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Anotace (abstrakt) 

V současné době funguje v ČR i ve světě mnoho fotovoltaických (PV) elektráren, které se 

potýkají s různými známými i méně známými problémy. Např. PV moduly vyrobené 

z krystalického křemíku, které byly až donedávna považovány za relativně bezproblémové, 

jsou nyní předmětem zájmu z důvodu tzv. PID efektu (potenciálem indukovaná degradace), 

který způsobuje výrazné snížení výkonu celého systému. Pro ekonomicky i technicky 

efektivní provoz fotovoltaických systémů je proto nezbytné případné poruchy včas 

identifikovat. Za tímto účelem je vyvinuta řada diagnostických metod, které jsou úspěšně 

využívány provozovateli PV elektráren i servisními firmami. Tyto metody mají však také svá 

omezení, která nejsou vždy známa. Tato práce si tedy klade za cíl takové aspekty 

identifikovat a poskytnout vodítka k jejich eliminaci. 

Kromě klasických metod existují také méně běžné metody, které mohou poskytnout řadu 

cenných údajů s menšími náklady. Možnosti použití některých diagnostických metod, jejich 

porovnání s konvenčními metodami a také vývoj nových je dalším cílem této práce. 

V práci jsou shrnuty výsledky měření i simulací při použití jednotlivých metod a jejich 

vzájemné porovnání, s důrazem na metody, které lze použít přímo v místě instalace. 

Klíčová slova 

Fotovoltaika; Diagnostika; Měření Volt-Ampérových charakteristik; Měření temných proudů; 

Impedanční spektroskopie; Termografie 
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Abstract 

Currently, there are many photovoltaic (PV) power plants in the Czech Republic and abroad, 

which face various known and also unknown problems. For example, PV modules produced 

from the crystalline silicon, which were considered to be relatively reliable and smooth, are 

now examined because of the so called PID (Potential Induced Degradation) effect, which 

causes a significant decrease in performance of the entire system. Therefore, for economical 

and technically effective PV systems operation, the early detection of possible defects is 

necessary. For this purpose, many diagnostic methods, which are successfully utilized by PV 

systems operators as well as by service companies, were developed. But these methods also 

have their limitations, which are not always known. Therefore, this work aims to identify such 

aspects and provide some guidance for their elimination. 

Among the common diagnostic methods, there are also the less common ones, which can 

provide many valuable information with less cost demands. Possibilities of utilization of some 

of these methods, their comparison with the conventional ones and also development of some 

new are the next focus of this work. 

Further, the results of measurements and simulations by the individual methods utilization, 

which can be used directly on site, are summarized. 

Keywords 

Photovoltaics; Diagnostics; I-V Curve Measurement; Dark Current Measurement; Impedance 

Spectroscopy; Thermography 
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Goals of the Thesis 

The main objective of this thesis is to bring the overview of diagnostic methods which can be 

used directly at photovoltaic system and also describing their limits. The goals are especially 

the following: 

 describing conventional diagnostic methods, 

 determining limits of conventional diagnostic methods, 

 finding correlations between conventional and less commonly used diagnostic 

methods, 

 finding new approaches in evaluating the methods, 

 development of methods for cost effective in-field diagnostics. 
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List of Used Symbols and Abbreviations 

 

Symbol Description Unit 
 

  Irradiated area m
2
 

BSF Back Surface Field  

c Speed of light m/s 

CD Diffusion capacitance F 

CT Transient/junction/barrier capacitance F 

CP Parallel capacitance F 

  Depletion region thickness m 

      Diffusion coefficient of electrons/holes m
2
/s 

  Elementary charge of electron C 

E Energy eV 

Eg Bandgap Energy eV 

Ei Intrinsic Fermi level eV 

EL Electroluminescence  

Et Energy level of the G-R centre (or trap) eV 

   Fill factor - 

FT Flash Test  

  Irradiance W/m
2
 

  Overall volume generation m
-3

s
-1

 

h Planck’s constant Js 

  Current A 

IBC Interdigitated Back Contact  

   Current flowing through the PN junction A 

IDF Dark current flowing through the non-illuminated cell A 

    Current in MPP A 

    Photovoltaic current A 

     Shunt resistance current, A 

IS Impedance Spectroscopy  

    Diffusion component of the current A 

    Generation-recombination component of the current A 
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Symbol Description Unit 
 

JPV Current density A/m
2
 

     Current density generated by the carriers within the depletion 

region A/m
2
 

     Current density generated by the carriers in N area A/m
2
 

     Current density generated by the carriers in P area A/m
2
 

      Diffuse length of electrons/holes m 

LS Light Soaking  

mc-Si Multicrystalline Silicon, subst., adj.  

mono-Si Monocrystalline Silicon, subst., adj.  

MPP Maximum Power Point W 

   Intrinsic concentration m
-3

 

    Equilibrium concentration of electrons in N area m
-3

 

    Equilibrium concentration of holes in P area m
-3

 

     Maximum Power Point (MPP) W 

PECVD Plasma Enhanced Chemical Vapour Deposition  

PERC Passivated Emitter and Rear Cell  

PERL Passivated Emitter Rear Locally Diffused  

PV Photovoltaic(s), adj., subst.  

  Overall volume recombination m
-3

s
-1

 

SA Season Annealing  

   Surface recombination at the top surface of the cell (0) and in 

vicinity of the back contact (H) m
-3

s
-1

 

SRV Surface Recombination Velocity m
-3

s
-1

 

STC Standard Test Conditions  

  Thermodynamic temperature K 

TA Thermal Annealing  

TCO Transparent Conductive Oxide  

TDR Time Domain Reflectometry  

TF Thin-Film  

TT Transition Time s 

    Voltage in MPP V 

Q Injected positive charge C 
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Symbol Description Unit 
 

RD Diode resistance Ω 

RS Series resistance Ω 

RSH Shunt resistance Ω 

  Voltage V 

VB Threshold Voltage V 

  Boltzmann’s constant J/K 

  Absorption coefficient m
-1

 

  Number of carriers generated by the radiation of the given 

wavelength - 

  Efficiency - 

      Diode (ideality) factors - 

  Wavelength m 

   ,     Lifetime of the minority carriers in an N-type or P-type 

semiconductor s 

εS Silicon permittivity F/m 

       Photon flux at the specific wavelength   s
-1

 

ψbi  Built-in potential V 

    Recombination velocity in depletion region s 
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1 Introduction 

There is about 2 GW currently installed capacity of photovoltaic (PV) sources in the Czech 

Republic. Approximately 28 000 of individual installations was built mainly during the year 

2010 which signifies demand overhanging the offer. This brings many problems connected 

with the quality of the systems, because there was installed everything that was possible to 

buy and also the experiences of PV systems designers were very poor. As a result, there are 

many installations that necessarily require the regular monitoring and in some cases also 

additional amendments which correct mistakes done during the installation. 

The most crucial component is the photovoltaic module whose diagnostics can be sometimes 

relatively difficult. The main problem is that all the modules look very similar although their 

quality is totally different. Defects on the modules are usually not visible by the naked eye 

and also their causes should be found by the special methods. This work is aimed on using the 

current methods of such a diagnostics and using the new ones to provide new diagnostic tools 

suitable for PV systems operators. 

To achieve it, it is necessary to understand the principles of function, defects creation 

mechanisms and known diagnostic methods first. 

1.1 Photovoltaic Phenomenon 

The base of every PV module creates PV cell. All of the PV cells, modules respectively, work 

on the principle of charge carriers generation. For the charge carriers generation, it is 

necessary to supply the energy which is in the case of photovoltaic phenomenon represented 

by the energy of absorbed light. This absorption is caused by the interaction between photons 

and matter particles. If the energy before photon incident is E1, after absorption it is 

heightened by the photon energy    [1]: 

            
 

 
 (1.1) 

where    is Planck’s constant [2], 

   frequency, 

   speed of light in vacuum [2] and 

   wavelength. 
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After photon absorption, these interactions may occur: 

 interaction with the grid, 

 interaction with free electrons and 

 interaction with bound electrons. 

First two types of interactions lead to temperature rise. For the third interaction type, it is 

decisive whether the energy of incident photon is sufficient for freeing the electron from the 

bond or not. In the case of low energy, the temperature rise occurs again. If the energy is 

higher than the bonding energy of the electron, electron is freed from the bond – electron-hole 

pair generation. If we are able to separate the generated electrons and holes and get the 

potential difference, the current starts to flow through the material and we talk about the 

photovoltaic phenomenon (1839 Alexander Edmond Becquerel). 

If the photon with energy higher than the band gap energy EG is absorbed (minimal bounding 

energy), redundant energy is through the interaction with the grid transformed into the heat 

(thermalization process). For the photons with energy lower than EG, the material is 

transparent (there is no photon absorption). 

1.2 Photovoltaic Cell and Module – General Description 

For electron-hole pair generation, the bounding energy value is essential. In the case of 

metals, this energy is equal to zero and the photon absorption thus doesn’t cause the creation 

of the new charge carrier. Insulator has such a high bounding energy that the probability of 

electron freeing from the bond (valence band) is very low. The suitable material is the 

semiconductor which has valence and conduction band divided by the band of the energy 

within the range of units of eV. This energy is so called band gap energy EG. But the solitary 

generation of electron-hole doesn’t suffice. The charge carriers must be separated. To achieve 

it, the semiconductor structure with built-in electric field – PN junction is usually used. 

Common PV cell is basically the large-area semiconductor diode which contacts allow the 

light penetration inside its structure. 

1.2.1 PV Cells and Modules Static Parameters 

For PV cells description, it is possible to coming out the ideal equivalent circuit, where only 

current source and the diode exist; the parasitic resistances are thus neglected. This model has 

very low approximation level and is practically not used (Fig. 1a). 
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For better approximation, the series resistance is added to the basic scheme (Fig. 1b). This 

circuit is used very often, because its approximation abilities are sufficient, although one has 

to take into account the fact the calculated series resistance can take on negative values. For 

this reason, the new component, so called photovoltaic resistance, which can take on both 

negative and positive values, is loaded instead of series resistance which cannot take on 

negative values [3]. 

There is a standard model on the Fig. 1c, which is widely used for cells and modules 

characterization. The generation-recombination component is neglected and the diffuse 

component is then designated as saturation current I0 (according to Shockley’s theory). 

The most precise model provides the circuit at Fig. 1d. This circuit provides the best results, 

but the large amount of parameters leads to relatively robust algorithms, thus it is used more 

for PV cells parameters determination. 

 

Fig. 1: Equivalent circuit of PV cells, modules respectively 
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From these models, also the other versions which use either simulated or measured data have 

been derived. All of the models are used for an evaluation of the real PV system operation. 

When the data from the inverters and PV power plant topology are known, then with the 

combination of the meteorological data, the prediction of the power plant electricity 

production can be calculated. This is very important, because the early detection of possible 

failures can save the system and consequently also money. 

Mathematical description is than based on this equivalent circuit and is given by [1]: 

                            
   

    
              

   

    
      

     

   
 (1.2) 

              
        

    
              

        

    
      

     

   
 (1.3) 

where      is the photovoltaic current, 

    current flowing through the PN junction, 

      shunt resistance current, 

   useful current that the PV cell can deliver to the external circuit, 

     diffusion component of the current, 

     generation-recombination component of the current, 

       diode (ideality) factors, 

   Boltzmann’s constant [2], 

   electron elementary charge [2], 

   thermodynamic temperature and 

   voltage at the PV cell terminal. 

Equation (1.3) describes the volt-ampere characteristics of the cell from which the basic PV 

cells parameters can be extracted [1], when the resistances can be in the first approximation 

calculated from the slope of the tangent in the point of open-circuit voltage VOC and short-

circuit current ISC as marked on the Fig. 2. 



15 

 

Fig. 2:  PV cell I-V curve 

where       represents maximum power point (MPP) and  

      and      voltage and current in MPP. 

Besides the parameters which can be established directly from the I-V curve of PV cell, there 

are also the other important parameters, namely cell efficiency       a fill factor       : 

      
    
   

     
    

   
 (1.4) 

   
       

       
     (1.5) 

where    is irradiance and 

    irradiated area (usually cell or module, surface area). 

Individual PV cells have a working voltage lower than 1.5 V (in the case of crystalline silicon 

about 0.5 V) and a current density of a few mA/cm
2
 (for crystalline silicon approx. 

35 mA/cm
2
). For this reason it is necessary to connect individual cells to series into function 

blocks – PV modules, as marked at Fig. 3a). For serial connection, the cells should have 

ideally the same value of IMP. In simplified approximation, marked at Fig. 3b), the module 

can be represented by one value of series resistance RS’ and shunt resistance RSH’. I-V curve of 

the module (n serially connected cells) than have analogical mathematical description to the 

equation (1.3): 
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 (1.6) 

The parameters as                         and efficiency   is than possible to establish 

analogically to PV cells parameters. 

 

Fig. 3:  a) Equivalent circuit of serially connected PV cells into the module 

 b) Simplified equivalent circuit of n serially connected PV cells 

1.2.1.1 Series Resistance Determination and Dependence at Ambient Conditions 

As mentioned above, determining the PV cells parameters comes from the measurement of  

I-V curves. The most often used equipment is flash tester, which is usually also a part of the 

production line. Firstly, when the cells are divided into the groups to be collected into the 

module, with as similar parameters as possible, secondly, at the end. From measured I-V 

curve, parameters like VOC, ISC, PMAX, IMP, VMP and FF can be easily determined. The 

situation becomes more complicated when the shunt, or series, resistance should be extracted. 
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1.2.1.1.1 Determination from the Slope of a Line near the VOC Point 

For series resistance determination, it is possible to use a few methods. The basic method is 

determination of series resistance using the slope of a line within the vicinity of open circuit 

voltage point, which can be used particularly at higher irradiance values: 

       

  
 
     

  (1.7) 

Series resistance obtained by this simple method provides good base for further analysis, but 

when compared with the real one, its value is used to be higher. 

1.2.1.1.2 Method According to ČSN EN 60891 

Another possibility, which is mostly used, is utilization of methodology given by the  

ČSN EN 60891 [4] standard, which for series resistance determination requires two I-V 

curves measurements under different irradiance with unchanged spectrum. The procedure is 

as follows: 

 two characteristics at the ambient room temperature under different irradiance and 

same spectrum are measured, 

 during measurement, the temperature shall be constant (permitted tolerance is 

± 2%); 

 two operating points are determined: 

o the current interval ΔI = 0.5 ∙ ISC2 (where index 2 is relevant for lower 

irradiance value) is determined, 

o based on this interval, voltages V1 = V (ISC1- ΔI) and V2 = V (ISC2- ΔI) are 

determined; 

 and RS is than calculated: 

   
     

         
 (1.8) 

1.2.1.1.3 Approximation Method 

This method uses the measured data and fits them by the function based on some of the model 

described above, optionally with some other simplifying presumptions like one-diode model, 

constant shunt resistance and so on. The method is based on the fitting of the measured data in 

such a way that will lead to as small deviations between the measured and simulated data as 
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possible (e.g. [5]). By using the various numerical methods (like Newton iteration) and 

various algorithms, all the parameters, which best correspond to measured data, can be found. 

The problem can be either the complexity of the algorithms or sometimes also the unreality of 

the obtained parameters, which is done namely by using polynomial functions, evaluation of 

the function only within the measured interval and wrong initial parameters values. 

1.2.1.1.4 Derivative Method 

Very favourite method for series resistance determination is the derivative method which uses 

determination from only one I-V characteristic [5], [6] (the shunt resistance is expected to be 

infinite): 

Series resistance is the limiting factor for the PV cell as well as module performance. When 

its value rises five times, the FF and PMAX value is decreased by the quarter [7]. With regard 

to which components series resistance comprises of, within the whole volume, it is not 

constant. This inhomogeneity is especially apparent when the series resistance of the cell is 

determined. Therefore, for its evaluation, the suitability of the equipment for measurement of 

such a cell should be also taken into account. For example, in the case of measurement of cell 

with three busbars using the equipment intended for two-busbars cells measurement, the 

unsuitability of the contacting system can cause higher measured resistance value than the real 

one. Inhomogeneity of RS distribution can be also advantageously displayed using 

photoluminescence. This method is further described e.g. in [8].  

1.2.1.1.5 Temperature Dependence of I-V curve and Static PV Cells/Modules 

Parameters 

The density of the current flowing through the diodes represented by the components I01 and 

I02 can be expressed by [9]: 

where     is intrinsic concentration, 

       diffusion coefficient of electrons/holes, 
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        diffusion length of electrons/holes 

     equilibrium concentration of holes in P area, 

     equilibrium concentration of electrons in N area, 

    depletion region thickness and 

      characterizes the recombination velocity in depletion region. 

If the RSH would be considered as high, the VOC can be rewritten as [1]: 

Also if            , the whole equation is simplified and for the VOC value it is possible to 

write: 

According to (1.10), it is obvious that       
  and       . Than it is possible to write: 

where   is the constant independent on temperature. 

From the expressions written above, it is obvious that with the rising temperature, the VOC 

value will decrease. It can be also proved that with rising temperature, series resistance RS and 

short circuit current ISC slightly increase and contrariwise the RSH significantly decreases. In 

practical applications, especially the voltage decrease is observed, which is higher than the 

current increase. Voltage and power decrease with the temperature rises about approx. 0.4 % 

per 1 K. The quality of the cell can be, among others, evaluated just from the point of view of 

temperature coefficient, when the more quality cell should have lower temperature coefficient 

(although the fact that the coefficient decreases with rising band gap value should be also 

taken into account).  
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1.2.1.1.6 Irradiance Dependence of I-V Curve and Static PV Cells/Modules Parameters 

Energy of incident radiation is in the PV cell PN junction area transformed into the electric 

energy. The amount of this energy corresponds to the amount of incident radiation, as proved 

by the following equations [1]: 

where       is the current density generated by the carriers in N area, 

       is the current density generated by the carriers in P area and 

       is the current density generated by the carriers within the depletion region. 

where   represents the overall volume generation, 

   states for overall volume recombination and  

    the surface recombination at the top surface of the cell (0) and in vicinity of the 

back contact (H). 

Equations (1.15) and (1.16) imply dependence of the generated current, current density 

respectively on the irradiance, namely through dependence on number of generated carriers, 

which can be quantified as follows: 

                 
 

 

                  
 

 

 (1.17) 

where    is the photon flux at the specific wavelength   (in the depth x), 

   absorption coefficient for the specific wavelength and 

   number of carriers generated by the radiation of the given wavelength. 

Therefore, with rising irradiance, ISC significantly increases and also the VOC value slightly 

increases. 

1.2.1.2 Series Resistance and its Dependence on Temperature and Irradiance 

As apparent from the temperature influence on PV cells and modules parameters, temperature 

doesn’t play a very significant role. Above that, when series resistance is estimated, its 
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independency on irradiance is also presumed. But as proved by the measurement done during 

working at this thesis, there is strong dependence of RS on irradiance. The results were also 

presented at a conference [10]. 

An influence of series resistance on the dependence of cell efficiency on irradiance have been 

discussed mainly in connection with concentrator photovoltaic [11], [12], sometimes the 

effect of series resistance is even practically neglected [13] and more attention is paid to 

effects connected with the cell temperature increase. But the dependence of the cell efficiency 

on irradiance at lower irradiance level exists. 

The current density JPV generated by incident light depends on the cell material and structure. 

The generation rate is proportional to irradiance. Therefore, the current density JPV can be in a 

good approximation considered to be directly proportional to the irradiance, even the charge 

carriers lifetime may depend on excess carriers concentration Δn [14], [15]. 

Using the two-diode model of PV cell, the influence of series resistance RS on the cell 

characteristics and consequently, on the cell (or module) efficiency may be evaluated. For 

these simulations, the current density JPV has been considered as linearly increasing with 

irradiance reaching the value 35 mA/cm
2
 at irradiance 1000 W/m

2
. The calculations have 

been done for a cell of area of 100 cm
2
 and the shunt resistance RSH = 50 Ω. To obtain 

parameters of the parasitic diode, I01 and I02, acceptor concentration 10
18

 cm
-3

 and carriers 

lifetime 100 µs in P-type region and donor concentration 5∙10
19

 cm
-3

 and carriers lifetime 5 µs 

in N type have been used for simulations [16]. 

I-V curves of cells have been calculated using equation (1.2) for different values of series 

resistance RS. These simulations ensue, that in general, the cell efficiency increases with 

irradiance at low irradiance level, at some irradiance reaches its maximum and then with 

increasing irradiance efficiency decreases. The point of maximum efficiency strongly depends 

on the series resistance RS, as demonstrated in Fig. 4.  

A set of measurements was conducted for authentication of the influence of temperature and 

irradiance on the PV cell parameters using cell tester Pasan IIb. The irradiance was regulated 

by the device and by changing the distance between the flash lamp and the measured 

photovoltaic cell. Lower irradiance was achieved using a grey filter that was put in front of 

the lamp. This way, irradiance ranging from 200 W/m
2
 to 1000 W/m

2
 was obtained. The 

temperature has been ranged from 25°C to 110°C. It was found, that series resistance of PV 
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cells slightly increases with temperature, but more significantly decreases with irradiance, as 

demonstrated in Fig. 5. 

 

 

Fig. 4:  Simulation of c-Si cell efficiency dependence on irradiance by different RS 

Presuming that RS must have a positive value, the dependence of series resistance RS on 

irradiance G can be described as: 

               (1.18) 

Parameters RS∞ (Ω), A and B can be extracted from experimental data. For crystalline silicon 

solar cells measured in our experiments, this function well fits to experimental data, as shown 

in Fig. 6a), and found constants are as followed: 

 

Fig. 5: Temperature and irradiance dependence of c-Si cell RS [10] 
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                       (1.19) 

The dependence of series resistance on irradiance slightly changes courses of the efficiency 

dependence on irradiance. The decrease of series resistance with irradiance makes efficiency 

maximum more flat and the cell efficiency decreases slower than in a case of constant values 

of RS. In the Fig. 6b), the results of simulations for cells for different fix values of RS with 

simulation using values RS (G) from Eq. (1.19) and measured data are compared. The 

experimental data is in a good agreement with simulation using RS (G) for G > 200 Wm-2. 

Differences for low irradiance levels may be caused by a decrease of carriers lifetime in P-

type cell region with injection level [14]. The result can be projected in module simulation to 

explain influence of technological parameters on the irradiance dependence of module 

efficiency. In a simple approximation, modelling a silicon PV module by n in series 

connected PV cells, the module I-V curve equation can be written in a form of (1.6). 

Therefore, the same procedure of RS dependency on irradiance determination has been done 

with the following result: 

                    (1.20) 

This knowledge of this dependency can be advantageously used when the most appropriate 

technology is chosen for some specific installation, as was also discussed at NZEE conference 

[17]. When the PV module performance and suitability for the specific application is 

evaluated, then the similar procedure like in the case of inverters can be applied. Therefore, 

 
 a) b) 

Fig. 6: a) Measured and fitted dependence of c-Si cell RS on irradiance, 

b) Comparison of simulated and measured dependencies of c-Si cell efficiency on 

irradiance, RSH = 50 Ω [10] 
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for this purpose, the EURO efficiency of the modules was calculated. It comes from the fact, 

that every module will show different behaviour under different climatic conditions. For 

example, in the tropical climate, the temperature of the module will be entirely different when 

the same irradiance like in the middle European climate is achieved [18]. 

The dependence of inverters efficiency on ambient conditions is given by the European 

inverters efficiency (loaded by the research institute Joint Research Centre – JRC), which is a 

common parameter in inverters datasheets. It is interesting that no similar parameter is listed 

for the key PV system component – PV module (although there are the efforts from the TÜV 

SÜD to evaluate it using Energy labels for marking the suitability of the given module to the 

specific climate area). The European inverter efficiency is defined as weighted average 

efficiency at different powers [19]: 

                                                                  (1.21) 

Once the similar algorithm is applied on PV modules, the STC efficiency can be compared 

with such a fictitious efficiency which takes into account the concrete PV modules 

technologies under the local climatic conditions. Individual weights then will come from the 

histogram of irradiance levels distribution in concrete locality with concrete orientation and 

tilt angle. For the Czech Republic, when the histogram given in [20] and measured data (see 

Fig. 7) are used, the following equations can be calculated and results in Tab. 1 obtained: 

                                                         (1.22) 

                                                         (1.23) 

Tab. 1: Weights extracted from the irradiance histogram, efficiency for individual technologies under 

ideal tilt angle and angle corresponding to façade utilization (both at optimal orientation) [17] 

Wages for CR Technology ηSTC (%) η35° (%) η90° (%) 

G (W/m
2
) wage 35 ° wage 90 ° CdTe 10.13 10.15 10.13 

100 0.05 0.09 CIGS 9.60 9.15 8.89 

200 0.12 0.16 Sanyo HIT 18.30 18.25 18.21 

400 0.23 0.34 mono c-Si 12.80 12.59 12.47 

700 0.35 0.37 multi c-Si 14.29 14.21 14.14 

1000 0.25 0.04 a-Si 7.97 7.50 7.29 

 

As apparent from the previous sections, the subject of series resistance and its correct value 

and dependences is a relatively complicated matter. However, this dependence of series 

resistance can also be caused by the faulty methodology, as assumed in [21]. The problems 
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with the RS determination methodology are shown also in [22], where the problems with 

methodology are described in ČSN EN 60891 for lower irradiances discussed. One way or 

another the fact is that this parameter should be more examined and defined. 

1.2.2 PV Cells and Modules Dynamic Parameters 

Every cell is characterized by its basic static parameters, which were described above. 

Moreover, there are also other parameters based on the AC equivalent circuit like transient 

(called also junction or barrier) capacitance (CT), diffusion capacitance (CD) and also diode 

resistance (RD) which represents the non-ideality of the diode characteristics. A solar cell 

(module) can be modelled using the equivalent circuit shown at Fig. 8 [23]: 

 

Fig. 8: Dynamic equivalent circuit of PV cell (module) [23] 

When combining CD with CT and RD with RSH the simplified dynamic model of PV cell, 

module respectively, can be obtained as shown on Fig. 9 [23]. 

 

Fig. 7: Dependence of different technologies of PV modules efficiency on irradiance – normalized 

values [17] 
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PV module consists of cells which are serially connected in order to reach a sufficiently high 

voltage output, so the module can be modelled using the same circuit and parameters whose 

values represent the serial connection of the parameters of individual cells. 

  

 

Fig. 9:  Simplified dynamic equivalent circuit of PV cell (module) [23] 
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2 Photovoltaic Cells and Modules Types 

Construction of individual PV cells depends on properties of the original material. If the 

material has the so called direct band gap structure (e.g. GaAs or amorphous Silicon), the 

absorption coefficient, representing the ability of the material to absorb different wavelength, 

for photons with       rises very quickly with their energy, thus the sun radiation is fully 

absorbed in the layer within the thickness range of units of   . In the case of the materials 

with indirect band gap structure (eg. crystalline Silicon), the absorption coefficient increases 

with the photon energy slowly and for the absorption of long wavelength part of sun 

spectrum, the material with the thickness in the range of hundreds of    is required. 

According to the long tradition and availability, most of the current PV cells is produced from 

crystalline silicon, also designated as the I. generation of PV. Even though, other concepts, 

mainly thin-film, based on other materials and technologies which will allow cost reduction, 

efficiency increase or technological flexibility, were and still are apparent. To understand the 

possible modules failures which may occur during the PV modules operation, it is necessary 

to know their construction, especially the PV cells material content and individual layers 

configuration. In the following paragraphs, the basic types with emphasis on silicon PV cells 

(both crystalline and amorphous) will be described. 

2.1 Crystalline Silicon Cells 

The base material for this cell type is the crystalline silicon wafer. According to the 

production technology, the following sorting can be applied: 

 monocrystalline (mono-Si), 

 multicrystalline (mc-Si, also called polycrystalline), 

 ribbon. 

During the last few decades, the production technology of crystalline silicon cells has 

undergone many changes. All the efforts to humble efficiency limits at this technology are 

made on mono-Si. Basically, there are three generations of basic mono-Si crystalline PV cells 

– the standard back surface field (BSF) cells, cells with selective emitter and back contacted 

cells. 
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2.2 Standard Monocrystalline PV Cells 

Most of current mono-Si PV cells are still produced from silicon ingot doped by Boron 

(P type) made by Czochralski method [24]. After ingot creation, the wafer has to be cut into 

thin slices – wafers (usually by multi-wire cutting saw), and other procedures take place. The 

oldest group, which represents 80 % of the current market [25], is made by the procedure 

marked at Fig. 10. First, the saw damage removal by etching is done and then the creation of 

pyramid-like structure is formed by etching so the wafer is prepared for diffusion process. 

After diffusion of phosphorus, it is necessary to remove created glassy layer (phosphosilicate 

glass – PSG) at the surface area of the cell and edge shunt (usually done by HF). Another tool 

for reducing optical losses is to deposit special layer (usually SiNx:H) which uses 

interferential effects. When the thickness is suitable
1
, the radiation reflected by the layer 

interferes with the radiation reflected by semiconductor structure so the resulting reflected 

light is a zero and entire incident light comes into the cell structure. This layer also serves like 

passivation of surface recombination, because the free dangling bonds which create local 

recombination centres are filled. 

Next step is forming the contact system. First, on the front side, the Ag paste with an addition 

of lead borosilicate glass frit (PbO-B2O3-SiO2) is deposited using screen-printing and co-fired 

by low-temperature (approx. 200 °C) drying oven. Second, the back contact realized in the 

form of Al paste and Ag/Al paste busbars is screen-printed. The entire cell is than co-fired at 

                                                 

1
 The thickness of this layer sets the resulting colour of the cell (usually blue). If the thickness of this layer is 

different than the optimal one, also different colour of the final cell can be achieved. 

 

Fig. 10: Manufacturing process of basic monocrystalline PV cells [25] 
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around 810 °C where the lead borosilicate glass frit etches the SiNx:H layer in the area under 

the front gridlines, thus good contact of structure and gridlines is achieved [26]. Similarly, 

good contact is simultaneously created by Al paste on the back site of the cell: first, the 

aluminium-silicon melt is created, then, during the cooling, silicon doped by aluminium is 

excreted at the interface (the P
+
 layer is created), and finally, eutectic AlSi, which has good 

contact with P
+
 layer, solidifies. This layer must be created on the whole back surface because 

among the good contact assurance, it also prevents the recombination at the back side of the 

cell by creating so-called back surface field (BSF). These cells are often marked as BSF cells. 

The parameters that can be achieved are summarized in the Tab. 2 together with the 

comparison of the following Si monocrystalline technologies. 

Tab. 2: Comparison of basic parameters of individual crystalline Si PV cells (modules) [26], [27], 

[28] 

Parameter 
BSF cell 

(module) 

Cells with 

selective 

emitter 

PERL 
N-type 

IBC 

N-type 

HIT 

N-type 

HIT+IBC 

JSC (mA/cm
2
) 35 38 42.7 42.54 41.8 42.65 

VOC (V/cell) 0.62 0.70 0.706 0.725 0.740 0.738 

FF (-) 78 80 82.8 83.3 82.7 84.9 

η (%) 17 (14.5) 20-22 (18.7) 25 (-) 25.7 (-) 25.6 (23.8) 26.7 (24.4) 

 

2.3 Improved BSF Cells – Cells with Selective Emitter 

For bettering the parameters of basic cells, there are many ways, some of which are also 

sufficiently cost-effective. One of the most important ones is the creation of special emitter 

layer which is heavily doped than the rested area of the emitter thus to allow channel the 

generated electrons-holes to their appropriate electrodes. The principle of function of this 

layer is based on creation of high built-in potential profile that will separate the holes and 

electrons quickly. It is located under the busbars, so the generated charge carriers flow 

quickly out from the cell and the possibility of their recombination is than lowered. The 

vicinity of surface also leads to higher utilization of charge carriers generated in this area, 

which consequently influence the quantum efficiency of blue photons. 
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This layer, designated as “selective emitter”, is usually created by screen-printing and 

consecutive fire process of special dopant paste placed directly at the area of the future busbar 

position, or can be deposited at the whole surface and then etched at the places where the 

metal contacts will be located. The differences from the previous manufacturing process are 

apparent from the Fig. 11.  

“Selective emitter” concept and its construction were inspired by the well-known  

PERL – “Passivated Emitter Rear Locally Diffused” structure, which kept the efficiency 

record of single-junction crystalline silicon cell (year 1999 – 25.0% efficiency under STC) 

until 2017. The PERL cell structure is shown at the Fig. 12. The base of the cell is created by 

mono-Si made by Float zone technology [30] which ensures lower oxygen contamination, but 

it is very expensive. Next production process is similar to the one used for cell described 

above (term passivated emitter corresponds with selective emitter in this case) but there are 

significant differences which allow performance increase (see Tab. 3). 

Similar principle as selective emitter at front side is used also for bettering the parameters of 

rear side of the cell, where the special layer for surface recombination is used. In standard  

 

 

Fig. 11: Manufacturing process of cells with selective emitter [26] 
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Tab. 3: Technological differences between PERL and common cell [25], [27], [31] 

Technological aspect Common cell PERL cell 

Thickness of the cell  120 µm – 150 µm 370 µm – 400 µm 

Silicon quality High purity “solar grade” 6N 

Monocrystalline ingot Czochralski method Float zone method 

Antireflection coating SiO2 single layer Double layer (ZnS and MgF2) 

Texturation Pyramids like structure (by etching) Inverted pyramids structure (by 

photolithography) 

Front metallization Screen-printing/LGBG Ti/Pd/Ag – photolithography and 

evaporation 

Rear side passivation SiNx:H, a-Si:H, SiC or Al2O3 in 

combination with Al metal 

Si02 in combination with local 

Boron diffusion and Al metal 

cells, only back surface field created by Al dopant was used. This allows lowering the surface 

recombination velocity (SRV) to relatively satisfactory level – about 200 cm/s when 

optimized, but in comparison with PERL structure, it is approximately one hundred times 

higher. SRV reduction was achieved using dielectric layer insertion between the Al back 

contact and substrate, which behaves then like MOSFET and therefore creates extra field to 

repel the charge carriers from recombination traps. PERL structure has moreover the locally 

highly doped (by boron) areas around the Al contact layer which further reduces the 

recombination around the contact [33]. The Al layer can be realized in the form of screen 

printed grooves (localized at holes made for this purpose in the dielectric layer) – standard 

cells with selective emitter, or at the whole rear surface. If the whole rear surface is used, the 

structure “passivated emitter and rear cell (PERC)” is created. 

 

Fig. 12: PERL PV cell structure [32] 

MOSFET 
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Another difference between standard BSF cells and cells with selective emitter lies in 

metallization techniques used for contacting the front cell side. While standard cells use thick-

film technology (screen-printing of Ag paste), newer BSF cells use laser-grooved buried-grid 

(LGBG) technology where thinner layers are deposited using light-induced plating. This 

technology allows lower shading and also less consumption of silver. 

2.4 Interdigitated Back Contact (IBC) c-Si Cells 

The recent development of future mass-produced PV cells is based on back contacted cells. 

These cells have no gridline metallization on the front side, so there must be a different 

construction approach. The standard construction counts with relatively quick utilization of 

carriers generated near to the front surface, but when back contacted, these carriers must 

traverse through the entire cell to achieve the rear side contact. If the standard layers 

configuration is used, then carriers will quickly recombine instead of contributing in current 

flow. Because of this, the N-type silicon with bottom location of PN junction is used instead 

of P-type with P-doped layer for the base, which allows sufficient charge carriers lifetime. 

The relatively long trip from point of generation to contacts also causes high probability of 

interaction with surface and thus high SRV. For this reason, there is no passivation of the 

front or rear surface only, but additionally at the cell sides. This can be efficiently assured by 

using SiO2 layer which is created under high temperature directly from Si cell base material. 

SiO2 can also be used to separate N
++

 and P
+
 areas which are located very close to each other 

at the rear side of the cell (positive and negative terminals are interdigitated there). Other 

technological aspects are very similar to BSF cells. Resulting structure and technological 

process is apparent from the Fig. 13 and Fig. 14. 

 

Fig. 13: IBC c-Si cell structure [25] 

MOSFET 
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Very interesting modification of IBC structure is the utilization of tunnel oxide passivated 

contacts which leads to higher VOC and thus to higher efficiency [30]. Currently (from 

3/2017), this technology keeps the efficiency record (25.7 %) of single-junction crystalline 

silicon cell [28]. 

Other PV cells technology improvements by addition of a next layer to c-Si base to create 

multijunction cells have been achieved. As the first representative of this group, the 

heterojunction with intrinsic thin layer cell (HIT) can be considered. First, they were produced 

only by company Sanyo, later Panasonic (protected by patent), but now they are produced by 

other companies as well. Its weakest link is the contacting system, which was recently 

improved by IBC technology adoption. The result is the new efficiency record of 26.7 % 

(from 3/2017) [28]. 

2.5 Multicrystalline Si PV Cells 

Multicrystalline PV cells are produced from multicrystalline silicon wafer using similar 

procedure to the one used for mono-Si cells production. The biggest difference comes in the 

 

Fig. 14: Manufacturing process of IBC c-Si cells [25] 
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beginning of the production process, where the ingot is created. Although monocrystalline PV 

cells are made mostly by Czochralski method which is relatively complicated, mc-Si ingot is 

produced by slow cooling of molten Si in large crucible. The slower cooling of the ingot is the 

larger grains creation can be achieved. The final ingot is then a composition of individual 

crystals – grains. The grain boundaries then cause a recombination which significantly 

influences the final efficiency of the whole cell, so the passivation process of these 

recombination centres as well as surface recombination is crucial. Similarly to mono-Si cells, 

SiNx:H antireflection layer produced by PECVD is used. During this deposition, SH4 and NH3 

react and create the required SiNx layer at the surface of the cell, but a massive hydrogen 

production also occurs [1]. Hydrogen can serve like a passivation of both surface and bulk 

defects, including grain boundaries, so the final recombination caused by these defects is 

minimized to sufficient level. Multicrystalline PV cells, with 65 % of market share [25], 

represent currently the leading PV technology. 

2.6 Ribbon Silicon Cells 

This special type of multicrystalline PV cells the ribbon cells are. These cells were 

predominantly produced in the past because of the high price of crystalline silicon in previous 

years. Nowadays, there is only a small amount of PV modules in the operation that use this 

technology (namely producer Evergreensolar). 

Among the silicon cells, there are also cells made from other materials, which are for a high 

price used only for special purposes e.g. in aerospace applications (InP, GaAs) or concentrator 

systems. 

2.7 Module Production 

For the basic single-junction crystalline PV cells the voltage of one cell in operating point is 

about 0.5 V. This voltage is too low for the practical utilization and the serial connection of 

more cells is necessary. The serial or serial-parallel connection is then called photovoltaic 

module. During the operation, the cells must also bear the environmental conditions as well as 

other mechanical stress, so the cells encapsulation should be done. This is ensured by the 

lamination process when the cells are hermetically encapsulated by highly transparent folia 

(mostly Ethyl-Vinyl-Acetate – EVA) together with a front cover glass and back sheet foil 

(mostly based on tedlar). The created sandwich structure is mounted into the Aluminium 
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frame and gird with junction box. The final efficiency for serially produced common PV 

modules is about max. 18 %. 

The procedure of individual PV cells connection and encapsulation is essential for the future 

PV module reliability. The first step is PV cells connection. There are more procedures which 

are used for doing this. The most common one is soldering. Every cell is equipped with 

busbars which serve both for current collection and cells interconnection. For connection, the 

cuprum ribbons are used. These ribbons are soldered to the PV cells busbars using lead-free 

Sn solder. Another process which is currently used for cells connection is based only on 

pressure application. There are only gridlines at the cell (no thick busbars) and the contacts 

are provided by the thin metal wires which are forced down to the cells surface. In both 

connection procedures, the applied force must be precisely controlled because possibly 

dangerous (from the point of view of reliability) cracks can appear. 

The second step is moving the substrings to the encapsulation folia and finishing the 

connection process. The substrings are connected into one module by thicker busbars using 

soldering. Than the encapsulation process follows. During this process, the whole sandwich 

structure (backsheet foil-encapsulation folia-PV cells-encapsulation folia-glass) is put into the 

laminator (pressing machine) and heated to 110 °C – 120 °C (lamination) for 4 to 10 minutes 

and then to 140 °C – 150 °C (curing) for 6 to 30 minutes (temperature and time depends on 

the encapsulation foil type). The temperature and time adjustment is very important, because 

the wrong setup of these factors can lead to yellowing, and consequently to transmittance 

losses, of encapsulation folia in the future. During heating, the encapsulation folium 

polymerizes and becomes transparent. The crucial parameter is a good vacuum during this 

step (before the encapsulation folia is melted) and also the proper pressing of the cells 

substring. There are many problems which can occur during lamination process, like 

inhomogeneous pressure, temperature distribution or unclean environment. All of these 

mistakes can lead to delamination of the module during the operation which may worsen the 

isolation state of the module. Another important step is the isolation against the moisture and 

water ingress in the edges of the module. This is usually done by the polybutyl or silicone 

sealing around the whole module edges. Wrong sealing can also lead to PV module 

delamination and thus to the module failure. 

The last step is the connection of junction box with bypass diode (Schottky diodes) and 

finally, the inspection of the final product.  
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3 Thin Film Cells and Modules 

In order to save materials (and thus costs), thin-film PV modules have been developed. These 

modules, against conventional crystalline modules, have the lower conversion efficiency. But 

this is offsets by lower prices (production is less materially and usually less technologically 

demanding) and improved properties at low irradiance levels. Currently, their low price is 

considerably questionable, because thanks to rapid development of photovoltaics worldwide, 

there has been so significant reduction in the production costs of conventional Si crystalline 

modules, thus thin film modules will very difficult to compete them. 

Thanks to their properties, thin film (TF) modules are achieving higher annual revenues 

against crystalline modules, especially in diffuse irradiation, so their use for example in the 

Czech Republic is suitable for all applications, where there is no limitation of the installation 

surface. Another advantage is the possibility of deposition on multiple kinds of substrates, 

enabling production of e.g. flexible PV modules. On the other hand, their space severity also 

causes the higher demands on BOS (balance of system components), so thanks to the current 

low price of c-Si cells the price of the entire TF photovoltaic system may be higher.  

During the production, the layers are deposited on the substrate and the cells are formed by 

scratching (usually using the laser). By suitable scratching procedure the cells are directly 

serially connected without the need of a consecutive soldering process. Contacting of the cells 

is realized by specialized large band gap semiconductor structure - transparent conductive 

oxide (TCO), deposition. Thanks to the cells shape and configuration, usually long narrow 

strips, the modules are less sensitive to shading than conventional crystalline modules (if the 

entire strip is not eclipsed). From the viewpoint of the material, it is possible to divide 

modules into: 

 CuInSe2 (CIS), Cu(In, Ga)Se2 (CIGS) a CuGaSe2 (CGS) modules, 

 CdTe modules, 

 amorphous and micromorphous silicon modules, 

 other thin-film cells. 

o multi-junction cells, 

o cells using nanostructures, 

o organic cells. 
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The description of individual technologies is relatively complicated task due to the variations 

of individual producers. Furthermore, there is a description of three main technologies, which 

are used for electricity production (technologies used at PV power plants). 

3.1 CIGS Modules 

The modules based on this technology were first introduced in 1970s. Since then it went 

through a rapid development. The most impressive change was achieved by using soda-lime 

glass instead of ceramic or borosilicate glass. This step was initially done due to a cost 

reduction, but the indiffusion of sodium ions inside the structure led to higher modules 

performance. The structure of current type of CIGS modules is usually divided into two 

groups – with CdS buffer layer and Cd free technology. The structure of the cell is apparent 

from the Fig. 15. 

The production process of the module is the following: 

1) Substrate, usually glass, is covered by the Mo layer using DC sputtering. 

2) Laser pattering to create individual cells. 

3) Cu(In, Ga)Se2 absorber co-evaporation 

4) Buffer layer creation – CdS + i-ZnO or Al:ZnO + i-ZnO 

5) Pattering (often mechanical) 

6) Deposition of front contact – ZnO:Al, by DC sputtering 

7) Pattering 

8) Bonding of metal tapes – contacts 

9) Encapsulation and sealing – polymer + glass + desiccant-type tapes 

  

Fig. 15: Currently used CIGS structures [34] 
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At the beginning of 2000s, there was a strong initiative to use CIGS material. There were 

many prognoses which promised bright future to this material, especially in the USA, but then 

the year 2008 came and the drastic decrease of the price of crystalline silicon started the 

suppression of development in this area. However, there are still some producers with 

relatively significant contribution to PV modules production. 

3.2 Micromorphous Silicon Modules 

Micromorphous silicon modules are tandem modules based on amorphous silicon technology. 

The structure of every thin-film silicon module is not simple PN junction, but P-i-N structure. 

This is caused by the fact that the carriers generated by the absorbed light in the doped region 

would recombine very quickly (large amount of recombination centres), so there is an effort 

to generate as many carriers as possible in intrinsic layer where the concentration of 

recombination centres is far lower. The built-in potential then causes the drift of generated 

carriers to the appropriate region where it becomes the majority carrier. The carriers generated 

inside the doped layer can be considered as wasted, so this layer must be far thinner than the 

intrinsic layer. The efficiency of the simple single-junction device is very low, so the use of 

tandem cells is usual in this case. The first one were tandem of a-Si:H (amorphous silicon 

layer must be hydrogenated, otherwise large amount of dangling bonds serving like 

recombination centres would remain in the structure) with a-SiGe, but a-SiGe requires 

germane (GeH4) gas which is expensive and toxic. So this material was replaced by the 

nanocrystalline, usually designated like microcrystalline layer and the resulting structure is 

called micromorphous. The structure of the common micromorphous silicon tandem cell is 

shown in Fig. 16. 

3.3 CdTe Modules 

The last technology which is used in industrial scale (meaning for the electricity production) 

is CdTe. Practically, there are two significant producers – Calyxo and especially, First Solar. 

The production is very like the other thin films. Although it consists of toxic Cadmium, there 

are a few advantages which still predominate this fact. First, its efficiency is currently about 

16 %, so it is very close to the crystalline silicon technologies. Second, its annual yield, 

especially in middle Europe’s cloudy climate, can be even higher by 10 % than the crystalline 

silicon PV modules. The basic structure of common CdTe module is given on the Fig. 17. 
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Fig. 16: Typical structure of micromorphous silicon tandem cell [35], [1] 

 

  

Fig. 17: Typical structure of CdTe PV module [36] 
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4 PV modules defects and degradation 

There are many defects that can appear during the PV modules lifetime. Some of them have 

origin in the manufacturing process and others can be caused by wrong maintenance or even 

installation. The key parameter for defects evaluation is the performance, which is also the 

most important parameter for systems operators (performance represents money in the end). 

PV modules manufacturers usually declare the performance decrease to not exceed 0.8 % for 

one year. Some of them guarantee this decrease to be linear, the other ones have the 

performance limits typically after 10 (12) and 25 years of operation (rarely after 30 years). 

This warranty counts with the performance decrease caused by the common operation which 

also includes some types of defects like microcracks inside the cells which cannot be avoided. 

Contrarily, there are some other defects which can cause significant decrease in performance 

and should be recognized and diagnosed in time to avoid larger losses of system as well as 

money. 

There are many approaches to PV modules defects classification. In the following paragraphs, 

the distribution according to the defect position based on the document [37] is presented. 

4.1 Defects of the Frame 

Most of the PV modules are, apart from the glass, protected also by the aluminium frame. Its 

advantage is a relatively easy montage at the system; disadvantage is its price, which is 

relatively high. 

The frame can be damaged by the mechanical stress caused e.g. by the wrong maintenance or 

wrong design of supporting constructions. The consequence is the loss of PV module integrity 

which leads to the risk of the occurrence of problems connected with the isolation state of the 

module. A damaged frame always leads to replacing the module. 

4.2 Glass Defects 

The glass which is usually used for covering the modules can be divided into two groups from 

two points of view: 

- according to the location – front glass and back glass, 

- according to the texturation – smooth glass and patterned glass. 
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The modules produced from crystalline silicon usually use only one cover glass – front 

patterned glass (as mentioned before) or they can use also the back glass, if they are bifacial. 

The thin-film modules are often frameless, so they use front and back glass as well. In this 

case, they are smooth (there is no reason for texturing the glass, because thin-film module 

works with both the direct and diffuse irradiation). Defects of glass are explicitly caused by 

the damage because the degradation rate of used glass is too high to be important during the 

usual PV modules lifetime (special soda-lime low iron glass is used). 

4.2.1 Front Patterned Glass Defects 

The usual damage of the front textured glass is the breakage of the glass caused usually by the 

local mechanical stress – hail impact, stones flying while mowing grass. In case the damage 

has been caused by the long lasting mechanical stress, the breakage looks very similar, but 

there are no apparent impact zones. In this case, the wrong construction is usually the initial 

cause of such a defect. The front cover glass is tempered, so both local stress and surface 

stress will lead to the breakage of the whole glass. Luckily, the encapsulant serves like glue in 

this case, so the mechanical integrity of the module still allows easy replacement of the 

damaged module, which is unavoidable because of safety risk and isolation state. The 

example of the damaged front glass caused by the stone is shown in the Fig. 18. 

 

Fig. 18:  Front glass damage caused by a stone 

4.2.2 Defects of Glass at Glass-Glass modules 

The situation is different when the glass-glass module is damaged. These modules are usually 

frameless which results in a relatively high risk of damage by the punch at the edge of the 

module, especially at the corner. Whereas in the previous case, the whole glass is broken, the 

glass at glass-glass structure behaves differently. It is due to the fact that the front glass can be 

tempered thermally or chemically and the back glass is not tempered, so the damage at the 

back side of the module creates only long lines. The usual cause of defects of glass-glass 
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modules is the mechanical stress caused by mounting clamps and by the wrong maintenance. 

The consequence is the same as the previous case, a replacement of the defective module. An 

example of broken front and back glass is given in the Fig. 19 

 

Fig. 19:  Front glass damage caused by the stone and back glass damage caused by edge punch 

4.2.3 Cables and Connectors 

Cables at PV modules should be able to hold relatively heavy loads; they are even tested on 

the endurance against the mechanical stress. The most critical moment when operating is the 

instant when the PV module is being disassembled from the system. When the sun shines, the 

voltage at the string is about 500 V or higher and the current flowing through is in the order of 

units of Amperes. When the module is getting disconnected from the string, then the electric 

arc can emerge. Another cause of damage is the low contact inside the PV module (Fig. 20) 

which can be caused by both the maintenance and manufacturing, and can even lead to fire. 

Installation in the areas with the air pollution can also be problematic, because the plastic 

materials degrade quickly. 

 

Fig. 20:  Thermally damaged connector 
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4.2.4 Junction Box Defects 

Junction box is located at the rear side of the module and serves as an interface between the 

internal module circuit and the connectors. That is also where bypass diodes are located. 

Usually, there are no problems with the junction box itself, but its damage can be caused by 

the following causes: 

 destroyed bypass diode (produces heat), 

 wrong connection between the modules busbars and the cavity for cable connection, 

 wrong sealing of the box causing the water ingress. 

 

a) 

 

 b) c) 

Fig. 21:  Junction box destroyed due to: a) bypass defect b) wrong connection, c) the water ingress 
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4.3 Encapsulant Defects 

There are two basic defects apparent at the encapsulant foil – delamination and yellowing. 

4.3.1 Delamination 

The delamination process is usually connected with the manufacturing defects, or rather with 

the technological indiscipline. Delamination itself, when in low level occurs, doesn’t 

represent any serious endangering of the future reliability of the system, but if it occurs 

between the PV cells and the edge of the module, the problems with isolation state of the 

module will arise. Such a case is also interpreted as the major visual defect and is a reason for 

replacing the module at the system. 

Delamination can take place between the encapsulant and the cell or, rarely, between the glass 

(front glass or backsheet foil) and encapsulant (Fig. 22). In both cases, there is a risk of the 

water ingress. The most critical part of the module from the point of view of delamination is 

the edge of the module. In case of frameless modules, only a layer of the sealant is present 

and it can be wrongly deposited. 

 

 a) b) 

Fig. 22:  Delamination between the: a) encapsulant and cell (early state), b) glass and encapsulant 

The special case, where different shape of encapsulated parts is visible, thin-film modules 

represent. While delamination occurs first in the form of bubbles and later bands in crystalline 

modules, the worm-like traces (Fig. 23), which can gradually affect the whole area, can be 

seen at thin-film modules. 
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 a) b) 

Fig. 23:  Delamination of thin film module: a) global look at affected area, b) microscopic picture 

Delamination process, in the case of thin-film modules, can be caused either by the wrong 

encapsulation or by the damaging of the layer edge (it spreads over cracks) or by the TCO 

corrosion. The TCO corrosion also causes the series resistance increase and therefore can be 

diagnosed by electric methods. 

4.3.2 Yellowing 

Yellowing is a very common defect which occurs mostly at crystalline PV modules. Although 

it doesn’t contribute to the degradation rate significantly, it is very often discussed between 

PV system operators. Its occurrence is connected with higher temperature and the acetic acid 

presence (created thanks to substances inside the encapsulator, namely EVA). 

 

Fig. 24:  Example of EVA yellowing – comparison with white paper 
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4.4 Backsheet defects 

A very important part of every module is the back covering foil – backsheet, usually tedlar. 

Tedlar is the brand name of the company DuPont and refers to polyvinyl fluoride (PVF). 

Usually the backsheet consists of more than one layer, typically three: 

Tedlar/Polyester/Tedlar, but the designation “Tedlar” usually covers the whole group of 

Tedlar based backsheets. This layer serves as a very reliable protection of the PV module rear 

side. Its defects are usually connected practically exclusively with the mechanical damage 

(see Fig. 25). If such damage is caused by high temperature occurrence, then also other parts 

should be damaged. Therefore it can be easily recognized by basic diagnostic methods. The 

problem lies with the mechanical damage caused by some mechanical stress like stone 

impact. In this case, the whole module works properly and only a negligible hole is apparent 

at the module. The problem is that this defect can cause water ingress, so it is a serious 

problem after all. 

 

Fig. 25:  Example of mechanical damage of Tedlar backsheet 

4.5 PV Cells Defects 

The major group of defects present at PV modules creates defects of PV cells. There are 

plenty of them, some of them more serious and some of them not. There are also publications 

which deal with the sorting, e.g. [37] or [38]. 

4.5.1 Hot-spot 

Hot-spot is the small part of PV cell which is overheated. In the first instance, it doesn’t 

influence the PV module parameters, thus it is problematic to diagnose by electrical 

measurement. In the second phase, it is so serious it can cause the destruction of the whole 

module (melting of tedlar or EVA, explosion, fire) – see Fig. 26. Hot-spot can be caused by 

faulty interconnections (soldering or adhesives faults) or by the long lasting shading. 
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Fig. 26:  Example of hot-spot 

4.5.2 Cracked Cell 

A very common defect is the crack inside the cell. Usually, they are not visible by the naked 

eye (microcracks), so other methods, like electroluminescence have to be used to reveal them. 

Actually, in case of the older modules – produced during the years 2008 – 2012, the cracks 

were visible sometimes due to the so called “snail trails”, but this defect is currently well 

known and usually doesn’t represent any reliability lowering. Although there are also the 

cases, where the damage is so extensive that they will occur (Fig. 27). 

 

Fig. 27:  Example of visible cell crack (on the right, also the hot-spot is apparent) 

Microcracks are usually less serious and they are covered in the product warranty (PV module 

manufacturer bears in mind the fact that the cracks will appear during the operation). Some of 

them don’t represent any future performance decrease, but some of them can cause the 
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separation of the part of the cell and logically will lead to performance decrease (then it will 

also influence the electrical parameters and therefore can be diagnosed by measurement of 

electric quantities). This sorting is given e.g. in [38]. 

4.5.3 Broken Cell 

This defect is visible by the naked eye (Fig. 28) and suggests that the module is of a very poor 

quality. This type of cells shouldn’t be present in the A class module, because it is the B class 

cell. Unfortunately, it can still be found. Form the point of view of a possible influence on 

performance, usually less than 10 % of missing cell is tolerated by the standards. 

 

Fig. 28:  Broken cell 

4.5.4 Faulty Interconnections and Joints 

Very important parts of the internal structure of the modules are the conductive paths – 

soldered or bonded joints. If these joints are damaged due to thermal or mechanical stress, or 

if they were produced improperly, the series resistance increases. The result of this defect is 

the emergence of hot spots and excessive degradation due to rising temperatures. The 

examples of defective interconnections are in Fig. 29. 

 

 a) b) 

Fig. 29:  Defective interconnections: a) mechanical stress, b) thermally damaged 
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5 Common Diagnostic Methods of Photovoltaic Cells and Modules 

During the whole life cycle of photovoltaic cells, or more precisely modules, it is needed to 

evaluate whether or not the PV devices have the declared parameters. During the time of use, 

i.e. the time of operation, it is necessary to perform not only diagnostics of visible defects but 

also preventive diagnostics which helps to detect possible defects in time and thus eliminate 

economical losses, e.g. possibly dangerous microcracks. There are many methods for 

evaluation of parameters in operation phase of a PV device, some of which have support in 

international standards. 

5.1 Diagnostic Methods Using a Detection of Radiation 

5.1.1 Thermography 

When assessing parameters gained through electric measuring, it is necessary to disconnect 

the cells and especially the modules from the rest of the device and to measure them 

separately, usually in a laboratory. In case of PV modules, this method can be quite expensive 

as well as rather time consuming with less accessible installations. If only for this reason, the 

use of any method, enabling defect detection without the need of disassembly, is necessary. 

One such method is thermography which is frequently used in diagnostics of faults of PV 

installations. 

The method works at a principle of detection of thermal irradiation using an appropriate 

detector. The cells in the module are connected serially. Therefore if we consider an ideal 

state where all the cells are identical, the same current flows through them while having the 

same voltage, i.e. they have the same short circuit current    . When the short circuit current 

flows through all the cells, the voltage is zero. In case of one faulty cell, the current and 

voltage proportions in the circuit change. The cells don't deliver short circuit current and as is 

apparent from I-V curve (see Fig. 2), the voltage on their terminals increases. Given that the 

overall voltage in short circuit state has to stay zero, the damaged cell is reverse polarized 

towards other cells and the voltage in it is the total sum of voltage of other cells in forward 

direction. According to the equation       it is evident that, to damaged cells, incoming 

current causes a considerably higher performance loss converting into heat then in case of 

undamaged cells. In case of the real operation, the cells function on a level of the highest 

output, but the mechanism of heating of the damaged spots is identical. The whole process is 

apparent from the Fig. 30. 
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This effect can be caused either by the defect in the cell or by shading. For a reduction of this 

influence so called bypass diodes are used. These diodes open in case the voltage drop in a 

reverse direction exceeds their threshold voltage VB (Fig. 31). 

 

Fig. 31:  Influence of bypass diodes at the function of PV modules 

The bypass diode is not used for every single cell in the actual modules but it has an 

antiparallel connection to a group of serially connected cells (usually 20 to 24 cells). Bypass 

diodes are located in the junction box. The usual amount of such segments in one module and 

also the amount of diodes is three. By-passing the defective/shaded part, the losses rapidly 

decrease and the affected part of the module is partially protected against the overheating and 

consequently destruction. Important fact is that when the modules are connected into the 

strings, there is no current limitation in the whole string, but only the decrease of voltage in 

one module. This voltage decrease can affect also the voltage of all connected parallel strings, 

 

Fig. 30: The principle of defective cells heating 
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but in the real situation, such decrease can be almost neglected (when single). The 

functionality of the bypass diode is also apparent from the I-V curve, where the “stairs” will 

occur, which can complicate the detection of MPP, because more than one local extreme is 

then present at the curve (Fig. 32). 

 

Fig. 32:  I-V curve of PV module with one partially shaded cell (measured under STC) 

The distribution of temperatures can be detected by the use of appropriate equipment. 

Reading of thermal field used to be done by thermometer (whether they were contact or 

contactless). These days, thermocameras are broadly used thanks to the drop in their price. 

Detection with the thermocamera allows uncovering a wide range of defects. However, the 

disadvantage is that the thermogram does not provide a quantitative assessment of the 

examined module. 

5.1.2 Electroluminescence 

Another very useful diagnostic tool is electroluminescence (EL). This method is utilized for 

cells and modules defects like cracks (the usual short is than ELCD - Electroluminescence 

Crack Detection Test), technological defects and other inhomogeneities evaluation. Thus it 

can also serve as the visual evaluation of the modules. It works at the principle of 

electroluminescence radiation detection which is emitted by recombined charge carriers 

during the radiative recombination process. The equipment should be located in a place with 

sufficiently low irradiance (the dark room is the best) and the sensor must be a special sensor 

which allows detection in near IR area (the radiation of PV modules has the wavelength of 

about 1 µm). The usually used sensors are cooled CCD (Charge-Coupled Device), CMOS or 
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InGaAs sensor (these cameras are often designated like SWIR – Short Wave Infra-Red 

cameras). The third one has the advantage of a much higher sensitivity in the useful 

wavelength area, so lower exposition time can be used – in the case of CCD camera, the good 

EL image takes about 5 minutes, in the case of InGaAs camera, only a few milliseconds. 

The PV module is connected to the current source and the current which should not exceed 

ISC value flows through it (when higher current is used, the heat production should exceed the 

permitted value and the module can be damaged). The intensity of emitted radiation is 

dependent on this current and on lower current level, different defects will occur (very 

important especially in the case of thin-film modules). Places, which are affected by some 

damage, places with higher defects density respectively, are seen as dark places at the EL 

images. Such places don’t contribute to electricity production. The radiation intensity is then 

the scale of PV module functionality.  

5.1.3 Photoluminescence 

This method is used for PV cells diagnostics. Unlike the EL it doesn’t need the sample with 

the contact system, because the radiative recombination excitation is stimulated by the strong 

light impulse, so the method can be used like the control procedure during the manufacturing 

process, which can be very useful, for example, during layers deposition. The method 

disadvantage is the need of special sensor (like the EL case) and also much more complicated 

equipment for radiation excitation. 

5.1.4 Microplasma Luminescence 

This method provides the information about shorts inside the structure. Unlike the EL 

measurement, the module in this case is connected in reverse direction, but the reverse 

polarization mustn’t exceed the breakdown voltage of the cell (similar to the case of simple 

semiconductor diodes). The reverse polarization in the areas affected by some defect (cracks, 

shorts) causes the microplasma occurrence. Microplasma manifests either like the noise 

(which can be electrically measured) or like the light emission. The light emission causes light 

places in obtained pictures, which means that these pictures are as a matter of fact inverse to 

the electroluminescent ones [39]. 
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5.2 Static Characteristics Measurement – Volt-Ampere Characteristics 

Volt-Ampere characteristics (I-V curves) measurement method, sometimes also called JV 

analysis or Voltammetry, is the most widespread method for PV cells and modules 

diagnostics. It allows determination of basic PV components parameters which were 

described in paragraph 1.2.1. The measurement can be performed either in a lab or directly at 

the installation, but it is used mostly for the precise measurement under Standard Test 

Conditions which are specified in international standards (e.g. [4] or [40]) like irradiance  

G = 1000 W/m
2
, cell temperature 25°C and spectrum AM1.5. This can be achieved by using 

continual solar simulator or by flash solar simulator. Usually, the measurement is performed 

under flash solar simulator – flash tester, because it is much less complicated and cheaper 

solar simulator than the continual one and the pulse duration (typically within the range of 

2 ms to 100 ms) is sufficient for most technologies (for some of them, this simulator is used in 

the regime of multi-flash or equivalent procedure). During PV component irradiation, the 

whole I-V curve through the electronic load control is measured. 

The continual solar simulator is necessary only in the special cases like concentrator modules 

or solar thermal collectors. 

For outside measurement, the solar analysers, which usually allow also connection of external 

sensors for ambient conditions measurement (irradiance, temperature, humidity, wind speed), 

are used. 

During the work on this thesis, many measurements of static characteristics have been 

performed. Most of them were done using equipment PASAN Sun Simulator 3c with the 

specification of double class A tester (AA-AA-AA according to ČSN EN 60904-9) in the case 

of modules and Sun Sim 2b with the specification of B tester in the case of the cells. In the 

area of both cells and modules measurements, number of papers has been presented (e.g. [41] 

or [10]). 

5.2.1 Specific Issues for Thin-Film and High Capacitance Modules I-V Curve 

Measurements 

The most problematic part is testing thin films due to season annealing effect and high 

capacitance. 
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5.2.1.1 Season Annealing Effect 

During measurement of thin-film modules, it was relatively early observed, that the 

performance and efficiency is very dependent on the history of operation. It means that during 

the operation, the module has for example MPP of 100 W (under STC). After putting it into 

the dark storage and measuring it again, only 90 W is measured. It was found, that the 

temperature and irradiance cause metastable states of PV modules which must be either 

eliminated or calculated when measured. 

Season annealing effect covers two phenomena: light-soaking (LS) effect and temperature 

annealing (TA) effect. The first one is very well known especially from amorphous silicon 

based PV modules, where so called Staebler-Wronski effect occurs [42]. Within this effect, 

optically excited carriers are breaking weak Si-Si bonds leaving them free, so it means that 

the recombination centres are then created and the carriers lifetime is lowered. This drop 

occurs during the first several hundreds of hours of operation and can reach up to 30% 

efficiency decrease. For suppression, the hydrogen is used and also tandem cells show lower 

level of LS effect. The other thin-film technologies also display similar behaviour. 

In many experiments it has been detected, that CdTe PV modules often have a significant 

increase in device performance in the range from a few percent up to 10 % within the first 

hours of light soaking [43]. This performance decrease can be also achieved by applying a 

forward biased current in the dark conditions. The CdTe modules biggest producer has its 

own methodology for measuring their modules, which is based on the presumption that when 

the module is measured between April and September, its performance should be stable if 

measured before the third day of storage. Positive influence of light soaking can be observed 

also in the CIGS modules. Unlike the CdTe modules, there is still no satisfactory theory 

explaining this effect in CIGS modules. 

Temperature annealing always has a good influence on the thin-film modules performance. 

When higher temperature is applied, even Staebler-Wronski effect can be recovered. 

The example of LS effect is given in Fig. 33, where the values before and after storing the 

CIGS module are compared. The other aspects of meta-stable effects will be further examined 

in the future. 
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5.2.1.2 Capacitance Effects 

The modules with higher capacitance, e.g. thin-film modules, can be easily wrongly evaluated 

when measured by the flash tester. This is caused by charging or discharging the capacity. 

When the module is measured from the short circuit state (designated as forward direction), 

the measured performance value can be lower than the real one – the capacity is charged. 

During the reverse measurement – from open circuit state to short circuit state, this capacity is 

discharged and it can cause the virtual increase of the measured performance. If there are no 

visible differences between forward and reverse regime, the pulse duration can be considered 

as sufficiently long. The general recommendations are given in the following table [44]: 

Tab. 4: Capacitive effects and recommended pulse duration – different technologies 

Capacitive effect Recommended pulse duration Technology 

NO / Low 2 ms c-Si, CI(G)S, CdTe 

Middle > 10 ms Technologies based on a-Si 

High > 100 ms High efficiency c-Si 

The pulse duration influence can be eliminated either by a sufficiently long pulse duration or 

using multi-flash measurement or also by the so called “dragon back pulse” tester of company 

PASAN (now part of Mayer Burger Group) who developed the special measurement method 

of high-capacitance modules using one single controlled 10ms pulse [45]. 

It’s surprising how many publications were written on the topic of I-V curves measurements 

and in all cases there is only the statement about “this is due to the capacitance” without any 

other explanation. The problem with this behaviour is that if it is modelled like the common 

capacitor, it doesn’t work. With larger amount of PV cells, the resulting capacitance should be 

 

Fig. 33: Comparison of CIGS module measurement before and after storage 
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lower (because of the serial connection of capacitors), but the opposite situation happens. 

These effects can be relatively easily simulated using SPICE (parameters of the diode can be 

edited to achieve PV cell behaviour). Unlike the classical diode model, SPICE diode model 

covers these effects by “borrowing” the Transition Time (TT) parameter from the transistors 

theory. It is very useful, because this explains a lot in the connection with the “strange” 

behaviour of the capacitance inside the structure. During irradiation, the capacitance is in 

ideal case infinite - the electrodes of the virtual capacitor, it means grounds of P and N type 

area are infinitely close to each other. Whole area is then full of nonequilibrium carriers. 

These carriers need some time to leave and create the depletion region again to recover the 

previous equilibrium state, if the module is put into the dark again. This time, it can be 

characterized just by the transition time parameter, so the resulting value of serial connection 

of capacitors inside the module can be imagined more as the connection of batteries and some 

kind of transition charge. The similar effect can be achieved by changing the capacitance 

values, but the problem is, that this capacitance is then necessary to change for every pulse 

duration change, when proper values should be obtained. This is caused just by the fact that 

the capacitance in this case cannot be represented by the simple capacitor as mentioned above. 

The measurement using different pulse duration and simulation in SPICE has been done. The 

example of comparison of achieved results for high efficiency multi c-Si PV module is shown 

in Fig. 34. For calculation, TT = 500 µs was used. From this comparison, it is obvious that the 

TT parameter can be applied. The capacitance effects and its other propagation will be the 

subject of further examination in the future. 

 

 a) b) 

Fig. 34: Comparison of measured (a) and simulated (b) I-V curves of high efficiency c-Si module 
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5.2.2 Dark I-V Curve Measurement – Dark Current Measurement 

A very interesting part of static characteristics measurement is the dark current measurement. 

This method is usually used for determination of dominant disorder and its concentration in 

PV cells, especially silicon ones. 

5.2.2.1 Recombination Centres Type Determination 

Following recombination processes inside the PV cell are possible: 

 radiative recombination, 

 recombination through the local recombination centres, 

 Auger recombination. 

In the silicon cells which have indirect band structure (unlike GaAs or amorphous silicon), the 

recombination caused by local recombination centres predominates. This theory is also known 

as Shockley-Read-Hall (SRH) theory [46]. Local centres are created by dopant atoms whose 

energy lies inside the cell band gap. Such dopant atoms function as local recombination 

centres, also called traps, which capture generated electrons during their transit back to 

valence band. During their passage, these electrons cannot be thermally excited back to 

conduction band – at first, they recombine at the local centre, then they go back to the valence 

band, so consequently, the resulting recombination significantly increases. Therefore, it’s 

important to know their character, concentration and distribution. One of the methods that 

makes to obtain dominant disturbance energy level and its concentration possible is dark 

current measurement. 

5.2.2.2 Dark Current Measurement – Recombination Centres Character 

Determination 

The method is based on measuring temperature dependence of dark I-V characteristics. In this 

field, some papers were published, like [47] and also equipment for automatic measurement 

has been constructed [48]. Measurement was performed in temperature interval from 20 °C to 

115 °C at the set of BSF mono and mc-Si cells. It is possible to determine  , energy level of 

dominant disturbance Et and its concentration Nt and shunt resistance RSH by evaluation. The 

measurement can be performed in both voltage polarities. The cell is powered by current in 

interval from 0 mA to approx. 100 mA and measured values are read by computer. The 

evaluation is based on formula (1.2). 
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At low current densities, the series resistance of large-area solar cells is small and can be 

neglected. The I-V characteristics can be then divided into three regions: 

1. in the range 0–40 mV, the influence of shunt resistance dominates and can be 

calculated; the current through the cell (IDF – Dark Forward Current) can be expressed 

by: 

    
 

   
 (5.1) 

2. in the range 40–300 mV, the generation-recombination compound of the total current 

predominates, so it can be expressed by: 

             
 

    
  

 

   
 (5.2) 

3. above 300 mV, the first term in the expression of the total current (diffusion 

compound) is dominant, so, by the curve fitting method, the diffusion saturation 

current and the diffusion diode factor can be extracted. 

The generation-recombination current density J02 can be expressed by: 

    
    

   
 (5.3) 

This means that the density J02 is inversely proportional to the lifetime of the charge carriers 

in the space charge region of thickness d, for which, in the case of a single trapping level, the 

following formula can be obtained: 

            
     

  
         

     

  
  (5.4) 

Here,     and     stand for the lifetime of the minority carriers in an N-type semiconductor or 

a P-type semiconductor, respectively, Et is the energy level of the G-R centre (or trap), and Ei 

is the intrinsic Fermi level [49]. 

Extraction of single recombination level parameters from temperature dependence of J02 is 

relatively simple. If there are more recombination centres characterized by     , the resulting 

    can be found from 



59 

 

   
  

 

    
 

 (5.5) 

If one deep level is dominant, the extraction of parameters can be done in the same way as in 

the occurrence of one single level. However, for two or more deep levels of approximately the 

same concentration, the standard extracting technique will lead to incorrect values of deep 

level energy. 

By reverse voltage-current characteristic measurement in the range of voltage  

V = 40 ÷ 300 mV is the total current given by [1]: 

          
 

   
       

 

   
 

(5.6) 

Parameters are extracted then by the similar procedure like in forward voltage-current 

characteristic measurement. In the future, especially the other crystalline cell types like PERC 

structure and also modules affected by PID will be examined. 

5.3 Dynamic Parameters Measurement - Impedance Spectroscopy 

The AC parameters can be measured using frequency domain technique – impedance 

spectroscopy. The Impedance Spectroscopy is characterized by the measurement and analysis 

of some or all impedance related functions of an electronic device. In impedance 

spectroscopy, the complex impedance Z(ω) = R(ω) + jX(ω) of a device is measured directly 

within a large range of frequencies. A purely sinusoidal voltage with varying frequency is 

applied to the terminals of the device under test and the phase shift and amplitude of the 

voltage and current signals are measured. The ratio between the applied voltage and the 

resultant current is calculated and this gives the impedance Z(ω) of the device under test. The 

plotting of R(ω) and X(ω) on a complex plane, in function of the varying frequency, gives the 

impedance spectrum of the device. In the photovoltaic area, this method has been in use for 

many years, mainly for AC parameters estimation such as RP determination (e.g. [50], [51]), 

but in [52] the usage for the donor concentration determination is presented as well. For 

measurement, the LCR meter is usually used. 
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5.3.1 Cole-Cole Diagram 

The graphical representation of X(ω) vs. R(ω) is called the “Cole-Cole diagram” of the solar 

cell, and it gives the impedance arcs from which the different AC parameters can be extracted. 

The construction of Cole-Cole diagram allows simple evaluation of parameters and also the 

quality of the tested cell, module respectively [23]: 

 

Fig. 35:  Cole-Cole diagram of PV cell (module) [53] 

The problem of measurement of the Cole-Cole diagrams lies in many factors that can 

influence the resulting curves. The Cole-Cole circle diameters correspond with the PV cell 

parameters, but also with other aspects like irradiance level and its spectrum, DC biasing, test 

signal level and cable length. 

The most problematic parameter is the capacitance which is the representation of physical 

capacitances inside the structure, particularly space charge capacitance of depletion region 

(transition capacitance CT) and capacitance due to minority carriers oscillation in response to 

the AC signal (diffusion capacitance CD). Both capacitances represent relatively difficult 

problem because it shows strong dependence on the voltage and injection level. 

Transition capacitance is very important namely in the case of reverse biased junction. It 

represents the ability to store electric charge. In reverse bias, the depletion region behaves like 

the classical dielectric, because the depletion region can be considered as free of charge 

carriers and the P and N regions like plates in the basic capacitor. Therefore, if the reverse 

bias voltage is applied, the depletion region width d increases and capacitance decreases. For 

abrupt junction, the capacitance can be expressed by [54]: 
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  (5.7) 

where    denotes permittivity of vacuum,    relative permittivity and     is the built-in 

potential, where V is positive for forward bias and negative for reverse bias. 

In forward direction, the transient capacitance still remains (theoretically it grows to infinity), 

but with rising forward bias voltage, there is a diffusion of charge carriers, which is connected 

with so called diffusion capacitance which can exceed the junction capacitance and therefore 

it is usually considered as dominant component of capacitive behaviour of a forward biased 

junction. 

The diffusion capacitance, sometimes referred also as storage capacitance, represents the 

capacity caused by the moving charge carriers. In the reverse direction, there is almost no 

flowing current, thus the capacitance is also negligible, in the forward direction, the situation 

changes. The depletion region is flooded by the charge carriers to such an extent, that the 

remaining are coupled around the transition similarly to the previous situation. If more charge 

carriers are generated, higher amount of charge must be stored – the capacitance rises. 

Diffusion capacitance is than defined as CD = dQ/dV, where Q represents injected positive 

charge (caused by minority carriers) and V the voltage [1]. For lower frequencies it can be 

expressed by [55]: 

   
 

  
 
      

 
 
      

 
     

  

  
   (5.8) 

where   is electron charge,   Boltzmann constant,   temperature,    and    diffusion lengths 

of holes and electrons and     and     initial minority carriers concentrations. From the 

equation above it is apparent that injection level is directly proportional to applied voltage and 

also tightly connected with minority carriers generation, thus, in the case of PV structures, 

also with irradiance. Because the irradiation of structure is never sufficiently constant, 

different results can be obtained when evaluating these parameters, so the results then are 

unrepeatable (although there are some efforts to measure under light e.g. [56]). For these 

reasons, it can be recommended to perform the AC measurement in dark conditions 

The AC power voltage value (measuring signal) has, if usual range is used (tens of millivolts), 

no significant effect on the measured values, but DC biasing is changing the operational point 
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of the cell and thus influences the diameter and area of measured Cole-Cole diagram. 

Extracted parameters are than strongly influenced by this value as can be seen on Fig. 36. The 

reason is in properties of the P-N junction inside the cell and changes of both capacitances, 

especially the junction capacitance. With rising capacitance, the complex part of impedance 

decreases which propagates in circle dimensions. 

DC biasing also influence the value of shunt resistance. When the junction is opened, RSH also 

decreases – the capacitor representation of the junction behaves like resistor when the 

frequency is equal to zero, thus it doesn’t behave like open circuit and lowers final RSH value. 

The question is which value of DC bias could be set to achieve parameters values 

corresponding to values obtained by standard measurement methods like I-V curve 

measurement under STC (standard test conditions). 

5.3.2 Resistances Extraction Methods 

To find the proper configuration of Impedance Spectroscopy method it is essential to 

determine the correct values of resistances. The methods for series resistances were already 

discussed in the previous text. It is necessary to mention that it is not only the series resistance 

which shows dependence on irradiance, but the shunt resistance RSH as well. The experiments 

proved that the dependence on irradiance is similar to the series resistance dependence. 

There was a comparison of impedance spectroscopy (IS), flash test (FT) and resistance 

determination used. For measurement, the multicrystalline Si modules consisting of 4 serially 

 

Fig. 36: Cole-Cole diagram of 4 multicrystalline PV module [53] 
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connected PV cells were used. For IS measurement, the LCR meter HP 4284A has been used 

and FT have been performed at PASAN Sun Sim 3c. 

From the presumptions mentioned above, it is obvious that IS performed under zero voltage 

DC bias should give the value of RSH corresponding to value measured under dark current 

measurement method. From the graph at Fig. 36, it can be found that the value for zero 

biasing will be approx. 800 Ω. From the dark current measurement, the value of approx. 750 

Ω has been calculated (see Fig. 37). The value of dark shunt resistance then can be considered 

as corresponding to measured ones at zero voltage bias. 

The value of series resistance is in this case too low, so every measurement obtained by IS 

will be burden by relatively high uncertainty, so it has not been performed in this case nor 

further examined. The comparison of RSH values obtained by FT and IS is apparent from the 

following table: 

Tab. 5: Dependence of RSH at injection level controlled by irradiance G and DC biasing 

DC Biasing (V) G (W/m
2
) RSH – IS (Ω) 

0 0 800 

1.5 450 108 

2.0 1000 48 

From the comparison of measured values it can be stated that it doesn’t matter if the P-N 

junction is opened by biasing or by irradiation. After biasing of approx. 0.5 V per one cell, the 

 

Fig. 37: Shunt resistance determination [53] 
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results obtained by IS should be corresponding to those obtained by STC measurement. On 

the other hand, when lower injection is used, lower biasing can relatively well serve as the 

simulator of this condition and provide the possibilities of studying the defects behaviour 

under AC conditions like they would be under constant irradiation. These results will be 

presented at EUPVSEC’17 conference [53]. 

The common property of the above mentioned measurement methods is the fact that they can 

be, commonly or with little adjustment, used on-site. Due to this, the further work is focused 

on on-site diagnostics and in particular on the evaluation of the obtained results. 
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6 On-site Diagnostic Tools and their Evaluation for Large PV Systems 

The diagnostics of the power plant usually consists of a few steps. The first one is to decide, 

how to diagnose. Methods, which can be used at small systems, are different from the ones 

used at larger systems. If thousands of modules are installed than the measurement of every 

module is practically impossible. The diagnostics of small system can be sufficiently 

performed using standard methods described above, like thermography or static volt-ampere 

characteristic measurement. But in the case of larger system, there are still gaps which leave 

the space for new approaches. 

The basic diagnostics of large PV systems is based on data analysis. Usual configuration of 

large systems in the middle Europe consists of string inverters with the middle power (about 

5 kW – 10 kW) because of the problems with local shading caused by clouds movements. The 

problem of data evaluation is out of range of this work and is described in many publications 

e.g. [57], [58], [59]. When the suspicion on the wrong component is detected, the concrete 

strings are then evaluated using other methods. The favourite one is, as mentioned before, 

thermography. 

The biggest problem of thermography is the lack of the information about the impact on 

performance. The possible guide can be in evaluation of Schottky diodes heating as was 

presented in [60]: 

6.1 Thermograms Evaluation 

To check the possibility of quantification of thermograms there were many measurements 

performed at the real system and in a laboratory. PV modules with defects were detected and 

were subsequently tested by a flash tester (a device for accurate measuring of I-V curves of 

modules – establishing nameplate parameters of PV modules). All acquired results can be 

found in [61]. Examples of thermograms and corresponding flash tests during standard testing 

conditions (STC) are apparent in Fig. 38, Fig. 39 and Fig. 40. 

All examined PV modules had a nominal output of 230 W. Obtained thermograms show that 

for quantification the most crucial area is above junction boxes where bypass diodes are 

located. The amount of current going through diode depends on voltage loss which is caused 

by an impaired cell or segment of a module. With the rise of current going through the diode 

the power loss and temperature of the diode rise as well. 
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Measurements were performed during two various irradiances and clear weather. The 

temperature of modules was higher during a higher irradiance. However, temperature 

differences of individual areas stayed mostly constant. 

 

Fig. 38:  A thermogram with marked points of measured temperature and flash tests of PV module 

with defects type hot-spot 

 

Fig. 39:  A thermogram with marked points of measured temperature and flash tests of PV module 

with an overheated cell 

 

Fig. 40:  A thermogram with marked points of measured temperature and flash tests of PV module 

with a non-functional segment 
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Comparison of thermograms and flash tests shows that for the evaluation of thermograms, it is 

not necessary to pay attention to amount and number of cells visible on a thermogram. For the 

evaluation of a difference of output power to the nominal power it is enough to observe the 

temperature difference in the area where junction box is located and the rest of the surface of 

the examined module. For PV modules of the examined configuration (junction box without 

silicone filling), a following correlation for typical defects was found, after evaluation of 

temperature anomalies (Δ T marks the difference of temperatures in between the area above 

junction box and the rest of the module and Δ PMAX proportional output decrease from the 

nominal value). 

Tab. 6: Correlation between the temperature difference in the area of junction box location and the 

rest of the module and PV module performance under STC, thermograms were measured at G from 

970 to 1000 W/m
2
 

Δ T Δ PMAX 

< 3 K < 10 % 

4 K – 5 K approx. 20 % 

≥ 9 K > 50 % 

The results showed that even a temperature difference of over 30 K between a defective cell 

and the rest of module do not have to result in an output lowered under the value guaranteed 

by the manufacturer. On the contrary, there was a correlation found in the difference of 

temperatures of the area where the junction box is located and the rest of the module and the 

output of PV module. A difference above 4 K indicates a considerably lower output from the 

nominal value. This temperature difference is also dependent on the configuration of the 

junction box and the size of the bypass diodes. 

During the work on evaluation of thermograms, there was another very important fact 

connected with the bypass diode found. Some operators are sometimes very confused by the 

thermography results, because when the thermograms are obtained in winter (in clear-sky 

conditions) they look different from the ones taken in sunny summer days. Also the 

measurement of the affected modules performed directly at the PV power plant using Solar 

analysers show some stairs at I-V curves, but no such damage has been found when measured 

under STC in the lab. This effect is caused by the Schottky diodes behaviour and their 

characteristics as was presented in [62]. 
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6.1.1 Schottky Diode Temperature Dependence 

If the simulation of Schottky diode temperature behaviour is performed, the dependence 

shown in the Fig. 41 can be obtained. From this dependence it is obvious that when the same 

voltage drop appears at the bypass diode, the resulting current flowing through it will be 

significantly dependent on the temperature. The diode temperature is influenced by two 

aspects – ambient temperature and temperature difference caused by flowing current. 

Influence of the ambient temperature 

From the real operation, it is known that the temperature of the module is approx. about 20 °C 

higher than the ambient temperature. The bypass diode is usually located in junction box 

which is located directly at the PV module rear side. Because the diodes inside the junction 

box are in an immediate vicinity of the module surface, their temperature must also be very 

similar (in thermal equilibrium the same, of course). It means that in idle state, the diode will 

have the ambient temperature + 20 °C. In clear summer days about 55 °C and in winter about 

20 °C. From the graph in the Fig. 41 it is obvious that the current flowing through the diode as 

a consequence of a defect (voltage drop at diode terminals is dependent on the damage level) 

will be approx. twice as high in the summer than in the winter conditions. 

 

  

 

Fig. 41: Schottky diode temperature characteristics (detail on right) 
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Influence of the flowing current 

For dependence of flowing current on temperature, it is important to define the structure of 

the bypass diode. This structure is shown in Fig. 42. 

The current temperature dependence has been well known for many years. Among the 

theoretical equations, there is also the semi-empirical relation between the temperature, 

current and voltage which can be used when operating in the estimated temperature and 

current range (usual PV systems operational conditions). When the current is high (it means 

the diode is fully opened), this relation can be expressed by [9]: 

  
  

 
  

 

  
     (6.1) 

where R is given by the sum of resistances of N layer, N+ layer and contacts as marked in  

Fig. 42: 

            (6.2) 

and the saturation current is given by: 

       
      

  
 
   (6.3) 

where c1 (A∙K
-2

) and c2 (K) are constants characteristic for every diode. 

Determination of these constants is relatively problematic in real operation conditions, but 

their values are constant in the whole operation conditions range, so when the small current is 

applied (RI << VB (threshold voltage)), the series resistance can be neglected and constants 

can be extracted directly from the Schottky junction characteristic with utilization of the 

 

Fig. 42: Basic Schottky diode structure 
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following equation [9]:  

            
  

 
       

  

  
    . (6.4) 

There were experiments with the real three bypass diodes performed and by the nonlinear 

regression constants c1 and c2 have been found. For the measurement, constant current source 

of 6.42 mA has been used, so the condition of small RI was accomplished. Diodes, together 

with the thermocouple, were located in the isothermal cavity. Thermal regulation was set to 

the constant value and left until constant values at thermocouple and diodes voltages were 

achieved. The measurement was than performed. Results of measured voltages under different 

temperatures are summarized in Tab. 7. The differences between the temperature at the 

surface of the diode and inside it were neglected, because such a difference can in the case of 

such a small current, cause the difference of about       only (                

                      ). 

Tab. 7: Measured forward voltage values of diodes for the current of 6.42 mA 

T (°C) VD1 (mV) VD2 (mV) VD3 (mV) 

22.4 189.94 180.65 192.06 

38.6 159.95 150.57 162.07 

56.1 127.14 117.71 129.26 

83.8 77.27 68.3 79.17 

120.1 26.71 21.53 27.84 

149.3 8.54 6.60 9.03 

155.0 6.79 5.19 7.12 

156.3 6.44 4.93 6.76 

Parameters obtained by the non-linear regression are summarized in the Tab. 8. 

Tab. 8: Calculated parameters obtained by non-linear regression 

Parameter D1 D2 D3 

c1 (A∙K
-2

) 19.6 22.1 19.8 

c2 (K) -7934.5 -7861.6 -7961.9 

 

For verification of obtained constants, fitting measured data with utilization of equations 

(6.1), (6.3), (6.4) and obtained constants was performed as well. As obvious from the Fig. 43, 

the reliability of the obtained constants and given equations is very high. 
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By utilization of obtained constants, the measurement of the temperatures in the real junction 

box has been performed. These tests came from the procedure described in  

ČSN EN ISO/IEC 61215. During these tests, the surface temperature of the module is 

considered to be 75 °C (the worst case in hot summer weather). Therefore, the junction box 

with the diodes was located at the heating plate and then the different constant current was 

applied. The results show that the internal diodes temperature is much higher than the surface 

temperature of the module and consequently the flowing current will be very different in 

dependent on the ambient temperature: 

When the ambient temperature is low, the current flowing through the diode will be lower 

because of the higher value of threshold voltage. Also the heating by the flowing current will 

be then limited. When the ambient temperature is high (hot summer), the threshold voltage 

value will decrease and it will cause higher flowing currents and another additional bypass 

diode heating. 

This is the reason why during winter, the defects are visible at the thermography and during 

summer they virtually disappear – people usually perform thermography from the front side 

of the module and they don’t evaluate the changes of temperatures of bypass diodes if they 

are not shunted. If the temperature changes of the diodes are implemented into the SW for I-V 

curve modelling, another additional effect is achieved. When the I-V curves at a partially 

defective module are measured under the natural conditions – usually during the summer (or 

late spring), the modules have higher temperature as well as the bypass diode and typical 

stairs are apparent at the measured I-V curve. But when the measurements are performed 

 

Fig. 43: Fitted data of D1 
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under STC in the laboratory (or during the winter), there is neither effect of heating of the 

tested sample nor the bypass diode. The defect influence can be too low to open the bypass 

diode and the module seems to be without any defect, or less serious. The temperature 

dependence of the bypass diode and its knowledge is then very important factor which cannot 

be neglected when the thermograms are evaluated. 

6.2 Dark Current Measurement – Tool for Degradation Evaluation 

During the work on this thesis, another very interesting possible utilization of dark current 

measurement has been found. As mentioned in the previous section, at low voltages under 

dark conditions, the shunt resistance influence predominates. The degradation of thin-film 

modules is often connected just with the shunt resistance decrease. It is understandable 

because during degradation, local shunts occur in the structure and the shunt resistance must 

be consequently decreased. This fact was used for quick diagnostics of micromorphous PV 

modules and the tester was constructed and patented (currently there is the utility model [63] 

and the patent [64]). 

6.2.1 Principle of method 

The principle of this newly developed method, further referred to as Dark Current Test 

(DCT), is based on the comparison of the degraded modules performance with the presumed 

shunt resistance value. For evaluation at the system, there is no need to determine the 

resistance value itself, the voltage at specific constant current will do the same service, 

because from the equation (5.1) it is obvious that 

          (6.5) 

and consequently, when the current will be constant, the shunt resistance value will be 

proportional to it. The comparison of two modules – one defective and one without defect is 

given in the Fig. 44. 

The dependency of performance on shunt resistance (voltage measured by dark current test at 

specific current) is not linear, because the predomination of shunt influence doesn’t come 

gradually, so, for evaluation, it is necessary to “calibrate” the tester first. The lowest 

acceptable performance value of the module is calculated taking into account the tolerance, 

guarantee, natural aging, measurement uncertainties and other expected influences. 
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Performance of set of modules by FT (or by solar analyzer) is measured. Furthermore, the 

dark current test is performed and the results compared. From the comparison of flash test and  

dark current test results, the threshold voltage corresponding to lowest acceptable 

performance value is then determined (of course, if such value is achieved). After that, the 

diagnostics by dark current only can be easily performed. 

6.2.2 Experiments 

For verification, set of measurement at the real PV system has been performed. First, 

according to the procedure described above, there was a set of modules by flash test 

measured. Second, dark current test using the constant current source supplied by the battery 

was used and results with FT measurements were compared. The dependence of the measured 

MPP by FT on the voltage measured by dark current test is shown in the Fig. 45. The nominal 

MPP of the measured modules was 97 W and the lowest acceptable performance value was 

determined to approx. 80 W. From the graph, this value corresponds approx. with the voltage 

value (measured by dark current test) of approx. 5 V. 

 

Fig. 44:  An example of comparison of I-V curves of good and defective PV modules 

Dark I-V curve of 

defective module 

V (V) 

I (A) 

Dark I-V curve of good 

module 

Measured “dark“ voltage 
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Further the whole PV power plant (approx 20 000 PV modules) was measured. Measured data 

was processed into the graph (Fig. 46) and the possibly wrong series (according to the serial 

number) has been identified – marked red in the graph. This series has been further examined 

after half of a year and the sample (59 modules) from this series has been measured again in 

detail (some of them also by using FT and EL test) and the continuing degradation has been 

confirmed. The results are summarized in the Tab. 9, Tab. 10 and Fig. 47. 

 

Fig. 46:  Distribution of the modules voltage drop values according to the Dark Current Test - IDF 

=100 mA (black line), grey line shows the moving average, red area suggests the possible degradation 

within one production series. 

 

  

 

Fig. 45: Dependence of PV module performance measured by FT on voltage measured by dark 

current test with two different currents 
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Tab. 9: Distribution of the sample of modules according to the Dark Current Test (IDF = 100 mA) 

  Year 

V (IDF = 100 mA) 2016 2017 

0-5 (V) 15 40 

5.5-10 (V) 33 12 

10.5-15 (V) 5 3 

15.5-22 (V) 6 4 

Sum 59 59 

Tab. 10: Comparison of Flash Test results of 7 modules from the tested series – decrease compared to 

the previous state, expressed as a percentage 

Module efficiency -3.6 -5.4 -5.4 -3.6 -5.5 -3.6 -1.8 

Fill factor -2.4 -2.2 -2.4 -2.5 -2.6 -1.0 -0.2 

ISC -0.6 -1.0 -1.2 -0.8 -1.1 -0.8 -1.2 

VOC -1.0 -1.2 -0.9 -1.2 -1.1 -0.8 -0.7 

PMAX -4.0 -4.5 -4.4 -4.6 -4.7 -2.6 -2.0 

VMP -2.2 -2.5 -2.2 -2.9 -2.7 -2.0 -1.8 

IMP -1.8 -2.0 -2.3 -1.7 -2.1 -0.6 -0.2 

Series resistance 5.1 5.1 5.8 6.3 5.6 3.8 2.8 

Shunt resistance -4.1 -1.5 -3.8 -1.9 -4.6 4.9 10.9 

V at I = 100 mA -1.9 -10.4 -1.7 -10.8 -1.9 -11.2 -14.1 

V at I = 50 mA -5.4 -14.0 -8.8 -13.0 -6.8 -17.3 -20.6 

 

 
 a) b) 

Fig. 47:  Comparison of histograms of distribution of the modules according to the Dark Current Test 

IDF =100 mA in the year: a) 2016 and b) 2017 

The big advantage of this method is that there are no special requirements on ambient 

conditions. The measurement can be performed during the night, so there are no additional 
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losses by the need of disconnecting the modules during the sunny days. There will be other 

technologies examined by this method and results published in journals. 

6.3 Defects Detection by Impedance Spectroscopy and Time Domain 

Reflectometry 

The last particularly examined measurement methods were the ones connected with AC 

parameters evaluation. The particular emphasis has been placed on Impedance Spectroscopy 

and Time Domain Reflectometry. 

Impedance Spectroscopy 

Although IS is usually used for dynamic parameters determination, there is also another 

utilization which was found during the work at this thesis. It is its sensitivity regarding the 

possibility of detection of defects which are in the beginning, like microcracks or local shunts 

of the PN junction. The following results were presented at EUPVSEC’16 [65] and NZEE’17 

[66] conferences. 

9 monocrystalline and 9 multicrystalline silicon PV modules consisting of 4 serially 

connected PV cells were examined. All modules were new with the same dimensions, 

configuration, age and storage conditions. First, flash tests and electroluminescence was 

performed. Than all the modules were measured using impedance spectroscopy. For 

measurement, the LCR meter HP 4284A was used. 

Electroluminescence showed that all of the modules except for one are without visible defects 

– see Fig. 48. One of multicrystalline PV modules showed cracks inside, but the affected parts 

are still electrically connected to the rest of module (no “dark places”). This presumption was 

confirmed also by I-V curve where affected module didn’t show any significant difference 

from the rest of modules of the measured group. On the other hand, the impedance 

spectroscopy showed significant difference which is well observable at Cole-Cole diagrams 

(Fig. 49). For easier evaluation, the average of measured values at “good” modules as well as 

parameters were calculated and compared with the “wrong” one (see Tab. 11). 
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A B C 

Fig. 48:  Example of electroluminescence images (A – typical monocrystalline, B – typical 

multicrystalline, C – defective multicrystalline) 

 

 

Fig. 49:  Cole-Cole diagrams of measured multicrystalline PV modules 

Tab. 11: Parameters obtained by I-V curve measurement 

 Defective PVM 
Average value of 

samples 11 – 20 

G  (kW/m
2
) 1.00 1.0 

ISC  (A) 8.81 8.83 

VOC  (V) 2.56 2.54 

η  (%) 11.20 11.29 

FF (%) 70.19 70.91 

PMAX  (W) 15.83 15.87 

VPmax  (V) 1.96 1.94 

IPmax  (A) 8.07 8.17 

RS  (Ω) 0.01 0.01 

RSH  (Ω) 66.5 72.8 
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The results proved that if there is some distortion inside the module which does not influence 

the performance yet, IS can be a very useful tool for revealing it, because this diagram takes 

into account capacitances, that can be strongly influenced by PV module internal structure, as 

well. 

In the future, other aspects like temperature and different defects propagation will be 

investigated. Currently, there is a research on the PID effect and its influence on Cole-Cole 

diagrams investigated. 

Time Domain Reflectometry (TDR) & Impulse Response 

Another AC method which can be used for PV cells and modules diagnostics is Time Domain 

Reflectometry. By specific frequency distribution of impedance, it is possible to find the 

location and to determine the nature of a defect. Moreover, this method can be used to 

differentiate modules that have the same nameplate values (and same producer) but slightly 

different fabrication process. 

TDR is a method mostly used to localize defects in transmission lines [67]. The method is 

based on sending a simple signal (such as a Volt Step-Wave) to an examined object (e.g. PV 

module) and measuring the waveform of the reflected voltage wave that is sent back to the 

oscilloscope (Fig. 50). Evaluating the TDR is then fairly easy [68]: 

 Taking into account the time of the wave reception by the oscilloscope in the case of 

a good module, a difference signals that there is a defective cell within the 

panel/array. 

 

Fig. 50: The block diagram for measurements using TDR 
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 A larger amplitude of the peaks of the voltage wave according to the peaks obtained 

on a good PV module of the same type indicates that the defective PV cell is acting 

like a short circuit inside the panel/array.  

 A larger amplitude of the valleys of the voltage wave according to the valleys 

obtained on a good PV module of the same type indicates that the defective PV cell 

is acting like an open circuit inside the panel/array. 

 The rising of the response voltage wave to a certain level relates to an increase in the 

string impedance, which may indicate a degradation of the connectors. 

Modified TDR method can be used for evaluation of differences between the modules. The 

modification lays in a fact that only the impulse response instead of a reflective signal is 

measured. The impedance profile obtained by this method is specific for every technology 

and also varies from manufacturer to manufacturer, as well as for single generations of the 

“same” PV module type. This was verified by measurement of old and new generation of 

CIGS modules. As described in chapter 3.1, there were differences in technology when the 

soda-lime glass was started to use. The older versions used only soda-lime glass without any 

other structures changes, because in these days, no positive effect of sodium indiffusion was 

known (today also the negative influence is known as PID). On the other side, the second 

generation had the additional Na
+
 targets, which both prevented the unintentional sodium 

diffusion and serve as the efficiency harvesting factor, inside the structure. The nameplate 

values haven’t shown any significant differences, but the impedance profiles had (Fig. 51). 

 

Fig. 51: Measured waves on various generation CIGS PV modules by impulse response technique 
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7 Conclusion 

7.1 Achieved Results 

During the work on the dissertation many scientific papers were published. Their list is given 

at the end of this work. The aim of this work was to find the correlation between the common 

and new methods and to identify the limitations of common methods. 

There was a comparison between the Impedance Spectroscopy, Flash Test, 

Electroluminescence and Dark Current Measurement presented. A strong correlation between 

these methods has been found and the guidelines for successful utilization of IS have been 

described. This is very important namely because IS is performed under dark conditions, so 

there is no limitation by weather conditions. Another advantage of this method is its 

possibility of using on thin-film modules. 

The subject of series resistance determination and its dependence on irradiance has been 

described. This dependence is usually neglected and wrong simulation results are than 

obtained. The knowledge of this dependence can be used for estimation of the specific 

technology which is suitable to the given climatic conditions. 

Another part of this work was dedicated to thermography and its correct evaluation. During 

work at this thesis, many measurements have been performed. The results were discussed 

with Czech service companies and also with companies dealing with thermography 

applications. The problems connected with evaluation have been defined and the possible 

solution found. The main acquisition of this work in this field is especially the evaluation 

methodology by bypass diodes temperature detection and evaluation and also explanation of 

variability of the obtained thermograms due to Schottky diode temperature dependence, 

which is unfortunately usually neglected. All of these aspects were presented at scientific 

conferences as well as local conferences for direct users (e.g. Termografie v praxi, TMV SS 

Open House) where it was very favourably received. 

Last but not least, the new quick diagnostic method based on dark current measurement, 

called Dark Current Test, was developed, verified in praxis and the tester was constructed and 

successfully patented. 
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7.2 Future Development 

In the further research, AC methods and their other utilization will be examined in more 

detail. These methods have proven as very promising for early diagnostics, because they are 

more sensitive regarding defects when compared with common methods. This will be 

examined especially in the connection with PID, LS and TA effect. 

The emphasis will also be placed on other aspects of thermography, like direct evaluation of 

PV power plants performance in dependence on obtained thermograms. 

Last but not least, the newly developed Dark Current Test method will be performed at other 

technologies with emphasis on PID effect. 
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