contains the additional projected actions, that is

• load-a-CB = 〈{package-at-C}, ∅, {package-at-C}, load-a-C, a〉

• load-a-BB = 〈{package-at-B}, ∅, {package-at-B}, load-a-B, a〉

• unload-a-CB = 〈∅, {package-at-C}, ∅, unload-a-C, a〉

• unload-a-BB = 〈∅, {package-at-B}, ∅, unload-a-B, a〉

Notice the empty preconditions of the actions unload-a-BB and unload-a-CB as all the facts plane-at-B,
plane-at-C and package-in-a are private to the agent a. The projected problem for agent a, that is, ΠB

a

is defined analogously.

3.1.2 Solution Concepts
Let us now formally define the notion of a multi-agent plan.

Definition 12. (s0–sm-plan) Let π = (a1, ..., am) be a sequence of actions from A (the actions may be
owned by different agents). The sequence π is applicable in state s0 if there are states s1, ..., sm s.t. for
1 ≤ k ≤ m, action ak is applicable in sk−1 (that is, pre(a) ⊆ sk−1) and sk = sk−1 ◦ ak. The sequence
of actions π is referred to as a s0–sm-plan and s0 ◦ π denotes the resulting state sm.

Definition 13. (s-plan) An s0–sm-plan is a s-plan iff sm is a goal state, that is, G ⊆ sm.

Definition 14. (Plan) An sI -plan is a (multi-agent) plan (or a global plan) solving the multi-agent
problemM.

Clearly, the multi-agent plan may contain public and private actions of different agents. An sBi-plan
solving ΠB

i is defined analogously, but using only the actions from AB
i . Any multi-agent s-plan can be

expressed in a distributed multi-agent plan form {πi}ni=1, where πi retains all actions in π ∩ Ai (here
we overload the notation of a set intersection to an intersection of a set and a sequence) and all actions
from A\Ai are replaced with an empty (no-op) action ε = 〈∅, ∅, ∅,−,−〉. In other words, ak in πi is ak
from π if ak ∈ Ai. Otherwise, ak in πi is ε, that is a no-op action with no preconditions and effects.

3.1. THE MA-STRIPS FORMALISM 33

Example. (Logistics) A multi-agent plan solving the example problem consists of the following 6
actions:

• 〈load-t-A,move-t-A-B,unload-t-B, load-a-B,move-a-B-C,unload−a−C〉
and can be reformulated as a distributed multi-agent plan

• {〈load-t-A,move-t-A-B,unload-t-B, ε, ε, ε〉,

• 〈ε, ε, ε, load-a-B,move-a-B-C,unload-a-C〉}
Notice, that an optimal solution to ΠB

t is a plan consisting of a single action
〈
unload-a-CB〉. The pro-

jected problem ΠB
a is analogous and can be solved using four actions, in particular 〈unload-t-B, load-a-B,move-a-B-C,unload-a-C〉.

In the rest of the thesis, we use the term plan for multi-agent plans. In the context of the views on
the MAP problem, we define also views on the multi-agent plans.

Definition 15. (Local plan) A plan πi solving the i-projected problem ΠB
i is a local plan.

Definition 16. (Public plan) A plan πB solving the public projected problemMB is a public plan.

Let us have a look at the relations of a multi-agent plan, a public plan, and a local plan.

Proposition 17. A public projection πB
i of a local plan πi is a public plan.

Proof. Projection only removes constraints (private preconditions), the applicability of public actions is
retained.

Clearly, a local plan might not be part of a multi-agent plan, as it may ignore unsatisfiable private
preconditions. Also, a public plan might not be a projection of a multi-agent plan (for the same reasons).
Finally,

Definition 18. (i-extensibility) A public plan πB is i-extensible, if by adding private actions from Apriv
i

to πBand replacing all projections aB s.t. a ∈ Apub
i by a, we obtain a local solution to Πi.

According to Tožička et al. [2016]:

Theorem 19. LetM = {Πi}ni=1 be a MA-STRIPS problem. A public plan πB which is i-extensible by
all agents i ∈ 1, ..., n, the i-extensions {πi}ni=1 form a multi-agent plan solvingMB.

Finally, we define a number of related concepts. A state from which there is no solution as follows.

Definition 20. (Dead-end state) A state s is a dead end state (or a dead-end) if no s-plan exists.

In the MA-STRIPS formalism, we assume the quality criterion for a plan π to be its length |π|,
that is a plan π is optimal iff it contains the minimal number of actions among all plans solving M.
Nevertheless, all techniques presented in this article are easily modified for a quality criterion based on
the (non-negative) cost of actions.

After defining the solution concepts we can show the equality of the multi-agent problem and the
global problem.

Theorem 21. (Global problem equality) Let M = {Πi}ni=1 be a MA-STRIPS problem. The global
problem ΠG from Definition 32 is equal toM, that is, every plan π solvingM solves ΠG and every plan
π′ solvingM solves ΠG.

Proof. According to the Definition 14, a plan (solving M) is a sequence of actions π = (a1, ..., am)
such that a1 is applicable in the initial state sI and the application of π results in a goal state s?, that
is, G ⊆ s? = sI ◦ π. Each state sk visited by π is a subset of P , each action ak ∈ A =

⋃
i∈1..nAi is

applicable in sk−1 ⊆ P and its application results in a state sk ⊆ P . As ΠG is defined over the set of
facts P and the set of actions A, the same holds also for π as a plan solving ΠG. The other direction is
analogous.

The global problem ΠG is a useful concept, e.g., for showing the admissibility of a distributed
heuristic by showing that it returns the same values as in the global problem (see Chapter 6).

34 CHAPTER 3. MULTI-AGENT PLANNING

3.2 The MA-MPT Formalism
Similarly as MA-STRIPS [Brafman and Domshlak, 2008] presented in the previous section is an exten-
sion of STRIPS Fikes and Nilsson [1971] towards privacy and multi-agent planning, we now present
MA-MPT as a multi-agent extension of the Multi-Valued Planning Task Helmert [2006] or SAS+ [Bäck-
ström, 1992]. All formal definitions are analogous to the MA-STRIPS definition in the previous section.
Indeed, if all the variables in a MA-MPT problem are binary, we obtain a MA-STRIPS problem (with
the addition of the cost function), thus, MA-MPT is a generalization of MA-STRIPS. We present the
MA-MPT formalism analogously to MA-STRIPS in Section 3.1.

In MPT, the world is described by a finite set of variables V instead of a set of binary predicates in
STRIPS. Each such variable V ∈ V has a finite domain of possible values, denoted as dom(V). The
state of the world in MPT is defined as follows.

Definition 22. (State) Let V be a finite set of variables with finite domains dom(V) and let s : V 7→∏
V ∈V dom(V) be a mapping (assignment) from the set of variables to their respective values. Then s

is a state, more specifically a state over V . The value of V in s is denoted as s[V].

In MPT we define also a partial state which is used to describe the goal condition, and preconditions
and effects of the operators.

Definition 23. (Partial state) Let V be a finite set of variables with finite domains dom(V) and let V ′ ⊂
V . A mapping p from V ′ to the values p[V] of the respective variables is a partial state (assignment).
We use vars(p) ⊆ V to denote a subset of V on which p is defined and p[V] to denote the value of V
assigned by p.

Definition 24. (Partial state consistency) A partial state p is consistent with a state s iff p[V] = s[V]
for all V ∈ vars(p).

Now we can proceed to the definition of the syntax and semantics of an MPT operator.

Definition 25. (MPT Operator) Let V be a finite set of variables with finite domains dom(V). an MPT
operator is a tuple

o = 〈pre(o), eff(o), lbl(o)〉

where

pre(o) is a partial assignment over V ,

eff(o) is a partial assignment over V , and

lbl(o) is a unique label.

The operator is applicable in a state s (over V) iff pre(o) is consistent with s. The application of operator
o in a state s results in a state s′ such that all variables in vars(eff(o)) are assigned to the values in eff(o)
and all other variables retain the values from s. We denote the application of o in s as s′ = s ◦ o.

In the thesis, we use the term action and operator for an MPT operator interchangeably (and so do
we use the symbols a ∈ O and o ∈ O). Before defining the multi-agent version of the MPT formalism,
let us first show an alternative view of the MPT formalism.

Definition 26. (Facts in MPT) A fact in MPT is a pair 〈V, v〉 of a variable V and one of the values
v ∈ dom(V) (i.e., an assignment of v to V). A (partial) variable assignment p can be represented as a
set of facts {〈V, p[V]〉 |V ∈ vars(p)}.

Now, we can proceed to the definition of a MA-MPT problem (or task). The multi-agent problem
definition is the same as in Definition 4, that is,M = {Πi}ni=1. The difference is, that the agent planning
problem is an MPT problem instead of a STRIPS problem. Formally

3.2. THE MA-MPT FORMALISM 35

Definition 27. (Agent planning problem) Let the world be described by a finite set V of variables with
finite domains. an MPT agent planning problem for an agent αi ∈ A is a tuple

Πi =
〈
Vi,Oi, sBiI , sBi? , costi

〉
where

Vi ⊆ V s.t. Vi = Vpub ∪ Vprivi is a finite set of variables consisting of a set Vpub of public variables
and a set Vprivi of private variables. Each variable V ∈ Vi has a finite domain of values dom(V).

Oi = Opubi ∪ Oprivi is a finite set of MPT operators consisting of a set Opubi of public operators and a
set Oprivi of private variables.

sBiI is the initial state over V restricted to Vi .

sBi? is the goal partial state over V restricted to Vi .

costi : Oi 7→ R+
0 is a cost function assigning a non-negative cost to the operators.

The set Vpub of public variables is shared among all agents, for each i Vpub ∩ Vprivi = ∅, and for each
i 6= j, Vprivi ∩ Vprivj = ∅ and Oi ∩ Oj = ∅.

An MPT operator in MA-MPT also contains a reference to the owner agent as in Definition 6. The
privacy of operators in MA-MPT is defined by a MA-MPT rule analogous to the MA-STRIPS rule in
Definition 7.

Definition 28. (MA-MPT rule) an MPT operator o ∈ Oi is private (o ∈ Oprivi) iff vars(pre(o)) ⊆ Vprivi

and vars(eff(o)) ⊆ Vprivi . an MPT operator o ∈ Oi is public (o ∈ Opubi) iff vars(pre(o)) ∩ Vpub 6= ∅
or vars(eff(o)) ∩ Vpub 6= ∅.

We conclude the description of the MA-MPT planning problem by a MA-MPT formulation of the
logistics example.

Example. (Logistics) In the case of the example in Section 3, the problem Πt of the truck agent t can
be defined using the following variables

• Vpub = {package-at ∈ {B,C,⊥}}

• Vprivt = {truck−at ∈ {A,B}, package−at ∈ {A,⊥}}
The symbol⊥means none-of-those, e.g., the variable has a value not known to the agent (this technique
is used in classical planning as well). The operators in Opubt and in Oprivt are the same as the actions in
Apub
i and Apriv

i respectively with the only difference, that they are defined based on the MPT formalism.
For example, the operator move-t-A-B ∈ Opubt is defined as

• move-t-A-B = 〈{truck-at = A}, {truck-at = B},move-t-A-B, t〉
which means that the precondition of move-t-A-B is that the variable truck-at has the value of A and
the effect is that the variable is set to B. Of course, the precondition and effect of an action might be
defined over different variables. The label of the operator is the same as the label in the MA-STRIPS
formalism, in particular move-t-A-B. . In MA-MPT we also consider the costs of actions, which can be
defined for example as costt(move-t-A-B) = 10 where 10 is the distance between the cities A and B.

The initial state of the truck agent is defined as an assignment to all variables in V t , in particular

• sBt
I = {package-at = ⊥, package−at = A, truck−at = A}

Notice, that the public variable package-at and private variable package−at are actually two different
variables, interconnected only by the definition of the actions so that only one of the variables can be
set to a particular value, whereas the other variable is set to an “undefined” value ⊥. Nevertheless, the
⊥ value is treated in the model as any ordinary value (that is, any algorithm using the formalism is not
explicitly aware of its special semantics). The goal state sBt

? is a partial variable assignment analogous
to sBt

I and the problem of the plane agent a is defined analogously to the problem of the truck agent.

36 CHAPTER 3. MULTI-AGENT PLANNING

3.2.1 Views of the MA-MPT Problem
Similarly to the MA-STRIPS problem, the MA-MPT problem can be viewed from multiple perspectives,
that is, the global problem, the public projection, the i-projection and the i-private projection. We define
the views analogously to Section 3.1.1, but first, we need to formally define the following.

Definition 29. (Restriction of an assignment) Let p be a (partial) assignment (state) over a set V of
variables and let V ′ ⊆ V . The assignment p′ such that vars(p′) = V ′ and p′[V] = p[V] for each
V ∈ V ′ is a restriction of p on the set V ′ of variables.

Now we can proceed to the definition of state projections.

Definition 30. (Projections of a state) Let s be a (partial) state over the finite set V of finite-domain
variables, then

sB A public projection of s is a restriction of s to the set Vpub of variables.

sBi An i-projection of s is a restriction of s to the set Vi of variables.

sOi An i-private projection of s is a restriction of s to the set Vprivi of variables.

Next, we define the operator projections.

Definition 31. (Projections of an operator) Let o ∈ Opubj be a public operator of agent αj , let αi be an
agent such that i 6= j. We define

oB =
〈
pre(a)B, eff(o)B, lbl(o)B, αj

〉
oBi =

〈
pre(a)Bi, eff(o)Bi, lbl(o)Bi, αj

〉
oOj =

〈
pre(a)Oj , eff(o)Oj , lbl(o)Oj , αj

〉
where oB is the public projection of o, oBi is the i-projection of o, and oOj is the j-private projection
of o. Let o ∈ Oprivj be a private operator of agent αj , then the projections are defined as follows:
oB = oBi = ε = 〈∅, ∅, ∅, lbl(ε), αj〉, which is a no-op action, and oOj = o.

Trivially, Lemma 10 holds also for the operator projections in MA-MPT. We proceed with the defi-
nitions of the problem views.

Definition 32. (Projections of the problem) LetM = {Πi}ni=1 be a MA-MPT problem. Then we define

ΠG =

〈
V =

⋃
i∈1..n

Vi,
⋃

i∈1..n

Oi, sI , sF, costG

〉

ΠB =

〈
Vpub,OB = {oB|o ∈

⋃
j∈1...n

Opubi}, sBI , s
B
? , costB

〉

ΠB
i =

〈
Vi,OBi = Oi ∪ {oBi|o ∈

⋃
j∈1...n∧j 6=i

Opubj}, sBiI , sBi? , costBi

〉
ΠO
i =

〈
Vi,OOi = {oOi|o ∈ Oi}, sOiI , sOi? , costi

〉
where costG is a union of the cost functions costi, costB is costG restricted to operators in OB, and
costBi is costG restricted to operators in OBi. The MPT problem ΠG is the global problem respective
toM, the MPT problemMB is the public projection ofM, the MPT problem ΠB

i is the i-projection
ofM, and the MPT problem ΠO

i is the i-private projection ofM.

3.3. MULTI-AGENT PLANNING PROBLEM AS A TRANSITION SYSTEM 37

3.2.2 Solution Concepts
The solution concepts of a MA-STRIPS problem, that is, an s0-sm-plan (Definition 12), an s-plan
(Definition 13), and a plan (Definition 14), are defined only using the concept of applicability of actions.
This means, that by using the applicability of MPT operators instead (Definition 25), we can directly
reuse the already defined solution concepts also for MA-MPT planning problems, the Theorem 19 and
Theorem 21 hold for MA-MPT as well.

3.3 Multi-Agent Planning Problem as a Transition System
In Section 1.1 we have described three levels of formalisms used to describe the (multi-agent) planning
problems, the actual transition system, ground representations, and lifted representation. Both for-
malisms described so far, MA-STRIPS and MA-MPT falls into the category of ground representations
which are very useful to describe most of the algorithms and techniques presented in the thesis and are
close to the actual implementation in the planners. The lifted representation, such as PDDL [McDermott
et al., 1998], are very useful to describe the planning domains and problems but are not very relevant
to the topics discussed in the thesis. Thus, we describe our contribution in this area, the MA-PDDL
language, in the Appendix A. In this section, we take a closer look at the actual transition system of a
planning problem and its multi-agent variant. This approach is most useful in Chapter 7, but may be
used throughout the thesis for a better understanding of the underlying concepts.

We start by defining the transition system of a classical MPT planning problem (or task). An anal-
ogous definition can be used to define the transition system of a STRIPS problem by using binary
variables.

Definition 33. (Transition system) A transition system of an MPT planning task Π = 〈V,O, sI , s?, cost〉
is a tuple

T (Π) = 〈S,L, T, sI , S?, cost〉

where S =
∏
V ∈V dom(V) is a set of states, L = {lbl(o)|o ∈ O} is a set of transition labels corre-

sponding to the operators in O , and T ⊆ S × L × S is a transition relation of Π s.t. 〈s, o, s′〉 ∈ T if
o ∈ O s.t. o is applicable in s and s′ = o ◦ s. A state-changing transition is 〈s, o, s′〉 ∈ T such that
s 6= s′. The state sI ∈ S is the initial state and S? is the set of all goal states (that is all states s s.t. s? is
consistent with s). The cost (or weight) of a transition 〈s, o, s′〉 is defined as cost(o).

Definition 34. (Solution) A solution in the transition system T (Π) = 〈S,L, T, sI , S?, cost〉 is a path
π = {t1, ..., tk} in T (Π) where ti∈1..k ∈ T such that π starts in the initial state sI (that is, t1 =
〈sI , o1, s1〉) and ends in any state s ∈ S? (that is, tk = 〈sk−1, ok, s〉). The cost of π is defined as∑
i∈1..k cost(oi) where ti = 〈si−1, oi, si〉. An optimal solution is such π∗ which minimizes the cost.

From Definition 27 follows that each agent problem is an MPT problem and thus can be represented
as a transition system. Based on Definition 32, the same can be said about the global problem, the i-
projected problem, and the i-private projected problem. Unfortunately, this does not tell us much about
the relation of the transition systems, for example, whether a solution in one transition system implies
a solution in any of the other transition systems. To provide such statements, we first define a concept
well known in the classical planning literature, an abstraction of a transition system.

Definition 35. (Abstraction) Let T = 〈S,L, T, sI , S?〉 and T ′ = 〈S′, L′, T ′, s′I , S′?〉 be transition
systems with the same label sets L = L′ and let σ : S 7→ S′. We say that T ′ is an abstraction of T with
the abstraction function (mapping) σ if

• s′I = σ(sI),

• for all s ∈ S? also σ(s) ∈ S′?, and

38 CHAPTER 3. MULTI-AGENT PLANNING

• for all 〈s, o, s′〉 ∈ T , 〈σ(s), o, σ(s′)〉 ∈ T ′.

It is easy to see, that a solution π in the original transition system is also a solution in the abstract
transition system. This does not hold in the other direction, but a cost of the optimal solution in the
abstract transition system is an admissible (i.e., lower or equal) estimate of the cost of the optimal
solution in the original transition system.

We proceed by showing that the transition system of an i-projection of a MAP problem M is an
abstraction of the respective global problem ΠG.

Theorem 36. (Projection is an abstraction) Let T (ΠG) =
〈
SG,

⋃
i∈1..nOi, TG, sI , S?

〉
be the transi-

tion system of the global problem ΠG and T (ΠB
i) =

〈
SBi,OBi , TBi, siI , S

i
?

〉
the transition system of

the i-projected problem ΠB
i . Then T (ΠB

i) is an abstraction of T (ΠG) with respect to the state-changing
transitions.

Proof. We define an abstraction mapping σBi : SG 7→ SBi such that for a state s ∈ SG we define
σBi(s) as a restriction of s to the variables in Vi . Then from definition, σBi(s) = sBi. From definition
also sBiI = σBi(sI). If s ∈ S? then s? is compatible with s, if both are restricted to Vi , the compatibility
is not violated and thus σBi(s) ∈ Si?.

For each action o ∈ Oi and each transition 〈s, o, s′〉 ∈ TG there is a transition
〈
sBi, oBi, s′Bi

〉
∈

TBi as oBi = o. For j 6= i and for each action o′ ∈ Opubj and each transition 〈t, o′, t′〉 ∈ TG, there
is a transition

〈
tBi, o′Bi, t′Bi

〉
∈ TBi as pre(o′Bi) is pre(o′) restricted to Vi and tBi is t restricted to

Vi (the same goes for eff(oBi). For each action o′′ ∈ Oprivj and each transition 〈u, o′, u′〉 ∈ TG, there
is no transition

〈
uBi, o′′Bi, u′Bi

〉
∈ TBi, but as both pre(o′′) and eff(o′′) are defined only over Vprivj ,

uBi = u′Bi and thus the missing transition
〈
uBi, o′′Bi, u′Bi

〉
∈ TBi is a loop.

The missing loops never influence the shortest path and thus can be ignored (or added at will).
Analogously, the same holds also for the public projection and for the i-private projection, but as in an
i-private projection, all states are goal states (as goals are public and thus the i-private projection has an
empty goal condition), the solutions to such abstraction are trivial.

Importantly, the same does not hold for the agent planning problems.

Theorem 37. (Agent planning problem is not an abstraction) Let T (ΠG) =
〈
SG,

⋃
i∈1..nOi, TG, sI , S?

〉
be the transition system of the global problem ΠG and T (Πi) =

〈
Si,Oi , T i, siI , Si?

〉
the transition sys-

tem of the agent planning problem Πi. Then T (Πi) is not an abstraction of T (ΠG).

Proof. We can simply construct a counter-example. Let M = {Π1,Π2} with the respective global
transition system being T (ΠG) = 〈{s1, s2, s3}, {o1, o2}, {〈s1, o1, s2〉 , 〈s2, o2, s3〉}, s1, {s3}〉 such that
o1 ∈ Opub1 and o2 ∈ Opub2 . In the transition system T (Π1) there is no (abstract) transition respective
to 〈s2, o2, s3〉 as o2 /∈ O1 and thus T (Π1) is not an abstraction of T (ΠG).

Notice that in the above proof, the transition system T (Πi) has no solution. This has the conse-
quence, that in general, an agent αi may not be able to solve its agent panning problem Πi on its own.

3.4 Introduction to Multi-Agent Planners and Heuristics
Here, we formally define the notion of a multi-agent planner and a heuristic function based on the
MA-STRIPS formalism. The definition carries over to MA-MPT analogously. Moreover, we define a
number of properties of a multi-agent planner and of a heuristic relevant for further chapters.

Definition 38. A (distributed) algorithm is a multi-agent planner iff it accepts a multi-agent planning
problemM = {Πi}ni=1 as an input and produces a set of sequences {πi}ni=1 of actions from A ∪ {ε}
s.t. each πi contains only actions from Ai ∪ {ε}. Such a planner is

3.4. INTRODUCTION TO MULTI-AGENT PLANNERS AND HEURISTICS 39

(i) sound iff every set of sequences {πi}ni=1 produced is a distributed multi-agent plan forM,

(ii) complete iff the multi-agent planner produces a distributed multi-agent plan for any multi-agent
problemM for which a plan exists.

Notice that according to Definition 38, any classical planner accepting the defined input (e.g., by
converting it to the global STRIPS problem) is a multi-agent planner. In the Chapter 7 we focus on a
more interesting property a multi-agent planner should satisfy to set it apart from the classical planners,
namely the property of being privacy-preserving.

Heuristic search uses heuristics to guide the search towards a goal state. Formally, heuristic function
is a function estimating the length of the shortest s-plan for a given state s. A heuristic estimator is the
actual algorithm computing the heuristic function. We formalize two variants:

Definition 39. A function hM : 2P → Z+
0 is a global heuristic function for a multi-agent planning

problem M. If the function hM is computed by a distributed heuristic estimator, we say it is a dis-
tributed (global) heuristic.

Definition 40. For an agent αi, a function hBi : 2Pi → Z+
0 is an i-projected heuristic function.

The term local heuristic denotes the i-projected heuristic function for an unspecified agent. For
brevity, we refer to a heuristic function simply as a heuristic.

Typically, a heuristic function is based on a simplification of the problem. We can divide existing
planning heuristics into a number of families based on the approach to the simplification of the problem:

Relaxation heuristics are based on the idea of relaxing some of the constraints of the problem. In
STRIPS the most common relaxation is delete relaxation where the delete effects of actions are
ignored. Such planning problem is monotonic, that is, any achieved fact is never deleted again.
Solving (sub-optimally) a monotonic planning problem is polynomial and thus ideal for a heuristic
estimate. Example of such heuristics is the FF heuristic [Hoffmann and Nebel, 2001] which uses
the length (or cost) of a sub-optimal relaxed plan as the heuristic value.

Abstraction heuristics are based on the idea of abstracting away some detail in the planning problem.
Imagine an MPT planning problem restricted to a single variable. The length or cost of a solution
of such restricted problem can be used as a heuristic estimate of the original problem. Example of
such heuristics is the Merge&Shrink heuristic [Helmert et al., 2007] which is much more involved
but is based on similar ideas.

Structural heuristics are computed from some structural information, an example of which are land-
marks. Landmark is a state, an action, or a set of action which has to be present in every plan
solving the problem (imagine for example a hub in star-like topology network). The LAMA Plan-
ner [Richter and Westphal, 2010] uses landmarks in combination with the FF heuristic and the
LM-Cut heuristic [Helmert and Domshlak, 2009] is based on the idea of landmarks, but com-
puted on the relaxed problem.

LP-based heuristics. Many of the already mentioned heuristics can be reformulated as a Linear Pro-
gram (LP). Moreover, novel heuristics can be derived by formulating required properties of the
heuristic as an LP, such as are the potential heuristics [Pommerening et al., 2015] where the LP is
used to compute potentials of individual facts present in a state.

There is a number of properties of heuristics which influence their usability in heuristic search. The
properties are the following.

Definition 41. A heuristic function h is

(i) optimal if h(s) returns the actual shortest distance (or cost) to a goal state for each state s ⊆ P . An
optimal heuristic is denoted as h∗,

40 CHAPTER 3. MULTI-AGENT PLANNING

(ii) admissible if for each s ⊆ P holds h(s) ≤ h∗(s),

(iii) goal-aware if h(s) = 0 for each s such that s? ⊆ s, that is, s is a goal state,

(iv) safe if h(s) =∞ implies that s is a dead-end, that is, there is no path to a goal state from s,

(v) consistent if for each state s and each successor s′ of s such that s′ = s ◦ a holds h(s) ≤ h(s′) +
cost(a). Typically, goal awareness is assumed as part of consistency. Consistent heuristics are
also often referred to as monotonic.

Note, that a well-known result is that consistency together with goal-awareness imply admissibility.
Also, note, that an admissible heuristic does not have to be consistent. When comparing two heuristics
we can use the following notion of dominance

Definition 42. Let h, h′ be two heuristic functions. We say that h dominates h′ if h(s) ≥ h′(s) for all
states s.

The dominance of heuristics is relevant especially in the case of admissible heuristics where the
dominating heuristic typically provides better heuristic guidance as it is closer to the optimal heuristic
h∗. The quality of heuristic guidance can be assessed by comparing the number of states expanded in
the A* search.

3.5 Discussion on the Complexity of Planning
The complexity results of classical planning were discussed in [Bylander, 1994] for STRIPS and in [Bäck-
ström, 1992] for SAS+ (that is, MPT), a concise overview can be found in [Nau et al., 2004]. In this
section, we provide a brief overview and discussion of the existing results. The result for both cases (as
they are equivalent) is that classical planning (that is, its decision variant of plan existence) in the ground
set-theoretic or state-variable representation is PSPACE-complete in the worst case. To show that plan-
ning is in PSPACE is easy. The maximum number of possible states in a STRIPS problem is exponential
in the number of propositions, in particular, 2|P |. In the worst case, the plan may visit all such states and
thus is polynomial in the size of P . In such case, no more than polynomial nondeterministic decisions is
needed to prove the existence of such plan. To show that planning is PSPACE-complete, a polynomial
encoding of polynomially bounded Turing machine to STRIPS planning can be used. As polynomially
bounded Turing machine is PSPACE-complete, the same holds for STRIPS planning. The details of the
compilation are out of the scope of the thesis and can be found in [Bylander, 1994]. An example of
planning problem which indeed is PSPACE-complete is the binary counter or the sokoban puzzle. It is
much more common for particular planning domains to fall in NP or even P. The complexity of used
benchmarks is discussed in Section 3.6.

It is known, that some subsets of the STRIPS planning problems are easier to compute (e.g., [Helmert,
2003]). This knowledge can be used to construct P time heuristics. An example of such is the delete
relaxation. According to [Bylander, 1994], to find a solution to the additive STRIPS problem, that is, a
STRIPS problem without delete effects, falls in the class of polynomial problems (P). Nevertheless, to
find an optimal plan in such a problem is still NP. By ignoring the delete effects, the relaxation heuristics
transform a general planning problem into an additive one.

The complexity analysis of multi-agent planning was one of the main contributions of the Braf-
man&Domshlak’s MA-STRIPS paper [Brafman and Domshlak, 2008]. Obviously, the STRIPS com-
plexity carries over from classical planning, but the crucial question was how the complexity depends
on the number of agents. The authors have based their analysis on the structure of agent interaction
graph defined as IG = 〈A, E〉, where the nodes of the graph are the agents and the edges are defined as
follows

E = {〈αi, αj〉 |∃ai ∈ Ai ∧ ∃aj ∈ Aj s.t. pre(aj) ∩ add(ai) 6= ∅ ∨ pre(aj) ∩ del(ai) 6= ∅}

3.6. BENCHMARK DOMAINS 41

in other words, there is an edge between the agents αi and αj if an action of agent αi affects an action
of agent αj . An important property of the graph IG is its tree width ω. informally, tree width shows
the likeness of the graph to a tree (or a complete graph in the other extreme), for a tree, ω = 1, for
a complete graph Kn, ω = n − 1, and for a n × n planar graph ω = n. More formally, tree width
of a graph G can be defined as the minimum width of a tree decomposition of G among all such tree
decomposition, where the width of a tree decomposition of graph G is the size of the largest set of
vertices of G in the tree decomposition minus one.

Another term used in the complexity analysis of MA-STRIPS is the minimal number δ of public
actions in a plan solvingM (also known as the minimal length of a coordination sequence or a public
plan). The overall complexity of the MA-STRIPS planning problemM is

f(Πi) · exp(δ) + exp(δω)

where f(Πi) is a bound on the individual agents’ planning problem complexity. This shows, that the
MA-STRIPS planning complexity is either dominated by the individual planning problems, or is expo-
nential in the tree width of the interaction graph and the number of coordination points, but not in the
number of agents or the length of the global plan. This result was achieved largely thanks to the exclu-
sion of joint actions which bring an exponential dependency on the number of agents as the number of
joint actions is exponentially dependent on the number of agents (i.e., all combinations of all actions of
all agents need to be considered).

The above analysis builds on the DisCSP-based approach of Brafman&Domshlak and Planning-
First [Nissim et al., 2010] and thus its relevance to search-based approaches such as MAD-A* is not
completely clear, but as the result depends on the exclusion of the joint actions, similar results can be
expected also in the approach based on state-space search.

3.6 Benchmark Domains
To conclude the introduction to Multi-Agent Planning, we provide a description of the MAP domains
used to evaluate the presented algorithms and techniques and also to illustrate the range of problems
which can be formulated using the described formalisms and solved by the MAP planners. The set of
benchmarks used in the thesis is drawn from the literature on the state-of-the-art MA-STRIPS based
planners [Nissim and Brafman, 2014, 2012, Štolba and Komenda, 2014, Torreño et al., 2014, Borrajo,
2013, Maliah et al., 2014]. Later on, we have evaluated some of the algorithms on the domains used in
the Competition of Deterministic and Multi-Agent Planners (CoDMAP) [Komenda et al., 2016] which
are detailed at the end of this section.

The multi-agent domains are based on the classical IPC domains converted to multi-agent domains
by choosing some objects to be treated as agents. This choice is arbitrary and we adhere to the conven-
tions used in the cited papers. All agents are chosen so that each action is assigned to exactly one agent
(this is required by the MA-STRIPS formalism), sometimes necessitating minor changes in the domain
descriptions. Privacy is determined by the MA-STRIPS privacy definition—a fact is public if used by
actions of multiple agents, an action is public if it uses some public fact. Here, we describe the domains
and their complexities in more detail:

blocksworld In classical blocksworld domain, the task is to reassembly block towers on a table to
different combinations. The multi-agent domain is the same as the classical blocksworld domain
except for having multiple hands as agents, the holding and free facts being private. Each agent
can solve the problem on its own, which makes it hard for MAP as for the projected heuristic
it seems that the solution by other agents is cheaper (ignoring the private preconditions). All
actions in the domain are public but have some private precondition, which means there are some
dependencies among the actions not known to all agents. As an example, agents do not know
that other agents must use pick-up before put-down, it seems to them that other agents can simply

42 CHAPTER 3. MULTI-AGENT PLANNING

move blocks by the put-down action without picking them up first, that is ignoring the necessary
preconditions of the pick-up action such as that the block is free (on top). In [Helmert, 2003],
the complexity of plan existence for blocksworld has been shown to be in P, whereas the optimal
planning to be in NP.

depot In depot, the task is to move crates between depots and distributors, where the crates are located
on pallets, thus combining a blocksworld-like domain with transportation. The trucks, depots, and
distributors are the agents. Most of the actions are public, nearly a quarter of them have private
preconditions. Only the drive-truck actions are completely private. Truck locations and truck
loads (crates) are always private. The position of a crate is specified by a fact on. A crate can be
either on a hoist at a depot or on a truck. When it is on a truck, the fact is private.

driverlog In driverlog, the drivers are driving trucks between locations. The drivers are agents (the
problem is modified so that each action has the driver as a parameter). Their locations, walk
action, and the fact that a driver is driving a truck are private, everything else is public. Most of
the problems can be solved by a single agent, but unlike the blocksworld domain, this does not
cause agents to significantly underestimate costs of other agents (the ignored costs are basically
only those of walking actions, which are not that significant).

elevators08 The task in the elevators domain is to move people between floors using a number of
slow and fast elevators, such that not all elevators stop at each floor. The elevators are the agents.
The locations of passengers are public only if shared among multiple elevators (i.e., changing
floors). Public actions are only those board and leave actions involving a floor accessible to
multiple elevators. Most of the problems can be solved by a subset of agents (typically the slow
elevators). All public actions have private preconditions on the state of the lift, its capacity, etc.
which makes the agents significantly underestimate the costs of other agents.

logistics00 The logistics domain contains two types of agents: trucks and planes, transporting pack-
ages between cities. The goal specifies only the locations of packages. The transporting task
often requires cooperation of several agents (that is so in the classical benchmark domains as
well). Locations of packages accessible to only one truck are private to that truck. The loading
and the unloading actions at these locations are private as well. The multi-agent logistics domain,
similarly to the classical variant, is suitable for the relaxation heuristics. In [Helmert, 2003], the
complexity of plan existence for logistics has been shown to be in P, whereas the optimal planning
to be in NP.

openstacks The openstacks problems contain two agents: a manager and a manufacturer, which
are added atop of the classical IPC domain. The goal of the problems is to produce and ship
several orders. The manufacturer has a number of orders. The orders are started and shipped by
the manager agents. Each order is for a combination of different products, and the manufacturer
can only make one product at a time. The stacks are temporary storage spaces for open orders.
The information about made products is private. The rest of the information is public and the two
agents have to coordinate finishing the orders. Shipment is public because it is in the goal.

rovers The domain models Mars exploration rovers, each represented by one agent, moving between
locations and performing experiments using various tools. The goal is to collect samples and
communicate acquired data. Rovers problems can be well decomposed as each agent has its
own private set of targets and reachable locations (even if a location is shared, the rovers do not
interfere), but the communication channel is public, shared and imposes coordination constraints.
If a sample can be analyzed only by a single rover, the location of this sample is the agent’s
private fact. Rovers is another domain suitable for relaxation heuristics, in contrast to logistics,
the number of required interactions is lower, however, the private plans are longer.

3.6. BENCHMARK DOMAINS 43

satellites The problems of the domain contain agents representing satellites independently taking
images in space by various instruments, which have to be powered from a limited on-board power
source. The state of the instruments is private to the particular satellites. Pointing directions
of each satellite are private unless they appear in the goal. The domain is almost completely
decomposed to agents as each satellite is practically independent, sharing only the global goal.

sokoban Sokoban is a classical puzzle game, where the player is pushing blocks from their initial
position to the goal position. Any block can end up in any goal position, but neither block nor the
player can move through a block. The blocks are placed in a restricted labyrinth-like room and
thus if a block is pushed too near to a wall, it can never be moved away from that wall, as the
blocks can only be pushed, not pulled. This results in a presence of a large number of dead-ends,
which is the major source of complexity in Sokoban. The multi-agent version introduces more
players pushing the blocks which need to coordinate in order to avoid ruining each other’s effort.
In some configurations, a single agent is able to solve the complete problem, but it is easy to see
that in many configurations this is not the case. Sokoban is PSPACE-complete [Culberson, 1997],
placing it among the hardest planning problems.

woodworking08 In the woodworking domain, a certain amount of raw wood has to be processed by
various tools to acquire certain shape, color, etc. In the multi-agent version, each tool is an agent.
All facts and actions in this domain are public, except for the fact stating that a high-speed saw
is empty or loaded. Subsequently, loading and unloading the high-speed saw are the only public
actions with private preconditions.

zenotravel The zenotravel problems contain agents representing planes with limited fuel. The goal is
to transport passengers between cities and park some of the planes at designated airports. Only the
planes are represented by agents. Positions of planes are private and positions of passengers are
public. Fly and zoom (fast fly) actions are private. The fuel levels and the positions of passengers
in cities reachable by only one plane are also private.

In addition to the domains described above, the CoDMAP competition (see Appendix A) introduced
two new domains1 which we have used in the evaluation of optimal planning algorithms (Section 6).
The new domains are not based on any classical planning domain and are the following:

Taxi Problems model on-demand transport in a city (see Figure 3.6.1-left). There are two types of
agents: taxis and passengers. Each taxi and passenger are always at a particular location. A location can
be free of taxis and two locations can be directly connected. Connected locations form a topology of
the city. Each taxi can transport only one passenger from the location it stays at and only to a free drop
off location (a location containing no other taxis at that time). A taxi can drive only between connected
locations. All facts and action are public. The problem instances in the competition ranged from 2 taxis
and 2 passengers to 3 taxis and 7 passengers (each representing an agent).

Wireless Problems model distributed gathering, transmission, and aggregation of data by sensor nodes
in a wireless sensor network. The goal is to relay all data to a base station (see Figure 3.6.1-right). The
base and sensors are represented by agents, where some of them are neighbors (they are in the range of
their radios). The neighbor relation defines the topology of a virtual ad-hoc radio network among the
sensors and the base. Sensors have a private battery charge of four possible levels: zero, low, normal
and high. A sensor with more than zero energy can do a measurement and generate sensory data. Data
generation decreases the battery capacity of a sensor node by one level. A sensor can add measurement
data (possibly of other sensors) to a message (if it currently has the data and the message). This operation
is called data aggregation and may be useful to reduce the number of transmissions in the network. A

1The domains were conceived and developed by Daniel Kovacs.

44 CHAPTER 3. MULTI-AGENT PLANNING

Figure 3.6.1: Example problem instances of the two novel CoDMAP domains: taxi (left) and wireless
(right). The figures represent initial states of the easiest instances of the domains. Dashed arrows show
the goals of individual agents. In the taxi problem, both passengers want to be transported to the central
location and the taxi drivers want to end at the same locations they started from (the garage). In the
wireless problem, all five sensor nodes are initially at normal battery level, and there is only one allowed
message in the system represented by an envelope initially at sensor 1. Data from all sensors has to be
gathered by the base station represented by a computer.

sensor with more than zero battery charge can send a message to a neighboring sensor or to the base
station, which decreases its energy by one level. Receiving a message as well as extracting measurement
data from a message does not change the energy level. The number of messages usable in parallel is
limited, however, they can be reused sequentially. The data can be gathered either in an aggregated
fashion, or without aggregation, depending on the number of allowed messages in the problem. The
number of available messages can be set above the number of nodes, to provide complete freedom to
a planner, when deciding about aggregation, thus efficiency and quality of the virtual communication.
The energy levels of the sensors are private. The problem instances had always 1 base station, and 5 to
9 sensor nodes (6–10 agents).

Chapter 4

Distributed Computation of
Relaxation Heuristics

The first research objective of the thesis is to answer the following question:

(Objective 1) How to compute classical planning heuristics in a distributed way?

We first focus on the case of satisficing planning, that is, the task to find any valid solution to the
planning problem, regardless of its length or cost. For some planning problems, this is easier than
finding the optimal plan (e.g., logistics as shown in [Helmert, 2003]), but for some problems, even
finding any solution is NP-hard or PSPACE-complete (e.g., sokoban).

The heuristics for satisficing planning are not required to be admissible (Definition 41(ii)), as often
they are used in the Greedy Best-First Search scheme (see Section 5.1) or even greedier search schemes
such as Enforced Hill-Climbing [Hoffmann and Nebel, 2001]. Thus, the main aim of the heuristic design
is to obtain informed heuristics, that is, heuristics which give close estimates of the actual solution length
(or cost) regardless whether they are underestimating or overestimating the optimal solution.

In later IPC competitions, the quality of plans is assessed even in satisficing planning, which leads
to the use of less greedy search schemes such as weighted-A* in LAMA [Richter and Westphal, 2010]
but still using inadmissible heuristics.

This chapter describes our efforts in distributing the inadmissible relaxation heuristics. First, we de-
scribe the common principles of relaxation heuristics (Section 4). Next, in Section 4.1, we proceed with
our first approach to the distribution of the FF heuristic [Hoffmann and Nebel, 2001] published in [Štolba
and Komenda, 2013]. This approach aimed at returning provably the same results (i.e., heuristic values)
to the centralized version of the FF heuristic, but showed to be not very efficient. Our next approach
published in [Štolba and Komenda, 2014] and described in Section 4.2 is more general as it allows to
distribute multiple relaxation heuristics, in particular, hmax and hadd (both [Bonet and Geffner, 1999]),
and also hFF. This general approach discarded the equality of the results to the centralized counterparts
for the sake of efficiency. Finally, Section 4.3 describe a specific approach to the distribution of the
FF heuristic aiming mostly for efficiency again (but using completely different approach than in the
previous case), but also for privacy preservation.

Relaxation Heuristics
Probably the most successful and most studied family of heuristics for satisficing planning are the
delete relaxation heuristics. The idea behind delete relaxation heuristics is to simplify the problem
by ignoring negative effects of actions. In the STRIPS formalism, this means that an action a =
〈pre(a), add(a), del(a)〉 is transformed to a relaxed form a+ = 〈pre(a), add(a), ∅〉. A set of re-
laxed actions A+ = {a+|a ∈ A) is used in the definition of a classical relaxed planning problem

45

46 CHAPTER 4. DISTRIBUTED COMPUTATION OF RELAXATION HEURISTICS

Π+ = 〈P,A+, sI , G〉 respective to the original planning problem Π = 〈P,A, sI , G〉. By relaxation,
the whole problem becomes additive, meaning that whenever a fact is added it is never deleted again
and as both preconditions and goal are positive in STRIPS, any action that becomes applicable remains
applicable in all subsequent relaxed states. The solution of a relaxed problem Π+ is a relaxed plan π+.
Notice that thanks to the additivity of the relaxed problem, the relaxed plan can be represented as an
unordered set of relaxed actions. From such set, the relaxed plan can be reconstructed by iteratively
applying all actions as soon as they are applicable. This way, all facts achievable by any permutation of
the actions in π+ are achieved. This also means that in an optimal relaxed plan, no action is used more
than once.

An optimal relaxed heuristic h+ is defined as the length of an optimal relaxed plan π+. In contrast to
STRIPS planning, which is PSPACE-complete, finding an optimal relaxed plan π+ is NP-Complete [By-
lander, 1994], which is still impractical as a heuristic. In order to lower the complexity even more,
approximations of h+ are used in classical planning. The most commonly used approximation in sat-
isficing planning is to use the length of a sub-optimal relaxed plan (RP) instead of an optimal one (the
FF heuristic [Hoffmann and Nebel, 2001]). Finding a sub-optimal RP can have as low as polynomial
complexity and therefore can be fast enough in practice.

The most commonly known relaxation heuristics are the hmax, hadd, and hFF heuristics. The hmax

heuristic provides an admissible lower-bound estimate of h+ by assuming that each fact can be achieved
by the cheapest action and in order to achieve an action, only the cheapest precondition must be achieved
(that is, all other preconditions are achieved as side-effects). The hadd works on a similar principle ex-
cept for its pessimistic assumption that in order to achieve an action, all preconditions must be achieved
separately and thus their heuristic costs can be added together. Both mentioned heuristics can be de-
fined by a simple set of recursive equations (as in Equation 4.2.1-4.2.3) and computed by a relaxed
reachability analysis. The hFF proceeds by actually computing a relaxed plan, albeit a suboptimal one.

The main idea behind the FF heuristic is to find a sub-optimal relaxed plan by analyzing which facts
are successively reachable by applied relaxed actions (reachability analysis). From this analysis, the
relaxed plan is determined in a backward fashion. The principle can be understood as based on a notion
of supporter action a of fact p which is an action a s.t. p ∈ add(a). Let Π+ = 〈P,A+, sI , G〉 be a
relaxed planning problem, then the principle of relaxed plan extraction is the following:

1. Initialize a set of unsupported facts U to contain all goal facts and a set of supported facts S to
contain all initial state facts: U ← G,S ← sI .

2. Move an unsupported fact p from U to a set of supported facts S and determine its supporter a.

3. Mark all preconditions of a as unsupported if not supported already: U ← U ∪ (pre(a) \ S).

4. Loop 1–3 until all facts in U are supported: until U \ S = ∅.
There are many ways of implementing this high-level scheme (which differ mainly in the way the
supporters are chosen) and many methods to perform the reachability analysis.

In general, the relaxed reachability analysis can be performed using Algorithm 1. The reachabil-
ity analysis can be used to find all reachable facts in the relaxed planning problem and to determine
whether the relaxed planning problem has a solution, if it does not, also the original planning problem
is unsolvable (the other direction does not hold). Apart from being the base for relaxation heuristics
(using a more complex algorithm), relaxed reachability analysis is often used in the grounding process
from PDDL to STRIPS or MPT (e.g., [Helmert, 2006]). Note that because facts are only added and in
each iteration at least one fact is added, the number of iterations of Algorithm 1 is linear in the size of
P .

Relaxation Heuristics in Multi-Agent Planning
Before describing the particular approaches to the distributed computation of the particular relaxation
heuristics, we introduce a number of common definitions. A baseline in distributed heuristic search is an

47

Algoritmus 1: Relaxed Reachability Analysis

1 Procedure Relaxed-Reachability(A+, s)
2 R0 ← s; //The set of reachable facts (relaxed state)
3 k ← 0;
4 while Rk 6= Rk−1 do
5 Ak ← {a ∈ A+|pre(a) ⊆ Rk}; //Find all applicable actions
6 Rk+1 ← Rk ∪ {p|p ∈ add(a) : ∀a ∈ Ak}; //All reachable facts
7 k ← k + 1;

8 return Rk;

i-projected (Definition 40) relaxation heuristic is computed on a relaxed i-projected problem, formally

ΠB+
i =

〈
Pi, A

B+
i = {a+|a ∈ AB

i }, sBiI = sI ∩ Pi, G
〉
. (4.0.1)

In the next sections we describe a number of approaches to the distribution of the relaxed heuristics,
namely hmax, hadd, and hFF. The distributed relaxation heuristics are computed on a relaxed multi-
agent problem, formally for a set A = {αi}ni=1 of agents

M+ = {Π+
i }

n
i=1

where Π+
i =

〈
Pi, A

+
i , sI ∩ Pi, G

〉
is the relaxed problem of agent αi.

The distributed reachability based on Algorithm 1 is shown in Algorithm 2. The principle is straight-
forward. The agent αi initiating the analysis starts by performing the reachability analysis using his set
of actions A+

i (by calling Algorithm 1). If any facts were added, the newly reachable public facts are
broadcasted to all other agents. Each agent αj , upon receiving the set of reachable facts, extends the set
using its respective relaxed actions A+

j using the same procedure and thus broadcasts the result. When
αi receives such result, cannot extend it anymore, and there are no possible replies from other agents,
the distributed procedure terminates and returns the resulting set of globally reachable facts.

Algoritmus 2: Distributed Relaxed Reachability Analysis

1 Procedure Distributed-Relaxed-Reachability(αi, A+
i , s

Bi)
2 RG ← sBi; //The set of globally reachable facts (relaxed state)
3 extendReachability(αi, A

+
i , R

G);

4 Procedure extendReachability(αi, A+
i , R

G)
5 RL ←Relaxed-Reachability(A+

i , R
G)\RG;

6 if RL 6= ∅ then
7 send MREACH =

〈
αi, R

L ∩ P pub
i

〉
to all αj 6=i;

8 RG ← RG ∪RL

9 else if no messages pending then
10 return RG

11 Procedure receiveMessage(αi,MREACH =
〈
αk, R

pub
〉
)

12 RG ← RG ∪Rpub

13 extendReachability(αi, A
+
i , R

G);

The multi-agent distribution of relaxation heuristics can be based either on the distribution of the
reachability analysis as outlined in Algorithm 2 and described in much more detail in in Section 4.1 and

48 CHAPTER 4. DISTRIBUTED COMPUTATION OF RELAXATION HEURISTICS

Section 4.2, or on the distribution of the relaxed plan extraction as described in Section 4.3. The privacy
properties of distributed relaxation heuristics are analyzed in Section 7.3.4.

An alternative approach to distributed reachability analysis was published in [Torreño et al., 2014],
where the reachability is performed using Domain Transition Graphs (DTGs) [Helmert, 2006]. The
DTG-based FF heuristic follows a similar high-level scheme described above. The difference is, that
the reachability is not assessed using a supporter relation based on an RPG, but instead by an existence
of a path in the respective DTG. The relaxation here is not achieved by ignoring delete effects, but by
accumulating the reachable variable-value pairs. Note that this is in accordance with the most common
interpretation of delete relaxation in FDR, which is an accumulating semantics (variables are accumulat-
ing values instead of switching). The difference is, that the accumulating semantics is exhibited only in
the set of supported facts, but the DTGs are unaffected and keep their switching semantics. The benefit
of the DTG heuristic for MAP is assumed by Torreño et al. [2014] to be that the underlying structure
(the DTGs) can be built only once (and the transitions allowed by other agents cached), whereas the
distributed RPG has to be built for each state from scratch. We compare the approach of Torreno with
our approach in Section 4.4.4.

4.1 Multi-Agent Fast-Forward Heuristic
In this section, we present a formal and algorithmic adaptation of the Fast-Forward hFF [Hoffmann and
Nebel, 2001] heuristic for multi-agent planning, originally published in [Štolba and Komenda, 2013].
We argue that such treatment is important as it demonstrates algorithmic challenges in the decentraliza-
tion of computation of hFF and other related heuristics. Additionally, since the hFF heuristic is based
on relaxed planning, we propose a multi-agent (MA) approach for building factored relaxed planning
graphs among the agents.

4.1.1 Agent Relaxed Planning Graph

A classical technique for finding the relaxed plan is to build a Relaxed Planning Graph (RPG). RPG is
a graph representing the reachability of facts and applicability of actions in the relaxed problem.

To obtain a more informed global heuristic estimate in a MA planning problem using the estimation
based on an RPG, the RPG has to be decentralized. In this work, we propose a distributed global RPG in
form of a set of distinct Agent RPGs. Such Agent RPG (ARPG) contains only facts of its owner agent.
The initial state is the projection for that agent and since the goals are treated as public, all agents have
complete goals in their ARPGs. The usage of actions is straightforward in the case of owner agent’s
internal and public actions which are used equally as in a classical RPG. Additionally, the Agent RPGs
are extended by projections of other agents’ public actions which were reachable by their particular
owners. This extension enables the agents to take other agents’ capabilities into account, but only at the
time points, where their owners are able to reach them.

Definition 43. An agent relaxed planning graph (ARPG) is a directed, labeled and layered graphRi =
(Pi ∪ AB+

i , E) of one particular agent αi for a relaxed multi-agent planning taskM+. As in RPG, the
nodes of the graph represent propositions Pi and actions A+

i . The arcs E represent links between the
propositions and the actions.

A k-th proposition layer and action layer will be denoted as P ki and Aki respectively. The layers
alternate, so that (P 0

i , A
0
i , P

1
i , A

1
i , . . . , A

n−1
i , Pni) and all layers P ki ⊆ Pi and all layers Aki ⊆ Ai. The

first proposition layer P 0
i contains nodes labeled by propositions of the agent’s projection of the initial

state, formally
P 0
i = {p|p ∈ sI ∩ Pi}.

Each action layer contains action nodes for all applicable relaxed actions of the agent αi in a state
represented by the previous fact layer and public projections of other agents’ public actions reachable

4.1. MULTI-AGENT FAST-FORWARD HEURISTIC 49

Figure 4.1.1: Logistics example with three agents.

in the same layer

Aki = {a|a ∈ AB+
i , pre(a) ⊆ P ki } ∪

⋃
j∈1..n,j 6=i

{bBi|b ∈ P kj }.

In all successive fact layers, each fact p is copied to the next fact layer by using a special no-op action
εp = 〈{p}, {p}, ∅〉 and transforms the facts by actions in the previous action layer, since for all relaxed
actions del(a) = ∅, we can write

P ki = P k−1
i ∪ {p|p ∈ add(a), a ∈ Ak−1

i }.

Finally, one of the following terminating conditions has to hold for the last fact layer Pni :

• the last fact layer fulfills the goal condition G ⊆ Pni ,

• or Pni = Pn−1
i , meaning there are no additional actions which can extend further fact layers (i.e.,

a fixed-point was reached).

The arcs in ARPG represent applicability and application of actions in the relaxed states (fact layers).
We can split the arcs between two fact layers P ki and P k+1

i into three groups. The first one contains arcs
among facts of layer P ki and preconditions of actions in a layer Ai. The second one contains relation
between effects of actions and next induced fact layer P k+1

i . Additionally, there are arcs for the no-op
actions respective to all facts from the previous layer . Formally,

Epre
i,k = {(pk, ak)|pk ∈ pre(ak), ak ∈ Aki },

Eadd
i,k = {(ak, pk+1)|ak ∈ Aki , pk+1 ∈ add(ak)},
Eεi,k = {(pk, pk+1)|pk ∈ P ki , pk+1 ∈ Pk+1, pk = pk+1}

and Eki = Epre
i,k ∪ Eadd

i,k ∪ Eεi,k where ε represents the no-op action. Now we will provide an algorithm
for distributed building of ARPGs.

Distributed RPG Algorithm

The algorithm starts with each agent building an ARPG using only its own internal and public actions.
An iterative process is then initiated, in which the agents exchange information about their public actions
and extends their ARPGs with projected public actions of other agents. The algorithm terminates when
the goal (or a fixed-point) is globally reached and there are no more messages to process. The full details
and pseudocode of the ARPG building algorithm are provided in [Štolba and Komenda, 2013], here, we
briefly rephrase the main principles of the algorithm and show how it works on an example.

In the init phase, a Relaxed Planning Graph Ri is built using only agent’s own actions Ai from
the initial state projection sBiI . A function e : Apub

i → N is used to map the agent’s public actions
to their earliest layer of appearance (the earliest layer of appearance of an action a in a RPG or an
ARPG is the first action layer, where a is applicable). After the initialization phase, reaching the goal
(or a fixed-point) is checked, and if positive, all agents are informed that the agent is idle now. Next, a
check procedure is responsible for checking whetherRk contains any public actions. If so, each public
action is sent to all other agents αj ∈ A \ αi as a public projection aB together with its earliest layer of

50 CHAPTER 4. DISTRIBUTED COMPUTATION OF RELAXATION HEURISTICS

fly-a-B-C fly-a-C-B

load-t1-A
drive-t1-A-B

load-t1-A
unload-t1-A
unload-t1-B
drive-t1-A-B
drive-t1-B-A

drive-t2-D-C drive-t2-D-C
drive-t2-C-D

load-t1-A
load-t1-B
unload-t1-A
unload-t1-B
drive-t1-A-B
drive-t1-B-A

fly-a-B-C fly-a-C-B
unload-t1-B(t1)

load-t1-A
drive-t1-A-B

load-t1-A
unload-t1-A
unload-t1-B
drive-t1-A-B
drive-t1-B-A

drive-t2-D-C drive-t2-D-C
drive-t2-C-D
unload-t1-B(t1)

load-t1-A
load-t1-B
unload-t1-A
unload-t1-B
drive-t1-A-B
drive-t1-B-A

fly-a-C-B
unload-t1-B(t1)
load-a-B

fly-a-C-B
unload-t1-B(t1)
load-a-B
unload-a-B
unload-a-C

fly-a-B-C fly-a-C-B
unload-t1-B(t1)

load-t1-A
drive-t1-A-B

load-t1-A
unload-t1-A
unload-t1-B
drive-t1-A-B
drive-t1-B-A

drive-t2-D-C drive-t2-D-C
drive-t2-C-D
unload-t1-B(t1)

load-t1-A
load-t1-B
unload-t1-A
unload-t1-B
drive-t1-A-B
drive-t1-B-A

fly-a-C-B
unload-t1-B(t1)
load-a-B

fly-a-C-B
unload-t1-B(t1)
load-a-B
unload-a-B
unload-a-C

load-t1-A
load-t1-B
unload-t1-A
unload-t1-B
drive-t1-A-B
drive-t1-B-A
unload-a-C(a)

drive-t2-D-C
drive-t2-C-D
unload-t1-B(t1)

drive-t2-D-C
drive-t2-C-D
unload-t1-B(t1)
unload-a-C(a)

drive-t2-D-C
drive-t2-C-D
unload-t1-B(t1)
unload-a-C(a)
load-t2-C

at-a-B at-a-B
at-a-C

at-a-B
at-a-C

at-p-A
at-t1-A

at-p-A
at-t1-A
at-t1-B
in-p-t1

at-p-A
at-p-B
at-t1-A
at-t1-B
in-p-t1

at-t2-D at-t2-D
at-t2-C

at-p-A
at-p-B
at-t1-A
at-t1-B
in-p-t1

at-t2-D
at-t2-C

at-a-B at-a-B
at-a-C

at-a-B
at-a-C
at-p-B

at-p-A
at-t1-A

at-p-A
at-t1-A
at-t1-B
in-p-t1

at-p-A
at-p-B
at-t1-A
at-t1-B
in-p-t1

at-t2-D at-t2-D
at-t2-C

at-p-A
at-p-B
at-t1-A
at-t1-B
in-p-t1

at-t2-D
at-t2-C

at-a-B
at-a-C
at-p-B
in-p-a

at-a-B
at-a-C
at-p-B
in-p-a

at-a-B at-a-B
at-a-C

at-a-B
at-a-C
at-p-B

at-p-A
at-t1-A

at-p-A
at-t1-A
at-t1-B
in-p-t1

at-p-A
at-p-B
at-t1-A
at-t1-B
in-p-t1

at-t2-D at-t2-D
at-t2-C

at-p-A
at-p-B
at-t1-A
at-t1-B
in-p-t1

at-t2-D
at-t2-C

at-a-B
at-a-C
at-p-B
in-p-a

at-a-B
at-a-C
at-p-B
in-p-a

at-p-A
at-p-B
at-t1-A
at-t1-B
in-p-t1

at-t2-D
at-t2-C

at-t2-D
at-t2-C
at-p-C

at-t2-D
at-t2-C
at-p-C
in-p-t2

drive-t2-D-C
drive-t2-C-D
unload-t1-B(t1)
unload-a-C(a)
load-t2-C
unload-t2-D

a:

t2:

t1:

1)

2)

3)

a:

t2:

t1:

a:

t2:

t1:

at-t2-D
at-t2-C
at-p-C
at-p-D
in-p-t2

Figure 4.1.2: Distributed building of Agent Relaxed Planning Graphs decomposed into iterations.

appearance e(a), unless it was already sent with equal or lower e(a) before (this can happen in future
check calls).

In the algorithm, there are four asynchronous message types possibly received by αi from some
other agent αj . The first one contains a projection of other agent’s public action aB together with its
earlier layer of appearance e(a). If received, the action aB is integrated into Ri on the e(a)-th layer
and the change is propagated into further layers, so that all actions newly applicable in the following
layers are applied accordingly. Then the built ARPG is checked, whether new public actions (and public
actions newly applicable on earlier layers) are reachable and whether the goal or the fixed-point was
reached. The last three messages maintain the control information needed for distributed termination
detection [Chandy and Lamport, 1985]. The acks counter keeps track of the number of sent external
actions and postpones termination until all sent actions are processed. If an idle message is received,
there are no pending acks and the number of idle agents is equal to |A|, the algorithm terminates and the
resulting ARPGRi is returned. Since not-idle and ack messages are sent in this particular order and the
messages from one agent are presumed to keep ordering, the algorithm terminates synchronously when
all external actions are processed and no messages are pending.

Example. (Logistics) In Figure 4.1.2, the ARPG building algorithm is applied on a slightly larger
logistics example depicted in Figure 4.1.1. Although the algorithm is running asynchronously, we can
decompose it for clarity into several iterations. In the first iteration, the ARPGs are built using only
the actions of the respective agents a, t1 and t2 (airplane and two trucks). Notice the bold green action
unload-t1-B, which is a public action of the truck t1, can be applied thanks to the initial position of
the package. In the next iteration, a projection of the public action is broadcasted and received by

4.1. MULTI-AGENT FAST-FORWARD HEURISTIC 51

fly-a-B-C unload-t1-B(t1)

load-t1-A
drive-t1-A-B

unload-t1-B

drive-t2-D-C

load-a-B unload-a-C

unload-a-C(a) load-t2-C

at-a-B at-a-C at-p-B

at-p-A
at-t1-A

at-t1-B
in-p-t1

at-p-B

at-t2-D at-t2-C

in-p-a at-a-C

at-p-C in-p-t2 unload-t2-D

a:

t2:

t1:

at-p-D

Figure 4.1.3: Multi-agent Relaxed Plan

other agents. Upon receiving, their ARPGs are updated, which for the airplane means that the ARPG is
expanded with further layers. Another public action unload-a-C is applied and therefore broadcasted.
In the third iteration, the projection of the airplane’s unload action is added to the ARPGs of the trucks.
For truck t1 it has no effect, but it allows truck t2 to expand the ARPG and reach goal at-p-D. Notice
that when the projected unload-a-C(a) was received by truck t2, its ARPG was first extended to have
enough layers for the action to be added to the correct layer.

Although not shown in Figure 4.1.2, the algorithm would continue with one more iteration after
broadcasting the public action reached by truck t2, resulting in all agents having ARPGs with the same
number of layers and all having reached the goal. Additionally, the algorithm does not have to terminate
when the goal is reached but can continue until the fixed-point, which can be desirable in some situations
and which is also the case when the goal is not reachable.

All ARPGs together form a single factored RPG R = {Ri}ni=1 which is in [Štolba and Komenda,
2013] shown to be equal to the RPG of a centralized problem ΠG equal toM. The centralized RPG can
be obtained by performing the union of each fact and action layer and by removing the projected actions
from the action layers. Formally for each k, P k =

⋃n
i=1 P

k
i and Ak =

⋃n
i=1(Aki ∩ Ai). We omit the

proof here for brevity as the technical details of the proof are not important for further understanding of
how the heuristic works.

4.1.2 Distributed Relaxed Plan Extraction

With the help of the ARPGs, the Fast-Forward heuristic estimate can be straightforwardly adapted to
the multi-agent setting. We will denote such heuristic as hMAFF. The multi-agent (MA) relaxed plan
backing the hMAFF estimate can be in general spread over all ARPGs of the agents in the team as
illustrated in Figure 4.1.3. The most left achieving actions have to be considered from all agents. In the
case of projected public actions, the owner agent has to define part of the the relaxed plan, possibly using
its internal actions, to achieve the internal facts of the provided public action. Additionally, the relaxed
plan has to share public actions which are required by more agents at the same layers. The private parts
of the relaxed plan do not have to be communicated. The final heuristic estimate is the count of actions
of the MA relaxed plan.

Let π+ = {π+
i }ni=1 be the relaxed plan forMs and let m = maxi∈1..n|π+

i | . Each π+
i is defined

using the ARPG Ri of agent αi built from the state s. The MA relaxed plan π+ is defined recursively
from the last action layer m for each agent αi. The action layer Am∗i ⊆ Ami is a minimal set of actions
from Ami , achieving the goal facts. For each two successive action layers Ak−1∗

i , Ak∗i of π+
i , the layer

Ak−1∗
i is a minimal set of actions from Ak−1

i achieving all preconditions of Ak∗i . If there is a no-op arc
(pk−1, pk) ∈ Eεi,k , the fact pk does not need an explicit achieving action from this particular layer as it
will be achieved by an action from an earlier (more left) layer.

Moreover, if a public projection of some other agent’s action is selected as an achiever, formally
aB ∈ Aki for some k such that a ∈ Aj , then also a ∈ Akj . Algorithmically this is done by sending a
message from αi to αj informing the latter that its action has been selected in the layer k.

This principle effectively selects the globally most-left achievers of a fact as proposed by FF heuris-
tic. Thus, hMAFF(s) can be computed by first building the set of ARPGs R = {Ri}ni=1 for the re-
laxed MA planning problemM+, then simultaneously extracting relaxed plans πi for each agent while
sharing the information on use of the public projected actions and finally summing the lengths of the
resulting relaxed plans, excluding projections of other agent’s public actions.

52 CHAPTER 4. DISTRIBUTED COMPUTATION OF RELAXATION HEURISTICS

Theorem 44. Let a MA relaxed plan {π+
i }ni=1 be a solution of the MA relaxed problem M+

s =
{Π+

i }ni=1, where Π+
i =

〈
Pi, A

+
i , s ∩ Pi, G

〉
and s is the state, we are estimating the cost for. Let

hMAFF(s) =

n∑
i=1

|πi ∩Ai|

then hMAFF(s) = hFF(s) where hFF(s) is computed on the global problem ΠG respective toM.

The full proof can be found in [Štolba and Komenda, 2013]. Intuitively, as the underlying structure
of ARPGs is equivalent to an RPG of the global problem and the construction of the relaxed plan
follows the same rules as in the centralized version, also the resulting hMAFF relaxed plan is equal with
the exception of the publicly projected actions, which are removed in the computation.

Example. (Logistics) Continuing with the logistics example in Figure 4.1.1, based on the set of ARPGs
in Figure 4.1.2 we proceed to produce the distributed relaxed plan as in Figure 4.1.3 as follows. First the
agent t2 needs to achieve the goal at-p-D. This can be done using his private action unload-t2-D, which
in turn requires the preconditions in-p-t2 and at-t2-D to be satisfied. The latter is satisfied by a no-op
action (propagating right to the initial state), the former is satisfied by a load action of t2. When the
unload-a-C(a) action is reached, as it is a projected action of agent a, a is informed about the necessity
of unload-a-C(a) in layer A3

t2
and thus also of unload-a-C in A3

a . Now the agent a needs to satisfy
preconditions of unload-a-C(a). This process continues until all preconditions of all agents are satisfied
by the initial state. The resulting heuristic is obtained by the sum of the lengths of the relaxed plans of
particular agents minus the number of projected actions used which is (4− 1) + 3 + (4− 1) = 9.

4.2 Recursive Distributed Relaxation Heuristics
In this section, we present the distribution of a general principle of delete relaxation heuristics in MA-
STRIPS planning with state-of-the-art implementation approaches, originally published in [Štolba and
Komenda, 2014]. We focus on the following classical delete relaxation heuristics: (i) inadmissible hadd,
(ii) admissible hmax both [Bonet and Geffner, 1999] and (iii) inadmissible hFF, which was published
in [Hoffmann and Nebel, 2001]. In the following sub-sections, we present efficient multi-agent distri-
butions of those three heuristics. The distribution principle aims for efficiency but does not guarantee
admissibility even for the distributed variant of the hmax heuristic. For an admissible distributed hmax

heuristic, see Section 6.1.

4.2.1 Distribution of the Additive and Max Heuristics
Let Π+ = 〈P,A+, sI , G〉 be a classical STRIPS relaxed problem with a cost function cost : A+ → R+

0 .
Both additive and max heuristics follow a very similar principle and are typically formalized as a set of
recursive equations, such the following for hadd:

hadd(P, s) =
∑

p∈P hadd(p, s) (4.2.1)

hadd(p, s) =


0 if p ∈ s
hadd(arg mina∈O(p) [hadd(a, s)] , s)

otherwise
(4.2.2)

hadd(a, s) = cost(a) + hadd(pre(a), s), (4.2.3)

where P is a set of propositions (i.e., goal or action preconditions), s is a state, a is an action and O(p)
is a set of actions which achieve p, formally O(p) = {a ∈ α|p ∈ add(a)}. The equations defining hmax

4.2. RECURSIVE DISTRIBUTED RELAXATION HEURISTICS 53

are the same except for Equation 4.2.1 where is a max function instead of sum, therefore everything we
state about hadd applies analogously to hmax.

In the multi-agent setting, where M+ = {Π+
i }ni=1 and each Π+

i =
〈
Pi, A

+
i , sI ∩ Pi, G

〉
, some

of the actions in the arg min clause in Equation 4.2.2, where we are choosing the minimal cost action
among actions achieving the proposition p, may be projections of other agent’s public actions. In such
a case, there are two options how to handle the situation.

One option is to ignore the fact that the action is a projection and continue as if it was an ordinary
action. This way, we may leave out some preconditions of the action (private to the owning agent), but
we still get lower or equal estimate of the action cost (by including the private preconditions we can
only increase the cost), overall obtaining a projected heuristic. Obviously, projected heuristics require
no communication at all.

The other option is to always compute the true estimate. Let αi be the computing agent and αj the
owner of such action a and s the state for which the heuristic is computed. In order to do so, the agent
αi sends a request r =

〈
aB, sBi

〉
to the agent αj to obtain the true estimate of the cost of the action

aB. Upon receiving the request, agent αj calls hadd(pre(a), sBj) and returns the result in a reply. It is
obvious that in order to compute the heuristic estimate, agent αj may need to send similar requests to
other agents, or even back to agent αi. This way, we end up with a distributed recursive function, which
returns exactly the same results as a centralized hadd on a global problem ΠG respective toM, since for
every projection aB of action a ∈ Aj , the true cost of a is obtained from the agent αj .

A middle ground between the presented two extremes is to limit the recursion depth δ. If the max-
imum recursion depth δmax is reached, all projected actions are evaluated without sending any further
requests. This limit introduces another relaxation of the original problem where the interaction between
agents is limited—the agent coupling relaxation. Such heuristic estimation is always lower or equal to
the heuristic estimation in the global problem ΠG using a centralized heuristic estimator, because ignor-
ing preconditions of an action in its projection can never increase the cost of the action. By limiting the
recursion depth to δmax = 0, we return back to the projected heuristic, where all interactions between
agents are relaxed away. This approach is also one possibility of tackling the (Objective 2) we have
investigated in our work.

Relaxed exploration.

Although the definition of hadd by a set of recursive equations is intuitively clear and provides good
theoretical background, in practice, the recursive functions are typically not used. Recursive calls are
limited by the call stack. Converting such recursion, where the recursive call is within a complex
function such as arg min into iteration is possible, but rather cumbersome. Instead, the idea of relaxed
exploration is typically utilized.

The relaxed exploration is, in fact, a reachability analysis of the relaxed planning problem, which
can be conveniently seen as building a relaxed planing graph (RPG). A relaxed planning graph is a
layered (alternating fact and action layers) directed graph. In its first layer it contains all facts which
hold in the initial state, the next layer contains all actions of which preconditions are satisfied in the
previous layer (and no-op actions), the next layer contains all (add) effects of the actions from previous
layer and so forth, see Section 4.1 for details. In practice, an RPG is often not built explicitly, but the
exploration is achieved via an effective representation we will refer to as an exploration queue (based
on the Fast-Downward planning system Helmert [2006]).

The exploration queue considers only unary actions—actions which have a single proposition as an
add effect (any relaxed problem can be converted so it contains only unary actions). The exploration
queue is supported by a data structure representing the precondition-of and achieved-by relations. The
queue is initialized with the propositions which are true in the state s. Until the queue is empty, a
proposition p is polled, it is checked whether p is a goal proposition and if so, whether all goals are
satisfied. If not, for each action that depends on p (p ∈ pre(a) where a ∈ AB

i), the action cost is
incremented by the cost of proposition p (that is either added for hadd, or maxed for hmax) and if there

54 CHAPTER 4. DISTRIBUTED COMPUTATION OF RELAXATION HEURISTICS

are no more unsatisfied preconditions of the action, the action is applied. The process is detailed in
Algorithm 3, lines 1–13. Thanks to the sole use of unary operators, the application of an action a can be
interpreted as adding the (only one) proposition p = eff(a) to the exploration queue, thus the procedure
is named enqueueProposition (line 10).

The effectiveness of this approach is achieved because, during the relaxed exploration, cost estimates
of facts and actions can be conveniently computed and once all goal facts are reached, the heuristic can
be computed by simple sum or max of costs of all goal facts. In general, the approach can be seen as a
bottom-up computation of recursive function using dynamic programming.

Distributed relaxed exploration.

An algorithm capable of building RPGs in a distributed manner published in Štolba and Komenda
[2013] was presented in the previous section (Section 4.1). The major drawback of the approach was the
necessity to build the RPG for each state by all agents at once, thus preventing the search to run indepen-
dently in parallel. It was shown that the resulting heuristic estimate is equal to the centralized estimate.
In this section, we do not place the requirement of obtaining the same value as in the centralized variant,
which allows us to build a much more efficient algorithm. The algorithm is based on building the explo-
ration queue and requesting other agents when projections of their actions are encountered. Moreover,
the presented algorithm allows for precise control of the recursion depth and thus enables us to trade-off
the estimation precision with the computation and communication complexity.

The basic process of building the exploration queue Q is similar to the centralized version as de-
scribed in the previous section. The main principle of the distributed process is that whenever a projec-
tion of some other agent’s action should be applied (and its effect added to the queue), a request is sent
to the owner of the action to obtain its true cost. The effect of the action is added to the queue only after
the reply is received. Note that when computing the reply, the agent may need to send requests as well,
thus ending up with a distributed recursion. In order to effectively handle the recursion, it is flattened
so that all requests are sent by the initiator agent and the replies are augmented with the parameters
of the next recursive call. The context of the proposition p is kept throughout the computation for all
unfinished propositions.

The exploration part of the algorithm is shown in Algorithm 3, whereas Algorithms 4 and 5 details
the inter-agent communication. The entry point of the algorithm is the relaxedExploration procedure.
First, it is invoked with the r parameter set to true, indicating that whenever a projected action is en-
countered, a request is sent to its owner.

The main difference between the centralized and distributed approaches lays in the enqueuePropo-
sition procedure. If the cost of the action improves the current cost of the proposition, the cost of the
proposition is set equal to the cost of the action, as usual, but if the action is a projection aB such
that a ∈ Aj for some agent αj and sending of requests is enabled, i.e., r = true, a request message
Mreq = 〈s, a, δ〉 is sent to αj . The request message is a tuple where s is the current state, a is the action,
and initial recursion depth δ = 0. Otherwise, the proposition is added to the exploration queue as usual.

Processing the messages.

When the request message is received by the agent αj (see Algorithm 4, processRequest), the relaxed
exploration is run with the goal being the preconditions of the requested action a and without sending
any requests, i.e., r = false. After finishing the exploration, the set P of public actions which have
contributed to the resulting heuristic estimate is determined (line 4). In principle, the procedure is
similar to extracting a relaxed plan in the FF heuristic. A reply Mre = 〈h,P, δ〉 is sent, where h is the
computed heuristic value, P is the set of the contributing public actions and δ is the current recursion
depth.

Receiving the reply from agent αi is managed by procedure processReply in Algorithm 5. If the re-
cursion depth has already reached the limit δ > δmax, the original receiveReplyEnqueueCallback(p, h)

4.2. RECURSIVE DISTRIBUTED RELAXATION HEURISTICS 55

Algoritmus 3: Distributed Relaxed Exploration
Require: Boolean flag r (true when first called), global exploration queue Q

relaxedExploration(r):

1: while Q 6= ∅ do
2: p← poll(Q)
3: if p ∈ G and achieved(p′) : ∀p′ ∈ G then
4: return
5: end if
6: Op ← {a ∈ AB

i |p ∈ pre(a)}
7: for all a ∈ Op do
8: increment cost(p) by cost(a)
9: if achieved(p′) : ∀p′ ∈ pre(a) then

10: enqueueProposition(a, eff(a), r)
11: end if
12: end for
13: end while

Require: Action a, proposition p, Boolean flag r

enqueueProposition(a, p, r):

14: if cost(p) = ⊥ or cost(p) > cost(a) then
15: cost(p)← cost(a)
16: if r and a ∈ AB

i \Ai then
17: send request message Mreq = 〈s, a, 0〉

to owner(a),
process the reply by

receiveReplyEnqueueCallback(p, _)
18: else
19: Q ← Q∪ {p}
20: end if
21: end if

Require: Heuristic estimate h, proposition p (set from enqueueProposition)

receiveReplyEnqueueCallback(p, h):

22: if cost(p) > h then
23: cost(p)← h
24: Q ← Q∪ {p}
25: end if
26: relaxedExploration(false)
27: if no unresolved requests then
28: return compute the total cost
29: end if

from Algorithm 4 is called for the action a, the cost estimate of the context proposition p is finalized and
p is added to the exploration queue. Since the messaging process is asynchronous, the original relaxed
exploration has already terminated, therefore it is started again (line 7), with the original data structures
and with the newly evaluated proposition added to the queue. When the exploration is finished and there

56 CHAPTER 4. DISTRIBUTED COMPUTATION OF RELAXATION HEURISTICS

Algoritmus 4: Request Processing
Require: Request message Mreq = 〈s, a, δ〉, where s is a state, a an action, δ the recursion depth, αi

the sender

processRequest(Mreq = 〈s, a, δ〉, αi):

1: Q ← {s}
2: relaxedExploration(false)
3: h←compute the total cost
4: P ←mark public actions
5: send reply message Mre = 〈h,P, δ〉 to αi

Algoritmus 5: Reply Processing
Require: Reply message Mre = 〈h, P, δ〉, where h is the heuristic estimate, P a set of actions, δ the

recursion depth, p the proposition from context

processReply(Mre = 〈h,P, δ〉):

1: if δ < δmax then
2: hsum ← h
3: for all a ∈ P s.t. a ∈ Aj for some j 6= i do
4: send request message Mreq = 〈s, a, δ + 1〉 to αj ,

asynchronously process the reply by receiveReplyCallback(h)
5: end for
6: end if
7: receiveReplyEnqueueCallback(p, h)

Require: Heuristic estimate h, p the proposition from context

receiveReplyCallback(h):

8: hsum ← hsum + h
9: if all replies received then

10: receiveReplyEnqueueCallback(p, hsum)
11: end if

are no pending requests, the final heuristic estimate is computed depending on the actual heuristic (sum
or max) and is returned via a callback to the search, so that the evaluated state can be expanded.

Otherwise, if δ ≤ δmax, Algorithm 4 iterates through all actions a′ ∈ P and sends requests to
their respective owners. The heuristic estimate received in each reply is added to the shared hsum.
When all replies are received (the replies undergo the same procedure if there are any other public
actions involved) and all costs are added together, again the receiveReplyEnqueueCallback(p, h) from
Algorithm 3 is called with h = hsum.

The processReply procedure stands for the distributed recursion, but the deeper recursive call is not
called by the agent managing the request, but the parameters of the recursion (the set of actions P which
should be resolved next) are sent back to the initiator agent. This is rather an optimization to avoid
having multiple heuristic evaluation contexts needed to handle multiple interwoven request/reply traces.
Each context would need to have a separate instance of the exploration queue data structure, which
would present major inefficiency. Instead, the initiator agent is responsible for tracking the recursion and
the replying agent only processes one reply at a time, locally, without sending any requests. Therefore,
each agent needs to have only two instances of the exploration queue, one used to compute their own

4.3. PRIVACY-PRESERVING SET-ADDITIVE FAST-FORWARD HEURISTIC 57

heuristic estimates (and possibly send requests and await replies), and one used to compute the local
estimates for the replies.

4.2.2 Recursive Distribution of the Fast-Forward Heuristic

The Fast-Forward hFF heuristic is not directly based on the estimation of the cost of actions in the
relaxed problem, but on finding a plan solving the relaxed problem (a relaxed plan or RP). The heuristic
is not typically described using recursive equations, but the implementation based on relaxed exploration
can be easily reused. The difference is that the evaluation does not end when the exploration is finished
(all goal propositions have been reached), but continues with the relaxed plan extraction. The extraction
of RP starts with the goal propositions and traverses the data structure towards the initial state while
marking the relaxed plan.

Since the algorithm is implementation-wise very similar to the hadd and hmax heuristics, one of the
possible approaches to distribution of hFF is to perform the distributed relaxed exploration exactly as in
hadd and simply add RP extraction routine at the end of the heuristic evaluation (as part of the total cost
computation). Another approach was conceptually introduced in Štolba and Komenda [2013] as lazy
multi-agent FF heuristic hlazyFF , which we have adopted and compared with the previously described
approach and both additive and max heuristics.

The lazy FF algorithm published in [Štolba and Komenda, 2014] starts by building a local explo-
ration queue. When all goal propositions are reached, a relaxed plan π+ is extracted. For all actions
a ∈ π+, which are projections aB ∈ AB+

i s.t. a ∈ Aj , a request message Mreq = 〈s, a, δ〉 is sent to
the agent αj . When the agent αj receives the request, it constructs a local relaxed plan from the state s
(by local relaxed exploration and local RP extraction without sending any requests), satisfying the pre-
conditions (both public and private) of the action a. Then, the agent αj sends a reply Mre = 〈h,P, δ〉,
where h is the length of the relaxed plan and P is a set of projected actions contained in the plan. When
the reply is received by agent αj , the algorithm iterates through all actions a′ ∈ P and sends requests
to their respective owners. Each of the requests undergoes the same procedure as the original request,
adding the returned heuristic estimates to the resulting hsum . When all requests are processed, hsum
is added to the length of the local relaxed plan of agent αj and returned via callback as the heuristic
estimate of state s. This approach has several drawbacks which are discussed and improved in the next
Section 4.3.

The recursion depth of the hlazyFF heuristic can be limited in a similar manner as in the hadd and
hmax heuristics. Whenever a request should be sent and the maximum recursion limit δmax has been
reached, the request is not sent and the possible relaxed sub-plan is ignored.

4.3 Privacy-Preserving Set-Additive Fast-Forward Heuristic

The general technique of computing the (classical) FF heuristic was already described in the introduc-
tion of this chapter. In this section, we focus on the distribution of the relaxed plan extraction and
thus the particular technique used for the reachability analysis (performed on the projected problem)
is not important. The principle based on an explicit construction of Relaxed planning Graph (RPG) is
described in Section 4.1, more efficient principle based on Exploration Queue was described in Sec-
tion 4.2. In this section, we assume the latter, but, as already said, the details of the reachability analysis
algorithm are not relevant for the work presented in this section.

The two leading ideas of the Privacy-Preserving Set-Additive version of the distributed FF heuristic
(hppsaFF) published in [Štolba and Komenda, 2017] and described in this section are the use of the
lazy approach, already mentioned in Section 4.2, and the idea of the set-additive heuristic [Keyder
and Geffner, 2008]. The lazy principle basically means that the parts of the heuristic respective to other
agents are computed only when needed. The distributed heuristic first starts as a projected FF, computing

58 CHAPTER 4. DISTRIBUTED COMPUTATION OF RELAXATION HEURISTICS

the reachability analysis and relaxed plan as shown above. Such relaxed plan π+
i computed on an i-

projected relaxed problem ΠB+
i may contain projected actions, which may have private preconditions.

The private preconditions are not satisfied in π+
i as αi is not aware of them. Let aB+ be such a projected

action and let a+ ∈ A+
j for some j 6= i. In that case, αi requests αj to provide a relaxed plan that

satisfies the private part of the precondition of a+ (the public part is already satisfied in the projected RP).
Here the set-additive principle comes into play. In the original lazy FF variant described in Section 4.2.2,
agent αj would report just the cost of achieving private preconditions of a, which leads to significant
over-counting. In the new variant, the agent αj provides the actual relaxed plan π+

a , which satisfies the
private precondition of a+, that is, pre(a+) ∩ P priv

j , which can be merged with the original relaxed plan
π+
i ← π+

i ∪ π+
a as both relaxed plans are represented as sets of actions. This request-reply protocol

is performed for all projected actions in π+
i , even those newly received from αj and even for public

actions of αi itself received in π+
a (in which case the request can be handled by an internal call).

At this moment we have possibly violated privacy by sharing a relaxed plan π+
a which may contain

private actions of agent αj , even though we share only a unique identifier of that private action and no
preconditions or effects. In order to treat the privacy correctly, the algorithm has to be further modified.

Instead of sending back the relaxed plan π+
a , agent αj builds a local relaxed reply plan πRE+

j,i for the
requesting agent αi (we always write the index of the agent owning the variable/data structure first and
the other agent it relates to second), which is updated for every requested action a+ as πRE+

j,i = πRE+
j,i ∪

π+
a . To maintain privacy, αj keeps the private part of the plan locally, that is πpriv+

j,i = πRE+
j,i ∩ A

priv+
j

and sends only its public part πpub+
j,i = πRE+

j,i ∩ Apub+
j together with the length of the private part

lj,i = |πpriv+
j,i |. The relaxed plan πRE+

j,i is maintained by αj throughout the whole computation of the
heuristic estimate for the agent αi and a single state s, so that each action of αj is counted at most once.
This is made easier by the fact that each agent is computing the distributed heuristic for at most one
state, thus the agent has to keep track of at most |A|−1 relaxed plans of other agents. Meanwhile, agent
αi builds a single relaxed plan π+

i containing actions from AB+
i and a value lpriv

i,j for each agent αj 6=i
representing the length of the private part of the relaxed plan of agent αj . After all projected actions in
π+
i are processed (that is all replies received), the resulting heuristic value is computed as:

hppsaFF(sBi) = |π+
i |+

∑
j∈1..n∧j 6=i

lpriv
i,j (4.3.1)

For clarity, the algorithm is transcribed into pseudo-code in Algorithm 6. The algorithm is split
into three procedures, each has the agent which is performing the procedure (i.e., is written from its
perspective) as its first parameter. The procedures work as follows.

The main procedure computeDistributedFF(αi, sBi, 〈δ1, ..., δn〉 ,ΠB+
i) is called by the search

to evaluate a state sBi by agent αi (shown as a call to hiG at line 5 in Algorithm 10). After the ini-
tialization steps, the relaxed plan π+

i is computed such that π+
i achieves the goal G in the projected

relaxed problem (Equation 4.0.1), using actions from AB+
i . Then, while there is some projected action

aB+ in π+
i which has not been processed yet (i.e., is not in ADONE), process it by sending a request

MREQUEST = 〈αi, sB, δj , aB+〉 to the agent αj , the owner of a+ (the owner of an action is known by
definition). The loop also does not terminate while there are some actions in AWAITING, which means
a reply has not been received for them (a request is not sent if there is no unprocessed action in π+

i ,
this condition has been omitted for simplicity). When all projected actions and replies are processed,
the heuristic value (Equation 4.3.1) is returned. Note that the actual implementation differs from the
pseudocode in that the loop is implemented as an asynchronous event-based message processing (i.e.,
waiting for replies from other agents is non-blocking).

When the agent αj receives a request from the agent αi to evaluate private preconditions of some
action a+ ∈ Apub+

j , the procedure processRequest(αj ,MREQUEST = 〈αi, sB, δj , aB+〉) is called.
Agent αj first reconstructs the state sBj and then computes a relaxed plan π+

a , which solves the j-
projected relaxed problem of αj starting in sBj with goal being the private preconditions of a+, formally

4.3. PRIVACY-PRESERVING SET-ADDITIVE FAST-FORWARD HEURISTIC 59

Algoritmus 6: Procedures for computing the Privacy-Preserving Set-Additive Lazy FF

1 Procedure computeDistributedFF(αi, sBi, 〈δ1, ..., δn〉 ,ΠB+
i =

〈
Pi, A

B+
i , sBiI , G

〉
)

2 lpriv
i,j ← 0 for each j 6= i;

3 π+
i ←computeRelaxedPlan(sBi, G,AB+

i);
4 if π+

i = fail then
5 return∞;

6 ADONE ← π+
i ∩A

pub+
i ;AWAITING ← ∅;

7 while ∃aB+ ∈ π+
i \ADONE s.t. a+ ∈ A+

j ∧ j 6= i or AWAITING 6= ∅ do
8 AWAITING ← AWAITING ∪ {aB+};
9 ADONE ← ADONE ∪ {aB+};

10 send MREQUEST = 〈αi, sB, δj , aB+〉 to αj ;

11 return |π+
i |+

∑
j∈1..n∧j 6=i l

priv
i,j ;

12 Procedure processRequest(αj ,MREQUEST = 〈αi, sB, δj , aB+〉)
13 // αj can use a+ ∈ Apub+

j instead of aB+ for lbl(a+) = lbl(aB+)

14 sBj ← µj(sB, δj).state; // reconstruct the state
15 π+

a ←computeRelaxedPlan(sBj , pre(a+) ∩ P priv
j , AB+

j);
16 if MREQUEST is a first request for sBj then
17 πRE+

j,i ← ∅ ;

18 πRE+
j,i ← πRE+

j,i ∪ π+
a ;

19 lj,i ← |πRE+
j,i ∩A

priv+
j | ;

20 // all except for the private part of π+
a is sent

21 πpub+
j,i ← π+

a ∩ (AB+
j \Apriv+

j);

22 send MREPLY =
〈
πpub+
j,i , lj,i, a

B+
〉

to αi;

23 Procedure processReply(αi,MREPLY =
〈
πpub+
j,i , lj,i, a

B+
〉
)

24 π+
i ← π+

i ∪ π
pub+
j,i ;

25 lpriv
i,j ← lj,i ;

26 AWAITING ← AWAITING \ {aB+};

60 CHAPTER 4. DISTRIBUTED COMPUTATION OF RELAXATION HEURISTICS

pre(a+)∩P priv
j . The computed relaxed plan (RP) is then used to update the reply RP πRE+

j,i , whose private
length lj,i ← |πRE+

j,i ∩ A
priv+
j | is sent back to αi together with the public part of πRE+

j,i . The public part
of πRE+

j,i consists of public actions of αj and all projected actions of αk 6=j including projected actions of
αi, which are in π+

a . Note that the reply RP πRE+
j,i is kept for each agent αi over all requests regarding

one particular state sBj . When the agent αj receives a request for another state s′ from the agent αi,
the reply RP πRE+

j,i is initialized to πRE+
j,i = ∅ first. This works thanks to the fact that each agent αk

computes the heuristic estimate for at most one state at any moment.
When a reply message MREPLY =

〈
πpub+
j,i , lj,i, a

B+
〉

is received from the agent αj for the re-

quest MREQUEST = 〈αi, sB, δj , aB+〉 by agent αi, the procedure processReply(αi,MREPLY =〈
πpub+
j,i , lj,i, a

B+
〉
) is called. The relaxed plan π+

i is updated with the received public part and the

estimate of the private part for agent αj is replaced with the new received value. Action aB+ is removed
from AWAITING as its processing has been finished.

Note that the search and heuristic estimation is all running in a single thread and all messages are
managed through a message queue and the calls on the line 6 and line 21 in Algorithm 9. This means
that the procedure computeDistributedFF() is called once (line 5 of Algorithm 10) and the
loop on line 7 is in fact managed through callbacks and thus the call to the heuristic computation is
asynchronous. Meanwhile, the processRequest() and processReply() procedures are called
in response to the messages received on line 25 of Algorithm 11, sequentially, one at a time.

Example. (Logistics) We illustrate the process on the running example. Let us start with a situation,
where the truck is computing the heuristic estimate for the initial state. First, the projected relaxed plan
π+

t is computed
π+

t = {unload-a-C}.

In the t-projected problem, the unload action of plane has no preconditions and it fulfills the goal.
Next, the truck sends a request to the plane, which computes a relaxed plan from the initial state to the
private precondition of unload-a-C, which is {package-in-a, plane-at-C}. The plane comes up with the
following relaxed plan

πRE+
a,t = {unload-t-B, load-a-B,move-a-B-C}

and sends back a reply containing only the public actions and the number of private actions which is 1.
The truck accordingly updates its relaxed plan to

π+
t = {unload-t-B, load-a-B,unload-a-C}

and proceeds by sending requests for the newly added actions. The request for load-a-B does not have
to be sent as it was received from the plane (this optimization is ignored in the algorithm for simplicity).
The request for unload-t-B has to be sent, but as the receiver is the truck itself, it can be forwarded via
a direct call. Also the private actions of the truck are directly included in the relaxed plan π+

t by the
local computation. The resulting relaxed plan is

π+
t = {load-t-A,move-t-A-B,unload-t-B, load-a-B,unload-a-C}

with the additional number of private actions of the plane being 1, thus the complete heuristic estimate
is hppsaFF(sI) = 5 + 1 = 6.

This wraps up the description of the Privacy-Preserving Set-Additive distributed variant of the FF
heuristic. We did not pay attention to the actual process of finding the relaxed plan, as the distribution
is general so that any approach can be used and the reachability analysis is kept local (computed on
the projected relaxed problem). Now, we formally show that the Privacy-Preserving Set-Additive FF
heuristic always terminates.

4.4. EVALUATION 61

Theorem 45. Assuming that every sent message is eventually received, the heuristic ppsaFF shown in
Algorithm 6 always terminates.

Proof. Let s be the state the ppsaFF heuristic is computed for by agent αi. If the goal is not reachable
from s in ΠB+

i then the computation of computeRelaxedPlan(s, G, AB+
i) will fail and ∞ is

returned. Otherwise, π+
i contains a finite number of (relaxed) actions. For each action aB+ ∈ π+

i \
ADONE such that a+ ∈ A+

j ∧ j 6= i a request is sent to the action owner αj . The computation of the
reply, that is computeRelaxedPlan(s, pre(a+) ∩ P priv

j , AB+
j) always finishes, with either a finite

non-empty or an empty plan π+
a . When the reply is received, the action a is added to ADONE and the

public actions in π+
a are added to π+

i . In this step, a finite (but possibly zero) number of actions is added
to π+

i and the number of actions in ADONE increases by 1 as a is added. As the number of actions in A
is finite (and so is the number of public actions), and in each iteration, the number of actions in ADONE

increases, eventually, the set of actions aB+ ∈ π+
i \ADONE such that a+ ∈ A+

j ∧ j 6= i becomes empty
and the computation terminates.

4.4 Evaluation
Evaluation of the inadmissible heuristics is done using the MADLA Planner multi-agent single heuris-
tic search (equivalent to MAFS [Nissim and Brafman, 2014]). The search algorithm is described in
Section 5.1 and the implementation of the planner in Section 5.5. All experiments were performed on
FX-8150 8-core processor at 3.6GHz, each run limited to 8GB of RAM and 10 minutes. Each mea-
surement is a mean from 5 runs as the order of messages received introduces nondeterminism of the
algorithm runs.

4.4.1 Comparison of Relaxation Heuristics
The first batch of experiments focused on two classical planning metrics used in the comparison of
heuristic efficiency: planning time t and number of explored states e. Those metrics were supplied by a
multi-agent metric of communicated bytes b among the agents during the planning process. Used plan-
ning problems stem from IPC domains modified for multi-agent planning as presented, e.g., in [Nissim
and Brafman, 2012]. The problems with * in their names were either based on IPC domains, but sim-
plified, or other state-of-the-art multi-agent benchmarks, e.g., from [Komenda and Novak, 2011]. Most
of the used benchmarks are described in Section 3.6. The recursion depth was limited to three values
δmax = {0, 1,∞} as other settings of δmax showed similar results. Missing rows were not successfully
planned with any of the tested heuristics.

Selected results are shown in Table 4.1. No single heuristic and δmax dominates the other ones. In
Rovers, the most successful in terms of time seems to be hmax. In Satellites, hlazyFF performs well,
but in other domains, it does not solve some problems at all. The Logistics is dominated by hFF and in
Cooperative Path-Finding1 and Sokoban, the best are hFF and hadd.

Figure 4.4.1 shows graphically all problems for two selected domains, loosely coupled rovers and
tightly coupled cooperative path-finding. The shown results are for the hadd heuristic, but other heuris-
tics demonstrate similar behavior. A number of interesting observations can be made. The execution
time indicates the trade-off between heuristic computation time and quality of heuristic guidance (which
is shown a bit more clearly by the number of expanded states). The projected heuristic (δmax = 0) is
significantly faster to compute as it does not have to communicate with other agents but in the case of
the rovers domain, even such fast computation does not compensate for the worse heuristic guidance.
The cooperative path-finding shows slightly different results as the heuristic guidance of the projected
heuristic is not much worse than other variants. The worst case seems to be setting δmax = 1 which do

1Cooperative path-finding (also known as deconfliction) is a simple domain where robots need to navigate through a grid-world
while avoiding each other. The position of the robots is private to them, but the fact that a grid position is occupied is public.

62 CHAPTER 4. DISTRIBUTED COMPUTATION OF RELAXATION HEURISTICS

tim
e

(seconds)
expanded

states
(thousands)

com
m

unicated
data

(M
B

)
prob.(|A

|)
δ
m

a
x

h
F
F

h
a
d
d

h
m

a
x

h
la

z
y
F
F

h
F
F

h
a
d
d

h
m

a
x

h
la

z
y
F
F

h
F
F

h
a
d
d

h
m

a
x

h
la

z
y
F
F

R
ov12

(4)
0

70.9
40.7

–
57

4617.3
3939.5

–
4583.5

35.7
31.2

–
35.6

R
ov12

(4)
1

1.2
1.3

1.1
–

0.8
0.3

0.3
–

0.7
0.2

0.3
–

R
ov12

(4)
∞

1.1
1.2

1.2
–

0.4
0.7

0.3
–

0.4
0.6

0.3
–

Sat*
(14)

0
–

–
–

–
–

–
–

–
–

–
–

–
Sat*

(14)
1

69.2
68

69
60.6

9.3
8.7

9
9

36.9
33.4

34.8
17.5

Sat*
(14)

∞
69

68.5
68.5

61.3
9.3

9.3
9

9.7
36.7

37
35.7

18.4

L
og*

(6)
0

0.7
0.7

0.7
0.7

6.8
5.7

7
7.2

0
0

0
0

L
og*

(6)
1

1.2
1.6

1.2
1.6

0.5
1.3

0.7
5.4

0.3
0.6

0.3
0.6

L
og*

(6)
∞

1.1
1.3

1.2
1.4

0.4
0.8

0.5
0.6

0.2
0.5

0.3
0.8

C
P*

(7)
0

2.2
2.2

6.3
2.3

183.2
223.1

1252.5
205

2.4
3.2

15.7
2.7

C
P*

(7)
1

1.9
18.3

35.5
50.4

162.1
248.1

451.4
371.2

2.2
150.8

274.5
738.6

C
P*

(7)
∞

2
2.1

6.3
160.9

188.9
225.2

1255.6
249.5

2.5
3.2

15.5
249.5

Sok*
(2)

0
1.6

1.5
1.7

1.6
8.5

7.7
11.7

8.8
0.5

0.5
0.7

0.6
Sok*

(2)
1

1.5
17.1

3.9
4.3

7.6
22

4.3
12.9

0.5
66.8

12.1
24.1

Sok*
(2)

∞
1.5

1.4
1.6

–
8.3

7.8
11.7

–
0.5

0.5
0.7

–

Table
4.1:C

om
parison

ofrelaxation
heuristics

forselected
problem

s
and

m
etrics.

A
bbreviations:R

ov
=

rovers,Sat=
satellites,L

og
=

logistics,C
P

=
cooperative

path-finding,Sok
=

sokoban.

4.4. EVALUATION 63

rovers cooperative path-finding
tim

e
(m

s)

●

●
●

●

●

●

●

●

●

●●

●

●

●
●
● ●

●

●

●●

●

●

●

●

●

●

●

●

●

1000

10000
ro

ve
−

03

ro
ve

−
04

ro
ve

−
05

ro
ve

−
06

ro
ve

−
07

ro
ve

−
08

ro
ve

−
12

ro
ve

−
14

ro
ve

−
a2

ro
ve

−
a3

ro
ve

−
a4

●
●
●

●
●

●
●●
●

●●

●

●
●

●

●●

●

●●

●

1000

10000

de
co

−
a2

de
co

−
a3

de
co

−
a4

de
co

−
a5

de
co

−
a6

de
co

−
a7

de
co

−
a8

ex
pa

nd
ed

st
at

es
(t

ho
us

an
ds

of
st

at
es

)

●●

●

●●●

●

●

●

●●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

1

100

ro
ve

−
03

ro
ve

−
04

ro
ve

−
05

ro
ve

−
06

ro
ve

−
07

ro
ve

−
08

ro
ve

−
12

ro
ve

−
14

ro
ve

−
a2

ro
ve

−
a3

ro
ve

−
a4

●●

●

●
●

●

●●

●

●●

●

●
●

●

●●●
●●

●

1

100

de
co

−
a2

de
co

−
a3

de
co

−
a4

de
co

−
a5

de
co

−
a6

de
co

−
a7

de
co

−
a8

so
lu

tio
n

qu
al

ity
(n

um
be

ro
fa

ct
io

ns
)

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

10

100

ro
ve

−
03

ro
ve

−
04

ro
ve

−
05

ro
ve

−
06

ro
ve

−
07

ro
ve

−
08

ro
ve

−
12

ro
ve

−
14

ro
ve

−
a2

ro
ve

−
a3

ro
ve

−
a4

●●● ●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

100

10000

de
co

−
a2

de
co

−
a3

de
co

−
a4

de
co

−
a5

de
co

−
a6

de
co

−
a7

de
co

−
a8

recursion depth
●

●

●

0

1

infinity

Figure 4.4.1: Comparison of relaxation heuristics for the hadd heuristic in three recursion levels (δmax ∈
{0, 1,−∞). The figures show all problems of the two selected domains for selected metrics. The planning time
metrics is in seconds, the explored states in thousands of states and the communicated information in bytes. Abbre-
viations of domains:
rove = rovers
deco = cooperative path-finding (deconfliction)

64 CHAPTER 4. DISTRIBUTED COMPUTATION OF RELAXATION HEURISTICS

δmax 0 1 2 4 ∞
hFF 35 /7 38/15.4 38 /15 38 /14.4 38 /15
hadd 35 /7 38 /14 38 /14 38 /14 38 /14
hmax 35 /3.2 38 /14 38 /14 38 /14 38 /14

hlazyFF 35.2 /6.8 38 /8 36.2 /8 36.5 /8 36.8 /8

Table 4.2: Coverage for various heuristics and recursions depth δmax. The results are in the form of
multi-agent domains / IPC domains.

not significantly improve on the heuristic guidance but incurs a substantial amount of communication
as in cooperative path-finding, all actions are public and thus requests need to be sent.

The quality of the solutions shows a slightly different trend. As in greedy best-first search, overesti-
mating the true cost typically leads to worse solutions than underestimating (which is closer to breadth-
first search), the search guided by the projected heuristic provides shorter and thus better plans.

In the next experiment, we have evaluated the coverage of all the described heuristics (hadd, hmax,
hFF , and hlazyFF) with the maximum recursion depth δmax set to 0, 1, 2, 4 and ∞. The coverage
has been evaluated over two sets of benchmarks. The first set consists of 40 specifically multi-agent
problems, which are typically not that combinatorially hard, but contain more agents (taken from Štolba
and Komenda [2013]). The second set consists of 21 problems converted directly from IPC benchmarks
(as in [Nissim and Brafman, 2012]), which are typically much combinatorially harder, but with fewer
agents. The results are summarized in Table 4.2.

The results show a clear dominance of hFF , but interestingly the other distribution approach of the
Fast-Forward heuristic, hlazyFF , is on the other side of the spectrum. This is most probably because
one of the biggest strengths of the FF heuristic, compared to other delete relaxation heuristics used here,
is that it does not suffer from over-counting (one action is included in the estimate several times) thanks
to the explicit relaxed plan extraction. In the hlazyFF , we partially lose this advantage, because when
sending a reply, only the length of the plan is sent. Therefore, a single action can be included several
times in multiple replies from a single agent, or even multiple agents.

Another observation is that the setting of δmax = 0 is dominated by other values. This may be due
to the choice of the domains, the effect of various δmax settings is thoroughly analyzed in the next set
of experiments. Also, various settings of δmax for δmax > 0 affect the coverage only marginally.

4.4.2 Effect of the Recursion Depth
In the following set of experiments, we have evaluated the effect of changing the maximal recursion
depth δmax on the speed and communication requirements of the planning process. The data set was
measured on four selected domains with varied couplings (rovers, satellites, cooperative path-finding,
and logistics), each represented by a single problem. The maximal recursion depth ranged from 0 (a
projected heuristic) to 9, for comparison, the results were normalized against the result of run with
δmax =∞.

By coupling, we understand the concept formalized in [Brafman and Domshlak, 2008], which can
be rephrased as “the more interactions must take place among the agents in order to solve the problem,
the more coupled the problem is”—at one extreme there are problems, where all actions interact with
other agents (containing only public actions) meaning full coupling. In problems of the other extreme,
the agents can solve their individual problems without any interaction. Because of our decision to
treat all goals as public, we cannot achieve full decoupling—at least goal-achieving actions are public
and thus causing some level of coupling. The experimental domains were chosen such that rovers and
satellites are loosely coupled. In satellites, only the assumption that all goal-achieving actions are public
introduces some coupling, in rovers, there are also interacting preconditions among the goal-achieving
actions. Logistics is moderately coupled (private movement of agents and public handling of packages)

4.4. EVALUATION 65

●

● ●
● ● ● ● ● ● ●

● Rov5 (2)

Sat5 (3)

CP* (6)

Log* (6)

0 2 4 6 8

0

1

2

3

4

5

recursion depth [−]

n
o
rm

a
liz

e
d
 p

la
n
n
in

g
 t
im

e
 [
−

]

Figure 4.4.2: Planning time normalized to result for of δmax =∞ for hlazyFF heuristics.

●

●
●

●

● ● ●

●

●

●

● Rov5 (2)

Sat5 (3)

CP* (6)

Log* (6)

0 2 4 6 8

0

1

2

3

4

5

recursion depth [−]

n
o
rm

a
liz

e
d
 c

o
m

m
u
n
ic

a
te

d
 b

y
te

s
 [
−

]

●

●
●

●

● ● ●

●

●

●

● Rov5 (2)

Sat5 (3)

CP* (6)

Log* (6)

0 2 4 6 8

0

1

2

3

4

5

recursion depth [−]

n
o
rm

a
liz

e
d
 h

e
u
ri

s
ti
c
 r

e
q
.
 m

e
s
s
a
g
e
s
 c

o
u
n
t
[−

]

Figure 4.4.3: Communicated bytes and heuristic message requests normalized to δmax =∞ for hlazyFF

heuristics.

and cooperative path-finding is fully coupled.
The experimental results for the hlazyFF heuristic are plotted in Figures 4.4.2 and 4.4.3. In the fully

coupled cooperative path-finding, the results are best for δmax = 0 and are converging to the results for
δmax = ∞ as δmax grows. This is because in a fully coupled problem, all actions are public and in
cooperative path-finding, all their preconditions and effects are also public (which does not have to be
always the case). Therefore each agent has complete information about the problem in form of the action
projections (aB = a for all actions and agents) and the projected heuristic gives a perfect estimate (the
same as would global heuristic give). For δmax > 0, requests are sent for every projected action, causing
more communication and computation without bringing any improvement to the heuristic estimate.

Completely different picture give the results for the loosely coupled problems. The results are sig-
nificantly worse for δmax = 0, from δmax = 1 they are practically equal to δmax = ∞. The solution
of those problems typically consists of long private parts finished by a single public action (the goal
achieving action). When estimated by a projected heuristic, the private parts of other agents get ignored
and the estimates are thus much less informative. Even the fact, that when a state is expanded by a
public action, it is sent with the original agent’s heuristic estimate, does not help, because estimation of
states expanded further from such state ignore the information again. But even δmax = 1 is enough to
resolve this issue.

Lastly, in the logistics problem, the δmax = 0 estimates are rather good (but not as good as in the

66 CHAPTER 4. DISTRIBUTED COMPUTATION OF RELAXATION HEURISTICS

cooperative path-finding) and with growing δmax, the results converge towards δmax = ∞, but for
0 < δmax < ∞ the results are slightly worse. This may suggest that as the coupling is moderate, it is
best either to fully exploit the coupled part of the problem and use projected heuristics or to rely on the
decoupled part of the problem and employ the full recursion approach, depending on the exact balance.

The results for communication are in Figure 4.4.3. The left chart compares the total bytes com-
municated and shows the same tendencies as the planning time in Figure 4.4.2. In fact, limiting the
interactions may lead to increased communication. The right table shows the data for heuristic requests,
there we see the expected result for δmax = 0, where no requests are sent, otherwise, the tendencies
are surprisingly similar. This indicates that the communication complexity is dominated by the search
communication complexity (the longer the search takes, the more messages are passed).

Presented results suggest, that for tightly coupled problems, sharing of the information is not only
less important, because the agents have most of the information in their problem projections, but may
even lower the effectiveness by redundant communication. For loosely coupled problems, the commu-
nication is vital, even if the communication is very limited. For moderately coupled problems, both
extremes are equally good. In general, it is hard to determine, which approach will yield the best results,
but it is sensible to choose from either no communication δmax = 0, full communication δmax = ∞,
or even communication limited to very low recursion depth limits, i.e., δmax = 1. If we can expect
some properties of the problems at hand, we can suggest preferred approach much easier—if we are
not expecting loosely coupled problems, δmax = 0 is the best choice, for no tightly coupled problems
δmax =∞ and for no moderately coupled problems, δmax = 1 seems to be the best choices.

The results in the presented figures are for hlazyFF mainly because they are the most illustrative,
other heuristics follow the same patterns as described here.

4.4.3 Comparison of the Projected and Privacy-Preserving Set-Additive FF
A comparison of the multi-agent single-heuristic searches with projected FF and distributed Privacy-
Preserving Set-Additive FF is presented in Figure 4.4.4. The top graph shows the heuristic values for the
initial state of all problems for which the value was computed. It is clear that for most of the domains, as
the complexity of the problem grows, also the difference between the distributed and projected heuristic
grows (note this does not say anything about the heuristic quality). Bottom is the number of expanded
states.

Together the two plots show some interesting properties. First, the elevators08 domain is an exam-
ple of a domain where the distributed heuristic gives much larger heuristic estimates, which also seems
to be significantly more informed, as suggested by the number of expanded states. As the heuristic
difference grows, also the difference of the number of expanded states grows in favor of the distributed
heuristic. Similar behavior, only not as prominent, can be observed in the blocksworld domain. The de-
pot domain paints a completely different picture, where the distributed heuristic also gives significantly
larger estimates, but as shown in the plot of the expanded states, the heuristic guidance degrades and
for larger problems, the projected heuristic is better informed for the search. The driverlog domain also
fits into this category, where the larger distributed heuristic estimates do not necessarily lead the search
better. On the other hand, in the woodworking08 domain, we can observe that, although the heuristic
estimates are pretty much the same for both heuristics, the number of states expanded by the projected
heuristic grows in comparison with the distributed privacy-preserving set-additive FF, which suggests
that even slight differences in the heuristic may have a significant impact on the heuristic quality and its
ability to lead the search.

Table 4.3 shows the coverage of the MAFS search (implemented in the MADLA planner) using
either the projected heuristic, the privacy-preserving set-additive FF heuristic described in Section 4.3
and a version sending directly IDs of the private actions. The numbers are averages over 5 runs as the
distributed search brings non-determinism to the planning process. The results show that the treatment
of privacy does not deteriorate the effectivity with an exception of the openstacks domain, quite the
contrary, with the privacy-preserving heuristic, the MAFS search solves overall 5 more problems.

4.4. EVALUATION 67

a)
0 50 100 150 200

0
50

10
0

15
0

20
0

25
0

30
0

projected FF

di
st

rib
ut

ed
 F

F

blocksworld
depot
driverlog
elevators08
logistics00
openstacks
rovers
satellites
woodworking08
zenotravel

x=y

b)
1 100 10000 1000000

1
10

0
10

00
0

10
00

00
0

projected FF
di

st
rib

ut
ed

 F
F

blocksworld
depot
driverlog
elevators08
logistics00
openstacks
rovers
satellites
woodworking08
zenotravel

x=y

Figure 4.4.4: Heuristic values for initial states (a) and the number of expanded states (b).

domain |A| projFF salFF ppsaFF

blocksworld (35) 4 32.9 32.8 35
depot (20) 5-12 10.3 9.2 10.5
driverlog (20) 2-8 17.2 14 14
elevators08 (30) 4-5 17.5 28.1 29
logistics00 (20) 3-7 20 20 20
openstacks (30) 2 13.6 17.1 14.9
rovers (20) 1-8 20 19.9 20
satellites (20) 1-5 20 20 20
woodworking08 (30) 7 8.8 5 4.8
zenotravel (20) 1-5 19 14.1 16.9
total (245) 179.3 180.2 185.1

Table 4.3: Average coverage of the projected (projFF), distributed using the set-additive principle
(salFF), and privacy-preserving distributed (ppsaFF) heuristics. The number of problems in a domain
are in the brackets, |A| denotes the number (interval) of agents in the problems. The best results are
emphasized.

68 CHAPTER 4. DISTRIBUTED COMPUTATION OF RELAXATION HEURISTICS

Domain problems DTG-based RPG-based

blocksworld 35 35 35
depot 20 11 16
driverlog 20 20 16
elevators08 30 29 30
logistics00 20 19 20
ma-blocks 24 13 15
openstacks 30 21 30
rovers 18 18 18
rovers-large 20 20 20
satellites 18 18 18
satellites-hc 15 13 8
sokoban 10 9 10
woodworking08 30 8 22
zenotravel 17 17 15

Total 307 251 273

Table 4.4: Coverage of the DTG-based and RPG-based FF heuristics in the distributed variant, both
ignoring costs of actions. We use an extended set of benchmarks, where ma-blocks is a version of
blocksworld where not all agents can reach all positions at the table, and the rovers-large and satellites-
hc domains consist of larger problem instances.

4.4.4 Comparison of RPG-based and DTG-based Distributed FF

In this section, we compare two approaches to the distribution of the FF heuristic. The first approach
is based on the original method of FF computation based on Relaxed Planning Graphs (RPGs) and
their effective implementation. This method was evaluated in the literature using multi-agent greedy
best-first state-space search in Štolba and Komenda [2013, 2014]. The second approach replaces the
Relaxed Planning Graphs with Domain Transition Graphs (DTGs) Helmert [2006] in order to reduce
the communication among agents. The second method was evaluated in the literature using a multi-agent
forward-chaining plan-space search in the FMAP planner Torreño et al. [2014]. Due to the very different
planning paradigms, the two methods of distributed FF computation were never directly compared. To
bridge this gap, we have re-implemented the DTG-based heuristic in a multi-agent greedy best-first
state-space search in order to evaluate it and compare it with the RPG-based heuristic.

Both approaches were implemented in the MAPlan planner and the evaluation was performed using
a standard MAFS search. The experimental comparison of the described heuristics was performed
on a set of benchmarks commonly used in the MA planning literature, derived from the classical IPC
benchmarks and described in Section 3.6. The rovers-large and satellites-hc are larger instances of the
described domains. Each run (per problem) of the planner was limited to 30 min. and 8GB of memory
(total for all agents) on a 16 core machine.

We measured the performance of the distributed versions of the heuristics using a distributed greedy
best-first search. The results for coverage are shown in Table 4.4. The results confirms the hypothesis
that the bad results of the RPG-based heuristic in the elevators08 and openstacks domains were
caused by the use of action costs instead of simple plan length. In the case of unit costs, the RPG-based
heuristic performs significantly better in terms of coverage.

We compare not only the coverage but also the search speed using the distributed variants of the
heuristics (Figure 4.4.5). Multiple patterns can be observed in various domains. In the blocksworld
domain, neither of the heuristics dominate, although, in one of the problems, the RPG-based heuristic
takes significantly longer time to find the solution. In the logistics00 domain, the RPG-based heuristic
finds the solution faster on all problems and scales better, but the worse performance of the DTG-based

4.4. EVALUATION 69

0 5 10 15 20 25 30 35

0
20

40
60

80

tim
e

DTG-based
RPG-based

blocksworld

5 10 15

0
20

40
60

80

tim
e

DTG-based
RPG-based

logistics00

5 10 15 20

0
10

0
20

0
30

0
40

0

problem

tim
e

DTG-based
RPG-based

rovers−large

Figure 4.4.5: Comparison of solution time (s) on each problem solved by DTG-based and RPG-based
FF heuristics.

70 CHAPTER 4. DISTRIBUTED COMPUTATION OF RELAXATION HEURISTICS

heuristic does not have an effect on the coverage. In the contrary, the RPG-based heuristic scales signif-
icantly worse in the rovers-large domain, where the effect of scaling is not apparent in the coverage,
but the trend suggests that unlike the DTG-based heuristic, the RPG-based heuristic would not be able
to solve even larger problems.

The results of this evaluation led to the configuration of the MAPlan planner used in the CoDMAP
competition, see Appendix A for details.

4.5 Summary
In this Chapter we have addressed the (Objective 1) of computing heuristics distributedly for the case
of inadmissible heuristics. In particular, we have focused on the class of relaxation heuristics with the
most work dedicated to the FF heuristic. We have provided a distributed FF heuristic provably equiva-
lent to the centralized solution (Section 4.1), a more efficient approach to the distribution of relaxation
heuristics in general (Section 4.2), and an efficient privacy-preserving variant of the FF heuristic (Sec-
tion 4.3). We have thoroughly evaluated the proposed solutions. We have compared the distributed
relaxation heuristic against each other and with their projected counterparts. The results of the compar-
ison can be roughly summed up by stating that the performance of the search guided by the distributed
heuristic performs better for some benchmark domains (e.g. elevators) and worse for other domains
(e.g. woodworking). This leads to the formulation of (Objective 2): How can we combine the projected
and distributed heuristics in order to combine their benefits?

In this chapter, we have also presented our first approach to tackling the (Objective 2). We have in-
troduced a general scheme of defining relaxation heuristic variants which are in between the distributed
and projected heuristics. The scheme is based on limiting the depth of recursion of the distributed
computation, thus making the heuristic values less precise but also less communication intensive to
compute. We have evaluated the approach and shown that in most cases any recursion depth higher than
zero (which is equivalent to the projected heuristic) is practically equivalent to the distributed heuristic
and thus this approach does not provide the deserved balance of projected and distributed heuristics.

Chapter 5

Combining Distributed and Local
Heuristics in a Heuristic Search

In this Chapter we present our results regarding (Objective 2) of this thesis, which is answering the
following question:

“How to combine local and distributed heuristics?”

We have investigated multiple approaches, some with partial success such as the recursion depth lim-
itation described in Section 4.4.2. In this chapter, we present our most successful approach, which is
a variant of distributed multi-heuristic search tailored to handle local and distributed heuristics. To in-
troduce the topic, we first describe the preliminaries, which are heuristic search, multi-agent heuristic
search and multi-heuristic search (Section 5.1). Next, we describe our contribution, which is the Multi-
Agent Distributed Lazily Asynchronous (MADLA) Search (Section 5.2). finally, we prove soundness
and completeness of the MADLA Search (Section 5.4). This chapter is based on our work in [Štolba
and Komenda, 2017].

5.1 Heuristic Search and its Variants
Forward-chaining state-space heuristic search is a well-established technique in classical planning and
was already briefly outlined in the introduction. Here we provide a more formal description. We base
the description on the STRIPS and MA-STRIPS formalisms (see Section 3.1), but the algorithms can
be equally well formulated in the MPT and MA-MPT variant.

State-space search is a search in the space of states, that is, s ⊆ P using the actions from A as the
search operators (this contrasts for example with a plan-space search approach where the search nodes
are partial plans and the search operators are modifications of the partial plans). Forward-chaining in
this context means, that the search starts in the initial state sI and progresses forward by applying the
actions, an alternative is backward-search which starts from the goal condition and uses regression of
the actions to reach new search states. We use heuristic search to refer to forward-chaining state-space
heuristic search unless noted otherwise. In the next sections, we provide descriptions of three established
variants of heuristic search relevant to our approach described in Section 5.2.

5.1.1 Heuristic Search
The Algorithm 7 shows a generic outline of a Best-First Heuristic Search (BestFS) for a STRIPS plan-
ning problem Π. The algorithm starts by initializing the open list to contain the initial search node. Each
search node u consists of the state u.state ⊆ P , its associated distance from the initial state u.g and

71

72CHAPTER 5. COMBINING DISTRIBUTED AND LOCAL HEURISTICS IN A HEURISTIC SEARCH

Algoritmus 7: Best-First Search on a STRIPS problem.

1 Algorithm BestFirstSearch(Π)
2 O ← {uI}; C ← ∅; uI .g ← 0; uI .h← h0;
3 while true do
4 u← arg minu∈Of(u.h, u.g) // extract the best state from the open list O according to f
5 if u ∈ C then
6 continue with next iteration

7 C ← C ∪ {u} // close search node
8 // if solution found:
9 if s? ⊆ u.state then

10 reconstructPlan(u) // reconstruct and return plan

11 // expand successors of state:
12 for all a ∈ Ai s.t. pre(a) ⊆ u.state do
13 u′ ← u ◦ a
14 u′.g ← u.g + cost(a)
15 u.h← h(u.state) // compute the heuristic
16 if u′ /∈ C then
17 O ← O ∪ {u′} // add expanded states to the open list Oi

heuristic value u.h and also a reference to its parent state (later used to reconstruct the plan) and the
action a ∈ A which was used to generate the search node.

The search loop starts by extracting the best node u from the open listO, which is ordered according
to a function f(u.h, u.g). The exact computation of f determines the type of search resulting from the
general scheme:

f(u.h, u.g) = u.h+ u.g results in the A* search [Hart et al., 1968]. Typically, the requirement of
admissibility is placed on the heuristic function h.

f(u.h, u.g) = u.g results in the Dijkstra’s algorithm [Dijkstra, 1959] or breadth-first search for unit-
cost actions.

f(u.h, u.g) = u.h results in a greedy best-first search (GBFS) algorithm, often used for sub-optimal
planning.

Next, the extracted node is checked, whether it was already visited and closed. If yes, the node is
skipped (more complex handling might be necessary in A* search if the heuristic is not consistent in
order to obtain an optimal solution), if not, the node is added in the closed list C and thus is closed.
Another check is performed in order to determine, whether the node represents a solution state. If yes,
the solution plan is reconstructed by following the parent states in a backward manner.

The last step of the BestFS algorithm is to expand the search node, create its successors and add
them to the open list O. in the typical variant, the heuristic value is computed for each new node.
In planning, the heuristic computation is often very time consuming, thus a variant called deferred
heuristic evaluation is often used, e.g., in the LAMA Planner [Richter and Westphal, 2010]. In BestFS
with deferred heuristic evaluation, the newly expanded nodes are assigned the heuristic value of their
predecessor and the actual heuristic value is computed only when a node is extracted from the open
list. This saves a lot of heuristic computations typically without significantly deteriorating the search
guidance.

5.1. HEURISTIC SEARCH AND ITS VARIANTS 73

5.1.2 Multi-Heuristic Search
In classical planning, multi-heuristic search was pioneered by the Fast Downward planning system
[Helmert, 2006] as a way to combine different heuristic estimators without the need to combine the
heuristic values, and was also one of the main mechanisms behind the success of the LAMA planner
[Richter and Westphal, 2010].

The principle of multi-heuristic search is simple. Instead of a single open list O, multi-heuristic
search uses a set of open lists {O1, ..., Om}, one for each used heuristic h1, ..., hm. In each search step,
a state is extracted from one open list according to an open list selection function. Then the state is
evaluated by each heuristic and its successors placed in the respective open list (if using the deferred
evaluation scheme). This means that if a state s is evaluated by a heuristic hk, its successors are placed
in Ok.

The choice of an appropriate open list selection function for classical planning was thoroughly ex-
amined in [Röger and Helmert, 2010] with a conclusion that the simple alternation mechanism, where
the open lists are chosen in turns, appears to be the best one (this mechanism was used in both FD and
LAMA planners).

The idea of multi-heuristic search has been applied to MAP in [Maliah et al., 2016a] by extending
the MAFS scheme with multiple heuristics (and thus multiple open lists) for each agent exactly the same
way as was done in LAMA, and in [Torreño et al., 2015, Torreno et al., 2015] a very similar principle
was applied to the plan-space search of FMAP. If we do not use such search scheme with significantly
different heuristics, but with a projected and distributed variant of the same heuristic, we encounter
several limitations of this simple approach. Nevertheless, we propose this simple approach as a baseline
and present a significantly better one in the following section.

5.1.3 Multi-Agent Heuristic Search
The main principle of multi-agent heuristic search (Algorithm 8) is that all agents explore their portions
of the search space asynchronously and in parallel, each agent using only its actions from Ai. In order
to manage the coordination, states expanded using a public action are sent to all other agents (line 20).
Thus the other agents are informed about the new reached state and can expand it. A simplified principle
is illustrated in Figure 5.1.1. The figure is simplified in that the states are expanded in synchronous steps,
whereas in reality, the agents proceed asynchronously.

In more detail, in multi-agent single-heuristic search with deferred heuristic evaluation, each agent
αi has its own separate open list Oi, closed list Ci and a heuristic function hi. The search begins
with Oi = {sBiI } and Ci = ∅ for each agent. In parallel, each agent αi extracts a state sBimin =
arg minu∈Oif(u.h, u.g) from Oi, adds sBimin into Ci, computes a new heuristic value hi(sBimin) and
expands sBimin. All s′Bi ∈ S, where S is the set of new expanded states

S = {s′Bi|s′Bi = sBi ◦ a, a ∈ Ai s.t. pre(a) ⊆ sBi} \ Ci

are added into the open list Oi (and communicated to other agents if the expanding action was public,
as described later). The search terminates if any agent αi finds sBi s.t. G ⊆ sBi, or if all open lists are
empty and no communication is waiting to be processed. Recall that the goal G is public and thus it is
the same for all agents.

As each agent uses only its own actions for the state expansions, it is necessary to communicate
reached states to other agents in order to ensure completeness. In MAFS, the states are communicated
via message broadcasts, as exemplified later. If a state sBi is expanded by an agent αi using a public
action a ∈ Apub

i , the state is sent to all other agents αj 6=i and added to their open lists Oj . In order to
hide the private facts P si = P priv

i ∩ s of a sent state s, the agent αi can obfuscate the facts in P si (as
proposed in [Borrajo, 2013]) or replace the facts in set P si with a private unique identifier (or a hash
value) δi(s) known only to αi (this private part of the state cannot be modified by other agents). If a
modified state amended by such identifier returns by one of the later broadcasts back to the agent αi, it

74CHAPTER 5. COMBINING DISTRIBUTED AND LOCAL HEURISTICS IN A HEURISTIC SEARCH

Algoritmus 8: Multi-Agent Best-First Search on a MA-STRIPS problem (somewhat simplified).

1 Algorithm Multi-AgentForwardSearch(αi,Πi)
2 Oi ← {uI}; Ci ← ∅; uI .g ← 0; uI .h← h0;
3 while true do
4 processComm(αi) // receive states and add them to the open list Oi

5 u← arg minu∈Oif(u.h, u.g) // extract the best state from the open list Oi according to f
6 if u /∈ Ci then
7 Ci ← Ci ∪ {u} // close search node
8 // if solution found:
9 if s? ⊆ u.state then

10 inform agents
11 reconstructPlan(u) // distributedly reconstruct and return plan

12 // expand successors of state:
13 for all a ∈ Ai s.t. pre(a) ⊆ u.state do
14 u′ ← u ◦ a
15 u′.g ← u.g + 1
16 u.h← hi(u.state)// compute heuristic
17 if u′ /∈ C then
18 O ← O ∪ {u′} // add expanded states to the open list Oi

19 if a ∈ Apub
i then

20 send state u.state // send state if expanded by a public action

i)
Agent α

Agent β

ii)
Agent α

Agent β

iii)
Agent α

Agent β

iv)
Agent α

Agent β

Figure 5.1.1: Simplified example of four steps in a multi-agent heuristic search for two agents α and β.
In i both agents expand the initial state by private actions (black arrows), in ii agent α expands one state
by a public action (green arrow and circle) and in iii it is sent to agent β. In iv) agent β expands the
received state.

5.2. THE MADLA SEARCH 75

〈Ppub ,

0
s0

t a

truck-at-A
package-at-A

Pt , δa(s0)〉 〈Ppub ,

0 plane-at-B

δt(s0) , Pa〉

〈Ppub ,

0
s1

truck-at-A
package-in-T

Pt , δa(s0)〉

load-t-A

〈Ppub ,

0
s2

truck-at-B
package-in-T

Pt , δa(s0)〉

move-t-A-B

unload-t-B

〈Ppub ,

0
s3

truck-at-B

Pt , δa(s0)〉
package-at-B

〈Ppub ,

3 plane-at-B

δt(s3) , Pa〉
package-at-B

load-a-B

〈Ppub ,

3 plane-at-B

δt(s3) , Pa〉

s4 package-in-a

〈Ppub ,

4truck-at-B

Pt , δa(s4)〉

...

Figure 5.1.2: State communication with encrypting and restoring private values.

can use the identifier δi(s) and restore the private facts P si back as if they were always part of the state.
The initial state is treated as a special case. As already said, each agent αi starts only with its projection
of the initial state, that is sBiI . As all agents start in fact from the same initial state sI (although not
completely observable by any of them), the unique identifier can use some specific value (the same for
all agents), such as δi(sI) = 0 for all i. When an agent αj receives a state from αi with its private part
P sj replaced by the identifier δj(sI) = 0, agent αj knows that it must restore the values in P sj from the
initial state, that is, sBjI .

When a goal state sg s.t. G ⊆ sg is found, the solution plan needs to be also reconstructed in a
distributed way. This can be done by modifying the parent of a state to contain either the previous state
(and the respective action) as in classical search or a reference to the agent from which the state was
received. The backward reconstruction of the plan then proceeds as usual, except for when instead of
a state, the parent is an agent αj , in which case a message is sent to αj to continue the plan extraction
process.

Example. (Logistics) We illustrate the process on the running example in Figure 5.1.2. Each agent
starts with its projection of the initial state sI = s0 = {truck-at-A, plane-at-B, package-at-A}. The
truck starts expanding sBt

0 = {truck-at-A, package-at-A}, δa(s0) using the load-t-A and move-t-A-B
actions sequentially. Further on in the process, when the truck expands the state sBt

2 = {truck-at-B,
package-at-B}, δa(s0) using the action unload-t-B, the resulting state s3 = {truck-at-B, plane-at-B,
package-at-B}, seen by the truck as sBt

3 = {truck-at-B,package-at-B}, δa(s0), is sent to the plane
as {package-at-B}, δt(s3), δa(s0). Here δt(s3) encodes the private part of the truck in the state s3.
When received by plane, it reconstructs the state s3 as sBa

3 = {plane-at-B,package-at-B}, δt(s3) by
using the private part of the state with the identifier δa(s0) = 0 which is s0.

5.2 The MADLA Search
The main contribution of this chapter is the MADLA Search, which is a modification of the multi-
heuristic search mentioned in Section 5.1.2 towards MAFS (Section 5.1.3) but with the combination of
local and distributed heuristics on mind. The search is performed in parallel by all agents, each searching
using its own set of actions and communicating states expanded by public actions, in order to reach a
common public goal. The plan is then extracted in a distributed manner so that each agent knows only

76CHAPTER 5. COMBINING DISTRIBUTED AND LOCAL HEURISTICS IN A HEURISTIC SEARCH

its respective part of the plan.
The main distinctive feature of the MADLA search is its use of two open lists per agent, where the

first one is associated with a local projected heuristic hiL and the second one with a distributed global
heuristic hiD. The open list selection function is tailored to handle this special case. The main high-level
principles of the search are the following:

a) Evaluate a state only using a single heuristic.

b) Prefer the distributed heuristic, and only if the distributed heuristic is waiting for replies from other
agents (i.e. is busy), use the projected heuristic instead.

An overview of the principle is shown in Figure 5.2.1 and it is elaborated on in the next paragraphs. In
the main search loop, after processing the communication (i.e. receiving and sending queued messages),
a state is extracted from an open list. Which open list is used for the extraction is determined based
on whether the distributed estimator of hiD is busy and the open lists are empty or not (as shown in
Figure 5.2.1). As we use deferred heuristic evaluation, the extracted state is evaluated by a heuristic
(after it was checked for being in the closed list or being a solution), again depending on the state of
the distributed heuristic estimator. If the extracted state was created using a public action, it is sent to
all other agents. Then, the state is expanded using all applicable actions of the agent and its successors
are added to the respective open list(s) as shown in Figure 5.2.1 with the heuristic estimate of the parent
state (again because of the deferred heuristic evaluation used).

The implementation of the distribution in the proposed search follows the principles of MAFS,
i.e., broadcasts are used to inform other agents about states reached by public actions. Additionally,
information as to which open list the state should be added to is included (whether it is the local or the
distributed one). The overall principles of the MADLA Search will now be presented and the algorithm
itself will be described in detail later on.

The MADLA Search uses two heuristics for each agent αi, a local projected hiL and a distributed hiD.
The search uses an open list for each of the heuristics OiL, O

i
D for each agent αi. The open list selection

function prioritizes expansion of states in the open list OiD respective to the distributed heuristic hiD, if
the heuristic estimator of hiD is not in the process of computing a heuristic estimate (i.e. waiting for
some replies from other agents).

Unlike the classical multi-heuristic search, in the MADLA Search, the extracted states are not eval-
uated using both heuristics. The heuristic used depends on the state of the distributed heuristic hiD
estimator, represented in the algorithms as a boolean variable busyi

D. The variable is set by the heuristic
estimator to true if it is currently evaluating a state and false if not. If busyi

D = false, the state is eval-
uated by hiD. If busyi

D = true, the state is evaluated by hiL, that is the distributed heuristic is preferred
if possible. This approach is most reasonable if hiD dominates hiL for most states, which is typically the
case for a projected and a distributed variant of the same heuristic such as FF.

As the MADLA Search is running in a single process (except for the communication) for each
agent, the local heuristic search is performed only when the distributed heuristic search is waiting for
the distributed heuristic estimation to finish. This principle makes sense only if finishing an estimation
of hiD takes longer than that of hiL and if computation of the hiD estimator does not block the search
process (incl. hiL estimations). These two requirements often hold for distributed and projected versions
of one heuristic and hold for the two variants of the FF heuristic we use as well (described in detail in
Section 4.3).

Using two separate open lists has the benefit of using two heuristics independently, but if some
information between the two searches could be shared1, most importantly the heuristically best state
found so far, it could boost the efficiency of the planner. The direction OiD → OiL is straightforward as
most of the time, hiD dominates hiL. Thus, we can add all states evaluated by hiD also to OiL without ever
skipping a better state evaluated by hiL with a worse state evaluated by hiD.

1The two searches are both run by a single agent, therefore the question of privacy is irrelevant here.

5.2. THE MADLA SEARCH 77

i

i i i

i i i

i
i

i i i

Set busy
Evaluate

asynchronously

iReceived
message?

Received
state s?

Add s to
 or i i

iIs
finished?

iIs
finished?

i

Figure 5.2.1: Flow chart showing one iteration of the main search loop for a single agent.

78CHAPTER 5. COMBINING DISTRIBUTED AND LOCAL HEURISTICS IN A HEURISTIC SEARCH

If a state s is taken from the local open list, its successor is inserted only in the local open list. If the
state s is taken from the distributed open list, its successor is inserted into both local and distributed open
lists. If state s′ was obtained by application of a private action, it is inserted in the respective open lists
of agent αi. If the action is public, it is also inserted in open lists of all agents αj 6=i via a message sent
to them by αi. The messages include additional information whether the state should be added to OjD
(if it was evaluated by hiD) or to OjL (if it was evaluated by hiL). In the latter case, the heuristic estimate
is recomputed using hjL, because the local heuristic estimate from the agent αi may significantly differ
from that of agent αj .

The other direction OiL → OiD is trickier. If we added a state s evaluated by hiL to OiD the search
would skip many states which are actually closer to the goal only because the local, less informative
heuristic, gives a lower estimate. The way at least some information can be shared in this direction is
that whenever the open list OiD is empty and the heuristic estimator hiD is not computing any heuristic,
the best state s is extracted from the local open list OiL and evaluated by the distributed heuristic hiD and
its successors are added to both open lists. This way, the states placed in OiD are evaluated only by hiD,
but sometimes, the best state from OiL is taken to be evaluated by hiD.

The search is terminated when a goal state is reached by one of the agents, followed by a distributed
plan extraction, or if there is no solution. Detection of solution nonexistence in the multi-agent setting is
more complicated than in classical planning. Even if both open lists are empty, the agent cannot be sure
that some other agent is not going to find a solution or broadcast some new state in the future. Therefore,
the agents need to check that all open lists are empty and also that there are no pending messages to be
delivered (that is no state is “in the air”). By that, we close the high-level description of the MADLA
Search and the MADLA Planner and continue with a detailed formal description.

5.3 Formal Description of the MADLA Search
To talk about the actual algorithm formally, we first need to distinguish the state s ⊆ P and its repre-
sentation in the search algorithm. Note, that due to privacy concerns (as explained later), each agent
must have its own set of search nodes with its own representation of the actual state. When a state is to
be sent to another agent, only its public projection is sent together with a tuple of ids representing the
private parts of each agent. Thus, the search node of agent αi is represented as follows.

Definition 46. (Search node) A search node representing a state s ∈ P is a tuple

u =
〈
sBi, p, apar, h, g, αi, 〈δ1, ..., δn〉

〉
where sBi ⊆ Pi is the i-projected state, p is the parent of the search node u. Action apar ∈ Ai ∪ {ε} is
the action used to create s, h is the heuristic value, g the distance of s from sI , αi is the agent u belongs
to and 〈δ1, ..., δn〉 is the n-tuple of private unique identifiers representing the private parts s∩ P priv

j of s
for all agents αj ∈ A including αi.

The parent p is determined as follows. If the search node u is created from a predecessor search
node u′ by the application of an action a, then p = u′ and apar = a. In the case the search node is
created from a state received from another agent αj 6=i, then p = αj and apar = ε. Each search node is
agent-dependent, that is, it belongs to the agent αi, which is part of the search node definition, and thus
indexing a node u as ui would be superfluous and is omitted.

We extend the action application to search nodes so that for a search node

uk =
〈
sBik , p, ak, hk, gk, αi, 〈δ1, ..., δi, ..., δn〉

〉
and an action ak+1 ∈ Ai we define

uk ◦ ak+1 = uk+1 =
〈
sBik ◦ ak+1, uk, ak+1, hk, gk+1 = gk + 1, αi, 〈δ1, ..., δ′i, ..., δn〉

〉

5.3. FORMAL DESCRIPTION OF THE MADLA SEARCH 79

where p can either be a search node or an agent. As we use deferred heuristic evaluation, the heuristic
estimate hk is in fact the heuristic estimate of the state represented by the parent node. Thus, the
heuristic estimate is not changed by the action application, but is updated later after the new search node
is extracted from the open list and evaluated.

We define U i as the set of all possible search nodes of agent αi.

Definition 47. (Public search node) A public search node is a tuple uB = 〈sB, p, apar, h, g, 〈δ1, ..., δn〉〉
where sB ⊆ P pub is the public projection of state s, i.e., sB = s ∩ P pub.

For the use in the algorithm (and consequent proofs) we define u.state = sBi, u.action = apar,
u.parent = p (that is u.parent = u′ or u.parent = αj), u.h = h, u.g = g, u.agent = αi, u.uids =
〈δ1, ..., δn〉 and encu(i) = δi. A search node is agent-dependent, it is always created by an agent and
never sent to another agent. When sending a state represented by a search node u, it is first converted
to a public search node uB and then only the public projection sB of the state is sent together with the
private unique identifiers 〈δ1, ..., δn〉.

Each agent αi starts with an initial search node uI created from the initial state sI as the following

uI =
〈
sBiI , null, null, h0, 0, αi, 〈0, ..., 0〉

〉
By assigning 0 to each δj we represent that the private part of other agents represent the initial state (of
course any value can be used as long as it is agreed upon by all agents).

Definition 48. (MADLA Agent) The agent data structure is defined as
Object Agent(αi)

OiD; // distributed heuristic open list
OiL; // local heuristic open list
Ci; // closed list
busyi

D; // determines if the distributed heuristic is being computed
searchi; // determines if the search should continue
hiD; // distributed heuristic estimator
hiL; // local heuristic estimator
µi; // mapping of the sent states to the search nodes
plansi = {

〈
αj , π

i
j

〉
, ...} // currently reconstructed plans

The data structures related to each agent αi are grouped in an object-like description in Definition 48.
In each algorithm or procedure, the agent object is given as the first parameter (similarly to “this” in
object-oriented languages) and the data structures are accessed directly. The structures OiD, OiL and Ci

denote the open lists and the closed list of agent αi and busyi
D is a boolean variable denoting whether

the distributed heuristic estimator of agent αi is busy or not, similarly searchi denotes whether the
search loop should continue or not. Moreover, hiD and hiL denote the distributed and local heuristic
evaluators of agent αi. Finally, the definition includes the state reconstruction function µi, and a set
plansi of all currently reconstructed plans in the form of a tuple

〈
αj , π

i
j

〉
consisting of an agent (the

plan reconstruction originator) and the (partially) reconstructed plan πij , initially empty, prospectively a
part of the multi-agent plan {πi}ni=1. The set plansi is initially empty.

Now, let us have a detailed look at the pseudo-code and some implementation details. First, we start
with Algorithm 9 which outlines the main loop of the search together with initialization. The algorithm
(and all subsequent algorithms) is seen from the perspective of agent αi, that is each agent runs a copy
of Algorithm 9 in parallel with all other agents. All data structures are local to agent αi and all search
nodes contain i-projected states.

The initialization starts with the open lists containing the initial search node consisting of the i-
projected initial state sBiI , no parent, no action and the agent αi. The closed list Ci is initialized as
empty and the distance of the initial search node is set to uI .g ← 0. Although the open lists are ordered
only by the heuristic value, we need the g value for the later plan reconstruction to know the length of

80CHAPTER 5. COMBINING DISTRIBUTED AND LOCAL HEURISTICS IN A HEURISTIC SEARCH

Algoritmus 9: MADLA Search for agent αi and multi-agent planning problemM. The plan is
not returned directly by the algorithm as the reconstruction is asynchronous and thus the plan is
returned by the Procedure 11.

1 Algorithm MADLA-Search(αi,Πi)
2 OiD ← {uI}; OiL ← {uI};
3 Ci ← ∅; uI .g ← 0; uI .h← h0;
4 busyi

D ← false;
5 searchi ← true; // search begins
6 while searchi do
7 processComm(αi); // see Algorithm 11
8 if busyi

D = false then
9 if OiD 6= ∅ then

10 u← arg minu∈Oi
D
u.h;

11 if OiL 6= ∅ then
12 u← arg minu∈Oi

L
u.h;

13 else
14 goto Line 6;

15 processNode(αi, u, true);

16 // local search loop
17 while (OiD = ∅ or busyi

D = true) and OiL 6= ∅ do
18 u← arg minu∈Oi

L
u.h;

19 processNode(αi, u, false);
20 //process communication also in the local search loop
21 processComm(αi);

22 Procedure processNode(αi, u, d)
23 if u /∈ Ci then
24 Ci ← Ci ∪ {u}; // close search node
25 if G ⊆ u.state then
26 searchi ← false; //end search
27 //inform agents
28 send MPLANFOUND to all αj ∈ A;
29 //(asynchronously) reconstruct and return the plan
30 reconstructPlan(αi, u, u.g, αi); // see Algorithm 12

31 expand(αi, u, d); // see Algorithm 10

5.3. FORMAL DESCRIPTION OF THE MADLA SEARCH 81

the plan being reconstructed upfront in order to be able to insert the appropriate number of no-op actions
in the place of actions of other agents. The heuristic value of the initial node is set to some initial value
uI .h = h0 which is only a mock value for later state selection.

The main loop terminates when a solution is found, or both open lists are empty (for all agents)
and there are no pending messages, which means that there is no solution. Such synchronization can
be straightforwardly achieved using the textbook distributed snapshot algorithm [Chandy and Lamport,
1985], but we leave it out in the pseudo-code for simplicity.

The distributed snapshot algorithm is a general technique to determine the state of a distributed
system and roughly works as follows. The agent performing the snapshot saves its own local state and
sends a snapshot request message with a snapshot token to all other agents. When any agent receives
this particular snapshot token for the first time, it sends the initiator agent its own saved state (e.g., all
open lists are empty) and attaches the snapshot token to all subsequent messages. When an agent that
has already received the snapshot token receives a message that does not have the snapshot token, the
agent needs to inform the snapshot initiator about the message (e.g., if it was a state message, its open
lists are no longer empty). This message was sent before the snapshot started and needs to be included
in the snapshot. This means that all messages need to have the possibility to include the snapshot token,
which we have also not included in the formal description in order to keep it simpler.

The main loop follows the classical heuristic search with deferred evaluation scheme with some
modifications. From line 8 to line 15, an open list is determined based on the state of the distributed
heuristic and the node u with minimal heuristic value u.h is extracted from the selected open list (if
both open lists are empty, the loop continues with checking the messages). Node u is processed as in
classical search (added to open list, checked for the goal), but if u contains a goal state, distributed
plan reconstruction is initiated (see Algorithm 12). If u does not contain a goal state, u is expanded
(see Algorithm 10). Since we use the deferred heuristic evaluation, the heuristic is evaluated before the
actual expansion.

Algoritmus 10: Procedure expand(αi, u, d)

1 Procedure expand(αi, u, d)
2 if d = false then
3 u.h← hiL(u.state) // local

4 else
5 u.h← hiD(u.state); // distributed, asynchronous
6 set busyi

D ← true when hiD starts evaluation
7 set busyi

D ← false when hiD finishes evaluation (asynchronously)

8 if u.action ∈ Apub
i then

9 send MSTATE = 〈uB.state, uB.uids, u.h, d〉;
10 µ(uB.state, encuB(i))← u;

11 E ← ∅
12 for all a ∈ Ai s.t. pre(a) ⊆ u.state do
13 u′ ← u ◦ a;
14 u′.g ← u.g + 1;
15 u′.h← u.h; // deferred heuristic
16 E ← E ∪ {u′};
17 OiL ← OiL ∪ {u′|u′ ∈ E ∧ u′ 6∈ Ci};
18 if d = true then
19 OiD ← OiD ∪ {u′|u′ ∈ E ∧ u′ 6∈ Ci};

The expansion procedure is detailed in Algorithm 10. The node u is evaluated using either the

82CHAPTER 5. COMBINING DISTRIBUTED AND LOCAL HEURISTICS IN A HEURISTIC SEARCH

local projected heuristic hiL, which proceeds as usual or using the distributed global heuristic hiD. The
distributed heuristic evaluation is represented as a function call for simplicity. In reality, the procedure
evaluating the heuristic function is asynchronous. This means that a callback is passed to the procedure
and the expand(αi, u, d) procedure exits. Only when the heuristic evaluation is finished, the rest of
the procedure continues. This means the following steps are performed either directly after the local
heuristic evaluation or in the callback of the distributed heuristic evaluation.

If node u was expanded by a public action, a message MSTATE is sent to all other agents, containing
the public projection sB of state s together with the private unique identifiers representing the private
parts of all agents, its u.g, its heuristic value u.h and a parameter d determining whether it was evaluated
using the local or distributed heuristic in order to determine to which open list it should be added.

The states sent to other agents are stored by a mapping function µi : 2P
pub ×N→ U i, which assigns

to a public projection of a state sB and a private unique identifier δi the respective search node. The
function µi is used both to be able to reconstruct the path later and to reconstruct the private part of a
received state. The storing does not cause significant memory overheads as the states are stored in the
closed list anyway.

Next, the node u is expanded using all applicable actions from Ai, the new nodes u′ are created
according to the Definition 46 (so that u′.state = sBi ◦ a, u′.parent← u, u′.action← a, u.h← u′.h,
u.g ← u′.g+1, u′.agent← αi, encu′(j)← encu(j) for all j 6= i and encu′(i) is assigned a new private
unique identifier) and the new search nodes are added to the open list(s) based on which heuristic was
used for evaluation.

In addition to the main loop in Algorithm 9, there is an inner loop on lines 17–21, which is performed
when the distributed open list is empty or busy with a heuristic evaluation (this happens when the
distributed heuristic is being asynchronously evaluated). This inner loop is again the classical heuristic
search loop with deferred evaluation, this time taking into account only the local open list and local
heuristic. This inner local search loop also needs to process the communication, that is to send and to
receive messages (otherwise the distributed heuristic computation could not be finished).

The part of the communication taking care of message receiving is shown in Algorithm 11 (mes-
sage sending is trivial). There are four types of messages sent among the agents for the distributed
search (more messages are sent for the distributed heuristic computation). A state message MSTATE =
〈sB, 〈δ1, ..., δn〉 , h, g, d〉 contains a public projection sB of a state s, the private unique identifiers, the
state’s heuristic value h, g and the parameter d. When received, the i-projection sBi is reconstructed
from sB and the private unique identifier δi using the function µi, which encodes the node and respec-
tive i-projected state from which the private part should be copied. Thus the previously anonymized
private part of agent i is restored, and a new search node u is created, its parent is set to the sending
agent αj . The heuristic is re-computed to reflect the local problem of the receiving agent, although not
recomputing the heuristic does not have a significant effect in most domains. As the heuristics are not
admissible, taking the maximum as in MAD-A* is not reasonable. Finally, the node u is added to the
open list(s) selected based on the received parameter d.

The “plan found” message MPLANFOUND (with no parameters, except for the implicit sender αj) is
sent by an agent αj when it reaches a goal state to inform other agents that it has found a plan and it
is starting the plan reconstruction process. When received by the agent αi, it knows that it can exit the
search loop (the communication still has to be processed). A new tuple

〈
αj , π

i
j

〉
is added to plansi as

the reconstruction of plan initiated by αj will take place. Note that before receiving the MPLANFOUND

message, the agent αi could have already started the plan reconstruction itself, thus multiple plans can
be reconstructed in parallel.

The plan reconstruction message MRECONSTRUCT = 〈sB, δi, t, αk〉 contains the state s (represented
as sB and the private unique identifier δi of the receiving agent), from which the reconstruction should
continue, a discrete time-point t, initially set to u.g of the last search node u (that is, the search node
which satisfied the goal condition) and the agent αk which started the plan reconstruction. The identifier
of the agent αk is used to determine which partial plan

〈
αk, π

i
k

〉
∈ plansi the reconstruction message

belongs to. To reconstruct the plan, first the respective search node needs to be retrieved, which is the

5.3. FORMAL DESCRIPTION OF THE MADLA SEARCH 83

Algoritmus 11: processComm(αi)

1 Procedure processComm(αi)
2 for each message M in message queue, received from αj do
3 switch M do
4 case MSTATE = 〈sB, 〈δ1, ..., δn〉 , h, g, d〉
5 usent ← µi(sB, δi);
6 sBi ← usent.state;
7 u←

〈
sBi, αj , ε, h, g, αi, 〈δ1, ..., δn〉

〉
;

8 if d = true then
9 OiD ← OiD ∪ {u};

10 else
11 u.h← hiL(u.state) // local heuristic recomputed

12 OiL ← OiL ∪ {u};
13 case MPLANFOUND

14 searchi ← false;
15 plansi ← plansi ∪ {〈αj , ∅〉};
16 case MRECONSTRUCT = 〈sB, δi, t, αk〉
17 //continue reconstruction of the best plan so far
18 u← µi(sB, δi); //reconstruct search node for the sent state sB

19 reconstructPlan(αi, u, t, αk);

20 case MTERMINATE = 〈αk〉
21 if received MTERMINATE = 〈αj〉 for all αj s.t.

〈
αj , π

i
j

〉
∈ plansi then

22 select πimin of minimal length from plansi;
23 report solution πimin and terminate;

24 case else
25 forward M to hiD;

84CHAPTER 5. COMBINING DISTRIBUTED AND LOCAL HEURISTICS IN A HEURISTIC SEARCH

search node returned by µi(sB, δi) based on the public part sB and private part δi of the state sBi,
which was sent to αj on line 9 in Algorithm 10. Next, the plan reconstruction procedure is invoked (see
Algorithm 12).

Finally, the termination message MTERMINATE = 〈αk〉 announces that the reconstruction of the plan
initiated by the agent αk has been finished by the sender agent αj . Only when a messageMTERMINATE =
〈αk〉 is received for all αk such that MPLANFOUND was received from αk before and thus there is〈
αk, π

i
k

〉
∈ plansi, the plan reconstruction of all plans is finished and the shortest plan can be se-

lected (ties are broken based on the ordering of the agent indexes). Of course, it may happen that the
agent αi was not involved in the plan reconstruction at all and thus its plan πii consists of l no-op actions
ε, where l is the length of the shortest plan.

Note that messages for the distributed heuristic hiD are also handled in Algorithm 11 and are for-
warded to the heuristic estimator.

Algoritmus 12: reconstructPlan(αi, u, t, αk)

1 Procedure reconstructPlan(αi, u, t, αk)
2 πik ←

〈
αk, π

i
k

〉
∈ plansi

3 πik[t]← u.action;
4 πik[t′]← ε for all t′ > t s.t. πik[t′] is empty;
5 t← t− 1;
6 if u = uI then
7 send MTERMINATE = 〈αk〉 to all αj ∈ A;

8 if u.action = ε then
9 //node received from u.parent

10 send MRECONSTRUCT = 〈uB.state, encu(j), t, αk〉 to αj ← u.parent

11 else
12 reconstructPlan(αi, u.parent, t, αk);

The distributed plan reconstruction procedure is shown in Algorithm 12. Recall that the plan is
stored in a list

〈
αk, π

i
k

〉
of actions for each agent, together forming a multi-agent plan {πik}ni=1 for each

such k. By πik[t], we denote the action on the t-th position in the plan πik. The reconstruction process is
started by an agent αk in a search node u s.t. G ⊆ u.state (see Algorithm 9 line 25) and with t = u.g
which is the distance from uI to u. Every time an action is added to the position t of πik (line 3), t is
decreased by 1, which represents backward reconstruction of the plan. All positions between the last
added action and t are padded with the no-op action ε (line 4).

If the initial node is reached (line 6), the terminate message is sent to all other agents. Otherwise,
the parent u.parent of node u is retrieved, which is either the predecessor node or an agent αj 6=i. If
u.parent = αj 6=i a reconstruct message is sent to αj prompting it to continue with the reconstruction
from a state s represented by the search node u.

As multiple agents may start plan reconstruction independently, any agent that found a solution
reports to all other agents by sending a MPLANFOUND message. This way, each agent αi receiving the
message terminates the search and adds

〈
αj , π

i
j

〉
to the plansi set (see Algorithm 11 line 15). This

means that a plan reconstruction was started by agent αj . When the plan reconstruction started by the
agent αk is finished by an agent αj by reaching the initial search node uI (see Algorithm 12 line 6) the
MTERMINATE = 〈αk〉 message is sent to all agents. When MTERMINATE = 〈αk〉 sent by αj is received
by αi, the agent αi knows that the reconstruction of

〈
αk, π

i
k

〉
has been finished. When received for

all such
〈
αk, π

i
k

〉
∈ plansi, the shortest plan from plansi is chosen (see Algorithm 11 line 22) and

reported as the solution for agent αi (see Algorithm 11 line 23). To ensure that each agent αi chooses
the corresponding plan πik together forming the distributed multi-agent plan {πik}ni=1, the ties are broken
based on the ordering of the indexes k of the agents which started the reconstruction of the respective

5.4. PROPERTIES OF THE MADLA SEARCH 85

plan. The description of details of the distributed plan reconstruction concludes the proposed MADLA
Search.

5.4 Properties of the MADLA Search

Here we present the proofs of soundness and completeness of the MADLA Search algorithm. The
proofs are based on proofs for classical single-agent single-heuristic search.

Before delving into the proof, we state the assumptions on the used heuristics. First, the heuristics
always terminate. Second, the heuristics are safe (see Definition 41iv). In other words, if the heuristic
reports a dead-end, it truly is a dead-end (note that the other direction of the implication does not have
to hold, a heuristic (e.g., FF) can report a finite heuristic value for a state which actually is a dead-end).

Throughout the section, we use the notion of a search node from Definition 46. Note that the search
node is agent-specific, that is a search node u =

〈
sBi, p, ap, h, g, αi, 〈δ1, ..., δn〉

〉
is known to and

manipulated by agent αi only. Subsequently, a search node represents a global state s as an i-projection
sBi and a tuple ∆ = 〈δ1, ..., δn〉 encoding the private parts of all agents in A. We use the dot notation
u.state = sBi, u.action = a, u.parent = p (that is u.parent = u′ or u.parent = αj), u.h = h, u.g = g,
u.agent = αi, u.uids = ∆ = 〈δ1, ..., δn〉 and encu(i) = δi.

We define a global equality relation for search nodes as follows.

Definition 49. Let u, u′ be search nodes such that u.agent = αi and u′.agent = αj and let s, s′ be
global states reconstructed from u.state and u′.state respectively using all private parts defined in u.uids
and u′.uids respectively. Then the search nodes u and u′ are globally equal iff the states s and s′ are
equal, formally u G

= u′ ⇔ s = s′.

In other words, two search nodes are globally equal if the global states represented by them are
equal.

5.4.1 Proof of Soundness

First, we define the sequence of search nodes corresponding to a particular run of the algorithm.

Definition 50. (Path) A path with a resulting search node ul is a sequence of search nodes ūl =
(u0, ..., ul), possibly of different agents (different k s.t. 1 ≤ k < l can exist for which uk.agent 6=
uk+1.agent). The search nodes do not repeat, although the respective states may repeat.

Definition 51. (Valid path) A path is a valid path iff u0 = uI is the initial node for some agent αI
and for each k s.t. 1 ≤ k ≤ l: uk−1 = uk.parent and ak = uk.action is applicable in uk−1.state, or
uk.agent = αi and uk.parent = αj s.t. i 6= j, in which case uk−1.agent = αj and uk

G
= uk−1.

Informally, a path represents one particular trace of the exploration of the search space. In the case a
state was reached through expansions of multiple agents, agent αj sends a state sk−1 to agent αi which
creates a new search node uk from it. This results in a sequence of search nodes (u0, ..., uk−1, uk, ..., ul)
where the search nodes uk−1, uk represent the same state sk−1, but uk−1 was created by αj (using a
public action) and uk was created subsequently (after receiving the message) by αi, setting uk.parent
to αj (see Algorithm 11, line 7). Next, we define the corresponding sequence of actions.

Definition 52. For a path ūl = (u0, u1, ..., ul), we say ūl-plan is a sequence of actions (a1, ..., al) s.t.
ak = uk.action and ak ∈ A ∪ {ε} for all 1 ≤ k ≤ l. For all ak it holds that either ak ∈ Ai where
αi = uk.agent or ak = ε if uk was received form another agent (that is uk−1.agent 6= uk.agent). The
ūl-plan is a valid ūl-plan iff ūl is a valid path.

86CHAPTER 5. COMBINING DISTRIBUTED AND LOCAL HEURISTICS IN A HEURISTIC SEARCH

A trivial consequence of the above definitions and Definition 4 is that a valid ūl-plan (a1, ..., al) is
a multi-agent plan solvingM iff ul.state is a goal state, that is G ⊆ ul.state (remember that the goal is
public, i.e. G ⊆ P pub).

To prove the soundness, the following lemma will be shown first:

Lemma 53. (Invariant) At any given step of the MADLA Search, for any search node uL ∈ OiL and any
search node uD ∈ OiD for any agent αi, ūL and ūD are valid paths.

Proof. In the initial step for every agent, OiL = OiD = {uI}, where ūI = (uI), which is a valid
path. There are two possibilities where new nodes are added to any of the open lists. In expand(u,
d), regardless of the d parameter, for each action applicable in u.state, a new search node u′ =〈
s′Bi, u, a, h′, g + 1, αi,∆

〉
is created such that s′Bi = u.state ◦ a. If we assume that ū = (uI , ...,

u) is a valid path, then after expansion, ū′ = (uI , ..., u, u
′) is also valid for each new u′.

A node may be received from another agent in processComm(). Assume that for some node
uk =

〈
sBjk , uk−1, ak, hk, gk, αj ,∆k

〉
, ūk is a valid path and uk is a first node in ūk expanded using a

public action ak ∈ Apub
j . According to Algorithm 10, line 9, uk is sent to αi as a message MSTATE =

〈sB,∆k, h, g, d〉. The message is received byαi and a new search node uk+1 ←
〈
sBik , αj , ε, hk, gk, αi,∆k

〉
is created (based on ∆k and the state reconstruction function µi) and added to either open list based on
the parameter d. According to Definition 50, ūk+1 is a valid path. There is no other possible way a node
could be added to any of the open lists.

Theorem 54. (Soundness of the MADLA Search) When the MADLA Search terminates and returns a
solution, it is a distributed multi-agent plan solvingM.

Proof. The algorithm terminates on line 23 of Algorithm 11. In each step, either an action ak =
uk.action is added to the solution πim for the solution initiated by agent αm and continues the recursion
on uk−1 = uk.parent (if uk.action 6= ε), or a MRECONSTRUCT = 〈uBk .state, encuk

(j), t, αm〉 message
is sent to αj = uk.agent. When received, the reconstructPlan() procedure is called on a node

u′k s.t. u′k
G
= uk and u′k.action is public (u′k is obtained from µi). Thanks to the condition on line 6 of

Algorithm 12, upon termination, the last action added to the returned solution πim is the action that was
applied on the initial node uI . This ensures that the recursion proceeds along the path ūt, where ut is
the node on which reconstructPlan() was first called.

Apart from the recursive call, the procedure reconstructPlan() is called only from line 30
of Algorithm 9, where ut was extracted from OiL or OiD. From Lemma 53 it follows that ūt is a valid
path. Because on line 30 of Algorithm 9, G ⊆ ut.state always holds, the ūt-plan corresponding to ūt
is a multi-agent plan π solvingM. As each agent αi adds to πim only actions from Ai (and ε actions
as padding, see Algorithm 12 line 4), the resulting set {πim}ni=0 is a distributed multi-agent plan solving
M for each m as the reconstructions are independent if started by different agents and each agent can
start the reconstruction of at most one plan. The final plan is chosen consistently and uniquely as it is
the shortest plan, ties broken based on unique agent indices (ordering).

5.4.2 Proof of Completeness
To show completeness, we first consider a modification of the algorithm such that any reachable state
is expanded eventually. The modified algorithm is named MADLA+ Search in which the condition
on lines 25–30 in Algorithm 9 are ignored and the algorithm terminates only when both OiL and OiD
are empty for all agents αi and no messages are pending, which can be detected using the distributed
snapshot algorithm [Chandy and Lamport, 1985].

Lemma 55. In the MADLA+ Search, each state s is added to OiD and to OiL of any agent αi at most
finite times, each time represented by a different search node.

5.4. PROPERTIES OF THE MADLA SEARCH 87

Proof. Because the number of possible search nodes (with respect to the state sBi and the set of private
unique identifiers ∆) is finite as each search node represents one state of the finite sets of states (2|P |

since s ⊆ P) and the number of actions (of each agent) is also finite, each expansion produces a
finite number of search nodes consequently added to OiD, OiL or both (line 17 and 19 of Algorithm 10
respectively). If a search node u is extracted from OiL or OiD, it is added to the closed list Ci and no

search node u′ s.t. u G
= u′ is ever added to any of the open lists of agent αi again.

Another possibility of adding a search node to an open list is when it is received from another agent.
A state s is sent by the agent αi, only if a search node u′ (representing a different state s′) was extracted
from either OiL or OiD and a public action a ∈ Apub

i was applied. Since there is a finite number of public
actions and a finite number of agents and each action is applicable only in a finite number of states
(which are then placed into Ci and never expanded again), state s can be sent and received only a finite
number of times.

Lemma 56. In the MADLA+ Search, each search node in OiL and in OiD of all agents αi is eventually
extracted.

Proof. In each step of the outer search cycle (lines 6–21 of Algorithm 9), a node is extracted from OiD,
if hiD is not busy. Since hiD always terminates, any finite number of nodes can be extracted in finite
time. From Lemma 55 follows that only a finite number of nodes may be added to OiD, therefore OiD
eventually becomes empty. When OiD is empty, in each step of the inner search cycle a node is extracted
from OiL. Following the same reasoning as before, OiL eventually becomes empty as well.

Theorem 57. (Termination of the MADLA+ Search) The MADLA+ Search terminates.

Proof. Follows directly from Lemma 55 and Lemma 56.

Recall that for states s0 and sm a s0–sm-plan is a sequence of actions π = (a1, ..., am) from A
(the actions may be from different agents and may repeat) if there are states s1, ..., sm s.t. for all k in
1 ≤ k ≤ m, action ak is applicable in sk−1 and sk = sk−1 ◦ ak. For short, s0 [π] denotes the resulting
state sm. We extend this notion to the search nodes the same way action application was extended (i.e.,
the actions are applied on the respective nodes).

We define the notion of reachability for the multi-agent planning problemM as follows.

Definition 58. (Reachability) A state s ⊆ P is reachable inM iff a sI–s-plan π = (a1, ..., am) exists
such that sI is the initial state. We say that s is reachable by agent αi iff am ∈ Ai.

Now we show equality of reachability and the existence of a valid path.

Lemma 59. A state s is reachable inM by agent αi iff a valid path ū = (uI , ..., u) exists such that
uI .state = sBjI for some agent αj , u.state = sBi, u.uids represent private parts of s and u.agent = αi.

Proof. If a valid path exists, the corresponding ū-plan proves the reachability. If a state s is reachable
inM by αi, there exists the sequence π = (a0, ..., al) of actions from Definition 58 (and al ∈ Ai). Let
a0 ∈ Aj . Since a0 is applicable in sBjI = uI .state, it will be applied by the agent αj and the resulting
search node u1 will be added to its open lists. Additionally, if a0 ∈ Apub

j , sB1 = u1.state together with
u1.uids will be sent to other agents. According to the Definition 58, a1 is applicable in sBj1 . If a1 ∈ Aj
the process is repeated. If a1 ∈ Ak 6=j , a1 is applicable in the received state sBk1 and thus will be applied
by agent αk. By induction we conclude that ū = (uI , ..., u) is a valid path.

Now, we provide an alternative definition of reachability inM, with the focus shifted on the agents.
We use the bracketed index (k) to annotate the k-th agent in the sequence which is not the same as the
agent αk ∈ A.

88CHAPTER 5. COMBINING DISTRIBUTED AND LOCAL HEURISTICS IN A HEURISTIC SEARCH

Definition 60. (Reachability by a sequence of agents) A state s is reachable in M by a sequence of
agents $ = (α(1), ..., α(m)) of length m + 1 (agents in $ can repeat and an agent can perform zero
actions or a no-op action ε) if a sequence of u(i)

1 –u(i)
ki

-plans (π̄1, ..., π̄m) exists such that each π̄i contains

only actions from A(i), π̄1 is applicable in uI and for each i s.t. 1 ≤ i ≤ m, u(i−1)
ki−1

G
= u

(i)
1 .

Informally, in the sequence of agents, each agent performs a sequence of actions, such that the final
resulting state is s.

The following lemma uses either the assumption that the used heuristics are safe, or requires the
states evaluated as dead ends to be placed in the open-list nonetheless, with the heuristic value of ∞.
This is necessary to make sure that a reachable state is never unreached only because of the heuristic
evaluation.

Lemma 61. If a state s is reachable inM by the sequence of agents $ = (α(1), ..., α(m)) of length m,
it is placed into the closed list C(m) after a finite number of steps.

Proof. We will show the proof by induction in the number of agents m.
If a state s is reachable by a sequence containing single agent $ = (αi), then assume that no search

node u such that s = u.state is ever placed in Ci. Since s is reachable, based on Lemma 59 there exists
a search node u s.t. u.state = s and ū = (uI , ..., u). Let um be the first search node in ū, s.t. um is not
added to Ci. Note that there exists an action a ∈ Ai, such that um = um−1 ◦ a. Since at some point
um−1 ∈ Ci, um−1 must have been taken from OiL or OiD. At that point, um−1 was also expanded and
because a is applicable in um−1.state it must have been applied. The resulting node um = um−1 ◦ a
was added to either OiL or OiD and because of Lemma 56, um was eventually extracted and added to Ci.
This contradicts the assumption that um is not added to Ci.

Let us now assume that for all k s.t. k ≤ m if a node is reachable by a sequence of agents $ =
(α(1), ..., α(k)) of length k, it is added to C(k) after finite many steps. We will show that the same holds
if a node is reachable by a sequence of agents $′ = (α(1), ..., α(m), α(m+1)) of length m+ 1. We will
show the induction step by a contradiction. For the contradiction let us assume that s is a state reachable
by a sequence of agents $′ of length m + 1, but no search node u such that s = u.state is ever added
to C(m+1). Let ū = (u1, ..., u) and let ul be the first node that is never added to C(m+1). One of the
following holds:

i) ul is reachable by agent αm+1. If so, the same reasoning used in the first part of the proof
can be used to obtain a contradiction.

ii) ul is reachable by some k′ < m+ 1 agents $′′ = (α(1), ..., α(k′)). In that case, we have a
contradiction with the assumption of the induction.

Now we can conclude the proof by the following theorem.

Theorem 62. (Completeness of the MADLA Search) The MADLA Search is complete.

Proof. In the MADLA+ Search, for every state s reachable inM by an agent αi such that s ⊆ G, a
search node u such that s = u.state is eventually placed intoCi (Lemma 61). The first such search node
is, after adding it to the closed list Ci, given to the reconstructPlan() procedure which reports a
valid multi-agent plan (as MADLA Search is sound, Theorem 54).

5.4.3 Projected and Privacy-Preserving Set-Additive FF in the MADLA Search
The MADLA Search places a number of assumptions on the properties of the pair of heuristics it oper-
ates with. Here, we examine, how these assumptions hold for projected FF used as the local heuristic hiL
and Privacy-Preserving Set-Additive FF (Section 4.3) used as the global heuristic hiD. Let us recall and
expand upon the assumptions, where (i) is a required property and (ii) and (iii) are desirable properties:

5.5. EVALUATION 89

i) The distributed heuristic hiD is non-blocking. This is a required property, meaning that the distributed
heuristic allows the agent computing it to run other computations meanwhile (all in a single com-
putational process). The motivation behind this is the expectation that a distributed heuristic will
communicate with other agents and while waiting for replies, the search will continue using the
local heuristic.

ii) The distributed heuristic hiD is better informed than the local heuristic hiL, i.e., a single-heuristic
search using hiD expands fewer states than the same search using hiL. This assumption is not
strict, but using a less informed distributed heuristic gives no advantage. Although it cannot be
guaranteed in general, it can be expected that for most states the dominance holds.

iii) The local heuristic hiL is easier to compute than the distributed heuristic hiD. Again, this assumption
is not strict. Let us assume unit-time atomic computational steps used by both heuristic estima-
tors (i.e., procedures computing the heuristic functions), in that sense, hiL is assumed to take fewer
steps than hiD for a given state s. As the assumption is not strict, it suffices to hold for a significant
number of states. The reasoning behind this assumption is that in conjunction with the assump-
tion (ii) it does not make sense to use a less informed local heuristic which takes longer time to
compute.

Let us have a look how the proposed projected FF and distributed FF algorithms adhere to assumptions
(i)–(iii). As addressed in the description of Algorithm 6, the loop on lines 7–10 is actually implemented
as an asynchronous event-based message processing, which means that after all messages are sent,
another computation can proceed until some reply message is received. This can be utilized by the
MADLA Search as shown in Algorithm 9, where on line 15 the processNode(αi, u, d) is called with
the parameter d = true and thus Algorithm 10 proceeds with the asynchronous call to the distributed
heuristic on line 5 and the search can continue with the local search loop on lines 17–21 in Algorithm 9.
Notice that the communication is processed also inside the local search loop, thus if a reply message is
received, the local search loop is exited as the busyD flag is set to true. This behavior assures that the
ppsaFF heuristic adheres to the Assumption (i).

To assess the assumptions (ii) and (iii) we first observe that the initial phase of the distributed heuris-
tic computation as shown in Algorithm 6 is to compute the projected relaxed plan (line 3), which is
exactly how the projected FF is computed. After that, some additional steps are performed, in order
to improve the quality of the relaxed plan estimation. This means that the number of computational
steps performed by the distributed FF is always at least as high as the number of steps performed by the
projected FF or higher, thus confirming the Assumption (iii).

For similar reasons as above, it can be expected that the informativeness of the distributed heuristic
would be higher as information is only added, nevertheless, the informativeness of a heuristic is best as-
sessed by an experimental evaluation. Here we refer to the Section 4.4.3 where the number of expanded
states is compared.

5.5 Evaluation
We evaluate the MADLA Search implemented in a planning system called the MADLA Planner2 [Štolba
and Komenda, 2015, 2017] using a combination of local projected FF heuristic and the Privacy-Preserving
Set-Additive FF heuristic described in-detail in Section 4.3. The MADLA Planner is a distributed multi-
agent system, where the agents communicate over a TCP/IP connection, even if running on a single
physical machine.

As the core comparison metrics, we use coverage, that is the number of solved problems under 20
minutes with 8GB total memory limit (the memory is shared among all agents, assigned on an as needed
basis until exhausted). In the detailed analysis, we use the number of expanded states (and their ratios for

2http://github.com/stolba/ MADLAPlanner.

90CHAPTER 5. COMBINING DISTRIBUTED AND LOCAL HEURISTICS IN A HEURISTIC SEARCH

Figure 5.5.1: Stages of the MADLA Planner.

the used heuristics), the computation time of each particular heuristic and the number of public actions
requiring a (private) action supporter for a private precondition fact. The 20 minute time limit used
for coverage timeout represents a make-span of the distributed process (that is, the time between the
earliest time any agent starts computing and the latest time any agent finished) and thus we used wall-
clock time, as it is not viable to deduce make-span, including communication, based on CPU time of the
individual processes. For the same reasons, we have used wall-clock time also for all other time-related
measurements. We are aware, that wall-clock time can be influenced by external sources, such as other
processes running on the system. We attempted to mitigate such effects by running the experiments on
dedicated machines. Moreover, the non-determinism of the planning process is inherent and impossible
to be synchronized under the assumption of unknown ordering in message delivery from two different
agents to one recipient. Considering the non-determinism and the unlikely, but possible, interference
of other system processes, every measurement was repeated 10 times3 and the results were averaged.
Each machine was equipped with 8 hyper-threading4 i7 cores (i.e., 16 threads) at 2.6GHz. Each agent
was running on two threads. One thread is receiving messages and filling in content data structures in
appropriate collections (e.g., states into the open lists OiL, O

i
D) and the other thread is searching and

evaluating the heuristics.

5.5.1 Implementation of the MADLA Planner
The MADLA Planner proceeds in a number of stages (similarly to many classical planners), shown in
Figure 5.5.1. The input of the planner is a description of the domain and problem in classical PDDL,
accompanied with a file in a novel format Agent Domain Description Language (ADDL). The ADDL
file lists which objects in the PDDL represent agents.

The first stage is the translation of the PDDL input into SAS+ format, which is used internally by
the planner. The translation is performed by the standard tool in the Fast-Downward Planning Sys-
tem [Helmert, 2006] and thus is centralized (we leave the distribution of the translation process for
future work). Next, the bootstrapping part of the MADLA Planner takes the SAS+ and ADDL inputs
and partitions the problem for the specified agents.

The partitioning process starts with partitioning of (grounded) actions. A grounded action a is
assigned to an agent αi if αi (its respective PDDL object) is the first parameter of a mentioned in

3Although 10 samples is not enough for a reasonable statistical confidence, it helps to identify cases with extreme variance.
This phenomenon did not manifest in any of our experiments, therefore we concluded the planner is deterministic enough for the
used metrics.

4Although hyper-threading may affect the measurement of CPU-time, as we use solely wall-clock time, the experiments were
not affected by hyper-threading.

5.5. EVALUATION 91

the ADDL input file representing an agent. Next step is partitioning of the variables and values and
determining which of them are public (i.e. those shared among multiple agents).

Alternatively, the MADLA Planner accepts the unfactored MA-PDDL (see Appendix A) input for-
mat introduced for the Competition of Distributed and Multi-Agent Planners [Komenda et al., 2016].
The described process is used also for MA-PDDL with the exception that the first step is to extract the
agents from MA-PDDL and translate MA-PDDL into PDDL and ADDL. Subsequently, the factoriza-
tion process continues as described regardless of the factorization and privacy definition of MA-PDDL
based on the MA-STRIPS definition. This means, that the problem solved may differ from the problem
defined in MA-PDDL, but the MA-PDDL problems can be defined so that they adhere to the MA-
STRIPS rules as was the case in the CoDMAP competition. In such situation the MADLA Planner
solves the same problem as defined.

After the partitioning step, each agent is initialized and run in a separate process. From now on, the
planning is distributed, each agent is running on its own thread and communicating with other agents via
message passing over the TCP/IP protocol. Detecting the nonexistence of a solution in the distributed
setting is nontrivial (using the distributed snapshot algorithm) and introduces communication overheads
and thus we currently resort to a time limit instead, which is not a problem in practice, as the planner
is typically run within a time limit anyway. When a solution is found, we use a variant of the plan
reconstruction process slightly more efficient than the described one. The main difference is that if a
plan of length l is being reconstructed, the reconstruction process of any plan with length l′ such that
l′ > l is terminated as soon as it is detected (e.g., when the reconstruction message is received).

Also, in the implementation, we use separate closed lists CiD and CiL for the states evaluated using
the distributed and the local heuristic respectively, but we are using only a single closed list Ci for the
simplicity of the presentation. The use of the separate closed lists improves the coverage of MADLA
Search by 2.9% and the use of local heuristic re-computation when a state is received by 3.2% (see the
next sections). All the theoretical results hold also when using two closed lists as eventually, all states
will be in both closed lists.

The last implementation detail we present here is related to the non-blocking property of the dis-
tributed heuristic (Section 4.3). The heuristic computation is not ideally non-blocking, as parts of the
heuristic are computed locally in the agent’s thread and thus do not allow other computation to run
at the same time. Such situation is namely when the heuristic is initiated and computes local relaxed
plan. Another such situation occurs when the initiator agent needs to satisfy private preconditions of
its own public action. The experimental evaluation shows, that in some domains, this violation of the
non-blocking property degrades the efficiency of the MADLA Planner.

5.5.2 Comparison of the Building Blocks
The building blocks of the MADLA Planner are the projected and distributed FF heuristics and the
scheme that combines these in a search. A baseline approach (as we presented in Section 5.1.2) is
to adapt a classical multi-heuristic (MH) search for multi-agent planning without the non-blocking
MADLA principle with a simple alternation mechanism of the open lists respective to the projected
and distributed FF heuristics. However, this approach is not viable as the heuristics are not “orthog-
onal”. The proposed MADLA Search utilizes the requirement for a non-blocking distributed heuristic
estimator (particularly implemented in the form of the Privacy-Preserving Set-Additive FF heuristic, see
Section 4.3) by running projected FF in the spare time, therefore in contrast to the MH search utilizing
the waiting times for computation of the projected heuristic. Table 5.1 summarizes the coverage of the
projected FF (projFF) and Privacy-Preserving Set-Additive FF (ppsaFF) heuristics in separate multi-
agent single-heuristic search (see Section 5.1.3), in the classical multi-heuristic search (Section 5.1.2)
naively modified for multi-agent planning and in the MADLA Search (Section 5.2) with both heuristics.

The results clearly indicate (as expected) that the baseline multi-heuristic approach is not suitable for
the pair of projected and distributed FF heuristics. The summed up coverage results are similar for the
single-heuristic searches as the price for better estimates of the distributed variant of FF than projected

92CHAPTER 5. COMBINING DISTRIBUTED AND LOCAL HEURISTICS IN A HEURISTIC SEARCH

domain |A| projFF ppsaFF MH search MADLA Search

blocksworld (35) 4 32.9 35 15 34.1
depot (20) 5-12 10.3 10.5 7 10.8
driverlog (20) 2-8 17.2 14 13 17.2
elevators08 (30) 4-5 17.5 29 2 27.7
logistics00 (20) 3-7 20 20 3 20
openstacks (30) 2 13.6 14.9 15.5 20
rovers (20) 1-8 20 20 6.6 20
satellites (20) 1-5 20 20 6 19.8
woodworking08 (30) 7 8.8 4.8 5.6 7.5
zenotravel (20) 1-5 19 16.9 8 19
total (245) 179.3 185.1 81.7 196.1

Table 5.1: Average coverage of the building blocks. Number of problems in a domain are in the brackets,
|A| denotes the number (interval) of agents in the problems. The best results are emphasized.

1 2 5 10 20 50 100 200 500

50
10

0
15

0
20

0

time / s

co
ve

ra
ge

 /
pr

ob
le

m
s

projFF
ppsaFF
MADLA

Figure 5.5.2: Variation of coverage depending on time.

FF is its slower computation (see Section 4.4 for more detailed comparison of different variants of
inadmissible heuristic computation). Driverlog, woodworking08, and zenotravel are domains where
projected FF is performing substantially better than the distributed variant. In such cases, where the
FF heuristic is not appropriate or the overhead of its distributed computation overweights the fact the
heuristic is more informative, the search using only the projected FF performs better.

The openstacks domain is the only case where even the classical multi-heuristic search outper-
forms both single-heuristic searches. The efficiency of the FF heuristic in the openstacks problems
differs even between the projected and distributed heuristics, therefore their combination outperforms
each one separately (see Section 5.5.3 for more details) even with the alternating scheme. Elevators08
and woodworking08 are domains where one of the single-heuristic searches outperformed the MADLA
Search (with a reasonable difference). In the former case, as the implementation of the MADLA scheme
is not completely non-blocking (see Section 5.5.1 for details), the computation of the distributed heuris-
tic can be slowed down by the computation of the local heuristic. In the latter case, as the FF heuristic
itself is not guiding the search well, a large number of states needs to be evaluated. The distributed
heuristic does not achieve better guidance, only slows down the whole search process and thus the
projected heuristic performs slightly better on its own.

5.5. EVALUATION 93

projFF ppsaFF MADLA
Expanded states 109 151 96
Plan length 171 154 184
Bytes communicated 161 49 84
Total time 169 136 160

Table 5.2: Total sums of IPC Scores over all domains and problems for additional metrics. IPC Score
is calculated per problem as V ∗/V , where V ∗ is the best and V the particular value for a configuration.
Higher numbers mean better performance with respect to the given metric.

Figure 5.5.2 shows the coverage of MAFS using a single heuristic compared with the MADLA
Search using both. The results were obtained by first averaging the runtime over all 10 runs per problem,
which results in slightly different final coverage than in Table 5.1 as each problem is counted as 1 even
if not solved in some runs. The plot shows very interesting properties. First, it shows that the projected
heuristic (projFF) solves more problems in the same time than the distributed heuristic (ppsaFF), this
holds for all time limits. Even more interesting result is that the MADLA Search solves fewer problems
than pure projFF in very short time limits (approx. less than 10s), because the MADLA Search is
slowed down by the distributed heuristic. For longer time limits, the MADLA Search solves more
problems than projFF as it is able to harness the benefits of the distributed heuristic.

Table 5.2 lists results of the two heuristics run separately in MAFS and their MADLA combination
evaluated using additional metrics of expanded states, plan length, bytes communicated among the
agents and total planning time, all in form of the IPC score. For a particular problem, the IPC score
is computed as a ratio of the optimal value (or the best value of all configurations if the optimum is
not known) V ∗ and the particular value V , formally V ∗/V . This means that the best configuration for a
given problem gets 1, worse configurations get a value < 1. The number in the table is the sum of the
IPC scores over all problems in all domains for each configuration. The table shows that the distributed
heuristic ppsaFF expands the least states (highest score) indicating the heuristic is most informed in
comparison to projFF and MADLA which both compensate for the informativeness by the speed of
computation of projFF, as the total planning time shows. MADLA slightly improves over projFF in
the metric of plan length as the distributed more informed heuristic can shorten some parts of the plans.
Notice that on its own, the distributed heuristic leads to longer plans, as it overestimates the true cost
more often. This illustrates one of the benefits of the heuristic combination in the MADLA Search. The
results of communicated bytes demonstrate the fact that the projected heuristic does not communicate at
all (only the search messages are counted). On the contrary, the distributed heuristic is communication
intensive and MADLA is balancing both.

The proposed MADLA Search scheme improves the overall coverage over both single-heuristic
searches and doubles the coverage of the classical multi-heuristic scheme with the same heuristics. It
also provides the best quality plans.

5.5.3 Detailed Analysis
In this section, we analyze the performance of the presented building blocks and the MADLA Search5

in detail. Table 5.3 shows a comparison of various metrics measured using the multi-agent single-
heuristic search with projected FF, distributed Privacy-Preserving Set-Additive FF and MADLA Search
using both. The first two columns are ratios of coverage and the number of expanded states of the
single-heuristic search with projected FF and distributed FF respectively. The next two columns show
the percentage of states in MADLA Search expanded using projected FF and the ratio of states ex-
panded using projected FF and distributed FF. The next three columns show the time per state (in mil-

5In this section, the MADLA Search does not re-compute the local heuristic on received states. The results slightly differ from
the coverage results in Section 5.5.2, but the total difference in coverage is 0.6 problems and thus negligible.

94CHAPTER 5. COMBINING DISTRIBUTED AND LOCAL HEURISTICS IN A HEURISTIC SEARCH

projFF MADLA MADLA th Action

ppsaFF exp [ms] per state ratio

domain cvg exp projFF
all

projFF ppsaFF ppsaFF
projFF

public
all

% PD
all

%

blocksworld 0.94 6.4 0.94 0.4 0.7 1.7 100 100
depot 0.98 11.1 0.96 0.7 9.6 8.0 95.7 23
driverlog 1.23 2.4 0.80 0.9 1.1 1.3 91.9 26.7
elevators08 0.60 50.7 0.94 0.3 0.4 1.5 66 66
logistics00 1.00 47.4 0.95 0.2 0.8 6.3 67.4 33.7
openstacks 0.91 12.9 0.67 2.3 1.6 0.9 100 0
rovers 1.00 1.5 0.75 0.4 0.5 1.4 26.1 11.5
satellites 1.00 0.8 0.77 0.3 2.4 9.8 7.2 2.7
woodwork. 1.83 7.2 0.90 2.2 12.2 7.4 99.9 13
zenotravel 1.12 0.3 0.77 0.5 0.9 1.6 20.7 14.1

Table 5.3: Comparison of various metrics. Ratios of coverage and expanded states of MAFS running
projFF and ppsaFF, ratio of states expanded in MADLA using projFF to all expanded states, time per
state in MADLA spent on evaluation of projFF and ppsaFF and their ratios and ratios of public action
to all actions and state discerning (PD) actions to all actions in each domain. All values are averages per
domain.

liseconds) the MADLA Search spends on computing the projected and distributed heuristics and the
distributed/projected ratio. The last two columns show the average percentage of public and privately-
dependent (PD) actions (see Definition 95) in the domain. A PD action is public and has some private
preconditions, which are hidden for agents other than the owner of the PD actions and may cause depen-
dencies between PD actions. Ignoring such dependencies in the projected heuristic may significantly
influence the quality of estimates.

Now, we analyze the results shown in the Table 5.3 for each of the domains in detail.

blocksworld All actions in the domain are PD actions as they depend on the private state of the hand.
This results in a better heuristic guidance of the distributed heuristic, best-first search expanding
over 6× more states with the projected heuristic than with the distributed one (column exp in
Table 5.3). In the MADLA Search, only 6% of states are expanded using the distributed heuristic
(column MADLA exp), which is, nevertheless, enough to slightly reduce the coverage of MADLA
compared to MAFS with only the distributed heuristic.

depot The distributed heuristic takes approx. 8× longer to evaluate on average (column MADLA th
right in Table 5.3), but its better heuristic guidance (11×more expanded states using the projected
heuristic) results in almost equal coverage (Table 5.1). In MADLA, due to the time demanding
distributed heuristic computation, about 96% of states are expanded using the projected heuristic
(column MADLA exp left). But the small number of states expanded using the distributed heuristic
improves the coverage of MADLA in comparison to the single-heuristic search using either of the
heuristics.

driverlog The distributed heuristic seems to lead the search slightly better (approx. 2× less expanded
states, column exp in Table 5.3) and takes approx. 1.3× more time per state. Nonetheless, the
coverage of MAFS using the distributed heuristic is worse than using the projected one, which
is likely caused by the higher chance of finding the goal with more expanded states (although
less informed), especially in the harder problems (column MADLA th right, column cvg and
Table 5.1). In MADLA, this is improved by approx 80% of states expanded using the projection
(column MADLA exp left), which is enough to reach the coverage score of the projected heuristic
on its own.

5.5. EVALUATION 95

elevators08 The single-heuristic search with a projected heuristic expands over 50× more states than
with the distributed one (column exp in Table 5.3) and the distributed heuristic takes on average
only approx. 1.5× longer to compute (column MADLA th right). This results in a difference
in problem coverage of over 10 problems in favor of the distributed heuristic (Table 5.1). In
MADLA, even though only 6% of states are expanded using the distributed heuristic (column
MADLA exp left), it is enough to reduce the performance of the single-heuristic search with the
distributed heuristic.

openstacks The openstacks domain is the only case, where even the classical multi-heuristic search
outperforms both single-heuristic searches. The projected heuristic is in several instances not in-
formed enough, as the two agents need to strongly coordinate the orders. On the other hand, the
distributed estimation is in the other instances computationally hard and not leading the search
well (see Figure 4.4.4-bottom). There are no state discerning actions. The favorable combina-
tion of distributed and projected heuristic (over 30% of states evaluated with the distributed one)
improves significantly the coverage of MADLA.

woodworking08 In the single-heuristic search, the distributed heuristic expands approx. 7× fewer
states and takes over 7× longer to evaluate per state (columns exp and MADLA th right in Ta-
ble 5.3). The MAFS using projected heuristic solves nearly twice as many problems as MAFS
using the distributed heuristic. This is probably caused by the dominant effect of the number of
expanded states, where a higher number of expanded (albeit worse guidance) leads to a solution
more often. The MADLA Search, however, is able to take advantage of projected heuristic by
expanding only 10% of states using the distributed one. Combined, MADLA performs nearly as
well as MAFS using only the projected heuristic.

zenotravel The zenotravel domain is one of a few domains where the projected heuristic actually
offers better guidance resulting also in better coverage of MAFS using only the projected heuristic.
Again, MADLA is able to take advantage of that and match the coverage.

Based on the measured values and also on the understanding of the domain, the logistics00 domain is
similar to the elevators08 domain, although much easier to solve. The rovers and satellites domains
are very loosely coupled domains with only a small portion of public actions and are also easy to solve.

In summary, the distributed heuristic is useful in domains with a high number of public actions with
private preconditions, which is a sign of necessary interaction among the agents, not visible to the pro-
jected heuristic, or with some crucial information being private (as in woodworking). On the contrary,
the projected heuristic performs better on domains where the agents are interchangeable (driverlog,
zenotravel). In most cases, the MADLA Search is able to let the better heuristic dominate the search
and thus on most domains, MADLA closely matches the better one of the single heuristic approaches.
Notice that on some domains, MADLA even improves the coverage over each heuristic used separately
(namely depot and openstacks). It is also important to note that in woodworking, both projected and
distributed FF heuristics ignore a significant number of dead-ends, thus slowing the search and solving
fewer problems.

5.5.4 Comparison with a Centralized Planner
To report on the effects of the multi-agent partitioning (sometimes referred to as factorization for its
resemblance with factored planning), we run the benchmark problems on a centralized Greedy Best-
First Search with the FF heuristic. In Table 5.4 the results are compared with the MADLA Search with
the projected and distributed FF heuristics. The centralized planner is a configuration of the MADLA
Planner using the same codebase but no agent factorization in order to have a fair comparison of the
techniques. The original FF planner or Fast Downward (FD) would most probably perform better as
they are more optimized and use additional techniques such as preferred operators. In order to account

96CHAPTER 5. COMBINING DISTRIBUTED AND LOCAL HEURISTICS IN A HEURISTIC SEARCH

domain |A| Centralized MADLA Planner

blocksworld (35) 4 34 34.1
depot (20) 5-12 6 10.8
driverlog (20) 2-8 19 17.2
elevators08 (30) 4-5 17 27.7
logistics00 (20) 3-7 20 20
openstacks (30) 2 9 20
rovers (20) 1-8 20 20
satellites (20) 1-5 20 19.8
woodworking08 (30) 7 8 7.5
zenotravel (20) 1-5 19 19
total (245) 172 196.1

Table 5.4: Comparison of the MADLA Search with projected and distributed FF heuristics and a cen-
tralized search without multi-agent partitioning with centralized FF heuristic. Average coverage is used
for MADLA and one coverage value is used for the (deterministic) centralized search.

domain |A| rdFF GPPP PSMM FMAP MADLA

blocksworld (35) 4 6.8 3 25 19 34.1
depot (20) 5-12 6.2 8 0 6 10.8
driverlog (20) 2-8 14 9 13 15 17.2
elevators08 (30) 4-5 2.9 16† 4 30 27.7
logistics00 (20) 3-7 5.8 20 9 10 20
openstacks (30) 2 11.7 0‡ 30 23 20
rovers (20) 1-8 14.7 10 14 19 20
satellites (20) 1-5 10.8 16 8 16 19.8
woodworking08 (30) 7 5.6 0‡ 25 22 7.5
zenotravel (20) 1-5 6.1 20 17 18 19

total (245) 84.6 102 145 178 196.1

Table 5.5: Comparison MADLA and state-of-the-art planners. †In GPPP experiments a version of the
domain without action costs was used, consisting of 16 problems. ‡GPPP does not support action costs.

for the MADLA Planner running on 8 cores, the centralized planner was allowed an 8× longer time
limit.

The results show substantial differences in the depot, driverlog, elevator08, and openstacks do-
mains. The multi-agent search doubles the efficiency in depot and 1.5× in elevators08, as the agent
subproblems are loosely coupled (the same holds for logistics00, rovers, satellites, and zenotravel).
Loose coupling results in beneficial decomposition, making the agents’ problems significantly smaller
but with not much overhead in coordination. The strong efficiency improvement in openstacks is
caused by a better informed combination of heuristics and beneficial partitioning of the problem. In
driverlog, the most plausible explanation of the coverage drop is the relaxation principle of the FF
heuristic provides better estimates without the partitioning. In general, the results follow the results of
similar experiments performed with MAD-A* [Nissim and Brafman, 2014].

5.5.5 Comparison with the State of the Art
In Table 5.5, we show a comparison of problems solved by MADLA and four complete and distributed
multi-agent planners. The results show that MADLA loses considerably in woodworking08 and open-
stacks against all planners supporting action costs. These domains contain a substantial number of

5.6. SUMMARY 97

dead-ends of which the FF heuristic (especially in the projected form) is oblivious.
We argue that MADLA is not fairly comparable to (a) planners which do not consider multi-agent

privacy (ADP [Crosby et al., 2013]), (b) planners incompatible with MA-STRIPS (µ-SATPLAN [Di-
mopoulos et al., 2012], BRP [Jonsson and Rovatsos, 2011], , and others, see Chapter 2 for details),
or (c) optimal planners (MAD-A* [Nissim and Brafman, 2012]). Additionally, we present comparison
only with the most efficient planners using a particular paradigm. We do not present detailed compar-
isons with ADP planner, however on the benchmark set present, ADP outperforms MADLA by more
than 28% solved problems. By definition, ADP cannot preserve privacy in the same sense as MADLA
in general, as it does not obey the definition of the agents by which MA-STRIPS defines the privacy.
Moreover, MADLA has to use one partitioning of the planning problem defined in the input PDDL and
ADDL, but ADP targets classical planning benchmarks and is free to partition the problem as it sees fit.

Although the result table does not contain the PMR [Luis and Borrajo, 2014] planner, MADLA
outperforms it on the presented benchmark set as well, just because PMR is an incomplete planner as
stated in [Borrajo, 2013, Luis and Borrajo, 2014]. PMR solves only problems where each goal fact is
solvable by a single agent. Thus it does not solve problems of depot, logistics00, openstacks, and
woodworking08 domains. Even if PMR solved all problems of all other domains, MADLA would
outperform it by 38%.

Against MAFS running recursive distributed FF [Štolba and Komenda, 2014] (see Section 4.2 for
description), MADLA shows more than 2× improvement over all domains with an exception of driver-
log and woodworking08, where the improvement is about 20%. Similarly, MADLA outperforms
GPPP [Maliah et al., 2014] nearly 2× over many domains and PSMM [Tožička et al., 2014] by 36%.
Finally, MADLA solves 16 more problems of the benchmark set in contrast to the top performing
multi-agent planner FMAP [Torreño et al., 2014], which correspond to nearly 11% improvement. In
comparison to FMAP, MADLA is considerably better on four domains (blocksworld, depot, logistics,
satellites) and significantly worse only on two (elevators08, woodworking08).

The MADLA Planner also took part in the Competition of Distributed and Multi-Agent Planners
(CoDMAP)[Komenda et al., 2016]6. Note, that although the MADLA Planner itself was not signifi-
cantly modified for the competition, one of the best performing planners, MAPlan [Fišer et al., 2015] is
built on the same principles. In particular, it uses distributed heuristic search with the privacy-preserving
set-additive FF heuristic (Section 4.3), but without the MADLA Search (Section 5.2). See Appendix A
for the competition details and results of the MADLA Planner in comparison with other state-of-the-art
planners.

5.6 Summary
In this Chapter, we have provided an answer to the question of how to combine local and distributed
heuristics (Objective 2). The proposed approach is to use a multi-agent multi-heuristic scheme, the
Multi-Agent Distributed and Local Asynchronous (MADLA) Search, where common properties of dis-
tributed heuristics are used to improve the efficiency. The most important property is that the distributed
heuristic is evaluated asynchronously as it sometimes must wait for replies from other agents. In such
situation, the local heuristic can be used for a fast local search. By cleverly sharing the states reached by
the distributed and the local search we can improve the overall performance of the search in comparison
to a search using each of the heuristics separately, or a standard multi-heuristic search. We have shown
such improvement in a detailed experimental evaluation.

6http://agents.fel.cvut.cz/codmap

98CHAPTER 5. COMBINING DISTRIBUTED AND LOCAL HEURISTICS IN A HEURISTIC SEARCH

Chapter 6

Distributed Optimal Planning

There has been significantly less work done in optimal MAP than in satisficing MAP which we have
considered so far in Chapter 4 and Chapter 5. The only optimal multi-agent planning algorithm for
the MA-STRIPS and MA-MPT is MAD-A* [Nissim and Brafman, 2012] which is also implemented
in a fully distributed way as one of the search algorithms in MAPlan [Fišer et al., 2015]. In the thesis,
we have mostly focused on the distributed computation of admissible heuristics in fulfillment of the
(Objective 1).

In MAD-A*, the search is guided by the well known LM-Cut [Helmert and Domshlak, 2009] or
Merge&Shrink Helmert et al. [2007] heuristics, computed on the projected problem (Definitions 11 and 32).
Projected heuristic computation is a reasonable choice as it preserves admissibility in general. Recall the
definition of an i-projected heuristic (Definition 40). An i-projected heuristic is a heuristic computed
on the i-projected problem ΠB

i . Now we can state the following theorem:

Theorem 63. Any admissible heuristic computed on an i-projected problem ΠB
i is admissible also for

the global problem ΠG.

Proof. Directly follows from ΠB
i being an abstraction of ΠG (Theorem 36).

A fundamental flaw of computing an admissible heuristic on a projected problem is that the shortest
path in the projected problem may be arbitrarily shorter than is the global one, which may result in an
arbitrarily bad heuristic estimate. Consider an example, where each agent can achieve the (global) goal
g by a sequence of n private actions followed by a single public action (Figure 6.0.1a). In Figure 6.0.1a,
a1, ..., an and a′1, ..., a

′
n are private to respective agents and ag, a′g are visible to all agents (public). If

we consider unit cost actions, the cost of an optimal solution is n+ 1.
The projected problem looks quite different (Figure 6.0.1b). The agent knows only about the action

a′g of the other agent. Moreover, it does not know about its precondition and considers a′g applicable in
the initial state i. In the projected problem, the cost of an optimal solution is 1. Therefore no admissible
heuristic computed on the projected problem can give estimate higher than 1. This example can be

a)

p1 pn-1 pn
an

g

ag

q1 qn-1 qn
a'n

a'gi
a1
a'1

b)

p1
pn-1 pn

an

g
ag

i
a1

a'g

Figure 6.0.1: The full (a) and projected (b) problem.

99

100 CHAPTER 6. DISTRIBUTED OPTIMAL PLANNING

scaled to any number of agents and enlarged to bound the estimate of the projected heuristic arbitrarily
far from the real optimal solution cost.

In this chapter, we solve this problem by providing a number of distributed versions of classi-
cal planning heuristics. First, we provide an admissible distributed version of the hmax [Bonet and
Geffner, 1999] relaxation heuristic (Section 6.1). A distributed variant of hmax was already described
in Section 4.2.1, but without the guarantees on admissibility. Building on hmax we continue with the
landmark-based relaxation LM-Cut heuristic (Section 6.2). In Section 6.3 we define desirable addi-
tive properties of a heuristic and propose a modification of the MAD-A* search taking advantage of
such heuristics. An example of such additive heuristic is presented in Section 6.4, where we venture
away from the relaxation heuristics and provide a distributed version of the family of potential heuris-
tics [Pommerening et al., 2015]. We continue the investigation of the idea of additive heuristics for
general heuristic computation in Section 6.5 where we focus on multi-agent cost-partitioning.

6.1 Distributed Admissible Max Heuristic

The hmax heuristic belongs to the family of relaxation heuristics. Relaxation heuristics base the estimate
on a solution of a relaxed problem Π+, in which all delete effects are ignored (for all actions, a+ =
〈pre(a), add(a), ∅〉). Although the cost of an optimal solution to Π+ is an admissible estimate, it is
NP-hard to compute, thus various approximations are used instead. In the following, we rephrase one
of the first such estimates, the hmax heuristic, and provide a method for its distributed computation. A
distributed hmax published in [Štolba and Komenda, 2014] was already described in Section 4.2.1, but
without provable equality with the centralized version and also with no guarantees of admissibility, as
is required here.

Let O(p) be a set of actions achieving p in ΠG, formally

O(p) = {a ∈ A|p ∈ add(a)}
OBi(p) = {a ∈ AB

i |p ∈ add(a)}
OOi(p) = {a ∈ AO

i |p ∈ add(a)}

where OBi(p) is a set of actions achieving p in ΠBi and OOi(p) in ΠOi.
The hmax heuristic is defined by a set of recursive equations (similarly to hadd in Section 4.2.1):

hmax(P, s) = maxp∈P (hmax(p, s)) (6.1.1)

hmax(p, s) =


0 p ∈ s

hmax(arg min
a∈O(p)

(hmax(a, s)), s)

p /∈ s

(6.1.2)

hmax(a, s) = costa(+)hmax(pre(a), s), (6.1.3)

where P is a set of facts (goal or action preconditions). Throughout the text, projected hBimax is hmax

computed on ΠBi, local hOimax is hmax computed on ΠOi and distributed hGi
max is hmax computed onM,

but estimating ΠG.
Initiator agent is the agent αi which starts the computation of distributed heuristic (e.g., hmax) for a

given state s. All other agents αj 6=i participating on the computation will be called participant agents.

6.1. DISTRIBUTED ADMISSIBLE MAX HEURISTIC 101

6.1.1 Distributed Max Heuristic Algorithm
The distributed hGi

max algorithm is shown in Algorithm 68. The computation is initiated by agent αi.
The values of hGi

max are first initialized to the values of the i-projected hBimax(line 2). The algorithm then
steps into a loop. In each iteration, the initiator sends requests to all other agents αj 6=i containing current
heuristic values for i-projections of all a ∈ Apub

j (and for the facts in sI).
The participant αj receives the request and computes heuristic values for all a ∈ AOi

j from the
received values. Afterwards, αj sends reply to αi containing hOjmax(aOj , s) for all a ∈ Apub

j (in fact only
the values which have changed must be sent).

When received (line 6), the hGi
max values are updated based on the received reply (line 7). If no

actions are updated, the loop exits, the algorithm terminates and returns heuristic value for the goal.

Algoritmus 13: Distributed hGi
max heuristic

1 Algorithm computeDistHmax(αi, s,G)
2 initialize hGi

max to hBimax for all p ∈ Pi
3 while hGi

max(a, s) changed for some a ∈ AB
i do

4 for each agent αj ∈ A\{αi} do
5 send hGi

max(aBi, s) for all a ∈ Apub
j to αj

6 receive hOjmax(aBi, s) for all a ∈ Apub
j

7 update hGi
max

8 return hGi
max(G, s)

6.1.2 Equality of Centralized and Global Max Heuristic
In this section we show that the distributed hGi

max algorithm returns the same value as the centralized
hmax for any fact or action in any state. In summary, the proof proceeds as follows. First, a relation
between the i-projected and distributed hGi

max is established, stating that hBimax(p, s) ≤ hmax(p, s) for
all p ∈ Pi (see Lemma 64). This is necessary because in the algorithm, all facts are initialized to the
i-projected hBimax values and iteratively refined until the global hmax values are reached.

Computing the hOjmax updates based on the public action and the initial state is shown to be sufficient
(see Lemma 66). As a consequence, each p ∈ Pi such that hGi

max(p, s) < hmax(p, s) is updated to
hGi

max(p, s) = hmax(p, s) after finitely many steps (see Lemma 67).
From this fact and from the relation of i-projected and distributed hGi

max follows that eventually all
facts are updated to the desired value of centralized hmax (see Theorems 68 and 69).

Lemma 64. For each state s and fact p ∈ Pi, hBimax(p, s) ≤ hmax(p, s).

Proof. Let p ∈ P =
⋃n
i=1 Pi. For induction assume that for all preconditions of actions achieving p

the lemma holds. Because p ∈ Pi for some i, the set of achievers in the projected problem contains
actions a ∈ Ai, or projections. For the former hBimax(a, s) = hmax(a, s) holds trivially, for the latter,
a projected action has less or equal number of preconditions and because the assumption holds for all
the preconditions, hBimax(aBi, s) ≤ hmax(a, s). Because in the set of projected achievers are the same
actions as in the global set or their projections (with lower or equal heuristic value), the arg min function
in the hmax equation (Eq. 6.1.2) gives a lower or equal number and because the cost of an action and its
projection is the same, hBimax(p, s) ≤ hmax(p, s).

To correctly update a fact or action value in the j-local hOjmax it is enough to provide correct hmax

values for all preceding public actions of agent αj .

102 CHAPTER 6. DISTRIBUTED OPTIMAL PLANNING

Definition 65. An action a is preceded by action a′ iff add(a′)∩ pre(a) 6= 0 or a′′ exists such that a is
preceded by a′′ and a′′ is preceded by a′. We say that a is succeeding a′.

Lemma 66. If hOimax(aOi, s) = hmax(a, s) for all a ∈ Apub
i preceding a′, then hOimax(a′Oi, s) =

hmax(a′, s).

Proof. If aOi is preceded only by actions inApriv
i the lemma holds trivially. Similarly if the precondition

p maximizing hmax is an effect of such aOi. If the maximizing precondition p is an effect of some
a′ ∈ Apub

i the lemma holds because of its assumption and because a′ is preceding a.

To conclude the proof of equality of hGi
max and hmax we show that each fact with incorrect value

is eventually updated and that the algorithm terminates with the desired values for all facts (and all
actions).

Lemma 67. Each p ∈ Pi such that hGi
max(p, s) < h(p, s) is updated to hGi

max(p, s) = h(p, s) after
finitely many steps.

Proof. Distributed hGi
max is initialized to hBimax for all facts and actions. As already shown in the proof

of Lemma 64, if hBimax(a, s) ≤ hmax(a, s) holds for some action a ∈ Ai , it is caused by some projected
action preceding a and missing the (private) precondition maximizing hmax. Let aBi0 (where a0 ∈ Aj 6=i)
be such a projected action preceding a for which hGi

max(aBi0 , s) ≤ hmax(a0, s). Let for all p ∈ pre(aBi0)
hold hGi

max(p, s) = hmax(p, s), which means that all actions preceding aBi0 already have hGi
max equal to

hmax. Such action a0 always exists, because as hGi
max is initialized to hBimax, all actions applicable in sI

or preceded only by actions in Ai have already hGi
max equal to hmax.

The inequality hGi
max(aBi0 , s) ≤ hmax(a0, s) is caused by a fact pm ∈ pre(a0)\Pi maximizing

hmax(a0, s). The action a0 is sent alongside all other actions in Apub
j to agent αj in order to obtain

an update. Agent αj computes the updated heuristic for all actions from the local problem ΠOi and
sends the information back.

From Lemma 66 and because we assumed that, for all actions a′ ∈ Apub
j preceding a0, the equality

hGi
max(a′Bi, s) = hmax(a′, s) holds, it holds also for the returned value of a0. Subsequently, hGi

max is
updated so that hGi

max(aBi0 , s) = hmax(a0, s). In the next iteration, for some other action a1 preceding
a holds hGi

max(aB1
1 , s) ≤ hmax(a1, s) while for all actions preceding a1 the equality holds. The same

reasoning can be applied to a1. Because there is only a finite number of actions and in each iteration
one of the actions is updated to the correct value, action a is also updated after finitely many steps.

Theorem 68. (Equality of distributed and centralized hmax) Algorithm 13 terminates with hGi
max(p, s) =

hmax(p, s) for any given state s and all p ∈ Pi.

Proof. For each a ∈ AB
i , when hGi

max(p, s) = hmax(p, s), the heuristic value for fact p is never
changed again. Due to the finite number of facts in a problem and Lemma 67, all facts are updated
to hGi

max(p, s) = hmax(p, s) after a finite number of iterations. After that, no fact and therefore no action
is updated and the algorithm terminates.

In the next sections, the heuristic values computed by participant agents αj 6=i, that is the hOjmax(p, s)

for the given state s and all facts p ∈ P priv
j , will be preserved throughout the computation. For hOjmax,

the equality holds as well.

Theorem 69. (Equality of i-private and centralized hmax) Algorithm 13 terminates with hOjmax(p, s) =
hmax(p, s) for all j 6= i, p ∈ Pj and any given state s.

Proof. From Theorem 68 the equality of hGi
max and hmax holds for all fact and thus for all actions. It

holds also for all projections of public actions a ∈ Apub
j . From Lemma 66, hOjmax(aOj , s) = hmax(a, s)

for all a ∈ Aj (and for all p ∈ Pj).

6.2. DISTRIBUTED ADMISSIBLE LANDMARK HEURISTIC 103

6.2 Distributed Admissible Landmark Heuristic
One of the best approximations of the optimal relaxation heuristic h+ known up to date is the LM-
Cut heuristic [Helmert and Domshlak, 2009] which computes the estimate by iteratively searching for
landmark actions and updating the cost function. To do so the hmax heuristic is computed in each
iteration.

The LM-Cut heuristic (denoted as hLM-Cut, shown in Algorithm 14) provides an admissible estimate
of the optimal plan for a relaxed problem Π+ by utilizing the idea of disjunctive action landmarks. Here,
we present a distributed version hG

LM-Cut for which we show hG
LM-Cut(s) = hLM-Cut(s) for any state s.

6.2.1 The LM-Cut Heuristic

Algoritmus 14: LM-Cut Heuristic

1. Compute hkmax based on costk for every p ∈ P . If hkmax(g) = 0 terminate and return hLM-Cut.

2. Construct a justification graph Jk

3. Construct a disjunctive landmark Lk

(a) Find all facts p s.t. g is 0-reachable from p, add p to V ∗k
(b) Find all facts reachable from i without visiting a fact in V ∗k

i. If an edge cross to V ∗k , add its label to Lk

4. Let ck+1(a) =

{
costk(a)

costk(a)− costlm
k (Lk)

a /∈ Lk
a ∈ Lk

5. Continue with Step 1. for k = k + 1

Definition 70. Disjunctive action landmark (or landmark) is a set of actions L ⊆ A s.t. each plan
must contain at least one a ∈ L. Cost of landmark L is clm(L) = mina∈Lc(a), where c(a) is the cost of
action a.

The hLM-Cut heuristic is obtained from a sequence {(Lk, costk)}mk=0 of landmarks and cost func-
tions, hLM-Cut = clm

0 (L0) + clm
1 (L1) + ...+ clm

m(Lm). Initially, c0 = c and in each iteration k, landmark
Lk is computed using costk and a new cost function ck+1 is determined (Algorithm 14, Step 4.).

We assume that there is a single fact i representing the initial state and a single fact g representing
the goal. If it is not the case, the problem can be transformed by adding zero-cost action ap for each
p ∈ sI s.t. pre(ap) = {i} and add(ap) = {p}. The goal G can be treated analogously. Moreover,
we assume that each action has at least one precondition and one effect, again, general problem can be
transformed by setting i as precondition of actions for which pre(a) = ∅ and adding a dummy effect ⊥
for actions for which add(a) = ∅.

Example. (LM-Cut) The algorithm will be illustrated on a STRIPS example with a set of 5 actions
{a1, ..., a5} (later, in a MA-STRIPS formulation, the actions will be divided among two agents α1, α2),
the actions are denoted as a : pre(a)→ add(a) and have no delete effects:

A1 : a1 : i→ p1, p2 a2 : p1, p4 → g
A2 : a3 : i→ p3, p4 a4 : p3 → p5 a5 : p2, p5 → g

The facts are {i, g, p1, ..., p5}, where i is the initial fact and g is the goal fact. The initial cost function
cost0 = cost is defined as cost(a1) = 3, cost(a2) = 1, cost(a3) = 1, cost(a4) = 1 and cost(a5) = 1.

104 CHAPTER 6. DISTRIBUTED OPTIMAL PLANNING

In Step 1 the hmax heuristic is computed for all facts based on cost0, that is hmax = {p1 : 3, p2 :
3, p3 : 1, p4 : 1, p5 : 2, g : 3}.

In Step 2 a justification graph J0 is constructed. A Justification graph J is a directed graph with
a vertex for each p ∈ P and an edge (p, q) labeled a if there exists an action a s.t. p = pcf (a)
and q ∈ add(a). Function pcf (a precondition choice function) assigns to a given action a one of its
preconditions. In hLM-Cut, the pcf assigns a precondition maximizing hmax, ties broken arbitrarily. In
the example, pcf = {a1 7→ i, a2 7→ p1, a3 7→ i, a4 7→ p3, a5 7→ p2}, resulting in J0:

i

p1
a1

p2a1

p3
a3

p4

a3

g

a2

a5

p5
a4

In Step 3 the landmark Lk is constructed. (a) All facts p from which the goal g is reachable through
a path on which each edge has a label a s.t. costk(a) = 0 (g is 0-reachable from p) are added to V ∗k .
In the iteration k = 0 of the example it is V ∗0 = {g}. (b) Find all fact reachable from i without visiting
any fact from V ∗k . In the example it is all facts except for g. If an edge crossing to V ∗k (that is e = (p, q)
and q ∈ V ∗k) is reached, label of the edge is added to Lk. In the example this includes all edges leading
to g, resulting in L0 = {a2, a5}.

In Step 4 new cost function costk+1 is defined. The costs of all actions in Lk is reduced by the cost
of Lk, that is the cost of the least-cost action in Lk. In the example, cost1(a2) = 0 and cost2(a5) = 0,
for all other actions it is the same as cost0.

The computation continues by Step 1. of iteration k + 1, until hmax(g) = 0.

6.2.2 Distributed LM-Cut Heuristic
In the following, we assume that the participant agents αj 6=i keep the result of computation (context)
of hGi

max, that is the heuristic values for all p ∈ P priv
j and a ∈ AO

j . Moreover, we will modify the tie-
breaking behavior of the pcf function so that if the tie is between a public and private fact, the public
fact will be preferred. We assume that the pcf always chooses the same precondition in both hLM-Cut

and hG
LM-Cut.

To compute a distributed version of the heuristic we introduce a projected version of landmarks:

Definition 71. An i-projected disjunctive action landmark (or i-projected landmark) LBi corre-
sponding to the disjunctive landmark L is LBi = (L ∩AB

i) ∪ {ā}, where ā is a place-holder action.

The placeholder action represents the cost of private actions of other agents in L, so when the
landmark is completed, cost(ā) = costlm(L).

Using the hGi
max values computed by the distributed algorithm for each fact, the justification graph

for the global problem can be reconstructed. The resulting distributed justification graph JGi =
(JBi, {JOj}j 6=i) consists of an i-projected justification graph JBi and a set of j-local justification
graphs {JOj}j 6=i.

An i-projected justification graph JBi is a justification graph over Pi ∪{⊥} with labels from AB
i .

The pcf is modified so that for each projected action aBi, pcf (aBi) = p if p ∈ Pi maximizes hGi
max

and hGi
max(aBi, s) = hGi

max(p, s), otherwise pcf (aBi) = ⊥ if hGi
max(aBi, s) > hGi

max(p, s). This means
that the maximizing fact is private to some other agent. If add(aBi) ∩ P pub

i = ∅, we treat the action as
if add(aBi) = {⊥}. Edges are not connected via ⊥. An i-local justification graph JOi is similarly
defined over P priv

i ∪ {⊥} with labels from AO
i .

The distributed justification graph is a distributed graph where the partitions have pairwise disjunc-
tive sets of vertices. Each edge in JBi with label containing a projected action aBi s.t. a ∈ Aj 6=i can

6.2. DISTRIBUTED ADMISSIBLE LANDMARK HEURISTIC 105

be seen as an edge shared with JOj , where the corresponding edge has a label containing the respective
aOj .

The distributed version of hLM-Cut, denoted as hG
LM-Cut, follows the same major steps as the central-

ized version - it differs in that the computation is distributed in some of the steps.

Example. (LM-Cut) To illustrate we will use the previous example in a MA-STRIPS formulation in
which {p2, p4, g} are public facts and {a1, a2, a3, a5} public actions.

In Step 1 of the k-th iteration, distributed version of hGi
max is computed based on the cost function

costk. The initiator agent αi computes hGi
max for all facts in Pi while all other agents αj 6=i compute hOjmax

for all facts in P priv
j . The computed values are identical to the values of centralized hmax (Theorems 68

and 69).
In Step 2 the initiator agent αi builds an i-projected justification graph JBi

k based on the values of
hGi,k

max whereas all other agents build j-local justification graph JOj
k based on the values of hOj,kmax , together

forming a distributed justification graph JGi
k . In our example, the justification graphs are the following:

J1
0 :

i

p1a1

a1

p4
a3 αj

g

a5 αj

a2

p2

JO2
0 :

i p3
a3

p5
a4

┴ g
a5

Notice, that a5 has ⊥ as its precondition. This is because p5 maximizes hO2,0
max and hO2,0

max (a5, s) =

3 > hO2,0
max (p5, s)=2 (the globally maximizing fact is p2 /∈ P priv

2).
In Step 3 the i-projected landmark LBi

k must be determined in a distributed manner. To obtain the
same heuristic estimate as in the centralized version, the cost of LBi

k must be equal to the centralized
landmark Lk. This will be achieved by the place-holder action ā. But first, all facts from which is g
0-reachable must be found.

Step 3.1 Find all facts p such that g is 0-reachable from p.

The algorithm starts as in hLM-Cut and puts all facts from which g is 0-reachable into V ∗k,i. As g is public,
all actions achieving g are also public and the initiator αi knows about them (they or their projections
are in AB

i), therefore the algorithm can be initiated by αi. When the algorithm reaches some projected
aBi a request is sent to αj to determine all facts from which a is 0-reachable. Agent αj finds all such
facts, places them in V ∗k,j and sends all such public facts V ak = V ∗k,j ∩ P

pub
j back to αi. When received,

αi finds all facts p′ s.t some q ∈ V ak is 0-reachable from p′ and adds p′ to V ∗k,i. This ensures that all
facts p from which g is 0-reachable are found and added either to V ∗k,i if p ∈ Pi or to V ∗k,j if p ∈ P priv

j .

Example. (LM-Cut) We illustrate this step on the iteration k = 2 of the example, where the cost of
actions has already been modified so that cost2(a1) = 0, cost2(a2) = 0, cost2(a5) = 0 and hG1,2

max =
{p1 : 0, p2 : 0, p3 : 1, p4 : 1, g : 1} and hO2,2

max = {p3 : 1, p5 : 2, g : 1}. In this situation the justification
graphs are:

JB1
2 :

106 CHAPTER 6. DISTRIBUTED OPTIMAL PLANNING

i

p1

p2
a1

p4
a3 αj

g
┴

a5 αj
a2

a1

JO2
2 :

i p3
a3

p5
a4

g
a5

Since the cost of a2 and aB1
5 is 0, p4 is added to V ∗2,1 and a request for a5 is sent to α2. Agent α2

starts the reachability analysis from a5 and finds that a5 is 0-reachable only from p5. Because p5 is
internal, the reply V a5

2 is empty, but p5 is added to V ∗2,2 and will be used in the next step.

The distributed 0-reachability algorithm ensures, that g is 0-reachable from a fact p in J if and only
if it is 0-reachable in JGi

2 . When all such facts are stored in respective V ∗k,i or V ∗k,j , the next step of the
hGi

LM-Cut algorithm can be performed.

Step 3.2 Find all facts reachable from i without visiting a fact in V ∗k,i or any V ∗k,j .

Again, the algorithm starts as in hLM-Cut. Similarly to the previous case, a fact p may be reachable from
i via some agent αj 6=i. To find all such facts, it is enough, to find all edges which contain a projected
actions aαj in the label reachable from i and for each such action send a request to αj . Agent αj then
finds all facts reachable from all q ∈ add(a) without visiting any fact in V ∗k,j . All public actions in labels
of edges visited in the process are added to A0

k and sent back in reply. When received, agent αi finds all
facts p′ reachable from all i′ ∈ add(a′) for all a′ ∈ A0

k without visiting any fact in V ∗k,i.
Unlike the previous case, i is not public and therefore additional request has to be sent for the initial

fact i. The request and respective reply are handled the same way as in the case of a projected action.

Example. (LM-Cut) Recall, that in the example, iteration k = 2, V ∗2,1 = {p4} and V ∗2,2 = {p5}. The
facts reachable in JB1

2 without visiting p4 are {i, p1, p2}. Requests are sent for aB1
3 and for i. In JO2

2 ,
the facts reachable without visiting p5 are {i, p3}.

The distributed reachability algorithm ensures, that a fact p is reachable from i in Jk if and only if it
is reachable in JGi

k .

Step 3.3 Find landmarks.

In hLM-Cut, the purpose of the reachability analysis is to find actions forming the disjunctive landmark
Lk. Those are all actions in labels of edges in Jk, starting from a fact reachable from i and ending in
fact in V ∗k . The distributed algorithm aims for the same.

In Step 3.2 performed by αi on JBi
k , action a is added to LBi

k if a is in a label of edge reachable
from i ending in some p ∈ V ∗k,i, as in hLM-Cut. When the reply in Step 3.2 is computed by agent
αj for some requested projected action, landmark actions are added to LBj

k private to αj , again as in
hLM-Cut. To capture the cost of private actions (which may possibly be the lowest cost actions), a place-
holder action ā is created and its cost set to costk(ā) = costlm

k (LBj
k). The public part of the landmark

L
pubj

k ← (LBj
k ∩ A

pub
j) ∪ {ā} is sent in reply alongside the set of reached public actions A0

k. When
received, it is merged with LBi

k while keeping only the lowest-cost place-holder action ā.

6.2. DISTRIBUTED ADMISSIBLE LANDMARK HEURISTIC 107

Example. (LM-Cut) In the k = 0 iteration of the example, the found landmarks are the following
LB1

0 = {a2, a
B1
5 , ā} and LB2

0 = {a5} where cost0(ā) = cost0(a5) = 1. In this case ā has no influence
in the cost of LB1

0 which is 1. In the k = 2 iteration, LB1
2 = {aB1

3 , ā} and LB2
2 = {a4} where

cost2(ā) = cost2(a4) = 1, whereas cost(aB1
3) = 2 and the information encoded in ā is crucial.

In Step 4

of the distributed algorithm the cost function for the next iteration k + 1 is constructed. Thanks to the
use of place-holder action ā which stores the cost of the lowest-cost action over all j-local landmarks,
the same update formula as in hLM-Cut can be used also in the distributed version. The only difference
is that when the costlm

k (LBi
k) value is computed it is sent to all participating agents αj so that the cost of

actions in LBj
k can be locally updated as well.

Example. (LM-Cut) Notice, that in the example iteration k = 2 the 2-projected landmark LB2
2 = {a4}

is missing the action a3. It is not a problem for the computation of the cost of LB1
2 , because it contains

aB1
3 , but the cost of a3 will not be updated. This issue can be handled in various ways, in hG

LM-Cut it is
handled in the computation of hG1,3

max where the updated cost of projected actions is sent from the initiator
to the participants.

6.2.3 Equality of Centralized and Distributed LM-Cut Heuristic
To show the equality of the centralized hLM-Cut and distributed hG

LM-Cut heuristic, it is crucial to have the
distributed hGi

max equal to the centralized hmax. This has been shown in Theorems 68 and 69. Then, a
distributed justification graph has to be constructed, such that a reachability relation is preserved. From
the definition of JGi and the presented algorithms directly follows:

Lemma 72. Fact q is reachable (0-reachable) from fact p in a justification graph J iff q is reachable
(0-reachable) from p in a distributed justification graph JGi.

Next, we proceed by showing that in each iteration, the union of the set of projected landmarks con-
structed by the distributed algorithm is equal to the landmark constructed by the centralized algorithm
(see Lemma 73) and its cost is equal to the cost of the projected landmark constructed by the initiator
agent (see Lemma 74). We conclude the proof by showing that the heuristic estimate obtained by the
distributed version is equal to the centralized estimate (see Theorem 75).

Lemma 73. For each step k, landmark Lk constructed by the centralized algorithm on Jk and land-
marks LB0

k , ..., LBn
k constructed by the distributed algorithm on JGi

k holds Lk =
⋃n
j=1 L

Bj
k \{ā}.

Proof. In each step k, V ∗k =
⋃n
j=1 V

∗
k,j holds (from Lemma 72). In the centralized search for landmarks,

an action a is added to Lk if and only if p ∈ add(a) exists s.t. p ∈ V ∗k and p is reachable from i. From
the previously stated, for such p must hold p ∈ V ∗k,j for some j and from Lemma 72, p is reachable
from i in JGi. If p ∈ Pi, a is in AB

i and is added to LBi
k , otherwise, p is in some P priv

j and a ∈ AO
j and

a is added to LBi
k . Therefore the lemma holds (the place-holder action ā, introduced by the distributed

algorithm, is ignored).

The constructed i-projected landmark represents the cost of the centralized landmark, formally:

Lemma 74. For each step k, landmark Lk constructed by the centralized algorithm on J and i-
projected landmark LBi

k constructed by the distributed algorithm initiated by agent αi on JGi holds
costlm(LBi

k) = costlm(Lk).

Proof. From proof of Lemma 73, for each αj 6=i, L
Bj
k = Lk ∩ Aj . When LBj

k is finished, the public
part Lpub

k = (LBj
k ∩ A

pub
j) ∪ {ā} of LBj

k is sent from αj to αi. For the place-holder action ā holds

108 CHAPTER 6. DISTRIBUTED OPTIMAL PLANNING

costk(ā) = costlm
k (LBj

k). This ensures, that costlm
k (Lpub

k) = costlm
k (LBj

k) even if the least-cost action is
not public. When Lpub

k is received, LBi
k ← LBi

k ∪L
pub
k , retaining the least-cost ā. From the definition of

costlm
k follows costlm

k (LBi
k) = min(costlm

k (LBi
k), costlm

k (Lpub
k)). Therefore, when Lpub

k is received from
all agents αj 6=i and LBi

k is completed, costlm
k (LBi

k) = min0<j≤n(LBj
k) = costlm

k (Lk).

Finally we conclude that:

Theorem 75. (Equality of centralized and distributed LM-Cut) For any state s and any agent αi,
hLM-Cut(G, s) = hGi

LM-Cut(G, s).

Proof. From Theorems 68 and 69 the result of distributed computation of hGi
max(G, s) is equal to the

centralized hmax(G, s) for any state s, any agent αi and for all facts p ∈ P and therefore also for all
actions a ∈ A. For each step k of the algorithm, a distributed justification graph JGi = (JBi, {JOj}j 6=i)
can be constructed such that Lemma 72 holds for reachability and 0-reachability. Also, from Lemma 74
the cost of the projected landmarkLBi

k constructed by the distributed algorithm initiated by αi equals the
cost of the landmark Lk constructed in step k by the centralized algorithm. The cost is then shared with
all agents αj 6=i and all actions in LBi

k and all LBj
k , which are all actions in Lk (from Lemma 73), have

their costs updated. Therefore, the updated cost function in the k + 1 step of the centralized algorithm
equals the cost function in the k + 1 step of the distributed algorithm for all agents and all actions.

The proof of Theorem 75 concludes the section on the admissible distributed landmark heuristic.
By showing, that the distributed heuristic returns values equal to a centralized heuristic computed on
the respective global problem, we also show that the heuristic is admissible for the multi-agent problem
(trivially by Theorem 21).

6.3 Distributed Search with Additive Heuristics
In the techniques presented in Chapter 4 and in this chapter so far, the distributed computation of heuris-
tic estimates requires cooperation of all (or at least most of) the agents and incurs a substantial amount
of additional communication. In many scenarios, the communication may be very costly (multi-robot
systems) or prohibited (military) and even on high-speed networks, communication takes significant
time compared to local computation. In such cases it may pay off to use the projected heuristic instead
of its better informed counterpart. In [Nissim and Brafman, 2014], the authors mention an idea of an
additive heuristic such that projected estimates of two agents could be added together and still maintain
admissibility. In this section, we take the idea a step further, formalize two variants of additive heuris-
tics, and detail out a modification of the MAD-A* utilizing such heuristics. Moreover, in Section 6.4 and
Section 6.5 we present heuristics and distributed computation techniques which satisfy the properties
we define here.

Definition 76. (Agent-additive heuristic) A global heuristic h estimating the global problem ΠG is
agent-additive iff for any agent αi ∈ A it can be represented as

h(s) = hpub(sB) +
∑
αj∈A

hj(sBj)

where hpub is a heuristic computed on the public projection problem ΠB and hj is a heuristic computed
on the j-projected problem ΠBj .

Informally, the definition states that each part of an agent-additive heuristic can be computed by
each respective agent separately an then added together. A heuristic is agent-additive even without the
public part, that is, if hpub(sB) = 0 for all states.

6.3. DISTRIBUTED SEARCH WITH ADDITIVE HEURISTICS 109

Figure 6.3.1: Search using separate public and private parts. Preserved private information spriv1
2 [V1] = c

of agent α1 in form of identifier σ2
2 = id12 used by α2 is emphasized.

Definition 77. (Agent-agnostic heuristic) An agent-additive global heuristic

h(s) = hpub(sB) +
∑
αi∈A

hi(sBi)

is agent-agnostic iff for each two global states s and s′, s.t. s′ = s ◦ o, where o ∈ Oi of some agent αi,
holds hj(sBj) = hj(s′Bj) for all j 6= i.

In other words, in an agent-agnostic heuristic, no agent can influence the parts of the heuristic
computed by other agents. The principle of the multi-agent heuristic search presented in this section is
based on the MAD-A* algorithm (Multi-Agent Distributed A*) [Nissim and Brafman, 2012], which is
thoroughly described in Section 6.3, here, we briefly rephrase the main principle using the MA-MPT
formalism (Section 3.2). The MAD-A* algorithm is a simple extension of classical A*. The agents
search in parallel, possibly in a distributed setting (i.e. communicating over a network). Each agent
αi ∈ A searches using its operators from Oi and if a state s is expanded using a public operator
o ∈ Opubi , the resulting state s′ is sent to other agents (the agents may be filtered in order to send
the state only to the relevant ones). When some other agent αj receives the state s′, s′ is added to
the OPEN list of αj and expanded normally when due. The original MAD-A* uses only projected
heuristics. Each state sent by αi is also accompanied with its i-projected heuristic estimate and when
received, the receiving agent αj computes j-projected heuristic estimate of the received state s′ and
takes h(s) = max(hBi(sBi), hBj(sBj)).

In MA-MPT, each agent αi can work only with its set of variables Vi. In order to use the MAD-
A* search on the MA-MPT formalism, each search state has all variables private to other agents αj 6=i
replaced by a unique identifier σj . This identifier refers to the last state on the search path modified by
agent αj . No other agent can reconstruct the private part from the identifier.

The search process is illustrated in Figure 6.3.1. When an agent receives a state from another agent,
it uses this identifier to retrieve the proper private part. Formally, agent αi internally represents state s as
a tuple

〈
spub, σ1, ..., sprivi , ..., σn

〉
, where spub is the public part of the state (i.e. assignment to variables

in Vpub), sOi is the private part of αi (i.e. assignment to variables in Vprivi) and σ1, ..., σi−1, σi+1, ...σn

110 CHAPTER 6. DISTRIBUTED OPTIMAL PLANNING

represents the private parts of other agents. When sending a state, the private part is replaced by the
respective σi, when received by αj , the σj is replaced by sOj from the state determined by σj .

Let us now consider how can the agent-additive and agent-agnostic properties utilized in the search to
reduce heuristic computation and communication. According to Defition 76, an agent-additive heuristic
for agent αi can be expressed as

h(s) = hpub(sB) +
∑
αj∈A

hj(sBj)

Now from the point of view of a single agent αi, the value of the private parts of all other agents can be
expressed as ∑

αj∈A\{αi}

hj(sBj) = h(s)− hpub(sB)− hi(sBi)

Thanks to the agent-additive property, by subtracting the public part and private part of agent αi from
the heuristic value, we obtain the sum of private parts of other agents. Moreover, the following holds:

h(s′) = h(s)− hpub(sB)− hi(sBi) + hpub(s′B) + hi(s′Bi) (6.3.1)

where s′ is a successor state of s. This means, that the heuristic estimate of a state s′ can be easily deter-
mined from the heuristic estimate of its predecessor s. When a state is received from some other agent
αj , it is accompanied with its global heuristic estimate computed by αj . When a state s is expanded,
the heuristic estimate of its successor s′ can be computed using the above equation.

The difference between agent-agnostic and agent-additive heuristic is that in the case of agent-
agnostic heuristic, Equation 6.3.1 holds for all actions of agent αi, that is, s′ = s ◦ o for some o ∈ Oi .
In the case of agent-additive heuristic which is not agent-agnostic, Equation 6.3.1 holds only for private
action of agent αi, that is, s′ = s ◦ o for some o ∈ Oprivi . If the agent uses a public action, the heuristic
must be computed by all agents from scratch, as in general the heuristic hj(sBj) of any agent αj might
be influenced by a public action o′ ∈ Opubi .

Example 78. (Logistics) In Figure 6.3.2 we illustrate the principle of the agent-agnostic heuristic in a
distributed search on the Logistics example. In the first step, the agents exchange the private heuristic
values of the truck (ht = 3) and the plane (he = 1). Then the search can continue using only the private
actions of the agents without any communication, but still obtaining global heuristic values. Finally,
after using the unload public action, the public heuristic changes and is sent alongside the state as in
standard MAFS or MAD-A*. In the case of agent-additive heuristic which is not agent-agnostic, the use
of the public unloadTB action could have influenced the private heuristic value of the plane and thus the
truck would have to request the value from plane.

6.4 Distributed Potential Heuristics
In this section we propose an agent-additive (Definition 76) and agent-agnostic (Definition 77) dis-
tributed heuristic based on the idea of potential heuristics [Pommerening et al., 2015]. We use the MPT
and MA-MPT formalism (Section 3.2) throughout this section.

6.4.1 Potential Heuristics
Potential heuristics are a family of admissible heuristics introduced in [Pommerening et al., 2015].
Here we describe the original centralized version. A potential heuristic (denoted as hpot) associates a
numerical potential with each fact. The potential heuristic for a state s is simply a sum of potentials of
the facts in s, formally:

hpot(s) =
∑
V ∈V

pot(〈V, s[V]〉)

6.4. DISTRIBUTED POTENTIAL HEURISTICS 111

Figure 6.3.2: Example of additive A* computation on the Logistics problem.

where V is a set of variables and pot(〈V, s[V]〉) ∈ R is a potential for the fact representing the assign-
ment for V in s.

The potentials can be determined as a solution to a linear program (LP). In this work, we use a
formulation described in [Pommerening et al., 2014a]. The objective function of the LP is simply the
sum of potentials for a state (or average for a set of states). The simplest variant is to use the initial state
sI as the optimization target. Another option is to use the set of all syntactic states1 (S), as described
in [Seipp et al., 2015], that is for all facts the coefficient associated with the potential variable of fact
〈V, v〉 is 1/|dom(V)|.

For a partial variable assignment p, let maxpot(V, p) denote the maximal potential that a state con-
sistent with p can have for variable V , formally:

maxpot(V, p) =

 pot(〈V, p[V]〉)
max

v∈dom(V)
pot(〈V, v〉)

if V ∈ vars(p)

otherwise

The LP will have a potential LP-variable pot(〈V, v〉) for each fact (that is each possible assignment
to each variable) and a maximum potential LP-variable maxpotV for each variable in V . The constraints
ensuring the maximum potential property are simply

pot(〈V, v〉) ≤ maxpotV (6.4.1)

for all variables V and their values v ∈ dom(V). To ensure goal-awareness of the heuristic, i.e.,
hpot(s) ≤ 0 for all goal states s, see Definition 41(iii), we add the following constraint∑

V ∈V
maxpot(V, s?) ≤ 0 (6.4.2)

restricting the heuristic of any goal state to be less or equal to 0. The final set of constraints ensures
consistency. A consistent heuristic is such h that for each two states s, s′ and all operators s.t. s′ = s ◦ o

1Such LP formulation may be unbounded. A common solution we adopt is to use a large-enough upper bound for each LP
variable.

112 CHAPTER 6. DISTRIBUTED OPTIMAL PLANNING

holds h(s) ≤ h(s′) + cost(o), see Definition 41(v). Consistency together with the goal-awareness
implies admissibility. For each operator o in a set of operators O we add the following constraint∑

V ∈vars(eff(o))

(maxpot(V, pre(o))− pot(〈V, eff(o)[V]〉)) ≤ cost(o) (6.4.3)

A solution of the LP yields the values for potentials which are then used in the heuristic computation.

Example. (pot) Let us consider a concrete example with two agents α1, α2, where the variables are the
following (the actions are not important for the presentation):

α1 private: V1 ∈ {d1, d
′
1},

α2 private: V2 ∈ {d2, d
′
2}

public: Vpub ∈ {dpub, d
′
pub}

For now we consider the equivalent global problem with all variables and no agents. Assume that the
computed potentials are the following:

pot(〈V1, d1〉) = 1 pot(〈V2, d2〉) = 2 pot(〈Vpub, dpub〉) = 3

pot(〈V1, d
′
1〉) = −2 pot(〈V2, d

′
2〉) = 0 pot(

〈
Vpub, d

′
pub

〉
) = −1

In the initial state sI holds sI [V1] = d1, sI [V2] = d2 and sI [Vpub] = dpub. The potential heuristic
for the initial state can be computed as

hpot(s) =
∑
V ∈V

pot(〈V, s[V]〉) = 1 + (−2) + 2 + 0 + 3 + (−1) = 3

6.4.2 Potential Heuristics for Multi-Agent Planning
Let us first examine the global potential heuristic hG

pot computed on ΠG. For now, assume we already
have the potentials for the global problem. For a state s, the global potential heuristic is

hG
pot(s) =

∑
V ∈VG

pot(〈V, s[V]〉)

which can be rewritten as

hG
pot(s) =

∑
V ∈Vpub

pot(〈V, s[V]〉) +
∑
αi∈A

∑
V ∈Vprivi

pot(
〈
V, sBi[V]

〉
)

which is the sum of potentials of public facts plus the sum of potentials of private facts of each agent.
Further on, we will denote

hpub
pot (sB) =

∑
V ∈Vpub

pot(
〈
V, sB[V]

〉
)

and
h

privi
pot (sBi) =

∑
V ∈Vprivi

pot(
〈
V, sBi[V]

〉
)

thus the global heuristic can be rewritten as

hG
pot(s) = hpub

pot (sB) +
∑
αi∈A

h
privi
pot (sBi). (6.4.4)

Note, that an i-projected potential heuristic can be expressed as

hBipot(s) = hpub
pot (sB) + h

privi
pot (sBi)

6.4. DISTRIBUTED POTENTIAL HEURISTICS 113

Example. (pot) In the case of the example:

hpub
pot (sB) = pot(〈Vpub, dpub〉) + pot(

〈
Vpub, d

′
pub

〉
)

h
priv1
pot (sB1) = pot(〈V1, d1〉) + pot(〈V1, d

′
1〉)

h
priv2
pot (sB2) = pot(〈V2, d2〉) + pot(〈V2, d

′
2〉)

Now we show the desirable properties of the multi-agent potential heuristic.

Theorem 79. (Properties of the potential heuristic) The global potential heuristic

hG
pot(s) = hpub

pot (s) +
∑
αi∈A

h
privi
pot (sBi)

is admissible (Definition 41), agent-additive (Definition 76) and agent-agnostic (Definition 77).

Proof. Admissibility follows directly from the construction of the LP which is equal to the LP in the
centralized case. The agent-additivity of the potential heuristic for any agent αk follows from setting
hpub(sB) = hpub

pot (sB) and hi(sBi) = h
privi
pot (sBi) for all αi ∈ A.

Let i 6= j, the agent-agnostic property holds for hG
pot(s), because for each o ∈ Oi , eff(o)∩Vprivj = ∅.

The part of the state s private to agent αj , that is partial assignment p = s ∩ Vprivj , is equal to the part
of the successor state s′ = s ◦ o private to agent αj (that is partial assignment p′ = s′ ∩Vprivj). As both
h

privj
pot (sBj) and h

privj
pot (s′Bj) are computed only on the respective parts of the states private to agent αj ,

the heuristic estimates are equal.

By application of Theorem 79, the global heuristic estimate of a successor state s′ after application
of an operator o ∈ Oi can be effectively computed by the agent αi by computing the public part of
the heuristic estimate, the part private to agent αi and adding the private parts of other agents from the
predecessor state s. The multi-agent distributed A* search using this principle is outlined in Figure 6.4.1.

Example. (pot) Let us, again, have a look on the example. In the initial state sI holds sI [V1] = d1,
sI [V2] = d2 and sI [Vpub] = dpub, therefore hpriv1

pot (sB1
I) = 1, hpriv2

pot (sB2
I) = 2 and hpub

pot (sBI) = 3 and
thus

hpot(sI) = hpub
pot (sBI) + h

priv1
pot (sB1

I) + h
priv2
pot (sB2

I) = 6

If the agent α1 applies an action a1 ∈ Opub1 which changes both V1, Vpub so that s1[V1] = d′1 and
s1[Vpub] = d′pub, the heuristic value of the resulting state s1 computed by α1 is

hpot(s1) = hpub
pot (sB1) + h

priv1
pot (sB1

1) + h
priv2
pot (sB2

I) = −1

The state s1 is then sent to agent α2 together with the value of hpriv1
pot (sB1

1) = −2. When agent α2 applies
action a2 ∈ Opriv2 which modifies only V2 so that s2[V2] = d′2, α2 can compute

hpot(s2) = hpub
pot (sB2) + h

priv1
pot (sB1

1) + h
priv2
pot (sB2

2) = −3

using the value of hpriv1
pot (sB1

1) received from α1.

In addition to the method shown in Figure 6.4.1, thanks to the agent-agnostic property of the poten-
tial heuristic and Equation 6.3.1, the potential heuristic can be computed form the parent state as

hG
pot(s

′) = hG
pot(s)− h

pub
pot (sB)− hprivi

pot (sBi) + hpub
pot (s′B) + h

privi
pot (s′Bi) (6.4.5)

where s′ = s ◦ o for some o ∈ Oi . This means, that the sum in Equation 6.4.4 does not have to be
explicitly computed, thus any privacy concerns of the sum computation are avoided.

114 CHAPTER 6. DISTRIBUTED OPTIMAL PLANNING

Figure 6.4.1: Sequence of hG
pot computations. The emphasized heuristics are not computed, but used as

a heuristic value from the other agent.

Example. (pot) Again, referring to the running example, when agent α1 applies the public action a1in
sI , resulting in s1, it sends s1 to α2. Instead of sending the value of hpriv1

pot (sB1
1) as suggested previously,

it can send only the value of hG
pot(s1). After application of a2, the agent α2 can compute the heuristic

estimate of s2 simply by

hG
pot(s2) = hG

pot(s1)−hpub
pot (sB1)−hpriv2

pot (sB1
1)+hpub

pot (sB2)+h
priv2
pot (sB2

2) = −1−(−1)−2+(−1)+0 = −3

which equals the result obtained by the original computation.

6.4.3 Distributed Computation of Potentials

So far we have not considered the way how the potentials are obtained in the case of the distributed
heuristic. As in the classical planning version we can build a linear program (or a set of linear programs)
consisting of the constraints in Equation 6.4.2 and Equation 6.4.3. There is a number of ways how the
LP can be formulated and solved in a distributed way. In this section we present the techniques, but
we leave the discussion of their implications on privacy to Section 7.3.5 after we have established the
theory which allows us to analyze privacy properly.

Projections

The simplest idea is to let each agent compute the LP on the projected problem and to use the resulting
potentials in the global heuristic. Unfortunately, this approach does not result in an admissible heuristic.
One of the reasons lies in the goal-awareness constraint, which in the global LP contains either potential
or maximum potential LP-variable for each variable in VG. In the projected problem, the private vari-
ables of other agents are missing. This allows the remaining variables to have higher values and results
in higher potentials making the sum of private parts inadmissible.

An admissible variant is to take the maximum of the projections. The i-projected heuristic can be

6.4. DISTRIBUTED POTENTIAL HEURISTICS 115

Figure 6.4.2: Sequence of hmaxproj
pot computations. The emphasized heuristics are not computed, but used

as a heuristic value from the other agent. The gray potentials are communicated from the other agent
and computed as hpubi

pot (s).

rewritten as

hBipot(s) = h
pubi
pot (sB) + h

privi
pot (sBi)

=
∑

V ∈Vpub

poti(
〈
V, sB[V]

〉
) +

∑
V ∈Vprivi

poti(
〈
V, sBi[V]

〉
)

where poti(〈V, v〉) is the potential for fact 〈V, v〉 computed on the i-projected problem. Although Vpub

is the same for all agents the potentials in hBipot for variables in Vpub may differ as they are computed
using different LPs. Nevertheless, the potentials poti(〈V, v〉) for public variables V ∈ Vpub computed
by agent αi can be communicated to all other agents αj .

This means that the public part of the i-projected heuristic can be computed by each agent αj sep-
arately on its projected problem ΠBj using the potentials of public variables shared from other agents.
Thanks to the agent-agnostic property of the potential heuristic shown by Theorem 79 (which trivially
holds also for projections), the private parts of the i-projected heuristic are not changed by actions of
other agents. The private part can be computed by the respective agent αi and sent along with each state
s.

This means, that unlike a general projected heuristic, each agent αi can compute the hBjpot projected
heuristics of all agents without any additional communication and take the maximum. We denote the
resulting heuristic as

hmaxproj
pot (s) = max

αi∈A
hBipot(s

Bi).

To compute the hmaxproj
pot (s) heuristic, the agent computes all public parts, its own private part, sums

the corresponding public and private parts and takes the maximum, as shown in Figure 6.4.2. Obviously,
hmaxproj

pot (s) is always at least as informed as hBipot(s
Bi), but never more informed than hG

pot(s).

Example. (pot) Let us consider the running example again. Now each agent has its potentials (including
the public ones) computed independently, for the example:

116 CHAPTER 6. DISTRIBUTED OPTIMAL PLANNING

α1 α2

pot1(〈Vpub, dpub〉) = 4 pot2(〈Vpub, dpub〉) = 3

pot1(
〈
Vpub, d

′
pub

〉
) = 0 pot2(

〈
Vpub, d

′
pub

〉
) = 1

pot1(〈V1, d1〉) = 1 pot2(〈V2, d2〉) = 2
pot1(〈V1, d

′
1〉) = −2 pot2(〈V2, d

′
2〉) = 1

The potentials may be higher as the LPs of the projected problems are less constrained. By sharing
the public potentials, both agents can compute

hmaxproj
pot (sI) = max(h

pub1
pot (sBI) + h

priv1
pot (sB1

I), h
pub2
pot (sBI) + h

priv2
pot (sB2

I)) = max(4 + 1, 3 + 2) = 5

After the application of a1 by α1, sending the resulting state s1 to α2 together with the value of
h

priv1
pot (sB1

1) and application of a2 by α2, the agent α2 can compute

hmaxproj
pot (s2) = max(h

pub1
pot (sB2) + h

priv1
pot (sB1

1), h
pub2
pot (sB2) + h

priv2
pot (sB2

2)) = max(0− 2, 1 + 1) = 2

Plain Global LP

A baseline approach to the global LP computation is to compute it plainly as it is. The principle of
the computation is simple. One agent is selected to be the master, all other agents send their private
parts of the LP (that is, optimization function, LP-variables, and constraints) to the master. The master
then solves the complete LP and sends the computed values of the LP-variables back to their respective
owners.

Securely Computed Global LP

Another approach is the use of a privacy-preserving transformation of the whole LP, which is often used
in the secure multi-party computation. Representative examples of such transformation were published
in [Mangasarian, 2011] and [Dreier and Kerschbaum, 2011].

We base the secure LP computation on [Mangasarian, 2011], a more general approach can be found
in [Dreier and Kerschbaum, 2011]. The transformation is applicable only on vertically partitioned data,
that is data partitioned based on the variables. This means that each agent owns a disjoint subset of
the LP variables and the respective parts of constraints containing them, that is, each constraint either
falls completely into one partition or is partitioned according to the variables (may span over multiple
partitions, e.g., the goal-awareness constraint). The potential heuristic LP can be partitioned in n + 1
partitions, where the i-th partition comprises of the pot and maxpot LP variables for V ∈ Vprivi and
the public (n + 1)-th partition contains the pot and maxpot LP variables for V ∈ Vpub . The public
partition, which may span over constraints of multiple agents, does not have to be encrypted and thus
can be treated separately. Thus, each agent knows complete constraints for its own actions, the public
part of constraints for public actions and its private and public part of the goal-awareness constraint.
The secure LP computation according to [Mangasarian, 2011] proceeds as follows.

Let max cTx be the optimization function and Ax ≤ b, A ∈ Rl×m the global set of constraints,
which means that the global problem consists of m LP-variables and l constraints. The whole computa-
tion proceeds as follows:

1. All agents agree on some k ≥ m. A master agent αj which will compute the LP is selected.

2. Each agent αi s.t. i 6= j generates a random matrix Bi ∈ Rk×mi , where mi is the number
of LP-variables private to agent αi and mpub is the number of public LP-variables. We define
B = [B1 ... Bn] ∈ Rk×m, where Bj is a unit matrix k × (mpub + mj), as αj does not have to
encrypt its part of the LP.

3. Each agent αi sends matrix product AiBTi and cost coefficient product Bici to agent αj , where
Ai and ci are the parts of the global LP problem private to agent αi.

6.5. MULTI-AGENT COST PARTITIONING 117

4. The linear program maximize cTBTu subject to ABT = A1B
T
1 + ...+ AnB

T
n ≤ b is computed

by agent αj and the result vector u is sent to all other agents.

5. Each agent αi reconstructs the solution as xi = BTi u.

The LP for the potential heuristic differs in two features. First, there is a public part, which does not
have to be encrypted. Second, some of the constraints are private-only and other agents are not aware of
them. Therefore, in the Step 1 above, the agents inform the master agent about the number of constraints
in the form of ki ≥ mi and k is chosen subsequently as k =

∑
αi∈A ki. This allows the agents to hide

the real number of LP variables and thus also the number of variables in the private part of the planning
problem (the constant ki gives an upper bound on the number of private variables). In Step 3 in addition
to the encrypted private part, the agents send to the master also the unencrypted public part and the part
of vector b respective to the private constraints (this vector encodes the costs of private actions), which
are combined to form the public part of the LP and the cost vector.

6.5 Multi-Agent Cost Partitioning
All distributed heuristics presented in Chapter 4 and in this chapter so far are based on more-or-less
ad-hoc techniques to distribute each particular heuristic or a family of heuristics. The distributed com-
putation of heuristic estimate often requires the cooperation of all (or at least most of) the agents and
incurs a substantial amount of communication, which, as already said in Section 6.4, may be ineffective
or prohibitive. In the previous Section 6.4, we have presented an example an additive heuristic such
that projected estimates of two agents could be added together and still maintain admissibility, based
on the family of potential heuristics. In this section, we apply general results of additive heuristic re-
search, namely the approach of cost-partitioning, to the case of distribution of heuristics for multi-agent
planning. This way we obtain a fully general approach allowing us to compute any heuristic additively
in a distributed way. Also, it allows us to combine different heuristics, which adheres to the idea of
independent agents (that is, each agent can use the heuristic it sees most fit). Last but not least, the
presented approach allows us to compute an admissible sum of admissible heuristics.

In classical planning, cost partitioning is typically computed for each state evaluated during the
planning process. In PP-MAP, such approach does not make much sense as we want to keep local as
much computation as possible. The envisioned use of such cost-partitioning is to compute it once at the
beginning of the planning process, use the cost-partitioned problems to evaluate heuristics locally and
sum the local heuristics to obtain a global estimate.

Example. (CP) Here we present a small running example with two agents α1 and α2. The problem of
agent α1 is Π1:

Vpub = {V3 ∈ {u, g}}
Vpriv1 = {V1 ∈ {i1, p1}}
Opub1 = {b1}
Opriv1 = {a1}
s1
I = V1 7→ i1, V3 7→ u
s1
? = V3 7→ g

a pre(a) eff(a) cost1(a)

a1 V1 7→ i1 V1 7→ p1 cost1(a1) = 1

b1 V1 7→ p1 V1 7→ i1,V3 7→ g cost1(b1) = 2

The problem of agent α2 is Π2:

Vpub = {V3 ∈ {u, g}}
Vpriv2 = {V2 ∈ {i2, p2}}
Opub2 = {b2}
Opriv2 = {a2}
s2
I = V2 7→ i2, V3 7→ u
s2
? = V3 7→ g

a pre(a) eff(a) cost2(a)

a2 V2 7→ i2 V2 7→ p2 cost2(a2) = 1

b2 V2 7→ p2 V2 7→ i2,V3 7→ g cost2(b2) = 2

118 CHAPTER 6. DISTRIBUTED OPTIMAL PLANNING

ΠG: Π.1:

Figure 6.5.1: a) Transition system of the global problem ΠG respective to the example. b) Example
transition system, 1-projection (abstraction).

In addition, the actions of projected problem Π.1 are O.1 = {a.11 , b
.1
1 , b

.1
2 }, where a.11 , b

.1
1 are

unchanged and b.12 :
a pre(a) eff(a) cost1(a)

b.1
2 ∅ V3 7→ g cost1(b.1

2) = 2

Analogously, the actions of projected problem Π.2 are O.2 = {a.22 , b
.2
2 , b

.2
1 }, where a.22 , b

.2
2 are

unchanged and b.21 :
a pre(a) eff(a) cost2(a)

b.2
1 ∅ V3 7→ g cost2(b.2

1) = 2

Figure 6.5.1 shows the global and projected transition systems of the example problem. A global
solution to the problem is either (a1, b1) or (a2, b2), both of cost 3. The optimal solution of Π.1 is (b.12)
with the cost of 2 and symmetrically for Π.2. Thus if we take the baseline approach and maximize the
two optimal costs we obtain 2 which is a bound on the value any two admissible heuristics can give as
a maximum of projected heuristics.

6.5.1 Cost Partitioning

In this section, we describe the idea of cost-partitioning [Katz and Domshlak, 2010] as used in classical
planning and define a novel notion of multi-agent cost-partitioning. We consider non-negative cost-
partitioning, where the costs of actions are not allowed to be less than 0, but all notions and techniques
generalize to the case of general cost-partitioning without such restriction.

Definition 80. (Cost partitioning). Let Π be a planning task with operators O and cost function cost.
A cost partitioning for Π is a tuple cp = 〈cp1, ..., cpk〉 where cpl : O → R+

0 for 1 ≤ l ≤ k and∑k
l=1 cpl(o) ≤ cost(o) for all o ∈ O .
As shown in [Katz and Domshlak, 2010], a sum of admissible heuristics computed on the cost-

partitioned problem is also admissible, formally

Proposition 81. (Katz and Domshlak 2010). Let Π be a planning task, let h1, ..., hk be admissible
heuristics for Π, and let cp = 〈cp1, ..., cpk〉 be a cost partitioning for Π. Then hcp =

∑k
l=1 hl(s) where

each hl is computed with cpl is an admissible heuristic estimate for a state s.

Based on the particular cost partitioning cp, the heuristic estimate can have varying quality. By
optimal cost-partitioning (OCP) we mean a cost-partitioning which maximizes hcp.

Now we proceed with the definition of a multi-agent variant of cost-partitioning, which differs in
that the partitions are defined apriori by the set of i-projected problems.

6.5. MULTI-AGENT COST PARTITIONING 119

Definition 82. (Multi-agent cost partitioning). LetM. = {Π.i}ni=1 be the set of all i-projected prob-
lems with respective cost functions cost.i. A multi-agent cost-partitioning forM. is a tuple of func-
tions cp = 〈cp1, ..., cpn〉 where cpi : O.i → R+

0 . For 1 ≤ i ≤ n and for each o ∈ OG holds∑n
i=1 cpi(o

.i) ≤ costBj(o.j) where αj is the owner of o, that is o ∈ Oj .

Theorem 83. Let M. = {Π.i}ni=1 be the set of all i-projected problems, ΠG the global problem
respective toM and cp a multi-agent cost-partitioning forM.. Then cp is a cost-partitioning for ΠG.

Proof. The theorem follows from Definition 80, Definition 82 for all public actions and from setting
o.i = ε for all o ∈ Oprivj s.t. j 6= i. As cost.i(o.i) = cost.i(ε) = 0 and cost.j(o.j) = costj(o), the
cost-partitioning property

∑n
i=1 cpi(o

.i) ≤ costj(o) holds also for private operators.

Thanks to Theorem 83 we can apply the Proposition 81 also in the multi-agent setting using a multi-
agent cost-partitioning. Thus, each agent αi can compute its part of the heuristic locally on Π.i using
cpi instead of costi as the cost function. To obtain the global heuristic, the individual parts can be simply
summed

hG(s) =

n∑
i=1

h.icpi
(s.i) (6.5.1)

where h.icpi
is an i-projected heuristic computed on Π.i using cpi. Trivially

Theorem 84. Let M. = {Π.i}ni=1 be the set of all i-projected problems, ΠG the global problem
respective toM and cp a multi-agent cost-partitioning forM.. Then the heuristic

hG(s) =

n∑
i=1

h.icpi
(s.i)

is agent-additive (Definition 76).

Proof. Follows trivially from Definition 76 by having the public part equal to zero, that is, hpub(sB) for
all i and all states.

It is also trivial to see, that the heuristic from Equation 6.5.1 is not agent-agnostic (Definition 77).
We contrast the cost-partitioning based approach to the current state of the art, which is taking the
maximum of the heuristics computed by individual agents, formally

hmax(s) = max1≤i≤nh
.i(s.i) (6.5.2)

where h.i is any (admissible) heuristic computed on Π.i using the original costi.

6.5.2 Optimal Cost Partitioning
To compute the optimal cost partitioning (OCP) for i-projections, based on Theorems 36 and 83 we can
readily apply the results of optimal cost partitioning for abstractions [Pommerening et al., 2014b].

The idea behind the following linear program (LP) formulation is to encode the abstract transition
systems and possible shortest paths in it. The LP variables used for each αi ∈ A are h̄.i encoding the
i-projected heuristic value (given the cost-partitioning), s̄′.i representing the cost of shortest path from a
state s (or actually s.i) to s′.i in the i-projected problem given the cost partitioning and ā.i representing
the cost-partitioned cost of action a.i ∈ O.i . The LP is formulated as follows:

Maximize
∑n
i=1 h̄

.i subject to

s̄′ = 0 for all s′ = s
s̄′′ ≤ s̄′ + ā.i for all

〈
s′.i, a.i, s′′

〉
∈ T .i

h̄.i ≤ s̄′ for all s̄′ ∈ si?∑n
j=1 ā

.j ≤ costi(a) for all a ∈ Opubi

ā.i ≤ costi(a) for all a ∈ Oprivi

120 CHAPTER 6. DISTRIBUTED OPTIMAL PLANNING

where the first set of constraints sets all states equal (in the i-projection) with the current state s to have
zero cost of shortest path. The second set of constraints encode the actual (abstracted) transitions and
their costs (transitions where s′.i = s′′ can be ignored), the third set of constraints places an upper
bound on the actual heuristic estimate to keep it admissible. The fourth and fifth sets of constraints
represent the cost partitioning of public and private actions respectively. Note, that private actions of
agent αi always occur only as i-projections and are not partitioned (i.e. any other projection of such
action has the cost of 0).

Example. (CP) Let us show how the optimal cost partitioning is computed on the running example.
The global transition system is shown in Figure 6.5.1 a) and the transition system projected to agent
α1 in Figure 6.5.1 b) (transition system projected to α2 is symmetrical). The LP is built based on the
projected problems as follows:

Maximize h̄.1 + h̄.2 subject to

s̄.11 = 0

s̄.12 ≤ s̄.11 + ā.11

s̄.13 ≤ s̄.12 + b̄.11

s̄.13 ≤ s̄.11 + b̄.12

h̄.1 ≤ s̄.13

...

ā.11 ≤ 1

b̄.11 + b̄.21 ≤ 2

..

where the omitted parts are defined for agent α2 analogously. The solution gives h.1 + h.2 = 3 as the
value of the objective function and b̄.11 = 1, b̄.21 = 1, b̄.12 = 2, b̄.22 = 0 as the values of (relevant) LP
variables. The values directly give the cost partitioning. When applied, the optimal solutions of Π.1 and
Π.2 has the cost of 1 and 2 respectively resulting in the sum of 3, which is the maximal value so that the
sum does not violate admissibility.

In contrast to the use in classical planning, we intend to compute the cost-partitioning LP only
once at the beginning of the planning process. Obviously, this results in a possibly sub-optimal cost-
partitioning for other states than the initial one but still, should give better-informed heuristics than just
taking maximum of the projections.

Unfortunately, even computing such OCP once may be intractable in general, as the i-projected
problems may be as large and as hard as the global problem e.g., in a scenario where all (or most of)
actions and variables are public. Even though typically the projected problems are significantly smaller
and thus it is reasonable to experimentally evaluate this approach. An alternative option might be to cre-
ate a smaller abstraction using some of the classical planning algorithms (e.g., Merge&Shrink [Helmert
et al., 2007] for each agent and compute OCP only on those smaller abstractions.

6.5.3 Approximate Optimal Cost Partitioning
Another approach is to approximate the optimal cost-partitioning. As already mentioned, the most
obvious approach is to compute a smaller abstraction of each of the Π.i and compute the OCP as above
on that set of smaller abstractions. Moreover, a cost-partitioning LP formulation is known also for
other heuristics, such as LM-Cut and even more heuristics can be expressed as an LP [Pommerening
et al., 2014b] and modified to compute the cost-partitioning. In the following text, we describe three
such examples, a LM-Cut [Helmert and Domshlak, 2009] based cost-partitioning, a cost partitioning
modification of the State Equation (SEQ) heuristic LP formulation [Van Den Briel et al., 2007], and a

6.5. MULTI-AGENT COST PARTITIONING 121

cost-partitioning based on the potential heuristic LP [Pommerening et al., 2015]. Finally, we describe a
number of ad-hoc cost-partitioning techniques which are very easy to compute (without the use of LP)
and still may lead to interesting results.

Landmarks

The LM-Cut heuristic proceeds by computing disjunctive action landmarks in the relaxed problem and
iteratively reducing their cost, see Definition 70 (informally a disjunctive action landmark is a set of
actions out of which at least one must be in each valid plan) and Section 6.2 for detailed description of
the LM-Cut algorithm. The LP formulation [Pommerening et al., 2014b] starts with a setL of landmarks
and assigns an LP variable to the cost of each L ∈ L respective to each cost-partitioning. Also, cost of
each action respective to each CP is represented by an LP variable. The LP maximizes the sum of all
landmark costs subject to ∑

a∈L
L̄ ≤ ā

for each a and the cost-partitioning constraints. The LP variables ā and L̄ represent the costs of respec-
tive actions and landmarks.

Example. (CP) In the running example, there is one disjunctive landmark for agent α1, that is L.11 =
{b.11 , b

.1
2 } and symmetrically L.22 = {b.21 , b

.2
2 } for α2. The private actions do not form a disjunctive

landmark as the plan (b.12) solves Π.1 without using a1. The LP is then formulated as follows:
Maximize L̄.11 + L̄.22 subject to

b̄.11 ≤ L̄.11

b̄.12 ≤ L̄.11

...

b̄.11 + b̄.21 ≤ 2

b̄.12 + b̄.22 ≤ 2

where the constraints for L̄.21 are analogous to those for L̄.12 . The solution is L̄.11 = 2, L̄.22 = 0, b̄.11 =
2, b̄.21 = 0, b̄.12 = 2, b̄.22 = 0, from which is clear that given the resulting CP, the optimal solution for
Π.1 is (b.12) with cost 2 and for Π.2 is (b.21) with cost 0. Thus the sum of optimal costs is 2 which is
not more than the maximum using the original costs.

It might help to compute the landmarks globally (as in [Štolba et al., 2015a]). It would make no
difference in the example above, but in general, including private and public actions of different agents
in a single landmark might improve the quality of the resulting cost-partitioning.

State Equation

State equation heuristic (SEQ) [Van Den Briel et al., 2007] builds on the idea of counting the operators
necessary to change the values of variables from the initial state values to the goal state values. It
is naturally formulated as a LP [Pommerening et al., 2014b] and can be easily modified so that the
resulting values can be interpreted as a multi-agent cost-partitioning.

In the original formulation, there is an LP variable for each action, encoding the number of times
it has to be used in any optimal plan. There is a constraint for each fact, that is a variable-value pair
〈V, v〉 for each v ∈ V and each variable V . In order to formulate the constraint, we need to determine
the set OAP of actions which always produce the fact (i.e. 〈V, v〉 ∈ eff(a) and 〈V, v′〉 ∈ pre(a) for
some v′ ∈ V), a set OSP of actions which sometimes produce the fact (i.e. 〈V, v〉 ∈ eff(a) and V /∈
vars(pre(a))) and analogously a setOAC of actions which always consume the fact (i.e. 〈V, v〉 ∈ pre(a)

122 CHAPTER 6. DISTRIBUTED OPTIMAL PLANNING

and 〈V, v′〉 ∈ eff(a) for some v′ ∈ V) and a set OSC of actions which sometimes consume the fact (i.e.
〈V, v〉 ∈ pre(a) and V /∈ vars(eff(a))). The constraints for each fact 〈V, v〉 are∑

a∈OAP

ā+
∑

a′∈OSP

ā′ −
∑

a′′∈OAC

ā′′ ≥ L

∑
b∈OAP

b̄−
∑

b′∈OAC

b̄′ −
∑

b′′∈OSC

b̄′′ ≤ U

where the bounds L,U are determined based on the initial and goal state. The optimization function of
the LP is minimize

∑
a∈O cost(a)ā, where O is a set of all actions.

In order to compute a multi-agent CP based on the SEQ LP, we simply express all constraints re-
spective to the i-projected problem Π.i for each agent and add them to a single LP. The optimization
criterion is modified so that it minimizes the sum of cost(a)ā for all actions and all agents. The com-
puted values of the LP variables then represent how many times each projection of each action has to be
used in a solution of each projected problem. That is, for an action a ∈ Opubj of some agent αj ∈ A,
we obtain ā.1, ..., ā.n. Subsequently, the cost partitioning cpk for agent αk ∈ A can be computed as

cpk(a.k) = costj(a)
ā.k∑n
i=1 ā

.i
(6.5.3)

that is, based on the ratio of the use of the action projections in the respective projected problems. Of
course, if

∑n
i=1 ā

.i = 0, we need to determine the cost partitioning some other way.

Example. (CP) The LP for the example problem is formulated as follows:
Minimize ā.11 + 2b̄.11 + 2b̄.12 + ā.22 + 2b̄.21 + 2b̄.22 subject to

〈V1, i1〉 : b̄.11 − ā.11 ≥ −1
〈V1, i1〉 : ā.11 − b̄.11 ≤ 0
〈V1, p1〉 : ā.11 − b̄.11 ≥ 0
〈V1, p1〉 : ā.11 − b̄.11 ≤ 1

...
〈V3, g〉 : b̄.11 + b̄.12 ≥ 1
〈V3, g〉 : b̄.11 + b̄.12 ≤ 1

where the constraints for V2 are symmetric to the constraints for V1. The resulting values are b̄.21 =
1, b̄.12 = 1 and 0 for all other LP variables. According to Equation 6.5.3, the costs of b.11 , b

.1
2 is computed

as cp1(b.11) = 2 · 0/1 = 0 and cp1(b.12) = 2 · 1/1 = 2 respectively and analogously for b.21 , b
.2
2 , which

gives exactly the same results as the solution based on the LM-Cut formulation.

Potential Heuristic-based OCP

The family of potential heuristics was described in-detail in Section 6.4.1, including the LP used to
compute the potentials. The LP is, in fact, a dual to the SEQ heuristic LP (see [Pommerening et al.,
2015]). There is a constraint for each operator, expressing the facts it produces and consumes, where
the cost of the operator is a constant on the right side.

Example. (CP) Let us consider the running example, where

a pre(a) eff(a) cost2(a)

b2 V2 7→ p2 V2 7→ i2,V3 7→ g cost2(b2) = 2

6.5. MULTI-AGENT COST PARTITIONING 123

The consistency constraint of the potential heuristic LP constructed for the public action b2 is

pot(〈V2, p2〉)− pot(〈V2, i2〉) + maxpotV3
− pot(〈V3, g〉) ≤ cost2(b2) = 2

where for the variable V2 we use the potential for the precondition and the effect and for V3 we use the
maxpotV3

variable for the precondition as V3 has no value in the precondition of b2.

The consistency of the potential heuristic with respect to an action a is obtained by putting the sum
of the differences of potentials lower or equal to the cost of the action a. The LP is completed by adding
such consistency for each of the actions and by adding the maxpot constraints stating, that each potential
concerning a variable V is lower or equal to the maximum potential of V . The optimization function of
the LP can be set to the sum of potentials in the initial state.

We can simply obtain a cost-partitioning LP by replacing the action costs with variables, concate-
nating the respective LPs for each of the agent problems and adding the cost-partitioning constraints.
There are separate LP variables even for the potentials of public variables for each of the agents.

Example. (CP) The action b2 will then be represented by two consistency constraints, one for b2 in
the context of Π1 and one for bB2

2 in the context of ΠB2. The constraints for b2 (including the cost-
partitioning constraint) are as follows.

pot(〈V2, p2〉).2 − pot(〈V2, i2〉).2 + maxpot.2V3
− pot(〈V3, g〉).2 ≤ b̄.22

maxpot1
V3
− pot(〈V3, g〉).1 ≤ b̄.12

b̄.12 + b̄.22 ≤ cost2(b2) = 2

Other constraints are formulated analogously. There are multiple possibilities for the optimization
function, if we base the function on the initial state, we obtain the following

Maximize : pot(〈V1, i1〉).1 + pot(〈V2, i2〉).2 + pot(〈V3, u〉).1 + pot(〈V3, u〉).2

The resulting cost-partitioning is b̄.11 = 1, b̄.21 = 1, b̄.12 = 2, b̄.22 = 0 which gives h.1 + h.2 = 3, that
is, the same value as OCP.

Orthogonal Abstractions

Let us, again, have a closer look on the i-projections as abstractions. What is the reason, that the i-
projections cannot be admissibly summed by default? It is the use of the same actions (the public ones)
in multiple abstractions. This means, that the abstractions are not orthogonal, formally:

Definition 85. (Orthogonal Abstractions) Let T1, T2 be two abstractions of a planning task Π with
transition system T and let σ1, σ2 be their respective abstraction functions. The abstractions T1, T2 are
orthogonal if for each transition 〈s, l, s′〉 in T holds σk(s) = σk(s′) for at least one k ∈ {1, 2}.

Orthogonal abstractions can be admissibly summed, according to the following proposition taken
from Helmert et al. [2007].

Proposition 86. (Helmert, Haslum & Hoffmann 2007) Let T1, ..., Tk be pairwise orthogonal abstrac-
tions of the same transition system T and let h1, ..., hk be admissible heuristics computed on the re-
spective transition systems. Then

∑k
l=1 hl is an admissible heuristic.

This means, that in order to be admissibly summed, each action has to be represented by a loop
in all but one abstraction. In the i-projected problems, the only problematic actions are projections of
public actions, which are counted (non-loop) in each of the projections. Instead, we can consider the
i-private projections and the public projection (Definition 32). By computing an admissible heuristic
on the public projection and on each of the i-private projections and summing the results, we obtain an
admissible heuristic.

124 CHAPTER 6. DISTRIBUTED OPTIMAL PLANNING

Theorem 87. Let T (ΠG) be the transition system of the global problem ΠG, T (ΠOi) the transition
system of the i-private projected problem ΠOi for each 1 ≤ i ≤ n and T (ΠB) the transition system
of the public projection ΠB. Let hO1, ..., hOn, hB be admissible heuristics computed on the respective
projections. Then hB +

∑n
i=1 h

Oi is an admissible heuristic.

Proof. The public and i-private projections are abstractions by the same reasoning as in Theorem 36.
They are (pairwise) orthogonal from definition and fromOi∩Oj = ∅ for each j 6= i andOpubi∩Oprivi =
∅ for each i, thus by application of Proposition 86 the theorem holds.

A question remains, whether the i-private and public projections can be expressed in the form of cost
partitioning of the i-projected problems. An obvious answer is yes, they can. By setting cpi(a

.i) = 0 for
all i-projections of public actions a, the heuristic computed on Π.i using cpi as a cost function ignores
the public actions as if they were self-loops and thus computes the heuristic on ΠOi. Similar treatment
of private actions (i.e. retaining costs only of i-projections of public actions) leads to computation of
the heuristic on the public projection ΠB.

In order to maintain only the n cost-partitioned problems, one of the agents (say αj) may keep the
problem not partitioned, resulting in a heuristic h.j+

∑n
i=1,i6=j h

Oi, where h.j is an admissible heuristic
computed on the j-projected problem Π.j . In such case, the orthogonality of abstractions still holds and
thus the resulting heuristic is also admissible (and possibly more informative).

Example. (CP) Let us now apply this approach on the running example. A public projection ΠB of
the problem reflects only the variable V3 and actions bB1 , b

B
2 . The transition system T (ΠB) has two

states, an initial state sBI where V3 = u and a goal state sB? where V3 = g. There are two transitions
(one for each actions) from sBI to sB? with cost 2, thus the cost of optimal solution is hB(sBI) = 2. A
1-private projection ΠO1 reflects only the variable V1, thus has two states, which are both goal states
(the goal condition is empty). Thus hO1 = 0 and similarly hO2 = 0, resulting in total estimate of
hB + hO1 + hO2 = 2. Using h.1 instead of hB + hO1 does not help in this particular case as h.1 = 2.

Ad-hoc Cost Partitioning

So far, we have presented a number of more or less involved multi-agent cost-partitioning schema, but
more trivial approaches should not be omitted. First is the very baseline uniform cost-partitioning,
where

cpj(a
.j) =

costi(a.i)

n

for each action a ∈ Opubi and each agent αj ∈ A. Private actions are not partitioned as in the other
cases.

Often, the costs of plans using projections of other agent’s actions are underestimated as the cost of
their private preconditions (that is the cost of private actions achieving them) is not reflected. The aim of
presented cost-partitioning techniques is to balance this out. Instead of complex optimization, a simple
rule of thumb may work in many cases. We denote such simple approach as projection-compensating
cost-partitioning and base it on the following equation

cpj(a
.j) = 1−k

n−1 costi(a.i) for j 6= i

cpi(a
.i) = kcosti(a.i)

(6.5.4)

where k ∈ 〈0, 1〉. For k = 1/n, we obtain the uniform cost-partitioning. For k = 0, the cost of action
a.i s.t. a ∈ Oi in Π.i is 0 and the cost is uniformly distributed among all other agents. For k = 1, the
cost is retained by the owner agent and the costs of projections are 0. In general, as k is the same for all
actions, the OCP cannot be achieved.

Example. (CP) On the running example, the uniform CP results in cp1(b.11) = 1, cp1(b.12) = 1 and
cp2(b.21) = 1, cp2(b.22) = 1. The sum of optimal costs computed on such cost-partitioning is 2. We

6.6. EVALUATION 125

obtain the same result for k = 0, where cp1(b.11) = 0, cp1(b.12) = 2 and cp2(b.21) = 2, cp2(b.22) = 0
and 0 for k = 1. In this particular example, we can express the OCP by setting k = 3/4, where
cp1(b.11) = 0.5, cp1(b.12) = 1.5 and cp2(b.21) = 1.5, cp2(b.22) = 0.5 and the resulting cost of the sum
of optimal solutions is 3.

6.6 Evaluation
In this section, we evaluate the presented admissible heuristics. In general, the most important compar-
ison is with the projected versions of the heuristics as the distributed heuristics are typically expected to
be better informed, but may incur more communication and thus be slower to compute.

The admissible heuristics were evaluated on implementation of the MAD-A* [Nissim and Brafman,
2012] algorithm in the MAPlan Planner [Fišer et al., 2015]2. MAPlan is a multi-agent planner imple-
mented in C which can run both in multi-threaded setting (somewhat similar to the MADLA Planner
described in Chapter 5) and in a truly distributed setting, where each agent runs on its own machine
(as in the CoDMAP competition distributed track). Unlike the MADLA Planner, MAPlan implements
the optimal MAD-A* algorithm. The MAPlan planner takes as input either the un-factored or factored
MA-PDDL definition of the planning problem and domain (see Appendix A for details on MA-PDDL),
performs a distributed translation to create an MPT (or SAS+) representation for each agent and finally
runs the MAD-A* algorithm. This is a significant difference from the original MAD-A* implementa-
tion by Nissim&Brafman, where, like in the MADLA Planner, the translation from PDDL to MPT is
centralized and the factorization is automated based on additional agent definition (ADDL) file.

6.6.1 Evaluation of the Distributed LM-Cut Heuristic

In this section, we evaluate the distributed and projected variants of the LM-Cut heuristic. Each run (per
problem) of the planner was limited to 60 min. and 4GB of memory (total for all agents) on a 16 core
machine. The used benchmarks are described in Section 3.6 in full detail.

The results of the experiments are summarized in Table 6.1. The coverage results (the number of
problems solved for each domain) show that except for three domains, the distributed hGi

LM-Cut solves
more (or the same) problems and solves also a more of problems in total. The depot, driverlog, and
sokoban domains are tightly coupled (as in [Brafman and Domshlak, 2008]) and most of the informa-
tion is public, which means that the projected hBiLM-Cut has the same information as hGi

LM-Cut, moreover,
hGi

LM-Cut has to handle a lot of projected actions.
As expected, both variants of the hmax heuristic perform significantly worse (total coverage of 59

for the projected and 53 for the distributed version) and are not presented in the table. Except for the
sokoban domain (coverage 7 for hBimax and 0 for hGi

max) and elevators domain (coverage 0 for hBimax

and 2 for hGi
max), the difference between hBimax and hGi

max is not significant.
To understand the cause of the behavior of hBiLM-Cut and hGi

LM-Cut better, we have extracted the heuristic
values computed for the initial state by both heuristics (for hBiLM-Cut taking an average for all agents),
computed a ratio hBiLM-Cut/h

Gi
LM-Cut for each problem and averaged the ratios per domain. The results

are in Table 6.1 in the column labeled ĥLM−Cut (computed from all problems for which the init. state
heuristic values were obtained). The results for coverage show that, in the tightly coupled domains,
the distributed evaluation does not improve the heuristic estimate enough to justify the communication
overhead. On the other hand, as the ratio drops below approx. 0.8, the improved heuristic accuracy
overweight the communication overhead.

For more detailed view, the heuristic ratios aggregated in the column labeled ĥLM−Cut are plotted
per-problem in Figure 6.6.1. The plot raises a question whether the distributed heuristic should not
dominate the projected one as was shown for hmax in Lemma 64. Against intuition, the answer is no.

2http://github.com/danfis/maplan

126 CHAPTER 6. DISTRIBUTED OPTIMAL PLANNING

domain hBi
LM-Cut hGi

LM-Cut ĥLM−Cut êLM−Cut t̂LM−Cut t̂sLM−Cut

elevators08 (20) 2 2 0.18 39.9 0.15 0.01
logistics00 (20) 6 12 0.26 2521.7 4.78 0.01
zenotravel (18) 6 10 0.41 142.4 0.74 0.03
rovers (18) 6 6 0.52 33.7 0.45 0.15
blocksworld (30) 17 20 0.54 45.5 0.56 0.09
satellites (18) 5 10 0.55 63.9 0.52 0.03
driverlog (20) 13 12 0.8 4.4 0.22 0.12
depot (20) 7 4 0.88 1.4 0.13 0.11
woodwork.08 (20) 6 8 0.88 12 1.11 0.35
sokoban (10) 8 5 1 1 0.15 0.14

total (194) 76 89 - - - -

Table 6.1: Coverage and average of hBiLM-Cut/h
Gi
LM-Cut ratios for initial state heuristic (ĥLM−Cut), expanded

states (êLM−Cut), total planning time (t̂LM−Cut) and time per expanded state (t̂sLM−Cut).

The reason lies in the inherent variance of the hLM-Cut heuristic depending on the tie-breaking behavior
of the precondition choice function (pcf). Although in the proofs of equality of hLM-Cut and hGi

LM-Cut it
was possible to fix the tie-breaking behavior (thanks to the use of distributed hmax), it is not the case
with hBiLM-Cut. The fact p which maximizes hmax in hBiLM-Cut may not maximize it in hGi

LM-Cut (or vice
versa) therefore the same fact p could not be chosen in both. If most of the actions in the problem are
public, this may lead to a situation that for some state hBiLM-Cut > hGi

LM-Cut, as can be seen in Figure 6.6.1
for some of the depot problems.

The quality of heuristic estimates can be assessed by the number of expanded states. In Table 6.1,
the column êLM−Cut shows the average ratio of expanded states, restricted to problems solved by both
heuristics. The most significant improvement is in the logistics domain, where hBiLM-Cut expands over
2500× more states than hGi

LM-Cut, followed by zenotravel and satellites with approx. 140× and 60×
increase of expanded states over the distributed heuristic respectively. The limiting factor is 30× in
rovers domain where the quality of the distributed heuristic just eliminates the overhead of the dis-
tributed heuristic, below this factor, the projected heuristic exhibits better performance.

The total planning time (t̂LM−Cut in Table 6.1) and time per expanded state (t̂LM−Cut in Table 6.1)
were treated similarly, computed only from problems solved by both heuristics. The results show that,
except for the logistics and woodworking domains, the projected heuristic leads to approx. 2×–10×
faster solution, which was not unexpected. The average time spent on an expanded state shows that
the projected heuristic is 10×–100× faster. Even though, the added value of better heuristic estimates
is crucial in many domains, most notably logistics. Notice that in domains with the largest difference
in the number of expanded states, the projected heuristic is significantly faster. This suggests that the
projected problem is much simpler, but ignores a lot of important information thus makes the resulting
heuristic estimate much less accurate.

A specific case is the woodworking domain. Even though the distributed heuristic estimates are only
slightly better than the projected ones, the distributed heuristic solves more problems as the projected
heuristic is only 3× faster and ignores important information.

The structural properties causing the success of the hGi
LM-Cut heuristic are closely related to the mo-

tivation example in the introduction. An example is the logistics domain, where trucks and planes are
moving packages from starting to goal locations. In the MA-STRIPS formulation, the location of a
package is public only when it is at an intermediate (or goal) location, it is not known when loaded
onto some vehicle. The unload action of a vehicle is seen by other agents with a precondition only on
the location of the vehicle, having the package actually loaded is not required. The cost of getting the
package to a location where it can be loaded and loading it is lost in the projected problem, enabling the

6.6. EVALUATION 127

Figure 6.6.1: Per-problem ĥLM−Cut = hBiLM-Cut/h
Gi
LM-Cut ratios for initial state.

agents to have a package cheaply unloaded at their loading site by a projected unload action of some
other agent. This is exactly the principle demonstrated in the motivation example. A similar situation
occurs in the elevators domain and other loosely coupled domains.

6.6.2 Evaluation of the Distributed Potential Heuristics
In this section, we evaluate the distributed potential heuristic. For this evaluation, we exactly replicate
the distributed track setup of the CoDMAP3 [Komenda et al., 2016] competition including all 12 bench-
marks, described in Section 3.6. Each agent runs on a separate machine with i5-4460 3.4GHz processor
and 8GB memory and has its own problem and domain input files. The agents communicate via TCP/IP
on Gigabit Ethernet. Each run is limited to 30min.

We compare the following approaches to the computation of the potential heuristic in the multi-agent
setting (as an LP solver we use CPLEX 12.6.1):

hBpot-sI The projected heuristic, that is each agent αi computes the heuristic on its own αi-projected
problem ΠBi (as in MAD-A*). The LP is optimized for the initial state sI .

hBpot-S The projected heuristic, the LP is optimized for all syntactic states.

hmaxproj
pot-S The heuristic computed as a maximum of projections. The public potentials are shared. The

LP is optimized for all syntactic states.

hG
pot-sI The distributed global heuristic, the LP is optimized for the initial state sI and with no encryp-

tion.

hG
pot-S The distributed global heuristic, the LP is optimized for all syntactic states and with no encryp-

tion.

hG−sec
pot-S The distributed global heuristic, the LP is optimized for all syntactic states and with encryption

based on [Mangasarian, 2011].

In the case of the secure computation based on [Mangasarian, 2011], several additional matrix multipli-
cations are performed, which does not pose significant computational overhead, as the LP computation
itself is a minor part of the planning process. Also, the amount of communication is the same as when
using the plain LP approach. We have measured the overhead of the secure LP computation with the
following results. Over all problems, the plain LP computation takes on average 450ms, with maximum
4.5s, while the secure LP computation takes on average 520ms, with maximum 5s. This means that the

3http://agents.fel.cvut.cz/codmap

128 CHAPTER 6. DISTRIBUTED OPTIMAL PLANNING

domain |A| hB
pot-S hmaxproj

pot-S hG
pot-S hG−sec

pot-S hB
LM-Cut hG

LM-Cut

blocksworld 4 4 4 13 6 2 1
depot 5− 10 6 6 7 4 6 2
driverlog 2− 8 15 14 15 13 15 10
elevators08 4 2 2 2 2 2 0
logistics00 3− 7 4 6 7 6 5 5
rovers 4− 10 1 1 1 1 1 1
satellites 3− 8 1 1 1 1 2 3
sokoban 2− 4 13 13 13 12 13 4
taxi 4− 10 20 19 20 20 20 14
wireless 6− 10 2 2 2 2 4 3
woodw.08 7 4 4 4 4 4 5
zenotravel 2− 6 6 6 6 6 6 6
total 78 78 91 77 80 54

Table 6.2: The number of solved problems (out of 20 per domain) (hB
pot-sI and hG

pot-sI solved 74 and 90 problems
respectively).

secure LP computation is on average only 1.15× slower than the plain LP computation. The absolute
numbers show the impact on the 30min time limit is negligible for both variants of the LP computation.

This somewhat contrasts with the results shown in Table 6.2. The coverage of secure hG−sec
pot-S is

nearly 15 problems less than the non-secure hBpot-S . Although the secure LP transformation guarantees
to return optimal solution, it does not guarantee to return the same values for the LP variables (the values
depend on the randomly generated matrices Bi), which may differ but still yield the same optimization
function value. As different values of potentials give different heuristic estimates for the same states,
the overall performance of the planner may also differ. We present a detailed statistical evaluation of
this phenomenon later in this section.

The secure computation based on [Dreier and Kerschbaum, 2011] was not part of the experimental
evaluation. Although this variant requires more matrix operations than [Mangasarian, 2011], we still
assume the overhead to be minimal in comparison with the MAD-A* search. Note, that vast majority of
the unsolved problems are unsolved due to memory consumption and not due to reaching the time limit.

In Table 6.2, we present the numbers of solved problems for the variants of the potential heuristics
for each competition domain (hBpot-sI and hG

pot-sI solved 74 and 90 problems in total respectively). The
results show that the heuristics optimized for the set of all syntactic states (S) perform slightly better,
as expected. Also, the global heuristics perform better than the projected variants, as they are better
informed, but does not cause any communication overheads. Even the hmaxproj

pot variant does not bring
any substantial improvement, as the global information is still missing there. The ratio of expanded
states of hBpot-S vs. hG

pot-S in Figure 6.6.2 shows that the informativeness of the global and projected
heuristics is similar, except for the blocksworld, depot and logistics00 domains, which corresponds with the
coverage results. In a few problems, the projected heuristic offers better guidance.

Comparison with the state of the art

Finally, we compare the MAD-A* search using the global (hG
pot-S) potential heuristic with the state of the

art. Namely, we compare it with the best performing distributed optimal multi-agent planner [Fišer et al.,
2015] in CoDMAP, using a projected (hBLM-Cut) and global distributed (hG

LM-Cut) versions of the LM-
Cut heuristic. Notice that the results of the LM-Cut heuristic significantly differ from those presented
in Section 6.6.1. This is because the results in Section 6.6.1 were measured on MAPlan running all
agents on a single machine (even though still communication via TCP/IP). The results in this section
were, similarly as in the CoDMAP competition measured on MAPlan running on a distributed system

6.6. EVALUATION 129

0e+00 1e+08 2e+08 3e+08 4e+08 5e+080e
+0

0
2e

+0
8

4e
+0

8

bloc
depo
driv
elev
logi
rove
sate
soko
taxi
wire
wood
zeno

Figure 6.6.2: Ratios hB
pot-S/h

G
pot-S of expanded states per problem.

0.1 1.0 10.0 100.0 1000.0

0.
1

1.
0

10
.0

10
0.

0
10

00
.0

bloc
depo
driv
elev
logi
rove
sate
soko
taxi
wire
wood
zeno

Figure 6.6.3: Time ratios hG
LM-Cut/h

G
pot-S per problem.

(one agent per machine) communicating over a local network. This setup makes lower communication
overhead much more crucial.

Comparison of the number of problems solved by the planners is shown in Table 6.2. Whereas the
performance of the projected heuristics hBpot-S and hBLM-Cut is on par, the global versions indeed show the
strength of hG

pot-S , which is more informed than hBpot-S but does not incur any additional computation or
communication costs as the potential heuristic is additive. This results in a better coverage than other
compared heuristics, especially the global version of LM-Cut, where the difference is over 40 problems
in total.

In order to emphasize the results, let us compare results for the classical centralized versions of the
heuristics in the literature. In [Pommerening et al., 2014b], the LM-Cut is reported to have coverage of
763, whereas in [Seipp et al., 2015] the potential heuristic optimized for initial state and all syntactic
states have coverage of 611 and 659 respectively (in the same experimental setting). This illustrates that
although in the centralized setting, the LM-Cut heuristic performs significantly better, in the distributed
setting, the properties of hG

pot give it a significant advantage. More advanced techniques for computing
the optimization function proposed in [Seipp et al., 2015] would probably improve the results of hG

pot

even more.
In Table 6.3, the IPC Agile scores for each of the configurations are shown. The score is computed

as a sum over all problem scores. For a given problem let T ∗ be the minimum time required by any
planner to solve the problem. A configuration that solves the problem in time T gets a score of 1/(1 +
log10(T/T ∗)) for the problem. Search guided by any variant of the potential heuristic is faster (have
a higher score) than the projected LM-Cut heuristic and significantly faster than the global LM-Cut
heuristic. Results for the global variants of the potential and LM-Cut heuristics are shown in Figure 6.6.3

130 CHAPTER 6. DISTRIBUTED OPTIMAL PLANNING

hB
pot-S hG

pot-S hG−sec
pot-S hB

LM-Cut hG
LM-Cut

score 56.5 57.9 54.5 48.8 22.7

Table 6.3: IPC Agile Score. A configuration that solves a problem in time T gets a score of 1/(1 + log10(T/T ∗))

where T ∗ is the best solution time of any configuration. A higher number means faster solutions.

domain |A| hG−sec
pot-sI hG

pot-sI hG−sec
pot-S hG

pot-S

blocksworld 4 12 (6.2) 13 (13) 12 (6.6) 13 (13)
driverlog 2− 8 14 (11.8) 15 (15) 15 (12.2) 15 (14.8)
logistics00 3− 7 8 (5.8) 8 (7.8) 6 (5.4) 6 (6)
rovers 4− 10 0 (0) 0 (0) 1 (0.8) 1 (1)
satellites 3− 8 0 (0) 0 (0) 1 (1) 1 (1)
sokoban 2− 4 12 (11.8) 12 (11.6) 13 (13) 13 (13)
taxi 4− 10 20 (20) 20 (20) 20 (19.8) 20 (19.8)
zenotravel 2− 6 7 (6.2) 9 (9) 6 (6) 6 (6)
total 73 (61.8) 77 (76.4) 74 (63.8) 75 (74.6)

Table 6.4: Coverage results of the following variants of the potential heuristic:
hG−sec

pot-sI - secure variant optimized for the initial state
hG

pot-sI - non-secure variant optimized for the initial state
hG−sec

pot-S - secure variant optimized for all syntactic states
hG

pot-S - non-secure variant optimized for all syntactic states
The numbers in brackets denote the average coverage over the 5 runs. The numbers without the brackets
show the coverage where a problem was counted as solved if it was solved in at least one of the runs.
The domains where no configuration solved any problem were excluded from the table.

as per-problem ratios (restricted to problems solved by both). With a small number of exceptions, the
hG

pot-S heuristic guided the search much faster.

Statistical Evaluation

As the nature of the privacy-preserving algorithm is stochastic, we provide a statistical evaluation in
addition to the original evaluation published in [Štolba et al., 2016a]. Although we aim for a statistical
significance, it is important to mention that the evaluation technique based on the CoDMAP competition
takes an enormous time and cannot be very well outsourced to established cloud computing services
because of the need of precise control of the network and the machines used for computation. This
means that we could run only a relatively small number of experiments, but nevertheless, such evaluation
brought more light into the issue. This round of experiments was run on 40 machines4 with Intel i5-4460
CPUs at 3.2 GHz, 16GB of RAM per agent, 5 runs per configuration (that is, all combinations of secure,
not secure, optimized for the initial state, and optimized for all syntactic states).

The Table 6.4 shows that in terms of coverage, the secure variant of the heuristic is on average about
15% worse than the non-secure variant. This confirms the results shown in Table 6.2 as being not caused
by chance. If we count any problem which was solved in at least one run as solved, we can see, that
the results of the secure variant are still worse in the initial state variant and practically equal in the all
syntactic states variant. Nevertheless, we conclude that some of the problems are often not solved by
the secure variant.

As we have already discussed, lower coverage of the secure variant cannot be caused by the time
overhead of secure computation because a) it is negligible, and b) most of the problems are not solved
because of running out of memory. This clearly points to a difference in the quality of the heuristic.

4Note that the machines and the network setup were different than in the previous experiments.

6.6. EVALUATION 131

a)

●

●

9

12

15

6 9 12 15

secure

no
t s

ec
ur

e

domain
● depo

driv

logi

wire

b)

0

250

500

750

0 250 500 750

secure

no
t s

ec
ur

e

Figure 6.6.4: Heuristic values of the initial state as computed by the secure hG−sec
pot-S and non-secure hG

pot-S
heuristics. The heuristic values (for the secure variant) include error bars (+/− standard deviation) and
are shown only for the problems where the values are not equal. Plot a) include all domains except for
woodworking, b) shows the woodworking domain.

Let us now focus on the heuristic values of the initial states. In the case of the heuristics hG
pot-sI and

hG−sec
pot-sI , the heuristic values are equal for all runs. This verifies, that both the secure and non-secure LPs

return the same optimal value. The case of the secure hG−sec
pot-S and non-secure hG

pot-S is different in that
different optimal results of the LP computation might result in different heuristic values. Such values
are shown in Figure 6.6.4, divided into two plots because of the order of magnitude difference of the
heuristic values in woodworking. The figure shows that in multiple domains there are problems where
the secure heuristic gives worse estimates and a couple of problems where it gives better estimates. The
most significant case is the woodworking domain where is the largest number of problems where the
values differ, but again, not always is the secure heuristic worse.

To understand the situation even better, we look at the number of expanded states, Figure 6.6.5. The
results show that, ignoring the noise caused by the distributed computation, the only significant cases
are the blocksworld and depots domains and a couple of isolated problems from other domains. It is
safe to say, that in all significant cases, the secure heuristic provides worse guidance. This conveys with
the coverage results, where the largest difference between the secure and non-secure variant is in the
blocksworld domain. The results show, that against all expectations, the secure computation provides
worse heuristic guidance.

The most reasonable explanation for this behavior is that due to the randomization, the resulting
LPs are less numerically stable and the computed potentials are more likely (in some domains) to be
prune to rounding errors. Similarly to the classical potential heuristic implemented in Fast Downward,
the heuristic values are rounded up before use in the search, the difference is, that in the distributed
computation, we use Equation 6.4.5 to compute the heuristic value from the parent state. In the current
implementation in MAPlan, the parent heuristic is integer as in MAD-A* search. Therefore, the new
heuristic value has to be rounded down, otherwise, the rounding error might accumulate. For some
values of the potentials, rounding down might cause deterioration of the heuristic value throughout the
search. Alternatively, sending the non-integer value together with the state and rounding up only after
the use of Equation 6.4.5 might solve the issue.

132 CHAPTER 6. DISTRIBUTED OPTIMAL PLANNING

● ●●●●●● ●

●●

● ●

●●
●

●

●

●● ●

●
●

●

●

●

●

●

●
●

●
●

●

●●●

●

●

●

●

●
●●●●●●●●●●●●●●
●●

●●
●●

0

100

200

300

0 100 200 300 400

secure (millions of states)

no
t s

ec
ur

e
(m

ill
io

ns
 o

f s
ta

te
s)

domain
●

●

●

bloc

depo

driv

elev

logi

rove

sate

soko

taxi

wire

wood

zeno

Figure 6.6.5: Expanded states in MAD-A* search using the secure hG−sec
pot-S and non-secure hG

pot-S heuris-
tics (also for unsolved instances). Each point also includes error bars (+/− standard deviation) over all
runs.

6.6.3 Evaluation of Multi-Agent Cost Partitioning
In this section, we present the evaluation of the multi-agent cost-partitioning based approach to com-
puting distributed heuristic presented in Section 6.5. We aim to evaluate the feasibility of the approach
by evaluating the quality of the heuristic given by the cost-partitioning. In order to do so, we compute
the optimal heuristic h∗ (that is, the true cost of the optimal solution) for each agent problem Πi. As a
baseline, we use the maximum of the optimal projected heuristics for the initial state, that is,

h∗max(sI) = max1≤i≤nh
∗.i(s.iI)

and compare it to the sum of the optimal heuristics for a given cost partitioning cp, that is,

h∗G(sI) =

n∑
i=1

h∗.icpi
(s.iI)

In order to compare the heuristic values of different problems better, we use the ratios h∗max(sI)/h
∗(sI)

and h∗G(sI)/h
∗(sI) where h∗(sI) is the optimal heuristic computed by a centralized planner on the

global problem ΠG.
We start the evaluation with the optimal cost partitioning (OCP) described in Section 6.5.2. Fig-

ure 6.6.6 shows the resulting comparison of the heuristic values. Even though we were able to compute
the OCP only for a small subset of the benchmark problems, the results show, that for a significant por-
tion of the problems, the cost-partitioning based approach improves over the maximum of i-projected
heuristics.

Unfortunately, the OCP computation is not feasible for such large abstractions as the i-projections
typically are (in the worst case, they can be as big as the global problem). Next, we evaluate the cost
partitioning computed on smaller abstractions. Figure 6.6.7a) shows the evaluation of an OCP computed
on abstractions of Πi with 100 states each, computed based on the Merge&Shrink algorithm [Helmert
et al., 2007]. Clearly, this approach works well for some of the domains such as elevators, where we
are able to obtain the global optimal heuristic h∗, but not so well for some domains such as driverlog.
Overall, most of the domains benefit from this cost-partitioning based approach. We assume that it may

6.6. EVALUATION 133

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

max
oc

p bloc
depo
driv
elev
logi
rove
sate
wood
zeno

Figure 6.6.6: Comparison of h∗max(sI)/h
∗(sI) and h∗G(sI)/h

∗(sI) for optimal cost partitioning.

a)
0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

max

ab
st

ra
ct

−o
cp

−l
p−

10
0

blocks
depot
driver
elevat
logist
rovers
satell
woodwo
zenotr

b)
0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

max

or
th

og
on

al

blocks
depot
driver
elevat
logist
rovers
satell
woodwo
zenotr

Figure 6.6.7: Comparison of h∗max(sI)/h
∗(sI) and h∗G(sI)/h

∗(sI) for a) optimal cost partitioning on
abstractions with 100 states and b) cost-partitioning based on orthogonality of i-private and public pro-
jections.

be possible to improve the results by providing a better abstraction or tailoring the abstraction specif-
ically for the purpose of the multi-agent cost-partitioning. Simply increasing the number of abstract
states does not seem to work, similar evaluation with abstractions containing 1000 states did not show
any improvement. Figure 6.6.7b) shows the evaluation of the approach based on the orthogonality of
the i-private and public projections. The results show that this approach is much less successful, even
though it is still able to achieve the perfect global heuristic in the elevators domain.

Next, let us have a look on the approximations of the OCP based on other heuristics expressed as
LPs. Figure 6.6.8a) shows the result for a cost-partitioning based on landmarks generated by the LM-Cut
heuristic [Helmert and Domshlak, 2009]. In this case, only the elevators domain seems to be affected
positively. Figure 6.6.8b) shows the results of a cost-partitioning generated based on the LP of the state
equation heuristic (SEQ) [Van Den Briel et al., 2007]. Again, we can see that the results are not very
promising, as only the logistics domain is affected overall positively. Finally, Figure 6.6.8c) shows the
effect of using the cost-partitioning based on the potential heuristic LP. Out of the results presented in
Figure 6.6.8, the potential heuristic based cost-paritioning performs the best. The only negative results
are for most of the driverlog domain and a number of other isolated cases. For a number of problems
not limited to the elevators domain, the cost-partitioning gives an optimal heuristic. Coupled with the
ease of the LP formulation (in comparison to, e.g., computing an abstraction first), this approach seems
to be practically the most promising.

We conclude the experiments by providing the results for the most simple cost-partitionings, the
uniform and the projection-compensating, described in Section 6.5.3. Figure 6.6.9a) shows the results
for the uniform cost-partitioning. The problems are indeed quite uniformly distributed among the prob-
lems where the cost-partitioning is beneficial and where they are worsening the heuristic estimate. An
exception is the elevators domain as the uniform cost-partitioning is enough to provide the global opti-
mum. The projection-compensating cost-partitioning shown in Figure 6.6.9b) is a rather extreme case.

134 CHAPTER 6. DISTRIBUTED OPTIMAL PLANNING

a)
0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

max

la
nd

m
ar

k−
oc

p−
lp

blocks
depot−
driver
elevat
logist
rovers
satell
woodwo
zenotr

b)
0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

max

se
q−

oc
p

blocks
depot
driver
elevat
logist
rovers
satell
woodwo
zenotr

c)
0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

max

po
te

nt
ia

l−
oc

p−
lp

blocks
depot
driver
elevat
logist
rovers
satell
woodwo
zenotr

Figure 6.6.8: Comparison of h∗max(sI)/h
∗(sI) and h∗G(sI)/h

∗(sI) for a) cost-partitioning based on
landmarks b) cost-partitioning based on the state equation heuristic LP and c) cost-partitioning based on
the potential heuristic LP.

a)
0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

max

un
ifo

rm

blocks
depot
driver
elevat
logist
rovers
satell
woodwo
zenotr

b)
0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

max

pr
oj

co
m

blocks
depot
driver
elevat
logist
rovers
satell
woodwo
zenotr

Figure 6.6.9: Comparison of h∗max(sI)/h∗ (sI) and h∗G(sI)/h∗ (sI) for a) uniform cost partitioning and
b) projection-compensating cost-partitioning

There is a significant number of problems (and nearly entire domains) where it provides optimal global
heuristic, e.g., the elevators, satellites (some problems), and depot. But in the other extreme, there are
domains where it results in a zero heuristic, most prominently the blocksworld domain. In blocksworld,
the behavior is caused by the fact that each of the agents is able to solve the problem on its own, thus
when computing the heuristic, each agent considers the problem to be solvable by the other agents with
a zero cost. It might be possible to mitigate such extreme cases by putting k > 0 in Equation 6.5.4.

6.7 Summary
Together with Chapter 4, this chapter provides a number of answers to the question of (Objective 1),
that is, how to compute heuristics in a distributed way. In this chapter, we have focused on admissible
heuristics and shown that the distributed variants maintain admissibility, which is necessary for optimal
multi-agent planning. The first heuristics we have treated are the max and LM-Cut heuristics, which are
examples of admissible relaxation heuristics (the max heuristic was already treated in Chapter 4 but in

6.7. SUMMARY 135

an inadmissible way). The approach for the relaxation heuristics was again based on the communication
of reachable facts, found landmarks, etc. for each evaluated search state.

Next, we have taken a different approach in distributed computation of potential heuristics. We have
shown, that the properties of potential heuristics allow us to compute them in an additive way, that is,
each agent can compute its part separately and the partial results can be summed up to obtain the global
estimate without any additional communication. The only distributed computation is the evaluation of
the linear program which is necessary to compute the potentials. We have shown that such computation
can be done in a privacy-preserving way using existing techniques.

Finally, we have proposed a general approach to heuristic computation based on cost partitioning,
which is also additive and thus can reduce the amount of communication necessary. This approach
maintains admissibility but can be used for inadmissible heuristics as well.

We have experimentally evaluated the hmax, LM-Cut and potential heuristics both in the terms of
projected and distributed computation and against each other. The results show that in a fast com-
munication setting (such as local computer communication) the distributed LM-Cut heuristic beats its
projected counterpart, but the same does not hold in a real network situation. On the contrary, the dis-
tributed potential heuristic can utilize its better estimates in a real network setting as well as there is no
additional communication during the planning process. The evaluation of the general cost-partitioning
approach showed that this approach is a very promising direction for research.

136 CHAPTER 6. DISTRIBUTED OPTIMAL PLANNING

Chapter 7

Privacy

In the previous chapters, we have focused on analyzing what information can be shared in order to
speed-up the search for a solution and to improve the quality of the heuristic estimates. In this chapter,
we focus on the contrary, that is, how to prevent unintentional communication of information which was
not meant to be shared.

Multi-agent planning is an appropriate approach in a number of situations. One adequate reason why
to use multi-agent planning instead of classical planning is caused by the locality of information. This
means that each of the agents has access to some information which would be too costly to communicate.
Take, for example, a multi-robotic team where each robot receives a huge amount of sensoric data,
but the communication is limited. A similar case might be the cost of formalization, that is, it may
be too costly for an agent to formalize its inputs so that they can be shared with other agents (or a
common formalism for a diverse set of agents might incur substantial complexity). These points are
valid in general but are not applicable to the particular case of multi-agent planning, where the common
formalism is defined and the inputs (formulated either as PDDL, STRIPS or MPT) are already concise
representations and thus can be easily communicated.

In multi-agent planning, one of the reasons for distributed computation might be the aim of im-
proving performance by exploiting the given factorization. Indeed, the parallel version of the MAD-A*
algorithm denoted as MAP-A* [Nissim and Brafman, 2012] improves over the state of art in multi-core
parallelized search, especially on well-decoupled domains such as satellites. Importantly, in the case of
parallel computation, there is no need to compute the heuristic distributedly as it can be computed over
the whole problem and thus provide better guidance.

We proceed to the most important reason which prevents any centralized computation and thus jus-
tifies the approach to multi-agent planning adopted in this thesis and that is the preservation of privacy.
Take for example a scenario where two logistics companies would like to cooperate in order to improve
their coverage of customers but which do not want to reveal sensitive information such as the locations
of their customers or the costs of their transportation to each other. Similarly, in a military coalition
mission, coordinated planning is necessary, but some information needs to be kept secret.

From cryptography and secure multi-party computation in particular, we learn that it is not enough
to prevent the communication of private data as private information might be learned even from the
execution of the algorithms and communication protocols (e.g., the received messages) themselves. In
this chapter, we fulfill the (Objective 3) of this thesis

(Objective 3) How to formalize privacy and quantify privacy leakage and how to apply secure multi-
party computation techniques in multi-agent planning?

by the precise definition of privacy in the context of MAP (Section 7.1), the definition of privacy leakage
measure for privacy-preserving MAP (Section 7.2). We analyze privacy leakage of the MAD-A* and
Secure-MAFS algorithms (Section 7.3), which is also applicable on the MADLA Search presented in

137

138 CHAPTER 7. PRIVACY

Chapter 5. Moreover, in Section 7.3 we provide a novel analysis and insight in privacy leakage of the
distributed heuristics described in Chapters 4 and 6. We conclude this chapter by providing theoretical
results about PP-MAP in general (Section 7.4).

7.1 Formal Definition of Privacy in Multi-Agent Planning

What exactly are the agents in privacy-preserving multi-agent planning (PP-MAP) trying to hide and
why? Let us consider the following example. A company has a secret recipe for a well-known beverage.
In order to work effectively, it wants to optimize its process of logistics and its use of subcontractors.
In this example, parts of the recipe can be represented as actions either private (the most secret parts) or
public (the “interface” with other companies). Other agents provide the actions for logistic transporta-
tion and providing ingredients. The beverage agent wants to hide all its private actions and the private
parts of the public actions, namely the “signature” of the actions, that is, their preconditions and effects
regardless of renaming (formally, an isomorphic model).

Any leakage of such information is undesirable, but the value of the information decreases with the
increasing uncertainty of the exact isomorphic model. We now formalize the described concepts.

We borrow the formal treatment of privacy-preserving planning from [Nissim and Brafman, 2014]
as follows:

Definition 88. LetM = {Πi}ni=1 be a MAP problem for a setA of agents. For each agent αi ∈ A, the
private part of its problem Πi is

(i) the set of private variables Vprivi , the number of private variables1 |Vprivi |, their respective domains
dom(V) and their sizes |dom(V)| for each V ∈ Vprivi ,

(ii) the set of private operators Oprivi , the number of private operators |Oprivi |, the number and values
of variables in pre(o) and eff(o) and the value of cost(o) for each o ∈ Oprivi , and

(iii) the private parts of the public operators in Opubi , i.e., the number and values of private variables in
pre(o) ∩ Vprivi and eff(o) ∩ Vprivi for each o ∈ Opubi .

We refer to the agent trying to hide information as agent α (the agent). We model all other agents
as a single agent β (the adversary), which is common in secure MPC, as all the agents can collude
and combine their knowledge in order to infer more private information. The public part of the agent’s
problem is the public projection ΠB and can be shared with the adversary including public projections
of the operators inOpubi . In this chapter, we refer to the view of the agent α = αi on the global problem
M, that is, the i-projected problem ΠB

i as the problem Π, formally

Π = ΠB
i forα = αi ∈ A

In general, a single public projection aB can represent multiple actions a, a′ such that pre(a)B =
pre(a′)B and eff(a)B = eff(a′)B. For the sake of simplicity of the presentation of some concepts
and the proofs in the later sections, we use the label-preserving projection ΠD which preserves the
labels of actions, formally aD = 〈pre(a)B, eff(a)B, lbl(a)〉. In Section 7.2.2 we show that the label
preserving projection leaks a significant amount of information and thus it is not reasonable to use in
PP-MAP. Nevertheless, the label-preserving projection is commonly assumed in PP-MAP planners and
heuristics and was not identified as a source of significant loss of privacy before. For disambiguation,
we sometimes refer to ΠB as a label non-preserving projection.

Example. (UAV) As an example running throughout the chapter, we use the most simple case of the
coalition surveillance mission problem with one UAV and two secret locations (see Figure 7.1.1). We

7.1. FORMAL DEFINITION OF PRIVACY IN MULTI-AGENT PLANNING 139

location 1

location 2

base

UAV

Figure 7.1.1: UAV surveillance scenario example.

omit the movement actions for simplicity (movement between the surveyed locations would be private,
the movement to the coalition base would be public).

The problem in the running example consists of two agentsA = {αUAV, αbase} and can be described
using the following sets of variables:

Variable in Description Variable Values sI s?
Vpub : UAV has fuel f T/F F -

mission is complete c T/F F T

Vpriv
UAV: location 1 is complete l1 T/F F -

location 2 is complete l2 T/F F -
Vpriv

base: base has enough supplies s T/F T -

For further analysis, we use binary variables with T/F values, but all principles can be easily applied
to general domain sizes. The problem consists of the following actions:

Actions (αUAV) lbl(a) pre(a) eff(a)
survey location 1 SL1 {f = T} {l1 = T, f = F}
survey location 2 SL2 {f = T} {l2 = T, f = F}
complete mission C {l1 = T, l2 = T, c = F} {c = T}

Actions (αbase) lbl(a) pre(a) eff(a)
refuel R {f = F, s = T} {f = T, s = F}

refuel and resupply RR {f = F, s = F} {f = T, s = T}
All actions in the problem are public for the ease of presentation, but private actions can be analyzed

using the presented model as well. For further analysis, let us assume that the final global solution
to the example problem together with its public projection is πUAV = {R,SL1,R,SL2,C}, πbase =
{R,SL,RR,SL,C} and πB

UAV = πB
base = {R,SL,R,SL,C} .

The complete transition system of the example global problem M is shown in Figure 7.1.2 (a),
together with the transition system of the public projection ΠB(b). The transition system for ΠD looks
exactly the same, except for the labels being SL1,SL2 instead of just SL and R,RR instead of R.

7.1.1 Cryptographic Assumptions
As is common in the cryptography literature, we place a number of assumptions on the agents, the
environment and the algorithms used.

(Assumption 1) Semi-honest agents This is an assumption often used in secure MCP, stating that the
agents do not diverge from the algorithm and communication protocol in order to exploit it, but

1Here we mean the exact number of variables. Later on, we assume an upper bound on the number of private variables is
publicly known.

140 CHAPTER 7. PRIVACY

a)

{s}
R

{f}

{l1}

SL1

{l2}

SL2

RR
{l1,f,s}

RR
{l2,f,s}

SL2 SL1

{l1,l2,s}
C

{l1,l2,c,s}
b)

{f,c}

{f}

{c}

{}

R

SL

R

SL

C C

Figure 7.1.2: a) Global transition system (its reachable part) ofM. Variables shown are set to true, all
other variables to false. b) Transition system of the public projection.

deduce as much information as possible from the execution and from the communicated data.
Such agents are also known as “honest but curious” agents.

(Assumption 2) The adversary knows the algorithm and the communication protocol This means
that the adversary can place assumptions based on the algorithm itself, such as that for each
expanded state, all its successors are created and sent before expanding any further state.

(Assumption 3) Messages are received in-order That is, in the order in which they were sent. We
also assume that the communication is lossless and all messages are received in finite time.

(Assumption 4) Upper bound on the size of the global problem We assume that there is an upper
bound on the size of the global problem including private parts of all agents (e.g., the number
of private variables) and this bound is publicly known.

The Assumption 1 limits the power of the adversaries so that we can assume that the protocol of com-
putation is correctly followed. A stronger form of an adversary is a malicious agent. The malicious
agent can not only infer information from the communicated data but can also alter its behavior in or-
der to increase its chance of receiving more information. In the context of MAP, this might mean, for
example, to force the agent to explore the complete search space by sending states generated system-
atically by breadth first search instead of A* and not confirming the found solution. Thus removing
the first assumption would increase the information leakage in existing algorithms and complicate the
development of new secure algorithms as there is much less existing cryptographic primitives secure in
the presence of malicious agents and they incur much more computation overheads.

On the contrary, the other three assumptions limit the uncertainty in the system and thus increase
the amount of information the adversary can learn about the planning problems of other agents. The
Assumption 2 allows the adversary to analyze the received information with respect to the inner work-
ings of the agent. In the context of MAP, this means that, for example, when a state is received by the
adversary, it can analyze the context why it was sent based on the principles of the MAD-A* algorithm
(if that is the protocol).

The Assumption 3 is a common assumption on the communication channel (similar assumptions
were already placed in Chapter 5 in order to prove soundness and completeness of the MADLA Search
algorithm. By removing this assumption, the adversary cannot infer knowledge based on the order of
received messages, such that some state was expanded by the agent before some other state.

The Assumption 4 has a twofold effect. First, it is often used in secure MPC and cryptography in
order to allow the information about the size of the problem to be used in the cryptographic protocols or
to leak during the computation. For example, the size of the problem can be induced from the running
time of a cryptographic protocol. In that case, if the size was not a public information, such leakage

7.1. FORMAL DEFINITION OF PRIVACY IN MULTI-AGENT PLANNING 141

would make the protocol not secure, but if it is already assumed public, no private information has
leaked. The other effect of this assumption is that the adversary can bound its inference, as utilized in
Section 7.2.

7.1.2 Weak and Strong Privacy
In the MAP and PP-MAP literature, the concept of privacy has been mostly reduced to the idea of weak
privacy, as stated in [Nissim and Brafman, 2014]. Here, we rephrase the (informal) definition:

We say that an algorithm is weak privacy-preserving if, during the whole run of the
algorithm, the agent does not communicate (unencrypted) private parts of the states, private
actions and private parts of the public actions. In other words, the agent openly communi-
cates only the information in ΠB.

Obviously, the weak privacy does not give any guarantees on privacy whatsoever, as the adversary
may deduce private knowledge from the communicated public information. Nevertheless, not all weak
privacy-preserving algorithms are equal in the amount of privacy leaked. We have proposed measures
of privacy leakage and techniques allowing computation of such measures in [Štolba et al., 2016c,d,
2017]. Summarized and extended results are presented in Section 7.2 and in Section 7.3.

In [Nissim and Brafman, 2014], the authors define also strong privacy, which is in accordance
with the cryptographic and secure MPC model. Here we informally rephrase the definition of Nis-
sim&Brafman:

A strong privacy-preserving algorithm is such a distributed algorithm that no agent αi
can deduce an isomorphic (that is differing only in renaming) model of a private variable, a
private operator and its cost, or private precondition and effect of a public operator belong-
ing to some other agent αj , beyond what can be deduced from the public input (ΠB) and
the public output (projection of the solution plan πB).

A more precise formal definition can be stated based on the definition of privacy in secure MPC, where
privacy is typically defined with respect to the ideal world in which a trusted third party exists.

Definition 89. (Strong privacy MPC) Let p1, ..., pn be n parties computing an algorithm P which
takes n private inputs in1, ..., inn respective to the parties, and produces n private outputs out1, ..., outn
respective to the parties. Let T be a trusted third-party. An algorithm P is strong privacy-preserving
if the parties p1, ..., pn do not learn more information from executing P without the third-party (in
a distributed way), than by sending their respective private inputs ini via a secure channel to T and
receiving their respective outputs outi via a secure channel.

Formally, the definition is bound to the existence of a simulator which, based solely on the input
and output of a party i, can simulate the execution of the protocol so that the simulated execution (its
distribution, in the probabilistic case) is indistinguishable from the execution of the protocol by the party
i. See Goldreich [2009] for detailed formal definitions. Now we rephrase the definition in the context of
MAP, where the difference is that there is a public part of the input and also a public part of the output.

Definition 90. (Strong privacy MAP) LetM = {Πi}ni=1 be a MAP problem for a set A of n agents.
Let T be a trusted third-party. A MAP planner P is strong privacy preserving, if the agents α1, ..., αn
do not learn more information from solvingM with P without the third-party (in a distributed way),
than by sending their respective agent planning problems Πi via a secure channel to T and receiving the
i-projections πBi of the global plan via a secure channel.

The Definition 90 is compatible with the definition of Nissim&Brafman published in [Nissim and
Brafman, 2014, Brafman, 2015].

142 CHAPTER 7. PRIVACY

7.2 Quantifying Privacy Leakage
Our approach is based on research in the area of secure Multi-Party Computation (MPC) [Yao, 1982],
where the amount of privacy loss in general algorithms (or functions) has been recently studied as
information leakage [Smith, 2009, Braun et al., 2009]. In this section, we take this general approach
and apply it to the problem of PP-MAP. The information leakage is quantified based on the difference
in the probability of guessing the right input of a function before and after the distributed computation.
A high-level formula defined in [Smith, 2009] is

information leaked = initial uncertainty − remaining uncertainty, (7.2.1)

where the initial uncertainty is related to the probability of guessing the right input without any addi-
tional knowledge gained from the execution of the algorithm, whereas the remaining uncertainty is the
probability of guessing the right input given the output of the particular execution. In PP-MAP, we base
the probabilities on the number of transition systems representing the global planning problem including
all private information which is possible with respect to the public information known to the adversary
agent (and the information obtained during the planning process).

We focus on a well-defined class of distributed state-space search algorithms and determine the
lower bound for the MAFS and Secure-MAFS algorithms. We also present a running example, compute
a worst-case leakage and lower bound on leakage of an execution of the MAFS (or MAD-A*) and
Secure-MAFS algorithms on a running example. This work builds on [Štolba et al., 2016c,d, 2017],
where the concept of information leakage based on uncertainty about the agent’s transition system was
first introduced. We extend the work by providing more precise and formal definitions and also a general
method of computing the leakage bounds.

7.2.1 Privacy Leakage

One of the threat models studied in the literature on secure MPC is the threat that an attack will allow
the adversary to guess the private information of the agent. In the case of PP-MAP, this means that the
adversary may be able to guess the actual transition system of the agent.

Based on [Smith, 2009], let us have an algorithm which takes a private input H and produces a
public output L. What we are interested in is, how much information about H can be deduced by
an adversary who sees the output L. We assume that there is an a priori, publicly-known probability
distribution of a random variable H with a finite space of possible values H. We denote the a priori
probability that H has a value h ∈ H by P [H = h], and we assume that each element h of H has
nonzero probability. Similarly, we assume that L is a random variable with a finite space of possible
values L, and with probabilities P [L = l]. We assume that each output l ∈ L is possible, in that it can
be produced by some input h ∈ H.

In the case of PP-MAP, the private input H the adversary is attempting to guess is the transition
system T (Π) of the agent’s problem (see Definition 33). In agreement with the assumptions above
(known distribution and finite space of values), we assume that an upper bound on the size (number of
states) of T (Π) is publicly known as n (see Assumption 4 in Section 7.1.1). This bound together with
the public projection T (Π)B of the transition system and public projection πB of the final plan limits
the number of the transition systems possible with respect to T (Π)B and πB. We denote the number as
tapriori. We also assume that all the possible transition systems are equally probable, which gives us a
uniform distribution with the probability P [H = T (Π)] = 1/tapriori.

The public output consists of all information obtained from the agent during the planning process,
that is, the public projection of the transition system T (Π)B, the resulting plan π and all additional
information obtained during the planning process, such as reachable states, possible transitions, etc. We
will represent the output as a mapping OΠ : O 7→ N from the actions of the agent to the number of
possible transition sub-systems it represents according to the obtained information.

7.2. QUANTIFYING PRIVACY LEAKAGE 143

The vulnerability V (X) of a random variable X is defined as the worst-case probability that an
adversary could correctly guess the value of X in one try, which is simply the maximum of the proba-
bilities of values of X , formally V (X) = maxx∈XP [X = x], where X is the space of possible values
of X . In the uniform distribution case, we obtain again V (H) = 1/tapriori.

By converting the vulnerability (which is a probability) to an information measure, we obtain a
measure known as min-entropy H∞(X) = log 1

V (X) where log represents a base-2 logarithm (and will
so further on in the text). In our (uniform) case, the measure coincides with the Shannon entropy and
gives the result of H∞(H) = log tapriori. We use H∞(H) as the measure of the initial uncertainty. To
measure the remaining uncertainty, we consider the notion of conditional vulnerability, which gives the
probability of guessing X in one try, given Y :

V (X|Y) =
∑
y∈Y

P [Y = y]maxx∈XP [X = x|Y = y].

In our (uniform) case, P [H = T (Π)|L = OΠ] is the probability of guessing the transition system
T (Π) given the output OΠ reflecting all the information revealed by the algorithm. Altogether, P [H =
T (Π)|L = OΠ] = 1/tpost, where tpost is the number of possible transition systems (on n variables)
given the output OΠ. As we consider only deterministic algorithms and the output distribution can be
also considered uniform, the resulting vulnerability is

V (H|L) =
∑

OΠ∈L

P [L = OΠ]maxT (Π)∈HP [H = T (Π)|L = OΠ]

=
∑

O(Π)∈L

P [L = O(Π)]
1

tpost
= |L| 1

|L|
1

tpost
=

1

tpost

The remaining uncertainty can be then measured by the conditional min-entropy

H∞(H|L) = log
1

V (X|Y)
= log tpost

In summary, we obtain information leakage measures based on min-entropy H∞(H) as:

initial uncertainty: H∞(H) = log tapriori

remaining uncertainty: H∞(H|L) = log tpost

information leaked: H∞(H)−H∞(H|L) =

log tapriori − log tpost = log
tapriori

tpost
(7.2.2)

Where tapriori is the number of possible transition systems known a priori, that is, based on the public
projection T (ΠB), the assumption of the maximum n nodes and the public projection of the resulting
plan πB. Conversely, tpost is the number of transition systems based on the a posteriori knowledge, that
is, the public projection of the transition system, public projection of the resulting plan and all other
information obtained from the run of the planning algorithm.

According to [Smith, 2009], the remaining uncertainty gives a security guarantee as the expected
probability of guessing H , that is, the transition system of the agent, given the public output of the
planning algorithm L. The expected probability is

2−H∞(H|L) = 2− log tpost = 1/tpost (7.2.3)

where, again, tpost is the number of possible transition systems given the public output. Thanks to the
determinism and uniform distributions, the result conveys with an intuition that the privacy preservation
decreases by lowering the number of possible transition systems. In the next section, we will focus on
how to estimate both tapriori and tpost.

144 CHAPTER 7. PRIVACY

a)

T

F F

T

b)

T

F F

T

c)

T

F F

T

d)

T

F F

T

e)

T

F F

T

Figure 7.2.1: a) All possible transitions represented by a single action for a single binary variable
V ∈ {T,F}, where T represents true and F represents false. Left side represents a precondition, right
side an effect. Possible transition systems of the action are all subsets of the depicted transitions.
b) Transition system of a “resource consuming” action with precondition V = T and effect V = F.
c) Transition system of an action which does not depend on the value of V in precondition and always
sets V = T as an effect.
d) Transition system of a nondeterministic action which is applicable if V = T and has both effects
V = T and V = F. This can occur in the label non-preserving projection if aB1 = aB2 and effect of a1

is V = T and of a2 is V = F.
e) Transition system of an action with conditional effects or a nondeterministic action.

7.2.2 Leakage Quantification in PP-MAP

In the previous section, we have placed an assumption that an upper bound n on the total number of
the states of the agent’s transition system is publicly known. This results in n2 possible transitions
(including loops) and 2n

2

possible transition systems. Moreover, we assume that bounds on the number
of private variables |Vpriv| ≤ p and on the size of the private variable domains |dom(V)| ≤ d for all
V ∈ Vpriv are also publicly known.

Similarly to [Brafman, 2015], for the simplicity of presentation, we assume that Opriv=∅. This
assumption can be stated without loss of generality as each sequence of private actions followed by a
public action can be compiled as a single public action (with a potential exponential blow-up in the
number of public actions). From the perspective of privacy, it is clear that when adhering to the weak
privacy at least, private action is never communicated and thus can never leak. Any information about
private action always leaks only in the sense of the described compilation, that is, it appears as if each
new public action created by the compilation had some additional private preconditions or effects.

Let us first consider the public projection of the agent’s transition system T (Π)B. Based on the
above bounds, the number of private states s ∈ S represented by a single public state sB ∈ SB is
dp. The number of possible private transitions 〈s, l, s′〉 ∈ T represented by a single public transition
〈sB, lB, s′B〉 ∈ TBis (dp)2, that is, from each private state s there is a transition to a private state s′.

For a single variable (p = 1), there are d private states represented by each public state and for a
single action a, the respective public transition 〈sB, lbl(a)B, s′B〉 ∈ TB represents d2 possible private
transitions between two public states. As demonstrated in Figure 7.2.1a), for each of the left d private
states there either is or is not a transition to each of the right d private states, based on the private
preconditions and effects of a. This set of transitions represents a transition system of the action a
where the left to right direction represents the application of a. The upper part represents V = T before
(left) and after (right) the application of the action and the lower part represents V = F analogously.
For example, an action represented as Figure 7.2.1b) is applicable only if V = T and switches the value
to V = F, that is, consumes the resource represented by V which is no longer available. An action
represented as Figure 7.2.1c) is applicable for both V = T, V = F with the effect of setting V = T, as
both arrows end in V = T.

An upper bound on the number of all such transition systems for a is a constant ta = 2d
2

, that is,
the number of subsets of the d2 transitions (subsets of arrows in Figure 7.2.1a)). A public transition
encodes only existing transitions (actions applicable in at least one private state). This means that an
empty transition system is not an option, thus ta = 2d

2 − 1, for a binary variable ta = 15. As the
variables are independent, for p variables, we obtain ta = (2d

2 − 1)p, or ta = 15p if d = 2.
In the case of a label preserving projection where lbl(a) = lbl(aD) all actions a ∈ OD have unique

7.2. QUANTIFYING PRIVACY LEAKAGE 145

a)

{s}

{f}

{f,s}

{}

{c,s}

{c,f}

{c,f,s}

{c}

C

C

C

C

R

R

R

R

SL

SL

b)

{s}

{f}

{f,s}

{}

{c,s}

{c,f}

{c,f,s}

{c}

C

C

C

C

R

R

R

R

SL

SL

{l1,l2}

{l1}

{l2}

{}

{c,l1,l2}

{c,l1}

{c,l2}

{c}

Figure 7.2.3: a) The projection of transition system of the UAV example to the agent αbase (the adver-
sary). b) Possible transitions represented by the public projection CB, the actual transition represented
by the action C is in bold.

labels, because each public transition
〈
sD, lD, s′D

〉
∈ TD represents exactly one action a ∈ OD . As

a single (deterministic STRIPS) action can never produce multiple states when applied in a single state
(as in Figure 7.2.1d)), the number of possible transition systems ta is significantly reduced. For a
single variable with d values, we get the number of partial functions between two sets of size d, which is
ta = (1+d)d−1 (again−1 for empty transition system), for STRIPS ta = 8, without conditional effects
shown in Figure 7.2.1e), the number is reduced to ta = 7. Again, as the variables are independent, the
numbers can be multiplied for each variable. These 7 transition systems for a single variable V s.t.
dom(V) = {T,F} are schematically shown in Figure 7.2.2.

i) ii) iii) iv) v) vi) vii)

Figure 7.2.2: Possible transition systems of a STRIPS action a represented by a label-preserving
projection aD. The upper arrow represents application of a when V = T, the lower arrow when V = F.
A horizontal arrow represents unchanged value, diagonal arrow represents a change from V = T to
V = F (@R) or from V = F to V = T (��). A missing arrow means that a is not applicable when V = T
(upper arrow missing) or V = F (lower arrow missing).

In the case of the label non-preserving projection, the number of transition systems (as already
stated above) for one variable is 15, this number is obtained by adding non-deterministic transitions to
the Figure 7.2.2, as is for example shown in Figure 7.2.1d), meaning that multiple actions with the same
public projection can be applied in V = T and the result can be both V = T and V = F, depending on
the actual action applied.

Based on the above, a complete public projection T (Π)B of the agent’s transition system restricts
the number of possible private transition system to tΠ = ta

|TB|, where ta is the number of transition
systems represented by a single public transition (again, we can multiply as the actions are independent).

Example. (UAV) The example problem has binary variables, two of which are private to the αUAV.
Figure 7.2.3a) shows the projection of transition system of the UAV example to the agent αbase and Fig-
ure 7.2.3b) shows all possible transitions represented by the public projection of a single action. There
are 2 private variables, that is, p = 2. All subsets except for the empty set of the transitions are possible
transition systems in the case of label non-preserving projection, thus we get tΠ = 152p = 154 ∼= 5×104

146 CHAPTER 7. PRIVACY

possible transition systems. In the case of label-preserving projection, the nondeterministic and condi-
tional actions are not possible, in which case tΠ = 72p = 74 ∼= 2 × 103 possibilities. Already we can
see a loss of privacy in the orders of magnitude only by exposing the label-preserving projection.

7.2.3 Sources of Leakage

Before we analyze complex algorithms, let us first focus on elements which have a major impact on the
privacy leakage. From Equation 7.2.1 and its particular instance Equation 7.2.2 follows that the source
we need to focus on is the information which is communicated in addition to the necessary public
information, i.e., the projected problem ΠB and the projected plan πB. We refer to such information as
superfluous information. In other words, in an ideal world a trusted third party would solve the planning
problem and securely communicate the resulting plan to the agents, in the real world, the agents solve
the problem distributedly and any private information deduced from the public information exchanged
between them which the adversary would not be able to deduce from the information it receives in
the ideal world is a superfluous information. In particular, the sources of information we focus on are
superfluous distinct states and superfluous action applicability information.

There are also other possible sources of information leakage and their combinations, but we base our
analysis on these three prominent sources, thus providing a lower bound on the information leaked. In
the following, we provide more detailed description of the aforementioned sources of leakage. We use
the label-preserving projection for the ease of presentation, but in the further analysis, we focus mainly
on the label non-preserving projection, as it is more reasonable and occurs naturally in the distributed
heuristic search.

In the following propositions, we assume a STRIPS model with p private binary variables. We start
with the definition of the superfluous distinct states.

Definition 91. (Publicly equivalent states) Two states s, s′ such that s 6= s′ are publicly equivalent if
sB = s′B.

Definition 92. (Superfluous distinct states) Two publicly equivalent states s, s′ are superfluous distinct
states if it is revealed to the adversary agent β that s 6= s′.

The possibilities how superfluous distinct states can leak are algorithm-dependent and will be dis-
cussed in detail later. The superfluous distinct state information itself does not reduce the number of
possible transition systems, but can be used for further deduction of superfluous action applicability.

Computing the information leakage based on action applicability is based on the following method.
All transition systems corresponding to a particular type of action are shown in Figure 7.2.2 for the case
of label-preserving projection and in Table 7.1 for the case of label non-preserving projection. Now
we need to calculate the number of transition systems represented by an action of a certain type. For
example, let us assume that an action a has a private precondition (such action is later on formally
defined as privately-dependent, see Definition 95). Knowing that a has a private precondition on some
private variable, we can compute which transition systems are not possible for a for that particular
variable and subtract this number from the base number of transition systems for a, which is 7 for label-
preserving projection an 15 for label non-preserving projection per variable (see Section 7.2.2). The
number of transition systems which do not satisfy the property (e.g., a has a private precondition) can
be counted in Figure 7.2.2 or Table 7.1. In the first case, this means the transition systems (i), (ii), and
(iii) for which the action is applicable for both values of the variable, that is, 3 transition systems. In the
second case, those are all transition systems without the pd tags, that is, 9 transition systems. Finally,
as the variables are independent, we simply subtract the transition systems, where the property does not
hold, from the base number of all transition systems, thus we obtain the following equation:

tXa = bp − xp (7.2.4)

7.2. QUANTIFYING PRIVACY LEAKAGE 147

T

F F

T

ia pd

T

F F

T

ia pd

T

F F

T

pd

T

F F

T

ia pi pn

T

F F

T

ia pi pn

T

F F

T

ia pi pn

T

F F

T

ia pi pn

T

F F

T

pd
T

F F

T

ia pd pn
T

F F

T

pd pn
T

F F

T

ia pi

T

F F

T

ia pi

T

F F

T

ia pi pn

T

F F

T

ia pi

T

F F

T

ia pi

Table 7.1: All 15 transition systems possibly represented by aB. The tags describe which of them are
possible for a given type of action:
ia – init-applicable action (Definition 93),
pd – privately-dependent action (Definitnion 95),
pi – privately-independent action (Definition 97), and
pn – privately-nondeterministic (Definition 99) action.

where X is the property (e.g., that a is privately-dependent, denoted as pd), b is the base number of
possible transition system, e.g., 7 or 15, and x is the number of transition systems which do not satisfy
the property X out of the base transition systems (5 and 9 respectively). In our example the result is
tpd
a = 7p − 5p for the label-preserving projection and tpd

a = 15p − 9p for the label non-preserving
projection.

The first case of superfluous action applicability we focus on is the situation, where an action is
applicable on the initial state sI , or a state created from sI by a sequence of actions of the adversary β.

Definition 93. (Init-applicable action) Let πsup = (a1, ..., ak) be a a sk-plan such that πsup is not a
prefix of the final plan π and πsup is revealed to the adversary agent β. Let al be the first action of agent
α in πsup. Then al is an init-applicable action.

Proposition 94. Let πsup = (a1, .., al, ..., ak) be an sk-plan and let al be an init-applicable action. The
number of transition systems represented by a label-preserving projection aDl is tiaa = 5p and by a label
non-preserving projection aBl is tiaa = 12p.

Proof. Let πsup = (a1, .., al, ..., ak) be a a sk-plan and let al be an init-applicable action. From the
definition of a sk-plan, a1 is applicable in the initial state sI . Without loss of generality, we can assume
that in sI , all variables have a particular value (e.g., T for STRIPS), as the values can be arbitrarily
renamed. The values of sI private to the agent α are not changed by the actions of the adversary β. Let
al be the first action of α in πsup, applicable in state sl−1. From the above, sl−1 has the same particular
values of variables private to α. Again, without loss of generality, we can assume that the value is T.
This fixes uncertainty about al in that it is now not possible that al is not applicable in sl−1. But since
we know that sl−1[V] = T, for a single binary variable V this means that al cannot have a precondition
in the form of V = F. In Equation 7.2.2 this corresponds to - and �� and thus only the remaining 5
transition systems are possible. The same holds for each variable independently. The resulting number
of transition systems is thus tal = 5p for p variables. For the label non-preserving projection, also the
combination of - and �� is not possible, which results in removing 3 transition systems out of the total
15 for each variable, thus tal = 12p for p variables.

In the following, we focus on the information about the applicability of an action a on two superflu-
ous distinct states s, s′. We define two types of the superfluous action applicability information.

Definition 95. (Privately-dependent action) Action a ∈ O is a privately-dependent action iff vars(pre(a))∩
Vpriv 6= ∅, that is, a has some private preconditions.

If the adversary learns about some action a that it is privately-dependent, it has obtained a superflu-
ous action applicability information.

148 CHAPTER 7. PRIVACY

Proposition 96. Let a ∈ O be a privately-dependent action. The number of transition systems repre-
sented by a label-preserving projection aD is tpd

a = 7p − 3p and by a label non-preserving projection
aB is tpd

a = 15p − 9p.

Proof. Let us first consider the label-preserving projection ΠD. For p = 1 the following transition
systems in Equation 7.2.2

-
-,
-
��,@R- are not possible to be represented by aD, because such transition

systems do not depend on the variable, leaving only four, in particular
-
,@R,-,��. For p variables, such

situation must occur for at least one variable. We can formulate the total number of possible transitions,
by taking ta = 7p and subtracting the number of transition systems which does not satisfy the condition,
that is, for all p variables, the action is applicable in both values, as in

-
-,
-
��,@R-. By Equation 7.2.4 we

obtain tpd
a = 7p−3p. The result for a label non-preserving projection is achieved by the same reasoning

applied to all the 15 possible transition systems.

Example. (UAV) In the running example, a privately-dependent action is C (see Table 7.2), because it
depends on both private variables l1 and l2. This means that the number of possible transition systems
represented by C is reduced from 72 = 49 to 72 − 32 = 40 in the case of label-preserving projection
and from 152 = 225 to 152 − 92 = 144 in the case of label non-preserving projection.

A somewhat analogous situation arises, when a single action a is applicable in two publicly equiv-
alent, but superfluous distinct states s, s′. In this case, the information learned is that the action does
not depend on the private variable which distinguishes s and s′, thus reducing the number of possible
transition systems for a.

Definition 97. (Privately-independent action) Action a ∈ O is a privately-independent action iff
vars(pre(a)) 6= Vpriv , that is, there is a private variable V ∈ Vpriv on which a does not have a pre-
condition.

Proposition 98. Let a ∈ O be a privately-independent action. The number of transition systems
represented by a label-preserving projection aD is tpi

a = 7p−4p and by a label non-preserving projection
aB is tpi

a = 15p − 6p.

Proof. As in Proposition 98, for the label-preserving projection ΠD, let p = 1. The transition systems
-,
-
,��,@R, where a is applicable only in one of the states are not possible. Thus, based on Equa-

tion 7.2.4, the resulting number is tpi
a = 7p − 4p for label preserving projection and tpi

a = 15p − 6p for
label non-preserving projection.

Example. (UAV) In the running example, such action is SL2 (see Table 7.2), because it does not depend
on any of the variables l1 and l2. This means that the number of possible transition systems represented
by SL2 is reduced from 72 = 49 to 72 − 42 = 33 in the case of label-preserving projection and from
152 = 225 to 152 − 62 = 189.

Notice that a single action a may be privately-dependent on some private variable and privately-
independent on some other variable, but not both on a single variable. In the case of a label non-
preserving projection, there is one more possible leakage. The application of a projected action aB

(representing in fact multiple STRIPS actions) may result in two publicly equivalent but distinct states.

Definition 99. (Privately-nondeterministic action) Let a 6= a′ ∈ O be two actions such that aB =
a′B. Then aB is a privately-nondeterministic action iff there is a private variable V ∈ Vpriv such that
eff(a)[V] 6= eff(a′)[V], that is, a and a′ differ in a private effect.

Proposition 100. Let aB ∈ OB be a privately-nondeterministic action. The number of transition
systems represented by a label non-preserving projection aB is tpn

a = 15p − 8p.

Proof. From Definition 99, aB represents at least two actions a, a′ which differ in the private effects,
that is, eff(a) 6= eff(a′). Now for at least one variable, the transition system represented by aB must
contain both-,�� or

-
,@R transitions. This is not satisfied by 8 out of the 15 possible transition systems,

thus based on Equation 7.2.4, tpn
a = 15p − 8p.

7.2. QUANTIFYING PRIVACY LEAKAGE 149

Actions (αUAV) lbl(a) ia pd pi pn
survey location 1 SL1 X × X -
survey location 2 SL2 X × X -
survey location (no label) SL X × X X
complete mission C X/× X × ×

Table 7.2: Classification of actions in the UAV example: ia – init-applicable action (Definition 93),
pd – privately-dependent action (Definition 95), pi – privately-independent action (Definition 97), pn –
privately-nondeterministic action (applicable only on label non-preserving projection, Definition 99).

Example. (UAV) In the running example, such action is SL representing both SL1 and SL2. This
means that the number of possible transition systems represented by SL is reduced from 152 = 225 to
152 − 82 = 161.

Even more information can leak from a combination of the properties. We know that an action can-
not be both privately-dependent and privately-independent for a single variable, but other combinations
are possible. Unfortunately, it is not always possible to simply infer more information from a combina-
tion of properties. Consider for example a privately-independent and privately-nondeterministic action.
We cannot simply compute tpn×pi

a = 15p − 9p (based on Table 7.1) as the each of the properties might
be due to a different variable. Of course, we can use this value if we know (from some other leaked
information) that both properties are due to the same private variable or if p = 1.

More information can leak from the init-applicable actions, where the property affects all variables
and thus the “base” number of transition systems is lowered to 12p. Other applicability properties then
reduce the possible transition systems for a single variable. In the following, we apply the Equation 7.2.4
on the combinations of init-applicable actions with other applicability properties, thus the base number
b for label non-preserving projection is only 12.

Proposition 101. Let aB ∈ OB be a first action in a superfluous plan πsup and let aB be privately-
independent. The number of transition systems represented by a label non-preserving projection aB is
tia×pi
a = 12p − 3p.

Proof. By counting the possible transition systems in Table 7.1 of a privately-independent action re-
stricted to those applicable on sI [V] = T for all V ∈ Vpriv and Equation 7.2.4.

Proposition 102. Let aB ∈ OB be a first action in a superfluous plan πsup and let aB be privately-
nondeterministic. The number of transition systems represented by a label non-preserving projection
aB is tia×pn

a = 12p − 6p.

Proof. The same technique as above.

Example 103. (UAV) In particular, for SL in the running example holds both, in the first case, the result
is 122 − 32 = 135 possible transition systems and in the second case 122 − 62 = 108 possibilities.

Other sources of leakage

There are also other sources of leakage which are not used in the analysis of search-based algorithms.
We present some of them here and use them later on in the analysis of other algorithms.

Definition 104. (Private-effect action) An action a ∈ O is a private-effect action iff vars(eff(a)) ∩
Vpriv 6= ∅, that is, a has some private effects.

Proposition 105. Let a ∈ O be a private-effect action. The number of transition systems represented
by a label-preserving projection aD is tpe

a = 7p − 3p and by a label non-preserving projection aB is
tpe
a = 15p − 3p.

150 CHAPTER 7. PRIVACY

Proof. Based on Equation 7.2.4, Table 7.1, and Equation 7.2.4.

When the adversary learns a plan which is not (a part of) the final plan, such as in the PSM Plan-
ner [Tožička et al., 2016] briefly described in Section 7.4.1, the adversary can learn some information
additional to that the first action in the plan is init-applicable.

Definition 106. (Superfluous plan) A superfluous plan is a sk-plan πsup = (a1, ..., ak) such that πsup is
not a prefix of the final plan π and πsup are revealed to the adversary agent β.

Proposition 107. Let πsup be a superfluous plan containing l actions of the agent α. The number of
transition systems represented by a label-preserving projection πD

sup is tπ = 5pl.

Proof. From the definition of a sk-plan, a1 is applicable in the initial state sI . From Proposition 94
we know that ta1 = 5p for p variables and the label-preserving projection. But since we know that
sI [V] = T and application of a single action always results in a single state, s1 = a1 ◦ sI , the resulting
state s1 has also a fixed value of V (although we do not know which one). This means that a2 has
also reduced number of possible transition systems according to Proposition 94. As the actions are
independent, for l = |π| actions of α, the resulting number of transition systems is tπ = 5pl.

Example. (UAV) Let us assume that in the example, the adversary has acquired the information that
the sequence of actions π′ = {R,SL1} is valid (i.e., partial plan). As R does not change the values
of variables private to αUAV, the assumption above still holds for SL1 and thus the number of possible
transition systems represented by SL1 is reduced from 72 = 49 to 52 = 25.

Clearly, this does not hold for the label non-preserving projection as in that case the application of
the first action may result in multiple different states as the projection may represent multiple actions
with different private effects.

7.2.4 Leakage Estimate
Let the number of transition systems represented by a single action a without any information leaked be
a constant ta. The particular value of ta depends on the number of variables, their domain size and other
factors, such as the possibility of non-deterministic transitions. Let Oia denote the set of init-applicable
actions and tiaa the number of transition systems represented by a single action a reduced by the infor-
mation learned from its applicability. Similarly, we define the set Opd of privately-dependent actions,
the set Opi of privately-independent actions and the set Opn of privately-nondeterministic actions. The
respective number of transition systems represented by each such action a is tpd

a , tpi
a and tpn

a respectively
(also the combined information tia×pi

a , tia×pn
a may be used), each reduced according to the revealed in-

formation (the particular numbers were discussed in Section 7.2.3). Thus for each action a ∈ Opub , we
can define the number of transition systems it represents as

τpost(a) = min



ta always

tiaa if a ∈ Oia

tpd
a if a ∈ Opd

...

tia×pn
a if a ∈ Oia ∩ Opn

...

(7.2.5)

that is, the minimum of the number of transition systems represented by a based on its membership in
the Oia ,Opd ,Opi , and Opn sets.

Example. (UAV) For example if the action a1 is revealed as privately-independent and it is in some
communicated plan, τpost(a1) = min(ta, t

ia
a , t

pi
a) where for a STRIPS variables, single private variable

and label-preserving projection the constants are ta = 7, tiaa = 5, tpi
a = 3 and thus τpost(a1) = 3.

7.3. PRIVACY ANALYSIS OF ALGORITHMS 151

The knowledge obtained about particular actions can be combined to compute the total number of
possible transition systems

tpost =
∏

a∈Opub

τpost(a) (7.2.6)

giving us an upper bound on the remaining uncertainty as

H∞(H|L) = log(tpost) = log
∏
a∈Opub τpost(a) (7.2.7)

In the above formula, the number of possible transition systems include not only the superfluous
(and thus leaked) information, but also the a priori known information. The a priori formula for initial
uncertainty can be constructed similarly, but using only the information from the projected problem (that
is ta) and the projection πB = (aB1 , ..., a

B
l , ..., a

B
k) of the solution plan, where al is the init-applicable

action and thus Oia={a1} resulting in

τapriori(a) = min

{
ta always

tiaa if aB ∈ Oia

The final formula for the leaked information is obtained as the difference of the two, that is,

H∞(H)−H∞(H|L) =
∑

a∈Opub

log τapriori(a)−
∑

a∈Opub

log τpost(a) (7.2.8)

where for the actions with no additional information revealed we obtain log τapriori(a)− log τpost(a) = 0
and for actions with leaked information we obtain log τapriori(a) − log τpost(a) > 0. Since always
τapriori(a) ≥ τpost(a) as no information can be lost, only obtained, the number of possible transition
systems can only decrease. This is important, because it shows that the more actions is revealed by
the superfluous plans or superfluous applicability (itself following from superfluous distinct states), the
more private information is leaked.

7.3 Privacy Analysis of Algorithms

In this section, we take a closer look on how the algorithms presented in the thesis behave from the point
of view of privacy leakage analysis. We mainly focus on the Multi-Agent Forward Search (MAFS) [Nis-
sim and Brafman, 2014] family of algorithms, that is, the optimal variant Multi-Agent Distributed A*
(MAD-A*) [Nissim and Brafman, 2012], a secure variant Secure-MAFS [Brafman, 2015] and Macro-
MAFS [Maliah et al., 2016c] and other similar planners. The MADLA Planner also falls into this
category. Moreover, we analyze the relaxation-based heuristics and the LP-based heuristics. In the al-
gorithm analysis, we aim to compute a lower bound on the privacy leakage but also to present general
results. This means the amount of information that leaks during the execution of the algorithm for sure.

A significant principle, which undermines the privacy in MAFS-based algorithms is the use of label-
preserving projection ΠD, which is typically used to compute heuristic estimates. In theory, there is
no need to preserve the labels of actions, although the quality of the heuristic estimate may suffer as
multiple actions with the same public projection may have different costs (in a cost-aware version of
MAP). As we aim for a lower bound on the information leakage, we focus on the label non-preserving
projection ΠB throughout the algorithm analysis. The label-preserving projection can only leak more
information when used.

In the next sections, we analyze which parts of the search space are explored in an actual execution
of particular algorithms and what effect does it have on the leakage of the private information.

152 CHAPTER 7. PRIVACY

7.3.1 General Method for Search-based Algorithms

In this section, we provide a general high-level method for computing the privacy leakage of MAFS-
based algorithms, shown in Algorithm 15. Before we get into more details, let us remind the reader
of the basic principle of multi-agent best-first search (detailed in full in Section 5.1). In the MAFS
algorithm, each agent searches the state space using its own actions a ∈ Opubi ∪Oprivi , an ordered open
list, and a closed list, as in a textbook best-first search. If a public action a ∈ Opubi is used to expand
a state s, the resulting state s = a ◦ s is sent to all other agents αj 6=i which have some relevant action
(a′ ∈ Opubj s.t. pre(a′) is satisfied in s′). The state s′ is sent in the form of public projection s′B,
together with its heuristic value and an encrypted2 private part of s′ for each agent, that is, encα(s′) for
the agent and encβ(s′) for the adversary.

Any symmetric encryption algorithm can be used to encrypt the private parts, as only the sender will
ever need to decrypt the part of the state and thus the key does not have to be shared. Moreover, the
public part of the state can be used as so called salt [Gauravaram, 2012], that is, random data which are
concatenated with the actual data before encryption to improve security.

When a state message is received, the encrypted information is used to reconstruct the private part
of the received state respective to the receiving agent αi. Moreover, the heuristic is recomputed from the
point of view of agent αi and the maximum is used (this step may be omitted in the case of a distributed
or an inadmissible heuristic).

More formally (based on [Brafman, 2015]), we say that s0 is an i-parent of sk if sk is obtained from
s0 by the application of a sequence a1, ..., al of actions of agents other than αi and the last action in this
sequence, al, is public. This means that sk is a state that would be sent by some agent to αi, and αi was
not involved in the generation of any state between s0 and sk.

Algoritmus 15: Privacy leakage for MAFS-based algorithms

1 Algorithm computePrivacyLeakage(M)
2 Reconstruct the search tree
3 Determine possible parent states
4 Determine possible applied actions
5 Determine distinct states

6 Assign actions to the respective sets Oia , Opi , Opd , and Opn

7 Compute the leakage

Here, we present a high-level method for computing the privacy leakage of MAFS-based algorithms,
shown in Algorithm 15. We focus on the particular instantiation of the steps in the following sections. In
general, the first step is to attempt to reconstruct the search tree of the particular execution of the search-
based algorithm (an example of the search tree of MAD-A* is shown in Figure 7.3.1). Reconstructing
the search tree means that the parent states and applied actions are identified. Moreover, it is important
to determine as much publicly equivalent but distinct states as possible in order to be able to later
identify privately-dependent, privately-independent and privately-nondeterministic actions and compute
the leaked information based on the computation in Section 7.2.4.

In our examples, we use the simple Equation 7.2.8. This equation can be used only in the case
where the applicable action is determined unambiguously, that is, there is at most one applicable action
for a given transition. In general case, a set of actions might be possibly responsible for a transition
and thus it cannot be determined which of the actions actually has the determined properties (e.g., is
privately-independent). Nevertheless, the problem of computing the leakage with sets of actions can
be formulated as a linear program with disjunctive constraints, or a mixed-integer linear program. In

2Note that there are no implementation details on the encryption algorithm in the description of any of the actual planners, as
none of them internally uses actual encryption.

7.3. PRIVACY ANALYSIS OF ALGORITHMS 153

the rest of this section, we present the former as it is conceptually simpler and there is a standard
technique for transformation to the latter which can be then solved using off-the-shelf solvers such as
IBM CPLEX3.

In order to compute Equation 7.2.8 we need to obtain the sum of (base 2) logarithms of the a priori
and posteriori numbers of possible transition systems for each public action. Let O , Oia , Opi , Opd ,
and Opn be the respective sets of all, init-applicable, privately-independent, privately-dependent, and
privately-nondeterministic actions and let ta, tiaa , tpi

a , tpd
a , and tpn

a be the respective number of transition
systems represented by the particular type of action. Each action a ∈ Opub then represents τapriori(a)
transition systems before the algorithm is executed and τpost(a) transition systems after it is executed.
We focus on the computation of τpost(a), the computation of τapriori(a) is analogous. In order to formu-
late a linear program (LP), we define a LP variable ā for each action a ∈ Opub such that ā = log τpost(a)
so that we can use the sum variant of Equation 7.2.5. Each LP variable ā is bounded by 1 ≤ ā ≤ log ta
as each action represents at least one transition system (the actual transition system in the global prob-
lem) and the maximum number of transition systems an action can represent is that of an action with no
additional information on action applicability. We must use logarithm of ta as ā represents logarithm of
τpost(a). We can simply apply logarithm to both sides of an inequality as we use logarithm with base
≥ 1. We formulate the following objective function to be maximized:

Maximize
∑

a∈Opub

ā

resulting in the second part of Equation 7.2.8. The Equation 7.2.5 is easily translated into the following
set of constraints:

ā ≤ log tiaa ∀a ∈ Oia

ā ≤ log tpi
a ∀a ∈ Opi

. . .

and similarly for Opd , Opn , other types of actions, and their combinations. Together the constraints
encode the minimization of Equation 7.2.5 as all must hold at once. In order to infer more than from
Equation 7.2.5 we consider also more complex situations. For example if there is a set of actions
{a1, a2, a3} and we know that at least one of the actions is privately-independent we can add the fol-
lowing disjunctive constraint:

ā1 ≤ log tpi
a ∨ ā2 ≤ log tpi

a ∨ ā3 ≤ log tpi
a

More cases where the disjunctive formulation is useful are presented in the next sections. Such a dis-
junctive formulation can either be directly solved by a branch-and-bound algorithm or transformed to
mixed-integer linear program (MILP) for example by using the Big-M reformulation. In order to do so,
for each constraint in the disjunction we define a binary variable, e.g., y1, y2, y3 ∈ {0, 1}, and enforce
that only one of them holds true by

y1 + y2 + y3 = 1

Then we define a large enough constant M and reformulate the above disjunction as

ā1 ≤ log tpi
a +M(1− y1)

ā2 ≤ log tpi
a +M(1− y2)

ā3 ≤ log tpi
a +M(1− y3)

which significantly expand all but one of the bounds thus rendering them ineffective. Such transforma-
tion then allows to use a standard solver with MILP capabilities, such as the mentioned CPLEX.

3http://www.ibm.com/us-en/marketplace/ibm-ilog-cplex

154 CHAPTER 7. PRIVACY

UAV base

s0:{s} s0:{s}
R

s1:{f}s1:{f}
send(s1)

s2:{l1}

SL1
s3:{l2}

SL2
send(s3)

send(s2)
s2:{}

s3:{}

RR

s4:{f,s}
send(s4)

s4:{l1,f,s}

SL1

s6:{l1,s}

s7:{l1,l2,s}

SL2

send(s6)
s6:{s}

send(s7)
s7:{s}

C

s10:{l1,l2,c,s}
send(s10)

s10:{c,s}

R

s12:{f}
send(s12)

s12:{l1,l2,f}

SL

SL

SL
SL

C

action application
state message
i-parent

privately-dependent

privately-independentSL

C

h*=0

h*=3

h*=1

h*=2

h*=3

h*=3

h*=4

h*=5

h*=0

h*=3

h*=1

h*=1

h*=3

h*=3

h*=1

h*=1

h*=1h*=1

Figure 7.3.1: Search tree of a particular run of MAD-A* (or MAFS) using the optimal projected heuristic
h∗.

7.3.2 MAFS and MAD-A*
According to [Nissim and Brafman, 2014], MAFS is at least weak privacy-preserving, as no private
information is explicitly sent to other agents. But MAFS is not strong privacy-preserving as some
additional information can be deduced from the search. Here we analyze what information it is.

Example. (UAV) For the analysis of the example, we use the MAD-A* algorithm. As MAD-A* is a
heuristic search, we need to assign a heuristic value to each state. We will use the optimal projected
heuristic, that is, h∗ computed on the projected problem (of each agent). Figure 7.3.1 shows a portion
of the search space explored by the algorithm using this heuristic estimate (shown as h∗ in the figure).

Let us now focus on the individual steps of Algorithm 15 and their relation to the results of Sec-
tion 7.2.3.

Search tree reconstruction in MAFS

According to Algorithm 15, the first step in privacy leakage analysis of a search-based algorithm such
as MAFS or MAD-A* is to reconstruct the search tree. The search tree is a tree determined by the
parent/child relation of the states during the particular search execution, as shown if Figure 7.3.1.

The important information in the search tree is which state sk−1 is the parent of a state sk and what
action a was applied by the agent to generate sk from s′k−1. As both the agent and the adversary are
using the same algorithm (e.g., MAFS), each state sk has also a private part of the adversary β, that
is, encβ(sk). This part can be a simple pointer to the i-parent state s0, which contains the right private
part (possibly encrypted before sending). If a sequence of (public) actions was applied by the agent α
between s0 and sk, then s0 6= sk−1. To determine the actual parent, we state the following.

Proposition 108. For an agent α and an adversary β, let sk be a state sent by α and received by β and
let s0 be the i-parent of sk known to β. Then the parent state sk−1 of sk was received by β before sk
and after s0 which is also an i-parent of sk−1.

Proof. Trivial if sk−1 = s0. Otherwise a sequence a1, ..., ak of actions of agent α must have been
applied by α on s0 to generate sk. The state generated by action ak−1 is the parent sk−1 of sk. As
we assume only public actions, all intermediate states between s0 and sk are also sent to β and thus
the same holds for the parent sk−1. Based on the MAFS algorithm, a state is fully expanded before
expanding the next state from the open list. As we assume that all messages retain the order in which
they were sent, then clearly sk−1 was sent before sk and thus also received before sk.

7.3. PRIVACY ANALYSIS OF ALGORITHMS 155

Based on the Proposition 108, the parent sk−1 of the state sk is some of the states received before
sk such that s0 is an i-parent of sk−1. Thus the parent state might not be determined unambiguously,
but instead the adversary knows a set of potential parent states of sk.

Determining the applied action is even trickier. For two states s′, s, where s′ is a (potential) parent of
s, we need to find a projected action aB ∈ OB for which pre(aB) holds in s′ and eff(aB) is consistent
with s. This means that we can only determine the public projection 〈pre(aB), eff(aB)〉 of the used
action, which corresponds to the label non-preserving projection. In the case of a label-preserving
projection, if there are multiple actions in OD with the same public projection, the particular action aD

cannot be determined. In the case where we know a set of possible parent states, also the result is a set
of possibly applied actions and the exact parent state might not be known (for each possible action we,
again, have a subset of possible candidate parent states).

Example. (UAV) In the example in Figure 7.3.1, the public projections of actions of agent αUAV are
〈{f = T}, {f = F}〉 and 〈{}, {c = T}〉. As in the state s3 holds c = F, the second projection is not
applicable. The first projection is applicable in s1 and the effect holds in s3. The corresponding pro-
jected action is SL. The same holds for the parent s1 and child s2 and similarly for s4 and s7, s6. The
i-parent of state s10 is s4 and the potential parent states are thus s4, s6, s7. As we know, there is no
single action which would change {f} to {c}, then clearly s4 is not the parent. For the parents s7, s6

and child s10 is applicable only the projection 〈{}, {c = T}〉 corresponding to the projected action C.
The only remaining uncertainty is which of the two states is the true parent state.

Superfluous distinct states in MAFS

The goal of encryption in MAFS and MAD-A* is twofold. The first is to hide the parent of the state and
the second is to disallow the adversary to determine whether two states are globally equal or not. The
first goal is achievable without any effect on the algorithm performance. Parents of states are necessary
only for the plan reconstruction process and do not have to be shared to do so. To achieve the second
goal is much trickier.

In order to maintain soundness, the agent has to be able to reconstruct the private part of each
state unambiguously, this means that two different private parts of a state can never result in the same
encrypted value encα(s) = encα(s′).

The simplest approach is to have the private part of each state s encryption result in an unique value
encα(s). In that case, no information is leaked as the adversary cannot determine which states are the
same. On the other hand, this approach may seriously influence the algorithm performance or even
make it incomplete. The reason is that each agent has its own closed list and needs to determine the
membership of a state s in the closed list. In order to maintain completeness of MAFS, the membership
has to be determined over the global state in order to prevent cycles over multiple agents. MAD-A*
does not loose completeness as BFS and thus also A* is complete even on infinite graphs (which we
effectively get when allowing infinite loops) with finite branching factor (which we retain as there is still
finite number of actions). Nevertheless, both algorithms suffer a major blowup of the size of the search
space.

Clearly, in practice, a middle ground can be determined. An option is to bound the number of dif-
ferent possibilities how the private part of a state can be encrypted. This way the blowup is bounded,
but also the gain in privacy is bounded. Notice also that in fact only the private parts of a state with the
same public part has to differ. As in our analysis we are aiming for a lower bound of the privacy leak-
age, we can safely assume that the agents use the unique encryption method and no information about
superfluous distinct states leaks from the encrypted private parts. By bounding the possible encryption,
the leakage can only increase.

Both MAFS and MAD-A* expand the states in the open list in the order defined by a function f(s).
In the case of MAD-A* the function is defined as f(s) = g(s)+h(s) where g(s) is the distance (number
of actions) from the initial state sI to s and h(s) is an admissible heuristic estimate of the remaining

156 CHAPTER 7. PRIVACY

distance from s to the nearest goal state sG. In the case of MAFS, the g(s) function can be omitted to
obtain a Greedy Best-First Search (GBFS), where f(s) = h(s), so that the states are ordered solely by
the heuristic information. Also the heuristic in MAFS does not have to be admissible in general. Based
on the heuristic function, we can state the following to infer different states.

Proposition 109. Let s, s′ be two states and h(s) a deterministic heuristic function. If f(s) 6= f(s′) or
g(s) 6= g(s′) or h(s) 6= h(s′) then s 6= s′.

Proof. The computation of a heuristic function, the distance from the initial state, or their sum, never
results in a different value for the same state.

Also the set of successor states can be used to determine equivalence.

Proposition 110. Let S, S′ be the sets of all successors of the states s, s′ respectively. If S 6= S′ then
also s 6= s′.

Proof. Let us assume s = s′, but S 6= S′. But each state was expanded using the same set of actions
and thus S = S′.

We can continue the inference with the parents of s, s′ and further on.

Example. (UAV) Now let us focus on the example in Figure 7.3.1. We can distinguish s6 and s7 based
on Proposition 109 as h(s6) 6= h(s7) and also s3 and s7 as again h(s3) 6= h(s7). But based on the
information that s3 6= s7 and Proposition 110, we can infer that also s4 6= s1 as their child states are
different.

Superfluous action applicability in MAFS

So far, we have analyzed the search tree of a MAFS or MAD-A* run according to Algorithm 15. We
have reconstructed the parent states (line 3), determined which actions were applied (line 4), and deter-
mined which publicly equivalent states are in fact distinct (line 5). Now we proceed to combine all this
information in order to lower the uncertainty of the adversary about the actual transition system of the
agent.

In general, MAFS and MAD-A* use a label non-preserving projection, thus each action a (with a
distinct public projection) represents ta = 15p transition systems, where p is the number of (binary)
private variables (see Section 7.2.3 for details). In our example with two private variables the number is
152 = 225.

An action, which is known to be applied in the initial state sI (or a state sl resulting from the
application of a sequence of actions of the adversary actions on sI) reveal the information that it is
applicable in some particular state where we can assume a fixed value of all variables. Each such init-
applicable action (Oia) represents at most tiaa = 12p transitions (Proposition 94).

An action, which is known to be applied on two states s, s′ known to be distinct is privately-
independent (Definition 97) in at least one variable, as it does not depend on the variable in which s
and s′ differ. Such action represents tpi

a = 15p − 6p transitions (Proposition 98). Conversely, an action,
which is known to be applied on a state s and not on a state s′ such that s, s′ are publicly equivalent,
but known to be distinct is a privately-dependent action (Definition 95) as it depends on the variable in
which s and s′ differ. Such action represents tpd

a = 15p − 9p transitions (Proposition 96).
Furthermore, if we observe that the application of a single action on a single state results in two

distinct states, we found a privately-nondeterministic action (Definition 99), that is, a projected action
which represents at least two actions with private effects different in at least one variable. Such action
represents tpn

a = 15p − 8p transitions (Proposition 100).

7.3. PRIVACY ANALYSIS OF ALGORITHMS 157

Example. (UAV) In the example in Figure 7.3.1, the action SL is applicable in the state s1 and thus is
init-applicable and represents τ(SL) = tiaa = 122 = 144 transitions. We can also see that the action
SL can be applied in both s1 and s4, which are known to be different states and thus is privately-
independent in at least one variable. Moreover, we can observe that the action C is applied on state s6

or s7, but is never applied on state s2, which is publicly equivalent and for which all child states were
already generated (it is only s4). This can only mean that either s6 or s7 (or both) are distinct from s2

and this distinction affects the applicability of C. Thus C is privately-dependent. Finally, the action SL,
is applied in s4 and results in two distinct states s6 and s7 and thus is privately-nondeterministic.

Based on the above information and on the fact that SL is the first action of agent αUAV in the
resulting plan, the combined knowledge of the action properties can be used and the final number of
transition systems represented by the actions SL and C computed based on Equation 7.2.5 as

τ(SL) = min(ta, t
ia
a , t

pi
a , t

pn
a , t

ia×pi
a , tia×pn

a) = min(144, 189, 161, 135, 108) = 108

τ(C) = min(ta, t
pi
a) = 144

Information leakage in MAFS

Now we can combine the results to obtain the total information leaked. Based on Equation 7.2.5 and
Equation 7.2.8 we conclude that τpost(SL) = 108 and τpost(C) = tpd

a = 144 and because the only
information learned from the projection ΠB and the plan πB is that the action SL is init-applicable, the a
priori information is tapriori = 12p15p = 32400 whereas the a posteriori information is computed using
the values obtained in the previous section as

tpost =
∏

a∈Opub

τpost(a) = τpost(SL)τpost(C) = 108 · 144 = 15552

Thus, the lower bound on the information leakage of this particular execution of the MAFS algorithm
on this particular example is

H∞(H)−H∞(H|L) = log
tapriori

tpost

∼= log(2) = 1

bit of information. Also, based on Equation 7.2.3, we obtain the expected probability of guessing the
correct transition system as

2−H∞(H|L) = 2− log tpost =
1

tpost
=

1

15552
∼= 6× 10−5

Notice that in this particular example, all the information about action applicability we have consid-
ered has leaked.

Information leakage in the MADLA Search

One of the main contributions of this thesis is the MADLA Search described in Chapter 5. How much
information does this novel variant of search leak? If similarly to the analysis above, we disregard
the heuristic values (and heuristic computation) as a source of information leakage, we can state the
following proposition.

Proposition 111. The MADLA Search leaks on average the same amount of information as MAFS.

Informally, the proof of Proposition 111 must consider two differences of MADLA Search with
respect to MAFS. First, the search trace will differ even if using the same heuristic values as MADLA
uses two open lists and thus may expand states in a different order. In both cases, the order of state

158 CHAPTER 7. PRIVACY

UAV base

s0:{s} s0:{s}
R

s1:{f}s1:{f}
send(s1)

s2:{l1}

SL1
s3:{l2}

SL2

s4:{l1,f,s}

SL1

s6:{l1,s}

s7:{l1,l2,s}

SL2

C

s10:{l1,l2,c,s}
send(s10)

s10:{c,s}

s12:{l1,l2,f}

SL,C

send(s2)
s2:{}

RR

s4:{f,s}
send(s4)

SL

h*=1

h*=3

h*=0

h*=3

h*=1

h*=2

h*=3

h*=3

h*=4

h*=5

h*=0

h*=1

h*=1

h*=1

action application
state message
i-parent

privately-dependent

privately-independentSL

C

Figure 7.3.2: Search tree of the Secure-MAFS algorithm

expansions depends on the heuristic value and tie-breaking, but the sets of all possible search trees are
the same in both cases.

The other difference between MADLA and MAFS is that in MADLA, there is additional information
sent in the message stating whether the state was evaluated using the distributed or local heuristic. But
this additional information does in no way depend on the problem being solved or the search tree, but
depends solely on the particular execution of the algorithm (e.g., how long is the distributed heuristic
waiting for replies from other agents influences how many states are evaluated using the local heuristic).
This means that no information regarding the search tree or the problem itself can be inferred.

7.3.3 Secure-MAFS
The theoretical Secure-MAFS [Brafman, 2015] algorithm and its (generalized) implementation Macro-
MAFS [Maliah et al., 2016c] are variants of the MAFS algorithm aiming at improving the privacy of
the planning process. The authors provide a proof, that on a particular constrained variant of a logistics
problem the algorithm is strongly private, meaning no information leakage. The authors do not provide
much information about other problems and domains but suggest that the privacy should be improved
in general.

The main difference of Secure-MAFS in comparison to MAFS is that it sends only states, which
differ from previously sent states in the private part of the other agents. In other words, each state with
a unique public part and other agents’ private parts is sent at most once. The transitions caused by the
actions of other agents are stored (in the form of action macros) and applied instead of sending the state.

An execution of the Secure-MAFS algorithm on the running example is shown in Figure 7.3.2.
When the agent αUAV receives the state s1, it stores the transition {f = F} → {f = T} together with
information about the private part of αbase. The learned (macro) transition can be later applied in any
state which satisfies the left side and the αbase private part condition, in other words, the agent αUAV has
learned that αbase can make f true for certain values of the private part of agent αbase. Thus any further
state equal to {s} (the private part of αbase is encrypted) does not have to be sent, the same holds later
for {}. This significantly reduces the need for communication to communicating only one more state
(s2) together with the goal state s10 = {c, s} after the application of the action C, as the agent αUAV

has learned the complete functionality of agent αbase. Now let us analyze what effect the reduction of
communication has on the privacy leakage.

7.3. PRIVACY ANALYSIS OF ALGORITHMS 159

Superfluous distinct states in Secure-MAFS

One major difference of security handling from MAFS in Secure-MAFS is the role of encryption of the
private states. In order to be able to determine that two states s, s′ do not differ in the public part and the
private part of other agents, the encryption of the private parts must be bijective. If it is not so, the effect
of the Secure-MAFS principle is lessened. Therefore any two states, which are publicly equivalent, but
differ on the private part of some agent can be distinguished.

On the contrary, no two states s, s′ which differ only in the private part of an agent αi are sent to
other agents. This means that even though the information about state equality is revealed, its effect for
the information leakage is significantly reduced.

Notice that in the example in Figure 7.3.2, only the publicly equivalent states which differ in the
private part of the agent αbase are sent. In particular, this holds for the states s0 and s2.

Search tree reconstruction in Secure-MAFS

As described above, the search tree reconstruction is simplified by the fact that the equality of states is
revealed, but is complicated by the fact that significant parts of the search tree are not communicated.
Also as the received state s′ might be a result of the application of a sequence of multiple public actions
on the (known) β-parent state s, Proposition 108 does not hold for Secure-MAFS. This renders inference
of the applied action (or in fact a sequence of actions) significantly more complicated (and computation-
ally more intensive). If a sequence of actions of length k was applied, all possible sequences of length
up to k must be considered. Moreover, the adversary does not know the exact number of the agent’s
actions (unless a label-preserving projection was provided) and the actions can repeat in the sequence.
An upper bound of the number of actions can be placed based on the bound on the number of private
variables. For p binary private variables, each public transition represents at most 22p

possible actions.
Note that this bound is very overestimating, typical problems have much fewer actions.

Basically, to determine a possible sequence of public actions is equal to find a plan in the public
projection of the agent’s problem with sB as the initial state and s′B as the goal state. As the agent may
use a different heuristic than the adversary agent, we cannot put any assumption on the length of the
sequence and thus to reveal all information, all possible sequences of actions need to be determined,
which is clearly not tractable and thus the adversary can never be sure that it has found all possible
sequences. In general, even finding a single sequence may not be tractable and thus if we assume that
at most polynomial time can be spent on the leaked information analysis, it may not be possible to
determine even a single sequence of actions represented by the parent-child transition.

In practice, we can put a bound on the number of actions considered in a sequence (even a single
action), thus reducing the complexity. In some cases, this may lead to reasonable results, such as in
the example in Figure 7.3.2, where the only possible sequence of actions responsible for the transition
system is 〈SL〉 for the first one and 〈SL,C〉 for the second transition.

Superfluous action applicability in Secure-MAFS

Let us now analyze what information about action applicability can be inferred from the execution of
Secure-MAFS. As we have already seen, in general, it may not even be possible to infer the sequence
of actions used to generate the transitions. But even if we are able to determine a single sequence of
actions (or even a single action) for each transition, we might not learn much more.

As no two states which differ only in the private part of the agent α are ever communicated, a
privately-independent action can be determined only in the case of two states which differ in both private
parts of the agent and of the adversary. To do so, the adversary would need to observe the action applied
on at least two such states. In the example, the candidate states are s1 and s4. As the heuristic estimate
is equal for both states, the difference of s1, s4 can be determined only if the uniqueness of their private
parts is retained. Assuming so, the action SL can be determined to be privately-independent.

160 CHAPTER 7. PRIVACY

Similar restriction holds for privately-dependent actions, again, the adversary would need to observe
such action applied on a state s and never applied on a publicly equivalent but distinct state s′, where
s and s′also differ in the private part of the adversary. In the example in Figure 7.3.2, the adversary
only knows that C is applied on some state s′4 resulting from the application of SL on s4. There is no
information about its applicability on any other state and thus its private dependency is not revealed.

Information leakage in Secure-MAFS

Based on the above analysis, we can compute the total information leaked. Similarly to Section 7.3.2 we
first compute the transition systems represented by each action based on the leaked (and a priory) infor-
mation as τpost(SL) = min(ta, t

pi
a , t

ia
a , t

ia×pi
a) = min(189, 144, 135) = 135 and τpost(C) = min(ta) =

225. Notice that the action C now leaks no information. The a priori information is the same as in
Section 7.3.2, that is, tapriori = 12p15p = 32400. The a posteriori information now differs

tpost =
∏

a∈Opub

τpost(a) = τpost(SL)τpost(C) = 135 · 225 = 30375

Thus, the lower bound on the information leakage of this particular execution of the Secure-MAFS
algorithm on this particular example is

H∞(H)−H∞(H|L) = log
tapriori

tpost

∼= log(1.1) = 0.1

bits of information. And again, we obtain the expected probability of guessing the correct transition
system as

2−H∞(H|L) = 2− log tpost =
1

tpost
=

1

30375
∼= 3× 10−5

which is practically the same as when having only the a priori information.
In the particular example, the Secure-MAFS algorithm leaked some information (applicability of the

SL action), but this leakage is very low in the final computation result. Notice that if the adversary αbase

had no private variables, the algorithm would leak no information at all. We have shown that the tools
which were able to deduce a significant amount of information from the execution of plain MAFS are
much less powerful in the case of Secure-MAFS, but strong enough to show a non-zero leakage even on
such a small example. Thus, according to the presented analysis, the Secure-MAFS algorithm is indeed
not strong privacy-preserving in general but improves significantly on plain MAFS.

Comparison of leakage in MAFS and Secure-MAFS in general

We conclude the section with stronger and more general statements. We start by showing that Secure-
MAFS does not leak more information than MAFS by first showing that Secure-MAFS does not send
more states than MAFS.

Theorem 112. Let M be a MAP problem. During the executions of the Secure-MAFS and MAFS
algorithms onM assuming the same heuristic function and the same tie-breaking between states with
the same heuristic value, the agent α does not send more states in Secure-MAFS than in MAFS.

Proof. Let us, for contradiction, assume there is a state s sent by agent α in Secure-MAFS, but not in
MAFS and let s be the first such state. Let s′ be the β-parent of s. The state s′ was sent by α in both
Secure-MAFS and MAFS executions. In Secure-MAFS, there are two possibilities how s is created
from s′:

(i) s is created from s′ by the application of a sequence of actions a1, ..., ak such that ak is public
and thus is sent afterward. But if s′ was sent by α in MAFS, the sequence of actions a1, ..., ak can be
applied as well, resulting in s which is sent because ak is public.

7.3. PRIVACY ANALYSIS OF ALGORITHMS 161

(ii) s is created from s′ by α using a stored transition representing the application of the sequence of
actions a1, ..., ak. As above, if s′ was sent by α in MAFS, necessarily the sequence of actions a1, ..., ak
can be applied resulting in s which is sent because ak is public.

We have obtained a contradiction in both cases (i) and (ii) and there is no other way the state s can
be sent by α in Secure-MAFS.

From Theorem 112 follows that in Secure-MAFS, the adversary can reconstruct only a sub-tree of
the search tree which can be reconstructed by the adversary in MAFS. The conclusion directly follows.

Corollary 113. On a MAP problemM with the assumptions of Theorem 112, Secure-MAFS does not
leak more information than MAFS.

Moreover, the information about privately-nondeterministic actions does not leak in Secure-MAFS,
formally:

Theorem 114. Let aB be a privately-nondeterministic action of agent α. In the Secure-MAFS algo-
rithm, this information never leaks.

Proof. From Definition 99, the privately-nondeterministic action aB represents two actions a′, a′′ such
that eff(a′) 6= eff(a′′). Thus the application of such action aB on a state s results in two publicly
equivalent but distinct states s′ = a′ ◦s and s′′ = a′′ ◦s. As a′, a′′ do not influence private parts of other
agents, the only different parts of s′ and s′′ are the parts private to the agent α. But this means that in
Secure-MAFS, only one of s′, s′′ is sent by α and thus the information about aB is never revealed.

Now, based on Corollary 113 and Theorem 114 we can state the following result.

Corollary 115. LetM be a multi-agent planning problem and aB a privately-nondeterministic action.
Assume that Secure-MAFS and MAFS use the same heuristic function and the same tie-breaking between
states with the same heuristic value. If the information about aB leaks in the execution of the MAFS
algorithm, then Secure-MAFS preserves strictly more privacy than MAFS onM.

We can reformulate Corollary 115 in a weaker but more general way as follows.

Corollary 116. Let M be a multi-agent planning problem and aB a privately-nondeterministic ac-
tion. If the information about aB leaks in every execution of the MAFS algorithm, then Secure-MAFS
preserves strictly more privacy than MAFS onM.

7.3.4 Relaxation Heuristics

The family of relaxation heuristics includes all distributed heuristics presented in Chapter 4, the admis-
sible max heuristic (Section 6.1), and the LM-Cut heuristic (Section 6.2). In this section, we present an
analysis of privacy leakage of relaxation heuristics in general and of the particular algorithms.

The core general technique used in relaxation heuristics is the relaxed reachability analysis (see
Algorithm 1) which is used to find facts (or variable-value pairs) reachable in the relaxed problem.
Unlike reachability analysis in the original problem, relaxed reachability analysis is linear in the size of
the problem due to the monotonicity of adding new reachable facts and actions.

Although there are multiple variants of distributed relaxed reachability analysis (number of them
is presented in this thesis, Chapter 4), the underlying idea is always the same–the agents inform other
agents about reachable public facts which would otherwise be unreachable for the agent or might be
reached earlier by some of the other agents. A basic distributed reachability analysis is shown in Algo-
rithm 2. Now, let us analyze, how much privacy leaks in this basic case.

162 CHAPTER 7. PRIVACY

Privacy leakage of the distributed reachability analysis

The distributed reachability algorithm (Algorithm 2) is iterative it two dimensions. First are the local
iterations in the local reachability analysis (Algorithm 1) where the facts are added based on applicable
actions of the agent αi. Second are the communication rounds, that is, once the agent reaches its local
fixed point, it sends all reachable public facts to all other agents. This may, in turn, enable some of the
other agents to apply new actions and thus reach new public facts. But some public facts may not be
reachable due to private preconditions of some of the actions necessary to reach the fact. Let us first
formalize the concepts of (relaxed) reachability.

Definition 117. A public proposition p is reachable from a set R of propositions (i.e., relaxed state) by
a set A+

p of relaxed actions, if by applying the relaxed exploration

R′ ← Relaxed-Reachability(A+
p , R)

from Algorithm 1, the returned set R′ of propositions contains p, that is, p ∈ R′.

Definition 118. A public proposition p is minimally reachable from a setR of propositions (i.e., relaxed
state) by a setA+

p−min of relaxed actions, ifA+
p−min is a set of actions from which p is reachable minimal

in |A+
p−min| out of all such sets.

What can be this reachability used for? If, for a given set of propositions R, we compare the set of
propositions reachable by the set of projected operators AB+

i and by the set Aj of the actual operators
of some agent αj , we can determine whether some of the operator in Aj has private preconditions and
thus is privately-dependent.

In particular, at the beginning of procedure receiveMessage(αi,MREACH =
〈
αj , R

pub
〉
), we

append the following line:

RB ← Relaxed-Reachability(AB+
j , RG) ∩ P pub

where AB+
j = {aB|a ∈ Apub+

j } is the set of public projections of relaxed public actions of agent αj
and RG is the set of globally reachable propositions before the message MREACH was received. By
comparing RB, which are the public propositions reachable by the projected actions of agent αj , with
Rpub, which are the public propositions reachable by all relaxed actions of agent αj , we can determine
the following.

Proposition 119. Let Rdif ← RB \Rpub be the set of propositions reachable from RG by AB+
j , but not

by A+
j . Then for each p ∈ Rdif , there is an action a ∈ Ap+j ⊆ A

pub+
j , where p is reachable from RG by

Ap+j , such that a is privately-dependent (Definition 95).

Proof. For a contradiction, let us assume that there is a set Ap+j ⊆ Apub+
j of actions such tat p is

reachable from RG by Ap+j and for all a ∈ Ap+j holds that a is not privately-dependent, that is, pre(a)∩
P priv
j = ∅. But in that case, for all actions a ∈ Ap+j applicable in RG holds that aB is also applicable

in RG ∩ P pub. Consider the call of Relaxed-Reachability() in Algorithm 2, line 5 with A+
i

and AB+
i respectively. Let R0 = RG in the first case and RB

0 = RG ∩ P pub in the second case.
Observe that for all a′ ∈ Ap+j in R0 also aB is applicable in RB

0 . Then necessarily R1 ∩ P pub = RB
1

and the same applicability implication holds. Let Rk be the final set of reachable propositions, by the
described induction, Rk ∩ P pub = RB

k and as p ∈ P pub we get a contradiction with the assumption that
p ∈ Rdif ← RB

k \R
pub
k .

The Proposition 119 is important because as it is based on the most simplistic version of the dis-
tributed reachability analysis (i.e., Algorithm 2), all heuristics based on distributed reachability analysis

7.3. PRIVACY ANALYSIS OF ALGORITHMS 163

leak this information or more. Of course, not all distributed relaxation heuristics are built on this algo-
rithm, e.g., the lazy FF variants use only projected reachability analysis. Let us now have a closer look
at the particular relaxation heuristics presented in Chapter 4 and Chapter 6 and see how they differ from
the simplistic algorithm analyzed so far.

Privacy leakage of the particular relaxation heuristics

The distributed relaxed plan construction of the MAFF heuristic (Section 4.1) aims to construct exactly
the same Relaxed Planning Graph (RPG) as in the centralized version. In order to do so, the algorithm
does not communicate only the reachability information as in Algorithm 2. First, the algorithm commu-
nicates reachable actions, not just propositions, second it communicates the earliest layer of appearance
e(a) of each action. The Proposition 119 can be directly applied to actions instead of facts by consider-
ing the preconditions or effects of the particular action as the set of reachable facts. Moreover, utilizing
the information about the earliest layer of appearance, the adversary can gain more precise information.
In particular, if the earliest layer of appearance of the projected reachability analysis is lower than in the
case of the distributed one, that is, e(a) > e(aB), the Proposition 119 can be applied even though the
sets of reachable propositions or actions is the same. Plainly said, e(a) > e(aB) means that either a, or
some action necessary to apply a, is privately-dependent.

The recursive distribution of relaxation heuristics (Section 4.2) replaces the basic Algorithm 2 with
the distributed exploration-queue-based Algorithm 3. Here the distribution principle is that if a propo-
sition p is to be enqueued due to a projected action of some other agent αj , a request for the heuristic
value of p is sent to αj and the proper value is returned when computed by αj . Again, by applying the
principle used in Proposition 119, we can compare the value obtained by the distributed computation
with the readily available projected value. If the projected value is lower than the actual value, using the
same logic, at least one of the actions necessary to reach p must be privately-dependent.

The Privacy-Preserving Set-Additive Fast-Forward heuristic (Section 4.3) hides the private informa-
tion by communicating only public actions and heuristic estimates. In the heuristic computation, agent
αi directly asks agent αj about the applicability of actions. More precisely, if agent αi is computing a
heuristic for state s, it computes a projected relaxed plan π+

i . If such projected relaxed plan contains a
projection of some action a+ ∈ Apub

j , αi requests αj to provide the heuristic estimate of reaching the
private preconditions of a+ from s. Agent αj sends a reply containing public actions used to reach the
private preconditions and the number of private actions used to reach the private preconditions. On one
hand, this directly gives away the existence of private preconditions of a+. Unless the reply contains
no public actions and the number of private actions is 0, the action a+ is privately-dependent. On the
other hand, the requests are sent only for the public actions present in π+

i (and received in subsequent
replies), that is, only for public actions present in a single relaxed plan.

The admissible hmax heuristic described in Section 6.1 works on a slightly different principle of
relaxed reachability as it starts with the projected heuristic and gradually updates the facts and actions
to the correct values. If the adversary is the initiator agent, it directly asks the participants to update
the heuristic values of public action. Then clearly, as all the preceding public actions are already up-
dated to the correct value if a heuristic value of an action a is updated, that means that there is a private
precondition maximizing the hmax(a) value previously not considered. Thus, even without any addi-
tional comparison to the projected heuristic (as the algorithm starts with it), the updated value leaks
the information that a is privately-dependent, but this information is revealed only if any of the private
preconditions maximizes the hmax heuristic (i.e., has the highest hmax value out of the preconditions of
a).

The distributed LM-Cut heuristic (Section 6.2) uses a number of the distributed hmax computation
and therefore leaks at least as much information as the hmax heuristic. As the cost is changed during
the computation of the heuristic, different preconditions of actions may become the hmax maximizing
precondition and thus more information may leak even using only the analysis described above.

Moreover, any of the heuristics can be used to determine publicly equivalent but distinct states

164 CHAPTER 7. PRIVACY

beyond the pure heuristic value. Assuming deterministic computation (which is not always the case in
distributed computation), by comparing intermediate values (such as hmax values for the actions and
facts) the difference between the states may be detected even if the final heuristic values are equal.

7.3.5 Potential Heuristics
In this section, we analyze how much privacy is compromised when using the distributed potential
heuristic presented in Section 6.4. We first focus on the use of the heuristic itself, assuming that we
already have securely computed potentials. Next, we analyze how such secure computation of potential
might proceed and how much security it guarantees.

Privacy of computation of the Heuristic Value

Summing-up the potentials to obtain the heuristic value is not an issue as there exist secure sum al-
gorithms (e.g., [Sheikh et al., 2010]), or the heuristic value can be computed from the parent state by
Equation 6.4.5. Now let us have a look at what can be deduced from the public potentials known by all
agents. An agent αj may deduce some information private to αi by computing the potentials of public
variables potj(〈V, v〉) on the j-projected problem ΠBj and comparing them with those obtained from
the global LP computation (somewhat analogously to Proposition 119). Let us, for now, assume that the
LP computation leaks no information at all. Although the potential pot(〈V, s[V]〉) of a public variable
V ∈ Vpub is influenced only by constraints respective to public operators and by the goal constraint, a
public operator may also have private effects which also influence the constraint as follows.

Theorem 120. Let V ∈ Vpub such that V /∈ vars(s?), let pot(〈V, v〉) be a potential of the fact 〈V, v〉
in the MAP problemM, and potj(〈V, v〉) be a potential of 〈V, v〉 in the projected problem ΠBj , both
computed using the LP described in Section 6.4. If potj(〈V, v〉) ≤ pot(〈V, v〉) then for some agent αi
there exist an operator o ∈ Opubi such that V ∈ vars(eff(o)) and o has also some private variable in
the effect, that is, o is a private-effect action (Definition 104).

Proof. As from the definition of MA-MPT, the goal variables are public, each private variable V ′ ∈
Vprivi is represented in the LP goal constraint as maxpotV ′ . Let V ∈ Vpub such that V /∈ vars(s?) and
let potj(〈V, v〉) ≤ pot(〈V, v〉) for some v ∈ dom(V). This means that some constraint in the global LP
forces the potential pot(〈V, v〉) to be lower than in the projected case. As V /∈ vars(s?), this cannot be
the goal constraint and thus the only possibility is that for some agent αi and some operator o ∈ Opubi

the consistency constraint∑
V ∈vars(eff(o))

(maxpot(V, pre(o))− pot(〈V, eff(o)[V]〉)) ≤ cost(o)

forces pot(〈V, v〉) to be lower. As for each public variable V ∈ vars(eff(o)) ∩ Vpub the summand
respective to V is the same in the projected and global variant of the constraint, the only possible reason
is, that there is an additional summand in the global variant. Such summand can only be because of a
V ∈ vars(eff(o)) ∩ Vprivi which is a private effect of o.

If there is no private-effect operator in the agents problem Πi, but V ∈ vars(s?), the agent αj may
only deduce the existence of (at least one) private variable. Based on this analysis we state the following.

Corollary 121. If no agent αi has a public operator with a private variable in the effect, the public
potentials reveal that Vprivi 6= ∅ at most.

Proof. Let for some αj 6=i and V ∈ Vpub hold potj(〈V, v〉) 6= pot(〈V, v〉). As no agent αi has no
public operator with a private variable in the effect, the only constraint that can influence the value of
pot(〈V, v〉) is the goal constraint. From the goal constraint, αj can deduce at most that Vprivi 6= ∅.

7.3. PRIVACY ANALYSIS OF ALGORITHMS 165

Even though the assumptions of Corollary 121 seem very restrictive, they hold in many benchmark
and real-world problems and are the result of compiling out private effects. Example of a domain for
which Corollary 121 holds is the satellite domain, where all actions are private except for the goal-
achieving actions, which have public effects only.

So far, we have analyzed the privacy leakage of the potentials themselves, let us now have a look at
what information can leak from the LP computation. We present a number of techniques which can be
used to compute the LP and analyze each one separately.

Plain global LP

The baseline approach is to let one of the agents compute the complete LP plainly as it is. Even in
such a simple setting, some privacy is preserved. This is due to the fact that the LP does not reflect
preconditions of actions on variables which are not also in the effect. This means that it is not possible
to reconstruct the complete isomorphic model of an operator o, if o has some variable in precondition
which is not present in effect.

Now let us have a closer look on how much privacy is compromised.

Proposition 122. The number of variables and sizes of their domains are not compromised by sharing
the private part of the LP.

Proof. As the maximum potential constraints (Equation 6.4.1) are formulated as pot(〈V, v〉)−maxpotV ≤
0 they are indistinguishable from a constraint encoding a 0-cost private operator. Thus it is not clear
which LP-variable is encoding a fact and which is encoding the maximum potential. There is also no
connection between the LP-variables encoding potentials and maxpotV of private variables, therefore it
cannot be determined which facts belong to a single variable. This means that the number of variables
in Vprivi and the sizes and values of their respective domains cannot be determined.

The exact number of private operators is not compromised for the very same reason as above, the
maximum potential constraints are indistinguishable from 0-cost operator constraints. The privacy of
operators with cost > 0 is partially compromised because constraints encoding operator with cost > 0
can be identified as their right-hand side is > 0. For such operator o, the size of eff(o) (i.e., the number
of facts) can be determined as the number of LP-variables with negative coefficients in the constraint.
The size of pre(o) is not compromised, as some of the LP-variables with positive coefficients may be
encoding maximum potentials. Also a fact f s.t. f ∈ pre(o)\eff(o) is not reflected in the constraint.
The cost of nonzero-cost operators is revealed by the right-hand side of the constraints. Some relation
between operators can be deduced from the use of the same LP-variables in precondition and effect
of different operators, such as operator a consumes a fact produced by operator b. The reconstructed
relations may not be complete for the reasons mentioned before.

The potential heuristic LP represents a planning task in the transition normal form (see [Pommeren-
ing and Helmert, 2015]), which is equivalent to the original task except for the prevail conditions, that
is, preconditions on variables which are not in effects. If there are no prevail conditions in the original
problem, the plans for the original and the transition normal form task differ only in zero cost operators
(so called forgetting operators) which are obtained by interpreting the maximum potential constraints
as 0-cost operators. For each fact 〈V, v〉 there is a 0-cost operator with precondition V = v and ef-
fect V = ⊥ where ⊥ denotes a none-of-those value and corresponds to maxpotV . We can state the
following.

Proposition 123. Let o ∈ Opubj such that for all V ∈ vars(pre(o)) ∩ Vprivj holds V /∈ vars(eff(o)) or
pre(o)[V] = eff(o)[V]. Then the fact that o is privately-dependent (Definition 95) does not leak from
the potential heuristic LP.

Proof. No prevail conditions (i.e., preconditions on some variable V which have a different value as-
signed in eff(o)) are represented in the potential heuristic LP. If all private preconditions of o are prevail
conditions, no private precondition of o is represented in the LP and thus cannot leak.

166 CHAPTER 7. PRIVACY

Decomposed Global LP

One may attempt to improve the privacy by using a decomposition algorithm, such as Dantzig-Wolfe
decomposition, in a similar way as proposed in [Holmgren et al., 2009]. The principle of the Dantzig-
Wolfe decomposition is that the problem is decomposed into a master part where many variables have
non-zero coefficients and independent sub-matrices. For the sub-matrices hold that if a variable has a
non-zero coefficient in one sub-matrix, it has zero coefficient in all other sub-matrices. If such decom-
position is possible, it is used to compute the solution by iteratively generating columns for the master
problem based on the sub-problem solutions.

In the case of the potential heuristic LP, the constraints for private actions, which contain only
private variables would be in the sub-problem factors, whereas all other constraints would be in the
master problem. In comparison to the Plain Global LP, the decomposition hides the private operators
and their costs but does not provide any formal guarantees on the privacy of the computation process
(the original aim of the decomposition algorithm is to improve the efficiency of the computation).

Secure LP computation

Another approach is the use of a privacy-preserving transformation of the whole LP, which is often used
in secure multi-party computation. There are basically two approaches to secure LP computation. The
first approach is to implement an LP algorithm (e.g., simplex) using secure MPC primitives as in [Toft,
2009]. The second approach is to use a classical LP solver, but with securely transformed inputs.
The second approach was extensively criticized in [Bednarz et al., 2009], but in later publications, the
critical issues were solved, e.g., in [Dreier and Kerschbaum, 2011]. A significant benefit of the second
approach is the speed of computation comparable to the plain LP computation, whereas, in the case of
the MPC-based implementations, such as [Toft, 2009], the computation is several orders of magnitude
slower. A simpler alternative to [Dreier and Kerschbaum, 2011] was published in [Mangasarian, 2011].
This simpler transformation is applicable only on data with specific properties which are, nevertheless,
satisfied in the case of the potential heuristic LP. The technical details of the transformation based on
[Mangasarian, 2011] and our modifications necessary for the potential heuristic LP computation are
described in Section 6.4.3. Here we focus on the privacy properties of the approach.

The secure LP computation based on [Mangasarian, 2011] (with our modifications) reveals plainly
only the cost of private operators and an upper bound on their number (more constraints than the number
of private actions can be sent), but without the rest of their isomorphic image. The number of variables
is hidden by the k value. Any information about private preconditions and effects of public operators is
hidden by the random matrix transformation, assuming the random transformation is secure. The privacy
leakage analysis presented in Section 7.2.2 is in its current state not applicable on such probabilistic
algorithms (i.e., including random matrix generation), but the underlying techniques from [Smith, 2009]
can be applied to probabilistic algorithms and thus it is possible to extend our techniques as well.

In [Dreier and Kerschbaum, 2011] the authors generalize the transformation to arbitrarily partitioned
problems and provide formal security analysis. In their approach, the agents follow a protocol similar
in idea, but rather complex, thus the description of the protocol is out of the scope of the thesis. There
is no information openly shared in contrast to the previous case. There is also a low and quantifiable
probability4 of an attacker succeeding in revealing any part of the original LP, although having only
inequality constraints as in our case increases the chances. Similar probability can be expected for
[Mangasarian, 2011], although it has not been provided in the literature.

7.3.6 Multi-Agent Cost-Partitioning
Similarly to the potential heuristics, the use of multi-agent cost-partitioning consists of two operations.
One operation is the computation of the cost-partitioning, the other is the use of the cost-partitioned

4The authors provide an example with 180 constraints and 282 variables, where the probabilities are below 10−220.

7.4. THEORETICAL LIMITS OF STRONG PRIVACY 167

partial heuristic values to compute the actual value. In the following text, we briefly analyze both cases,
starting with the computation of the final heuristic.

Privacy of Additive Heuristics

Any heuristic h computed in a distributed way (and revealed to the adversary agent) can be used to
distinguish two states such that sB = s′B and h(sB) 6= h(s′B), based on Proposition 109. In the
case of a heuristic computed using the multi-agent cost-partitioning (Equation 6.5.1), where hcpi

is a
heuristic computed by αi on ΠiB based on the cost-partitioning cpi, the situation is a little bit more
complex. If the sum is computed plainly, that is, each agent αj provides agent αi with the value of
hcpj

(sj
B

), the information revealed is not only that s 6= s′, but also that sj
B 6= s′j

B
for each j such that

hcpj
(sj

B
) 6= hcpj

(s′j
B

).
Algorithms for secure sum computation from the literature [Sheikh et al., 2010] can be easily used

to hide the parts of the additive heuristic. Moreover, it may not be necessary to compute such sum
altogether. In distributed forward state-space search (e.g., MAD-A* [Nissim and Brafman, 2012]), the
value of h(s) is sent together with the state. Then if agent αi wants to expand si

B
with a private action

a ∈ Oprivi such that s′ = a ◦ s, because a does not change any part of ΠjB for any j 6= i, the heuristic
of state s′ can be computed as

h(s′) = h(s)− hcpi
(si

B

) + hcpi
(s′i

B

)

so that the only information revealed is any heuristic with the same values. Of course, this approach
cannot be used for public actions, except for the orthogonal abstraction based cost-partitioning, and is
not practical if hcpi

(si
B

) is computationally intensive.

Privacy of the Cost-Partitioning Computation

Let us first have a look on the cost-partitionings which are not LP-based.

Theorem 124. (Strongly Private Cost-Partitionings) The computation of the uniform, the orthogonal
abstraction based, and the privacy-compensating cost-partitionings is strong privacy-preserving.

Proof. There is no information exchanged between any agents in the computation of either cost-partitioning.

Regarding the LP-based cost-partitioning computation, the same secure LP computation as in Sec-
tion 7.3.5 can be used. The technique of [Mangasarian, 2011] is applicable only on vertically partitioned
LPs, which means that each agent has to own a subset of the LP variables. In the case of the OCP, the LP
consists of state and heuristic LP variables for each projection thus satisfying the requirement (each pro-
jection falls into the partition of the respective agent). The same can be said about the landmark-based,
SEQ-based, and potential heuristic-based LPs. The constraints can be shared by multiple partitions
(agents) in which case the constraint is split according to the variables. This technique does not en-
crypt the right-hand side vector of the LP, which is not a problem in the OCP and landmark-based case,
where the right-hand side is either 0, or the cost of a public action. In the case of the SEQ-based LP,
the right-hand side of the LP represents the upper and lower bounds which may potentially leak some
information. The technique of [Dreier and Kerschbaum, 2011] is applicable in the general case and
encrypts the whole LP.

7.4 Theoretical Limits of Strong Privacy
In this section, we step aside from the question of privacy leakage and the measurement of such in
existing algorithms and instead focus on the very idea of strong privacy. A strong privacy-preserving

168 CHAPTER 7. PRIVACY

planner is such a planner, which does not enable the adversary to deduce any private information of
the agent except for what can be deduced from the public input and public output. In other words, the
adversary cannot learn more than what it would learn if there was a trusted third-party able to solve
the multi-agent problem and return only the final solution to each of the participants, see Definition 90.
The question we aim to answer in this section is, whether there can be such a strong-privacy preserving
planner and for what cost (e.g., in terms of efficiency and completeness).

Although in Section 7.4.1 we show that such planner exists, we also show that only for the price of
either inefficiency, rendering it practically unusable, or incompleteness which may be the only practical
approach to strong-privacy preserving planning (Section 7.4.2).

In Section 7.4.3 we propose a fine-grained definition of strong privacy, where some aspects of the
problem are known a priori (e.g., that it is a logistics task) and only the details are left strongly private.
We show that a complete, efficient, and strong privacy-preserving planner exists for such restricted
notion of strong privacy.

7.4.1 A Strong Privacy Preserving Planner
In this section, we propose a PP-MAP algorithm (or rather a family of algorithms) based on a private
set intersection (PSI), which is a well known primitive in MPC. Several approaches to computationally
secure PSI has been proposed in [Pinkas et al., 2015, Jarecki and Liu, 2010]. An information-theoretic
approach was proposed in [Li and Wu, 2007] which provides unconditional security, as long as at least
n/2 parties are semi-honest. Alternatively, the proposed PP-MAP planner can be based on another
MPC primitive, a (computationally) privacy preserving intersection of deterministic finite automata
(DFA) [Guanciale et al., 2014].

In particular, the algorithms are based on the PSM structure5 and the generate and test paradigm.
Based on [Tožička et al., 2016], a set S of plans for a (STRIPS) planning problem Π (that is, Πi orMB)
can be represented by a planning state machine (PSM).

Definition 125. (PSM) Let Π = 〈P,A, sI , s?〉 be a STRIPS planning problem and S a set of solutions of
Π. A planning state machine (PSM) Γ(S) = 〈Σ, N, sI , δ, F 〉 is a deterministic finite automaton (DFA)
where the alphabet Σ contains the STRIPS labels of the actions in a ∈ A s.t. Σ = {lbl(a)|a ∈ A},
states are sets of facts N ⊆ 2P with sI ∈ N , transitions satisfy that δ(s, lbl(a)) = s′ iff the action a
transforms the state s into another state s′ and accepting states are F = {s ∈ N |s? ⊆ s}. The PSM
Γ(S) accepts a sequence of actions π iff π ∈ S.

A plan π is accepted by Γ(S) if it is a solution to Π and π ∈ S. If Γ(S) contains all solution to Π we
call it a full PSM and denote it Γ(Π). An important advantage of the PSM structure over a set of plans
is that a PSM remains finite even if S is infinite and it is also possible to construct it in finite time, even
though this time can be exponential in the size of the problem.

A public projection of PSM Γ(S) is Γ(S)B, where each state s is replaced with a public projection
sB and each transition representing a private action is replaced with an ε-transition. The ε-transitions
are then eliminated using standard DFA algorithm and thus the PSM is minimized.

The generic structure of a PSM-based planner is listed in Algorithm 16. If Si is finite, PSI can be
used instead of a DFA intersection. By instantiating each step of this scheme we create several types of
PSM planners:

One-shot-PSM planner generates a proper random subset of all solutions in Step 1. and terminates in
Step 4. if a solution is not found.

Iterative-PSM planner repeats all steps until the intersection
⋂n
i=1 Γ(Si)

B is nonempty, or all agents
have constructed a full PSM Γ(Πi), in which case if the intersection is empty, there is no solution.
In each iteration of Step 1., new plans are added systematically (e.g., ordered by length).

5The PSM structure and a planner based on it was originally published in [Tožička et al., 2016]. The use of secure DFA
intersection is a novel contribution in [Tožička et al., 2017b], as well as the One-shot-PSM planner.

7.4. THEORETICAL LIMITS OF STRONG PRIVACY 169

Algoritmus 16: Generic PSM-based Planner

Algorithm GenericPSM(M)

1. Each agent i ∈ {1, ..., n} generates a set Si of local solutions of Πi, stored in a PSM Γ(Si).

2. Each agent i computes a public projection Γ(Si)
B.

3. Initiate secure computation protocol

(a) All agents compute together the intersection
⋂n

i=1 Γ(Si)
B using a secure DFA intersection.

The intersection is not revealed to all agents.

(b) If
⋂n

i=1 Γ(Si)
B 6= ∅, the intersection represents a nonempty set of global solutions toM,

continue with Step 4.
Otherwise, either terminate and report no solution, or continue with Step 1.

(c) Jointly and securely select one random solution from
⋂n

i=1 Γ(Si)
B.

4. Reveal the selected solution to all agents.

Full-PSM planner each agent constructs a full PSM Γ(Πi) in Step 1. If the problem has a solution, all
solutions are found in the first iteration of Step 4.

The Iterative-PSM and Full-PSM planners were published in [Tožička et al., 2016], albeit without the
use of secure DFA intersection, whereas One-shot-PSM is a novel variant of the planner. Notice that
both One-shot-PSM and Full-PSM planners are computationally strong privacy preserving as the secure
DFA intersection by [Guanciale et al., 2014] is computationally strong privacy preserving and no other
communication is performed. Also, in the case of One-shot-PSM, an information-theoretic PSI [Li and
Wu, 2007] can be used as the used sets of plans can be finite and thus One-shot-PSM can be strong
privacy preserving in the information-theoretic sense (without any assumptions). Another promising
feature of the One-shot-PSM planner is that there is a trade-off between completeness and efficiency,
which can be exploited. The more plans are generated, the more time it takes, but also the higher is the
chance of success in the one shot secure PSM intersection.

Before formulating these observations formally, we provide an algorithm for secure selection of a
random solution from the intersection of PSMs, as is required in Step 5.

Random solution selection

In [Guanciale et al., 2014] the authors propose an algorithm for a secure intersection of regular lan-
guages, which is based on DFA minimization, secure intersection and secure trimming of unreachable
states. As PSM is an instance of DFA, this techniques can be used also to securely compute an in-
tersection of the agents’ PSMs and securely remove unreachable states, that is, obtain a minimal DFA
representing the resulting PSM. The next step we need to perform is to select a random solution, again,
without leaking private information (Step 5. of Algorithm 16). To prevent information leakage, the
intermediate intersection cannot be revealed and the random solution selection must be an integral part
of the secure intersection algorithm.

To select a random solution (a public plan) from the intersection of PSMs
⋂n
i=1 Γ(Si)

B, we use the
Algorithm 17. The algorithm iteratively selects a random transition (action) from δ of

⋂n
i=1 Γ(Si)

B

leading from its initial state sI through intermediate states s ∈ N and eventually terminates in one
of the terminals in F (the goal states). In states where we can both continue with a transition from
δ or terminate, we will chose randomly whether to continue with one of the randomly selected tran-

170 CHAPTER 7. PRIVACY

sitions or whether we will terminate. The resulting random trace through the PSM will be in form
(lbl(a1) ∈ Σ, . . . , lbl(ak) ∈ Σ). The extracted plan is then straightforwardly π = (a1, . . . , ak).

Algoritmus 17: Secure random DFA trace algorithm.

1 Algorithm SecureRandomTrace(Γ(S) = 〈Σ, N, sI , δ, F 〉)
2 π ← ∅; //The trace
3 s← sI ; //Current state
4 while T do
5 T ← {〈s′ ∈ N, l ∈ Σ〉 |δ(s, l) = s′}; //Find all transitions from s
6 r ← |T |; //The range to choose the transition
7 if s′ ∈ F then
8 r ← |T |+ 1; //Add possibility for terminating

9 x← random integer from 〈0, r);
10 if x > |T | then
11 return s; //Terminate

12 s← s ∪ {l}; //Add label to the trace
13 s← s′; //Proceed with next state

The Algorithm 17 can be implemented as a final step of the secure DFA intersection using the SecreC
language in the Sharemind [Bogdanov et al., 2008, Bogdanov, 2013] system as a single secure protocol.
The iterative concatenation of the trace (which is the public plan), as well as the number of iterations,
does not have to be hidden as it is part of the public output. The used random variable has a uniform
distribution which does not reveal any additional information as well. Note that Algorithm 17 can work
only with minimal DFA (in a non-minimal DFA it could randomly end up in a state which is not a
terminal and there is no outgoing transition from it), but the output of the FDA intersection algorithm
by [Guanciale et al., 2014] is minimized also as part of the same secure protocol.

Example of privacy-preserving planning

Let us show how the presented PSM-based algorithms work on a simple case of a coalition surveillance
mission problem with one UAV and two secret locations (see Figure 7.1.1), where UAVs survey an
area and need to be refueled by coalition partners (a coalition base), the surveyed areas and the state
of supplies of the base are private (secret). We omit the movement actions for simplicity (movement
between the surveyed locations would be private, the movement to the coalition base would be public).

The public projection of the problem is restricted to the public propositions P pub and the public pro-
jections of the actions. Note that as SL1 and SL2 have the same projection, they cannot be distinguished
and thus are represented by a single projected action SLB. The same holds for the actions R and RR
which are both represented by a projected action RB.

Full PSMs and their projections for both agents are shown in Figure 7.4.1. Their intersection equals
to the full PSM of the αUAV agent. That is how the Full-PSM planner works. On the other hand, when
using One-shot-PSM planner, the αbase agent can decide to add only one local solution to its PSM,
namely the local plan {R,C}. In that case, the intersection of agents’ PSMs is empty and thus the
planner ends without finding a solution. Of course, even inthe One-shot-PSM planner, both agents may
add multiple solutions and find a global solution.

In the case of Iterative-PSM planner, the αbase agent adds another plan {C} to its PSM, which still
yields an empty intersection. In the third iteration, the αbase agent adds also {R,SL,C} to its PSM and
thus represents all necessary plans. The intersection of such PSM with the αUAV PSM is non-empty
and contains a solution of the problem. In this case, the αbase agent knows that the αUAV agent does
not accept plan {R,C}, which leaks private information. Note that the αbase agent cannot deduce this

7.4. THEORETICAL LIMITS OF STRONG PRIVACY 171

a)

f

l1 l2

f,l1 f,l2

l1,l2

c,l1,l2 f,l1,l2

f,c,l1,l2

R

R R

R

R

SL1 SL2

SL2 SL1

C

C

UAV:

f

f

c f

f,c

R

R

R

R

SL

SL

C

C

UAV :

b)

s

c,s f

f,c

c f,s

f,c,s

RC

C

C

C

RR

SL

SL

SL

R

SL

RR

base:

c
f

f,c

R
C

C

SL

SLR

base :

Figure 7.4.1: a) Full PSM of the αUAV agent and its public projection. b) Full PSM of the αbase agent
and its public projection.

information in the cases of Full-PSM planner and One-shot-PSM planner because the intersection of
PSMs is not known to the agents and the final solution is selected randomly from all solutions encoded
by the PSM intersection.

7.4.2 The Limits of Strong Privacy Preserving MAP

In this section, we present theoretical limits of the privacy preserving planner described above and their
generalization to other PP-MAP paradigms. For the privacy analysis, we assume that the agents know
the algorithm used by all other agents (also including probability distributions of any random variables,
e.g., the uniform distributions in the random solution selection) and also that the MAP problems cannot
be solved by a single agent alone (in which case a strong privacy-preserving algorithm is trivial). We
focus on the following three properties

Definition 126. (MAP Planner properties) A MAP planner P is

(i) Complete if for each MAP problemM that has a solution (a global plan), P terminates and returns
a solution toM (Definition 38ii).

(ii) Strong privacy preserving if P does not reveal any other information than what can be deduced
from the public part of the input and the solution, that is,MB and πB (Definition 90).

(iii) Efficient if there exists a MAP problem M = {Πi}ni=1 for which P always returns a solution
without enumerating all public solutions of each Πi.

The completeness definition does not require any further explanation and the privacy definition has
already been discussed. As already mentioned, based on the presence of computational assumptions,
we distinguish two flavors of strong privacy preserving algorithms, computational and information-
theoretic. The efficiency definition is somewhat unusual. The aim is to differentiate between algorithms
which do have to explore the complete private search spaces of the agents (which, in the worst case, can
be as large as the global problem) and those which do not. Although the theoretical complexity class is
the same for both, as the worst case is always the complete exploration, in most practical problems, the
difference is significant (i.e., the difference between blind breadth-first search and heuristic search such
as A*).

172 CHAPTER 7. PRIVACY

The Limits of the PSM-based Planners

In this section, we assign the properties from Definition 126 to the particular PSM-based planner vari-
ants.

Theorem 127. The Full-PSM planner is complete and computationally strong privacy preserving.

Proof. LetM = {Πi}ni=1 be a MAP problem. The Full-PSM generates a full PSM Γ(Πi) for each Πi

and a public projection Γ(Πi)
B, each representing all local solutions of each respective Πi and their

public projection. Then a PSM intersection
⋂n
i=1 Γ(Πi)

B is computed. If a global solution {πi}ni=1 to
M exists, each πi is a local solution to Πi and thus is represented by Γ(Πi). Because πB

i = πB
j for each

i, j, πB
i is represented by the intersection

⋂n
i=1 Γ(Πi)

B and is a public projection of a global solution,
privately extensible by all agents. Thus Full-PSM is complete.

If the intersection
⋂n
i=1 Γ(Πi)

B is computed using a privacy preserving DFA intersection by [Guan-
ciale et al., 2014], Full-PSM is computationally strong privacy preserving as no other multiparty com-
putation or communication is performed and no other information is exchanged.

Corollary 128. The Full-PSM planner is not efficient.

Proof. Trivial, as the Full-PSM from definition always generates all local solutions of all agents before
computing the intersection.

Theorem 129. The Iterative-PSM planner is complete and efficient.

Proof. LetM = {Πi}ni=1 be a MAP problem and let {πi}ni=1 be a global solution toM. Even though
the number of all possible solutions toM may be infinite, each such solution {πi}ni=1 is finite and has
a length l. As Iterative-PSM is adding the plans in a systematic way (that is, a plan of length k + 1 is
added only after all plans of length k were added), all plans of length l are added to each Si after a finite
number of steps. Thus also all the plans in {πi}ni=1 are added after a finite many steps and the solution
becomes part of the intersection

⋂n
i=1 Γ(Si)

B and thus Iterative-PSM is complete.
Let l be the length of the shortest global solution. Based on the systematic generation described

above, the solution is always found before all solutions of length l′ > l and thus Iterative-PSM is
efficient according to Definition 126(iii).

Theorem 130. The Iterative-PSM planner is not strong privacy preserving.

Proof. By iterating the PSI or secure DFA intersection, information is leaked. In particular, information
that a plan πi shorter than the solution proposed by agent i is not extensible by some agent j 6= i.
This reveals the existence of private preconditions of some public actions of agent j used in πi (that
is, privately-dependent action, Definition 95). Note that as we assume the knowledge of the algorithm
by all agents, even a less obvious systematic generation of plans leaks information as the particular
algorithm can be simulated by other agents and the plans which should have already been generated
can be determined. In the case of randomized algorithms, we assume the knowledge of the probability
distributions of random variables used in the algorithm as part of the algorithms and thus again, the
information about unaccepted public plans leaks.

Theorem 131. The One-shot-PSM planner is strong privacy preserving and efficient.

Proof. By computing the secure DFA intersection only once, no additional information can leak and
thus One-shot-PSM is computationally strong privacy preserving. If each PSM Γ(Si) is replaced by
a finite subset of represented plans Si, the PSI can be used instead of the DFA intersection. By using
an information theoretic secure PSI [Li and Wu, 2007] on finite sets of plans, One-shot-PSM becomes
information-theoretic strong privacy preserving. One-shot-PSM is trivially efficient according to Defi-
nition 126(iii) as it can use an arbitrarily small subset of all possible local solutions.

7.4. THEORETICAL LIMITS OF STRONG PRIVACY 173

Theorem 132. The One-shot-PSM planner is not complete.

Proof. As some public solution is not generated by at least one of the agents, it may be the case that the
not-generated solution is the one and only solution of the problem and thus such problem would not be
solved.

Impossibility Theorem

Next, we state the main contribution of this chapter. First, we present a formulation for the class of
PSM-based planners and later we generalize it to a wider class of planning algorithms.

Theorem 133. (Impossibility Theorem) A PSM-based MAP planner P cannot have all three properties
(Definition 126) complete, strong privacy preserving and efficient together.

Proof. According to Theorem 127, the Full-PSM is complete and strong privacy preserving, but accord-
ing to Corollary 128 not efficient as it generates all local solutions. For the sake of contradiction, let us
have a complete and strong privacy preserving planner P which is efficient. From Definition 126(iii)
follows that there exist a MAP problemM = {Πi}ni=1 for which some of the agents using P do not
have to generate all public plans in order to find a global plan {πi}ni=1, let j be such agent. Let π̄B

j 6= πB
j

be the public plan which is not generated by agent j.
Because we assume that the problemM cannot be solved by a single agent only, a MAP problem

M̄ can be constructed fromM so that the only public plan extensible by all agents is π̄B
j . It is enough,

if one of the agents rejects all public plans not equal to the public plan π̄B
j and therefore the newly

constructed MAP problem M̄ can differ fromM only in the problem of one agent, let that be agent i.
The construction is as follows. Let π̄i be a local plan of agent i such that π̄B

i = π̄B
j , that is, π̄i can be

part of the global plan as it is the extension of π̄B
j by agent i.

We construct Π̄i from Πi =
〈
Pi = P pub ∪ P priv

i , Ai, sI ∩ Pi, s? ∩ Pi
〉

by adding a new proposition

pk for each public action ak ∈ π̄B
i s.t. ak ∈ Ai and by adding a new proposition pneg. We add p0 to sI

and modify each such ak so that pre(āk) = (pre(ak) ∩ P pub) ∪ {pk}, add(āk) = (pre(ak) ∩ P pub) ∪
{pk+1} or add(āk) = pre(ak) ∩ P pub if ak is the last action and del(āk) = del(ak) ∩ P pub. We modify
each a′k ∈ Ai s.t. ak /∈ π̄B

i so that pre(āk) = (pre(ak) ∩ P pub) ∪ {pneg}. The result is that only actions
in π̄i are applicable and only in the exact same order, also keeping the public constraints in place, thus
{π̄i}ni=1 is the only global solution to M̄.

Since P is strong privacy preserving andMB = M̄B as the public part was not modified, the agent
j cannot distinguish betweenM and M̄ and thus generates exactly the same PSMs Γ(Πj) = Γ(Π̄j) for
both problems. But then, as the planner P is complete and M̄ has the only solution {π̄i}ni=1, the agent
j has to generate π̄j also forM. Thus we obtain a contradiction with the assumption that the planner
P is efficient (because it has to also generate π̄j), in other words, that a strong privacy preserving and
complete planner can generate less local plans than Full-PSM which generates all of them and thus
violates the efficiency property according to Definition 126(iii).

Example. (UAV) To illustrate the above proof, we will modify the UAV example. Let αUAV be the
agent j and let πB

αUAV
= {SL,R,SL,R,C} be the public plan which is not generated by the αUAV agent.

Let the corresponding local plan of the αbase agent be παbase
= {SL,R,SL,RR,C}. Then the problem of

the αbase agent can be modified so that P priv
αbase

= {p1, p2, pneg} and each action in the plan is modified so
that pre(R) = {¬f, p1}, add(R) = {f, p2}, pre(RR) = {¬f, p2} and if there was any other action of the
agent αbase, its private preconditions would be set to {pneg}. Also, the private part of sI is set to {p1}
and thus only the action R is applicable.

The properties of PSM-based planners according to Definition 126 and the above theorems are
summarized in Figure 7.4.2. Notice that the intersection of all properties is empty, as shown by the

174 CHAPTER 7. PRIVACY

Figure 7.4.2: Properties of PSM-based planners.

Theorem 133. Also, the Full-PSM and One-shot-PSM are the only generally strong privacy preserving
planners published up to date, thanks to the novel use of the secure DFA intersection.

Notice that the Theorem 133 holds not only for the PSM Planner [Tožička et al., 2016] and the family
of PSM-based planners described in Algorithm 16, but also for algorithms based on similar generate and
test paradigm, such as Planning First [Nissim et al., 2010], which uses distributed constraint satisfaction
(DCSP) in the place of PSM intersection. The potential use of a secure version of DCSP would result in
similar limits as are the limits of the PSM planner.

The Limits of State-Space Search

In this section, we focus on the strong privacy preserving property in general terms. We abstract from
the particular secure computations such as PSI, secure DFA intersection or even a single ORAM com-
putation and refer to them collectively as secure primitives. The important property of a secure primitive
is that (possibly under computational security assumptions), no information leaks from a single secure
primitive and thus, on its own, it is strong privacy preserving. In general, combining multiple secure
primitives may leak information, as shown e.g., in Theorem 130. Formally:

Definition 134. (Secure primitive) A secure primitive (or a cryptographic primitive) is a (possibly mul-
tiparty) computation block which by itself is strong privacy preserving.

We first state two general results applicable to any MAP planning algorithm and then use them to
generalize Theorem 133 to wider classes of MAP planners. The definitions are based on the notion of
publicly equivalent MAP problems:

Definition 135. (Public equivalence) Two MAP problems M, M′ are publicly equivalent if MB =
M′B and their respective sets of public solutions SB and S′B are equal, formallyM≡M′.

Theorem 136. Let P be a MAP planner andM,M′ two publicly equivalent MAP problemsM≡M′,
such that M and M′ differ in the private part of agent i. Then if P is strong privacy preserving, it
performs the same number of secure primitives on bothM andM′.

Proof. Trivially, if P performs a different number of secure primitives onM andM′, the agents other
than i can distinguish between M and M′, which is an information that cannot be learned from the
output, as the public projections of both solutions are equal.

Corollary 137. The number of secure primitives performed by a strong privacy preserving MAP planner
P cannot depend on any private part of the MAP problemM.

Proof. Direct consequence of Theorem 136.

7.4. THEORETICAL LIMITS OF STRONG PRIVACY 175

Note that the whole planning algorithm can be considered a secure primitive, if it is strong privacy
preserving, e.g., the Full-PSM planner.

The Theorem 136 and Corollary 137 are very general, but also provide necessary conditions for any
strong privacy preserving MAP planner. This conditions can be used to generalize the Theorem 133 to
a wider class of MAP algorithms.

Definition 138. (State-space search) A state-space search (SS) MAP planner is a MAP planner in which
each agent searches its own state-space. The agents coordinate themselves by exchanging public pro-
jections of reachable states.

An example of a SS MAP planner aiming for secure computation is Secure-MAFS [Brafman, 2015]
which is strong privacy preserving for a restricted class of problems.

Corollary 139. Theorem 133 holds for any SS MAP planner, assuming a bound b on the number of
states in the global state space ofM.

Proof. Let us assume that the states in a strong privacy preserving SS MAP planner P are communi-
cated in a secure way, that is, no information is leaked by communicating a single state and thus the
communication of a single state can be considered a secure primitive. According to Corollary 137, the
number p of secure primitives must depend only on the public part ofM. In order to be complete, p
must be large enough even for the worst case execution, which is if the state space is of size b and all
states are expanded and sent. But this corresponds to enumerating all local solutions of M and thus
breaks the efficiency property according to Definition 126(iii).

Based on [Štolba et al., 2016c], the forward-chaining plan-space search as used in FMAP [Torreño
et al., 2014] essentially corresponds to the state-space search paradigm and thus the same results apply.

As already mentioned, the question whether a generic MPC technique such as ORAM or BlindTM
can be used for efficient strong privacy preserving MAP planning has been discussed in Section 2.3.
This concludes the theoretical analysis of the limits of strong privacy preserving multi-agent planning,
both in general and in particular case of the PSM-based planners.

7.4.3 Strong Privacy Preserving Equivalence Classes

In [Brafman, 2015], the author proves that Secure MAFS is strong privacy preserving on a restricted
class of logistics problems, where the problems have the same set of packages, the same set of pub-
lic locations, and identical initial public locations for packages and also that every private location is
reachable from every other private location. This effectively means that a part of the private problem is
irrelevant (that is, it can always be solved) and the rest of the private problem is the same for all instances
of the restricted class of problems. In this section, we formalize the notion of privacy used in the proof
in [Brafman, 2015] and generalize the idea of privacy on a class of problems.

Definition 140. (Strong privacy on a class) A MAP planner P is strong privacy preserving on class C
of MAP problems iff from the execution of P onM ∈ C and onM′ ∈ C no agent can distinguishM
andM′.

This definition of strong privacy differs from that in Definition 90, but is reasonable. If solving
e.g., a logistics problem, even if the fact that a package is loaded is private, the agents can expect its
existence based on how logistics works. Now we formalize the equivalence class of problems based on
Definition 135.

Definition 141. (Public equivalence class) A class C of MAP problems is a public equivalence class iff
for each twoM∈ C andM′ ∈ C holdsM≡M′.

176 CHAPTER 7. PRIVACY

This means thatMB = M′B and their respective sets of public solutions SB and S′B are equal.
For each of the problemsM ∈ C by itself, the private part ofM poses a constraint and thus reduces
the number of public solutions which are also global solutions. But as all problems in C have equal
public projection and also the set of public solutions, each of the problems in C differs from the other
problems only by such part of the private problem, which does not add more constraints and prevent
more solutions, that is, the different private parts of the problems can always be solved.

An example of such class C is the logistics problems used in [Brafman, 2015] and rephrased at the
beginning of this section. The particular problems differ by the actual number of private locations, but
as the private locations are always connected (not necessarily directly) to a public location, this part
of the problem does not constraint the public solutions which are also global solutions of the whole
problem. Nevertheless, this does not mean that the private part ofM is unnecessary—the agents still
need to cooperate in order to solveM and some of the public solutions are not extensible because of
the private parts of the agent problems.

Based on the Definition 141, we can formulate a general result.

Theorem 142. A MAP planner P which is complete and efficient by Definition 126 and strong privacy
preserving on a public equivalence class C of MAP problems by Definition 140 exists.

Proof. Let us start with Iterative-PSM, which is complete and efficient by Theorem 129. In each iter-
ation, a plan πi proposed by agent i is either accepted by all other agents, in which case the algorithm
ends and no information leaks, because πi is part of the solution or πi is not accepted and thus some
information leaks. But in the case of public equivalence class C of problems, πi is either accepted or not
accepted in allM ∈ C and thus this information cannot be used to distinguish any twoM,M′ ∈ C.
Therefore by Definition 140, Iterative-PSM is strong privacy preserving on class C.

This theorem generalizes the results of [Brafman, 2015] to all public equivalence classes of MAP
problems and also to MAP planners in general. Moreover, we can formulate the following corollary.

Corollary 143. The public equivalence relation ≡ partitions all MAP problems into classes of equiv-
alence. There exists a MAP planner P , which is complete and efficient by Definition 126 and for each
MAP problemM, P is strong privacy preserving on a public equivalence class C of MAP problems,
induced byM.

This means that each MAP problemM induces the class C of publicly equivalent problems, which
can be solved by such planner P (e.g., the Iterative-PSM planner), revealing no other information than
that the problem falls in the particular classC. It seems that for some practical applications, this might be
enough to consider the planner strong privacy-preserving, as the participating agents already know the
class of the planning problems they are solving in advance (e.g., the logistics problems with particular
constraints).

Example. (UAV) Considering the UAV example, a problemM′ which does not consider the supplies
of the αbase agent (there is no private proposition) s falls in the same equivalence class as the original
problem as the RR can always be used and provide supplies. Also, all problems which have more
complex private parts (e.g., additional private actions for preparing the fuel, etc.) which do not restrict
any solutions of the original problem fall in the same equivalence class C.

7.5 Summary
In this section, we have focused on the issue of privacy in multi-agent planning, thus fulfilling the
(Objective 3) of the thesis. First, we have defined privacy and privacy leakage in the context of multi-
agent planning. Second, we have provided a general technique to analyze such privacy leakage and
applied in on the MAFS (thus also MADLA) and Secure-MAFS planning algorithms in detail. We

7.5. SUMMARY 177

have also applied the techniques and insights gained on the distributed heuristic algorithms presented
throughout the thesis, showing their strengths and weaknesses in the context of privacy. Finally, we
have provided strong theoretical results, such as the Impossibility Theorem, which for a large class of
MAP planning algorithms states that such algorithms can not be strong privacy preserving, efficient and
complete at the same time. Moreover, we have formalized a restricted notion of strong privacy for which
the Impossibility Theorem does not hold and for which we have presented a theoretical planner having
all three mentioned properties.

178 CHAPTER 7. PRIVACY

Chapter 8

Conclusion

In my research, I have set out to understand information sharing in multi-agent planning, in particular,
how sharing (or not-sharing) heuristic information influences the performance in heuristic search and
how privacy is compromised by sharing information during multi-agent planning. In the thesis, the main
research questions (and our answers) are the following:

(Objective 1) How to compute classical planning heuristics in a distributed way?

We have published a number of works providing distributed variants of classical plan-
ning heuristics (mostly relaxation-based), descriptions of which can be found in Chapter 4
and Chapter 6. The latter also provides an example of an additive heuristic, which can
provide global estimates without any additional communication during the search (Sec-
tion 6.3). By analyzing the distributed variants of existing heuristics, we have gained
much-needed insights which culminated in the general approach to distributed heuristic
computation based on cost-partitioning presented in Section 6.5. We have also gained the
understanding that, especially for the relaxation-based heuristics, neither the fully local
(projected) approach, where no information is shared, nor the fully distributed approach,
dominates the other on all planning domains.

(Objective 2) How to combine local and distributed heuristics?

Since it turned out, that for the relaxation heuristics, the distributed variant is not al-
ways better than the local (projected) one (see Section 4.4.3), we aimed to find out, how
to combine the two approaches. One of the first techniques is presented in Section 4.4.2.
In Chapter 5 we present the Multi-Agent Distributed and Local Asynchronous (MADLA)
Search which is the basis for the MADLA Planner. The MADLA Search is able to com-
bine the local and distributed variants of the Fast-Forward heuristic so that the performance
of neither of the two approaches is deteriorated. Thus the MADLA Planner was able to
over-perform all state-of-the-art multi-agent planners at that time.

(Objective 3) How to formalize privacy and quantify privacy leakage and how to apply secure multi-
party computation techniques in multi-agent planning?

Finally, one of the most interesting and crucial, but often neglected, topic in multi-agent
planning is privacy. As the existing formal tools for privacy analysis were fragmented and
incomplete, our first goal was to provide a solid formal base on which we and other authors
can build in the future. We have based our formalism described in Chapter 7 on the ideas
from secure Multiparty Computation and information leakage quantification. We have used
the formalism to analyze several MAP algorithms. The gained understanding also helped us

179

180 CHAPTER 8. CONCLUSION

to provide more general theoretical results, giving us both the first provably strong privacy-
preserving planner and the Impossibility Theorem. This theorem states that a wide class of
MAP algorithms (entailing all currently used MAP paradigms) cannot be strong privacy-
preserving, efficient, and complete at the same time unless computed as a single secure
primitive operation. Nevertheless, we have provided a weaker, but still reasonable, concept
of privacy for which such MAP planner exists (and was constructed in theory).

As we intended to evaluate the MADLA Planner and compare it with other MAP plan-
ners published at that time, we figured out that in order to perform the evaluation rigorously,
we need to consolidate the input formalism, benchmarks and the runtime environments of
the MAP planners. To do so, we have co-organized the first Competition of Distributed
and Multi-Agent Planners (CoDMAP) which, against all odds and the initial uncertainty of
how it will be accepted by the community, was a great success. The competition attracted
nearly 10 participants from 6 countries, many of them entering with multiple planners or
their variants. As this contribution is rather tangential to the main topic of the thesis, we
have left the description of the competition to the Appendix A.

We have fulfilled the three main objectives presented in the thesis. The answers to the research questions
provide us with many valuable insights into multi-agent planning and distributed heuristic search in par-
ticular, but also open a number of new research venues and pose us with many more research questions.
Here, we summarize the hottest research topics stemming from the thesis.

The computation of distributed heuristics, i.e., (Objective 1), can be seen as solved by the general
approach presented in Section 6.5, but the approach itself firstly needs a much deeper experimental
evaluation and secondly can be improved, e.g., by providing better cost-partitioning, but also by closer
integration with the distributed search. Still, there might be better heuristic distributed in an ad-hoc
manner, or the heuristics presented in Chapter 4 and Chapter 6 may still be improved.

Regarding the (Objective 2), we have provided a solution for satisficing planning, the MADLA
Search. An interesting venue for future research is the application of similar approaches to optimal
planning, which might be theoretically more challenging. Another option is to provide techniques com-
bining the local and distributed approach specifically for a given heuristic, similarly as we have done
in Section 4.4.3 for the case of recursively distributed relaxation heuristics. A promising idea might
be to use iterative computation of the LM-Cut heuristic [Helmert and Domshlak, 2009] where the full
distributed heuristic can be computed for some states and the local computation can be used for the itera-
tive variant. By reusing the global landmarks and computing new landmarks locally, the communication
load could be decreased while possibly retaining better heuristic guidance.

Possibly the largest open field of research in multi-agent planning is the privacy, that is, (Objec-
tive 3). The privacy measure presented in Section 7.2.2 can be further refined and extended by tighten-
ing both the lower bound and the upper bound. The analysis of algorithms (Section 7.3) can be extended
to more algorithms and, more crucially, can be implemented and used for experimental evaluation of
leakage for various algorithms and their comparison. Ultimately, the privacy analysis should lead to the
development and implementation of planning algorithms which leak less private information according
to the presented measure, both in theory and in practice. An extreme case is the implementation of
strong privacy-preserving MAP planners based on the secure MAP techniques. The simplest case is to
implement the algorithm presented in Section 7.4, a much more challenging option is to implement the
whole planning algorithm based on the secure multiparty computation techniques. It is not clear yet,
whether it is even possible without significant relaxations of the privacy requirements.

The CoDMAP competition was a great success in consolidating the benchmarking of MAP planners,
as many works have since adopted the methodology. A big challenge is to organize a second installment
of the competition, possibly as a full IPC track. One significant hurdle is that one of the most important
aspects of multi-agent planning identified in the thesis is privacy. It is far from clear, how to enforce
its preservation or measure its leakage in the context of the competition, as the techniques presented

181

in Section 7.3 are mostly algorithm-dependent. But without such measures, a valid solution of the
distributed track is to send the factors to a single machine and solve the problem centrally, which is not
what would be intended by such competition.

As the world is getting more interconnected, large amounts of information are abundant, and both
people and machines are required to plan, act, and interact in such complex environment, the questions
of planning and multi-agent cooperative planning is getting more and more imminent. In this thesis,
we have progressed the research field in several directions and opened even more for future endeavors,
which we are looking forward to undergoing.

182 CHAPTER 8. CONCLUSION

Appendix A

The Competition of Distributed and
Multi-Agent Planners

Although not one of the main objectives of this thesis, proper and rigorous comparison of multi-agent
planners arose as a significant hurdle in the further development of MAP planners and techniques.
In order to tackle this issue, we have taken an inspiration in the International Planning Competition
(IPC)1 and organized the first Competition of Distributed and Multi-Agent Planners (CoDMAP)2. The
competition was organized as preliminary and semi-official as it was not clear whether the format will
attract enough participants. For the same reason, we have allowed the organizers (that is, us) and authors
affiliated with the organizers to enter the competition as well, which is not a common practice in IPC.
As the competition is somewhat tangential to the main topic of the thesis but is a significant contribution
nevertheless, we include a description of the competition based on [Komenda et al., 2016, Štolba et al.,
2015b] as an appendix.

The planners related to this thesis which entered the competition are the MADLA Planner [Štolba
and Komenda, 2015] which entered exactly in the configuration described in Chapter 5 and MA-
Plan [Fišer et al., 2015] using the LM-Cut heuristic, Multi-Agent LM-Cut heuristic described in Sec-
tion 6.2, and a combination of re-implemented FF heuristic from Section 4.3 and a variant of DTG
heuristic briefly described in Section 4.4.4. The PSM Planner which is a base of the planners presented
in Section 7.4.1 participated in the competition as well.

In this appendix, we describe the decisions we have made, the rules and the language we have
designed, and the results of the competition.

A.1 The Aims of the Competition

The first decision we had to make was how to restrict the multi-agent planning problems which would
be covered by the competition. We chose an approach similar to that of classical planning, that is,
start with the smallest possible subset of features and possibly extend them in the future. We wanted
to take classical STRIPS planning and extend it with the smallest possible feature set to transform it
into the multi-agent setting. Such an approach was already taken by Brafman&Domshlak in the case of
MA-STRIPS formalism [Brafman and Domshlak, 2008].

Before designing the competition, we were aware of about a dozen of multi-agent planners more-
or-less compatible with the MA-STRIPS formalism. One of the main focuses of the competition design
was to allow as many of them as possible to enter the competition without large-scale modifications. In

1http://ipc.icaps-conference.org
2http://agents.fel.cvut.cz/codmap

183

184 APPENDIX A. THE COMPETITION OF DISTRIBUTED AND MULTI-AGENT PLANNERS

order to foster our awareness of the existing planners and their possible extensions, we have conducted
a public poll3.

Out of the poll and other considerations arose three main restrictions of the multi-agent planning
model:

STRIPS-like model This means deterministic, non-durative actions and full observability (with respect
to privacy, which will be discussed later). This seems to be the simplest model, compatible not
only with most of the current multi-agent planners but also with classical planners and classical
planning techniques, which is good for comparison, reuse of the techniques and benchmarks.

Cooperative agents This is a very strong assumption, maybe one of the first candidates to be lifted.
On the other hand, some competitive problems can be converted to the cooperative by automatic
transformation of action costs using mechanism design [Nissim and Brafman, 2013].

Offline planning We have decided to stick to the offline planning paradigm as used in classical plan-
ning (input→ planning→ plan) in contrast to online planning as used in the probabilistic uncer-
tainty IPC track.

In order to make the transition as smooth as possible for most of the planners, we have decided to
run two tracks. The Centralized Track served as a transitional track, where the input is centralized
and the planners can be centralized as well, which both contradicts common assumptions of multi-agent
planning. Also, most of the language and formalism requirements (described later) can be ignored by the
planners (but they have to state that in the description). The other, more ideal, Distributed Track forces
stricter rules and also forces the planners to consume distributed (factored) input and run on multiple
physical machines in a distributed fashion (each planning agent on one machine). In both tracks, the
planning systems are evaluated separately (as in classical IPC), different planners are not interacting.

We have excluded the possibility of a decentralized track, where planners of multiple competitors
would plan together cooperatively (or non-cooperatively) in order to find a common plan. Such track
would require us to define some common protocol and is far beyond the abilities of most current plan-
ners.

A.2 MA-PDDL
Ever since the first IPC in 1998, the base input language of the competition was PDDL (Planning Do-
main Description Language) [McDermott et al., 1998]. PDDL is based on a subset of predicate logic and
uses LISP-like syntax for describing planning domains and problem instances. Over time, the language
was gradually enriched with more syntax and expressive power resulting in the latest official version,
PDDL3.1. Originally, PDDL described only the STRIPS fragment (with a few ADL constructs). In con-
trast to STRIPS, PDDL is lifted, allowing parametrization of actions and facts (in form of predicates).
Thus PDDL is able to represent transition systems of large planning problems compactly. Neverthe-
less, most of existing planners still work with a grounded description of the problem, so that during the
grounding process, typed PDDL objects or PDDL constants are assigned as arguments of predicates and
actions.

Following the minimalistic extension of STRIPS to MA-STRIPS by Brafman and Domshlak in
2008, we wanted a simple extension of PDDL towards multiagent planning, also compatible with MA-
STRIPS. There were two existing candidates, MAPL [Brenner, 2003] and MA-PDDL4 [Kovacs, 2012].
MAPL was published in 2003 and was rather a drastic modification of PDDL2.1, introducing many
features not required by MA-STRIPS and missing the partitioning and privacy definitions. MA-PDDL
was a more consistent extension of PDDL3.1, but still including many features (inherited mainly from

3The poll form can be found at: http://bit.ly/1IsNoqY
4The extended BNF can be found at http://agents.fel.cvut.cz/codmap/MA-PDDL-BNF.pdf

A.2. MA-PDDL 185

PDDL3.1) not needed in the first arrangement of a multiagent planning competition, which was decided
to focus primarily on MA-STRIPS planning. Additionally, MA-PDDL did not describe privacy of facts
and actions. Therefore, we have extended MA-PDDL with a partitioning definition and a definition of
privacy of objects and predicates (and thus implicitly of the privacy of actions). The extension allowed
defining agents in various ways: as objects, constants, or not at all. This variability allowed us to reuse
many interesting classical planning benchmarks.

The definition of privacy in MA-STRIPS is implicit and follows a simple rule which says that a fact
is public if it is required or modified by two or more actions of different agents. An action is public
if it requires or modifies at least one public fact. Based on a review of literature and a conducted pre-
competition poll, we found that such a definition could be too rigid, especially for future versions of
the competition. We slightly relaxed the MA-STRIPS notion of privacy and declared it explicitly in the
MA-PDDL description. Our privacy definition follows MA-STRIPS in the sense that facts and actions
can be private to particular agents or public among all agents, however, what facts and actions are private
and public is determined by a process coined as maximally concealing grounding (MCG).

MCG uses privacy defined over predicate, function and constant definitions in a MA-PDDL planning
domain, while privacy over MA-PDDL objects was defined in the description of the related planning
problem. In order to be able to represent MA-STRIPS problems, privacy was semantically defined by
MCG over facts grounded from predicates, based on the following set of rules:

1. A predicate definition declared to be public in the domain description, grounded with only public
objects/constants, results in a public fact.

2. A predicate definition declared to be public in the domain description, grounded with at least one
object/constant private to agent α, results in a private fact of agent α (grounding a single predicate
definition with objects private to different agents is not allowed, and an object/constant cannot be
private to multiple agents).

3. A predicate definition declared to be private in the domain description, grounds to a private fact
regardless of privacy of the objects used for grounding.

This definition of privacy is very close to the definition of privacy in MA-STRIPS, but allows for more.
Starting from everything private to defining everything public, regardless of the use of predicates in
actions. A fact used only by one agent can be even declared public or a fact used by multiple agents can
be declared private.

By convention (which we have adhered to in the competition), a PDDL object representing an agent
is private to that given agent. If it was not, other agents of the same PDDL type would be able to ground
and use the other agent’s actions. An alternative approach is to use PDDL constants to represent agents
and to include only the proper partially grounded actions in an agent’s domain description. Or we can
represent agents not explicitly with PDDL objects/constants at all and just have all action definitions
from the perspective of the particular agent to whom they belong.

For the competition, we have proposed two ways how to encode multiagent planning problems in
MA-PDDL. Either as factored MA-PDDL, which allows the definition of separate domain and problem
descriptions for each planning agent, targeting many for many multiagent planning. Or as unfactored
MA-PDDL, targeting one for many planning, which allows the definition in a single domain and problem
description, incl. partitioning and privacy.

Information-wise the two representations are equivalent. The difference is in the information sepa-
ration as in the many for many planning case, it is important to provide the respective agents only with
information allowed to them by the privacy requirements.

A.2.1 Unfactored MA-PDDL
The unfactored variant of MA-PDDL stems naturally from classical PDDL. It uses a pair of files, one
containing the domain information and the other the specification of a problem instance within that

186 APPENDIX A. THE COMPETITION OF DISTRIBUTED AND MULTI-AGENT PLANNERS

——————————— domain.pddl
(define (domain logistics)
(:requirements :typing

:multi-agent :unfactored-privacy)
(:types location vehicle package city - object

airport - location
truck airplane - vehicle)

(:predicates (at ?obj - object ?loc - location)
(in ?obj1 - package ?veh - vehicle)
(:private ?agent - truck
(in-city ?agent - truck ?loc - location ?city - city)))

(:action drive-truck
:agent ?truck - truck
:parameters (?loc-from - location
?loc-to - location
?city - city)

:precondition ...
:effect ...)

(:action load-truck :agent ?truck - truck ...)
(:action unload-truck :agent ?truck - truck ...)
(:action load-airplane :agent ?apn - airplane ...)
(:action unload-airplane :agent ?apn - airplane ...)
(:action fly-airplane :agent ?apn - airplane ...))
——————————– problem.pddl
(define (problem logistics-4-0) (:domain logistics)
(:objects obj21 - package
...
pos1 - location
(:private apn1 apn1 - airplane)
(:private tru2 cit2 - city tru2 - truck pos2 - location)
(:private tru1 tru1 - truck cit1 - city))

(:init (at tru1 pos1) ...)
(:goal (and (at obj21 pos1) ...)))

—————————– domain-tru1.pddl
(define (domain logistics)
(:requirements :typing
:factored-privacy)

(:types location vehice package city - object
airport - location
truck airplane - vehicle)

(:predicates (at ?obj - object ?loc - location)
(in ?obj1 - package ?veh - vehicle)
(:private
(in-city ?agent - truck ?loc - location ?city - city)))

(:action drive-truck
:parameters (?truck - truck
?loc-from - location
?loc-to - location
?city - city)

:precondition ...
:effect ...)

(:action load-truck ...)
(:action unload-truck ...))

———————— domain-tru2.pddl ...
———————— domain-apn1.pddl ...
———————— problem-tru1.pddl
(define (problem logistics-4-0) (:domain logistics)
(:objects obj21 - package
...
pos1 - location
(:private tru1 - truck cit1 - city))

(:init (at tru1 pos1) ...)
(:goal (and (at obj21 pos1) ...)))
———————— problem-tru2.pddl ...
———————— problem-apn1.pddl ...

Table A.1: An example comparing unfactored (left) and factored (right) MA-PDDL domain and problem
descriptions in case of a 3-agent planning problem instance (two trucks, tru1 and tru2; and one airplane,
apn1) of the extended CoDMAP version of the logistics00 domain (unessential details are omitted for
the sake of simplicity). Bold elements highlight the differences between standard PDDL and extended
MA-PDDL.

domain (see an example in Table A.1-left).

PDDL allows a straightforward extension by additional :requirements. Unfactored MA-PDDL is
defined in terms of two new additional requirements, (1) :multi-agent, and (2) :unfactored-privacy.
The former informs the planner, that action definitions are annotated with an additional :agent ?agent-
parameter - type specification, which acts as any other PDDL parameter, however, a grounded action
belongs to the agent named in the specification. Therefore any PDDL object or constant in ?agent-
parameter typed by the type is treated as an agent. Using this extension over all actions unambiguously
defines action partitioning.

The latter requirement, :unfactored-privacy, marks a PDDL description as privacy defining, and
with the help of an additional :private ?agent-parameter - type block, and the above defined MCG
rules, it unambiguously defines what facts are private to given agents, and which facts are public. If
a predicate, a constant or an object is not defined private, it is treated as public. Privacy definition for
actions follows MA-STRIPS, that is, an action is public if it depends on or modifies a public fact.

A.3. COMPETITION RULES 187

M1

mem

P1

Pn

... comm
output (plan)

(a1,a2, ..., ak)

input (MA-PDDL factor)

input (MA-PDDL factor)

agent α1

agent αn

...

M1

mem

P1

Pn

...

M1

mem

P1

input (MA-PDDL factor)

distributed CoDMAP:

mem

Pn

input (MA-PDDL factor)

agent α1

agent αn

...

output (agent's plan)

output (agent's plan)

...

(a1,a2, ..., ak)

(a1,a2, ..., ak)

α1 α1 α1

αn αn αn

...

Mn

comm

centralized CoDMAP:

comm
output (plan)

(a1,a2, ..., ak)

input (unfactored MA-PDDL)

or

Figure A.3.1: Comparison of IPC and CoDMAP tracks.

A.2.2 Factored MA-PDDL

The motivation for factored MA-PDDL results straightforwardly from the distributed nature of multi-
agent systems. Each separate planning agent uses its own pair of domain and problem description files
(denoted as a MA-PDDL factor) which define information relevant only to that particular agent (see an
example in Table A.1-right).

Action partitioning ensues directly from the decomposition of the input. As each planning agent’s
factor contains only relevant actions, there is an unambiguous grounding of them. Such partitioning
produces single-agent PDDL descriptions, and thus does not need the :multi-agent extension, as in
the unfactored variant. However, the planner has to be provided with a name of the agent it plans for
(i.e. the name of the PDDL object/constant, which represents the agent) in an additional input. The
competition rules defined that additional input as a command-line parameter. Public facts, objects,
and constants which were common for more than one agent, were by convention bound over the same
names. For instance, the obj21 - package of truck-agent tru1 (see an example in Table A.1-right, file
problem-tru1.pddl) is by convention the same package as obj21 in the factored problem description of
truck-agent tru1, problem-tru2.pddl.

To highlight that a factored MA-PDDL is a result of factoring (and thus may contain :private dec-
larations), an additional requirement :factored-privacy was used. The grounding semantics of factors
using MCG is the same as in the unfactored variant, the only difference is in the definition of the :pri-
vate blocks, which do not need an explicit specification of the respective agent now, as the agent’s
capabilities are clearly defined by the partitioning to MA-PDDL factors.

A.3 Competition Rules

The full rules, used domains and results are published at the competition website5. Relation of the
centralized and distributed tracks of the CoDMAP competition to the existing IPC tracks is shown in
Figure A.3.1. Planners in the classical IPC tracks (both optimal and satisficing) take a pair of PDDL files
(domain, problem) as an input, run on a single machine/single-core and output a sequence of actions as
the plan. The multi-core track differs in that the planners may run on multiple cores/threads.

CoDMAP consists of two tracks:

5http://agents.fel.cvut.cz/codmap

188 APPENDIX A. THE COMPETITION OF DISTRIBUTED AND MULTI-AGENT PLANNERS

• Centralized Track, aiming for maximal compatibility with classical IPC and existing multi-agent
planners

• Distributed Track, aiming for a proper multi-agent setting.

A.3.1 Centralized Track
In the centralized track, the input of a planner is either a single unfactored MA-PDDL domain and
problem description, or a separate factored MA-PDDL domain and problem description for each agent in
the planning problem. The planner runs on a single machine, with no other restrictions or requirements
(the planner may be as well single-core or multi-core, distributed or not, one thread per agent or multiple
threads per agents, etc.). The provided input will have factoring and private separation according to MA-
STRIPS, but the planners are not required to adhere to it. This is in order to enable planners built on
different multi-agent planning models to enter the competition as well. The output of the planner must
be a sound linear plan.

We do not restrict any communication between planning agents (if any), nor do we restrict the
exchange of private information.

The rules are intentionally weak not to force the MA-STRIPS formalism and our view of commu-
nication and privacy on the competing planners. What we request is to accompany the planner with
a short paper explaining all the parameters of the factorization, privacy, inter-agent communication (if
any), architecture, etc., so they can be included in the final results and each participant can then derive
their own conclusions based on the similarity of their planner with other competitors.

The difference between the centralized track and classical multi-core track is mainly in the input
format (MA-PDDL) and also the planners are expected to somehow utilize the multi-agent nature of the
given problems.

A.3.2 Distributed Track
The distributed track is much more strict in terms of the rules, but it is rather experimental in the sense
that there are currently no planners capable of entering it without significant modification. The aim was
to provide a track the way we think a multi-agent planning competition should look like.

The planners have to be truly distributed as shown in Figure A.3.1. Each planning agent of such a
distributed planner receives its own factor of the factored MA-PDDL domain and problem, runs on its
own dedicated machine and outputs its own plan. The MA-PDDL factorization and privacy definition
must be adhered to. In most benchmarks, the factorization and privacy definition will follow the MA-
STRIPS model but does not necessarily have to.

The planning agents of a distributed planner can communicate over TCP-IP (IP addresses of other
planning agents will be known up-front), but they should avoid exchanging any private information (all
such cases should be clearly explained in the accompanying paper).

The output is a linear plan for each agent, which can all be executed in parallel. The actions of all
plans in each time step must not be in mutex (mutual exclusion).

A.4 Software Infrastructure
IPC provides an experimental platform for running and evaluating planners by various comparison cri-
teria. Unfortunately, the platform is not appropriate for multiagent planning requiring a distributed run
of planners on a cluster of homogeneous computers. The homogeneity requirement also complicates de-
ployment of the experiments to standard cluster solutions as Amazon HPC6 or MetaCentrum VO7, as

6Amazon High-Performance Computing: http://aws.amazon.com/hpc/
7Czech academic computational cluster: https://metavo.metacentrum.cz/en/about/index.html

A.5. SELECTED RESULTS 189

the assurances on the particular running computers, their physical location and therefore interconnection
cannot be easily guaranteed.

The cluster we used for comparing the submitted planners was consisting of 23 identical physical
machines interconnected by a 1Gbps network. Each machine had one quad-core AMD processor, at
3.9GHz (at 4.2GHz in case of utilization of only one core, respectively) and comprised 16GB RAM.
One half of RAM was dedicated to a RAM-disk containing the operating system (Ubuntu 14.04.2 LTS)
with the planners in their various configurations compiled and tested by the respective authors. The other
half of RAM, 8GB, was used by the operating system and one planning process solving one planning
task. The machines were interconnected into an IP subnet with a 10Gbps switch. The Ethernet cards in
the machines were 1Gbps and all the computers were collocated in one room.

Our cluster fulfilled the homogeneity requirement. As we were aware of possible issues with running
distributed systems authored by various teams on a cluster without any guarantees on up-time, a practical
requirement was an easy continuation of the experiments in case of breakdowns. As our time for the
experiments was rather limited, the second requirement was a good utilization of the machines. The last
requirement was to have a possibility to store all resulting and logging data from the planners which can
be used by the community to analyze the planners and their behavior in the competition environment.

The competition scheduler we have developed was a set of BASH scripts8 allocating which planner
configuration, domain, and problem will run on which machine (or more machines in the distributed
case). The scheduler ran on an additional “coordination” machine which did not host planners. In
contrast to the machines in the cluster, it had physical hard-drive to store the resulting and logging
data. The task generation process and the execution of the tasks were decoupled, so we could reuse one
particular randomized allocation of the problems to run the same allocation repeatedly in case of failure
of the experimentation process. Additionally, the scheduling script generated a list of successfully
run tasks which could be easily subtracted from the complete list to continue only with the pending
tasks. The validation of the plans was done on the coordination machine as well. In the centralized
case, the scheduler simply locked one machine for each task, therefore the utilization of the cluster
was not an issue. In the distributed track, the scheduler greedily allocated more than one machine and
synchronously run the planning agents of one multiagent planner. This approach utilized the cluster
well enough for the competition requirements and had a straightforward implementation.

A.5 Selected Results
Some of the competing planners were submitted to the competition in several different configurations.
For the centralized track, we have received 12 planners in 17 configurations prepared by 8 teams. For the
distributed track 6 configurations of 3 planners by 3 teams. Complete, detailed, and interactive results
can be found in the official competition web page9. In this section we present the results of planners
most relevant to the planners presented in this thesis, that is, MA-STRIPS compatible planners which
aim to present at least weak privacy by not communicating the private parts of the agent problems. This
excludes some of the best performing planners such as ADP [Crosby, 2015], SIW [Muise et al., 2015]
and CMAP [Borrajo and Fernández, 2015]. For full results, see the website of the competition. We
present the results of an additional summer run where some of the planners have fixed bugs and the
results include also the GPPP [Maliah et al., 2014] planner. The relevant planners are put in the context
of this thesis in Chapter 2 and are described in detail in the competition proceedings10.

The selected results of the centralized track are shown in Tables A.2. The table presents the coverage
of the planners on the competition domains, that is, the number of problem instances solved given the
time and memory limits. The results show that the best performing planner is MAPlan in the satisficing
configuration, that is, using the distributed FF heuristic from Section 4.3 and the DTG heuristic initially

8Bash is the GNU Project’s shell: http://www.gnu.org/software/bash/
9CoDMAP results: http://agents.cz/codmap/results

10http://agents.fel.cvut.cz/codmap/results/CoDMAP15-proceedings.pdf

190 APPENDIX A. THE COMPETITION OF DISTRIBUTED AND MULTI-AGENT PLANNERS

Domain bl
oc

ks
w

or
ld

de
po

t

dr
iv

er
lo

g

el
ev

at
or

s0
8

lo
gi

st
ic

s0
0

ro
ve

rs

sa
te

lli
te

s

so
ko

ba
n

ta
xi

w
ir

el
es

s

w
oo

dw
or

ki
ng

08

ze
no

tr
av

el

∑
20 20 20 20 20 20 20 20 20 20 20 20 240

Coverage
MAPlan 20 13 17 11 18 20 20 18 20 4 16 20 197
GPPP 12 11 14 20 20 19 18 9 20 3 18 20 184
PSM 20 17 20 12 18 12 18 18 0 0 19 13 167
MADLA 17 4 16 18 19 20 19 10 9 1 7 18 158
MH-FMAP 0 2 16 9 4 8 17 4 20 0 9 13 102
Quality
GPPP 10 11 8 20 20 17 17 9 18 3 18 19 168
MAPlan 16 9 11 8 11 19 19 11 16 4 14 11 150
PSM 17 15 18 9 14 11 8 16 0 0 15 10 133
MADLA 7 3 11 9 13 14 12 6 7 1 6 11 99
MH-FMAP 0 2 16 9 4 8 17 4 19 0 8 13 99
Time
MAPlan 19 12 14 6 15 19 19 17 20 4 16 16 176
GPPP 7 8 8 20 18 9 11 5 14 2 10 19 131
MADLA 10 2 12 15 15 15 14 6 7 1 4 13 114
PSM 9 12 17 7 9 5 12 11 0 0 13 7 103
MH-FMAP 0 1 12 3 2 3 7 2 11 0 4 9 53

Table A.2: Selected CoDMAP centralized track coverage, quality, and planner speed results. The
quality score (IPC Score) was computed as Q/Q* where Q is the cost of given solution and Q* is the
cost of the best solution found by any of the planners (including those not included). The time score
(IPC Agile Score) was computed as T/T* where T is the time of given planner and T* is the time of the
best planner (including those not included).

A.5. SELECTED RESULTS 191

Domain bl
oc

k.

de
po

t

dr
iv

er
.

el
ev

at
.

lo
gi

st
.

ro
v.

sa
t.

so
k.

ta
xi

w
ir

e.

w
oo

d.

ze
no

. ∑
20 20 20 20 20 20 20 20 20 20 20 20 240

Coverage
PSM-VRD 20 16 20 5 16 18 13 17 20 0 19 16 180
MAPlan/FF-DTG 14 10 18 9 16 18 19 14 19 4 14 19 174
MH-FMAP 0 2 18 9 4 8 18 4 20 0 8 16 107
PSM-VR 12 1 16 2 0 14 13 7 9 0 9 16 99
MAPlan/LM-Cut 2 5 15 2 4 1 2 13 19 3 3 6 75
MAPlan/MA-LM-Cut 1 2 9 0 5 1 4 4 14 2 4 6 52
Quality
PSM-VRD 17 15 16 4 15 12 5 13 16 0 17 10 140
MAPlan/FF-DTG 7 6 12 6 13 18 16 10 15 4 13 15 135
MH-FMAP 0 2 17 8 4 8 18 4 17 0 7 15 100
MAPlan/LM-Cut 2 5 15 2 4 1 2 13 19 3 3 6 75
PSM-VR 11 1 14 1 0 9 5 6 6 0 8 10 72
MAPlan/MA-LM-Cut 1 2 9 0 5 1 4 4 14 2 4 6 52
Time
MAPlan/FF-DTG 14 9 17 8 13 18 19 13 19 2 9 18 159
PSM-VRD 14 14 14 4 14 8 6 12 15 0 18 8 127
MH-FMAP 0 1 11 4 2 3 7 1 10 0 4 10 52
MAPlan/LM-Cut 1 3 10 1 3 0 1 10 14 3 2 5 52
PSM-VR 5 0 7 1 0 7 6 3 3 0 5 8 45
MAPlan/MA-LM-Cut 0 1 4 0 2 0 1 2 7 2 3 4 27

Table A.3: Complete CoDMAP distributed track coverage, quality, and planner speed results. The
quality score (IPC Score) was computed as Q/Q* where Q is the cost of given solution and Q* is the
cost of the best solution found by any of the planners. The time score (IPC Agile Score) was computed
as T/T* where T is the time of given planner and T* is the time of the best planner.

proposed in [Torreño et al., 2014] and reimplemented by us (as described in Section 4.4.4). The MADLA
Planner performs competitively only in the loosely coupled domains such as rovers, but it is important
to state that the planner was not improved by any means for the competition and was exactly in the same
state as for the original publications [Štolba and Komenda, 2014, 2017]. The PSM planner performs
also reasonably well and underperformed significantly only on two domains due to a bug which was
fixed only after the summer run.

Moreover, the Table A.2 shows the results for quality of the plans. The best performing planner is
GPPP but especially PSM outperforms it on a number of domains. Finally, MAPlan dominates the com-
parison of speeds of the planners. Except for the elevators domain where it is significantly outperformed
by the GPPP planner, MAPlan outperforms or matches all other planners on all other domains.

The complete results of the distributed track are shown in Table A.3, including all configurations and
the two optimal MAPlan configurations. Unlike the centralized track, the best performing planner in the
distributed track in terms of both coverage and quality is the PSM planner. The best performing planner
in terms of time is MAPlan. In the distributed track, the extensive communication of the MAD-A* style
search and distributed heuristics caused MAPlan to perform slightly worse in terms of coverage. The
quality is most probably due to the use of LAMA [Richter and Westphal, 2010] as a local planner in
PSM which optimizes for quality, whereas the search in MAPlan is purely greedy best-first search with

192 APPENDIX A. THE COMPETITION OF DISTRIBUTED AND MULTI-AGENT PLANNERS

an inadmissible heuristic.
An interesting observation is that the MAPlan optimal variant using projected LM-Cut outperforms

significantly the distributed variant (MA-LM-Cut) on all metrics. This is due to the intensive communi-
cation of the distributed LM-Cut variant and this result also corresponds to the results showing superior
performance of the distributed potential heuristics (see Section 6.6.2) for details.

A.6 Summary
The first international Competition of Distributed and Multi-Agent Planners has attracted a surprisingly
large number of participants, thus successfully becoming a thorough and nearly complete comparison
of existing multi-agent planning systems compatible with the MA-STRIPS model. Although the more
populated centralized track was rather permitting in its assumptions, the key motivations of the compe-
tition were satisfied. MA-PDDL acted as the base language of the competition, allowing comparisons
of various multi-agent planners. The used benchmarks (especially the new wireless domain) were chal-
lenging even for centralized state-of-the-art multi-agent planners. Based on positive feedback from the
planning community, we conclude our effort to promote multi-agent planning in the wider research
community was successful as well.

Future directions for the competition can take advantage of the extensibility of the MA-PDDL lan-
guage. An obvious direction is to use the looser privacy definition allowed by MA-PDDL and MCG and
propose planning problems with complex privacy requirements, which would not be able to formalize
using the MA-STRIPS privacy definition. A significant part of this extension would also allow private
goals. A partitioning related extension is to allow joint actions (actions which have to be performed
by two or more agents at the same time). It is an interesting research question whether transforma-
tion or inherent tackling of both private goals and joint-actions is practically better. Probably more
distant extensions could follow directions stemming from classical IPC tracks, be it temporal planning,
or research in decision making in a competitive or adversarial multi-agent environment. Following
multi-agent competitions could shed light on these questions and research topics.

The privacy itself is a challenging task for the future IPC track organization. If the organizers are
to enforce some degree of privacy preservation, they could either trust the competitors as we did, or
they would need to use some methods to measure privacy leakage (e.g., as described in Chapter 7).
Measuring privacy leakage in a competition would be a major endeavor as the techniques presented in
this thesis assumed knowledge of the algorithm, which cannot be expected in the competition. Moreover,
the planners would probably have to be forced to use a given communication protocol, which could then
be used for the analysis.

CoDMAP aimed to serve as a proof-of-concept prototype of a multi-agent competition showing
good direction and viability similarly to IPC seventeen years ago. We are highly confident that the
way is now clear to make CoDMAP a fully-fledged multi-agent track of the next official International
Planning Competition (IPC).

Appendix B

Publications

Related Publications
This section lists the author’s publications related to the topic of this thesis. The number in parentheses
shows the contribution of the author of the thesis.

Articles in journals, with IF:

1. M. Štolba, A. Komenda, “The MADLA Planner: Multi-Agent Planning by Combination of Dis-
tributed and Local Heuristic Search”, Artificial Intelligence Journal, In Press1, 2017. IF: 4.80 (70 %)

2. M. Štolba, J. Tožička, and A. Komenda, “Quantifying Privacy Leakage in Multi-Agent Planning”,
ACM Transactions on Internet Technology, vol. In Press, 2017. IF: 1.49 (70 %)

3. A. Komenda, M. Štolba, D. L. Kovacs, “The International Competition of Distributed and Multi-
agent Planners (CoDMAP)”, AI Magazine, vol. 37, iss. 3, pp. 109-115, 2016. IF: 0.81 (33 %)

4. A. Torreño, E. Onaindia, A. Komenda, M. Štolba,”Cooperative Multi-Agent Planning: A Sur-
vey”, ACM Computing Surveys, In Press, 2017. IF: 6.75 (25 %)

In proceedings, indexed by WoS:

1. M. Štolba, J. Tožička, and A. Komenda. “Secure Multi-Agent Planning Algorithms.” In Proceed-
ings of the 22nd European Conference on Artificial Intelligence (ECAI), pp. 1714–1715, 2016.
(40 %)

2. J. Tožička, A. Komenda, and M. Štolba. "ε-Strong Privacy Preserving Multiagent Planner by
Computational Tractability." in Proceedings of the 8th International Conference on Agents and
Artificial Intelligence (ICAART), pp. 51-57, 2017. (10 %)

In proceedings, indexed by Scopus:

1. J. Tožička, M. Štolba, and A. Komenda. "The Limits of Strong Privacy Preserving Multi-
Agent Planning." in Proceedings of the 27th International Conference on Automated Planning
and Scheduling (ICAPS), 2017. (40 %)

1DOI: https://doi.org/10.1016/j.artint.2017.08.007

193

194 APPENDIX B. PUBLICATIONS

2. M. Štolba, D. Fišer, and A. Komenda. "Potential Heuristics for Multi-Agent Planning." in Pro-
ceedings of the 26th International Conference on Automated Planning and Scheduling (ICAPS),
pp. 308-316, 2016. (45 %)

3. M. Štolba, A. Komenda, and D. L. Kovacs. “Competition of Distributed and Multiagent Planners
(CoDMAP).” In Proceedings of the 30th AAAI Conference on Artificial Intelligence (What’s Hot
Track), 2016. (33 %)

4. M. Štolba, D. Fišer, and A. Komenda. “Admissible Landmark Heuristic for Multi-Agent Plan-
ning.” In Proceedings of the 25th International Conference on Automated Planning and Schedul-
ing (ICAPS), pp. 211– 219, 2015. (50 %)

5. M. Štolba and A. Komenda. “Relaxation Heuristics for Multiagent Planning.” In 24th Interna-
tional Conference on Automated Planning and Scheduling (ICAPS), 2014. (65 %)

In proceedings:

1. M. Štolba, J. Tožička, and A. Komenda. “Secure Multi-Agent Planning.” In Proceedings of the
1st International Workshop on AI for Privacy and Security (ACM), pp. 11, 2016. (40 %)

2. M. Štolba and A. Komenda. “Computing Multi-Agent Heuristics Additively.” In Proceedings of
the 4th Workshop on Distributed and Multi-Agent Planning (DMAP), 2016. (80 %)

3. D. Fišer, M. Štolba, and A. Komenda. “MAPlan.” In Proceedings of the Competition of Dis-
tributed and Multi-Agent Planners (CoDMAP), pages 8–10, 2015. (5 %)

4. M. Štolba and A. Komenda. “MADLA: Planning with Distributed and Local Search.” In Pro-
ceedings of the Competition of Distributed and Multi-Agent Planners (CoDMAP), pages 21–24,
2015.(80 %)

5. M. Štolba, D. Fišer, and A. Komenda. “Comparison of RPG-based FF and DTG-based FF Disrt-
ibuted Heuristics.” In Proceedings of the 3rd Workshop on Distributed and Multi-Agent Planning
(DMAP), 2015. (45 %)

6. M. Štolba, A. Komenda, and D. L. Kovacs. "Competition of Distributed and Multiagent Planners
(CoDMAP)." In Proceedings of the Workshop on International Planning Competition (WIPC),
pp. 24, 2015. (41 %)

7. M. Štolba and A. Komenda. “Fast-Forward Heuristic for Multiagent Planning.” In Proceedings
of the 1st Workshop on Distributed and Multi-Agent Planning (DMAP), pp. 75–83, 2013. (65 %)

Unrelated Publications
This section lists the author’s publications unrelated to the topic of this thesis.

In proceedings, indexed by Scopus:

1. M. Selecký, M. Štolba, T. Meiser, M. Čáp, A. Komenda, M. Rollo, J. Vokřínek, and M. Pě-
chouček, “Deployment of multi-agent algorithms for tactical operations on uav hardware (demon-
stration),” in Proceedings of International Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2013), 2013. (12.5 %)

195

Citations
Below we list all publications that received at least two citation (excluding auto-citations). The cita-
tion count (also excluding auto-citations) for each publication was obtained from the Google Scholar
database on 12.9.2017.

1. M. Štolba, A. Komenda, and D. L. Kovacs. "Competition of Distributed and Multiagent Planners
(CoDMAP)." In Proceedings of the Workshop on International Planning Competition (WIPC),
pp. 24, 2015. (13 citations)

2. M. Štolba and A. Komenda. “Relaxation Heuristics for Multiagent Planning.” In Twenty-Fourth
International Conference on Automated Planning and Scheduling (ICAPS), 2014. (9 citations)

3. M. Štolba, D. Fišer, and A. Komenda. “Admissible Landmark Heuristic for Multi-Agent Plan-
ning.” In Proceedings of the 25th International Conference on Automated Planning and Schedul-
ing (ICAPS), pp. 211– 219, 2015. (5 citations)

4. M. Štolba and A. Komenda. “Fast-Forward Heuristic for Multiagent Planning.” In Proceed-
ings of the 1st Workshop on Distributed and Multi-Agent Planning (DMAP), pp. 75–83, 2013.
(5 citations)

5. M. Štolba, D. Fišer, and A. Komenda. “Comparison of RPG-based FF and DTG-based FF Disrt-
ibuted Heuristics.” In Proceedings of the 3rd Workshop on Distributed and Multi-Agent Planning
(DMAP), 2015. (2 citations)

6. M. Štolba and A. Komenda. “MADLA: Planning with Distributed and Local Search.” In Pro-
ceedings of the Competition of Distributed and Multi-Agent Planners (CoDMAP), pages 21–24,
2015. (2 citations)

196 APPENDIX B. PUBLICATIONS

Bibliography

Abdelrahaman Aly, Edouard Cuvelier, Sophie Mawet, Olivier Pereira, and Mathieu Van Vyve. Securely
solving simple combinatorial graph problems. In Proceedings of the International Conference on
Financial Cryptography and Data Security, pages 239–257. Springer, 2013.

Eyal Amir and Barbara Engelhardt. Factored planning. In Proceedings of the Eighteenth International
Joint Conference on Artificial Intelligence, Acapulco, Mexico, August 9-15, 2003, pages 929–935,
2003.

Christer Bäckström. Equivalence and tractability results for SAS+ planning. In Proceedings of the
3rd International Conference on Principles of Knowledge Representation and Reasoning (KR’92).
Cambridge, MA, October 25-29, 1992., pages 126–137, 1992.

Alice Bednarz, Nigel Bean, and Matthew Roughan. Hiccups on the road to privacy-preserving linear
programming. In Proceedings of the 8th ACM Workshop on Privacy in the Electronic Society, pages
117–120. ACM, 2009.

Daniel S. Bernstein, Robert Givan, Neil Immerman, and Shlomo Zilberstein. The complexity of decen-
tralized control of Markov decision processes. Mathematics of Operations Research, 27(4):819–840,
2002.

Marina Blanton, Aaron Steele, and Mehrdad Alisagari. Data-oblivious graph algorithms for secure
computation and outsourcing. In Proceedings of the 8th ACM SIGSAC Symposium on Information,
Computer and Communications Security, ASIA CCS ’13, pages 207–218, New York, NY, USA,
2013. ACM.

Avrim L Blum and Merrick L Furst. Fast planning through planning graph analysis. Artificial intelli-
gence, 90(1):281–300, 1997.

Dan Bogdanov. Sharemind: programmable secure computations with practical applications. PhD
thesis, 2013.

Dan Bogdanov, Sven Laur, and Jan Willemson. Sharemind: A framework for fast privacy-preserving
computations. In Proceedings of the European Symposium on Research in Computer Security, pages
192–206. Springer, 2008.

Blai Bonet and Hector Geffner. Planning as heuristic search: New results. In Proceedings of the
European Conference on Planning, pages 360–372, 1999.

Daniel Borrajo. Plan sharing for multi-agent planning. In Proceedings of the 1st ICAPS Workshop on
Distributed and Multi-Agent Planning (DMAP’13), pages 57–65, 2013.

Daniel Borrajo and Susana Fernández. MAPR and CMAP. In Proceedings of the Competition of
Distributed and Multi-Agent Planners (CoDMAP-15), pages 1–3, 2015.

197

198 BIBLIOGRAPHY

Craig Boutilier. Sequential optimality and coordination in multiagent systems. In Proceedings of the
14th International Joint Conference on Artificial Intelligence (IJCAI’99), volume 99, pages 478–485,
1999.

Ronen I. Brafman. A privacy preserving algorithm for multi-agent planning and search. In Proceedings
of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI, pages 1530–
1536, 2015.

Ronen I. Brafman and Carmel Domshlak. Factored planning: How, when, and when not. In Proceedings
of the 21st National Conference on Artificial Intelligence (AAAI), volume 6, pages 809–814, 2006.

Ronen I. Brafman and Carmel Domshlak. From one to many: Planning for loosely coupled multi-agent
systems. In Proceedings of the 18th International Conference on Automated Planning and Scheduling
(ICAPS’08), pages 28–35, 2008.

Christelle Braun, Konstantinos Chatzikokolakis, and Catuscia Palamidessi. Quantitative notions of
leakage for one-try attacks. Electronic Notes in Theoretical Computer Science, 249:75–91, 2009.

Michael Brenner. A multiagent planning language. Workshop on PDDL, ICAPS’03, Trento, Italy, 2003.,
page 33, 2003.

Justin Brickell and Vitaly Shmatikov. Privacy-preserving graph algorithms in the semi-honest model.
In Proceedings of the International Conference on the Theory and Application of Cryptology and
Information Security, pages 236–252. Springer, 2005.

Thomas Bylander. The computational complexity of propositional STRIPS planning. Artificial Intelli-
gence, 69(1-2):165–204, 1994.

Mani K. Chandy and Leslie Lamport. Distributed snapshots: determining global states of distributed
systems. ACM Transactions on Computer Systems (TOCS), 3(1):63–75, 1985.

Daniel D. Corkill. Hierarchical planning in a distributed environment. In Proceedings of the Sixth
International Joint Conference on Artificial Intelligence, IJCAI 79, Tokyo, Japan, August 20-23, 1979,
2 Volumes, pages 168–175, 1979.

Matthew Crosby. ADP an Agent Decomposition Planner CoDMAP 2015. In Proceedings of the Com-
petition of Distributed and Multi-Agent Planners (CoDMAP-15), pages 4–7, 2015.

Matthew Crosby, Michael Rovatsos, and Ronald Petrick. Automated agent decomposition for classical
planning. In Proceedings of the 23rd International Conference on Automated Planning and Schedul-
ing (ICAPS’13), pages 46–54, 2013.

Joseph Culberson. Sokoban is PSPACE-complete. 1997.

Ivan Damgård and Jesper Buus Nielsen. Universally composable efficient multiparty computation from
threshold homomorphic encryption. In Proceedings of the Annual International Cryptology Confer-
ence, pages 247–264. Springer, 2003.

Mathijs de Weerdt and Brad Clement. Introduction to planning in multiagent systems. Multiagent and
Grid Systems, 5(4):345–355, 2009.

Mathijs De Weerdt, Adriaan Ter Mors, and Cees Witteveen. Multi-agent planning: An introduction to
planning and coordination. In Handouts of the European Agent Summer, 2005.

Rina Dechter. Constraint processing. Elsevier Morgan Kaufmann, 2003. ISBN 978-1-55860-890-0.

BIBLIOGRAPHY 199

Keith Decker. Distributed problem-solving techniques: A survey. IEEE Transactions on Systems, Man,
and Cybernetics, 17(5):729–740, 1987.

Keith Decker and Victor Lesser. Generalizing the Partial Global Planning Algorithm. International
Journal on Intelligent Cooperative Information Systems, 1(2):319–346, June 1992.

Edsger W. Dijkstra. A note on two problems in connexion with graphs. Numerische mathematik, 1(1):
269–271, 1959.

Yannis Dimopoulos, Muhammad A. Hashmi, and Pavlos Moraitis. µ-satplan: Multi-agent planning as
satisfiability. Knowledge-Based Systems, 29:54–62, 2012.

Patrick Doherty and Jonas Kvarnström. TALplanner: A temporal logic-based planner. AI Magazine, 22
(3):95–102, 2001.

Jannik Dreier and Florian Kerschbaum. Practical privacy-preserving multiparty linear programming
based on problem transformation. In Proceedings of IEEE 3rd International Conference on Privacy,
Security, Risk and Trust (PASSAT) and IEEE 3rd Third Inernational Conference on Social Computing
(SocialCom), pages 916–924, 2011.

Edmund H. Durfee. Distributed problem solving and planning. In Gerhard Weiß, editor, A Modern
Approach to Distributed Artificial Intelligence, chapter 3. The MIT Press, San Francisco, CA, 1999.

Edmund H. Durfee and Victor Lesser. Partial Global Planning: A coordination framework for dis-
tributed hypothesis formation. IEEE Transactions on Systems, Man, and Cybernetics, Special Issue
on Distributed Sensor Networks, 21(5):1167–1183, 1991.

Karel Durkota and Antonín Komenda. Deterministic multiagent planning techniques: Experimental
comparison (short paper). In Proceedings of the 1st ICAPS Workshop on Distributed and Multi-Agent
Planning (DMAP’13), pages 43–47, 2013.

Eric Fabre, Loïg Jezequel, Patrik Haslum, and Sylvie Thiébaux. Cost-optimal factored planning:
Promises and pitfalls. In Proceedings of the 20th International Conference on Automated Planning
and Scheduling (ICAPS’10), pages 65–72, 2010.

Boi Faltings, Thomas Léauté, and Adrian Petcu. Privacy guarantees through distributed constraint
satisfaction. In Proceedings of the International Conference on Intelligent Agent Technology, pages
350–358, 2008.

Richard Fikes and Nils Nilsson. STRIPS: A new approach to the application of theorem proving to
problem solving. In Proceedings of the 2nd International Joint Conference on Artificial Intelligence
(IJCAI’71), pages 608–620, 1971.

Daniel Fišer, Michal Štolba, and Antonín Komenda. MAPlan. In Proceedings of the Competition of
Distributed and Multi-Agent Planners (CoDMAP-15), pages 8–10, 2015.

Praveen Gauravaram. Security analysis of salt || password hashes. In Proceedings of the International
Conference on Advanced Computer Science Applications and Technologies (ACSAT), pages 25–30.
IEEE, 2012.

Daniel Gnad and Jörg Hoffmann. Beating lm-cut with hmax (sometimes): Fork-decoupled state space
search. In Proceedings of the 25th International Conference on Automated Planning and Scheduling
(ICAPS’15), pages 88–96, 2015.

Oded Goldreich. Towards a theory of software protection and simulation by oblivious rams. In Proceed-
ings of the Nineteenth Annual ACM Symposium on Theory of Computing, STOC ’87, pages 182–194,
New York, NY, USA, 1987. ACM.

200 BIBLIOGRAPHY

Oded Goldreich. Foundations of cryptography: volume 2, basic applications. Cambridge university
press, 2009.

Rachel Greenstadt, Jonathan P. Pearce, and Milind Tambe. Analysis of privacy loss in distributed con-
straint optimization. In Proceedings of The Twenty-First National Conference on Artificial Intelli-
gence (AAAI), pages 647–653, 2006.

Roberto Guanciale, Dilian Gurov, and Peeter Laud. Private intersection of regular languages. In Pro-
ceedings of the Twelfth Annual International Conference on Privacy, Security and Trust (PST), pages
112–120. IEEE, 2014.

Carlos Guestrin, Daphne Koller, and Ronald Parr. Multiagent planning with factored MDPs. In Pro-
ceedings of Advances in neural information processing systems, pages 1523–1530, 2002.

Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for the heuristic determination of
minimum cost paths. IEEE transactions on Systems Science and Cybernetics, 4(2):100–107, 1968.

Malte Helmert. Complexity results for standard benchmark domains in planning. Artificial Intelligence,
143(2):219–262, 2003.

Malte Helmert. The Fast Downward planning system. Journal of Artificial Intelligence Research, 26:
191–246, 2006.

Malte Helmert and Carmel Domshlak. Landmarks, critical paths and abstractions: What’s the differ-
ence anyway? In Proceedings of the 19th International Conference on Automated Planning and
Scheduling (ICAPS), pages 162–169, 2009.

Malte Helmert, Patrik Haslum, and Jörg Hoffmann. Flexible abstraction heuristics for optimal se-
quential planning. In Proceedings of the 17th International Conference on Automated Planning and
Scheduling (ICAPS’07), pages 176–183, 2007.

Jörg Hoffmann and Bernhard Nebel. The FF planning system: Fast plan generation through heuristic
search. Journal of Artificial Intelligence Research, 14:253–302, 2001. doi: 10.1613/jair.855.

Johan Holmgren, Jan A. Persson, and Paul Davidsson. Agent-based Dantzig-Wolfe decomposition. In
Agent and Multi-Agent Systems: Technologies and Applications, Lecture Notes in Computer Science,
pages 754–763. Springer Berlin Heidelberg, 2009.

Stanislaw Jarecki and Xiaomin Liu. Fast secure computation of set intersection. In Proceedings of the
7th International Conference Security and Cryptography for Networks (SCN), pages 418–435, 2010.

Loïg Jezequel and Eric Fabre. A#: A distributed version of A* for factored planning. In Proceedings of
the 51th IEEE Conference on Decision and Control, (CDC’12), pages 7377–7382, 2012.

Anders Jonsson and Michael Rovatsos. Scaling up multiagent planning: A best-response ap-
proach. In Proceedings of the 21st International Conference on Automated Planning and Scheduling
(ICAPS’11), pages 114–121, 2011.

Michael Katz and Carmel Domshlak. Implicit abstraction heuristics. Journal of Artificial Intelligence
Research, pages 51–126, 2010.

Henry A. Kautz. Deconstructing planning as satisfiability. In Proceedings of the National Conference
on Artificial Intelligence, volume 21, pages 1524–1526, 2006.

Marcel Keller and Peter Scholl. Efficient, oblivious data structures for mpc. IACR Cryptology ePrint
Archive, 2014:137, 2014.

BIBLIOGRAPHY 201

Emil Keyder and Héctor Geffner. Heuristics for planning with action costs revisited. In Proceedings of
the 18th European Conference on Artificial Intelligence (ECAI’08), pages 588–592, 2008.

Antonin Komenda and Peter Novak. Multi-agent plan repairing. In Decision Making in Partially Ob-
servable, Uncertain Worlds: Exploring Insights from Multiple Communities, Proceedings of IJCAI
2011 Workshop, pages 1–6, 2011.

Antonín Komenda, Michal Stolba, and Daniel L. Kovacs. The international competition of distributed
and multiagent planners (CoDMAP). AI Magazine, 37(3):109–115, 2016.

Kurt Konolige and Nils J Nilsson. Multiple-agent planning systems. In Proceedings of the First National
Conference on Artificial Intelligence (AAAI), volume 80, pages 138–142, 1980.

Daniel L. Kovacs. A multi-agent extension of PDDL3.1. In Proceedings of the 3rd Workshop on the
International Planning Competition (IPC), pages 19–27, 2012.

Jonas Kvarnström. Planning for loosely coupled agents using partial order forward-chaining. In Pro-
ceedings of the 21th International Conference on Automated Planning and Scheduling (ICAPS’11),
pages 138–145, 2011.

Ronghua Li and Chuankun Wu. An unconditionally secure protocol for multi-party set intersection. In
Proceedings of Applied Cryptography and Network Security, pages 226–236. Springer, 2007.

Nerea Luis and Daniel Borrajo. Plan merging by reuse for multi-agent planning. In Proceedings of the
2nd ICAPS Workshop on Distributed and Multi-Agent Planning (DMAP’14), pages 38–44, 2014.

Nerea Luis and Daniel Borrajo. PMR: Plan Merging by Reuse. In Proceedings of the Competition of
Distributed and Multi-Agent Planners (CoDMAP-15), pages 11–13, 2015.

Shlomi Maliah, Guy Shani, and Roni Stern. Privacy preserving landmark detection. In Proceedings of
the 21st European Conference on Artificial Intelligence (ECAI’14), pages 597–602, 2014.

Shlomi Maliah, Guy Shani, and Roni Stern. Privacy preserving pattern databases. In Proceedings of the
3rd Distributed and Multiagent Planning (DMAP) Workshop of ICAPS’15, pages 9–17, 2015.

Shlomi Maliah, Ronen I. Brafman, and Guy Shani. Privacy preserving LAMA. In Proceedings of the
4th Workshop on Distributed and Multi-Agent Planning, DMAP–ICAPS’16, pages 1–5, 2016a.

Shlomi Maliah, Ronen I. Brafman, and Guy Shani. Increased privacy with reduced communication
and computation in multi-agent planning. In Proceedings of the 4th Workshop on Distributed and
Multi-Agent Planning, DMAP–ICAPS’16, pages 106–112, 2016b.

Shlomi Maliah, Guy Shani, and Ronen I. Brafman. Online macro generation for privacy preserving plan-
ning. In Proceedings of the 26th International Conference on Automated Planning and Scheduling,
2016c.

Shlomi Maliah, Guy Shani, and Roni Stern. Stronger privacy preserving projections for multi-agent
planning. In Proceedings of the 26th International Conference on Automated Planning and Schedul-
ing, pages 216–220, 2016d.

Olvi L Mangasarian. Privacy-preserving linear programming. Optimization Letters, 5(1):165–172,
2011.

Drew McDermott, Malik Ghallab, Adele Howe, Craig Knoblock, Ashwin Ram, Manuela Veloso, Daniel
Weld, and David Wilkins. PDDL - the planning domain definition language. Technical Report TR-
98-003, Yale Center for Computational Vision and Control„ 1998.

202 BIBLIOGRAPHY

Christian Muise, Nir Lipovetzky, and Miquel Ramirez. MAP-LAPKT: Omnipotent Multi-Agent Plan-
ning via Compilation to Classical Planning. In Proceedings of the Competition of Distributed and
Multi-Agent Planners (CoDMAP-15), pages 14–16, 2015.

Dana Nau, Malik Ghallab, and Paolo Traverso. Automated Planning: Theory & Practice. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2004. ISBN 1558608567.

Raz Nissim and Ronen I. Brafman. Multi-agent A* for parallel and distributed systems. In Proceedings
of the 11th International Conference on Autonomous Agents and Multiagent Systems (AAMAS’12),
pages 1265–1266, 2012.

Raz Nissim and Ronen I. Brafman. Cost-optimal planning by self-interested agents. In Proceedings of
the 28th National Conference on Artificial Intelligence (AAAI), 2013.

Raz Nissim and Ronen I. Brafman. Distributed heuristic forward search for multi-agent planning. Jour-
nal of Artificial Intelligence Research, 51:293–332, 2014.

Raz Nissim, Ronen I. Brafman, and Carmel Domshlak. A general, fully distributed multi-agent planning
algorithm. In Proceedings of the 9th International Conference on Autonomous Agents and Multiagent
Systems (AAMAS’10), pages 1323–1330, 2010.

Frans A Oliehoek and Christopher Amato. A concise introduction to decentralized POMDPs. Springer,
2016. ISBN 978-3-319-28927-4.

Frans A. Oliehoek, Matthijs T. J. Spaan, Philipp Robbel, and João V. Messias. The MADP toolbox:
An open-source library for planning and learning in (multi-)agent systems. In Sequential Decision
Making for Intelligent Agents—Papers from the AAAI 2015 Fall Symposium, pages 59–62, November
2015.

Damien Pellier. Distributed planning through graph merging. In Proceedings of the 2nd International
Conference on Agents and Artificial Intelligence (ICAART 2010), pages 128–134, 2010. doi: 10.
5220/0002702601280134.

Benny Pinkas, Thomas Schneider, Gil Segev, and Michael Zohner. Phasing: Private set intersection
using permutation-based hashing. In Proceedings of the 24th USENIX Security Symposium (USENIX
Security 15), pages 515–530, Washington, D.C., 2015. USENIX Association.

Florian Pommerening and Malte Helmert. A normal form for classical planning tasks. In Proceedings of
the 25th International Conference on Automated Planning and Scheduling (ICAPS), pages 188–192,
2015.

Florian Pommerening, Malte Helmert, Gabriele Röger, and Jendrik Seipp. From non-negative to gen-
eral operator cost partitioning: Proof details. Technical Report CS-2014-005, University of Basel,
Department of Mathematics and Computer Science, 2014a.

Florian Pommerening, Gabriele Röger, Malte Helmert, and Blai Bonet. LP-Based heuristics for cost-
optimal planning. In Proceedings of the 24th International Conference on Automated Planning and
Scheduling (ICAPS), pages 226–234, 2014b.

Florian Pommerening, Malte Helmert, Gabriele Röger, and Jendrik Seipp. From non-negative to general
operator cost partitioning. In Proceedings of the 29th AAAI Conference on Artificial Intelligence,
pages 3335–3341, 2015.

Miquel Ramirez, Nir Lipovetzky, and Christian Muise. Lightweight Automated Planning ToolKiT.
URL http://lapkt.org/.

http://lapkt.org/

BIBLIOGRAPHY 203

Stefan Rass, Peter Schartner, and Monika Brodbeck. Private function evaluation by local two-party
computation. EURASIP J. Information Security, 2015:7, 2015.

Silvia Richter and Matthias Westphal. The LAMA planner: Guiding cost-based anytime planning with
landmarks. Journal of Artificial Intelligence Research, 39(1):127–177, 2010.

Gabriele Röger and Malte Helmert. The more, the merrier: Combining heuristic estimators for satis-
ficing planning. In Proceedings of the 20th International Conference on Automated Planning and
Scheduling (ICAPS’10), pages 246–249, 2010.

Jendrik Seipp, Florian Pommerening, and Malte Helmert. New optimization functions for potential
heuristics. In Proceedings of the 25th International Conference on Automated Planning and Schedul-
ing (ICAPS), pages 193–201, 2015.

Rashid Sheikh, Beerendra Kumar, and Durgesh Kumar Mishra. A distributed k-secure sum protocol for
secure multi-party computations. arXiv preprint arXiv:1003.4071, 2010.

Geoffrey Smith. On the foundations of quantitative information flow. In Proceedings of the 12th In-
ternational Conference on Foundations of Software Science and Computational Structures, pages
288–302, 2009.

Sarath Sreedharan, Yu Zhang, and Subbarao Kambhampati. A First Multi-agent Planner for Required
Cooperation (MARC). In Proceedings of the Competition of Distributed and Multi-Agent Planners
(CoDMAP-15), pages 17–20, 2015.

Michal Štolba and Antonín Komenda. Fast-forward heuristic for multiagent planning. In Proceedings of
the 1st ICAPS Workshop on Distributed and Multi-Agent Planning (DMAP’13), pages 75–83, 2013.

Michal Štolba and Antonín Komenda. Relaxation heuristics for multiagent planning. In Proceedings of
the 24th International Conference on Automated Planning and Scheduling (ICAPS’14), pages 298–
306, 2014.

Michal Štolba and Antonín Komenda. MADLA: Planning with distributed and local search. In Pro-
ceedings of the Competition of Distributed and Multi-Agent Planners (CoDMAP-15), pages 21–24,
2015.

Michal Štolba and Antonín Komenda. Computing multi-agent heuristics additively. In Proceedings of
the 4th Workshop on Distributed and Multi-Agent Planning, DMAP–ICAPS’16, 2016.

Michal Štolba and Antonín Komenda. The MADLA Planner: Multi-agent planning by combination of
distributed and local heuristic search. Artificial Intelligence, 2017.

Michal Štolba, Daniel Fišer, and Antonín Komenda. Admissible landmark heuristic for multi-agent
planning. In Proceedings of the 25th International Conference on Automated Planning and Schedul-
ing (ICAPS), pages 211–219, 2015a.

Michal Štolba, Antonín Komenda, and Daniel L. Kovacs. Competition of distributed and multiagent
planners (CoDMAP). Proceedings of the Workshop on the International Planning Competition
(WIPC-15), 24, 2015b.

Michal Štolba, Daniel Fišer, and Antonín Komenda. Potential heuristics for multi-agent planning. In
Proceedings of the 26th International Conference on Automated Planning and Scheduling, ICAPS’16,
pages 308–316, 2016a.

Michal Štolba, Antonín Komenda, and Daniel Kovacs. Competition of distributed and multiagent plan-
ners (CoDMAP). In Proceedings of the AAAI Conference on Artificial Intelligence, pages 4343–4345,
2016b.

204 BIBLIOGRAPHY

Michal Štolba, Jan Tožička, and Antonín Komenda. Secure multi-agent planning. In Proceedings of the
1st International Workshop on AI for Privacy and Security, pages 11:1–11:8. ACM, 2016c.

Michal Štolba, Jan Tožička, and Antonín Komenda. Secure multi-agent planning algorithms. In Pro-
ceedings of the 22nd European Conference on Artificial Intelligence (ECAI’16), pages 1714–1715,
2016d.

Michal Štolba, Jan Tožička, and Antonın Komenda. Quantifying privacy leakage in multi-agent plan-
ning. Transactions on Internet Technology (TOIT), 2017.

Tomas Toft. Primitives and applications for multi-party computation. Doctoral dissertation, University
of Aarhus, Denmark, 2007.

Tomas Toft. Solving linear programs using multiparty computation. Financial Cryptography and Data
Security, pages 90–107, 2009.

Tomas Toft. Secure data structures based on multi-party computation. In Proceedings of the 30th Annual
ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing, PODC ’11, pages 291–
292. ACM, 2011.

Alejandro Torreño, Eva Onaindia, and Óscar Sapena. FMAP: Distributed cooperative multi-agent plan-
ning. Applied Intelligence, 41(2):606–626, September 2014.

Alejandro Torreño, Óscar Sapena, and Eva Onaindia. MH-FMAP: Alternating global heuristics in
multi-agent planning. In Proceedings of the Competition of Distributed and Multi-Agent Planners
(CoDMAP-15), pages 25–28, 2015.

Alejandro Torreño, Eva Onaindia, and Oscar Sapena. An approach to multi-agent planning with in-
complete information. In Proceedings of the 20th European Conference on Artificial Intelligence
(ECAI’12), pages 762–767, 2012. doi: 10.3233/978-1-61499-098-7-762.

Alejandro Torreño, Eva Onaindia, and Oscar Sapena. FMAP: A heuristic approach to cooperative multi-
agent planning. In Proceedings of the 1st ICAPS Workshop on Distributed and Multi-Agent Planning
(DMAP’13), pages 84–92, 2013.

Alejandro Torreno, Oscar Sapena, and Eva Onaindia. Global heuristics for distributed cooperative
multi-agent planning. In Proceedings of the 25th International Conference on Automated Planning
and Scheduling (ICAPS), pages 225–233, 2015.

Jan Tožička, Jan Jakubuv, and Antonín Komenda. Generating multi-agent plans by distributed inter-
section of Finite State Machines. In Proceedings of the 21st European Conference on Artificial
Intelligence (ECAI’14), pages 1111–1112, 2014.

Jan Tožička, Jan Jakubuv, and Antonín Komenda. PSM-based planners description for CoDMAP 2015
competition. In Proceedings of the Competition of Distributed and Multi-Agent Planners (CoDMAP-
15), pages 29–32, 2015.

Jan Tožička, Jan Jakubuv, Antonín Komenda, and Michal Pechouček. Privacy-concerned multiagent
planning. Knowledge Information Systems, 48(3):581–618, 2016.

Jan Tožička, Antonín Komenda, and Michal Štolba. ε-strong privacy preserving multiagent planner
by computational tractability. In Proceedings of the 8th International Conference on Agents and
Artificial Intelligence, ICAART, pages 51–57, 2017a.

Jan Tožička, Michal Štolba, and Antonín Komenda. The limits of strong privacy preserving multi-
agent planning. In Proceedings of the 27th International Conference on Automated Planning and
Scheduling, ICAPS’17, 2017b.

BIBLIOGRAPHY 205

Menkes Van Den Briel, J Benton, Subbarao Kambhampati, and Thomas Vossen. An LP-based heuristic
for optimal planning. In Proceedings of the Principles and Practice of Constraint Programming–CP
2007, pages 651–665. Springer Berlin Heidelberg, 2007.

Roman Van Der Krogt. Quantifying privacy in multiagent planning. Multiagent and Grid Systems, 5
(4):451–469, 2009.

Andrew Yao. How to generate and exchange secrets. In Proceedings of the Foundations of Computer
Science, 1986., 27th Annual Symposium on, pages 162–167. IEEE, 1986.

Andrew C. Yao. Protocols for secure computations. In Proceedings of the 23rd Annual Symposium on
Foundations of Computer Science, SFCS, pages 160–164, 1982.

Makoto Yokoo, Edmund H Durfee, Toru Ishida, and Kazuhiro Kuwabara. The distributed constraint
satisfaction problem: Formalization and algorithms. IEEE Transactions on knowledge and data en-
gineering, 10(5):673–685, 1998.

	Introduction
	Problem Statement
	Research Objectives and Achievements
	Organization and Contributions

	Related Work
	Roots of Multi-Agent Planning
	MA-STRIPS-based Multi-Agent Planning
	MA-STRIPS-based Planners
	MA-STRIPS-based Heuristics

	Privacy in Multi-Agent Planning
	Secure Multiparty Computation
	Privacy in Related Fields
	Privacy in MAP
	Privacy-Preserving Planners and Heuristics

	Multi-Agent Planning
	The MA-STRIPS Formalism
	Views of the MA-STRIPS Problem
	Solution Concepts

	The MA-MPT Formalism
	Views of the MA-MPT Problem
	Solution Concepts

	Multi-Agent Planning Problem as a Transition System
	Introduction to Multi-Agent Planners and Heuristics
	Discussion on the Complexity of Planning
	Benchmark Domains

	Distributed Computation of Relaxation Heuristics
	Multi-Agent Fast-Forward Heuristic
	Agent Relaxed Planning Graph
	Distributed Relaxed Plan Extraction

	Recursive Distributed Relaxation Heuristics
	Distribution of the Additive and Max Heuristics
	Recursive Distribution of the Fast-Forward Heuristic

	Privacy-Preserving Set-Additive Fast-Forward Heuristic
	Evaluation
	Comparison of Relaxation Heuristics
	Effect of the Recursion Depth
	Comparison of the Projected and Privacy-Preserving Set-Additive FF
	Comparison of RPG-based and DTG-based Distributed FF

	Summary

	Combining Distributed and Local Heuristics in a Heuristic Search
	Heuristic Search and its Variants
	Heuristic Search
	Multi-Heuristic Search
	Multi-Agent Heuristic Search

	The MADLA Search
	Formal Description of the MADLA Search
	Properties of the MADLA Search
	Proof of Soundness
	Proof of Completeness
	Projected and Privacy-Preserving Set-Additive FF in the MADLA Search

	Evaluation
	Implementation of the MADLA Planner
	Comparison of the Building Blocks
	Detailed Analysis
	Comparison with a Centralized Planner
	Comparison with the State of the Art

	Summary

	Distributed Optimal Planning
	Distributed Admissible Max Heuristic
	Distributed Max Heuristic Algorithm
	Equality of Centralized and Global Max Heuristic

	Distributed Admissible Landmark Heuristic
	The LM-Cut Heuristic
	Distributed LM-Cut Heuristic
	Equality of Centralized and Distributed LM-Cut Heuristic

	Distributed Search with Additive Heuristics
	Distributed Potential Heuristics
	Potential Heuristics
	Potential Heuristics for Multi-Agent Planning
	Distributed Computation of Potentials

	Multi-Agent Cost Partitioning
	Cost Partitioning
	Optimal Cost Partitioning
	Approximate Optimal Cost Partitioning

	Evaluation
	Evaluation of the Distributed LM-Cut Heuristic
	Evaluation of the Distributed Potential Heuristics
	Evaluation of Multi-Agent Cost Partitioning

	Summary

	Privacy
	Formal Definition of Privacy in Multi-Agent Planning
	Cryptographic Assumptions
	Weak and Strong Privacy

	Quantifying Privacy Leakage
	Privacy Leakage
	Leakage Quantification in PP-MAP
	Sources of Leakage
	Leakage Estimate

	Privacy Analysis of Algorithms
	General Method for Search-based Algorithms
	MAFS and MAD-A*
	Secure-MAFS
	Relaxation Heuristics
	Potential Heuristics
	Multi-Agent Cost-Partitioning

	Theoretical Limits of Strong Privacy
	A Strong Privacy Preserving Planner
	The Limits of Strong Privacy Preserving MAP
	Strong Privacy Preserving Equivalence Classes

	Summary

	Conclusion
	The Competition of Distributed and Multi-Agent Planners
	The Aims of the Competition
	MA-PDDL
	Unfactored MA-PDDL
	Factored MA-PDDL

	Competition Rules
	Centralized Track
	Distributed Track

	Software Infrastructure
	Selected Results
	Summary

	Publications

