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Abstract 

Detection of ionizing radiation is an issue which affects many areas of a human 

life. Significant progress in detection capabilities was caused by the development of 

electronics in recent decades. This dissertation thesis, which deals with the design of the 

Multi-coincidence system of ionizing radiation detectors, follows this trend. 

The Multi-coincidence system of ionizing radiation detectors combines 

extraordinary technologies and due to using advanced electronics allows them to 

operate in a synchronous mode that brings new possibilities in radiation environment 

investigation, such as incoming direction or separation of particle types in a mixed 

radiation field. This dissertation thesis summarizes the development from the basic 

design, through hardware, firmware and software for user control as well as basic data 

processing. The functionality of the design is verified on a prototype and demonstrated 

by measurements whose results are also presented. 

The design is based on “sandwich” structure composed of two detection parts in 

closed geometry – a silicon pixel detector Timepix and a plastic scintillator covered by 

silicon photomultipliers. The pixel detector Timepix is a device with excellent 

parameters and unrivaled ability of detection and recognition of different types of 

radiation. The disadvantage is the detection material itself which does not allow to 

effectively detect certain types of radiation, such as neutrons. This is the domain of 

scintillation detectors. Recent optical sensors called silicon photomultipliers offers 

possibility for detecting of the scintillating light by small-size device. 

The Multi-coincidence system is a compact portable detection unit which can be 

used in applications where small dimensions are a significant requirement. Furthermore, 

it is insensitive to a magnetic field. Utilization of the system can be found in different 

areas from searching of radiation threats, through dosimetry to space weather 

monitoring. 
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Anotace 

Detekce ionizačního záření je aktuální problém a zasahuje do mnoha oblastí 

lidského života. Významný posun v možnostech detekce přinesl rozvoj elektroniky v 

posledních dekádách. V tomto směru pokračuje i tato dizertační práce, která se zabývá 

návrhem Multi-koincidenčního systému detektorů ionizačního záření. 

Multi-koincidenční systém detektorů ionizačního záření sdružuje výjimečné 

technologie a pomocí pokročilé elektroniky umožňuje jejich činnost v režimu, který 

přináší nové možnosti ve zkoumání prostředí s ionizačním zářením jako např. 

přicházející směr nebo rozlišení různých typů záření ve směsných polích. V této 

dizertační práci je shrnut vývoj zařízení od samotného návrhu, přes hardware, firmware 

i software, pro interakci s uživatelem a také základní zpracování dat. Návrh zařízení je 

ověřen na prototypu a demonstrován měřeními, jejichž výsledky jsou taktéž uvedeny. 

Návrh systému je založen na „sendvičové“ struktuře se dvěma detektory 

umístěnými ve vzájemné blízkosti - s křemíkovým pixelovým detektorem Timepix a 

plastickým scintilátorem pokrytým křemíkovými fotonásobiči. Pixelový detektor 

Timepix je zařízením se špičkovými parametry a bezkonkurenční schopností detekce a 

rozlišení různých typů záření. Nevýhodou je samotný detekční materiál, který z 

fyzikální podstaty neumožňuje účinnou detekci některých typů záření, jako například 

neutronů. V tomto ohledu vynikají plastové scintilační detektory. Nové optické senzory 

zvané křemíkové fotonásobiče nabízí možnost detekce scintilačního světla s velice 

malými nároky na velikost v porovnání s konvenčními fotonásobiči. 

Multi-koincidenční systém je kompaktní přenosné detekční zařízení, které může 

být použito v aplikacích, kde jsou malé rozměry jedním z významných požadavků. 

Navíc je necitlivý k magnetickému poli. Využití systému lze nalézt v různých oblastech 

od vyhledávání radiačních hrozeb, přes dozimetrii až po monitorování kosmického 

počasí. 
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1. Introduction and Thesis Overview 

Ionizing radiation is a common part of the environment we live in since the 

beginning of the universe. There has been massive progress in the exploration of 

mechanisms of ionizing radiation in the last century. Together with that new particles 

were discovered and the understanding of the structure of matter changed significantly. 

The effort was definitely not slacked down. Newly available technologies caused that 

detection and evaluation of the ionizing radiation is more effective and contributing and 

is used in many industry branches (material defectoscopy), in medicine (diagnostics and 

radio therapy), in security (airports, guarded buildings), in nuclear power plants and so 

on. Furthermore, wide knowledge about fundamental radiation types causes an increase 

in requirements. The exhaustive information about an unknown radiation field and 

particle processes leads to very complex devices employing different detection 

technologies because there is no ultimate detector which can effectively detect all types 

of particles. 

Especially neutrons can be considered as difficult to detect and to be separated 

from other particle types. They have no charge which would cause a direct interaction 

with matter by ionization. Their harmfulness or importance for fission processes make 

them attractive and challenging at the same time. Detection of the secondary radiation 

induced by a neutron field distorts the parameters of the primary particles. The simplest 

information is the presence of the radiation, then its type, energy, direction etc. At least 

energy and direction of incoming neutrons can’t be easily determined. 

The motivation of the thesis is to enhance the state-of-art technology for detection 

of neutrons and provide more complex information than is currently available. 

1.1. Research goals 

The goal of this thesis is to refine the methodology for detection and tracking of 

particles in the environment with the special attention given to neutrons. The 

improvement of the state-of-art technology is based on exploitation of advantages of 

scintillating and semiconductor detectors in one device. Following tasks are set out: 

 Design the structure which is able to detect, recognize and characterize different 

particle types. The main focus is devoted to position and directional 

detection. 

 Develop the electronic architecture for particle detection with an emphasis on 

scalability, interoperability and portability. Activation and synchronization 

of detection units is to be provided. 

 Prepare the algorithms for control and processing the measurements and 

detection evaluation. Elaborate on the coincidence technique and easy-to-

use solution. 

 Support the concept by the assembled device. Tune up the device performance 

and test and verify it by practical measurements with radiation sources. 
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1.2. Thesis structure 

Introductory chapters (2, 3, 4) of this thesis serve as theoretical background and 

provides general information about ionizing radiation, detectors and state-of-art 

technologies. Terms and principles important for the thesis project are pointed out. 

Chapter 5 is devoted to the introduction of the overall concept of the Multi-

coincidence system. 

Following chapters describe technical details of individual parts used in the design 

which are the direct contribution of the author. Chapter 6 describes the plastic 

scintillator and the silicon photomultipliers sensing the scintillation light. Chapter 7 

compares integrated solutions for a multi-channel readout of silicon photomultipliers. 

Chapter 8 is focused on the system employing the spectroscopic ASIC. Chapter 9 is 

devoted to the firmware of the FPGA. Chapter 10 shows the appearance of the designed 

prototype. Chapter 11 describes the acquisition software and the data processing tool. 

Last two chapters, number 12 and 13, summarize and compare results of 

measurements performed during the whole development. 
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2. Ionizing radiation 

Ionizing radiation is the radiation which is capable to ionize the surrounding 

material. The source of the ionizing radiation can be natural processes or human 

activities or instruments. The complex knowledge about the radiation is essential for 

estimation of threats. 

The ionizing radiation can be classified by many of its parameters. The 

combination of a type, energy and others influences the behavior in matter [1]. This 

work does not aim to the exhaustive definition of the types same as their detailed 

categorization. But it is appropriate to briefly mention the basic groups with pointing 

out the importance for this work. 

2.1. Heavy charged particles 

Heavy charged particles are protons, alphas and fission fragments. Common 

property is charge and mass of one atomic mass unit or greater. It makes heavy charged 

particles very reactive with matter through Coulombic forces. The effect is as high as 

heavy the particle is (fission fragments are most reactive). 

There are two processes to be mentioned. Both start with a heavy element such as 

uranium, polonium, americium, californium etc. The process of creation of the alpha 

particle can be described by the formula (1) and the fission fragment follows the 

formula (2) 

       
 

   
   

 
  (1) 

                
    

  (2) 

where X is the initial nuclear specie, Y,F1, F2 are the final species or fission 

fragments and Q is the amount of energy released by reaction. 

Energy of resulting alpha particles is always discrete and very well known so they 

are very often used for calibration of the detectors. On the other hand, fission products 

are created asymmetrically making their energy blurred. 

Other sources of heavy charged particles are accelerators. A container with gas 

such as hydrogen, oxygen, carbon dioxide and many others provides stable medium. 

Ionized gas is accelerated by an electric field so the energy of particles is very well 

defined and tunable. It is another way of detector calibration and it is very valuable for 

the wide range of possible conditions. 

Recoils are the last process of originating of heavy charged particles needed to be 

mentioned. A particle hits the lattice of the target material and transfers part of its 

energy to the bound particle which escapes the lattice and continues through the 

material. The energy of the escaped particle is dependent on the impact angle. This 

process needs to be stressed out because it is important for this work. Further details 

about that will be examined in the following chapters. 
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All heavy charged particles are highly interacting. The trajectory of the particle is 

straight because the high mass ratio. The energy of the particle is decreasing with the 

distance in the absorber. The maximum distance is lower for heavier absorbers and 

lower particle energy. The energy loss increases as the charged particle's momentary 

energy decreases. This behavior is described by Bragg curve. Empirical equations are 

determined, such as for alpha particle in the air (3) 

             

 

                              (3) 

where Rair is the particle range in centimeters and Eα is the alpha energy in MeV. 

The maximum distance for different particles, energies and absorbers can be 

obtained by special calculation tools. 

2.2. Light charged particles 

Light charged particles are electrons and positrons. Electrons are created by a beta 

decay of the relevant radioisotope and it applies analogically for positrons. This process 

can be described by the formula (4) 

       
  
     

 
   

 
 
  (4) 

where X and Y are the initial and final species and ν is the antineutrino. 

An energy spectrum of resulting beta particles is always continuous because the 

initial fixed decay energy is shared with a neutrino. 

The mass of a beta particle is equal with the mass of orbital electrons in the target 

material so the trajectory is significantly influenced by interactions. The range of 

penetration is almost always lower than the total particle trajectory. The straightness of 

the trajectory increases with the energy and in the lighter absorber. While the 

interactions has statistical basis, a number of particles going through the absorber is 

highly dependent on the absorber material and has an exponential distribution according 

to the equation (5) 

               (5) 

where N(x) is the number of electrons leaving the absorber, N(0) is the number of 

electrons entering the absorber, n is the absorption coefficient and x is the material 

thickness. 

From the point of view of this work, this group of ionizing radiation is the less 

interesting so details can be fairly omitted. 

2.3. Electromagnetic radiation 

Electromagnetic radiation is the set of charge-less radiation with extensive 

categorization. Because of the principle of the corpuscular-wave dualism it could be 
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considered as gamma particles or gamma rays. The gamma radiation is generated during 

de-excitation of products of decays, e.g. beta decay, fissions, during annihilation of a 

positron or when acceleration affects electrons (bremsstrahlung, synchrotron radiation). 

Excitation can be caused even externally such as X-ray fluorescence. 

The energy spectrum of electromagnetic radiation can be both discrete and 

continuous depending on the process of generation. Discrete energies have, for instance, 

decays or annihilations. 

There are three groups of interaction mechanisms of electromagnetic radiation 

according to its energy: 

 Photoelectric absorption – low energy radiation interacts to atom, the whole 

energy is deposited 

 Compton scattering – reaction of middle energy radiation with an electron, the 

angle of the collision defines the amount of transferred energy 

 Electron-positron pair production – radiation of energy higher than 1.02 MeV 

It should be noted that the interaction of the electromagnetic radiation has 

statistical basis. The interaction mechanisms are competitive to each others. 

Furthermore, the absorber material affects the processes (see Figure 1). 

 

Figure 1: The graph shows the contributions of the three competitive processes of interaction in matter. 

The probability of the individual process is highly dependent on the energy [1]. 

Electromagnetic radiation is a significant part of a natural background. 

Unfortunately, it is generated by excitation of the surrounding material. In the majority 

of experiments it is unwanted effect that needs to be suppressed. It applies for this work 

too. The solution for gamma recognition and separation is described in following 

chapters. 

2.4. Neutrons 

Neutrons are particles with no charge and mass similar to protons. Their neutrality 

makes them very difficult to detect. Binding energy of a neutron is higher than the 

common natural excitation. Therefore neutrons are rare in comparison to gammas. 
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One of the production processes of neutrons is fission of nuclei of heavy elements, 

such as californium, see equation (2). Another source of neutrons is interaction of 

particles. This can be further distinguished according to the initiating particle type like 

alpha, gamma or accelerated ions. The very common examples of the first group are 

laboratory radioisotope sources AmBe or PuBe. The second one is preferred because it 

does not contribute by own gamma radiation although it has slightly lower yield per unit 

mass. The neutron generation mechanism is illustrated by equation (6) 

      
      

 
 

  
 
  (6) 

Higher neutron energies can be obtained by accelerating incident particles. Two 

significant reactions of deuterium have to be mentioned, see formula (7) and (8). They 

are used in even portable and tunable neutron generators. 

     
       

 
 
 

 
  (7) 

     
       

 
 
 

 
  (8) 

Energy spectra of neutrons are continuous for fission and alpha interactions and 

discrete or almost discrete for gamma and accelerated particles interactions. In 

principle, accelerated particle induced neutrons can be slightly tuned in terms of energy 

and flux. 

Neutron radiation can be divided in groups according to the energy from ultra-

cold (lowest energy) to ultra-fast (highest energy). This work is focused on region of 

fast neutrons with energies in order of MeV which is expected range for fission 

products. The introduced AmBe source and D-T reaction can be used and mentioned in 

following chapters of this work. 

An interaction of the neutrons in matter is highly dependent on the energy. A 

different detection approach is needed for specified energy ranges because the cross 

section can vary by factor of 1000. Because of the absence of the charge, neutrons can’t 

be detected directly similarly to electromagnetic radiation. Low energy neutrons are 

mainly detected by nuclear reactions of conversion materials like 
6
Li, 

10
B or 

157
Gd. The 

secondary radiation (gamma, heavy charged particles) is detected. The energy depends 

on the reaction Q-value. 

High energy neutrons have high cross section of elastic scattering with light 

materials where the recoiled particles are created. The transformation itself inserts 

uncertainty of the angle of collision so the transferred energy has statistical basis. The 

energy of the recoiled particle follows equation (9) 

       
     

        
       (9) 

where ER is the energy of the recoiled particle, EN is the energy of the primary 

neutron, MN is the neutron mass, MR is the mass of the target material and φ is the 

interaction angle. 

The ratio of the neutron mass (MN) and the mass of target material (MR) limits the 

highest possible transferred energy. Hydrogen based materials have mass ratio close to 
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one so full range of energies can be obtained (from 0 to EN). Only fraction of energy is 

transferred in heavier targets. 
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3. Ionizing radiation detectors 

A detector of ionizing radiation is a device capable to interact with the radiation 

and provides information about that interaction. There are plenty of types, design 

solutions, processing algorithms and output responses of the detectors. Huge effort has 

been spent to obtain the best detection tool. Unfortunately, properties of different 

radiation types do not allow to find the ultimate solution. Brief classification of the most 

common detectors is following: 

 Gas chambers – They are containers with gas filling of particular conditions, 

such as pressure. Incident particle ionizes the originally neutral gas. It 

increases the conductivity of the gas. The electric field caused by the 

applied voltage determines the behavior of the chamber. Advantage of gas 

chambers is possibility to make high detection volumes. Disadvantages are 

necessity of gas encapsulation, granularity and slow response. 

 Scintillation detectors – A scintillator is a material which is able to convert 

particle energy to low energy photons, simply said the light. Parameters like 

light yield, decay time, emission wavelength etc. of the light pulse are 

influenced by the composition of the material. The amount of scintillation 

light corresponds to the absorbed energy. 

- Inorganic crystals (NaI:Tl, LaBr, YAP, LuAG etc.) withstands higher 

temperatures, have higher light yield, higher detection efficiency because 

of the higher density, are often hygroscopic, demanding for production of 

defect-free lattice and suffer from long afterglow. 

- Organic crystals (anthracene, stilbene, naphthalene), organic liquids (toluene, 

benzene with additives) and plastics (polyvinyltoluene and polystyrene 

with additives) has fairly high light yield and very quick response 

without significant afterglow. Especially plastics are attractive for high 

volumes, simple mechanical processing and price. 

 Solid-state detectors – These detectors are made from solid material, very often 

semiconductors. So this group is also called semiconductor detectors. The 

most used semiconductors are silicon and germanium. Recently, the 

manufacturing process was improved for binary semiconductors - gallium 

arsenide and cadmium telluride. High purity germanium detectors have 

extraordinary energy resolution. They are used in sensitive laboratory 

instruments like large volume gamma spectrometers. The price for the best 

performance is a need of cooling (liquid nitrogen is recently replaced by 

Peltier cooling). Silicon is used as a standard material for its well-handled 

technology. It can be used in room temperature. Different shapes and 

thicknesses with various structures can be prepared. Disadvantage is lack of 

large volume solutions and relatively low density making the silicon 

transparent for electrons and high energy gammas. This space is covered by 

GaAs and CdTe.  

Development of ionizing radiation detectors is still ongoing as new technological 

capabilities arise. It is desirable to be familiar with novel technologies. In this work two 
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types of detectors and detection principles are used: a semiconductor silicon detector 

and a scintillation detector. 

3.1. Detection structure optimization 

Until now the detector was considered mainly from a material point of view. 

Detection characteristics are dependent on mechanical structure too – size, thickness, 

segmentation, surface finishing etc. There are two different detection principles which 

have to be considered separately when the detector improvement is desired. 

Scintillation materials convert the deposited energy to the light which spreads 

isotropically (exception can be found for crystals). In the most cases the light is not the 

quantity that is directly processed. The real system has to employ some kind of 

photosensor which converts the light to an electrical signal. It is not possible to 

influence the trajectory of the light so the amount of collected light gets lower 

proportionally to the area covered by a photosensitive device. Some improvement can 

be achieved by modification of unused surface by application of reflective of refractive 

layer. On the contrary, the transparency between the scintillation material and the 

photosensor is to be as good as possible. An optical liquid/gel is used to minimize the 

difference in refractive indexes. Furthermore, high volumes have negative impact on the 

light collection because of the limited transparency of the material. Final shape of the 

scintillator and possibly segmentation is always dependent on application needs. 

Semiconductor detectors, often with a p-n junction, have electrodes to apply the 

bias voltage. The impacting particle generates the charge that is directly sensed by 

dedicated electronic circuits. The collection time decreases with the higher bias voltage 

same as probability of charge recombination during that time. The quality (purity, 

lattice disorders) of the silicon is currently not the issue. On the other hand, the very 

well-handled manufacturing process allows to create advanced structures. The 

granularity of the detector in order of micrometers is achievable. Position and direction 

sensitivity is then available. According to the segmentation the following groups can be 

determined: 

 Single pad – Only one sensitive element is in the volume. Size can vary from 

sub-millimeter values to more than centimeters. It is simple to operate, only 

one bias and one signal path is needed. Spectroscopic resolution can get 

worse with larger area (effect of larger capacity). Can be considered as 

position sensitive when the area is small. 

 Strip detector – Strip shaped elements are integrated to one volume. The total 

sensitive area is divided same as the capacity of the individual element so 

the noise is reduced. The length-width ratio is up to the use. Each sensitive 

element needs to have own signal path to preserve position information. The 

precision depends mainly on strip pitch (spacing factor). Assuming the pitch 

small enough, the charge sharing effect (see Figure 2) and induction effect 

appears. The advanced multi-channel electronic is needed to take advantage 

of the structure. The possibility to situate the electronics aside the sensitive 

volume predestine it to use it in the telescopic configuration. 
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Figure 2: An illustration of the deposition of the charge depending on the particle trajectory angle (left) 

and the position of interaction (right) [2]. The particle going through the detector can deposit charge 

which is collected into more than one strip. Interpolation and fit of the charge distribution improve the 

spatial resolution. 

 Pixel detector – The matrix of elements is the basis of pixel detectors. The size 

of pixels can go down to tens of micrometers. In comparison to strip 

detectors, 2D position information can be obtained. The effect of charge 

sharing and induction is registered too. The concept of a matrix predestines 

utilization of integrated electronics in close contact to the detector (see 

Figure 3). The closed geometry and usually small pixel size further decrease 

the noise. On the other hand, the electronics are exposed to the same 

radiation field which can be harmful in high fluxes. Current abilities of 

electronics industry allow to prepare sophisticated processing for each pixel. 

 

Figure 3: A schematic view of a pixel detector is depicted. The pixelated sensor is attached to readout 

electronics. The electrical contact is provided by bump-bonding technology [2]. 

Semiconductor pixel detectors are the most capable detection structures so far. 

They offer high granularity and high level of integration allowing find the very compact 

solution for radiation detection. The pixel detector is one of the fundaments of this 

work.
1
 

                                                 

1
 The author finds appropriate to be noted that he devoted not strictly to pixel detectors. He got 

acquainted with single pads and strip detectors during the PhD study. However these projects are not 

related to this thesis ([NT1], [NI1], [NF2], [NF4] or [NF7]). 
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3.2. Processing of the signal from the detector 

An inseparable part of the detection system is signal acquisition, processing and 

reconstruction. Semiconductor detector provides the electric charge proportional to the 

absorbed energy. The first stage of a signal path is a preamplifier. This part is not 

omissible and is structurally almost same for all semiconductor detectors. It is a high 

input impedance circuit with a gain. From electrotechnical point of view, it is a 

transimpedance amplifier with a FET at the input. This circuit is susceptible to noise so 

the design has to take it into account. The output signal from the preamplifier is a low 

impedance signal and can be handled as ordinary analog signals. 

Different situation occurs when a scintillation detector is employed. Scintillation 

light is proportional to the absorbed energy. An optical sensor collects the light and 

converts it to an electrical signal. Following types of optical sensors are mainly used: 

 Photomultiplier (PMT) – A conventional photosensor exploiting multiplication 

effect of accelerated electrons. A bias voltage in order of hundreds volts is 

required. However the size of a PMT gets smaller it still occupies few cubic 

centimeters. A photomultiplier usually provides high enough voltage pulses 

so no special impedance matching is required. Length of a pulse can reach 

few nanoseconds that could be challenging for following stage. 

 Avalanche photodiode (APD) – It is a kind of photodiode working in the 

avalanche region. It has lower gain in comparison to a PMT. A lower bias is 

needed to reach the avalanche regime. Complex electronics are used for a 

signal readout and avalanche quenching. In principle, a small size and 

integrable device can be made. 

 Silicon photomultiplier (SiPM) – A novel type of photosensor was developed as 

a descendant of an ADP. It overcomes the low gain of the APD and 

implements a simple resistor-based quenching circuit. It further decreases a 

bias voltage to order of tens of volts. The output signal can be sensed as a 

voltage pulse on a load resistor. Its resistivity together with an operation 

point can increase the signal to comfortable values. It is the favorable 

solution for compact devices because it is component-size sensor. 

In some cases there can be desired to use some additional circuit after an optical 

sensor such as an amplifier or a buffer. The requirement results from specific needs of 

the application. 

The following second stage is mutual for both semiconductor and scintillation 

detectors. The shaping amplifier provides the additional gain and simultaneously limits 

the signal bandwidth that results in the increased signal-to-ratio. Signal shape can be 

changed significantly. Both parameters are strictly application-specific depending on 

the input signal type and the output signal processing. The second stage is to be a linear 

circuit. 

The last acquisition part provides the desired information. Based on the signal 

from a detector and a predefined threshold the counting can be performed as the 

simplest processing. A conversion of the analog amplitude to a digital form by a 

multichannel analyzer creates the spectrum. Distribution of the radiation energies gives 
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better information about the radiation field. Complex structures enrich the spectroscopic 

information about segment address, timestamp of the event etc. 

The processing chain influences the overall performance of the system. Following 

terms can be used to describe the detection precision and limiting factors. Precondition 

for the highest optimization of the detection system is to be limited mainly by the 

detector, not the acquisition part. 

Resolution – It defines the precision of the detection. The response to the 

monoenergetic radiation is limited by the charge generation in the detector and the noise 

of the processing chain. The detector resolution is frequently given by FWHM (full with 

at half maximum) of the spectrum peak (see Figure 4). 

Pile-ups – When two independent interactions happen in very close moments the 

pulses overlay (see Figure 5). Depending on the processing algorithm the spectrum may 

be distorted. While the charge generation and collection is quite fast (not true for high 

volume detectors) the main originator is a processing circuit. There is only limited 

change how to get over this issue, for instance decrease the shaping time, but it can have 

negative impact to the resolution. 

Dead time – There is some time needed to process each event. During this time no 

new events can be recorded and they are lost. While the pile-ups are rather related to 

analog processing, the dead time is influenced by digital acquisition. The clear example 

is limited data transfer speed of the interface or insufficient amount of memory 

allocated to store the data. 

 

Figure 4: The accuracy of the 

system is evaluated by FWHM of 

spectrum peak [1]. 

 

 

Figure 5: Shaped pulses pile-ups cause spectrum distortion 

when shaping is too long (left). Decreased shaping (right) has 

no such an effect [2]. 
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4. The state-of-art ionizing radiation 

detectors 

There is no doubt the most advanced ionizing radiation detectors are pixel 

detectors. Much effort was put in the development in last decades and still continues. 

Both parts, the detector and the readout chip, are influenced by new ideas and 

technological possibilities. The detector material changes from silicon to heavy 

materials (CdTe, GaAs) for higher gamma detection efficiency. Increasing thickness 

allows to use detectors in high energy physics and space applications. Moreover, new 

detector structures can be found [3]. Readout technology is highly optimized for 

performance, power or typical usage of the pixel detector. 

In spite of that, there is still need of utilization of scintillation detectors. 

Investigation of new materials and improvement of a manufacturing process make the 

resolution better and production more reliable. Fortunately, new technologies also 

affected means usable for light detection so new scintillators can be used even in areas 

where the conventional photomultipliers were an obstacle. 

4.1. Pixel detector Timepix 

Pixel detector Timepix is widely used in the Institute of Experimental and Applied 

Physics (IEAP). Together with the technology itself many years of experience, 

algorithms and processing tools make it the ideal platform for further refinement 

presented in this thesis. 

The Timepix [4] detector belongs to the family of pixel detectors made in the 

Medipix collaboration at CERN [5]
2
. It is the high-end hybrid device developed for 

imaging, although particle detection is available too. This pixel detector can operate 

with different sensor materials while the read-out chip is still same. The sensor is 

bonded directly to the read-out chip. The front-end cell size corresponds to the sensor 

pixel size. The area is 55  55 μm
2
. Each Timepix cell consists of 549 transistors which 

create analog processing (amplification and discrimination) and conversion to digital 

value. The channel uniformity can be adjusted by the 4-bit threshold adjustment 

register. The digitized information is stored in the 14-bit shift register which provides 

the interface to all the cell communication. See the block scheme in Figure 6. The big 

disadvantage is absence of self-triggering so the detector itself does not provide 

information that the particle came. This drawback will be solved in the next generation 

of the chip. 

                                                 

2
 History of the development of Medipix chips can be found in this website, same as parameters 

and features of the chip generations. 
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Figure 6: Block scheme of the Timepix cell. Two parts can be distinguished. The analog signal is 

amplified and compared to the threshold voltage. Digital conversion depends on the chosen mode of the 

operation [4]. 

There is 65536 pixels in total organized in matrix 256  256. The sensitive area is 

about 2 cm
2
 (1.4 cm  1.4 cm). The whole detector (the readout chip and the sensor) is 

slightly bigger than the sensor because of readout bonding pads situated at one side of 

the chip. The control and interface circuitry is common for all the pixels. Reading data 

in and out of the chip is performed through dedicated shift registers. Each pixel can be 

independently configured to one of the three modes (see Figure 7): 

 Counting mode – The pixel counts the number of events when the signal 

exceeds the threshold value during the active shutter interval. This behavior 

is same as the behavior of the classical Medipix chip. 

 Time-of-arrival mode – The counter is incremented since the first particle 

energy steps over the threshold till the end of the shutter signal. 

 Time-over-threshold mode – The counter is incremented only when the analog 

signal is higher than the threshold voltage and the shutter signal is active. In 

this mode the count corresponds to the amplitude of the signal so the energy 

deposited in the pixel. 
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Figure 7: Typical waveforms of Timepix modes. The shutter has to be active to enable particle detection. 

The amplified signal is compared to the threshold. The counting mode increments the register when the 

signal crosses the threshold. The time-of-arrival mode counts clock periods till the end of the shutter. The 

time-over-threshold mode accumulates the clock pulses when the signal is above the threshold. 

Operation of the detector is controlled by the interface FITPix [6] and the 

software Pixelman [7]. 

Equalization and calibration 

Despite the well-managed production process the uniformity of pixels is limited. 

The fault can be caused by both parts, the detector and the readout chip. The detector is 

influenced by a quality of the substrate material or manufacturing processes such as 

polishing. The consequence of the imperfections is a higher noise and a leakage current. 

The readout chip contains the analog part (a charge sensitive amplifier and a shaping 

amplifier) which suffers from limited reproducibility same as ordinary analog circuits – 

transistors or operational amplifiers. 

For uniform response across the detector the compensation circuits implemented 

in the readout chip are available. Threshold equalization can be adjusted in range of 4 

bits. In case of significant disorder the problematic pixel can be masked [8]. 

Energy calibration is another process needed for proper detector response [9]. 

This is a very common task which has to be done with any spectroscopic detector. 

Unfortunately, the ionizing radiation detection is influenced by the detector itself. Small 

pixel volume causes that the charge generated in the detector can be shared by more 

pixels, especially for high energies and heavy particles. 

Charge sharing and particle recognition 

The charge generated by the particle is collected by the electric field induced by 

the applied bias. The charge carriers travel from the point of interaction to the electrodes 

along the field and respect its course. The bias voltage is significant determination 

factor (see Figure 8). The direction and the type of particle are also important. In 

general, the charge sharing effect is noticeable in high granularity sensors like pixel and 

strip detectors. Other processes like charge diffusion and charge induction influences 

the charge collection, thus the response of the detector [10], [11]. 
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Figure 8: 3D visualization of pixel detector response (protons recoiled by fast neutrons) at two different 

bias voltages is depicted. Event clusters measured with bias of 20 V are high and narrow (left) while low 

5 V bias allows the charge to spread out to more pixels (right). 

The charge sharing effect can be even advantageous in some cases [12]. The pixel 

detector Timepix has saturation limit of the pixel preamplifier about 1 MeV [13]. If the 

charge is higher than this value, spectroscopic information is lost. Otherwise, the charge 

collected by one pixel is a fraction of the totally deposited charge which can be higher 

than the pixel charge range. Furthermore, the distribution of the charge detected by 

adjacent pixels is characteristic for different radiation types [14]: 

 Dots – minimum ionizing particles (MIPs), relativistic electrons, gammas 

 Long straight tracks – relativistic particles 

 Curly tracks – electrons 

 Large blobs – protons, alphas and other charged particles 

Two example of the response of the detector Timepix to different radiation types 

can be seen in Figure 9. 

      

Figure 9: Integrated frames measured by pixel detector Timepix in different radiation fields. Heavy 

charged particles (left) significantly differ from long tracks (right) made by fast electrons. 

Unfortunately, there is still uncertainty in the recognition of the external radiation 

field. For instance, high energy gammas can generate the positron-electron pair or 

neutron, regardless if fast or thermal, interacts with convertor and generates heavy 
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charged particles. These secondary particles can’t be distinguished from the same 

primary radiation. 

Advanced structures with Timepix 

The stacking of the pixel detectors was introduced by the IEAP [15]. Such an 

arrangement, which can be seen in Figure 10, provides the third coordinate (the layer 

coordinate is added to the 2D information from the pixel detector). A telescopic 

configuration is used for tracking purposes very often regardless the detector technology 

[16], [17], [18]. Information about the direction of the impacting particle is determined 

by the straight line interleaving the hit points in the pixel detector. In general, few 

requirements need to be fulfilled: 

 The particle passing through the detection layer has to be recorded. It means the 

deposited energy has to be high enough to overcome noise and threshold 

levels. 

 The source of particles has to be situated in the field of view of the telescope. In 

principle, even two layers are enough for direction evaluation. It makes the 

field of view very wide. 

 The particle has to be capable of passing through the detection layers. The 

particle interaction should not be influenced. The energy lost in the inactive 

materials (readout chip, air gap) should be low enough not to stop the 

particle. It can be accomplished by high energy particles. 

 All the system has to be synchronous from the point of view of the particle 

interactions. Only events detected in the same (or very close) moment 

should be interleaved and taken into account. Otherwise, false detections 

will degrade the results. 

Despite the complexity, the telescopic arrangement of detectors is much powerful 

way in comparison to usage of collimators which suffers from high weight and 

decreased detection efficiency (see Figure 11). 

 

Figure 10: The stack of three Timepix detectors allows 

tracking the particle. A signal path of the serial readout 

is highlighted [15]. 

 

Figure 11: A comparison of two detector 

arrangements: collimators used (top) and 

a telescopic structure (bottom). 
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Regardless the limitation of a telescopic structure, it is the way how to obtain 

more complex information about the radiation field. The detection efficiency is as high 

as available with one detector. In this thesis, only one pixel detector is utilized but the 

overall concept aims to the telescopic arrangement and the design reflects this demand. 

Neutron detection with Timepix 

The detector Timepix allows separating events on the basis of the radiation type. 

The weak point is the neutron detection. The detection efficiency directly in silicon 

suffers from a very low cross section. The measurement of the angular and energy 

response with a polyethylene (PE) bead used as a neutron convertor (see Figure 12) was 

published [19]. The integrated data shows the homogenous irradiation of the whole 

detector. In spite of that, the back projection of the impact angles depicts the bead 

shadow (see Figure 13). 

 

Figure 12: A PE convertor 

bead placed above the detector 

Timepix [19]. 

 

Figure 13: The integral image (left) is measured with a PE bead in 

the fast neutron field. Back projection (right) of impact angles 

determined from individual clusters shows the shape of the bead 

[19]. 

The neutron field is always accompanied by other types of radiation. The Timepix 

is also sensitive to electrons or gammas. The usage of the hydrogen rich plastic 

scintillator and the SiPM (see Figure 14) decreases the background by proper 

knowledge of the neutron interaction moment. The triggering signal starts the 

acquisition as a consequence of neutron-hydrogen collision. The acquisition window 

can be optimized to suppress non-neutron events. Three different measurements can be 

compared (see Figure 14). The first image shows the background measurement. When 

the converter covering some part of the detector is added, the significant pattern appears 

because of presence of the recoiled nuclei. The triggering by scintillation light removes 

the background significantly and the shadow of the converter can be recognized. 

    

Figure 14: The Timepix detector is supplemented by the scintillator and the SiPM. The signal from the 

SiPM can be used for starting the acquisition. Addition of the scintillator (b) shows more events in 

comparison to background (a). Starting the acquisition by the SiPM suppress the background 

significantly [19]. 

 a)  b)  c) 

Plastic 

scintillator SiPM 

Timepix 
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Usage of the active scintillating converter was further refined by combining with 

the Timepix stack structure (see Figure 15) [20]. More sensitive layers increase the 

detection efficiency and provide data with multiple recoils. Signals from two optical 

sensors (silicon photomultipliers) attached to the scintillator can be processed in 

coincidence to exclude false detections caused by the dark noise. 

  

Figure 15: The enhanced double-scatter neutron detector is depicted. Two layers of pixel detectors are 

coupled to the scintillator. The scintillation light from one scintillator is sensed by a pair of silicon 

photomultipliers [20]. 

4.2. Silicon photomultipliers 

The silicon photomultiplier (SiPM) is an advanced light detector with outstanding 

parameters in comparison to previous technologies. The concept was patented in 1996 

[21]. Since that time this perspective technology is under development. There is many 

manufacturers focused on this issue, some are fully dedicated, some have SiPMs as a 

part of their portfolio. Few examples can be mentioned: Hamamatsu, SensL, Ketek, 

Zecotek, ST Microelectronics or Philips. Different terminology can be found in the 

community. Manufacturers use own titles very often although the fundament is still the 

same. Other terms like a multi-pixel photon counter (MPPC), a solid state 

photomultiplier (SSPM) or a geiger-mode avalanche photodiode (GAPD) can be found. 

Further development aims to the improvement of parameters and integration of the 

readout logic directly to the chip [22]. 

Only the term silicon photomultiplier (SiPM) is used in this thesis and in author’s 

speech because it is the preferred name in the community. 

The principle of operation of the SiPM is derived from avalanche photodiode 

(APD). The reverse bias voltage induces the electric field across the junction of the 

APD. It is high enough to allow avalanche generation thus multiplication of the primary 

stimulus. There are two main sources of the stimulation – the impacting light which is 

the object of the interest and thermally generated events creating so called dark noise. 

The ordinary APD is used in the complex circuit which is responsible for quenching the 

avalanche. This is caused by lowering the bias voltage. The indicated gain of the APD is 

about 100. 

On the contrary, the SiPM simplifies the quenching by the implementation of the 

quenching resistor directly in silicon. It is an inseparable part of the device close to an 

Silicon pixel sensor 

Si photomultiplier 

Plastic scintillator 
Fast neutron 
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avalanche photodiode. The applied bias voltage is then shared by the quenching resistor 

and the photodiode with the ratio depending on the operation point, temperature etc. 

When the SiPM is in the dark, all the events are generated thermally. These events (a 

dark noise) cause the current (a dark current) flowing through the SiPM. This current 

makes the voltage on the internal resistor. The remaining voltage on the junction 

decreases and the electric field decreases too. The lower electric field generates fewer 

avalanches and reduces a dark noise. This process results in the equilibrium. Graphical 

representation of the process can be seen in Figure 16. External photons impacting the 

SiPM break the equilibrium and the stabilization process repeats. The incident light can 

be measured as a current pulse flowing through the device. The feedback suppresses the 

avalanches. Strong lighting can be considered as high amount of close pulses. In this 

case, the electric field remains weak and new equilibrium is found. In this situation, the 

SiPM can’t measure the light but the protection against the burnout is guaranteed. 

 

Figure 16: The quenching cycle of the SiPM 

avalanche is depicted. The incident light 

causes the breakdown. The current increases 

the voltage drop on the quenching resistor and 

the avalanche is quenched. The conditions get 

back after the recovery time [23]. 

 

Figure 17: Thus schematic diagram shows the 

parallel connection of the cells in the SiPM. Each 

cell is composed of the avalanche photodiode and 

the quenching resistor [23]. 

 

The quenching effect described in the previous paragraph takes some time 

(recovery time). During this period the avalanche photodiode is in the unknown state 

and should not be fired again. The dark noise is dependent not only on material quality 

but on the size too. The reasonably large devices (in order of square millimeters) would 

be inhibited by a thermal noise, as in the case of strong lighting. The SiPM is therefore 

composed of high number of cells. Each cell is the small APD with a quenching 

resistor. These cells are connected in parallel and contribute to the overall operation (see 

Figure 17). The size of a cell is in order of square micrometers. When the photon starts 

the avalanche in the particular cell, it is inhibited for the duration of the recovery time. 

Other cells are able to react to impacting photons. Fired cells contribute to the resulting 

current pulse. There are hundreds or thousands of cells in the current devices regardless 

the total size or manufacturer. 

The quenching and the cell structure are the main features of the SiPM but more 

advantages can be found (see Table 1). As the new technology it is compared to others 

very often. It can’t be said that a SiPM can completely replace other optical sensors, 

particularly photomultiplier tubes [24]. Focusing on advantages can blind an unbiased 

judgment. There are disadvantages which have to be taken into account and properly 

considered during the development. 
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Table 1: Comparison of different types of optical sensors is summarized in the table. A PIN diode, an 

avalanche photodiode (APD), a glass photomultiplier (PMT) and a silicon photomultiplier (SPM) are 

evaluated at basic parameters [25]. 

 

There are many types of physical appearance of silicon photomultipliers (see 

Figure 18). The latest trend is the production of large-area devices. 

      

       

Figure 18: Types of SiPMs used at the IEAP and directly by the author are shown. A single pad detector 

in a ceramic case with through-hole pins is mature technology (a). A thin 4-side tileable SMT case allows 

to cover large areas (b). A ceramic array with a socket is an appropriate case when more devices should 

be tested. Unfortunately, it is no longer available (c). Custom-made arrays based on SMT components can 

be used or adapted according to the application (d). [26], [27], [28]  

 a)  b) 

 c)  d) 
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5. Design of the Multi-coincidence system 

In the following chapters the contribution of the thesis is described. Its aim is to 

extend the state-of-art detection system according to the recent experience. The 

utilization of the most modern technologies is desired. 

The Multi-coincidence system is meant to be the complex system able to detect, 

recognize and characterize different radiation fields. Various detectors sensitive to 

different radiation types have to be used for reasons mentioned in chapters 1 and 2. The 

simultaneous operation of all detectors brings the complex information about the 

radiation. Increasing the sensitivity to the desired radiation and suppression of the 

unwanted events increase the information yield of the measurement. Coincidence 

operation allows to adapt the measurement mode according to the particular needs so 

recognize the particles in the background signal, reduce the amount of data for offline 

processing and decrease the dead time of the system. The new Multi-coincidence 

detector system is based on the principles summarized in chapter 4. 

5.1. Requirements of the system 

The new design has to offer the universal solution which provides as much 

information about the measurement as possible without need of repetition of the 

measurement. This is the advantage in unknown radiation fields when data are 

processed and analyzed offline to get the complete characterization. The basic event 

filtering on hardware level is to be implemented. This is the efficient way when looking 

for the particular radiation. The architecture takes it into consideration that various 

detectors and devices could be part of the system [RP2]. The concept must not be 

limiting for future development. 

To fulfill the goals of the thesis the design has to provide following features: 

 Particle tagging – The incoming particle generates the signal which is further 

processed. The form of acquisition of the event can vary. Fast information 

about the particle detection can be used to start the acquisition or takes part 

in more complex logical condition. 

 Position of detection – The place of interaction in the detector allows to 

reconstruct the path of the initial particle and consequent processes. Also 

determination of the detector is needed in case of multi-layer. The position 

information is to be available for offline processing. Online position 

investigation in not required. 

 Event timestamp – The moment of the event detection is to be determined. The 

system is designed as a synchronous one so the data can be matched. Events 

detected in the same moment can be considered as these originating from 

one particle. Event tracking is then available. 

 Deposited energy measurement – The energy lost in each sensitive volume is to 

be measured including conversion materials. Insensitive objects between 

detectors are to be reduced. 
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 Particle recognition – Different response to radiation types in the detectors and 

reconstruction of the trajectory defines the originating particle, although the 

secondary radiation is detected. 

 The direction of the particle – The impact angle of the incident particle is to be 

defined if the detection principle allows that. If the particle trajectory in the 

detector is influenced by the interaction itself and the impact angle is not 

reliable the event is to be marked for discarding. 

Fulfilling these requirements needs a complex structure based on more 

independent devices. A stackable structure and possibility of multiplication of the layers 

increase the sensitive volume without any influence of position resolution. This was 

taken into account in this project. The design should also be compact, portable and fully 

remotely configurable through a computer. 

5.2. Structure of the sensitive layer 

The basic element of the design of the Multi-coincidence system is not the only 

one detector but the composition of the silicon pixel detector and the plastic scintillator. 

Thus, the sensitive volume contains two materials with different characteristics. There is 

a minimum of insensitive materials between the sensitive ones, mainly formed by an air 

gap. On the outsides, there is readout electronics. 

Figure 19 shows the diagram of the basic element. A silicon pixel detector is in 

close geometry to a plastic scintillator. A charge deposited in the silicon sensor is 

processed by the Timepix readout chip. A monolithic piece of the plastic scintillator is 

covered by an array of silicon photomultipliers. All the area of the scintillator is sensed. 

The largest side is used to increase the light yield. 

 

Figure 19: A schematic diagram of the basic element containing the silicon pixel sensor and the 

monolithic plastic scintillator is depicted. Outer sides are covered by readout electronics. The diagram is 

not in scale. 

The pixel detector Timepix together with its readout is a fairly closed system. The 

main effort presented in the thesis was put into processing of the light from the 

scintillator and the development of the system synchronization. 

 Elements of 

SiPM array 

Monolithic 

scintillator 

Silicon pixel 

sensor 

Readout chip 

Timepix 

 

Air gap between 

sensitive volumes 
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5.3. System design 

The Multi-coincidence system is an architecture consisting of a silicon detector 

and a scintillation detector working in close cooperation (see Figure 20). A silicon 

detector part is fully covered by Timepix, FITPix interface and Pixelman software. 

Managing the plastic scintillator needs to be solved together with the system 

synchronization. Separation of the system into two parts has following advantages: 

 Timepix and FITPix part can remain unchanged and be used as a verified block. 

Only the interface signals are used for data synchronization. 

 Development of a scintillator readout system is not constrained by any existing 

architecture. Any requirement can be taken into account during the 

development. 

 A newly designed system for the scintillator readout can be used as a standalone 

device. Other projects, where pixel detector would be unsuitable, could 

exploit it. Thus, the benefits of the work go beyond the thesis project. 

 Even in the case of a complete Multi-coincidence system, the parts may be used 

independently. The variability of the system is higher. 

 

Figure 20: The block scheme of the new Multi-coincidence system is shown. A bottom part with 

Timepix and FITPix is used as a state-of-art technology. A plastic scintillator covered by a SiPM array 

and a following electronic readout will be designed. Synchronization of the two parts can be performed. 

The new readout part for a plastic scintillator employs an application specific 

integrated circuit (ASIC) which process signals from an array of silicon 

photomultipliers. Control and operation of the ASIC and the rest of the system is 

implemented in a field programmable gate array (FPGA). Its firmware defines the 

behavior but allows addition of new features in future when needed. Analog signals 

from the ASIC are converted in an analog-to-digital converter (ADC). These data are 

handled by the FPGA to a computer through a universal serial bus (USB). Setting of the 

ASIC is defined by a user from the computer software. Commands decoded in the 

FPGA are sent to the ASIC through digital signals or as analog voltages generated in 

digital-to-analog converter (DAC). The system is supplied by a symmetric source. 

Voltages needed by different parts of the system are derived on the board. A bias 

voltage for the SiPM array is provided on the board too. Synchronization of both parts 
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is ensured by signals between FITPix and the FPGA in the new readout. At least two 

signals are needed: a trigger signal from the FPGA to FITPix to start the data 

acquisition of the pixel detector and a busy signal from FITPix to the FPGA to inform 

about occupancy of the pixel detector. A coincidence regime needed for the data 

synchronization requires the new scintillation part to work as a master device. 

Software is also part of the project. Because the design needs to be controlled by 

the user, the proper tool has to be made. The functionality of the user software supports 

setting of the hardware, control the measurement and accept the data for visualization 

and storage. 

There are two independent streams – pixel detector data acquired by Pixelman 

software and associated plug-ins and scintillator data from the newly developed system 

or software tool. To prove the desired functionality the basic offline processing 

algorithm is presented as a part of this thesis. 

The following chapters are devoted to detailed description of the parts of the 

system.  
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6. Scintillator & SiPM array 

A scintillator converts the deposited energy to the light. It can be expected that the 

conversion is linear. Because the light is not processed directly the silicon 

photomultiplier is employed to convert the light to the electric signal. Although each of 

them has its own characteristics and parameters the performance is highly influenced by 

their mutual contact. Stable results are not guaranteed if any change is made, for 

instance separation and attaching again. This fact limits the possibility to test the 

components separately and with that knowledge predict behavior of the joint piece. The 

performance has to be verified in the final setup. 

The thin plastic scintillator with the array of silicon photomultipliers was 

employed in the thesis project. The final solution is described in detail. 

6.1. Plastic scintillator 

With respect to goals of the thesis the plastic scintillator is used. It is light material 

with low stopping power that makes it usable in the telescopic configuration. It has high 

cross section for fast neutrons in comparison to heavier materials. It is suitable for 

machine processing so any shape can be prepared. It is stable in a standard environment 

without any encapsulation. There are many types of organic solid scintillators. With 

respect to the application, there are no specific requirements.  

The thin 0.7 mm slab of polystyrene-based scintillator is used. The base material 

is enriched by organic luminophores to achieve emission wavelength of 420 nm. There 

are two additives to be mentioned: 2% pTP and 0.03% POPOP [29]. Despite the general 

approach when the scintillator is covered by reflective material (mylar foil, Teflon tape, 

titanium dioxide etc.), no coverage is used in the project because this would restrict or 

even stop the recoiled proton. The contact side is polished and covered by a silicon 

grease BC-630 for better optical contact. 

The scintillator material was chosen as the optimal solution according to the 

experience at Institute of Experimental and Applied Physics [30], [31], [32]. 

Scintillator thickness optimization 

A scintillator thickness is a compromise among several demands. The overall 

concept needs both the interaction in the scintillator and the detection of the recoiled 

proton which left the scintillator in the silicon detector. It means the path in the 

scintillator has to be long enough to generate sufficient amount of light. This requires 

rather thick slab. On the other hand, the range of the recoiled proton is limited. 

Furthermore, the recoiled proton must have enough energy for detection in the silicon 

detector so thinner scintillator is preferred. The expected energy range of the device 

influences the maximum transferred energy according the equation (9). Thicker 

scintillator can cause worse light transmission although this effect can be estimated as 

very low in comparison to the others. The required directional detection prefers thin 

slab which, on other hand, decreases the detection efficiency. 
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The basic estimation can be done using projected range calculators, such as SRIM 

[33]. It shows that the scintillator of the selected type and thickness can be penetrated 

through by protons of energy over 8 MeV. Any proton with lower energy has limited 

ability to reach the successive silicon detector. In other words, low energy protons can 

be successfully recoiled only from smaller part of the slab. This energy range is 

acceptable for the project. Other ranges are provided in Appendix A which shows data 

obtained from the SRIM calculator. 

For such a complex situation the simulation of the mentioned effects is desired. 

Monte Carlo simulation was prepared by Lukáš Fajt, author’s colleague from the IEAP. 

The geometry was defined according to the assumed geometry of the prototype device. 

The purpose of the simulation was to confirm the correctness of the chosen scintillator 

and investigate the distribution of the interaction points in the scintillator. Energy 

spectrum of AmBe source (up to 10 MeV, mainly about 4 MeV) and monoenergetic 

neutrons from D-T reaction (14 MeV) were used as a simulation input. There were 10
7
 

events generated to narrow angle surrounding the detector. About 510
6
 events hit the 

detector. Various energetic detection thresholds were set. The example of simulation 

results showing the number of interactions in the individual depths of the scintillator 

using 1 MeV threshold for both the scintillator and the pixel detector can be seen in 

Figure 21. Spectra of energies deposited in Timepix by the protons recoiled from the 

scintillator by neutrons are shown in Figure 22. 

 

Figure 21: 2D cross section hit maps of neutron collision points in the scintillator are shown. Only events 

which fulfilled the condition (deposited energy in the scintillator > 1 MeV and in the pixel detector 

> 1 MeV) are included. Interaction depth is stated at y axis. Number of events is expressed by the color. 

The left plot is for the AmBe source while the right one is for 14 MeV monoenergetic neutrons. 

 

Figure 22: Spectra of energies deposited in the Timepix by the recoiled protons. The left plot is for the 

AmBe source while the right one is for 14 MeV monoenergetic neutrons. 

Proton energy deposited in Si (AmBe) Proton energy deposited in Si (D-T 14 MeV) 
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The information asset obtained from the simulations is as follows: 

 There is an insensitive part of the scintillator which does not provide enough 

light to exceed the threshold chosen to separate events from the noise. Even 

for 1 MeV threshold the insensitive volume is small. 

 Thickness of the scintillator 0.7 mm is sufficient for energies of the AmBe 

source. Increasing the thickness has no positive effect. 

 A thicker scintillator can be used to increase the detection efficiency when 

higher neutron energies are expected. 

 A silicon detector 300 μm does not allow to deposit energy over 7 MeV because 

of the recoiled proton range in the silicon (Appendix A). Overall energy 

distortion can be suppressed by a thicker sensor when needed. 

 Detection efficiency calculated as a ratio of number of primary neutrons and 

number of events fulfilling the condition (over 1 MeV deposited in a 

scintillator, over 1 MeV deposited in a silicon) is 4.710
-4

. 

The choice of detectors parameters strongly depends on the desired application. 

The advantage of the design is that optimization of the sensitive layers for different 

incoming energies is possible in future without influence of the overall concept. 

6.2. Array of silicon photomultipliers 

Selection of a silicon photomultiplier is influenced by many factors. As it is new 

technology, there was lack of experience available in the research team. This 

corresponds to the amount of time devoted to get acquainted. During the work on the 

thesis author got experience mainly with SensL products and marginally with 

Hamamatsu products too. They have slightly different behavior but the detailed 

description is beyond the scope of this thesis.  

The thesis related activities were mainly performed with SensL B-series (no 

longer available) and C-series devices [34] which became available during the work. 

Readout circuits 

The SiPM is essentially a device providing a current pulse proportional to the 

incident light. A current-to-voltage conversion is needed to make the signal suitable to 

the acquisition system. Amplification is not always needed. Two circuits can be 

mentioned: resistor load and transimpedance amplifier (see Figure 23). A bias RC filter 

is obligatory in any case because of very high sensitivity to a bias noise. Choice of the 

resistor value is not unrestricted. The lower value has lower noise suppression. On the 

other hand, the higher value similar or higher than the quenching resistor value has 

negative impact to the temperature stability. A load resistor defines the voltage of the 

output pulse. Increasing the value increases the voltage level (up to order of hundreds of 

millivolts) that makes the signal directly suitable for the acquisition. Unfortunately, it 

prolongs the pulse length and can result in reflections on conducting lines. A 

transimpedance amplifier is favorable when a current floating through the SiPM is to be 

low. Furthermore, integrated solution is always based on the amplifier front-end. 
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Figure 23: Wiring diagrams of SiPM readout circuits. Both work as a current-to-voltage converter. The 

simple one employs a load resistor (left). A transimpedance amplifier allows to decrease a bias current 

flowing through the sensor (right). 

The most of performed measurements for getting experience with SiPMs were 

done with a resistive load. The simplicity of the circuit doesn’t have a negative impact 

on the operation of SensL SiPMs. 

IV characteristics 

Choice of the operation point (i.e. bias voltage) of the SiPM strongly depends on 

the application, particularly a scintillator light yield, an energy range and a desired level 

of the output signal. The bias voltage influences the avalanche so the amplification. 

Furthermore, a noise level changes too. There can be found some limitations for both 

the low limit (no avalanche is generated) and high limit (device overloaded). The 

typical value of the breakdown voltage of the particular type is available in the 

datasheet. This value can be used as the initial value for further optimization. 

IV curves for two different sensors were measured. Both devices have a similar 

structure: dimensions 3  3 mm
2
, cell size 35 μm, but the technology is different. Older 

M-series (FM) is manufactured in the N-on-P technology with a peak wavelength over 

500 nm. Newest C-series (FC) is based on P-on-N technology (same as B-series) 

resulting to a peak wavelength about 420 nm which is more suitable for scintillators. 

Different characteristics are noticeable in Figure 24. Switching to a new device 

therefore requires slight changes in the configuration. 

 

Figure 24: This plot shows IV characteristics for two sensors made in different technologies – blue 

sensitive FC series and green sensitive FM series (retired type). 
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An array sensor ArraySB-4 has 16 elements, each of size 3  3 mm
2
. The 

uniformity of elements declared by the manufacturer is better than 1:1.5. Comparison of 

IV characteristics shows the difference (see Figure 25). This has to be taken into 

account during the development [RF3]. The element-to-element matching is addressed 

in next chapters. 

 

Figure 25: IV characteristics of 16 elements of ArraySB-4 show limited uniformity. This issue has to be 

solved by the design. 

Temperature stability 

Temperature instability is frequently mentioned deficiency of SiPMs. The referred 

breakdown voltage is about -20 mV/°C. Due to the indefinite definition of the 

breakdown voltage the gain dependence of -0.8% is more relevant [35]. The influence 

of this instability depends on the expected temperature range and the resolution of the 

scintillator (or another light source). 

There is a huge effort put in the stabilization of the gain. Many approaches can be 

found in papers [36], [37], [38]. That is a consequence of the integrated quenching 

resistor. 

The temperature dependence was tested by the measurement of photoelectron 

spectra. Ordinary way is to trigger both the light (LED, laser) and the acquisition 

system. The amount of light has to be in order of photons that is achieved by absorption 

foils or other suppression means (distance).The resulting spectrum shows peaks whose 

distance is 1 photoelectron. This approach is usable for the initial calibration but not 

always. Sometimes, the mechanical requirements significantly reduce the possibility to 

illuminate the detector. Another approach based on the dark noise was investigated. 

There is no need to employ any light source and the measurement is not triggered 

externally. The principle is based on the assumption that thermally generated 

avalanches are evoked separately enough to distinguish the number of photons. This 

requirement is fulfilled by the lower bias voltage (device is not overloaded) and high-

quality technology (accomplished by contemporary devices). 

Region of probable 

operation points 
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Series of measurements were performed in the laboratory. Dark noise spectra 

were stored each 5 minutes together with temperature. Figure 26 shows that the 

temperature changed a little. Four spectra were chosen for further evaluation and 

comparison (see Figure 27). 

 

Figure 26: The graph of temperatures recorded during the dark noise measurement. Blocks labeled by the 

red dots are those which provided spectra for evaluation. 

 

 

Figure 27: The dark noise spectra measured at specified temperature are shown. Separation of photon 

peaks is influenced by the noise. Detail of the first photoelectron peak is shown. Spectrum shift is 

apparent. 

More detailed analysis of the dark noise peaks shows the shift even when the 

temperature changed only slightly. First four photoelectron peaks was fitted and 

summarized in Table 2 and plotted graphically in Figure 28. The difference is very low 

but noticeable. 

baseline 
peak 

1 pe 

2 pe 

3 pe 
4 pe 

Signal generated by 
one photoelectron 
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Table 2: Positions of photoelectron peaks of four spectra measured at slightly different temperatures. 

 

 

Figure 28: Graphical representation of the temperature instability is shown. Positions of the 

photoelectron peaks get lower with the rising temperature and vice versa. 

The advantage of this approach is that the functionality can be implemented to the 

standard acquisition system. It can work in parallel to the ordinary data readout. There 

is no need to perform previous calibrations. Despite all the positives the disadvantage 

has to be mentioned. This procedure has high demands on data throughput. It can be 

fulfilled with difficulties by the common or complex readout systems
3
. It should be 

pointed out that trigger level is embedded in the noise and the event rate can goes up to 

millions of events per second. Events generated by the external radiation are then in 

significant minority and the measurement time has to be increased to get reasonable 

statistics. This fact did not permit to exploit this procedure to the thesis project. 

The spectral shift in the final application is the important parameter. It is expected 

that SiPM is highly temperature dependent but the effect has to be considered in the 

relation to other parameters, such as resolution and expected temperature range of use. 

The measurement simulating expected temperature conditions was performed. To avoid 

uncertainties of a light source or a position radiation source, cosmic rays were used. 

Triggering by two small area scintillators defines a narrow angle, so the trajectory of the 

                                                 

3
 A custom-made 100 MSPS ADC module [NF9] was designed by the author during the work on 

PhD thesis. It aims to replace traditional crate-based acquisition modules by a portable solution and to 

provide more capable device for spectroscopic needs. Multi-channel sampling system [NF8] for the anti-

neutrino detector is based on the module. 
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cosmic rays in the detector. Dispersion of the deposited energy is almost discrete. 

Events when both triggering scintillators provide signal in coincidence (CH2 and CH3) 

are acquired. Light from the interposed 1 cm thick scintillator plate is detected by the 

tested SiPM whose signal amplitude is used for generating the spectrum (see Figure 29). 

Two long term measurements at different temperatures (16 °C and 30 °C) were made. 

 

 

 

 

 

 

 

Figure 29: A sketch of the temperature measurement is shown. Cosmic rays passing through both 

triggering scintillators generate signal in the interposed scintillator. Almost all trajectories are 

perpendicular because of the selective angle. Fulfilled coincidence condition (signals at CH2 and CH3 

simultaneously) starts the acquisition. Signal CH1 is then used to generate the spectrum. 

Recorded spectra are shown in Figure 30. The shift of peaks is noticeable. 

Evaluation of spectra is summarized in Table 3. The measured temperature coefficient 

of the SiPM is in correspondence to the value referred by SensL (manufacturer), about 

0.8%/°C. In this case, the temperature shift can be safely neglected when compared to 

the resolution of the scintillator. The resolution is dependent on the scintillator shape 

and the quality of the light transfer to SiPM [39] so there is legitimate prerequisite that 

the resolution of the thesis project scintillator could be better – about 20-30%. 

 

Figure 30: The plot shows spectra of cosmic rays measured at different ambient temperatures. Shift 

caused by the temperature dependence of the SiPM is noticeable but negligible in comparison to the 

resolution. 
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Table 3: Evaluation of cosmic ray spectra. 

 

 

Photomultiplier tube replacement 

After investigation of the SiPM characteristics the utilization in spectroscopic 

applications was tested. Typical and traditional way of sensing the light is with a 

photomultiplier tube. The SiPM has the ambition to replace it. However, the SiPM is 

advantageous from many points of view (size, bias), only comparison of spectra can 

show if it is really an adequate substitute. A measurement of a gamma spectrum was 

performed. To avoid influence of other parts of the system, such as a scintillator, the 

only change in the setup is the optical sensor. Sodium iodide doped by thallium (NaI:Tl) 

is understood as an etalon. It has the high light yield and the proper emission spectrum. 

Radioactive isotope of cesium (Cs-137) emitting photons with energy 662 keV is 

commonly used for calibration purposes. This combination guarantees the very reliable 

test. The only care has to be given to the proper size of the scintillator because 

photoelectric absorption is needed. The employed cylindrical scintillator was 1 inch 

high and 1 inch in the diameter that makes it large enough. The photomultiplier tube 

R1924A of size 1 inch in the diameter produced by Hamamatsu was biased by 900 V. 

The silicon photomultiplier FC60035 of size 6  6 mm
2
 made by SensL was biased by 

38 V from a laboratory source with 1.5 MΩ filter. Each measurement took 5 minutes. 

The radiation source was placed 2 cm far from the scintillator. 

Spectra shown in Figure 31 prove shape similarity. At a closer look, the noise 

level and the resolution of the SiPM is worse. It should be noted that there was a small 

imperfection. The sensitive area of the SiPM is smaller so the amount of impacting light 

is lower in comparison to the PMT. Estimation based on the photoelectron spectrum 

indicates that a photopeak is generated by only 65 photoelectrons. 
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Figure 31: Spectra of Cs-137 in a 1 inch NaI:Tl scintillator measured by two different optical sensors – 

the photomultiplier tube (top) and the silicon photomultiplier (bottom). The shape corresponds 

sufficiently although the resolution of the SiPM spectrum is worse (20% against 7% with PMT) and the 

noise level is higher. 

 

Silicon photomultipliers comply with expectations arose from the thesis project 

requirements. It is a suitable way how to acquire light from the scintillation detector. 

SiPMs are small but tileable to cover large areas, have enough gain and fits by spectral 

characteristics to the chosen scintillator. Type ArraySB-4 made by SensL is used in the 

thesis project. 
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7. Analog front-end for SiPM 

Granularity of any radiation detector is always beneficial in comparison to a 

single segment. It allows to study distribution of charge or light in the detector. This 

information can be used in further investigation. The reason for the lack of high 

granularity detectors is the complexity of electronic circuits needed for readout and 

sophisticated data processing. Both needs increase the price of the development of the 

device. 

The thesis project involves the granularity to provide additional information about 

the detection position and the incoming direction. The scintillator converting neutrons 

to recoiled protons is covered by 16 elements of the SiPM array. Although the count is 

not so high the discrete solution (in terms of individual components) is not ideal.  

Preliminary version of the SiPM readout system based on discrete components 

was presented by the author [RI1], [RF4]. The final application is more demanding and 

another way of the SiPM signal readout had to be searched. The acceptable way is an 

integrated circuit designed for this purpose. 

7.1. SiPM readout ASICs 

Application specific integrated circuits (ASIC) are in domain of large experiments 

or collaborations. The reasons are as follows: 

 Experiments difference – Each project/experiment is different and optimization 

can be impossible. Different demands on detection material, energy range, 

processing and many others results in a need of special ASIC. 

 No universal solution – It is impossible to create somehow universal chip which 

could be adjusted externally like, for instance, operational amplifier. The 

main functionality is hard-wired in the ASIC and can’t be changed. 

 Costly development – Any change which has to be done in silicon influences 

other design layers. It results in new masks and the production run has to be 

repeated. 

 Narrow market – There is a limited number of customers and sold goods. The 

fixed costs can’t be so much dissolved in the sold quantity. 

 Custom-made interface – ASICs need special hardware reflecting their 

functionality. It has to be also tailored and is often project specific. 

Same as silicon photomultipliers become very popular because of their assets, 

new readout ASICs begin to appear. Unprecedented interest also proves the fact that 

special program is devoted to the readout chips at various conferences. The ASICs start 

to be commercialized and are available to wider group of scientists. A brief summary of 

available ASICs is in Table 4. 
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Table 4: A brief summary of parameters of ASICs designed for SiPMs [40]. Not only number of 

channels but also the output signal type (analog/digital), the input range, features etc. have to be taken 

into account. 

 

Cooperation between the IEAP and the Norwegian company IDEAS focused on 

the design of readout chips for radiation sensors was established
4
. They provide wide 

portfolio of chip types according to the projects they participated. It is even possible to 

have own chip tailored to the application. Application of SiPMs requires chip designed 

for higher leakage current and proper shaping, such as VATA64HDR16. 

Because of the non-disclosure agreement, only the most important information 

essential for the thesis project can be mentioned in this text. 

7.2. ASIC VATA64HDR16 

The application-specific chip VATA64HDR16 [41] designed by IDEAS company 

in 0.35 μm technology is optimized for the spectroscopic measurements with silicon 

photomultipliers. Except energy measurements, timing measurements (time-of-

flight/TOF) are supported by internal time-to-analog converters (TAC). The chip is a 

self-triggering device providing a trigger output when signal above threshold is 

detected. Shaping periods are optimized for SiPMs – triggering fast branch 50 ns, 

spectroscopic slow branch 300 ns. Slight adjustment is possible. The ASIC is able to 

process both signal polarities but the positive charge is needed for the whole 

functionality. The main difference over the chips for silicon detectors is the input stage. 

Each channel has leakage current compensation up to 10 μA which prevents the input 

amplifier saturation caused by a DC coupling and a higher dark current (in comparison 

                                                 

4
 Fruitful collaboration has led to a joint project AD-BANG (http://ad-bang.utef.cvut.cz/en/about/) 

that has successfully passed during the author’s PhD study [NO1]. Author was responsible for the design 

of the electronic readout system for strip detectors based on VATA GP7/8.1 [NF1]. Another chip 

IDE3465 (and its non-public predecessor IDE3464) was tested by the author. 



57 

 

to radiation silicon detectors). Channel-to-channels matching of SiPMs is possible due 

to input DACs which change the bias for the particular channel. An adjustment of the 

gain is done in the chip so a common bias source for all SiPM segments can be used. 

The chip is provided in a form of a naked die (unencapsulated). The total size is 

9.8  6.5 mm
2
. It has 64 input pads, 20 power supply pins and 60 configuration and 

readout pads occupying 3 sides of the chip (see Figure 32). 

 

Figure 32: An arrangement of VATA64HDR16 pads is shown. Input pads are situated at the left side of 

the chip. Configuration and readout pads are at the right side of a horseshoe [41]. 

Internal structure 

An internal structure of the chip is show in Figure 33. A front-end part covers the 

main functionality of the chip – amplification, shaping, trigger generation and storage of 

the sampled value. A further description can be found in the next chapter. A calibration 

part allows to test each channel individually. A shift register sets the switches of the 

calibration matrix. The particular channel is then connecter to the external calibration 

signal. Only one channel can be connected at a time. A readout circuitry is located in 

the back-end part. Outputs of all channels (energy information) are connected to a 

64 channel wide multiplex. Another multiplex of the same width is used for the TAC 

output (timing information). Multiplexer outputs go out of the chip through differential 

buffers. These two multiplexers are controlled together through readout signals. 

Switching is made sequentially thus channel-by-channel information can be obtained. 
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Figure 33: The diagram of a VATA64HDR16 structure is depicted. A front-end part incorporates 

64 analog paths for signal processing. A calibration matrix enables external charge to be fed in the chosen 

channel. A back-end circuitry handles signal readout through an output buffer [41]. 

Front-end functionality 

The core functionality of the ASIC is defined by the front-end part. Each channel 

has its own signal path. It starts with the charge sensitive amplifier with the adjustable 

bias level. The output of the first stage is branched into two paths. The fast shaper 

provides a sharp signal which is compared with the external threshold. The output of the 

discriminator is led out from the chip and used for a timing measurement in the TAC. 

The slow shaper makes a low noise pulse for an energy measurement. The peak hold 

circuit or the raw output can be used. A level of the signal can be stored in the sample-

hold circuit for the sequential readout. A block diagram of the front-end is depicted in 

Figure 34. 

 

Figure 34: A block diagram of the front-end part of the VATA64HDR16 shows the main functionality of 

the chip [41]. 
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ASIC configuration 

The chip setting is performed by using a shift register. There is 873 bits in the 

shift register influencing chip behavior. It is possible to slightly change a gain or a 

shaping period of amplifiers. Noisy channels can be disabled. The threshold level and 

the input bias can be trimmed for every channel. 

The content of the register is volatile. Configuration data has to be loaded after a 

power-up same as when change of the settings is desired. There is no storage memory in 

the chip so the superior system is responsible for that. Configuration mismatch caused 

by single event effects has to be solved by reconfiguration. 

Readout sequence 

The data readout of the chip is managed by an external logic through several 

signals. Let’s suppose the chip is after reset and ready for further operations. When 

some event is detected by any channel, a trigger signal is generated and sent out of the 

chip. After the shaping period, the actual signal level at every channel should be stored 

in the sample-hold circuit and preserved for the whole readout period. The first bit 

(log. 1) clocked in the chip causes switching the readout multiplex to the first channel 

and the output value is set. Next bits (log. 0) clocked in the shift register make the 

output to update to proper value. The sequence can be completed or canceled anytime. 

The reset of the chip should be made to prepare it for a next event. A timing diagram of 

the readout sequence is in Figure 35. 

 

Figure 35: A readout sequence of VATA64HDR16 is depicted. An external logic is activated by a trigger 

signal (not shown). Channels are sampled after shaping period and preserved for the whole readout 

sequence. Clocking the bits through the shift register updates the analog output of the chip. Value of the 

output corresponds to the value sampled by the particular channel [41]. 
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Power supply & signal levels 

VATA64HDR16 has separated analog and digital power supplies for reduction of 

the noise. The supplies are symmetrical in both cases (+/- 2.5 V). There is no special 

power supply for interfacing signals. Two groups of signals are used by the chip – 

differential and single ended. No standards are followed and the specification is not too 

well defined. Single ended signals should be -2.5 V (logic 0) and +2.5 V (logic 1). 

Differential signals work as a comparison of positive and negative branch. Common 

mode voltage is not defined. 
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8. Spectroscopic ASIC readout system 

The readout system for the spectroscopic ASIC is based on the own universal 

platform. It provides ability to replace the same type or even employ different types of 

spectroscopic chips. There are two reasons for this approach. At first, VATA chips 

produced by IDEAS are provided as untested. The production yield is quite high but not 

100%. It can happen that the particular chip is faulty or the functionality is not 

completely correct. It is very confusing to accidently choose a faulty chip at the 

beginning of the development (happened to the author). It is much safer that the 

verification of the design can be made for more chips. The second reason is usability of 

the readout system for different chips, i.e. in different projects, that further increases the 

value of the effort put into the project. The platform supports chips which were met 

during the work: VATA GP7 [NF5], VATA GP8.1 [NF1], VATA 464, IDE3465 and of 

course VATA64HDR16 [RF1]. 

The design of the readout system is more complex to cover a dissimilarity of 

ASICs. There are two parts, the interface board and the chip dongle. 

8.1. Interface board 

The purpose of the interface board is to provide the common functionality. A 

block diagram is shown in Figure 36. The chip dongle is connected through Mini edge 

card connector MEC6-RA from Samtec. All the signals including a power supply lead 

through this connector. The structure of signals is selected to cover wide range of the 

supported ASICs. The wiring diagram is shown in Appendix B. 

 

Figure 36: A block diagram of the interface board is depicted. Main connections are emphasized. 

Analog path 

The main functionality of the spectroscopic ASIC is to provide information about 

the deposited energy. There is no ADC implemented on the chip. An external converter 

has to be provided. Two independent ADCs LTC1402 are assembled. Resolution of 
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12 bits is sufficient for the presumed operation. A conversion rate up to 2.2 MSPS is 

high enough not to limit event throughput. A noise filter is added in front of the 

converter. A single-ended positive signal with range up to 2 V is supported. 

Digital path 

Digital signals are used to control the ASIC operation. Some signals are spared for 

auxiliary circuits needed for the ASIC, such as a DAC. Because the signals of the ASIC 

are not referenced to ground, isolators ADuM764x are assembled. This approach allows 

to interface various chips with different power supply. The FPGA side of the isolator 

has fixed voltage, same as the supply voltage of the particular FPGA bank. The ASIC 

side is supplied according to the chip requirements. The isolator technology is used 

because it can transfer even steady signals. Pulse character signals, such as trigger or 

clocking signals, use level shifters with AC coupling. 

Power supply 

The interface board is powered from an external source. The symmetric voltage of 

at least +/- 7 V is needed. Higher values increases heat generation with no positive 

effect to regulation. Linear stabilizers are used to decrease the noise. Sensitive low 

power ADCs are supplied through the filters. Positive and negative 5 V stabilizers are 

used for the chip dongle supply. Adjustable voltage for isolators can be set according to 

the particular chip. A negative bias voltage for the SiPM array is generated by LT3462 

[RF2]. The voltage value is manually adjustable from -25 V to -30 V. This range allows 

setting the appropriate operation point. 

Communication interface 

The Universal serial bus (USB) was chosen as a communication interface. It is the 

well-managed technology available on all nowadays computers. A bridge FT232R made 

by FTDI is assembled. It encapsulates the robust USB protocol into a simple serial line 

(UART). The data transfer rate is up to 3 Mbaud. 

A rough estimation, considering the structure of the communication protocol, 

gives the transferred rate up to 900 events/s. This is definitely the bottleneck for stand-

alone operation of supported ASICs which can provide about ten times higher event 

rate. However, considering the coincidence operation with Timepix detector, which 

records at most similar frame count (depending on the generation of FITPix interface, 

usage of hardware compression etc.), makes this rate sufficient for the prototype. 

FPGA 

The complete logic functionality is implemented in a field programmable gate 

array (FPGA). The amount of needed logic and the data throughput is limited mainly by 

the spectroscopic ASIC. A Spartan 3AN type FPGA XC3S50AN made by Xilinx is 

utilized [42]. Pins are divided in four banks. Two of them are supplied by 3.3 V. They 

are used for the communication with the USB bridge, ADCs and control the ASIC lines 

through digital isolators. Another two banks are supplied by 1.8 V and are used for 

interfacing the ASIC through level shifters. Several I/O standards are used, such as 

CMOS, LVDS and HSTL. 
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The FPGA has volatile structure as usually. A small advantage of this type is an 

integrated flash memory to store the configuration of the firmware. A separate chapter 

is dedicated to the description of the firmware. 

8.2. Chip dongle 

The chip dongle is tailored for the specific chip and respect its needs. The most 

important is a power supply (voltage and power requirements). Supply filters are also 

adapted. There is a current source needed for biasing of the internal structure of the 

chip. A nominal value indicated in the documentation has to be kept. Significant 

deviation from the value can cause a malfunction of the chip operation. An external 

DAC assembled on the chip dongle allows setting of a threshold voltage or possibly 

other voltages which influence the chip behavior (a preamplifier stage gain, a shaping 

period). Analog output drivers on the chip have limited strength. Operational amplifiers 

are assembled near the chip to minimize signal distortion because of a capacitive load. 

Low impedance signals are then led to the interface board. Depending on the particular 

chip, level shifters are on the board. A block diagram of the chip dongle is shown in 

Figure 37. 

 

Figure 37: A block diagram of the universal chip dongle is depicted. Components and wirings are 

adapted according to the type of the ASIC. 

VATA64HDR16 dongle 

Linear stabilizers providing +2.5 V and -2.5 V are assembled on the dongle. An 

available current limit is 150 mA in both positive and negative branches. A current 

source made of LM334 is adjustable by a trimmer resistor. The prescribed value for 

VATA64HDR16 is 700 μA. Trigger setting is possible by 4-channel 12-bit DAC 

AD5724. The rest of channels can be used to override internally generated voltages. 

Two operational amplifiers MC33077 provide gain for analog outputs of the ASIC. 

Transistor level shifters based on PMDT670 are used for digital signals controlling the 

readout operation. Sensor pads of the ASIC are wire-bonded to PCB traces. Sensors are 

then connected to PCB, not to the chip directly. The connection capacity is slightly 

higher but the reworkability of wire-bonding is almost unlimited.  
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9. Firmware 

The operation of the Multi-coincidence system is defined by the firmware 

implemented in the FPGA assembled on the Interface board. For the purpose of the 

thesis project, the firmware needed to be tailored. The main functionality is based on the 

universal solution for different spectroscopic VATA chips. The enhancement was 

necessary for a coincidence management which makes the part with the scintillation 

detector a master of all the system. 

The firmware is created in accordance with the principles of the hierarchic design. 

Each functional block can be optimized and simulated alone. Verified blocks are then 

connected together. Reliability is higher and simulation simpler than designing from 

scratch. A block diagram of the firmware structure is shown in Figure 38. 

Development of the firmware was made in the development environment ISE 

Design Suite 14.7 provided by Xilinx. The code is written in a VHDL. 

 

Figure 38: A block diagram of the firmware structure. Blocks correspond to the components in the 

hierarchical design. 

9.1. Core state machines 

The core of the design consists of command and readout finite state machines 

(FSMs). Setting of the device is separated from the data path. The readout sequence is 

independent on any acknowledgement from a computer. It increases the transfer rate 

when data blocks are small (as is in this case). The reliability of the data transfer is 

ensured by the checksum. Due to the anticipated operation of the system, commands are 
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processed preferentially before data sending. This allows the superior software to 

influence the data flow, such as start or stop the acquisition. 

Command FSM 

The command FSM block parses command packets from the control software. 

Each command packet has two bytes – a header and a command value. The header 

defines the storage register or the operation to be performed. In principle, there are two 

groups of commands (see Table 5). The first group associates commands for normal 

operation. The second group is rather redundant and serves as a debugging interface for 

the chip verification. 

Registers are volatile. User software is responsible for loading proper values 

before the measurement. This applies to both command recipients FPGA and ASIC. 

Table 5: A table shows the commands used by the system. The left side commands are used for normal 

operation. The right side commands are implemented for debugging purposes. 

 

Readout FSM 

The readout sequence synchronizes operation of the ASIC with a signal 

conversion of its analog output. Timing conditions depend on a type of the 

spectroscopic chip, an ADC and desired features. Beginning of the sequence is related 

to the trigger signal regardless of whether it is external or internal. 

Each event is processed according to the values stored in registers, such as readout 

mode or number of channels to read. Transitions between states and conditions which 

need to be fulfilled are represented by a flowchart shown in Figure 39. Briefly, it is 

possible to sum up the universal event handling to the following points: 

 Waiting on a trigger 

 Waiting for shaping time expiration 

 An analog signal conversion and storage 

 Data transfer to a PC 

 Reset 
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Figure 39: A flowchart of the readout sequence is shown. When the starting condition is met, necessary 

steps are processed to read, convert a transfer data to a computer. 

There are two readout modes implemented for VATA64HDR16. The simple one 

is a single mode. In this case, the channel is chosen before the acquisition is started and 

is kept for the whole measurement. Meanwhile, there is no switching of ASIC channels. 

This mode is usable when only one channel is interesting for the measurement, for 

instance when using large sensor volumes. It is not typical usage of the ASIC and 

because of the nature of the thesis project it is not usually used. 

The second mode is the ordinary way of the readout. Any channel detecting an 

event invokes a trigger. All channels are then sampled after the shaping period. The 

peak values are stored in sample capacitors available for each channel. When the 

channel multiplex is switched, the voltage value stored in the sample capacitor is 

brought to the output. All channels can be read or, if needed and supported by the 

arrangement of the detectors, only partial sequence can be performed which would 

make the procedure less time consuming. Both variants are supported by the firmware. 

Number of channels to be read can be set by the dedicated command. Unfortunately, 

skipping channels is not possible. 

The analog output of the ASIC is converted by the ADC. Digital data are stored in 

the internal memory in the FPGA. There is 54 kbits of block memory available [42]. It 

is much more than needed for processing one event. There is only one block (18 kbits) 

utilized by the firmware. It is configured as a single port RAM. When desired amount of 

channels is stored in memory, the data checksum is calculated and the result is stored to 
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the data header together with a channel count. Prepared data are then sent to a computer. 

A new event can only be processed after the memory is unloaded. 

Data are organized in packets (see Table 6). Each packet is 5 bytes (40 bits) long. 

A header packet situated at the beginning of the transfer contains identification bytes, 

number of data packets and checksum. Data packet contains one toggle bit acting as a 

data loss protection, 11-bit channel address and two 14-bit ADC values. This structure 

is suitable for all ASICs made by IDEAS used so far, even for sparse mode when only 

hit channels are read. There is no trailing packet. Transferring one event needs just one 

header packet followed by defined number of data packets. The correctness of the 

transfer can be checked by the identification of header bytes, a number of data packets 

and their toggle bits. Two consecutive successfully parsed events prove the correctness 

of the first one. 

Table 6: A table shows the structure of transfer packets used for sending data from the hardware to the 

computer. There is only one header packet followed by several data packets per each event. 

 

9.2. Peripherals 

The core state machines are surrounded by peripheral components responsible for 

partial tasks. Due to the design of the structure, any change is very easy to make by 

modification or addition of a new peripheral. 

FT232 interface 

A component FT232 interface processes downstream/upstream data flow from/to 

the FTDI bridge. An incoming UART data stream is converted to an 8-bit parallel bus 

with handshaking. This applies vice versa for the inverse direction. There is no 

buffering provided by the component. In case it is needed, external buffering has to be 

added. 

The component is designed as the universal one for different UART speeds. A 

frequency and a baud rate can be set by generic parameters in a VHDL code and other 

timing constants are calculated accordingly. 

ADC driver 

Analog signals are converted by the ADC. It is controlled by the dedicated VHDL 

component. It incorporates a state machine which begins the operation after the Start 

signal received. The sequence of signals, timing and conditions correspond to the SPI 

communication framework defined in the datasheet provided by the ADC manufacturer. 

During the operation the Busy signal is active. Readout FSM monitors it and takes the 

parallelized data when it expires. 
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Available Nap and Sleep modes of the ADC are not used because it doesn’t 

correspond to the project needs. 

DAC driver 

The output values of the DAC can be set through SPI interface. There is 24-bit 

command needed to fill the internal shift register of the DAC. The driver component 

controls the signal lines which are set according to the value stored in the dedicated 

registers. A configuration process starts upon a request (see Table 5). Acceptance of the 

next command is postponed during the DAC configuration. 

Pin driver 

A pin driver sets or clears the signals leading from the FPGA. The most of them is 

connected to ASIC, several are used for debugging. There are two sources of a stimulus 

for ASIC pins. During the readout sequence the FSM specifies pin states and timing 

relation. This mode needs to be optimized in hardware. Proper knowledge about the 

chip is essential. A command mode is implemented as the second option for pin setting 

(see Table 5). Getting familiar with the chip and debugging operations are the main 

purposes of this option. There is high variability of the software control which can’t be 

reached by the hardware. The disadvantage is slower timing (6.6 μs per the change of 

the pin). That is the reason why this mode is not usable for the normal readout 

operation. But the slow configuration of the ASIC uses this feature as advantage. 

Start & coincidence 

This part of the firmware is responsible for system synchronization and is tailor 

for the thesis project. As it is implemented in the newly developed readout system, it 

takes into account the existing interface of the FITPix device. The operation is not 

strictly intended for the coincidence mode. 

The newly developed readout system acts as a master. The neutron collision 

generates light in the scintillator. It is collected by the SiPM whose signal induces a 

trigger signal. It starts the internal readout sequence as mentioned previously and 

furthermore, signal pulse is sent to the FITPix interface. According to FITPix settings, 

the pixel detector acquisition can be started. A busy signal is valid during the pixel 

acquisition including the data transfer. The pixel detector readout operation is more time 

consuming than the SiPM readout. The new trigger from the SiPM can be inhibited until 

the busy signal is cleared. This mode provides frame synchronization because 

acquisitions are started at the same time. Moreover, time delay of fixed length can 

override the busy signal. 

FITPix and the SiPM readout system have similar setting. Following combination 

of acquisition modes stated in Table 7 are available. 

Event rate throughput depends on the coincidence mode and is highly influenced 

by the hardware. However, throughput is not crucial for the thesis project. Increasing 

the readout speed of the system parts, if possible, will increase the total event count. 

The maximum number of events is limited by the slowest device. 
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Table 7: Combinations of the trigger modes of the new SiPM readout system and the FITPix interface 

define the coincidence operation. 

 

9.3. Firmware occupancy & portability 

The firmware implementation is not made on the most modern FPGA. Due to the 

length of the development, the used technology reflects the time when the design of the 

system began. But the space and speed requirements are fully fulfilled by the chosen 

FPGA. The synthesis and PAR report is shown in Table 8. 

There are 23% of flip-flops, 41% look-up tables and 36% pins used by the design. 

It means the design occupies less than a half of the FPGA logic resources for the desired 

functionality. If needed, more logic could circuits can be implemented directly to the 

prototype. 

The VHDL code is available for future use or for further integration, for instance 

with FITPix. It is a transferable description of the behavior independent on a platform or 

a development tool (except parts generated by the tool itself, such as memories). 
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Table 8: A project report of the synthesis and PAR of the thesis project VHDL code is shown. Below the 

half of available resources is consumed by the whole design. 
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10. Prototype of the Multi-coincidence system 

The design of the Multi-coincidence system introduced in this work led to the 

prototype allowing the verification of the concept. The aim is not to prepare final and 

highly optimized device. It is expected that future generations of the system will take 

into account the shortcomings that will be found during measurements with the 

prototype. 

The development of the new SiPM readout system is the significant part of this 

thesis. It was divided into units which were assembled on separated boards (see Figure 

40). The universal Interface board (see chapter 8.1) provides power supply and control 

logic implemented in the FPGA. The board size is 113 mm  52 mm. An USB 

communication board (see chapter 0) with FT232R of size 60 mm  35 mm is used. The 

ASIC dongle board (see chapter 8.2) is attached to the Interface board. One 

spectroscopic chip VATA64HDR16 is mounted. Detail of the chip dongle with the 

Interface board in the background is shown in Figure 41. 

 

Figure 40: A prototype of the SiPM readout system is depicted. It consists of several separated boards. 
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Figure 41: The picture shows the detail of the chip dongle board. ASIC pads are wire bonded to the PCB 

including input signal pads. The universal Interface board is in the background. 

After the stand-alone tests of the SiPM readout system it has been attached to the 

pixel detector to create the Multi-coincidence system. Proper XY alignment of the 

sensitive volumes (the scintillator and the silicon pixel detector) is needed. The distance 

of the layers is not critical but should be in a reasonable range, i.e. in order of few 

millimeters, because it influences detection abilities of the system. The detail of the 

composition is shown in Figure 42. 

 

Figure 42: An alignment of the silicon pixel detector and the scintillation detector is depicted. It is 

desired to maximize the overlap of the sensitive volumes. 
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The light shielding of the scintillator is needed otherwise the sensor, i.e. the SiPM, 

is overwhelmed by photons of the ambient light. Although the silicon detectors are light 

sensitive too, Timepix is commonly covered by the aluminum layer which makes it 

fairly insensitive to the light of the common intensity. So the only light sensitive part is 

the scintillator with the attached SiPM array. It is possible to cover it by a tape or paint 

but it is inappropriate for testing and debugging. Furthermore, it is additional material 

which has to be penetrated by the recoiled proton which is very undesirable. So it was 

decided to cover all the detection volume including the FITPix interface. 

The resulting form of the Multi-coincidence system prototype is shown in Figure 

43. The sensitive volume is placed inside the plastic box which shields the ambient 

light. The FITPix interface is placed near the pixel detector so it has to be in the box 

too. The newly developed readout system for the SiPM array is mounted on mechanical 

support outside the box for possible debugging. Synchronization of both systems is 

ensured by cabling. Black bushings are used to eliminate photons entering the box. 

Overall dimensions of the system prototype are roughly 30 cm  28 cm  10 cm. 

 

Figure 43: The prototype of the Multi-coincidence system is depicted. A light shielding covers the 

sensitive volume (the scintillator and the pixel detector) together with FITPix. 

The prototype of the Multi-coincidence system shown in the Figure 43 was used 

for all measurements and verification of the final functionality. Results are described in 

the dedicated chapter. 
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11. Acquisition software & basic processing 

Nowadays, the hardware design is not enough in its stand-alone form. The 

functionality needs to be supported by the software tool for data processing. Of course, 

ordinary operations like hardware setting, acquisition control, basic data visualization 

and storage need not to be even mentioned. The custom-made solution is necessary. 

The development of the software tool is the part of the thesis project. The basic 

needs arise at the very beginning because of debugging and verification of the 

hardware. Subsequently, data visualization and graphical representation of the results 

are needed. The independent tool for data processing was prepared because of the two 

separated systems (for the pixel and the scintillation detector) which are operated with 

their own control applications. 

11.1. Readout tool 

The software for data readout communicates with the hardware, provides setting 

of the ASIC and FPGA registers, manages the acquisition and data handling, such as 

data packet recognition, visualization and storage. 

The user PC is connected to the universal Interface board (see chapter 8.1) 

through USB. The integrated circuit FT232R is used as a bridge between USB and 

UART protocols. From the software point of view, data flows through D2XX driver 

library provided by the manufacturer as a DLL [43]. Different platforms are covered – 

Windows, Linux etc. The set of functions, which allows basic operations, is provided. 

The source code then implements complex handler of the communication. 

The readout tool is prepared in C++ language as two-threaded application. The 

first one covers user GUI operations. The second one is responsible for processing of 

received packets and data evaluation. Only Windows platform is supported now. 

GUI 

A graphical interface allows the user to interact with the hardware device. It is 

based on forms which contain components for data displaying (labels, graphs) and 

commands entering (buttons). 

The main GUI window is shown in Figure 44. At the beginning, the desired 

device has to be chosen from the list of devices. User is fully responsible for selection 

of the device with compatible firmware. Initialization procedures set the communication 

parameters and prepare form fields. 
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Figure 44: The main window of the acquisition software is depicted. 

The main form was developed not to be dedicated for the specific ASIC. The list 

of configuration parameters for each chip is prepared according to its datasheet. A text 

file with the list is easy editable in any text editor. Format of the text file can be seen in 

Figure 45. The file is parsed in the software and objects are generated accordingly. Each 

object contains a name of the parameter, a position in the shift register (bit index), a 

number of bits occupied in the register (bit length), an order of bits and a text shown as 

a hint to help the user to understand the meaning of the parameter. For easier start, the 

configuration file is preselected for VATA64HDR16 directly in the code. 

 

Figure 45: An example of the text file with ASIC configuration parameters is shown. A structure of the 

file allows to change the parameters for the particular ASIC. 

The ASIC configuration values are displayed both in a spreadsheet and in 

interactive fields. A binary value can be changed by checkboxes. Any change in any 

element is mirrored to others. It is possible to load values from file, save them for future 

use or clear them (see Figure 46). 
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Figure 46: The ASIC configuration can be done in several ways. Any change is mirrored to all the field. 

Other components influence a measurement mode and an acquisition itself (see 

Figure 47). DAC channels can be adjusted in all the available range. Text description is 

adapted according to the DAC channel function. Readout modes (serial and single) can 

be chosen together with a number of channels to be read. Both types of coincidence 

feedbacks are available and can be even switched off for the asynchronous operation. 

An overview of the ongoing acquisition is provided by the panel with measurement 

statistics. The acquisition time limit can be preset when systematic measurements are 

needed. The data storage requirement depends on the measurement. However, it is 

necessary for further processing of coincidence events. 

 

Figure 47: Components for acquisition and mode settings are highlighted. Acquisition overview shows 

information about the elapsed time, the events count and so on. 

When further processing is needed, valid events are stored in the text file. Values 

of all 16 SiPM segments are stored to enable the investigation of the scintillating light 

distribution. Furthermore, the recorded event from the scintillator should match the 
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event from the pixel detector. The hardware synchronization starts both the acquisitions. 

A veto feedback makes the systems indifferent to new triggers until the acquisitions are 

finished, including the data transfer to the computer. Unfortunately, some occasional 

data loss was found during the first measurements. Limited possibility of the system 

debugging and no guarantee of the data reliability provided by the operation system 

Windows resulted in addition of the timestamp of the event packet reception. The 

timestamp was already available in Pixelman software. It is expected that the data 

timestamps of the two independent streams (from the scintillator and the pixel detector) 

are not same but very close to each other in comparison to the average time distance of 

the events. The example of the data recorded in the text file is shown in Figure 48. 

 

Figure 48: An example of events recorded in the file. Each line contains timestamp of the event and 

amplitudes of all 16 SiPM segments. 

The main window is supplemented with several sub-windows displaying data 

during the acquisition. These windows were added as new functionalities were 

implemented. 

The event window (see Figure 49) contains a graph of values of the last event. 

Different colors were used for better orientation. Blue points mark ASIC channels 

connected to 16 SiPM segments. Unconnected channels are red 

 

Figure 49: The event window shows two protruding channels. Red points mark connected ASIC 

channels while the rest is unconnected and red. 

Incoming data is also used for generating spectra. Each channel has its own 

spectrum (see Figure 50). It is generated from values belonging to the particular 

channel. The integral spectrum with the adjustable range is calculated from connected 

channels (see Figure 51). Spectra are generated during the whole acquisition period. 

Restarting the acquisition causes spectra buffers to be cleared. Storage of spectra in 

several formats is available. 
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Figure 50: Window with individual spectra is depicted. Buttons allows to store spectra in several 

formats. 

 

Figure 51: Window shows integral spectrum which is calculated from all connected channels. The range 

can be adjusted according to the signal magnitude. 

The last window is prepared to display data in the matrix configuration. It is 

particularly appropriate for measurements in the coincidence with the pixel detector. 

The signal magnitude is expressed by a color. The color scale is adjustable to increase 

the contrast. The example (see Figure 52) shows the event where the main light is 

collected by the segment J. Adjacent segments sensed signal above the noise level 

because of the light sharing. 
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Figure 52: An example of the event visualized in a matrix configuration is depicted. Segment J measures 

the highest signal. 

All the windows used during the measurement are shown in Figure 53. Updating 

of all windows is performed synchronously once per second. 

 

Figure 53: This picture shows a screen of the newly developed software for the SiPM readout system.  

Processing thread 

After the thread object initialization the endless loop is executed. Each time the 

loop is passed, an attempt is made to read the data from the driver buffer. When the 

packet is successfully read, it is parsed and checked for its reliability – header and 

checksum (see Table 6). Reliable data are forwarded to another procedure which is 

responsible for the storage to the file. Once per second the current data are visualized in 

GUI to prove to the user that the system is working. 
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11.2. Processing software 

As an enhancement to the acquisition software, a data processing application was 

created to prove the synchronization abilities. This is the main thesis task which needs 

to be fulfilled to ensure the coincidence operation. The basic algorithm for coincidence 

data checking was verified and can be offered for further development because the 

processing of the data is always dependent on the experiment and many other 

requirements. There is no ambition to cover it by the universal and robust tool in the 

scope of the thesis project.  

For the intended evaluation, only heavy charged particles are to be used. Pixel 

detector data have to be filtered. The raw data stream from pixel detector is 

preprocessed by the Back side pulse plug-in (possibly during acquisition). Its output file 

contains only clusters fulfilling the conditions. Cluster timestamps are preserved. 

There are basically two inputs to the processing software – data from the SiPM 

array (including pedestals) and the pixel detector. Both data streams are stored in the 

files. The processing tool is available for offline processing, i.e. after the measurement. 

Of course, another measurement can be executed in the meantime. Two data streams are 

then opened in the processing tool. It is possible to go through the data event by event 

or process the batch. In both cases, only synchronous events are searched for. Permitted 

difference of the timestamps can be adjusted. The predefined value is 50 ms which is 

reasonable considering the data processing times and buffering in the computer. The 

coincident records can be further sorted by SiPM signal magnitude. The resulting 

matrixes can be stored to the files. 

There are four types of frames available in the tool: current frame, integral frame 

and two conditional frames. For each of these frames one can choose if the raw data are 

used or the hit map is desired. Only the highest pixel of the cluster is used for 

generating the hit map. The pixel coordinates are preserved but the height is changed to 

one. Such an operation allows to investigate distribution of the events without any 

distortion caused by different energy (i.e. volume) of the clusters. The difference 

between integral frame and hit map can be seen in Figure 54. 



81 

 

 

      

Figure 54: Difference between an integral frame and a hit map is shown in 3D plot. Integral frame (left, 

top) accumulates whole clusters while hit map (right, top) replaces cluster by the dot with the uniform 

height. Bottom pictures show the detail of the frames. 

The main form of the processing software is shown in Figure 55. Data streams 

were properly loaded. The coincidence limit and conditions were filled in. One 

synchronized event which deposited energy in both detectors is displayed. Positions of 

the detections in both detectors are similar which means that the tool is working 

properly. Of course, more tests have to be made to prove the functionality with no 

doubts. Other demonstrations can be found in chapter 12. 
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Figure 55: The main window of the processing software developed for the thesis project is shown. There 

are two input streams needed to be chosen. Parsing messages are written to the log. A number of events to 

be processed and a coincidence criterion can be adjusted. Additional filtering conditions can be assigned. 

The corresponding response of both detectors can be clearly seen. 
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12. Measurements and results 

This chapter summarizes the measurements and results that have been achieved 

with the prototype of the newly designed device [RP1]. Measurements was performed 

even during the early development stages and served to verify individual parts of the 

design. New issues which arose during the measurements were corrected. Proper results 

could be obtained only with appropriate settings. Therefore, some effort had to be made 

to get familiar with the new system and to know the effect of the parameters on the 

measurement results. Although the exhaustive understanding of the behavior takes 

enormous amount of time, the successful operation was achieved. Significant 

measurement milestones are listed below. 

12.1. ASIC readout system initiation 

After the basic tests of the hardware-firmware-software interactions, such as a 

command transfer and handling, a response execution (change of a FPGA pin state, a 

DAC configuration etc.) and dummy data sending to computer, a cooperation of the 

FPGA with VATA64HDR16 was verified. The settings of the ASIC affect the operation 

as much as it does not work in case of the wrong configuration. A waveform generator 

and a 1 pF capacitor were used to simulate an input charge signal. There are two types 

of responses of the ASIC – a trigger signal and analog pulse available at the output. 

Unfortunately, there is no test circuit/chain (like JTAG or so) on the chip so the missing 

response, such as trigger, can be caused by the failure of the output buffer same as the 

preamplifier stage malfunction. 

The analog pulse available at output lines looks like the one shown in Figure 56. 

Timescale of the plot 2 μs allows to display the signal before and after the pulse. The 

wavy trace around the pulse is caused by the noise picked up by the unshielded charge 

input. The shaping period corresponds to the expected value. The pulse rate and trigger 

rate was same as the frequency of the generator. No accidental events were observed. 

 

Figure 56: A response of the ASIC to the charge pulse simulated by the waveform generator and a 1 pF 

coupling capacitor is shown. The waveform shape before and after the pulse is caused by the noise. 
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This test proves that the chip is properly configured, the input signal can pass 

through the chip and the output multiplex and buffer work. A further step is to connect 

inputs of the ASIC to the SiPM array segments. There is minimal difference between 

the pulse simulated by a capacitor and the pulse from the SiPM. Sixteen of 64 available 

channels are occupied by the silicon photomultipliers. The ordinary readout routine can 

be tested to check the sample-hold function of the connected channels and timing of the 

readout procedure. Figure 57 shows the waveform recorded at the analog output as a 

response to the illuminating of the SiPM array by a LED. ASIC channels were switched 

one-by-one. Every time the sampled value is brought to the analog output. The limited 

strength of the output buffer causes the transition effect. Except that the output 

waveform is composed of the rectangular stubs. 

 

Figure 57: The output waveform of the ASIC is depicted. A LED illuminated the SiPM array connected 

to the 16 chip channels of the readout chip. Rectangular stubs correspond to the channel coordinates. 

Unconnected channels show only the noise superimposed to the pedestal value. 

The readout procedure is working properly including the ADC conversion. 

Coordinates of the waveform stubs and decomposed data correspond to the channels to 

which the SiPM segments are connected. The triggering and the readout procedure can 

be considered reliable. 

12.2. Pedestal correction 

Pedestal values of the individual channels are voltage levels at the chip output 

when no input signal is presented. There is no way how to compensate it in the 

hardware. However, the software was prepared to subtract pedestal values during the 

measurement. A pedestal run has to be performed preferably before each measurement. 

The trend of pedestal values of VATA64HDR16 is shown in Figure 58. The shape 

is similar for several chips, including other types from the VATA family, so it was not 

considered to be false. This guess was agreed by the manufacturer. The reason is the 

distribution of the power supply on the chip. 
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Figure 58: Pedestal values of the spectroscopic ASIC are depicted in the plot. The shape has increasing 

tendency. It is caused by the power supply distribution on the chip. 

12.3. SiPM array equalization 

The working readout allows to focus more on the tuning of the system 

performance. There is very limited agreement of the channels. The reason is the 

dispersion of the production technology of the analog parts, especially an ASIC slow 

shaping path, and SiPMs itself. Equalization of the channels aligns the responses so 

further processing, such as addition, is possible. There are two issues that should be 

minimized by the equalization: 

 Different amplification – Level of the output signal as a response to the unified 

input varies channel to channel. 

 Trigger rate– Despite the common threshold level, there is a different number of 

events generated by each channel as a reaction to the uniform stimulus. 

The ASIC VATA64HDR16 can cover both issues. Input pad potentials can be 

adjusted that changes the bias across the SiPM segments. The operation point of the 

SiPM segment is Vsipm = Vbias – VDAC. It changes amplification and ultimately the 

trigger rate too. The latter can be besides corrected by the dedicated register. A block 

diagram in Figure 59 explains the principle. 
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Figure 59: A block diagram of the ASIC structure shows the channel equalization possibilities. The 

SiPM segment is biased from a common source Vbias. The operation voltage Vsipm is derived and 

influenced by the input DAC settings. The amplification affects the trigger count too. The threshold level 

correction aligns the trigger responses of the channels. 

A LED was used to generate light during the gain correction measurement. An 

ordinary blue 10 mm LED with an abraded lens was covered by a teflon white tape to 

defocus the light as much as possible. It was placed 20 cm far from the SiPM array so 

the impacting light was considered to be uniform. The amount of light generated by the 

LED was adjusted to be sufficiently above the noise level. Spectral peaks were fitted to 

obtain the coordinates of the mean values. These mean values before and after the gain 

correction are plotted in Figure 60. 

 

Figure 60: Mean values of the spectral peaks generated by the LED are depicted. Two measurements 

were performed. The gain correction of the ASIC channels was made between them. 

A trigger discrimination level correction is available only in a narrow range. It 

was found at first tests that sometimes the available range is not wide enough. In such a 

case, the gain needs to be readjusted very slightly. It doesn’t affect channel gain 

matching too much but the trigger rate is influenced a lot. The measurement of noise 

spectra of individual channels is the easiest way to see the correction effect. An example 

of the noise spectrum is shown in Figure 61. The goal is to get similar area of the small 

right-side peak in all spectra because it contains events triggered by the particular 
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channel. In case the particular channel is extremely noisy or broken, it is possible to 

disable it and discard its data. 

  

Figure 61: A noise spectrum is used for the trigger level optimization. The left side peak contains 

pedestal values while the right side peak accumulates high level events which were triggered by the 

particular channel. The goal is to balance all channels to get similar area of the right side peaks. 

12.4. Summing SiPM elements 

Equalization was further verified with the NaI:Tl scintillator (same piece as 

described in chapter 0) together with the summative effect of the signals from individual 

SiPM elements. The Cesium (Cs-137) source was used to irradiate the scintillator. It 

was already proved that the scintillator measures the expected spectrum even when 

sensed by the silicon photomultiplier. In this case, the difference is in the size of SiPM 

elements, the new readout system and data processing. 

The example of four spectra of individual segments is shown in Figure 62. Other 

ones are very similar and their tail reaches similarly a value about 800. No noticeable 

peaks are in the individual spectra. It can be explained by the limited area of the SiPM 

segment. The amount of scintillating light is then low in comparison to the resolution. 

The sum spectrum generated by adding up all contributions of individual segments 

during the same measurement can be seen in Figure 63. The shape obviously changed 

and corresponds to the expected one. A photopeak and a Compton edge are clearly 

visible. The amount of scintillating light impacting the whole sensitive area is of course 

higher so the detail structure can appear. This is the proof that the summing of the 

digital data works. The slightly worse resolution in comparison to the bottom plot in 

Figure 31 is most likely caused by the older and noisier type of the SiPM technology 

(B-series). 
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Figure 62: Spectra of four individual SiPM segments are depicted. No peaks are noticeable because of 

the low area of the segments. 

 

Figure 63: An integral spectrum obtained by adding up of the digital amplitudes of the individual 

elements. 

12.5. Data synchronization check 

This chapter is slightly ahead. A description of the measurement will be given in 

the next chapter along with other details. However, it is advisable to begin with the 

synchronization issue for better understanding. 

The main contribution of the Multi-coincidence system is the possibility of 

pairing the data from different detectors. Despite the two independent parts and data 

streams, hardware and software synchronizations need to guarantee matching the data 

frames. 

Unfortunately, there is only a fraction of events that makes the response in the 

pixel detector when triggered by the scintillator. Some reasonable yield has to be found 

even with low statistics. Example of two pairs of matching frames visualized in 3D 

plots can be seen in Figure 64. The array of silicon photomultipliers provides a coarse 

coordinate while more precise position is available from Timepix. The location of 

interactions (i.e. highest point) is very similar. The frequent detection in very different 
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locations means inoperative synchronization and measurement unreliability. This 

attitude was applied in the following measurements. 

 

Figure 64: A 3D visualization of two pairs of matching frames is depicted. A coarse coordinate from the 

SiPM array roughly corresponds to the fine coordinate in Timepix. 

12.6. Experiment with fast neutrons 

The main experiment to verify the newly designed device was performed with fast 

neutrons. A laboratory radioisotope source AmBe (1 Ci, n = 2.2 MBq) available in the 

IEAP was used. The experiment took place in the impassable corridor at Van de Graaff 

facility [NP1] in satisfactory isolation from ordinary activities. The arrangement has 

been prepared to meet the requirements of the experiment while complying with the 

safety requirements for work with ionizing radiation, in particular by maximizing the 

distance between the apparatus and the computer and reduction of the exposure time. 

All activities associated with the experiment were carried out directly by the author. 

A schematic cross section of the experiment is shown in Figure 65. The prototype 

of the Multi-coincidence system is placed on the thin board which is detached from the 

wooden desk. The space is used to place the radiation source because the prototype is 

sensitive the bottom. The guide lines were painted on the desk to help with the accurate 

placement. 
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Figure 65: The cross section of the experiment with fast neutrons. 

The AmBe source was placed below the sensitive volume. The distance is about 

13.5 cm from the Timepix surface and about 13 cm from the scintillator. A series of 

measurements was performed with different settings and different positions of the 

radiation source. 

Basic partial tasks were tested before the measurements to ensure smooth 

continuation, especially: 

 Independent operation of Pixelman and Timepix (software trigger, fixed shutter 

period) 

 Independent operation of the scintillator and its readout system (data 

accumulation should be a result) 

 Response of Timepix to a trigger signal from the scintillator (HW trigger to 

Timepix, same count should be detected by both Timepix and the 

scintillator in case of rare events) 

 Veto signal from Timepix blocking detection of scintillator events (same count 

in case of higher rates because of rejecting new events until the current one 

is completely processed) 

The first sample measurement was made with the trigger signal restricted to only 

one SiPM segment (specifically O/7, see Figure 52). A Timepix acquisition window 

was set to 100 μs. The duration of the measurement was 52 minutes. Only data from 

Timepix was analyzed. The scintillator was used only for generating a trigger, relevant 

analog data are ignored for now. There were 7184 frames acquired carrying 6202 

clusters. One tenth (619) of clusters were evaluated as correct. It means they fulfilled 

predefined conditions for the roundness and the size. Integral frames of the whole 

measurement before and after the cluster analysis are shown in Figure 66. The 

important outcome of this measurement is a fact that clusters, especially round blobs, 

are concentrated below or very near the triggering element of the SiPM array. Distant 

clusters, mainly long curly tracks, are generated by another process than proton recoil or 

are detected asynchronously to the trigger signal because of the considerable length of 

the acquisition window. 

TPX 

2.6 cm 

0.9 cm 

10 cm 

Light shielding box 

AmBe 
source 

SiPM 



91 

 

    

Figure 66: Integral Timepix frames of the measurement before (left) and after (right) the cluster analysis 

are shown. In both cases, concentration below one SiPM segment which was chosen to generate a trigger 

is clearly visible. 

The random nature of the phenomenon was avoided by repeating the 

measurement with the choice of other trigger channels (F and J).  

Another measurement with two different triggering channels (F and J) was 

performed to dispel all doubts. A comparison of this and the previous results can be 

seen in Figure 67. A lattice was added above the Timepix frame to show the position of 

the triggering SiPM segments. These results prove that the hardware synchronization of 

the system works reliably. 

    

Figure 67: A comparison of the integral Timepix frames of two measurements triggered by different 

SiPM segments (marked by a pink rectangle) is shown. 

There is a noticeable asymmetry of the cloud of events. The first explanation 

could be the accidental change of position of the Timepix or the scintillator. This guess 

was verified and appeared to be wrong. The asymmetry was caused by the improper 
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position of the AmBe source so the direction of the impacting neutrons was not 

perpendicular. 

Up to now, the described measurements used low amount of active SiPM 

segments. It means only these segments generated trigger to start the acquisition of the 

system. Such an operation is not desired because it decreases the sensitive volume so 

the detection efficiency. The following measurement employs all SiPM segments and 

processes the raw data by the processing tool. Each Timepix cluster is to be located near 

the interaction point in the scintillator which is determined by the highest segment. 

Events, i.e. clusters, can be filtered according to the magnitude of the SiPM signal. 

Simple or more complex filtering condition can be set in the processing tool. 

Figure 68 shows results of the processing of the first 100 events of the 

measurement. Integral frames accumulate all synchronous events. Default value of the 

timestamp difference (50 ms) was preserved. Condition 1 was met when the signal in 

one element was above 500. Condition 2 was fulfilled when another channel was over 

500 and its adjacent channel is below 300 at the same time. It can be seen that Timepix 

clusters are filtered according to the defined condition. 

 

Figure 68: Three screens of the processing tool after investigation of the first 100 events of the 

measurement are shown – integral (left), condition 1 (middle), condition 2 (right). Setting of the 

conditions, i.e. magnitude of the SiPM signal, is stated in the SiPM frame (top). A missing number means 

that the segment is not considered. Timepix frames (bottom) show only events fulfilling the condition. 

Very distant Timepix clusters can be found and can be explained by too benevolent timestamp criterion. 

Results of the processing of all available data are shown in Figure 69. A 

symmetric cloud is obtained for condition 1. Outstanding asymmetry in case of 

condition 2 is a consequence of the suppression from the right side. The integral frame 

from Timepix is uniformly covered as expected. Empty pixels (black) are caused by the 

limited statistics and the high granularity. On the other hand, the integral frame from the 

SiPM array shows the inequality among channels although they were matched. It should 
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be noted that the color scale highlights the difference because it doesn’t start at zero. 

The standard deviation of the segments across the SiPM was calculated: σ = 8.3%. 

Compared to the resolution of the scintillator (about 20%), the channel discrepancy does 

not worsen the system performance. 

 

Figure 69: Processing of all the events resulted in these records. The integral Timepix frame (bottom, 

left) is uniformly covered. The SiPM frame (top, left) suffers from limited homogeneity. The condition 1 

results (middle) shows symmetric clouds in both detectors. Compared to that, the condition 2 (right) 

filters events which form an asymmetric group. It is caused by the suppression of the events from the 

right side element. 

It was observed there is a directional sensitivity of the detection. It is a very 

common feature of almost all detectors. But the common effect is decrease in detected 

events which has no sense in case the radiation field is undefined. Compared to that, the 

Multi-coincidence system brings the possibility to estimate the direction of the 

incoming neutrons based on the spread of the events. 

Four measurements were performed with different positions of the AmBe source, 

see Figure 70. The impact angles were as follows: 

 Position 1 – perpendicular in x and y direction 

 Position 2 – -20 degrees in x, perpendicular in y direction 

 Position 3 – -40 degrees in x, perpendicular in y direction 

 Position 4 – +20 degrees in x, -20 degrees in y direction 
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Figure 70: A sketch of the measurements arrangement (top view). The AmBe source positions are 

represented by circles. The sensitive volume (a dashed square) is placed to the origin of the coordinate 

system. Index of the measurement is assigned by the red number  

Data from the Timepix detector and the scintillator was recorded. The cluster 

analysis of Timepix events was performed as usual. Clusters were filtered according to 

the magnitudes of the scintillator signal. Evaluation conditions were fixed (signal 

magnitude) but the coordinates, where it was applied, changed. The purpose of the 

operation is to select the response cloud and observe its shift when changing the 

position of the radiation source. Figure 71 shows the naming convention for the filtering 

conditions. 

  

Figure 71: The image shows the naming convention established for the conditions definitions. 

Filtering conditions are as follows: 

1) (B1 > 500) ˄ (C1 > 500) 

2) (B1 > 300) ˄ (C1 > 300) ˄ (B2 > 300) ˄ (C2 > 300) 

3) (B2 > 500) ˄ (C2 > 500) 

4) (B2 > 300) ˄ (C2 > 300) ˄ (B3 > 300) ˄ (C3 > 300) 

5) (B3 > 500) ˄ (C3 > 500) 

6) (B3 > 300) ˄ (C3 > 300) ˄ (B4 > 300) ˄ (C4 > 300) 

7) (B4 > 500) ˄ (C4 > 500) 

High threshold or more complex logic operation reduces the yield, i.e. number of 

events that can fulfill the condition. In the extreme, it can even cause that no event is 

able to fulfill the condition. That is the reason why the threshold was lowered for the 
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four-segment conditions. Same logic pattern was used for investigation the data 

measured with the AmBe source in four different positions. The output of the 

processing is the integral hit map. Horizontal and vertical projections of the hit map 

matrix create vectors which were further used for evaluation. The example of 

projections can be seen in Figure 72. 

The shape of the projection changes according to the direction of the incoming 

neutrons. Further investigation and calibration can determine the direction. Exhaustive 

data analysis is not the intent of this work, so only the basic parameters demonstrating 

the possibility of directional detection are stated. 

The center of mass of the projection is obtained by formula (10). The range is 

adapted to the size of one matrix which was used in the thesis project. 

   
     
   
   

   
   
   

 (10) 

 

Figure 72: Horizontal and vertical projections of the Timepix integral frame are shown. The vertical 

projection is fairly symmetrical. This does not apply to the horizontal projection which is influenced by 

the direction of the incoming neutrons. 
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The described measurements were performed and recorded data processed according to 

the described procedure. Table 9 summarizes centers of mass determined for four 

neutron source positions and seven filtering conditions. 

Table 9: Results of four measurements are summarized in the table. Centers of mass for horizontal and 

vertical positions were calculated. Measurement statistics can be found including duration, event rate 

(number of events of the scintillator) and neutron rate. 

 

Centers of mass of horizontal projections presented in the graph depending on the 

impact angle of neutrons shows a monotone trend (see Figure 73). The filtering 

condition has no impact to the trend so the center of mass coordinates was averaged and 

trend equation calculated (see Figure 74). 
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Figure 73: Coordinates of the center of mass of the horizontal projection are arranged according to the 

impact angle of neutrons. The monotone trend is evident. 

 

Figure 74: The trend is preserved regardless the filtering condition. The average coordinate was 

calculated and trend equation expressed. 

The angular resolution calculated from the horizontal projections is 1.6 degrees. 

Similar analysis can be made for vertical projections. In this case, the 

configuration of the measurements results in one angular change in measurement 4. 

Previous three measurements were done with same impact angle in the direction of the 

vertical projection. A raw data plot is shown in Figure 75. 

(Measurement 1) (Measurement 2) (Measurement 3) (Measurement 4) 
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Figure 75: A plot of raw values of vertical projections is depicted. There is very broad scale because of 

diverse coordinates resulting from the filtering conditions. 

It is apparent the coordinate of center of mass of vertical projection is very similar 

for the particular condition. Better evidence is reached when raw values are subtracted 

from the average calculated for particular filtering condition. Figure 76 shows a plot of 

coordinates of vertical projections after subtraction of the average. 

 

Figure 76: A plot of vertical projections of the four measurements after subtraction of the average shows 

a good correspondence of three measurements while the fourth one differs significantly because of the 

different position of the neutron source. 

The difference of the measurement 4 is evident. Angular dependence suffers from 

lack of data because only two positions were measured. A rough estimation can be done 

by averaging of results of same impact angles (0 degrees and -20 degrees) as shown in 

Figure 77. 
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Figure 77: The trend of the angular dependence of vertical projections has very limited statistical basis. 

Only two angles were measured in this direction. 

The angular resolution calculated from the vertical projections is 3.1 degrees. 

The resolution calculated from vertical projections is worse in comparison to that 

from horizontal projections. It can be explained by different projection shapes (wider) 

which are dependent on filtering conditions. These results were achieved with one 

particular set of conditions and are more a consequence of processing than to be labeled 

as a device parameter. There are many available conditions that can be used to process 

the measured data. More selective conditions, such as with higher threshold or 

coincidence for more segments, are more advantageous but dramatically decrease the 

yield. The optimization is desired and can be considered as a task for future. 

The contribution of the thesis project is based on merging of two different systems 

– the silicon detector Timepix and the scintillator covered by the array of SiPMs read by 

the spectroscopic chip. Both parts provide analog information about the signal deposited 

is the detectors. So far, analog values from SiPMs were used for filtering Timepix 

clusters. The resulting directional dependence was already described. Further 

information about the radiation field is the energy. The energy of the primary neutron 

can be reconstructed when the collision angle and the energy deposited by the recoiled 

proton is known. The collision angle can be derived from the incoming direction of the 

neutron and the impact angle of the recoiled proton to the silicon detector. Both values 

are available by the Multi-coincidence system. The energy deposited by the recoiled 

proton is shared by the materials which are passed through. Assuming full absorption in 

the silicon detector, the rest of the energy is deposited in the scintillator and a bit in the 

air. The scintillation light is proportional to the energy loss and the newly developed 

system provides the value. It can be included to the energy calculation that will increase 

the precision. 

Figure 78 shows individual spectra from three SiPM segments. The first segment 

(blue) was used for triggering the system. The spectrum shows highest energies because 

the threshold was set as much as necessary to avoid noise. The adjacent channel (red) 

contains events with rather low energies but some events are comparable to that from 
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the triggering channel. This happens when the interaction point is just between 

segments and the light is significantly shared. The distant segment (green) measures 

only noise because no light from the triggering particle can reach it. Such a behavior is  

 

Figure 78: Spectra from three individual channels have different shapes. The trigger channel (blue) 

collects highest amount of light which can be slightly shared by the adjacent channel (red) while the 

distant channel (green) has no such a contribution. 

The resolution of the plastic scintillator is expected as very poor, moreover when 

the light is sensed by the small area SiPM segment. The region of the triggering spectra 

around the threshold level was fitted by error function (see Figure 79). Its sigma is very 

similar to the sigma of the Gaussian fit of the pure noise from the distant channel (see 

Figure 80). Thus, the noise has additive character and the resolution will improve when 

more segments will be added. 

 

Figure 79: Error function fit of the threshold region 

with the fit parameters is shown. 

Figure 80: The adjacent channel spectrum 

filled mainly by the noise is fitted by the 

Gaussian function. 
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13. Results comparison 

The objective of this thesis is to develop the new method and algorithm for 

particle detection and recognition. The effort resulted in the new instrument which was 

used in experimental measurements simulating the real use. The instrument itself is the 

original contribution of the thesis author and no competitive device can be found so far. 

The more important is what the device allows and what results can be achieved in 

comparison to other results/works. 

The first comparison should be between the simulation and the measurement. The 

simulated detection efficiency was 4.710
-4

. There is only one measurement comparable 

to that (perpendicular geometry). The obtained efficiency is 210
-4

. It is a slightly lower 

value than the simulated one. There can be found two explanations: a) there are 1 MeV 

cuts for both detectors in the simulation which are not guaranteed in the real 

measurement and are probably higher, b) the simulation procedure doesn’t take into 

account the limitation of the data transfer speed of the system. In spite of that, the real 

detection efficiency is appropriate when considering device optimization status. 

A comparison with other system is desired despite the lack of comparable devices 

and information. The work is highly focused on the directional detection of neutrons. 

There are two approaches. The first one employs a collimator which defines the field of 

view of the detector. Increasing the collimation effect by narrowing the aperture makes 

the directional resolution better but reduces the detection efficiency [44]. The second 

approach, which is exploited in this work, is the coincidence of several channels. The 

performance of the system, particularly the detection efficiency, is influenced by system 

parameters, such as size of material. Detectors based on gas [45], fluid [46] or plastic 

[47], [48] can be found. Some parameters were found for comparison which can be seen 

in Table 10. 

Table 10: Some parameters of directionally sensitive neutron detection systems are stated and compared 

to the solution achieved and presented in this thesis (highlighted as red). 

Author Ref. Principle Material, detector and size 
Detection 

efficiency 

Ang. resol. 

[deg.] 

Iguchi et al.  [44]  collimator Up to tens of centimeters 
1.1x10-4 24.5 

1.9x10-5 3.6 

Peel et al.  [47] coincidence 

Scintillating fibers, multi-anode PMT, 

detector size (one dimension) 10 cm, huge 

electronics (VME) 

- < 10 

Marafini et al.  [48] coincidence 
Scintillating fibers, CMOS light sensor, 

101020 cm3 
8x10-3 - 

Archambault et al.  [46] coincidence 
Sensitive area 42.5 cm2, detector >15 cm 

long, acoustic sensors, oscilloscope based 

DAQ 

- < 8.1 

Son et al.  [45] coincidence 
303030 cm3, 2-D micro-well detektor, 

transient digitizers 
- < 5 

Mašek et al. 
 

coincidence 
Sensitive volume 221 cm3, array of SiPMs 

and silicon pixel detector, FPGA bases DAQ 
210-4 < 2 

 

The comparison shows that the results achieved by the thesis project are just as 

good or better as competitive solutions. The significant benefit is the angular resolution 



102 

 

which overcomes the currently available values. The lower detection efficiency is 

determined by the size of the sensitive volume and the material used. However, it 

should be noted that the whole concept supports the stacking of sensitive layers, thereby 

increasing detection efficiency. The small dimensions and the own custom-made design 

of the electronic system are also an advantage, especially for optimization and further 

extension. 
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14. Conclusions 

Simple detectors of ionizing radiation can provide only limited information about 

radiation field. Restrictions are mainly on the side of the physical processes in the 

detector material. Complex systems are valuable devices because they can provide more 

comprehensive characterization than available by simple detectors. It is repaid by the 

overall complexity of the design. Therefore, such systems are mainly a domain of large 

detector experiments (in CERN and others). 

The new enhanced method for neutron detection which resulted in the design of 

the compact Multi-coincidence system presented in this thesis is based on merging of 

two different detection technologies in closed geometry. The activities and the content 

of the work were carried out in accordance with the stated goals. The author’s 

contribution, new innovative approach and fulfillment of the goals can be summarized 

as follows: 

 Design the structure which is able to detect, recognize and characterize 

different particle types. The main focus is devoted to position and directional 

detection. 

The unique silicon pixel detector Timepix has excellent position and energy 

resolution. Unfortunately, it has demerits which decrease its qualities, such as missing 

self-triggering feature or fast neutron interaction indefiniteness. The new solution is to 

use the plastic scintillator as an efficient fast neutron converter which, furthermore, 

provides information about the interaction. Sensing of the light from the scintillator slab 

is ensured by novel type of optical photodetectors – silicon photomultipliers (SiPMs). 

These thin sensors tightly cover the scintillator making the structure very compact. It 

allows to place it near the silicon pixel detector creating a “sandwich” structure. The 

overall concept supports telescopic arrangement of these structures that allows to 

recognize neutrons and protons in the undefined radiation field. Position sensitivity of 

the scintillator is reached by utilization of an array of silicon photomultipliers. The 

interaction point in the scintillator can be localized. Projection of the events hitting both 

detectors based on the interaction position defines the direction of the incoming 

neutrons. 

 Develop the electronic architecture for particle detection with an emphasis 

on scalability, interoperability and portability. Activation and synchronization of 

detection units is to be provided. 

The development of the electronic system fully respects the needs arising from the 

proposed design of the detection structure. The new system was designed according to 

the specific needs of the thesis project. An array of silicon photomultipliers provides 

analog signal corresponding to the amount of scintillation light. There are 16 elements 

that must be processed individually to preserve the position information. The integrated 

solution is desired to keep the device compact and portable. The multi-channel 

spectroscopic chip VATA64HDR16 was utilized. It contains circuitry for processing the 

SiPM signals and provides analog output that allows to measure energy deposited in the 

scintillator. Furthermore, each event crossing the threshold generates a trigger signal 

which is used for starting acquisition. The control logic is implemented in the FPGA 



104 

 

together with the interface for data transfer and the synchronization engine. This novel 

architecture works as a master device that controls the operation of the Timepix detector 

through the FITPix interface. The Multi-coincidence system is fully synchronized so 

only desired neutron events can be recognized and measured. 

 Prepare the algorithms for control and processing the measurements and 

detection evaluation. Elaborate on the coincidence technique and easy-to-use 

solution. 

The control algorithm is shared between the FPGA logic and the user software. 

The communication protocol between hardware and software parts was prepared. The 

system is fully configurable by the user through the own custom-made graphical user 

interface. System settings, acquisition control and data visualization and processing are 

provided. The special tool was made for processing data from the pixel detector and the 

scintillator. Timepix clusters are filtered and matched with proper scintillator frames. 

Such coincidence data completely describe the neutron interaction. The determination 

of the neutron direction is based on selection of data according to the interaction point 

while all neutron events are still available for energy calculation. 

 Support the concept by the assembled device. Tune up the device 

performance and test and verify it by practical measurements with radiation 

sources. 

The new instrument was assembled according to the specified design. It is a fully 

working prototype device composed of the new readout system for the SiPM array with 

the attached scintillator slab and the pixel detector Timepix with the FITPix interface. 

The mechanical support and ambient light shielding makes the device packing. The 

final dimensions are 30 cm  28 cm  10 cm that makes the device portable. The 

prototype device performance was optimized by equalization of the channels, this 

applies to both the pixel detector and the silicon photomultiplier array. The ultimate 

verification of the Multi-coincidence system was made with the neutron source AmBe 

when the response of the detectors, the overall functionality, the system synchronization 

and the data processing was successfully proved. The real detection efficiency almost 

reaches the simulated one, the difference is only by a factor of two. The achievable 

directional resolution below 2 degrees is better than available by another device known 

so far. 

The thesis outcomes were presented during the work at the international 

conferences 

 14th International Workshop on Radiation Imaging Detectors, 2012, Portugal 

 IEEE NSS/MIC Conference, France, 2016 

and the topic was approved by the scientific community as the impacted article  

MAŠEK, P.; JAKŮBEK, J.; UHER, J.; PRESTON, R. Directional Detection of 

Fast Neutrons by the Timepix Pixel Detector Coupled to Plastic Scintillator with Silicon 

Photomultiplier Array. Journal of Instrumentation. 2013, 8(C01021), pp. 1-6. ISSN 

1748-0221 
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The direct contribution of this thesis is the new method for neutron detection 

which was developed and successfully verified. The excellent directional resolution 

achieved, while maintaining the detection efficiency, provides a significantly better 

description of the detected neutron field. The benefits of this work can be exploited in a 

variety of physical applications, where the key issue is the neutron detection and the 

separation from other types of radiation, such as study of fission reactions, neutron 

measurements in a hadron therapy, searching of radiation threats or a space weather 

monitoring. 
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Appendix A 

Values of projected range of the protons (recoiled hydrogen) in polystyrene and 

silicon for different energies were obtained by SRIM calculator [49]. 

 

============================================================== 
              SRIM version ---> SRIM-2013.00 
              Calc. date   ---> Oct 27, 2016  
 ============================================================== 
 
Ion = Hydrogen [1] , Mass = 1.008 amu 
 
 Target Density =  1.0600E+00 g/cm3 = 9.8062E+22 atoms/cm3 
 ======= Target  Composition ======== 
    Atom   Atom   Atomic    Mass      
    Name   Numb   Percent   Percent   
    ----   ----   -------   -------   
      H      1    050.00    007.74    
      C      6    050.00    092.26    
 ==================================== 
 Bragg Correction = 0.35% 
 Stopping Units =  MeV / (mg/cm2)  
 See bottom of Table for other Stopping units  
 
        Ion        dE/dx      dE/dx     Projected  Longitudinal   Lateral 
       Energy      Elec.      Nuclear     Range     Straggling   Straggling 
  --------------  ---------- ---------- ----------  ----------  ---------- 
  10.00 keV   5.460E-01  8.191E-03    2105 A       481 A       515 A    
  11.00 keV   5.694E-01  7.655E-03    2260 A       493 A       534 A    
  12.00 keV   5.913E-01  7.192E-03    2410 A       504 A       552 A    
  13.00 keV   6.118E-01  6.788E-03    2555 A       514 A       569 A    
  14.00 keV   6.311E-01  6.431E-03    2697 A       523 A       584 A    
  15.00 keV   6.492E-01  6.114E-03    2835 A       531 A       599 A    
  16.00 keV   6.663E-01  5.831E-03    2970 A       539 A       612 A    
  17.00 keV   6.825E-01  5.574E-03    3102 A       546 A       625 A    
  18.00 keV   6.977E-01  5.342E-03    3232 A       553 A       637 A    
  20.00 keV   7.258E-01  4.937E-03    3485 A       565 A       660 A    
  22.50 keV   7.569E-01  4.517E-03    3789 A       580 A       685 A    
  25.00 keV   7.841E-01  4.168E-03    4084 A       592 A       708 A    
  27.50 keV   8.079E-01  3.874E-03    4370 A       603 A       729 A    
  30.00 keV   8.290E-01  3.623E-03    4649 A       613 A       749 A    
  32.50 keV   8.475E-01  3.405E-03    4923 A       623 A       767 A    
  35.00 keV   8.639E-01  3.214E-03    5191 A       631 A       784 A    
  37.50 keV   8.784E-01  3.045E-03    5455 A       639 A       800 A    
  40.00 keV   8.912E-01  2.894E-03    5716 A       647 A       815 A    
  45.00 keV   9.122E-01  2.637E-03    6228 A       662 A       843 A    
  50.00 keV   9.281E-01  2.425E-03    6731 A       677 A       869 A    
  55.00 keV   9.396E-01  2.248E-03    7228 A       690 A       894 A    
  60.00 keV   9.473E-01  2.096E-03    7720 A       702 A       916 A    
  65.00 keV   9.518E-01  1.965E-03    8210 A       714 A       938 A    
  70.00 keV   9.535E-01  1.851E-03    8699 A       725 A       959 A    
  80.00 keV   9.497E-01  1.661E-03    9679 A       752 A       999 A    
  90.00 keV   9.388E-01  1.509E-03    1.07 um      778 A      1037 A    
 100.00 keV   9.228E-01  1.384E-03    1.17 um      804 A      1073 A    
 110.00 keV   9.035E-01  1.279E-03    1.27 um      829 A      1109 A    
 120.00 keV   8.821E-01  1.191E-03    1.37 um      854 A      1145 A    
 130.00 keV   8.598E-01  1.114E-03    1.48 um      879 A      1180 A    
 140.00 keV   8.371E-01  1.048E-03    1.59 um      904 A      1216 A    
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 150.00 keV   8.145E-01  9.892E-04    1.71 um      930 A      1252 A    
 160.00 keV   7.924E-01  9.374E-04    1.82 um      956 A      1288 A    
 170.00 keV   7.710E-01  8.910E-04    1.94 um      982 A      1325 A    
 180.00 keV   7.503E-01  8.493E-04    2.07 um     1009 A      1363 A    
 200.00 keV   7.117E-01  7.774E-04    2.32 um     1096 A      1440 A    
 225.00 keV   6.682E-01  7.039E-04    2.66 um     1225 A      1541 A    
 250.00 keV   6.299E-01  6.439E-04    3.03 um     1356 A      1648 A    
 275.00 keV   5.961E-01  5.939E-04    3.41 um     1489 A      1761 A    
 300.00 keV   5.661E-01  5.515E-04    3.81 um     1624 A      1879 A    
 325.00 keV   5.394E-01  5.152E-04    4.24 um     1762 A      2004 A    
 350.00 keV   5.154E-01  4.836E-04    4.68 um     1902 A      2135 A    
 375.00 keV   4.939E-01  4.559E-04    5.15 um     2045 A      2271 A    
 400.00 keV   4.744E-01  4.313E-04    5.64 um     2190 A      2414 A    
 450.00 keV   4.405E-01  3.899E-04    6.66 um     2689 A      2716 A    
 500.00 keV   4.119E-01  3.560E-04    7.77 um     3171 A      3040 A    
 550.00 keV   3.875E-01  3.279E-04    8.95 um     3644 A      3385 A    
 600.00 keV   3.663E-01  3.042E-04   10.19 um     4113 A      3750 A    
 650.00 keV   3.478E-01  2.838E-04   11.51 um     4582 A      4135 A    
 700.00 keV   3.314E-01  2.661E-04   12.90 um     5053 A      4538 A    
 800.00 keV   3.038E-01  2.369E-04   15.86 um     6691 A      5397 A    
 900.00 keV   2.812E-01  2.138E-04   19.08 um     8220 A      6323 A    
   1.00 MeV   2.624E-01  1.950E-04   22.55 um     9700 A      7312 A    
   1.10 MeV   2.489E-01  1.794E-04   26.23 um     1.11 um     8356 A    
   1.20 MeV   2.358E-01  1.662E-04   30.12 um     1.26 um     9448 A    
   1.30 MeV   2.227E-01  1.550E-04   34.22 um     1.40 um     1.06 um   
   1.40 MeV   2.111E-01  1.452E-04   38.57 um     1.54 um     1.18 um   
   1.50 MeV   2.008E-01  1.366E-04   43.14 um     1.69 um     1.31 um   
   1.60 MeV   1.915E-01  1.291E-04   47.94 um     1.84 um     1.44 um   
   1.70 MeV   1.832E-01  1.224E-04   52.97 um     1.99 um     1.57 um   
   1.80 MeV   1.756E-01  1.163E-04   58.21 um     2.14 um     1.71 um   
   2.00 MeV   1.623E-01  1.060E-04   69.37 um     2.70 um     2.02 um   
   2.25 MeV   1.485E-01  9.550E-05   84.54 um     3.49 um     2.42 um   
   2.50 MeV   1.370E-01  8.698E-05  101.04 um     4.25 um     2.86 um   
   2.75 MeV   1.274E-01  7.992E-05  118.86 um     4.99 um     3.33 um   
   3.00 MeV   1.191E-01  7.397E-05  137.97 um     5.72 um     3.83 um   
   3.25 MeV   1.120E-01  6.888E-05  158.35 um     6.46 um     4.36 um   
   3.50 MeV   1.057E-01  6.448E-05  179.99 um     7.21 um     4.92 um   
   3.75 MeV   1.002E-01  6.063E-05  202.86 um     7.97 um     5.51 um   
   4.00 MeV   9.526E-02  5.723E-05  226.96 um     8.73 um     6.13 um   
   4.50 MeV   8.683E-02  5.151E-05  278.75 um    11.52 um     7.46 um   
   5.00 MeV   7.990E-02  4.687E-05  335.29 um    14.16 um     8.90 um   
   5.50 MeV   7.408E-02  4.304E-05  396.52 um    16.73 um    10.45 um   
   6.00 MeV   6.911E-02  3.980E-05  462.34 um    19.30 um    12.11 um   
   6.50 MeV   6.483E-02  3.704E-05  532.70 um    21.87 um    13.88 um   
   7.00 MeV   6.109E-02  3.465E-05  607.54 um    24.47 um    15.75 um   
   8.00 MeV   5.486E-02  3.073E-05  770.27 um    33.91 um    19.80 um   
   9.00 MeV   4.988E-02  2.763E-05  950.36 um    42.75 um    24.26 um   
  10.00 MeV   4.580E-02  2.513E-05    1.15 mm    51.40 um    29.12 um   
  11.00 MeV   4.239E-02  2.305E-05    1.36 mm    60.03 um    34.36 um   
  12.00 MeV   3.949E-02  2.131E-05    1.59 mm    68.73 um    39.98 um   
  13.00 MeV   3.699E-02  1.982E-05    1.84 mm    77.54 um    45.98 um   
  14.00 MeV   3.482E-02  1.853E-05    2.10 mm    86.48 um    52.34 um   
  15.00 MeV   3.291E-02  1.741E-05    2.38 mm    95.56 um    59.07 um   
----------------------------------------------------------- 
============================================================== 
 (C) 1984,1989,1992,1998,2008 by J.P. Biersack and J.F. Ziegler 
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============================================================== 
              SRIM version ---> SRIM-2013.00 
              Calc. date   ---> duben 24, 2017  
 ============================================================== 
 
Ion = Hydrogen [1] , Mass = 1.008 amu 
 
 Target Density =  2.3212E+00 g/cm3 = 4.9770E+22 atoms/cm3 
 ======= Target  Composition ======== 
    Atom   Atom   Atomic    Mass      
    Name   Numb   Percent   Percent   
    ----   ----   -------   -------   
     Si     14    100.00    100.00    
 ==================================== 
 Bragg Correction = 0.00% 
 Stopping Units =  MeV / (mg/cm2)  
 See bottom of Table for other Stopping units  
 
        Ion        dE/dx      dE/dx     Projected  Longitudinal   Lateral 
       Energy      Elec.      Nuclear     Range     Straggling   Straggling 
  --------------  ---------- ---------- ----------  ----------  ---------- 
  10.00 keV   3.131E-01  4.222E-03    1342 A       519 A       488 A    
  11.00 keV   3.277E-01  3.995E-03    1452 A       538 A       511 A    
  12.00 keV   3.419E-01  3.794E-03    1558 A       554 A       532 A    
  13.00 keV   3.556E-01  3.615E-03    1662 A       569 A       552 A    
  14.00 keV   3.688E-01  3.455E-03    1762 A       583 A       571 A    
  15.00 keV   3.813E-01  3.310E-03    1861 A       596 A       589 A    
  16.00 keV   3.933E-01  3.179E-03    1957 A       608 A       605 A    
  17.00 keV   4.046E-01  3.059E-03    2051 A       619 A       621 A    
  18.00 keV   4.152E-01  2.949E-03    2143 A       629 A       636 A    
  20.00 keV   4.346E-01  2.755E-03    2323 A       648 A       664 A    
  22.50 keV   4.556E-01  2.549E-03    2540 A       669 A       696 A    
  25.00 keV   4.732E-01  2.375E-03    2751 A       688 A       726 A    
  27.50 keV   4.878E-01  2.226E-03    2956 A       704 A       752 A    
  30.00 keV   4.999E-01  2.097E-03    3157 A       720 A       778 A    
  32.50 keV   5.097E-01  1.984E-03    3355 A       734 A       801 A    
  35.00 keV   5.177E-01  1.883E-03    3550 A       747 A       824 A    
  37.50 keV   5.240E-01  1.794E-03    3744 A       759 A       845 A    
  40.00 keV   5.289E-01  1.713E-03    3937 A       771 A       866 A    
  45.00 keV   5.352E-01  1.575E-03    4320 A       793 A       905 A    
  50.00 keV   5.380E-01  1.459E-03    4701 A       814 A       942 A    
  55.00 keV   5.382E-01  1.360E-03    5084 A       833 A       977 A    
  60.00 keV   5.365E-01  1.276E-03    5468 A       852 A      1011 A    
  65.00 keV   5.334E-01  1.202E-03    5855 A       869 A      1044 A    
  70.00 keV   5.293E-01  1.137E-03    6246 A       886 A      1077 A    
  80.00 keV   5.192E-01  1.028E-03    7041 A       922 A      1140 A    
  90.00 keV   5.077E-01  9.403E-04    7856 A       957 A      1203 A    
 100.00 keV   4.957E-01  8.673E-04    8692 A       991 A      1265 A    
 110.00 keV   4.836E-01  8.057E-04    9550 A      1024 A      1326 A    
 120.00 keV   4.717E-01  7.531E-04    1.04 um     1058 A      1388 A    
 130.00 keV   4.603E-01  7.075E-04    1.13 um     1091 A      1451 A    
 140.00 keV   4.492E-01  6.675E-04    1.23 um     1124 A      1513 A    
 150.00 keV   4.387E-01  6.322E-04    1.32 um     1158 A      1577 A    
 160.00 keV   4.286E-01  6.008E-04    1.42 um     1192 A      1641 A    
 170.00 keV   4.190E-01  5.726E-04    1.52 um     1226 A      1706 A    
 180.00 keV   4.099E-01  5.471E-04    1.62 um     1261 A      1772 A    
 200.00 keV   3.930E-01  5.030E-04    1.83 um     1347 A      1907 A    
 225.00 keV   3.741E-01  4.576E-04    2.11 um     1466 A      2081 A    
 250.00 keV   3.573E-01  4.203E-04    2.40 um     1587 A      2261 A    
 275.00 keV   3.423E-01  3.890E-04    2.70 um     1710 A      2447 A    
 300.00 keV   3.288E-01  3.624E-04    3.02 um     1835 A      2638 A    
 325.00 keV   3.166E-01  3.395E-04    3.35 um     1961 A      2836 A    
 350.00 keV   3.055E-01  3.194E-04    3.69 um     2089 A      3039 A    
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 375.00 keV   2.954E-01  3.018E-04    4.05 um     2219 A      3248 A    
 400.00 keV   2.861E-01  2.862E-04    4.41 um     2351 A      3463 A    
 450.00 keV   2.696E-01  2.596E-04    5.18 um     2727 A      3908 A    
 500.00 keV   2.554E-01  2.379E-04    5.99 um     3098 A      4373 A    
 550.00 keV   2.430E-01  2.197E-04    6.85 um     3468 A      4857 A    
 600.00 keV   2.321E-01  2.043E-04    7.75 um     3838 A      5360 A    
 650.00 keV   2.224E-01  1.911E-04    8.69 um     4209 A      5881 A    
 700.00 keV   2.137E-01  1.795E-04    9.67 um     4582 A      6418 A    
 800.00 keV   1.986E-01  1.604E-04   11.74 um     5719 A      7542 A    
 900.00 keV   1.861E-01  1.452E-04   13.97 um     6806 A      8728 A    
   1.00 MeV   1.755E-01  1.328E-04   16.33 um     7871 A      9972 A    
   1.10 MeV   1.663E-01  1.225E-04   18.84 um     8926 A      1.13 um   
   1.20 MeV   1.571E-01  1.137E-04   21.48 um     9986 A      1.26 um   
   1.30 MeV   1.492E-01  1.062E-04   24.28 um     1.11 um     1.40 um   
   1.40 MeV   1.423E-01  9.965E-05   27.22 um     1.21 um     1.55 um   
   1.50 MeV   1.361E-01  9.392E-05   30.29 um     1.32 um     1.71 um   
   1.60 MeV   1.305E-01  8.886E-05   33.50 um     1.44 um     1.87 um   
   1.70 MeV   1.253E-01  8.434E-05   36.85 um     1.55 um     2.03 um   
   1.80 MeV   1.207E-01  8.029E-05   40.33 um     1.66 um     2.20 um   
   2.00 MeV   1.124E-01  7.331E-05   47.69 um     2.04 um     2.56 um   
   2.25 MeV   1.037E-01  6.620E-05   57.61 um     2.56 um     3.03 um   
   2.50 MeV   9.644E-02  6.042E-05   68.32 um     3.07 um     3.54 um   
   2.75 MeV   9.023E-02  5.562E-05   79.80 um     3.56 um     4.08 um   
   3.00 MeV   8.486E-02  5.156E-05   92.05 um     4.06 um     4.66 um   
   3.25 MeV   8.018E-02  4.808E-05  105.03 um     4.56 um     5.26 um   
   3.50 MeV   7.604E-02  4.507E-05  118.76 um     5.07 um     5.89 um   
   3.75 MeV   7.236E-02  4.243E-05  133.20 um     5.59 um     6.55 um   
   4.00 MeV   6.906E-02  4.010E-05  148.36 um     6.11 um     7.24 um   
   4.50 MeV   6.338E-02  3.616E-05  180.77 um     7.86 um     8.71 um   
   5.00 MeV   5.866E-02  3.297E-05  215.93 um     9.54 um    10.29 um   
   5.50 MeV   5.466E-02  3.031E-05  253.80 um    11.19 um    11.97 um   
   6.00 MeV   5.124E-02  2.807E-05  294.32 um    12.84 um    13.76 um   
   6.50 MeV   4.826E-02  2.616E-05  337.45 um    14.50 um    15.66 um   
   7.00 MeV   4.564E-02  2.450E-05  383.14 um    16.17 um    17.66 um   
   8.00 MeV   4.125E-02  2.177E-05  482.01 um    21.92 um    21.95 um   
   9.00 MeV   3.771E-02  1.961E-05  590.78 um    27.36 um    26.64 um   
  10.00 MeV   3.479E-02  1.786E-05  709.23 um    32.70 um    31.70 um   
----------------------------------------------------------- 
 ============================================================== 
 (C) 1984,1989,1992,1998,2008 by J.P. Biersack and J.F. Ziegler 
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Appendix B 

The wiring diagram of the Interface board for spectroscopic ASICs. 
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Appendix C 

The wiring diagram of the Chip dongle for VATA64HDR16. 

 

 

 


