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Abstract 

Networks of decades-old optical fibers created for operating optical communications are still in 

use today and being applied to the harsh environments of avionics and military, marine, and 

space systems. Consequently, an analysis of optical component reliability and a description of 

the aging process is called to predict the behavior of these fibers in specific areas of utilization. 

In this thesis, harsh environments for optical components are investigated and a methodology for 

the long-term monitoring of optical fiber parameters for different service conditions is presented. 

Furthermore, several optical systems are tested over aged optical infrastructure.   

Keywords: Optical fiber, harsh environment, aging, free-space optics, radio over fiber. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Abstrakt 

Přestože optické vláknové infrastruktury byly instalovány již před několika desetiletími, jsou 

stále v provozu a na řadě míst navíc i extrémně zatěžovány. Extrémní zátěž úzce souvisí i s 

rozmachem optických komunikačních systémů v blízkých oblastech letectví, vojenství, 

kosmických aplikací apod. Vzhledem k těmto faktům je nezbytně nutná analýza spolehlivosti a 

stárnutí optických komponent, a to zejména za účelem předpovědi chování jednotlivých prvků ve 

zmíněných prostředí. V této práci je podrobeno analýze rizikové prostředí pro optické 

komponenty a vytvořena metodika dlouhodobého monitorování parametrů optických vláken 

v různých provozních podmínkách. Dále jsou testovány vysokorychlostní optické a radiové 

přenosové systémy pro použití v zestárlých optických infrastrukturách.  

Klíčová slova: Optické vlákno, rizikové prostředí, stárnutí, bezdrátové optické spoje, radiový 

přenos pře optická vlákna. 
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1 Introduction 

Increasing demands on high data rates and quality of digital services in recent years 

have led to massive developments in the field of optical infrastructures. These demands go 

hand in hand with expanding radio wireless services such as mobile xG or worldwide 

interoperability for microwave access (WiMAX) networks [1], [2] [3]. It is clear that optical 

technologies play an irreplaceable role in such networks, especially backbone networks [4]. 

In addition, new modulation formats, affording extremely high transmission capacity [5], 

have been introduced to meet desired demands with various optical amplifiers (rare-earth 

doped fiber amplifiers, semiconductor amplifiers, Raman amplifiers) offering perfect tools for 

long-haul systems. Moreover, free space optics (FSO), which offer similar bandwidth as 

optical fiber, are being widely applied as a cost-effective alternative to optical fiber networks. 

Increases in capacity and distance need ever-improving optical component properties and 

higher system sensitivity [6, 7]. 

As some of the today´s optical systems were installed 20 (or more) years ago, a huge 

number of old infrastructures have been in use as they cannot be easily replaced by new ones 

(from a costs perspective). Approximately 222 million kilometers of optical fibers were 

installed between 1998 and 2000 [8] and even older fibers and cables still coexist. Along with 

the variety of parameters of such structures, it is necessary to consider the conditions 

influencing optical transmission characteristics. Furthermore, fiber systems are not only found 

in backbone communication links, more and more photonics systems are used in harsh 

environments for avionics, as well as in the military, naval or automobile industries or 

combinations of them. Novel mobile 5
th

 generation systems are also based on optical core 

infrastructures [9]. Due to advanced parameters suitable for data transfer, such as low signal 

attenuation, it is expected that optics will be installed in practically all fields where possible, 

and strict requirements on selected infrastructures may be enforced. Optical infrastructures 

also usually form an inseparable part of crucial communication routes including subway 

systems in urban areas. It all represents a package of different environmental conditions with 

specific limits, regulations and requirements on optical infrastructures. 

New questions concerning reliability appear to determine those influences mentioned 

above. We encounter these problems with harsh environments formed by significant changes 

in temperature, humidity, vibrations, high transmitted optical power or turbulence. It seems 

that these factors, together with the massive expansion of optical systems, are having a severe 

impact on the quality of optical signal transmissions. Moreover, long-term exposure to these 

factors can permanently degrade optical fiber parameters, which leads to premature fiber 

aging. However, these problems can occur also in relatively safe areas since more 

sophisticated systems (dense wavelength division multiplexing (DWDM), polarization 

division multiplexing (PDM), etc.) or components (multi-core fibers, high-power amplifiers, 

etc.) are widely utilized in the older infrastructures which were not designed to carry today's 

systems.  

The thesis first introduces harsh environment influences on fiber and wireless optical 

infrastructures. Chapter 2 discusses the current state of research in this area. In Part 2.1, 
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a brief introduction to optical and hybrid optical – radio frequency (RF) transmission formats 

is given. Afterwards, Part 2.2 describes environmental-induced optical attenuation increase, 

followed by influences on chromatic dispersion (CD), polarization mode dispersion (PMD) 

and, finally, a discussion of optical fiber aging. Chapter 3 then proposes the main objectives 

of the thesis and summarizes work accomplished related to the thesis. Chapter 4 presents 

achieved results based on published journal and conference papers of the author filling the 

timeline and objectives of the thesis. Moreover, the relationship of the papers with the thesis 

topic is described here. Finally, Chapter 5 contains the conclusion of the thesis and a final 

discussion. 
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2 State-of-art 

Optical fibers have undergone significant development over the past decades, mainly 

in their transmission properties. Among the key features is low attenuation, which has led to 

the enormous replacement of existing metallic cables by optical fibers which have rapidly 

evolved in terms of low attenuation for a much wider range of wavelengths. However, 

attenuation, as well as the other key parameters of optical fiber like dispersion, can suffer 

significant impairment due to environmental influences. The aim of this thesis is to capture 

optical infrastructure behavior in harsh environments fully. At first, variable transmission 

formats are introduced to provide an overview of systems that can be deployed in old 

infrastructure, or, in infrastructure influenced by the harsh environment described. 

Subsequently, short-term and long long-term characterization of the crucial optical fiber 

parameters are described in the following chapters to form a methodology for the reliability 

of optical structures in harsh environments. The thesis is divided into the following chapters. 

2.1 Advanced transmission formats and systems 

According to growth in data rates, optical transmission systems are widely deployed 

in various areas including military applications, space platforms or avionics[10]. 

Nevertheless, the optical transmission system must be frequently adapted for cases 

of leveraged optical infrastructure which is placed in a hazardous area, or, for instance, whose 

transmission parameters are degraded through an aging process. In this section, a brief 

overview of transmission systems, used further in the thesis, is provided. 

2.1.1 Optical modulation formats 

Older optical infrastructures were initially designed to support on-off keying (OOK), 

non-return-to-zero (NRZ) signal formats with a maximum speed of 2.5 Gbps or 10 Gbps. 

However, subsequent higher bit rate systems (> 40 Gbps), mostly operate with higher optical 

power and minimum system requirements of 50 GHz channel spacing, optical signal-to-noise-

ratio (OSNR) tolerance not exceeding 16 dB and maximum mean PMD tolerance of 30 ps 

with an outage probability of 10
-5 

[11, 12]. Therefore, with the coexistence of old and new 

optical fiber based telecommunication infrastructures, it is essential to ensure that optical fiber 

properties are fully characterized to ensure the required quality of services. One of the cost-

effective and energy-efficient solutions for 100 Gbps systems is the deployment of a 

differential quadrature phase-shift keying (DQPSK) modulation format to enable DWDM 

with a spacing of 100 GHz [12], [13].  

Tables 1 and 2 depict the comparison of 100 Gbps optical modulation formats from 

OOK to polarization multiplexed QPSK in terms of minimal bandwidth, spectral efficiency, 

symbol rate, OSNR, CD and differential group delay (DGD) tolerance. 
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Tab. 1. A comparison of 100 Gbps optical modulation techniques in terms of transmission 

properties. [12] 

 
Tab. 2. A comparison of 100 Gbps selected optical modulation techniques in terms of 

impairment tolerances. [12] 

As can be seen, advanced modulation formats, in particular coherent systems, allow 

higher CD and DGD tolerance. On the other hand, the deployment of these systems brings 

significant additional costs. Note that coherence systems are adopted mostly for large 

backbone networks, whereas most other released systems are non-coherent. However, the 

transmission bit rates with standard installed single-mode fiber (SMF) can reach terabytes per 

second by using coherent systems. For example, a 16.2 Tbps transmission has been realized 

using dual-polarization (DP)-QPSK optical super-channels over 2,531 km of SMF [5]. The 

experimental results presented show that the maximal distance capacity obtained with this 

system is about 40.9 Pbps·km. Another high-bit-rate experiment was published in [14], where 

22 optical DP-8QAM/QPSK super-channels were adopted to overcome a distance 

of 1,503 km in standard SMF (SSMF). The maximal achieved recorded bit rate was 21.7 Tbps 

proving feasible transport more than 20 Tbps on an installed SMF at long-haul distances was 

possible. 

2.1.2 Optical infrastructures for wireless networks 

The requirements for new-generation mobile networks are increasing with the growing 

volume of multimedia applications generated by mobile users. It is expected that the amount 

of internet protocol (IP) data in wireless networks will have exceeded a value 
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of 500 exabytes (EB) by 2020 compared to ~3 EB in 2010 [15]. To satisfy these demands for 

mobile data traffic, the 3rd Generation partnership project (3GPP) has launched long term 

evolution (LTE) to achieve data rates of 3 and 1.5 Gbps for the downlink and uplink, 

respectively, when using LTE-advanced (LTE-A) technology [16]. Moreover, mobile cellular 

networks are on the verge of launching fifth-generation networks (5G) [2]. In these networks, 

as well as LTE-A, it is possible to use cloud radio access network (C-RAN) architecture to 

improve both the energy consumption and costs [17]. In C-RAN architecture, the baseband 

units (BBU) are centralized into a cloud (or BBU pool) and the signal is distributed to the 

remote radio heads (RRH) in the evolved Node B (eNB) (in the case of LTE networks). This 

architecture makes the eNB more simple and robust, which is an ideal solution especially for 

small cells [18], [19] although it increases the demand for access and the optical fronthaul 

network [17].  

A) Radio over fiber systems 

Radio over fiber (RoF) technology combines the benefits of optical fiber and RF based 

signals in wireless applications (4G, 5G, Wimax, etc). RoF is capable of performing a 

function for transmissions between a BBU pool and base stations in the C-RAN architecture 

[20],[21]. The RoF application in C-RAN architecture, together with a RoF setup, is shown in 

Fig. 1 and 2. 

 
Fig. 1. Functions of central-office and cell-sites (or BBU and RAUs) for macrocell, 

conventional cloud-RAN, and the proposed cloud-RoF systems. [18] 

 
Fig. 2. Architecture of the proposed small-cell cloud-RoF access systems.[18] 
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The capacity of a general RoF link can be significantly increased by using polarization 

division multiplexing (PDM) techniques as proposed for transmitting ultra-wideband (UWB) 

signals [22] or for 3GPP multiple-input multiple-output (MIMO) LTE-A signals [23]. 

The analog RoF technology is, furthermore, capable of transmitting radio signals with carrier 

frequencies up to 100 GHz [24].  

B) Radio-over-FSO systems 

In most cases, providers use an existing fiber infrastructure, instead of replacing by 

making new fiber routes, due to lower costs. What is more, a wireless-based FSO can be 

adopted in places where optical fiber installation is not possible or economical, especially 

in dense urban areas. FSO technology, thus, offers optical fiber features (i.e., high data rates 

and longer transmission spans) and is a suitable option that can be deployed rapidly over 

transmission spans of up to a few kilometers [25], [26],[27]. Moreover, up-to-Tbps 

transmissions are possible when engaging FSO technology [28]. In such optical wireless 

scenarios, an alternative would be to transmit RF-based information over the FSO link in 

place of an OF, which was experimentally demonstrated in [29] where a 1-km-long radio-

over-FSO (RoFSO) link was implemented at a wavelength of 1550 nm for the transmission of 

the digital television signal. Nevertheless, link availability and performance quality is mostly 

affected by harsh atmospheric weather conditions, such as atmospheric turbulence, fog, rain, 

etc. [26], [30]. Atmospheric scintillations are amongst the major adverse influences on FSO. 

Note that scintillation is characterized by Rytov variance as given by [31]: 

σ𝑅
2 = 1.23𝑘

7

6𝐶𝑛
2𝐿

11

6 ,     (1) 

where k is the wave number, L is the length of the channel and C𝑛
2  is the refractive index 

structure parameter which depends on the strength of the turbulence and is defined as: 

C𝑛
2 = (79 × 10−6

𝑃𝑎

𝑇2
)
2

𝐶𝑇
2,     (2) 

where Pa  is the atmospheric pressure in millibars. CT
2
 is the temperature structure constant, 

which is defined as: 

C𝑇
2 = (𝑇1 − 𝑇2)

2/𝐿𝑝
2
3⁄  ,    (3) 

where T1 and T2 are temperatures at two points separated by distance Lp. Knowing the thermal 

distribution along the FSO propagation path, it is possible to determine C𝑇
2  and Cn

2
. 

The impact of atmospheric turbulence on the propagating optical beam is given in detail in 

[26]. 

Fig. 3 shows the variation of received optical power and modulation error ratio (MER) 

with a dependence on experienced refractive index structure parameter Cn
2
. Results represent 

real data from a 1-km-long RoFSO link, mentioned above [29]. It can be observed that the 

higher the Cn
2 

parameter, the lower the received power and corresponding higher MER and, 

thus, a worsened system performance. 
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Fig. 3. Average, and a variation of, terrestrial broadcasting modulation error ratio with 

parameter Cn
2
. [29] 

In [32], a DWDM system with RoFSO technology was used to transmit a range 

of various radio services over 1 km of an FSO link under turbulent conditions for both indoor 

and outdoor (short-range) applications with 99.9% link availability. A novel wireless network 

architecture using RoFSO for wireless local area networks (WLANs), together with an RF 

assignment mechanism based on RoFSO, was proposed and investigated in [33] offering 

efficient frequency utilization in terms of both the throughput and fairness index. 

The performance of OFDM-based RoFSO links was published in [34] and presented the bit 

error rate (BER) and the outage probability performance in a turbulence channel. 

2.2 Optical fibers in harsh environments  

In this section, harsh environments (mostly temperature changes) and their impact on 

key transmission parameters of the optical fiber networks are described. 

2.2.1 Tests of influences on attenuation/losses 

As mentioned above, the low attenuation of optical fibers has led to their massive 

inclusion in many applications. Unsurprisingly, attenuation is the best described phenomena 

in fibers with small dependence on temperature. Common industrial producers of silica fibers 

typically provide thermal dependence in datasheets, for example, Corning [35] provides data 

from environmental tests in temperatures typically ranging between -60 °C and +85 °C. Fig. 4 

shows an example of a temperature cycling environmental test with controlled temperature 

changes between -10 °C and 85 °C. The specifications are provided in Tab. 3 and Tab. 4. 
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Fig. 4. Temperature cycling for environmental tests. [35] 

Specifications indicate that induced attenuation during enviromental tests of single-

mode fiber SMF28 should be below 0.05 dB/km for wavelengths 1310 nm, 1550 nm and 

1625 nm and below 0.2 dB/km for 850 nm.  

Environmental test Test Conditions 
Induced attenuation                  

@1310 nm, 1550 nm,  1625 

nm [dB/km]  

Temperature dependence -60°C to +85°C ≤ 0.05 

Temperature humidity cycling 
-10°C to +85°C up to 98% 

RH 
≤ 0.05 

Water immersion 23°C ± 2°C ≤ 0.05 

Heat aging 85°C ± 2°C ≤ 0.05 

Damp heat 85°C at 85% RH ≤ 0.05 

Tab.3 Environmental specifications for SMF. [35] 

Environmental test Test Conditions 
Induced attenuation                  

@850 nm &  1300 nm 

[dB/km] 

Temperature dependence -60°C to +85°C ≤ 0.10 

Temperature humidity cycling 
-10°C to +85°C up to 98% 

RH 
≤ 0.10 

Water immersion 23°C ± 2°C ≤ 0.20 

Heat aging 85°C ± 2°C ≤ 0.20 

Damp heat 85°C at 85% RH ≤ 0.20 

Tab 4 Environmental specifications for SMF. [35] 

In addition to official fiber optic manufacturers, induced attenuation in temperature-

changing environments has been investigated by research groups. The investigation 

of extreme low-temperature conditions in different coated fibers for avionics applications has 

been presented in [36]. Different types of SMF with mode field diameters (MFDs) from 

6.5 µm to 10.4 µm and numerical aperture (NA) from 0.12 to 0.2 were used with acrylate, 

silicone and carbon material coatings. Fibers, acclimated to an ambient temperature of 23 °C, 

were exposed to -196 °C in liquid nitrogen, then to hot steam with a temperature of +122 °C, 

pressure 220 kPa and humidity 100 %. Results indicate the greatest attenuation at wavelength 

1550 nm does not exceed 1 dB/km. Since real optical distance in aircrafts is typically below 
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100 m and temperature cycling is not as great as in the experiment, maximum fiber 

attenuation of less than 0.1 dB can be expected. However, aircraft networks are formed by a 

number of connections which were not taken into consideration. 

Another environmental test was carried out in [37] where the temperature dependent 

characterization for temperature sensing along geothermal wells in Iceland has been 

described. Distributed Temperature Sensing (DTS), using a backscattered Stokes signal, has 

been used to find thermal changes along fibers. The paper has shown the measurement 

of differently coated multimode fibers (MMFs) (50/125 µm). The test was performed on a 20-

m-section between two 500-m fiber sections. The measurement was carried out in temperature 

cycles over a range of -90 °C to 385 °C, and from -269 °C to +700 °C for polyimide coating 

and gold coating, respectively. The test was performed over a 180-hour cycle. 

The backscattered Stokes signal at wavelength 1064 nm was received to determine induced 

attenuation. While additional attenuation of the Stokes signal increased up to several dB/km 

in one heating and cooling cycle between 100 °C and 385 °C, in the case of four cycles 

in a row the attenuation of the Stokes signal exceeded 50 dB/km within polyimide 145 µm 

coated fiber. However, the polyimide showed better performance in lower temperatures than 

metal coated fibers. 

2.2.2 Test of influences on chromatic dispersion 

Another important parameter of optical fibers which influences the quality of the 

transmitted signal is chromatic dispersion (CD). The temperature distribution along an ultra-

long haul transmission link in USA giving an estimation to CD variation has been published 

in [38]. The authors collected data from the soil climate analysis network to evaluate seasonal 

temperature drifts. The situation of changes during warm and cold climatic profiles is 

depicted in Fig. 5 and Fig. 6 [38], respectively. In fact, long-haul optical links are typically 

buried at a depth of 0.6 m – 1.2 m and the distance typically extends a few thousand 

kilometers. The thermal data were taken for the depth of about 1 m. Expected peak-to-peak 

seasonal fluctuation of CD, based on thermal coefficient, was 375 ps/nm for non-zero 

dispersion-shifted fiber (NZ-DSF) and 570 ps/nm for large-core fiber in the 7500 km link. 

The maximum recorded fluctuation rate of CD was approximately 3 ps/nm/day over a two-

month period for NZ-DSF and 4.8 ps /nm/day for large core fibers. The results provide better 

knowledge about potential CD drift in old fibers (the paper [38] was published in 2002) and 

show typical temperature conditions in a buried optical link, which can be applied to other 

buried optical links. 

 
Fig.5. Typical cold-climate profile for various depths. [38] 
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Fig. 6. Typical warm-climate profile for various depths. [38] 

The evaluation of system outage probability due to temperature variation and 

distributed CD was published in [39]. The authors describe outage probability for optical 

systems using higher bit rate (>40 Gbps) in SMF and NZ-DSF optical fiber links placed 

in a temperature changing environment. It respects the fact that a long-haul link leads through 

different regions and experiences temperature variations up to 20 °C and 70 °C in buried and 

aerial sections, respectively. To ensure real conditions, fibers from several different 

manufactures were selected and the suitability of 40 Gbps RZ signal transmission was 

investigated with dependence on temperature variations. Fig. 7 illustrates the standard 

deviation of residual dispersion caused by temperature variation. 

 
Fig. 7 Temperature variation limits for optical fiber link distances. [39] 

It was determined that the outage occurs with a CD-induced penalty of 1 dB 

(7.75 ps/nm for 40 Gbps RZ) when outage probability does not exceed 5.5∙10
-5 

[39]. Results 

revealed that the maximum reachable distance for 40 Gbps RZ at wavelength of 1550 nm is 

limited from 27 km to 148 km, depending on fiber type and considering a dispersion penalty 

>1 dB.  

The effect of temperature on the CD and CD slope of optical fiber was investigated 

in [40]. Calculations were based on the temperature dependence of silica refractive index 

which directly influences transmission characteristics. The temperature-dependent CD and 

CD slope at wavelength of 1550 nm are shown in Fig. 8.  
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Fig. 8. Theoretical (solid) and experimental (dashed) values for chromatic dispersion and CD 

slope. [40] 

The derived BER for a 40 Gbps signal in a temperature range between -40 °C and 60 

°C is depicted in Fig. 9. It clearly demonstrates how CD, which is strongly connected to the 

material properties, relies on environmental changes and, in particular, on temperature.  

 
Fig. 9. Chromatic dispersion-induced BER versus thermal changes. [40]  

The potential CD limits due to seasonal temperature variations for 40 Gbps and 160 

Gbps transmissions at wavelength of 1550 nm for buried SSMF and NZ-DSF were 

investigated in [41]. Note that the temperature variations were ± 10 °C due to neglecting daily 

temperature fluctuations for depths greater than 0.6 meter. A high slope NZ-DSF can, 

however, operate up to 900 km when using a 40 Gbps bit rate, but the same fiber has a 

limitation of 100 km for 160 Gbps bit rate without any compensation. Results for a variety 

of distances are shown in Fig. 10.   
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Fig. 10. Additional accumulated dispersion due to ± 10 °C temperature variations for SSMF, 

high slope NZDSF and low slope NZ-DSF. [41] 

Other relevant works, investigating thermal dependent CD, can be found in [42-44]. 

2.2.3 Tests of influence on PMD 

There are two orthogonally-polarized principal propagation modes in SMF. In an ideal 

cylindrically symmetrical optical fiber, these two modes are degenerated and they have 

identical propagation constant. However, in real optical fibers, cylindrical symmetry is not 

ideal. The two orthogonal modes then propagate with different group velocities due to the 

birefringence in the fiber. Therefore the polarization mode dispersion (PMD) evinces more 

sensitive and random behavior, compared to attenuation and CD, mentioned above. Hence, it 

is important to characterize the optical fiber link precisely, especially when the fiber is placed 

in a highly temperature variant or a harsh environment. The PMD comes from DGD, from 

which the mean value is referred to as the PMD [45]. The part concerning PMD is described 

in more detail to link the main results of the dissertation. 

2.2.3.1 PMD measuring techniques 

This section focuses on describing PMD measuring techniques which are often 

utilized in practice for real optical links monitoring and which have been adopted or 

mentioned in this thesis.  

The interferometric methods have good accuracy and sensitivity. The principle of the 

interferometric methods is based on the measurement of the differential delay between the 

signals carried by two principal states of polarization (PSPs) using the low-coherent 

interferometer technique. The traditional interferometric technique (TINTY) [45] uses a 

Michelson interferometer with a polarization maintaining coupler featuring a 50/50 splitting 

ratio, a dividing incoming beam at a selected wavelength to two arms with fixed and movable 

mirrors. Reflected light from the arms are coherent when these two arms have almost the 

same length. By applying the proper length of the reference mirror, it is then possible 

to obtain the DGD value from the interference pattern which corresponds to the time when the 

light offends the given distance. 
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A General Interferometric technique (GINTY) has been derived from the traditional 

one in [46], [47]. Unlike the traditional method, the GINTY uses polarization scramblers and, 

thus, improves absolute uncertainty measurement results. In addition, another polarization 

splitter is employed to remove any contribution of the autocorrelation peak [48]. This method 

also boasts accurate measurement when an erbium doped fiber amplifier (EDFA) is included 

in the trace to make the method generally functional. The GINTY is, moreover, involved 

in IEC standard 60793 [49]. Fig. 11 shows an example of typical interferometer patterns for 

two types of fibers. 

 
Fig. 11. Example of GINTY interferometer patterns for two links with weaker mode coupling 

(upper) and stronger mode coupling (lower). [46] 

The Jones matrix eigenanalysis (JME) is a comprehensive measurement technique 

utilizing the placement of fiber-under-test (FUT) between the polarization-defined optical 

source and polarization detection. The input state of polarization (SOP) is systematically set 

by the polarizer and then analyzed by the polarimeter. The Jones matrix is generally used for 

describing polarized states of an optical wave or a passive optical component. The JME´s 

advantage lies in the small number of transmitted wavelengths and easier polarization 

controlling and polarimeter setting. It is possible to carry out both frequency and time domain 

measurements [45]. 

A similar technique, called the Mueller matrix method (MMM), can be used to 

characterize the wavelength-dependent polarization rotation of an optical fiber. The MMM 

represents the polarization rotation characteristics of an optical device such as an optical fiber, 

which is determined by the relationship between a set of input polarization vectors and their 

corresponding output polarization vectors [45]. 
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The EXFO company has introduced a unique transmission method called the "state-of-

polarization scrambling analysis” (SSA) in 2011, which can even be used for measuring 

DWDM channels [50]. 

An effective tool for distributed polarization measurements is represented by the 

polarization-sensitive optical domain reflectometer method (POTDR) [51], [52]. There are 

two described types of POTDR measurement devices. The first is suitable for the 

measurement of localized birefringence as a function of distance employing only single 

wavelength analysis. Distributed PMD is then estimated indirectly from the distributed 

birefringence vector. It requires very short pulses to resolve a small beat or correlation length 

of the SOP. The second type allows measurements over a range of wavelengths ensured by 

a tunable laser. The plural-wavelength analysis enables us to measure cumulative PMD 

directly as a function of longitude distance z. This mechanism is done by the random-

scrambling (RS) approach [52]. Unlike the first method, the second has been adopted more 

often in industry and brings more benefits for optical network monitoring. 

While assuming propagation constants in two orthogonal principle axes βx and βy at 

frequency ω, these constants are different due to birefringence[45]: 

     x y effn
c


       ,     (4) 

where Δneff refers to the differential effective refractive index for the two principal 

propagation modes. The relative group delay (known as DGD) between the orthogonal 

polarization modes for fiber length L is expressed by: 

     eff
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
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The DGD round trip in position z, observed in PMD distributed measurement, is 

computed as follows [52]: 

     2 2

2

1
RT dT msDGD z T


  ,     (6) 

where δω
2
 is relative wavelength spacing, α

2
dT relative scrambling factor and ΔTms is mean-

square value of number of wavelength differences. The random-scrambling POTDR scheme 

is shown in Fig. 12. [52] 

 
Fig. 12. RS POTDR principle; P- polarizer, Scr - polarization scrambler, ŝo(z) - launched SOP, 

ŝa(z) - analyzer axis, ŝ(z) - SOP backscattered at input from z. [52] 
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An accuracy verification was performed with PMD emulators and different fiber 

sections in a wavelength range between 1530 nm and 1570 nm in [52]. Total optical length 

was 18.9 km. Results from this measurement are depicted in Fig 13. The cumulative PMD can 

be seen from both sides (point A and F) of the link and the "double-side" measurement (A and 

F together). 

 
Fig.13 RS-POTDR results a) FUT b) one-side measurement (from A) c) second side 

measurement (from F) d) two-sided measurement. [52] 

Cumulative PMD in [ps] is represented by the y axis, whereas distance in km is 

represented by the x axis. Note that there is an ordinary OTDR measurement along scrambling 

performed to detect splices, connectors, etc. Slightly different results in cumulative PMD 

originate from natural random behavior of the DGD and from the resolution of the equipment. 

The P-OTDR method was tested with an EXFO FTB7400 device from Deutsche 

Telekom on buried fiber traces in [53]. The authors investigated the identification of high 

PMD sections and their replacement to fulfill demands for 40 Gbps backbone networks. Even 

the newly buried fibers contained parts with very high PMD, but they can be simply replaced 

instead of burying the whole route. The same authors then presented a field trial PMD 

measurement by POTDR in Germany [54]. 

The techno-economical aspect was taken into consideration in [55, 56] in cooperation 

with Deutsche Telekom. The papers investigated the process of replacing high PMD sections 

and concluding that the replacement of the short part of high-PMD fibers significantly reduces 

costs for the improvement of the fiber infrastructure  



16 

 

2.2.3.2 PMD monitoring campaigns 

With increasing demands on optical fiber capacity, especially when considering their 

structural aging, a long-term PMD measurement with a precise fiber characterization seems 

to be necessary for reliable transmissions. Moreover, there are no proposed detailed 

recommendations for long-term PMD monitoring yet. The following results summarize 

significant published papers in this area. 

The MMM was adopted for a two-day measurement of a 150-km-long optical route 

with a semiconductor optical amplifier (SOA) at a bandwidth of 100 nm, showing a slowly 

varying long-term structure of DGD spectra [57]. The author published a detailed 

characterization of installed long-haul buried optical cables by using the interferometric 

method and summarized experimental data in an empirical outage model [58]. The mean 

DGD results from February and August, taken from eight suburban buried fibers, are shown 

in Fig. 14. Although these were buried fibers, the daily fluctuations of the PMD are obvious. 

 
Fig. 14. Mean DGD measurement over 9 days in February and 7 days in August. [58] 

Based on these results, the same authors published a new model of temporal 

dependence of PMD for long fiber links in [59]. Furthermore, the investigation of the 

accuracy of long-term PMD measurements was published and concluded that some fibers can 

be characterized during one week, but so called "live" fibers need months or years 

of characterization [60]. A 25-day PMD measurement with SMF G.652 [61] using the JME 

method within metropolitan area networks in Turin, Italy, was presented in [62] and 

demonstrated that mean DGD changes are inherently limited, due to the daily cycle with 

maximal variations of approx. 10 %. The JME method was used to detail a DGD 

measurement over 35 days on two 127 km-long DSF fibers (zero dispersion at approx. 

1548 nm) [63]. The authors then discussed the question of the isotropic distribution of the 

PMD vector. Data from the DGD measurement are shown in Fig. 15. 
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Fig. 15. DGD map for different wavelengths vs. time. [63] 

The maximum difference of about 4 ps was observed in a single wavelength during 

only 15 days. Another interesting measured aspect is polarization drift, induced in both fibers 

under test (FUT), which is shown in Fig. 16. Polarization angle and mean DGD drift are 

shown correlating to temperature changes within the Jönköping area in Sweden. [63]  

  
Fig. 16. The PSP change (upper) vs. time for two fibers (solid and dotted curves). The bottom 

figure plots air temperature in the Jönköping area over the measurement period. [63] 

The conclusion in [63] leads to the fact that PMD drift cannot be predicted because it 

depends on installing performance and service conditions such as the amount 

of environmental perturbations and disturbances. 
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A 5-month long-term PMD continuous measurement was performed using the JME 

method at bandwidths between 1525 nm and 1620 nm with wavelength resolution of 0.05 nm 

[64]. Two routes, having a length of 79.5 km (#A) and 24.5 km (#B), respectively, were 

observed. Each measured route contained buried cables with four G.653 fibers, marked #1 

to #4. Whereas route #B was completely buried, route #A involved an exposed section 

at a bridge. Although the exposed section was significantly shorter (several hundred meters) 

in relation to the overall length, strong daily variation in mean DGD was recorded. The daily 

variation can be easily seen in Fig. 17a) where the PMD fluctuations of fiber #1 and #2 within 

route #A are compared to thermal changes for a 10-day measurement. Moreover, Fig. 17b) 

depicts the autocorrelation function of fibers in route #A and #B showing strong peaks in fiber 

#1 in route #A (blue curve), which appear in a 24-hour interval when compared to route #B.  

 
a)      b) 

Fig.17. a) PMD variation vs. temperature b) autocorrelation functions.[64] 

The result after 150 days is depicted in Fig. 18.  

 
a)      b) 

Fig. 18. a) time evolution of mean DGD b) histograms of two routes. [64] 

 It compares both #A and #B routes with tested fibers. It is obvious that the route with 

an exposed section evinces significantly higher variation in long-term measurement. The 
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biggest observed variation in fiber #1-A (red curve) was about 2 ps. However, the completely 

buried route #B shows minimal long-term variation in PMD. The performed measurement 

gives a better illustration of how temperature influences PMD changes. 

The most detailed long-term PMD measurement to date was an 18-month field observation of 

SOP and corresponding PMD on three buried fiber links employing 40 Gbps transmissions 

[65]. Fig. 19 depicts results from long-term observation for 30-km- and 273-km- long fiber 

routes.  

 
a)     b) 

Fig. 19. Long-term SOP and DGD observation for a) short route and b) long route. [65] 

It was revealed that SOP and PMD changes were in the order of days and the PMD 

was given by Maxwellian distribution. However, the longer fiber paths revealed the least 

activity and no correlation between variation in the SOP and the mean DGD was observed. 

PMD thermal characterization was performed in [66] which led to a discussion 

concerning the accelerated aging process in silica fibers. The experiments were carried out 

with G.652 fibers using various buffers. The main focus was on optical ground wire (OPGW) 

cables which commonly operate along 110 kV, 220 kV and 400 kV power lines and have 

special requirements for the temperature range of -40 °C to 85 °C with occasional thermal 

shock up to +150 °C due to fault currents. The paper investigated the impact of the buffer 

material on PMD because high temperature variation can result in the changing of material 

properties of the buffer (for example shrinking).  

Temperature 

[°C] 
Time of measurement 

PMD 

[ps] 
Relative value of 

PMD [%] 
Attenuation 

λ=1550 nm [dB] 

+20 Before ALT No.1 0.076 100 3.69 

+85 After 24 h exposure 0.086 114 3.74 

+85 After 336 h exposure 0.076 100 3.72 

+20 After ALT no.1 0.051 71 3.71 

+20 Before ALT No.2 0.051 71 3.69 

+85 After 24 h exposure 0.086 114 3.74 

+85 After 336 h exposure 0.065 86 3.78 

+20 After ALT no.2 0.065 86 3.76 

Tab. 5 PMD aging results. [66] 
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Tab. 5 then shows the results during the accelerated life test (ALT) and PMD and 

attenuation thermal dependence for fibers inside the OPGW. The delay between the first and 

second ALTs was several months and during this time the cable was stored at room 

temperature with medium humidity (45% - 75 %). 

We can see a maximal PMD increase of 14 % after 24-hour exposure to 85 °C. 

Attenuation resulted in a stable value at a wavelength of 1550 nm within the range of 

±0.02 dB. Another environmental test was done with G.652 fibers in primary coating and 0.99 

mm cured tight buffer. High thermal shock is further shown in Fig. 20. 

 
a)     b) 

Fig. 20. a) PMD-temperature characteristics from two G.652 fiber samples in primary coating 

b) PMD-temperature characteristic from G.652 fiber in 0.9 mm buffer. [66] 

We can observe PMD changes up to 490 % in the case of a 900 µm tight buffer. 

Results revealed that PMD can also decrease during the thermal tests due to either frequent 

perturbation making coupling modes stronger or the fact that buffer pulls the primary coating 

away and reduces applied pressure. Generally, the primary coated fiber exhibited increased 

PMD at temperatures below -20 °C. The OPGW revealed better properties in terms of PMD 

increase during high temperature changes when compared to primary coated fibers. The same 

test was later carried out with NZ DSFs (ITU-T G.655 [67]) in [68]. The PMD coefficient vs. 

temperature for G.655 fibers is depicted in Fig. 21.  
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a)     b) 

Fig. 21 a) PMD of G.655 fiber in 0.9 mm UV-cured tight buffer as function temperature 

 b) PMD of G.655 fiber in 2 mm indoor cable as function temperature. [68] 

The authors then discussed the enormous PMD values, induced by mechanical forces 

and explained by a circular (twist) strain which has two effects [68]:  

 -  Generates circular birefringence and a PMD component (kPMDS) proportional to twist rate 

[68]: 

𝑘𝑃𝑀𝐷𝑆 = 0.065√
ℎ

1000
𝛾 ,     (7) 

where h is mode coupling length expressed in [m] and γ fiber twist rate measured [rev/m]. 

 -  Reduces beat length (LB) and PMD induced by a lateral strain of fixed rotation: 

𝑃𝑀𝐷𝑅𝐹 =
1
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)
2
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𝑔

2
)(
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ᴧs
)
4
]

  ,    (8) 

where PMDRF is PMD reduction factor due to twist, LB is fiber "natural" beat length, g is 

elasto-optic coefficient of silica, ᴧs is fiber twist pitch in [m];  γ=1/ᴧs. The dependence 

of PMDRF on ᴧs is shown in Fig. 22. The authors concluded that the presence of the circular 

strain in the core of single mode fiber greatly improves stability of PMD when the fiber is 

subjected to bending and mechanical pressure, e.g., generated by a tight buffer applied during 

the manufacturing of the cable.  
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Fig. 22. PMD reduction factor (PMDRF) in twisted SMF (solid lines) and the PMD 

component resulting from twist (dotted lines). [68] 

The same authors published a paper integrating previously mentioned results while 

focusing on PMD temperature and the aging of optical fibers [69]. It was presented that PMD 

rises quickly when temperature drops below approximately 0°C and stated that OPWG cables 

show negligible attenuation change and good PMD stability even in accelerated aging tests.  

Several papers have been published on the suitability of high PMD fibers for higher bit 

rate transmissions and application in high speed WDM systems [70], [71], [72], [73] and [74]. 

2.2.4 Optical fiber aging 

Material properties changes go hand in hand, as discussed previously, with the aging 

of photonic structures [75]. The changes can be evoked by high optical power which 

subsequently leads to the potential damaging of the structures [76]. Moreover, optical 

component aging represents a very specific area with various fields of interest. Mostly the 

discussion leads to the silica fibers aging process, but it is not necessarily related only 

to optical fibers - the aging investigation includes passive components as well as optical 

component shielding materials. 

The aging process in all dielectric self-supporting optical fiber cables along high 

voltage lines was investigated in [77] according to the fact that these cables had been installed 

since 1979 and true aging had occurred. The authors found a threshold of about 7 kV and 

2 mA for the combination of an applied voltage and leakage current, respectively. Note that 

this work was focused only on material properties and did not investigate any optical 

characteristics. Another aging test of the whole optical system was published in [78] when 

performing several tests to determine optical component behavior under damp-heat aging. 

The components, including a laser source with pigtails and passive optical components, 

underwent a 600-hour aging test with a temperature range of 80 °C to 140 °C. The rapid 

increase of insertion loss (IL) of passive components was detected after 168 hours of the 

aging process. Moreover, it was determined that optical detected power, after 50 hours 

of recovering, can be restored to ~94 % of the original value. The author summarized that 

output power and IL, during the test and optical parameter recovery after baking, were 

attributed to moisture diffusion that resulted in the degradation of physical properties of the 
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cured epoxy used for the subassembly of the devices. The analysis of optical fibers aging 

in aggressive reagents was presented in [79]. Silica SMFs were employed in a test with 

acrylate polymer coating which was chosen to provide outer protection against stressed 

conditions. Selected fibers were soaked in a tetramethoxysilane solution (TMSO) and 

dimethyl-sulfoxide (DMSO) reagent for various time. Selected pictures of the soaked fibers 

are depicted in Fig. 23. 

 
a)   b) 

Fig. 23. Photos of fibers aged a) 40 minutes in TMSO b) 18 hours in DMSO. [79] 

The impact of a maritime environment on optical fibers aging is described in [80] for 

20-cm long SMFs having 250 µm acrylate coating. They were tested in NaCl aqueous 

solutions with various concentrations for 100 days at a room temperature of 23 °C. The 

process showed that the solution penetrated the fiber coating after some time, depending 

on the concentrations, and through this process decreased physical resistance. The fracture 

stress values were fitted to a Boltzmann function - see Fig. 24.  

 a)     b) 

Fig. 24. a) fracture stress as a function of exposure time for 35 g∙L
-1

 NaCl solution b) fracture 

transition time as a function of NaCl concentration. [80] 

The results imply that for a typical coastal scenario (NaCl concetration of 35 g∙L
-1

) the 

decay period is about 29 days. The authors also revealed that the degradation of the fiber due 

to the diffusion through the acrylate coating also occurs when the fiber is placed in pure 

water.  

The impact of optical fiber aging in a transatlantic transmission system was shown 

in [81]. The 96 x 10 Gbps DWDM system with 28 nm bandwidth and 50 GHz spacing was 

utilized over three years. Over 6,550 km cable routes were installed in 2001 and repaired 

in 2004 on the bottom of the sea from New Jersey, USA to Highbridge, UK. The routes 
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consisted of DSF with zero dispersion at a wavelength of 1550 nm. The aging process 

resulted in a negative spectral tilt of the system gain shape as shown in Fig.25. The highest 

decrease in the gain spectrum was about 2 dB which led to the total degradation performance 

resulting in diminished OSNR and Q-factor of about 0.3 dB and 0.4 dB, respectively. Fig. 26 

depicts the OSNR and Q factor changes due to cable aging.  

 
a)     b) 

Fig. 25. a) system gain spectrum in 2001, 2004 before and 2004 after repairs b) gain spectrum 

changes. [81] 

 
a)     b) 

Fig. 26 a) OSNR channel changes from 2001 to the time of repairs in 2004 b) Q-factor versus 

channel wavelength following the transmission of 96 channels. [81] 

The suitability of high speed transmission in long-haul optical links employing 

an aged fiber structure was presented in [82]. Polarization multiplexed 16-QAM 400G 

channels with 50 GHz spacing were employed within a 1,504-km long optical link. The 

authors highlighted the possibility of the systems mentioned deploying in existing long-haul 

networks by reducing signal degradation during signal propagation and increasing forward 

error correction (FEC) coding gain. Note that a high coding FEC and all-distributed Raman 

amplification system played a key role in the experiment. 
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3 Objectives of the thesis 

The previous chapters have revealed that optical infrastructures under harsh environments 

have not been properly characterized yet. Therefore, this thesis has the following main goals: 

- To determine aging processes in old installed optical fibers. 

- To study services under harsh conditions to identify potential outages. 

- To form a new methodology for the long-term aging process measurements and 

evaluation. 

- To determine the main impact of the aged optical fiber infrastructure under harsh 

environments on the total fiber-FSO system performance. 

In order to achieve these goals, the following milestones have been set: 

- A special testbed for optical cables long-term monitoring in a harsh area was 

established. 

- Over three years of continuous measuring of the key optical network parameters 

has been assembled and a novel statistical model for such optical networks and 

components with an impact on transmission parameters has been derived. 

- Along with long-term measurements, laboratory short-term tests were performed 

(e.g., to mimic specific harsh environments for aircraft photonic networks). 

- A new approach for combined RoF and RoFSO systems to increase link 

transmission capacity was introduced. Regarding the FSO subpart, turbulence-

induced fades had to be determined. 

- PMD suppression in dual-polarization (DP) transmission systems has been 

measured within the special testbed.  
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4 Achieved results 

4.1 Results overview 

Results, forming the core of this thesis, have been published in significant scientific 

journals and international conference proceedings. The main results, forming the following 

chapters, are in particular five journal papers [J1 – J5] completed by two conference papers 

[C1][C2]. The full list of the author´s publications and citations, including other relevant 

publications, is then given in Chapter 6.  

Chapter 4.2 contains results from the analyses of DP LTE signal transmission over a 

FSO turbulence channel [J1] which provides the first such evaluation of a DP RoFSO 

in a turbulent channel. It is determined that the DP signal in RoFSO links significantly 

increases capacity and does not cause any polarization errors, even under a stronger 

turbulence regime, which had not been investigated before. 

Chapter 4.3 provides extended analyses of DP LTE signal transmission over 

a combined fiber and FSO channel [J2]. The proposed scenario offers an effective utilization 

towards C-RAN architecture for mobile networks along with optical fiber infrastructure 

adopted to FSO links to overcome areas where burying optical cables is difficult or costly. 

Furthermore, the detailed noise conditions of such a system are investigated. The impact 

of atmospheric turbulence is also discussed to propose the best system performance. The 

paper introduces the main results and approaches, whereas consecutive tests with this system 

can then be found in other published papers (see list of author´s publications). 

Chapter 4.4 presents evaluations of short-term vibrational and temperature changes 

in optical fiber infrastructures [J3]. Special examples of harsh environments are then provided 

for an extreme case of a short MMF link within an aircraft, including several connections 

which emphasize the evaluation of IL changes and mode field distribution. These two issues 

are crucial to fulfill requirements on high data rates. Therefore, the paper provides 

a remarkable relationship between harsh environments and detailed optical mode conditions 

highlighting the reliability of the optical system. 

Chapter 4.5 then extends analyses from Chapter 4.4 courtesy of additional extreme 

temperature tests for MMF connections for an aircraft photonic network simulating enormous 

temperature variations along a plane [C1]. The measurements, which are always crucial for 

the characterization of network reliability and consequent safety, have revealed strong IL 

dependence on temperature, even for the case of shorter links (less than 20 meters). 

Chapter 4.6 describes partial results from the setting of a long-term PMD 

measurement methodology highlighting the influences of temperature fluctuations in selected 

measuring intervals [C2]. The results represent the first part of the measurement campaign 

and, in particular, the optical fibers utilized are characterized in detail. 

Chapter 4.7, which reveals the first complete long-term results from the unique 

measuring testbed [J4], follows. An attenuation increase of 0.15 dB/year has been determined 

in a 36-km long fiber route which was loaded by high optical power of 27 dBm at 1550 nm. 

To the best of the authors’ knowledge, the longest PMD and attenuation monitoring, so far, is 
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presented in the paper and provides novel derived statistics. Moreover, three commonly 

utilized PMD measuring methods were experimentally validated in the testbed. From this 

experimental setup, strong seasonal fluctuation of PMD in exposed cables, which correspond 

to bimodal probability distribution, has been derived. The results provide a very helpful 

methodology for network designers.  

Chapter 4.8 then gives the final summary of the achieved results from the testbed 

providing derived statistics of long-term measurements [J5]. In addition, a method for the 

estimation of long-term mean PMD variation is provided. The leveraged aged optical 

infrastructure/testbed (including splitters, couplers, etc.) was further tested with two major 

types of optical transmission systems. One was the OOK 10 Gbps optical ethernet format and 

as the second, the previously proposed DP RoF and RoFSO system was utilized. Along with 

experiments, the infrastructure was, subsequently, analytically investigated in terms of higher 

modulation formats with bit rates of 100 Gbps and 200 Gbps. Last but not least, the PMD 

reduction by applying the DP RoF and RoFSO scheme was presented. The article thus forms 

a comprehensive study on old optical infrastructure behavior, located in harsh environments.  

  



28 

 

4.2 Characterization of Dual-Polarization LTE Radio over a Free-Space 

Optical Turbulence Channel 

 

This chapter is a version of published manuscript: 

[J1]  J. Bohata, S. Zvanovec, M. M. Abadi and Z. Ghassemlooy, “Characterization of dual-

polarization LTE radio over a free-space optical turbulence channel,” Applied Optics, 

vol. 54(23), 2015, pp. 7082-7087.  

 

Points pertaining to my PhD thesis: 

To build a complex joint fiber and FSO network as part of fronthaul optical network 

for mobile systems of novel generations, increased capacity with multiplexing access is 

desired. For such a scheme, at the onset, FSO, involving a DP multiplexed link for the first 

time, had to be investigated, especially in terms of the crucial fading effect - atmospheric 

turbulence. It was proved that the DP signal in RoFSO links significantly increases capacity 

and does not cause any polarization induced error vector magnitude (EVM) increase even 

under stronger turbulence regime, which had not been investigated before. 
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1. INTRODUCTION

The fourth generation of digital cellular systems, currently
being adopted for mobile networks, will provide users with
rapid data transfer capabilities and improved mobility require-
ments. In addition, the long-term evolution (LTE) advanced
technology is being deployed to meet the demands for
significantly higher data rates [1,2]. In developing network
infrastructures, a number of backbone sections are realized
via the radio-over-fiber (RoF) technologies. In such networks,
optical fiber (OF) based systems play an inseparable role, offer-
ing high transmission capacity, low attenuation, and reduced
cost. The RoF technology allows radio frequency (RF) signals
to be centralized and distributed via OF to the remote access
units (RAU). To increase the link capacity and implement the
advanced network features (i.e., dynamic resources allocations,
etc.), the wavelength division multiplexing (WDM) technique
has been adopted [3]. Such an approach utilizes advanced
classical radio wireless schemes, including direct transmission
through the antenna arrays, wide-frequency scales ranging
up to millimeter waves and terahertz systems, photonics and
optical signal processing, etc. [4].

In [5], the RoF technique, together with the complete trans-
mission system, was demonstrated for frequencies up to
120 GHz. In [6], it was shown that transmission of LTE signals
over the OF backhaul can generally improve power and cost
effectiveness of the radio network. RoF techniques are also used
in distributed antenna systems (DAS) with centralized joint

signal processing functionality, and their utilization in micro-
to femto-cell deployment, in particular, was reported in [7].
A comparison of directly and externally modulated RoF
schemes, together with OF nonlinear compensation, was
described in [8]. The authors in [9] investigated the suitability
of three types of RoF links (directly modulated laser, Mach–
Zehnder modulator (MZM) and reflective semiconductor
optical amplifier) focusing on the link parameters (i.e., gain,
noise and maximum input power). The authors used orthogo-
nal frequency division multiplexing (OFDM) together with
employing higher-order modulations at a frequency of 1 GHz
for the cellular systems. In [10], an experimental investigation
using RAUs and a microwave amplifier for RoF LTE and
WLAN systems was reported.

One possible optical scheme that improves the efficiency of
optical communications is based on polarization division multi-
plexing (PDM). This offers the increased transmission capacity,
as different modulated signals are transmitted over the orthogo-
nal states of polarization (SOP) of the same light beam [11]. In
PDM, the two orthogonal SOPs can be detected using two
identical photodetectors to obtain the modulated signals inde-
pendently, provided orthogonality is maintained throughout
the link. The SOP can be temporarily degraded during light
propagation in optical networks, particularly when exposed
to changes in the ambient temperature [12]. The experimental
distribution of polarization multiplexed 3GPP MIMO LTE
signals using MZM is reported in [13]. For the RoF link
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employing quadrature phase shift keying (QPSK) mapping, the
evolved universal terrestrial radio access (E-UTRA) frequency
bands of 2.6 GHz and 800MHz were used for the transmission
span up to 100 km. In [14], a PDM RoF system for passive
networks using OFDM-based ultra-wideband (UWB) signals
was reported. In this scheme, the main investigated parameter
was the polarization cross talk between the polarization
multiplexed channels (with the highest achieved polarization
discrimination of ∼30 dB [14]). The experimental results
showed that 4 dB of an additional polarization cross-talk-
induced interference could be translated to 2.4 dB of the
EVM penalty in OFDM UWB signals [14].

The urban areas are characterized by a high concentration
of buildings and, thus, are more complex and costly to be
connected using the combination of RAUs and the RoF tech-
nology. In such environments, the deployment of wireless tech-
nologies (RF and optical) to interconnect RAUs may be the
most effective solution. Furthermore, the network throughput
can be improved by adopting the FSO technology, which offers
a high data-rate capability and much reduced RF interference.
The radio over an FSO (RoFSO) system, operating at 1550 nm
wavelength for transmitting integrated services broadcasting
terrestrial signals over 1 km of free-space channel (FSC) with
assessment of the link reliability under different environmental
conditions was investigated in [15]. One of the main con-
straints in FSO systems is the atmospheric turbulence, which
leads to amplitude fluctuations and phase distortion of the
propagating optical beam [16–18]. In optical transmissions,
the polarization states of the propagating optical beam are
the most stable properties. The influence of atmospheric
scattering on polarization qubits for Earth to satellite-based
quantum communications based on the vector Monte Carlo
simulation has been reported in [19]. Results showed that
polarization qubits are well preserved in the uplink and down-
link. In [20], it was shown that the polarization states can be
maintained over a long propagation link. In [21], it was
demonstrated that, under turbulence regimes, FSO links em-
ploying multilevel polarization shift keying combined with the
diversity techniques offered improved error performance.

The performance of OFDM-based RoFSO links, in terms of
the bit error rate (BER) and the outage probability in a turbu-
lence channel, was studied in [22]. The suitability of the RF
signal transmission over an FSO link was analyzed in [23],
whereas [24] outlined the analytical investigation of RF wide-
band code division multiple access signal transmission over a
turbulent FSO link. The authors also introduced a dense
WDM-based RoFSO system, which is capable of transmitting
multiple RF signals for ubiquitous wireless services [25].

As outlined above, there is the need to combine state-of-the-
art technologies with commonly used mobile radio services and
carry out system utilization analyses using OF as well as the
optical wireless technologies for the last-mile and last-meter
access networks or as part of the backbone network infrastruc-
ture. In this work, we propose a DP LTE-based RoFSO com-
munication system and verify its performance experimentally
in terms of the EVM under turbulence regimes. An extensive
measurement campaign is conducted, and results show that the
proposed system offers a higher transmission capacity by
transmitting two independent signals using the same RF and
wavelength. This paper is organized as follows: Section 2 out-
lines the experimental setup for LTE over fiber and FSO and
the supporting theoretical background to turbulence. In
Section 3, results of several tests especially focused on turbu-
lence aspects are presented and discussed. Concluding remarks
are given in Section 4.

2. MEASUREMENT SETUP

The block diagram of the experimental setup for the proposed
DP-RoFSO system is depicted in Fig. 1. The system is
composed of two orthogonally polarized optical signals, both
combined and optically amplified prior to being transmitted
through the turbulence channel and detected independently
at the receiver (Rx). The transmitter (Tx) side features a
common single wavelength (1550 nm) distributed feedback
(DFB) laser source, which is used to ensure the same spectral
profile for polarization multiplexing. Note that using two light
sources would lead to spurious intermodulation products and a

Fig. 1. Block diagram of the DP-RoFSO system using two polarizations.
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mismatch in the output spectrum. The output of the DFB laser
is split into two using a power splitter (PS), and then the sep-
arated outputs are transmitted via a single-mode fiber (SMF) to
two external MZMs. MZM1 is modulated by the LTE EUTRA
test signals (signal LTE generator R&S SMW 200A) with fre-
quency division duplex (FDD), whereas MZM2 is modulated
by the 64-QAM (quadrature amplitude modulation) RF signal
(R&S SMIQ 03B signal generator). The same carrier frequen-
cies and bandwidth were chosen for both signal generators to
represent different RF services in each channel (both were
tested at frequencies of 800 and 2.6 GHz). The modulated sig-
nals at the outputs of MZMs were adjusted using polarization
controllers (PC) to achieve the desired orthogonal SOP prior to
being combined by a polarization beam combiner (PBC). The
outputs of PCs are labeled as polarization states 1 and 2 (POL1
and POL2). The output of the PBC is then amplified using an
erbium-doped fiber amplifier (EDFA) to compensate for the
loss experienced by the optical beam propagating along the
FSC. The amplified optical signal is launched into FSC by
means of a gradient-index (GRIN) lens with an aperture of
1.8 mm and a plano–convex lens with a diameter of
25.4 mm. At the Rx, the same plano–convex lens with a
GRIN lens is employed to launch the optical beam back into
the SMF. A PC is utilized to adjust the polarization conditions
and followed by a polarization beam splitter (PBS), which
separates POL1 and POL2. POL1 and POL2 are then detected
by PIN photodiodes followed by transimpedance amplifiers
(TIA) (New Focus 1544-B-50). The outputs of TIAs are
captured and analyzed using a real-time spectrum analyzer
(R&S FSVR). The main system parameters are summarized
in Table 1.

The SOP can be defined by using Stokes parameters and
represented in the Poincaré sphere. Prior to FSO turbulence
measurements, we experimentally validated the polarization
orthogonality using the Thorlabs PAX5720 polarimeter.
Measured orthogonal polarization of both channels in the
Poincare sphere is shown in Fig. 2. The polarization diversity
in both channels was controlled by setting the two different
carrier frequencies at each signal generator output and then
switching between the Rx output branches and observing
the power difference between the two signals. The smallest dif-
ference between the two carriers, in the available orthogonally
polarized states, was over 36 dB. Therefore, in such a scenario

with RF signals having the same frequency, the interference can
be greatly reduced.

The most common parameter used to qualify the effect of
turbulence is the scintillation index σ2I which is defined as the
normalized irradiance variance of the optical beam intensity I,
as given by [26]

σ2I �
E �I 2� − E �I �2

E �I �2 ; (1)

where E �·� denotes the expected value of optical intensity. In a
weak turbulence regime, the behavior of channel fading is mod-
eled by log-normal distribution [27] and σ2I and variance of
irradiance σ2x related as [28]

σ2I � exp�4σ2x� − 1 ≅ 4σ2x : (2)

Knowing the thermal distribution along the FSO path, it is
possible to determine the temperature structure constant C2

T ,
which depends on the temperature difference between two se-
lected adjacent thermal sensors (T 1 − T 2) distant by Lp as [28]

C2
T � �T 1 − T 2�2∕L2∕3p : (3)

The refractive index structure parameter C2
n is given as [27]

C2
n �

�
79 × 10−6

P
T 2

�
2

C2
T ; (4)

where P is the atmospheric pressure in millibar, and T is the
average temperature in Kelvin. The variance of log-intensity
signal fluctuation defined by Rytov variance σ2R is given by [26]

σ2R � 1.23k
7
6C2

nL
11
6 ; (5)

where k � 2π∕λ is the wavenumber, and λ is the transmission
wavelength.

There are a number of methods for generating turbulence,
including near-index matching, liquid-filled chambers, spatial
light modulators, ion-exchange phase screens, surface etching,
and hot air chambers [29]. For testing the proposed scheme, we
have adopted the latter and used an artificial turbulence gen-
erator with known, realistic, and repeatable characteristics and
low cost. Two fans were used to blow hot air into the channel
perpendicular to the propagating optical beam. To measure the
temperature profile and determine the temperature gradient
along the channel, we placed 10 thermal sensors at an interval
of 18 cm (see Fig. 3). Convex lenses, which were used for
launching and coupling light at the Tx and Rx ends, are also
shown in Figs. 3(a) and 3(b), respectively.

Table 1. Setup Parameters

Parameter Value

Carrier frequencies 800 MHz and 2.6 GHz
System bandwidth 10 MHz
RF output power −5 dBm
Modulation scheme 16- and 64-QAM
LTE test model TS 36.104 FDD
DFB laser output power 8 dBm
Wavelength 1550 nm
FSO channel length 1.9 m
FSO channel loss 15 dB
PIN responsivity 0.9 A/W
TIA bandwidth 12 GHz

Fig. 2. Measured orthogonal polarization representation in
Poincaré sphere observed at two signal branches.
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3. RESULTS AND DISCUSSION

The experimental investigation was focused on testing the LTE
signal, including advanced modulation formats for various tur-
bulence regimes on the edge of reliability in one channel, while
the second RF channel was operating at the same frequency but
at a different polarization state. We used the 800 MHz and
2.6 GHz frequency bands for LTE technology in the Czech
Republic with a bandwidth of 10 MHz.

To determine the channel properties, we selected two LTE
EUTRA models from the 3GPP Group [30], known as the
E-UTRA Test Model 2 (E-TM2) and E-UTRA Test
Model 3.2 (E-TM3.2). The E-TM2 is typically adopted to de-
termine the dynamic range of a system employing OFDM with
a minimum transmit power and uses the 64-QAM modulation
scheme with a tolerance limit of reliability 8% for EVM. The
E-TM3.2 model is used to investigate the quality of the trans-
mitted signal, particularly using 16-QAM modulation with
12.5% of the EVM tolerance limit. Figures 4 and 5 depict
the measured EVM against the refractive index structure
parameter at an RF carrier of 800 MHz for 16- and 64-
QAM and for E-TM2 and E-TM3.2 test models, respectively.
The dashed red lines show the average EVM limits of 12.5%
and 8% for 16- and 64-QAM, respectively; the dark blue line

represents the evolution trend of EVM, which deteriorates with
the strength of the turbulence regime. The inset figures show
the captured constellation diagrams for the channel without
turbulence and under the influence of very strong turbulence.
Note that the testing procedure was used in parallel as well as
other pilot subchannel signals having different modulations
(other points drawn at the background of insets). However,
the EVM results were obtained for 16- and 64-QAM only.
Under laboratory conditions and using a short FSC span, values
of C2

n induce cumulated small-scale scintillation and Rytov
variance. In this work, for L � 1.9 m and λ � 1550 nm
and using Eq. (4), the range of values for C2

n from 2.5E −
11 to 2.0E − 10 (see Figs. 4–7 and 9) are interpreted to σ2R
in the range of 0.0051–0.0408 and are, thus, clearly classified
as the weak regime. This is in line with the work reported on
scaling of the weak and strong turbulence dependency on the
propagation span in [28].

Figures 6 and 7 show the measured EVM against the refrac-
tive index structure parameter for the RF carrier frequency at

Fig. 3. FSO (a) Optics used at the Tx. (b) Channel with temper-
ature sensors. (c) Optics used at the Rx.

Fig. 4. EVM dependence on C2
n for 16-QAM at 800 MHz

(E-TM3.2).

Fig. 5. EVM dependence on C2
n for 64-QAM at 800 MHz

(E-TM2).

Fig. 6. EVM dependence on C2
n for 16-QAM at 2.6 GHz

(E-TM3.2).

Fig. 7. EVM dependence on C2
n for 64-QAM at 2.6 GHz

(E-TM2).
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2.6 GHz for E-TM2 and E-TM3.2 test models, respectively.
The EVM parameter in the LTE signal demonstrates the link’s
stability for the case of a clear chamber without the influence of
the second orthogonally polarized signal. We tested the system
with and without the POL2 signal and observed no change in
EVM for POL1. For both test models in a clear chamber with-
out turbulence, the magnitude of EVM was determined to
reach 2% or better. At higher turbulence levels (range of
C2

n ∼ 10E − 10 m−2∕3) we observed strong fluctuations along
the entire frequency bandwidth and the corresponding aver-
aged EVM, as shown in Figs. 5–8 (blue dashed lines), which
also led to the loss of synchronization.

The measured frequency spectra of the LTE signals are
depicted in Fig. 8 for the channel with and without turbulence.
With high turbulence, the spectrum in the RF domain
displays increased fluctuation and a mean level drops
by ∼10 dB.

The evolution of EVM is associated with the BER perfor-
mance under increased turbulence regimes as captured in
Fig. 9, which shows the predicted BER (determined from in-
terpolated EVM data) as a function of C2

n for 16- and 64-QAM
at a frequency of 2.6 GHz. For the lower range of C2

n, the
system displays lower BER performance; however, at higher val-
ues of C2

n, the BER increases rapidly, thus exceeding the error
limit of 10E − 5 at C2

n of approximately 7.5E − 11 m−2∕3 and
1.6E − 10 m−2∕3 for 64- and 16-QAM, respectively. Therefore,
higher turbulence levels lead to the loss of link synchronization
and, consequently, cause the outage of the RoFSO system.
Finally, we tested the system at 800 MHz and 2.6 GHz under
turbulence regimes and did not observe any significant
differences between them.

4. CONCLUSION

This paper proposed and experimentally evaluated a dual
polarized RoFSO LTE system. The averaged EVM parameter
was monitored, thus displaying higher stability (<2%) in the
order of tenths of percentage points during the steady-state
condition without the need for polarization maintaining
fibers. Thus, the proposed system becomes more universal
but at a cost of increased sensitivity to polarization of the
propagating optical beam. We showed that, under the turbu-
lence regime with a refractive index structure parameter of
∼1.0E − 10 m−2∕3, the proposed system tolerated higher levels
of signal fluctuation and achieved the required EVM limit of
8% for the 64-QAM modulation scheme. The combination of
polarization multiplexed RF signals, together with WDM in a
wireless optical medium, promises to be an attractive solution
for future wireless network convergence. The next logical step
for extending the current work would be to experimentally as-
sess the RFoFSO link performance under the medium to strong
turbulence regimes by means of adopting adaptive optics
schemes, which is rather effective in combating the phase dis-
tortions, in order to validate the analytically predicted results
reported in [18].
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1. INTRODUCTION

The deployment of small cells and the use of higher radio
frequency (RF) bands (e.g., millimeter-wave) are two possible
options to fulfill the demand for higher data rates in next-
generation wireless access networks. The third-generation part-
nership project (3GPP) of long-term evolution (LTE) with low
latency, also known as the fourth-generation technology, sup-
porting high data rates of up to 300 and 75Mbps for the down-
links and uplinks, respectively, has been proposed and
developed [1,2]. LTE intended for urban areas and operating
at a carrier frequency of 2.6 GHz imposes higher loss in wireless
transmission, which limits the cell radius due to the degrada-
tion of the signal-to-noise ratio (SNR) [3]. In small-cell-based
systems, optical fibers are considered as an ideal backhaul
medium to provide sufficient bandwidth as well as a future-
proof capacity upgrade. More recently, cloud-based radio access
networks (C-RAN) technology has been proposed as a cost-
effective and power-efficient option for deploying small cells
to meet the capacity demand of future wireless access networks.
C-RAN decouples the digital baseband processing unit (BBU)
from the largely analog remote antenna unit (RAU) and

moves it to the BBU pool or BBU hotel, thus allowing for
the centralized operation of BBUs and a scalable deployment
of RAUs as small cells [4]. In such schemes, optical fiber (OF)
communications technology plays a significant role when de-
veloping network infrastructures, particularly for connections
between adjacent cells, RAUs, and a central unit pool. OF tech-
nology covers approximately 35% of the connections between
base stations (BSs), while the remaining 55% are based on RF
wireless technology [5]. This will rise to over 60% of fiber-
connected base stations making fourth and upper generations
of mobile communications, resulting in optical infrastructures
becoming the most suitable medium for transportation of
radio signals from/to RAUs. The functions of RAUs can be
further simplified by transmitting analog RF signals over OF
backhaul networks. Unlike the conventional digital baseband
transmission schemes supporting only one service at a time,
the radio-over-fiber (RoF) transmission network [6] enables
the coexistence of multiple services and multiple operators in
shared resources, thereby offering increased link capacity, ad-
vanced networking (i.e., dynamic resources and allocations),
and features such as wavelength division multiplexing (WDM)
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[7] without the need for frequency up- or down-conversion.
Transmission of the LTE signals over OFs was presented in
[8] and highlighted improvements of the OF backhaul in terms
of power and cost effectiveness. A field trial demonstration of
high-capacity optical super-channel transmission, based on op-
tical orthogonal frequency division multiplexing with hybrid
dual-polarization (DP) quadrature amplitude modulation
(QAM)/phase-shift-keying modulations, was reported in [9],
providing up to 21.7 Tb/s transmission capacity over long-haul
optical links. Polarization division multiplexing (PDM) of two
distinctive orthogonal frequency division multiplexing
(OFDM) signals, based on ultrawide band standards over
the RoF system in passive optical networks, was experimentally
demonstrated recently in [10] and effectively doubled the
capacity of the system. In [11], an experimental investigation
of the RoF system over 100 km of fiber was demonstrated using
PDM and the RF frequency bands of 2.6 GHz and 800 MHz,
with the highest polarization discrimination of ∼30 dB.

However, the application of RoF depends on the availability
of installed OFs between various network facilities to connect
BBU and RAU within the C-RAN architecture, and therefore it
is possible to considerably extend multiple services over one
fiber by using several frequency channels or the WDM tech-
nique as showed in [12]. Installation of OF cables can be chal-
lenging and costly, especially in urban areas with dense building
structures. Once OF cables are installed, rewiring then becomes
a difficult and time-consuming task when the distribution of
wireless users (WU) and the number of WUs are changed.
Therefore, a limited amount of installed OFs highlights the
usefulness of free space optics (FSO) [13] technology as it offers
the same features as OFs, but with considerably reduced de-
ployment cost and significantly higher capacity [14] compared
to conventional RF wireless approaches.

The concept of radio over FSO (RoFSO) has been exper-
imentally introduced by combining a full optical FSO system
(employing a 1 km FSO turbulent link at a wavelength of
1550 nm) with a digital TV RF signal without any signal con-
version in [15,16]. In [17], a Dense WDM system with RoFSO
technology was used to transmit a range of various radio ser-
vices over 1 km of FSO link under turbulence conditions offer-
ing a similar bandwidth to OF for both indoor and outdoor
(short-range) applications with 99.9% of link availability.
Therefore, it is desirable to extend the existing RoF concepts
to RoFSO so as to cover the entire optical transmission tech-
nology within future C-RAN. In such scenarios, it is essential
to determine system statistics under various channel configu-
rations (i.e., OF, FSO, or a hybrid OF–FSO). A typical sce-
nario employing combined RoF and RoFSO systems is
shown in Fig. 1. Among the number of challenges encountered
in FSO systems, the atmospheric-induced fading effects (both
amplitude and phase) of the received optical signal are the most
important [18]. RoFSO can transmit all types of RF signals
without interference, and therefore increasing the number of
independent channels and expanding the capacity in the
optical domain becomes highly desirable. WDM based on an
optical power allocation scheme, with consideration of the op-
tical modulation index under a total optical transmission power
limitation for an adaptive RoFSO link design, was proposed

in [19]. A novel wireless network architecture using RoFSO
for WLANs, together with an RF assignment mechanism based
on RoFSO, was proposed and investigated in [20] and offered
efficient frequency utilization in terms of both the throughput
and fairness index. A coherent multilevel polarization shift key-
ing transceiver using spatial diversity detection in the FSO
channel was theoretically investigated in [21] for different tur-
bulence regimes. The authors reported a predicted power pen-
alty of ∼25 dB at a symbol error probability of 10E-8 for the
strong turbulence regime (Rytov variance σ2R of 3.5). The first
concept of the dual-polarization-multiplexing RoFSO system
proposed for the LTE radio signal was investigated in [22].

In this paper, an optical dual-polarization LTE RoF and
RoFSO system for C-RAN networks using the PDM scheme
is proposed. Novel experimental results in terms of the mea-
sured and simulated error vector magnitude (EVM) statistics
are presented and evaluated. We consider four typical channel
configurations using combinations of RoF and RoFSO. The
performance of the RoFSO system is highly influenced by envi-
ronmental factors, and thus we focus on the FSO channel
under the turbulence regime. Based on the investigation of
the channel dynamic range and noise immunity tests, we have
extended the measurement results to include EVM character-
istics and have derived specific limits of utilizations of RoF and
RoFSO systems. We show that the performance of the pro-
posed link based on the combination of RoF and RoFSO
for 64 QAM at 2.6 GHz is more affected by the turbulence
based on the measured difference EVM value of 5.5%. We fur-
ther show that the proposed systems can offer higher noise im-
munity under particular scenarios with the SNR limit of 5 dB
in the RF domain for RoF and 19.3 dB in the optical domain
for the combination of RoF and RoFSO links.

The rest of the paper is structured as follows: Section 2 in-
troduces the properties of the proposed system with different
configurations and atmospheric turbulence. Results from the
measurements and simulations are discussed in Section 3,
and the conclusions are presented in Section 4.

2. EXPERIMENTAL SETUP

A. Main Setup Description
The experimental setup consists of transmitter (Tx), channel,
and receiver (Rx) parts as shown in Fig. 2. On the Tx side, both
branches are modulated by two independent RF signals prior to

Fig. 1. Example of RoF and RoFSO scenario adopting C-RAN
architecture.
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the application of a polarization-multiplexing technique for
transmitting over the optical channel (OF and FSO).

A distributed feedback (DFB) laser diode (ID-Photnonics
TL CoBrite Dx4) at a wavelength of 1550 nm was used as
the optical source (OS). The output of the OS, passing through
a power splitter (Opneti PBS 15-L-1-1-FA), is externally
modulated with two digital RF signals (vector signal generators
R&S SMBV 100 A and SMW 200 A) of the same carrier fre-
quency and equal bandwidth using Mach–Zehnder modulators
(MZMs) (Thorlabs LN81S). For a detailed description of the
influence of MZMs on RoF, please refer to [23]. The two
orthogonal polarization states of the modulated light beams
were controlled using two polarization controllers (PCs) and
combined via the polarization beam combiner prior to being
launched into standard SMFs. As shown, erbium-doped fiber
amplifiers (EDFAs) (Keopsys KPS-BT2-C-10-LN-SA) were
used to compensate for the channel loss. Four types of the
RoF/RoFSO-based channel configurations were investigated:

(i) Setup A: 5 km of SMF and EDFA
(ii) Setup B: EDFA and the FSO channel
(iii) Setup C: 5 km of SMF, EDFA, and the FSO channel
(iv) Setup D: EDFA, 5 km of SMF (representing the typical
transmission span for RoF links), and the FSO channel.

Since the focus in this work was only on the RoF and
RoFSO parts of the RAN system, we did not consider
retransmission or signal recovery between the OF and FSO
parts, which is typically done by the remote RoF units. At
the Rx, a PC was used to adjust the polarization states of
the incoming optical signal before being fed into a polarization
beam splitter (PBS) according to [10] and [11]. PDM optical
signals can be potentially demultiplexed by coherent detection
and digital signal processing. Polarization dependence of coher-
ent detection can then be managed by means of optical dy-
namic polarization control or a polarization diversity Rx
[24,25]. In a conventional polarization diversity Rx, two sets
of Rxs are used to independently detect signal components
in the two orthogonal polarization states and the original signal

is recovered after combining two components, which is rather
inefficient in terms of hardware. However, when two PDM
channels are simultaneously transmitted at orthogonal polari-
zation states, a polarization diversity Rx in principle can receive
both channels—for example, by using optical dynamic polari-
zation control at the Rx. An all-optic scheme for PDM systems
using a dynamic PC has been proposed in [26]. It has been
suggested that PDM optical signals can potentially be demul-
tiplexed by combining coherent detection and polarization/
phase diversity [27].

The Rx is composed of a pair of encapsulated balanced PIN
photodiodes (PDs) and a transimpedance amplifier (TIA,
Newport 1544-B50). The output of the TIA was captured
for further processing using a signal analyzer (R&S FSV).
We used LTE-evolved universal terrestrial radio access
(E-UTRA) test models with 16 and 64 QAM in polarization
state 1 (noted as Pol 1). An independent digital mobile radio
service with 16 QAM, having the same parameters (frequency,
bandwidth, and power) as the signal in Pol 1, was launched to
polarization state 2 (Pol 2).

The polarization orthogonality was continuously verified by
monitoring the parameters at the Tx for one polarization state
(i.e., Pol 1) while the signal in the second polarization state (i.e.,
Pol 2) was switched off and on with no influence observed on
either the original power magnitude, SNR, optical signal to
noise ratio (OSNR), or the corresponding EVMs. In the exper-
imental setup, we used two commonly adopted LTE frequency
bands of 800 MHz and 2.6 GHz with the bandwidth set to
10 MHz. We also set the peak envelope power below the limit
of 15 dBm to avoid harmonic distortions at the recovered RF
spectrum. All key adopted system parameters are listed in
Table 1. For the FSO links, graded-index lenses (Thorlabs
50-1550A-APC) with an aperture of 1.8 mm and convex lenses
with a diameter of 25.4 mm (SMPF_115-APC) were used to
launch and couple light from/into the SMF. FSO links were
subjected to atmospheric turbulence in order to assess the per-
formance of the proposed system.

Fig. 2. Schematic diagram of DP-LTE over optical communications for C-RAN architecture (upper part shows laboratory setup; the correspond-
ing network structure is illustrated below).
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B. Noise Conditions
In this section, we outline the noise sources associated with the
link, in particular the shot noise, thermal noise, and relative
intensity noise (RIN).

The power of the shot and thermal noise sources can be ex-
pressed as the fundamental noise [28],

N fund � �g rf � 1�kBT f � 1

2
qIDCf Rout; (1)

where g rf is the RF gain, kB is Boltzmann’s constant, T is the
temperature, q is the electronic charge constant, IDC is the aver-
age PD DC current, and Rout is the matching load resistance.

Additionally, there is the excess photon noise due to fluctu-
ations of the intensity of the light source as a result of the beat-
ing of various spectral components having random phases. For
a purely spontaneous source, it is given as [29]

Δi2ex �
��1� α2�I 2Δf

Δveff

�
; (2)

where α is the degree of polarization and Δveff is the effective
bandwidth. Though all three noise sources can be used to es-
timate the RIN, it should be noted that Δi2ex should only be
used for optical sources with a purely spontaneous emission
profile.

The RIN, associated with the optical devices, represents the
total amount of photon noise per unit bandwidth and is de-
fined as

RINtotal �
P2
f

P2 � Δi2th � Δi2sh
I 2Δf

� 4N total

I2dcRout

; (3)

where P2
f is the autocorrelated value of the optical power fluc-

tuation at frequency f , which can be measured using an elec-
trical spectrum analyzer to represent the total output noise
power spectral density N total delivered to Rout. P is continuous
wave optical power, which contributes to IDC.

Note that the shot noise is divided into two branches
(matching circuit and load). With the links employing optical

amplifications, there are additional noise contributions. The
primary noise source in optical amplifiers (e.g., EDFA) adopted
in optical communications is amplified spontaneous emission
(ASE), with a spectrum almost the same as the gain spectrum
of the amplifier. When detected, these spontaneously generated
photons result in signal-spontaneous (sig-sp) and spontaneous-
spontaneous (sp-sp) beat noise currents. The sp-sp beat noise
power density is inversely proportional to theOSNR2, whereas
the sig-sp beat noise power density is inversely proportional to
the OSNR. The sp-sp beat noise also depends on the baseband
frequency, with the noise density decreasing with increase of the
baseband frequency. In principle, the sp-sp beat noise intensity
spectrum could be as wide as the optical amplifier bandwidth in
the absence of optical filtering. From a practical point of view,
the excess noise regime is highly important, where the noise
level is higher than the level of shot noise due to the influence
of sig-sp beat noise, etc. Therefore, here we only consider the
sig-sp beat noise, which is given as [28]

RIN sig-sp �
4nsphν
goptPsig

; (4)

where nsp is the spontaneous emission factor, h is Planck’s con-
stant, ν is optical frequency, gopt represents the optical power
gain of the EDFA, F opt is the noise factor of the EDFA, and Psig

stands for average optical signal power input to the EDFA.
Assuming that gopt ≫ 1, Eq. (4) can be expressed as

RINsig-sp ≈
2F opthν
Psig

: (5)

F opt is related to the shot noise and the detection scheme.
For an ideal detector, F opt � 2nsp. The degradation of SNR in
RoF and RoFSO links is represented by the RF noise factor F rf

with respect to thermally limited input and is defined in terms
of the RoF link output noise power N out as [28]

F rf ≡
N out

g rf kBT
: (6)

Typically, F rf is enumerated under T � 290 K. We can re-
write the definition of the noise factor by using Eq. (3) and the
RF gain as

F rf ≡
V 2

πRINtotal

π2RinkBT
; (7)

where Rin is the input resistance of the MZM and V π is a con-
venient parameter to specify the efficiency of an electro-optic
intensity modulator, which is defined as the voltage required to
change the optical power transfer function from the minimum
to the maximum.

In the experimental test setup, the SNR was set in the RF
domain directly via the signal generator by including an addi-
tional noise source while the OSNR was controlled by adding a
variable optical attenuator placed directly behind the EDFA in
setups A and C to avoid the amplifier’s gain-induced OSNR
fluctuations as depicted in Fig. 2. In setup C, we positioned
the optical attenuator in front of the optical link to maintain
the desired OSNR level over the FSO channel. OSNR was
measured using an optical spectrum analyzer. Here, we have
adopted the intensity modulation with direct detection (IM/
DD) scheme and used single-drive MZMs which were biased

Table 1. Setup Parameters

Parameter Value

Carrier frequencies 800 MHz and 2.6 GHz
System bandwidth 10 MHz
OFDM subcarriers 667
OFDM symbols/subframe 7
RF output power −5 dBm
Modulation scheme 16 and 64 QAM
LTE test models E-TM2 and E-TM3.2
DFB
-laser output power 8 dBm
-wavelength 1550 nm
FSO channel length 2 m
FSO channel loss 15 dB
Fiber 5 km loss 1.7 dB
EDFA
-noise figure <5 dB
-return loss > − 40 dB
PIN responsivity 0.75 A/W
TIA bandwidth 10–12 GHz
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at their maximal transmission point. At the input of the MZM,
the field waveform (in time t) can be expressed as [28]

E IN�t� � κ
ffiffiffiffiffiffiffiffiffiffiffiffi
2P laser

p
ejω0t ; (8)

where P laser is average laser power at angular frequency ω0 and κ
is a constant relating field and average power. The input voltage
to the MZM is defined by

V IN�t� � V dc � V RF sin�ω0t�; (9)

where V dc stands for bias voltage and the expression
V RF sin�ω0t� defines the modulating RF signal V RF.
Among other factors, IM/DD introduces additive noise to
the hybrid radio and photonic system.

C. FSO Turbulence Effects
There are a number of methods for generating turbulence
within an indoor controlled environment, including near-index
matching, liquid-filled chambers, spatial light modulators, ion-
exchange phase screens, surface etching, and hot air chambers
[30]. For assessing the performance of the proposed scheme, we
have adopted the latter and used an artificial turbulence gen-
erator with known, realistic, and repeatable characteristics. Two
fans were used to blow hot air into the channel perpendicular to
the propagating optical beam. To measure the temperature pro-
file and determine the temperature gradient along the channel,
we placed 20 thermal sensors at an interval of 10 cm along the
FSO channel. We used Rytov variance and the refractive index
structure parameter to characterize strength of the turbulence
according to [22]. The variance of the log-intensity signal fluc-
tuation defined by Rytov variance σ2R is given by [31]

σ2R � 1.23k
7
6C2

nL
11
6 ; (10)

where k � 2π∕λ is the wavenumber and λ is the transmission
wavelength.

C2
n is the refractive index structure parameter (the main

measure of the turbulence scale), which is given as [18]

C2
n �

�
79 × 10−6

Pa

T 2

�
2

C2
T ; (11)

where Pa is the atmospheric pressure in millibars. C2
T is the

temperature structure constant, which is defined as [18]

C2
T � �T 1 − T 2�2∕L2∕3p : (12)

T 1 and T 2 are temperatures at two points separated by dis-
tance Lp. Knowing the thermal distribution along the FSO
propagation path, it is possible to determine C2

T and then C2
n.

3. EXPERIMENTAL AND SIMULATION RESULTS

The experimental section is divided into three parts. In part A,
the transmission properties of four selected scenarios (setups
A–D; see Fig. 2) were tested under the steady-state condition
with no turbulence. Part B describes the detailed investigation
of the dynamic range and noise conditions of the RoF system
compared to the hybrid RoF and RoFSO (setups A and C) sys-
tems. Finally, part C outlines the comparison of the links in-
cluding the FSO channel under turbulence regimes (setups
B–D).

A. System Properties
We have tested the suitability of proposed scenarios A–D using
the polarization multiplexed technique for RF signals. Two
standardized E-UTRA test models were selected for the inves-
tigation of the channel quality: Test models 2 and 3.2 [32].
Both test models are specified for testing E-UTRA systems with
an emphasis on either the dynamic range or the quality of the
transmitted signal using 64 and 16 QAM, respectively.

Scenarios A and B evinced EVM around 1%, while scenar-
ios C and D evinced EVM between 2% and 3%. It can be
observed that scenarios A and B offer roughly two or three
times better EVM performance when compared to the hybrid
RoF and RoFSO systems (C and D). Nevertheless, all scenarios
show EVM values dramatically below the maximal 3GPP LTE
EVM threshold of 8% recommended for high-data-rate sys-
tems [33]. Note that for setup A, with 5 km of SMF, the output
power of EDFA had to be decreased in order to ensure that the
PIN PD was not saturated or damaged. The gain of the EDFA
was preserved throughout the experimental work in order to
maintain similar conditions. Last but not least, we simulated
the conditions of a real system by employing an EDFA in order
to further increase the transmission span.

B. Noise Parameters
Next, we carried out several tests focusing on the quality of the
E-UTRA signals transmitted over the optical channels for a
range of OSNR and SNR values. These tests were focused
on the hazard noise effects described in Section 2B, which
can significantly reduce both OSNR and SNR, thus degrading
the performance of RoF and RoFSO systems. At first, we car-
ried out simulations for the EVMs for the proposed system fea-
turing SMF and FSO sections (setups A and C). Subsequent
measurements using a frequency of 2.6 GHz and 64 QAM
were also carried out to validate the simulated results. The con-
stellation diagrams of the 64 QAM and the evolution of the
EVM parameter were evaluated both experimentally and by
means of simulation, which was then correlated. Figures 3
and 4 depict the predicted and measured EVM as a function
of the OSNR for setups A and C, respectively. For setup A,
there is a mismatch between the measured and predicted
EVMs, with the maximum difference of <2% at an OSNR
of 28 dB. This is, in all probability, caused by the slightly differ-
ent properties of simulated and real behavior of EDFAs, which

Fig. 3. Simulated and measured EVM as a function of OSNR for
64 QAM at a frequency of 2.6 GHz for 5 km of SMF (setup A). Inset
shows the constellation diagrams.
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are due to the ASE being the main noise source in the optical
domain. For setup C, there is a good match between the mea-
sured and predicted plots. The measured (red) and simulated
(black) constellation diagrams are also shown in Figs. 3 and 4.
These plots show that the RoF with 5 km of fiber can operate
over a wide range of OSNR (i.e., from 36 to 21 dB) whereas,
for the hybrid RoF and RoFSO links, the OSNR range is only
10 dB (from 29 to 19.3 dB). In the case of the FSO channel,
this can be attributed to the power budget being significantly
lower and the noise floor belonging to a particular scenario. The
experimental and simulated EVM curves for setup C show the
same trend for OSNR values of 29 and 21 dB as in setup A,
with the only difference being the initial EVM values. In ad-
dition, as just described, the EDFA power had to be reduced
while using setup A, which resulted in a minimal OSNR value
of ∼21 dB. It can be observed that the proposed systems even
operate over the recommended 8% EVM limit when using
64 QAM, but at the cost of higher error probability.

Next we investigated the EVM as a function of the SNR,
which was measured on the Rx side, for setup C for
64 QAM at a frequency of 2.6 GHz with no turbulence, as
shown in Fig. 5. The insets illustrate the corresponding
constellation diagrams. The plots demonstrate a good agree-
ment between the measured and simulated results. The
SNR dynamic range shows a decrease of ∼5 dB compared

to setup A (while employing only 5 km of SMF). Both scenar-
ios meet dynamic range requirements for home, local, and
wide-area BSs specified by [32].

C. Turbulence
Finally, we compared the performance of both RoFSO (setup
B) and the hybrid RoF and RoFSO (setups C and D) systems
under the influence of atmospheric turbulence. The average
values of ΔEVM for these particular scenarios were captured
for a range of the refractive index structure parameter C2

n.
Since the initial magnitude of EVM was different for particular
scenarios, all EVM values were aligned by showing the ΔEVM.
We have adopted the frequency of 2.6 GHz for further detailed
investigations since the performance of the systems for
800 MHz and 2.6 GHz are almost the same. We compare
all optical-based systems including the FSO part (setups B,
C, and D from Fig. 2) at 2.6 GHz for 64 QAM for different
turbulence regimes in terms of changes in EVM, as illustrated
in Fig. 6.

The higher C2
n is, the larger the fluctuation of the power

magnitude and its corresponding EVM values, which can ex-
ceed the reliability limits of the RAN system. The proposed
LTE test model for 64 QAM fulfills the reliability and the high
data-rate limit of EVM (i.e., <8%). Results indicate that a
RoFSO scenario evinces the best properties comparable to
the hybrid RoF and RoFSO setups C and D, where tolerable
limits were exceeded approximately beyond the threshold C2

n of
∼7.0E − 11 m−2∕3, in particular because of high fluctuations
observed in EVM. In other words, the use of the RoF technol-
ogy, together with RoFSO under the turbulence condition, re-
sulted in slightly reduced performance compared with the
RoFSO link in terms of increased mean value of ΔEVM by
2.5% and 5.5% in setups C and D, respectively, at C2

n of
∼1E − 10 m−2∕3. This cannot be attributed only to added
SMF (with an average EVM of 1%), and therefore the overall
EVM system has to be determined. The hybrid setups (C and
D) offer a reliable, high data rate transmission for the C2

n value
up to ∼7E − 11 m−2∕3, which corresponds to C2

n of 5.37E −
14 m−2∕3 in the case of a 100 m long FSO link extrapolated
through the Rytov variance expression in Eq. (11). The pre-
dicted values largely fall into the moderate turbulence regime,
thus representing typical maximal turbulence strength accord-
ing to [18] and [34], where a 1 km long FSO link under a real
turbulence condition was investigated. By placing the EDFA
between the RoF and RoFSO systems so as to compensate

Fig. 4. Simulated and measured EVM as a function of OSNR for
64 QAM at a frequency of 2.6 GHz for 5 km of SMF + FSO channel
(setup C). Inset shows the constellation diagrams.

Fig. 5. Simulated and measured EVM as a function of SNR for
64 QAM at a frequency of 2.6 GHz for 5 km of SMF (setup C).
Insets show the constellation diagrams.

Fig. 6. ΔEVM as a function of the refractive index structure param-
eter C2

n for setups B, C, and D for 64 QAM at 2.6 GHz and OSNR
corresponding to maximal values for each particular scenario.
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for the loss in the RoF link and boost the incoming signal prior
to the RoFSO link, the EVM is improved by ∼3%, as shown
within the high fluctuation region in Fig. 6. Note that the op-
tical output power (OS and EDFA) levels were kept at a rel-
atively low level to avoid the more significant role of nonlinear
effects in OF.

4. CONCLUSION

Having proposed an optical dual-polarization LTE RoF and
RoFSO system for C-RAN networks and having evaluated
its performance in terms of the measured and simulated
EVM statistics, we showed the configuration of radio systems
for 64 QAM at 2.6 GHz, incorporating FSO under the turbu-
lence regimes, which lead to EVM values below 8% for C2

n of
up to 5.37E − 14 m−2∕3 when considering a 100 m long FSO
link. We also showed that the performance of the proposed link
based on the combination of RoF and RoFSO was more af-
fected by the turbulence, with the measured ΔEVM value in-
creased to 5.5%. However, the EVM was reduced by ∼3%
when placing an EDFA between the RoF and RoFSO links.
The proposed systems can offer higher noise immunity under
particular scenarios, with SNR reliability limits of 5 dB in the
RF domain for RoF and 19.3 dB in the optical domain for
RoFSO links. There were no significant changes in the polari-
zation of the radio PDM system while propagating through the
fiber and FSO channels, thus illustrating proposed system
attributes to a higher transmission capacity. The employment
of the dual-polarization solutions, as part of the C-RAN infra-
structures, creates a dense network between the RF base-end
parts and central cloud pools, thus making the infrastructure
simpler and more robust. Moreover, the proposed technique
can be adopted for other radio services such as WiFi or
Wimax, thus leading to improved network convergence.
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Points pertaining to my PhD thesis: 

In this paper we focused on the extreme short-term harsh condition tests of parts of the 

optical infrastructures. To illustrate their impact, specific conditions in aircrafts, which 

represent one of the most challenging areas for modern fiber networks, were analyzed. 

A special vibrational test was proposed and carried out to determine the influence 

of vibrations, occurring in optical aircraft network infrastructure, on MM connections in terms 

of IL and modal distribution. It was revealed that the vibrations, in conjunction with lower 

manufacturing tolerance of MM components, resulted in up to a 20 % reduced bandwidth. 

Furthermore, detailed temperature tests were performed for an avionic photonics network. 

Considering several connections in a short MMF network, each connector can be placed in a 

different temperature area resulting in additional IL. For the whole network, up to 1 dB of IL 

was recorded which subsequently lead to transmission performance degradation. The 

presented results were discussed from a reliability and safety point of view and provide limits 

for MMF network design. Moreover, the impact of the harsh environment described 

on transmission quality was demonstrated. 

 



Reliability of aircraft multimode
optical networks

Jan Bohata
Michael Písařík
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1 Introduction
New developments in the construction of aircrafts result in a
multitude of demands on digital and analog networks placed
inside airplanes. Needs such as infrastructure weight recal-
culated during fuel consumption, power consumption, avail-
able bandwidth, electromagnetic resistance, and the ability to
implement the next generation of sensors cannot be satisfied
by currently utilized copper links, therefore, a massive devel-
opment of optical systems for civil aircraft is foreseen.1

Due to flight safety requirements,2 the avionic industry is
a conservative area that harbors a wariness for new technol-
ogies; therefore, there must be convincing reasons to change
well-tested, reliable technologies.3 One of the most impor-
tant reasons to modify technologies results from newly
revealed composite materials being used, such as in the
gigantic A380 shell.4 The absence of a common ground
brings serious problems with electromagnetic interference
since the cost of additional shielding for cables rapidly
increases the fixed mass of aircrafts.5 The weight difference
between optical and copper cables, assuming all necessary
shielding and coating within the A380, was investigated in
Refs. 5 and 6 and revealed a decrease of ∼3000 kg when
optical infrastructure is implemented. Another notable rea-
son to switch to fiber optics is the increased bandwidth for
advanced nodes such as hi-resolution cameras. Lowering
power consumption for transmission, which was investigated
by the DAPHNE consortium where simulations revealed
savings of up to 10 kW of power on analog antenna systems
alone,5 is another promising area. Optical fiber structures
offer other benefits, including their ability to monitor fiber
Bragg grating (FBG) stress and temperature7 (already imple-
mented in military aircraft and civil rotorcraft), gas and
humidity, and the photonic network itself,8 not to mention
the wide bandwidth suitable for transmission of modulated
analog signals for antennas [radio frequency over glass
(RFoG)] based on Raman or Brillouin scattering. Several
such aspects dealing with optical infrastructures were

investigated within the DAPHNE consortium, a project of
the European Union Framework Program 7 (EU FP7).5,6

Civil aircrafts are introducing a complex network system
with many slave nodes and one centralized mainframe node
with backup. There are several common aspects in the fiber
of the x broadband network and optical backbone systems
within aircraft that could prove to be interesting for future
implementation within avionics. All aircraft systems/
infrastructures were closely investigated within the EU FP7
DAPHNE consortium where different network types were
identified. The most promising designs investigated were
(1) passive star with single-mode optical fibers (PON),
(2) active star with multimode optical fibers, and (3) daisy
chain with single-mode and multimode optical fibers.5 Star
topologies for single-mode fiber networks and their potential
and robustness in terms of scalability limits at different cross-
ing traffic loads were analyzed in Ref. 9, revealing the trade-
offs between latency, system complexity, and scalability.

Despite the potentials mentioned above, fiber optics
deployment on civil aircrafts still has not overcome all
the challenges yet and proper discussions, especially on
the selection of fibers and their behaviors under in-flight con-
ditions, have yet to be held. That said, single-mode fiber
8∕125 μm is used in military aircrafts, like rotorcrafts,10

and developed FBG stress and temperature sensors are
used in some critical parts of the aircraft.8 The advantage
of a single-mode fiber is demonstrated by the stability of
power couplers, filters, and multiplex elements for dense
wavelength division multiplexing; therefore, single-mode
fibers are implemented for communication links and infra-
structures. Nevertheless, multimode fibers were historically
preselected due to a larger diameter, which should be less
difficult for connections and more resistant to vibrations
and temperature changes. Although they have already
been integrated in A340 and A380 aircrafts for hi-definition
digital cameras to assist landing (landing camera),1 their uti-
lization within aircrafts is still being debated.
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A photonic network falls under the auspice of ground
operations and has to fulfill most requests over the long
term as specific, rigid aircraft conditions require a closer
reconsideration of every aspect of fiber optics and their par-
ticular influences. It has to be emphasized that temperature
changes during ground operations are more than 1000 times
slower than during in-flight conditions. Multimode fibers
were stable in combination with a light-emitting diode light
source, but most systems (high data rate systems and RFoG)
use laser sources such as vertical cavity surface emitting
laser. Some network components are, or will be, installed
in unpressurized zones with high temperature differences.
Unpressurized zones should be considered as a harsh envi-
ronment because temperatures close to the engine range from
80 up to 120°C can be found in some places, but can drop to
∼ − 60°C (Ref. 11) only a few meters away, which could
result in a change of the stress and basic parameters, includ-
ing reflection loss and insertion loss.5

This paper closely investigates the influences of temper-
ature cycling and vibrations on multimode fibers and some
basic optic components, such as the connectors used in air-
crafts, and their impact on the optical network. The impact of
launch conditions in combination with failures on fiber
splice was also closely investigated. The paper is organized
as follows. Section 2 introduces simulation results for mis-
aligned multimode fibers in terms of modal distribution.
Section 3 presents the experiment laboratory setup to inves-
tigate thermal and vibrational influences during in-flight and
results from these measurements are discussed. Key findings
for the entire aircraft network are introduced and discussed in
Sec. 4, with concluding remarks given in Sec. 5.

2 Simulation Results
To determine transmission characteristics, changes in field
distribution for propagating modes were analyzed for typical
cases of aerial influences, especially vibrational changes.
Fiber misalignment brings an additional extrinsic loss to
connections. To assess them, our studies focus on transverse
offset considering loss due to a displacement δ (μm) while
assuming uniformly distributed power in the first fiber.
Insertion loss (IL) can be expressed by12

L ¼ 10 log

8<
:
1

π

2
42 cos−1 δ

2a
−
δ

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
δ

2a

�
2

s 3
5
9=
;; (1)

where 2a introduces the diameter of the core.
Another definition for IL, computed with mode field

diameter (MFD), originates from misalignment of the field
distribution. Figure 1 shows how shifting cores with various
MFD according to Ref. 13 could depend on IL.

It is obvious that the narrower the mode field, the smaller
the IL. However, it is necessary to consider the tendency of
producing a narrower laser beam loaded to a fiber core with
just a few modes guided to achieve better bandwidth.

Simulations were carried out featuring a shifting of the
forehead by 50∕125 multimode × ðMMÞ fibers with a para-
bolic refractive index and distribution of the mode field being
observed at a wavelength of 1310 nm. Three modes, LP01,
LP11, and LP02, were chosen to illustrate the influence of
shifting fibers. Two multimode fibers are connected (spliced)
with different shiftings to simulate vibrating conditions. The

positional range was changed from 0 to 3.5 μm. Chosen
results are shown in Fig. 2 corresponding to the LP01, LP11,
and LP02 modes with the position of the vibration-affected
connector denoted. Multimode fibers were fed from below.

The influence was investigated on two spliced MM fibers,
typical of an airplane camera infrastructure, and how the
modes become distorted behind the connection (in figures
placed 200 μm from bottom) is clearly illustrated.

Under recommendation ITU-T G.651.1,14 related to the
MM fiber characteristics of a 50∕125 μm multimode
graded-index optical fiber cable for the optical access net-
work, the tolerance of the core size can be up to �3 μm.
We have also performed simulations for connecting two
MM fibers from different manufacturers with distance limits
of core diameter tolerance containing modes LP01 and LP11.
Multimode 52∕125 μm fiber joined to 48∕125 μm is
described. The impact on mode structure was tested again
with shifting cores from 0 to 3.5 μm. In this case, mode dis-
tribution has become more distorted and covers a larger area
in the core. An evanescent wave also radiates more power.
The recommendation allows for ∼1 μm higher tolerance of
core than was actually used. Distribution of power in a three-
dimensional view for two selected modes with a 3.5 μm radial
shifting of cores is also shown in Fig. 3. Results represent
shifted eccentricity cores (52 to 48 μm) for basic modes.

Dependence of vibrational shifting was also modeled by
simulation software with the simulation scheme in Fig. 4
referring to the vibrational measurement setup. It contains
a continuous wave laser of 1310 nm with an output
power of 0 dBm, three spatial connectors with variable con-
nections, and an optical power meter placed at the end of the
setup. The connectors are joined by graded-index MM
50∕125 fibers with the movement of the fibers being realized
within two principal axes. The forehead shift was set from 0
to 4 μm in the x axis, from 0 to 4 μm in the y axis in the
second connector, and combinations up to 2.2 μm in both
x and y axis in the third connector to achieve different shift-
ing directions. The difference in IL per connection was up to
0.034 dB for the maximum shift with reference power
−0.632 dBm. Three connectors were joined by two 1-m-
long MM fibers and connected by 20-m-long MM fibers
to the source and detector. With dependence on the number
of modes, shifting, rotation, and performance of the connec-
tors, these impacts could lead to an additional attenuation of
up to 0.1 dB for the case of three connectors.

Fig. 1 Insertion loss (IL) dependent on transverse offset with different
mode field diameter.
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3 Experimental Setup and Results
We carried out several measurement tests for 50∕125 MM
fiber and their connections for avionic applications. Contrary
to the first generation of multimode fibers (OM1/OM2),
novel MM fibers OM3 and OM4 (known as laser-optimized
fibers) are utilized for their enhanced bandwidth. The fibers
are designed for a laser-based high bit-rate transmission,

working in a few-modes’ regime. Modern OM3/OM4 fibers
differ from the first generation by an almost ideal graded
refractive index, which rapidly reduces the differential mode
delay (DMD) and increases the bandwidth.15 We investigated
the resistance of connected MM graded-index fibers OM3
and OM4 against temperature changes and vibration set to
identical in-flight conditions.

Fig. 2 Dependence of modes LP01, LP11, and LP02 (from top to bottom) on shifting fibers with three-
dimensional illustration of distributed power: (a) LP01, (b) LP11, and (c) LP02.
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3.1 Thermal Tests

First, a measurement setup having various temperature sec-
tions was realized as shown in Fig. 5. Two MM fibers types
OM3 and OM4 are connected by four FC/PC connectors.
Two types of optical sources were used: a polychromatic
halogen lamp (Ocean Optics H2000, Dunedin, Florida)
and a distributed feedback laser (DFB) 1310-nm laser,
respectively. Fluctuations of IL were observed at a wave-
length of 1310 nm with changing temperature conditions.
The optical link, having a total length of 6 m, passed through
an open space section (22°C), temperature chamber 1 (tem-
peratures up to 85°C), another open space section (22°C),
cycling temperature chamber 2 (temperature set from −60
to 20°C), and via the last open section without a connector
splice.

The first case contained a polychromatic source with a
constant temperature of 22°C away from the chamber, a con-
stant temperature of 85°C in chamber 1, and a continuously
changing temperature in chamber 2. The temperature
decreased from 22 to −60°C and back to 22°C in 10-min
steps within a 6-h duration. It simulated different thermal
conditions along an airplane and their changeability from
take-off until landing. Results of the measurements are
depicted in Fig. 6(a). It is obvious that parameter Δ IL
(green curve) follows temperature changes. The highest
deviation of IL was ∼0.13 dB and it is evident that the
lower the temperature, the higher the IL. Detection of the

received power at 1550 nm clearly duplicates the received
power at 1310 nm. We presented a more detailed process
to capture a more precise correlation between the tempera-
ture change and IL change than in previous results.

The second measurement was performed with a DFB
1310 nm source. The temperature was changed only in
chamber 1, which was heated to 85°C and then cooled
down. All remaining parts of the setup had the same temper-
ature of 22°C. We observed the highest change in IL of
∼0.024 dB after fluctuating the temperature as seen in
Fig. 6(b), where the difference between thermal conditions
of 85 and 22°C is easily discernible. During both thermal
changes (chamber 1 and chamber 2), the totalΔ IL fluctuated
around a range of 0.025 dB.

3.2 Vibrational Tests

The impact of vibrations of optical connections on insertion
loss was investigated next. The whole optical setup, consist-
ing of optical connectors, was placed on a special vibration
membrane with a flexible pad as shown in Fig. 7. The rest of
the deployment was loosely gripped. The acoustic tester plat-
form allowed the undertaking of vibrational tests within a
frequency range from 10 Hz up to 2 kHz. The total length
of the fiber setup was 6 m with OM3 and OM4 fibers con-
nected by three FC/PC connectors. Connectors with OM3
and OM4 fibers, manufactured on the limits of recommen-
dations from the standards for MM fibers, such as ISO/IEC

Fig. 3 Dependence of modes LP01 on shifting fibers with core eccentricity 48∕52 μm: (a) LP01 and
(b) LP11.

optical source
OM3

chamber 1 chamber 2

detection

FC/PC

OM3OM4OM4
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OM4

FC/PC

Fig. 5 Schematic of temperature measurement.

connection
connection connection

CW 1310 nm laser

power meter

20 m MMF
20 m MMF

1 m MMF
1 m MMF

Fig. 4 Simulation setup of fiber shifting.
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11801, IEC 60793-2-10, TIA/EIA, and ITUG 651.1, were
used to simulate the worst-case scenarios that can occur.
Recommendations allow, for example, maximum span dis-
tances for 40G/100G systems of 100 m in OM3 and 150 m
in OM4, respectively.15

To achieve realistic properties of the optical link, the same
two sources were used as in the previous measurement. The
vibration frequency was changed from 5 Hz to 2 kHz and the
Δ IL of the whole link was observed. Three cases were used
to determine the influence due to MM fibers. Only a standard
OM3 was involved in the first measuring case. The second
case contained a combination of OM3-OM4-OM4-OM3 and

the third case was, unlike the first case, realized by using
only OM4 fibers. The fibers had a 900 μm tubing instead
of a 20-cm section next to the optical source and only
had a 250 μm coating.

All connectors and fibers gripped on the membrane were
drifted as given by the acceleration in a particular frequency
which causes an overload even over 20 G. The measured
dependence of the acceleration on frequency is shown in
Fig. 8(a). It is very possible to find an almost linear growth
up to 200 Hz. The characteristic of the acceleration was
related to the measured results described below. The first
test was performed with only OM3 fibers with a polychro-
matic H2000 source. Δ IL increased up to 0.003 dB in the
first test and up to 0.006 dB in the second case. The progress
of the first test is shown in Fig. 8(b), with the blue curve
representing the increase in frequency from 5 Hz to
2 kHz and the green line covering the decrease in frequency
from 2 kHz to 5 Hz.

The second test contained a combination of OM3 and
OM4 fibers. Two 1-m-long OM4 fibers were placed on
the membrane and connected to the OM3 fibers. See two
results for polychromatic and monochromatic sources in
Figs. 9(a) and 9(b), respectively. We measured four series
of tests with the highest Δ IL equal to 0.042 dB at a fre-
quency of 1 kHz with a polychromatic source and 0.007 dB
with a monochromatic source. All shapes contain a decrease
of IL around a frequency of 200 Hz; then the IL increased
rapidly and became more stable, according to the accelera-
tive process.

Only OM4 fibers were measured during the third test as
seen in the results in Fig. 10. The IL evidently changes and

Fig. 6 (a) IL by chamber 2 temperature cycling with polychromatic source. (b) IL by chamber 1 temper-
ature cycling with distributed feedback laser (DFB) laser source.

padoptical
source
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1 m

1 m
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FC/PC
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detection

Fig. 7 Schematic of vibrational measurement.

Fig. 8 (a) Dependence of acceleration influencing the connectors. (b) OM3 connection test with halogen
lamp.
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decreases around 200 Hz and then increases behind this point
within all performed series. Δ IL reached a maximum of
0.038 and 0.03 dB for the polychromatic and monochromatic
sources, respectively.

The progress of Δ IL for all tests has oscillations around
a frequency of 200 Hz where the smallest attenuation can
also be found, and the shape of Δ IL becomes more linear
and constant behind this point. The measured stability of
the setup was �0.001 dB, which implies the results were
correct. Three connectors were tested with a total length
of 6 m for the setup. An entire aircraft optical network
would have ∼10 connectors5 and a length of optical link
in the hundreds of meters causing attenuation of at least
three times that in the performed tests, possibly worsening
the optical signal-to-noise ratio. If we considered both ther-
mal and vibrational changes, Δ IL would be ∼1 dB for the
worst case scenario with a dependence on wavelength,
source, fiber recommendations, etc.

4 Whole Network Analyses
According to the temperature and vibrational measurements,
the influence of the spliced IL was further exploited and
demonstrated via simulations of the whole airplane network.
There are many requirements for sensor systems, including
landing cameras, which are already placed on Airbus air-
crafts. An optical multimode link is led through various
sections, including connectors, as proper maintaining recon-
figuration tools for supervising. The connectors bring a
potential additive loss to the network and can be less resistant
to harsh conditions. The entire network is built on the con-
cept of point-to-point links led from a central unit at the head
of the airplane to particular landing cameras as shown in
Fig. 11. The longest distance, led from the central unit to
the tail camera, measures ∼250 m long with stressed occur-
rences seriously limiting possible transfer bandwidth (e.g.,

OM3 fibers allow 10 G systems for 300 m and 40 G systems
for only 100 m).15

The impact of a harsh environment, such as thermal and
vibrational changes, was observed when increasing the bit
error rate (BER), decreasing the Q-factor and deformed
eye diagram. Several cases were considered with continu-
ously increasing IL due to a harsh environment from 0 to
1 dB for all connections in the link. The link was analyzed
for 10 Gbps nonreturn to zero (NRZ) with results illustrated
in Fig. 12.

Increasing BER was registered from 1.19 · 10−6 to
8.59 · 10−5 for 10 Gbps NRZ and increasing Q-factor
with a difference of 0.96. Raising the optical power brought
an improved error rate, but at the expense of higher demands
on the transmission systems.

Fig. 9 OM3-OM4 connection test with (a) halogen lamp and (b) DFB 1310 laser.

Fig. 10 OM4 connection test with (a) halogen lamp and (b) DFB 1310 laser.

central unit 

camera 

optical link               

Fig. 11 Airplane MM camera network.
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The most limiting factor reducing the bandwidth of
multimode fibers is modal dispersion.16 Dispersion could
be highly suppressed by the proper performance of the
refractive index, but due to the radial shifting of the fiber
end faces, a different modal distribution can result in band-
width reduction. We carried out a simulation on an OM3
measured, refractive, and profiled fiber to investigate the sta-
tistics of DMD, the number of guided modes, and changes in
the bandwidth.

Simulation of DMD was performed with radial shifting of
the transmitted beam coupling with a beam featuring a 5 μm
profile and a step of movement of 1 μm. A test was per-
formed at a wavelength of 850 nm to investigate convenient
conditions for transmission. Pulse broadening and band-
width reduction was observed at each point of the shift.
The simulation scheme corresponds to the vibrational sce-
nario described in Sec. 2.

Significant changes in transmission characteristics were
observed in the case of maximal shifts. This can be clearly
shown via pulse broadening in Fig. 13, which starts with
beams guided closer to the cladding. In other words, the fig-
ure shows how the DMD affects the duration of the launched
pulse in respect to radial position. Figure 14 depicts a com-
parison of the bandwidth in MHz·km for the used fiber sec-
tion with a drop for radial offsets >10 μm during vibrational
influence.

Both figures demonstrate how the DMD influences modal
bandwidth (directly or indirectly). In a steady state, the pulse

broadening starts approximately before the 15 μm shift,
but during vibrational conditions, the broadening starts
approximately before 11 μm and achieves >0.7 ps higher
broadening compared to the steady state. Pulse broadening
was observed within fibers having a set length of 22 m. The
situation is similar in the case of the shape of bandwidth
statistics. The useful bandwidth continually (without consid-
ering peak values) decreases to zero. A connection offset
causes a similarly useful bandwidth (∼1000 MHz · km in
the range of 0 to 10 μm and then it drops). The visible
step determines where most of the optical power should
be guided and limits the transmitted bandwidth. The bigger
the radial shift of the launched beam, the more the modes

Fig. 12 Eye diagrams for 10 Gbps nonreturn to zero: (a) IL ¼ 0 dB and (b) IL ¼ 1 dB.

Fig. 13 Pulse broadening due to radial shifting.

Fig. 14 Reduction of bandwidth due to radial shift.

Fig. 15 Number of guided modes in fiber related to radial shift.
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were guided in fibers and the higher the impact the DMD had
on transmission characteristics. The dependence of guided
modes on the radial shift is shown in Fig. 15 with the
solid line representing a steady state and the discontinued
line representing a situation with connection offsets due to
vibrations.

Increasing the number of modes before the offset of
∼10 μm corresponds to an increase in DMD and a band-
width reduction.

Simulation results imply that a harsh environment (from
the point of view of temperature and vibrational changes) can
easily modify the connection profile of fibers, especially for
MM fibers with high tolerable recommendations and norms.

5 Conclusion
We have demonstrated the influences of MM class OM3 and
OM4 optical links within a harsh environment, in particular
in the field of avionics. Tests were designed to determine the
impacts of thermal and vibrational changes on connectors
and intersections. Simulation and experimental results
show that although these effects could lead to slight changes
of IL up to 1 dB for the whole optical link including various
sections joined by connectors, the influence on bandwidth
reduction has to be considered. Vibrational conditions,
together with a low tolerance for fiber industry standards,
lead to deformed mode-field characteristics and an increase
of DMD. This substantially reduces the bandwidth to <20%.
Every additional connector joint (in aircraft, this is occasion-
ally inevitable due to assembly) can randomly increase band-
width reduction. Understanding mode distribution changes
and substantial bandwidth reduction in a harsh environment
is a key phenomenon that has to be considered to assure the
consistently high reliability of aircraft optical networks.
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4.5 Testing of Optical Fiber Components for Harsh Environments 

 

This chapter is a version of the published manuscript: 

[C1]  J. Bohata, M. Pisarik and S. Zvanovec, "Testing of optical fiber components for harsh 

environments," in Avionics, Fiber-Optics and Photonics Conference (AVFOP), 2013, 

pp. 33-34. 

 

Points pertaining to my PhD thesis: 

This paper extends the previous chapter in the area of short-term influences and 

introduces special temperature environmental tests of optical connections which are needed 

for such a harsh environment. The MMF IL dependence on temperatures within the range of -

60 °C to 85 °C was derived for different environmental scenarios.  
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Introduction 

Optical fibers provide many benefits to the telecommunication systems and their usage has more 

and more current even in the avionics industry [1]. It offers an attractive solution for airplanes, such a 

replacing copper conductors to reduce weight of the plane, electro-magnetic interference, bring high-

speed communications connection, implementation of optical sensors, etc. Nevertheless for extremely 

high requirements on safety it is also necessary to precede all inflight influences. For summary of 

potential threats see e.g. [2]. One can easily found a several conditions of a harsh environment or an 

unfriendly fiber surrounding which could have a fatal impact to the transmission characteristic as 

attenuation statistics leading to link drops, time jitters or pulse degradations in time domain. There are 

different temperature gradients on the deck through which the infrastructure can pass while 

experiencing differentiated degradation and thus changed conditions within a physical layer. This 

paper is focused on an analysis of temperature-depended influences on insertion losses and other 

parameters of optical connectors, combining two types of multimode fibers, purposed for installation 

within an aircraft optical network.  

 

Measurement and results 

Optical multimode fibers 62.5/125(50/125)m have been already integrated on A340 and A380 

aircraft family as transport medium for digital cameras on the bottom side of aircraft (for landing 

camera). In order to assign behavior of such fibers, two types of multimode fibers - standard OM3 and 

OM4 respectively - were tested in measurement campaign taken by Czech Technical University and 

SQS, Fiber optics. To assign specific characteristic, two types of optical sources - monochromatic 

(DFB laser 1310) and polychromatic (halogen lamp Ocean optics HL-2000) – were utilized. The 

fibers were connected by four FC/PC connectors having each connection placed in differently 

temperature controlled areas with total length 6 m. Optical non-modulated signal traveled through 

four different environments which represented various conditions on the airplane (see deployment of 

measurement in Fig.1a). The first section introduced open-space area with temperature 22°C, 

followed by area with variable temperature expressed by the Mora oven having temperature range 

from 22°C to 85°C, connected to another open-space section and finally the fiber system was led 

through the second controlled chamber with temperatures varying from -60°C to 22°C. 

Examples of measurement results expressed in terms of attenuation fluctuation measured at 

1310 nm for both types of sources are shown in Fig. 1b) and Fig. 1c), respectively. Green line 

represents insertion loss of particular subsystems. It can be distinguished; the curve clearly follows 

temperature changes in the oven (red line) and in the chamber (blue line). The biggest difference was 

0.03 dB, what implies about 12.5 % of total loss of whole optical system and what was also accurately 

correlated between both time-dependences. The second case (with halogen lamp) was measured with 

constant temperature in the oven set to 85°C and changing temperature in the chamber – see results in 

Fig. 1c. However the attenuation characteristic reached rapid fades up to almost 0.3 dB. It could be 

emphasized that fluctuation of temperature in optical connectors is followed by highly correlated 

change of attenuation - the attenuation increases with decrease of temperature in slight delay (mean 

delay value from numerous measurement approx. 13.3 min).  

In order to get deep insight on long term transmission changes in optical fibers, connectors and 

splicing, a measuring polygon (cable-protected network exposed without some special shielding to 

both weather conditions and artificial influences) was installed on the roof of one building of Czech 

Technical University in Prague) - see Fig. 2. 



 

 

 

 

 
Figure 1. a) scheme of the measurement of thermal and measured insertion loss at 1310 nm 

b) DFB laser c) halogen lamp 

To investigate influences of corrosive liquids, subparts of Prague subway optical network, 

flooded in 2002, was included within the monitoring campaign. The first results from this measuring 

network will be as well published at the conference. It has been experienced increased losses in the 

connectors (regardless this more than half of network was still available and particular segments have 

been used) and fibers, influence on polarization mode dispersion etc. 

a)   b)  

 Figure 2. Testing polygon: a) CTU campus; b) cable-protected fibers 

 

Conclusion 

The influence of the harsh environment to optical connectors was evaluated. In order to keep 

similar conditions like on airplanes, various temperature areas along optical subsystem were 

investigated. High dependence of transmission parameters on temporal deviation was experienced. 

The biggest IL difference  implies almost 0.03 dB and 0.3 dB for monochromatic and polychromatic 

source respectively with four fiber connections. This feature should be taken into account when 

planning and deployment aerial optical infrastructures especially based on multimodal fibers. Next 

research will be focused on analyzing of long-term based influences of optical components in harsh 

environment. 
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4.6 Outdoor Atmospheric Influence on Polarization Mode Dispersion 

in Optical Cables 

 

This chapter is a version of the published manuscript: 

[C2]  J. Bohata, S. Zvanovec and M. Pisarik, “Outdoor atmospheric influence on 

polarization mode dispersion in optical cables,” in General Assembly and Scientific 

Symposium (URSI GASS), 2014, pp. 1-4. 

 

Points pertaining to my PhD thesis: 

The first unique results of temperature fluctuations and the corresponding PMD 

variations are presented from an uniquely developed optical testbed, purposed to form a novel 

methodology of long-term optical characteristic monitoring. Data were collected from four 

individually deployed routes. The results present the first insight on long-term PMD changes 

which strongly influence the quality of optical transmissions but which had been previously 

difficult to predict.  
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Abstract 
  Oscillation of phenomena birefringence under atmospheric conditions is reported. Paper contains measured 

values of polarization mode dispersion from long term monitoring scenario and gives illustration about measuring of 

long time installed cables. Several commonly utilizing measuring techniques were used to determine birefringent 

properties of the fibers. Results are correlated with temperature changes during different terms to achieve proper 

comprehensive conception of progress. 

1. Introduction 

 
 With new transmitted formats and modulations in optical communications and sensor networks, Polarization 

Mode Dispersion (PMD) has become very important parameter with significant impact to transmission capacity. For 

high bit rate transmissions with long reach ability, it is necessary to keep Differential Group Delay (DGD) low and thus 

it desires watching of PMD parameter and PMD coefficient which determine statistical distribution of DGD. The 

distribution is then presented for whole fiber length by PMD coefficient. In order to determine random behavior of 

birefringence there is requirement for long term PMD monitoring and the longer monitoring setup the more precise 

results are obtained. Long-term measurement of PMD was theoretically described in 2000 by M. Karlsson [1], who 

used the Jones matrices and statistical evaluation DGD. However during high PMD fibers measuring it is also required 

to define hazardous areas, containing high PMD sections, which can have fatal impact to accuracy and also to 

transmissions characteristic. For this purpose, the Polarization Optical Domain Reflectometer (POTDR) method was 

developed [2]. The method facilitates precise location of the mentioned sections which gives good tool for optical 

network infrastructure development and supervising.  

According to recommendation ITU-T G.652[3] the longest distance for 40 Gbit/s system can be 80 km in case of PMD 

coefficient 0.2 ps/km
1/2

 while it is decreased even up to 2 km for PMD around 0.5 ps/km
1/2

. The random behavior of 

birefringence in installed cables comes most frequently with temperature and wavelength changes. In 2003, M. Brodsky 

presented papers on the optimal path length, measured to evaluate PMD[4], which concluded that some of the fibers can 

be characterized during the one week while a so called "live" fibers require characterization measurements over months 

or years. Poggiolini [5] performed 73-days’ measurement metropolitan area networks in Turin, stating that the changes 

DGD are inherently limited due to the daily cycle and entire period. The impact of temperature to the cables was well 

discussed in [6]. Despite of recent made fibers and cables, old produced fibers have been still utilized within networks 

which have not had accurate PMD quality control. In the time of their installation, such parameters were not required. 

One have to take in consideration potential aging of photonics structures[7] which can be evoked by high optical 

powers and as well their possible damaging[8]. The paper presents comparison of commonly used PMD measuring 

methods and their validation during different terms in aged fiber structure. First results of atmospheric influence on 

PMD statistics measured in unique measuring polygon are published. 

2. Measurement setup 

 In order to ensure real transmission characteristic for optical fibers and cables, a measuring polygon was 

designed and placed on the roof of Czech Technical University in Prague, Faculty of electrical engineering (see Fig. 

1a). The scheme is involved for long term monitoring of transmission characteristics under environmental conditions 

such temperature, pressure, humidity or wind. For easy access to polygon its switch was placed to the optical 

laboratory. To achieve proper information about instant weather changes, two meteorological stations recording the 

temperature, humidity, atmospheric pressure, precipitation, rain intensity and the speed and direction of the wind were 

also placed on the roof of university campus. These stations’ positions (A, B) with testing polygon (C) are shown in 

Fig.1. 



 
Figure 1. Testing polygon: a) roof of CTU building b) Alcatel cable c) optical terminal 

Cables, purposed for monitoring, were precisely selected especially because of containing of high PMD sections. The 

sections were at first characterized by P-OTDR measuring. Fibers within the cables originate from 1994 and they had 

been primary used for metropolitan optical network in Prague subway under different conditions. These fibers have not 

ever been investigated through PMD measuring or observing. Polygon setup consists of two same Alcatel cables 

containing 72 fibers within 6 tubes. Each cable is approx. 500 m long, welded together in the connection box placed 

also outside. Total length of links is then approx. 72 km, divided to four sections with lengths 12 and 24 km 

respectively. Sections are formed from separated tubes within cable to maintain consistent conditions. Measurement 

setup is shown in Fig. 2. 

All 12 fibers in each tube were welded together so that each link passes 12-times through all circuit along the building 

wedge. In addition, the whole circuit is formed by 6 smaller circuits including different conditioned areas such as 

shadows, shielding and nearness electronic devices like an air condition, etc. Structure of cable and measurement 

scheme is described in Fig. 2. 

 

 

 

 

 

 
Figure 2. Measurement scheme: a) cable profile; b) optical links 

We carried out initial measurements with different commonly used methods such interferometry (Traditional Analysis 

Interferometry – TINTY and General Analysis Interferometry – GINTY)[9], Scrambled State-of-Polarization Analysis 

(SSA)[10] and POTDR[11] on wavelengths 1520-1627 nm. Since the random behavior of birefringence and using 

different techniques then we have obtained relative high range of total PMD. In order to avoid mistakes with length 

mismatch of the cables, we investigated PMD coefficient applied to fiber length and contributions in each section were 

observed by POTDR. We assume the distances L > 1 km to ensure the PMD coefficient can be determined in terms of 

km
1/2

[12]. 

With assuming propagation constants in two orthogonal principle axes βx and βy at wavelength ω, these constants are 

different due to birefringence[13]: 

     x y effn
c


       ,     (1) 

where Δneff refers to differential effective refractive index for the two modes. Relative group delay (referred as DGD) 

between two orthogonal polarization modes for fiber length L is expressed by: 

      
eff

g

L n

c



   .     (2) 

Differential Group Delay round trip in position z, used in PMD distributed measurement, is therefore computed as 

follows[14]: 

      2

2

1
RT dT msDGD z T


  ,     (3) 

where δω
2
 is relative wavelength spacing, αdT

2
 relative scrambling factor and ΔTms is mean-square value of number of 

wavelength differences. 

connection 

  link 1,3,5,7     link 2,4,6,8 



3. Results 

Measuring scheme contains older fibers which were historically (as can be case of majority of older laid infrastructures) 

tested mainly only over attenuation and Chromatic Dispersion (CD). To the authors best knowledge these parameters of 

the fibers to date have not experienced any detrimental changes. Despite of well-known random PMD oscillation 

influenced by stressed conditions, we characterized how these conditions, especially temperature, could influence long 

term PMD measurement with several measuring techniques. 

This paper presents first demonstrations of PMD measurements at CTU polygon using different techniques described 

above. Fibers tests results are from April 2013 till January 2014. Root Mean Square (RMS) value was calculated to 

determine PMD coefficient. Then the variance of PMD coefficient, displayed in y- axes, was computed from RMS of 

the each measured value. The links were tested from both ends and they are designated as follows: four fibers with 

marked ends (link 1,2; link 3,4; link 5,6 and link 7,8). Table 1 contains PMDRMS values for all links. Figure 3 represents 

RMS differences for two 12-km links and Figure 4 compares remaining two 24-km links. 

Table 1. PMD values of the links 

link: 1 2 3 4 5 6 7 8 

PMDRMS[ps] 0.758 1.028 4.968 5.131 3,44 3.194 7.074 6.820 

PMDcoeff-RMS[ps/km
0.5

] 0.232 0.243 1.419 1.460 0.742 0.661 1.462 1.419 

 

 
Figure 3. RMS difference: a) first 12 km links; b) second 12 km links 

 
Figure 4. RMS difference: a) first 24 km links; b) second 24 km links 

Results show fluctuations of PMD coefficient during measuring terms. We have observed fluctuations up to almost 

±0.3 ps/km
1/2

. It mostly comes from not-uniformed distribution of cumulative DGD along fibers. It seems that 

hazardous sections behave much different under the stressed conditions. The distribution of cumulated PMD was 

investigated by POTDR method. We have observed increased PMD in hazardous section (see peak in Fig.4a) which 

caused almost 20 % of all PMD in only 967 meters while some low PMD sections indicate invariable progress. After 

that, the oscillations of all links were correlated with temperature - see Fig. 5.  

Measured temperature highly correlates with oscillation of PMD coefficient but the temperature has one but not the 

only impact to DGD results. Although the all fibers originate from one developer and they are clustered in one optical 

cable, the particular components evince very different behavior, especially in PMD point of view. A lot of splices also 

contribute to ambiguous results. More measured results will be available by term of the conference. 



 
Figure 5. Thermal changes vs. PMD difference 

5. Conclusion 

 The paper discussed various measuring accuracy of birefringence phenomena with aiming to long time statistics 

observed on installed fibers. PMD features were monitored in harsh environment. First results from measuring polygon 

indicate fluctuations of PMD with thermal changes along optical fibers up to 1 ps for 12 km link and 1.8 ps for 24km 

link respectively and fluctuating of PMD coefficient up to 0.3 ps/km
1/2

. When considering PMD recommended limits 

for 40 Gbit/s systems or higher, such numbers exceeded the limits more than three times in particular links. This could 

be together with continuing oscillations of birefringence due to aging of the structure crucial for optical infrastructures. 

From several tested PMD measuring methods, the best way for next PMD monitoring of aged infrastructure revealed to 

a combination of accurate and distributed measuring. To further validate results over seasonal weather influences a long 

term measuring campaign has been set at Czech Technical University in Prague. 
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4.7 Long-Term Polarization Mode Dispersion Evolution and Accelerated 

Aging in Old Optical Cables 

 

This chapter is a version of the published manuscript: 

[J4]  J. Bohata, J. Jaros, S. Pisarik, S. Zvanovec and M. Komanec, “Long-Term Polarization 

Mode Dispersion Evolution and Accelerated Aging in Old Optical Cables,” Photonics 

Technology Letters, vol. 29(6), 2017, pp. 519-522.  

 

Points pertaining to my PhD thesis: 

This article publishes, in detail, the entire methodology for long-term fiber 

characteristics monitoring and demonstrates the longest PMD and optical aging measurement 

campaign in a special testbed as has so far been published. This unique testbed contains 

a testing and a reference route, with the testing route permanently loaded by optical power 

of 27 dBm at 1550 nm. Since the long-term aging process had not been investigated in the 

past, and given the ever-increasing demands for the utilization of optical fiber infrastructures, 

the article delivers insightful and original results. The analyzed testing loaded route shows 

an increase of about 0.15 dB/year in IL when compared to the reference route. Moreover, 

a new statistical model of significant seasonal PMD drift was derived which affords a better 

view of exposed optical cable behavior. Last, but not least, the methodology for aging process 

monitoring is presented for first time.  
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Long-Term Polarization Mode Dispersion Evolution
and Accelerated Aging in Old Optical Cables

J. Bohata, J. Jaros, S. Pisarik, S. Zvanovec, and M. Komanec

Abstract— Today’s optical networks are composed of thou-
sands of kilometers of aging optical cables. Many of these
cables are located in harsh environments, which contribute to
induced birefringence of the fibers and a corresponding increase
of polarization mode dispersion (PMD). This letter introduces
derived statistics from the longest-known running evaluation of
a PMD measuring campaign and an investigation into how higher
optical power affects these aging systems. Results indicate strong
seasonal dependence of PMD on temperature for an optical
cable test bed exposed to atmospheric changes, leading to a 16%
increase of a mean PMD value in summer. This fluctuation causes
bit error rate limits to be exceeded for 10 and 40 Gbps non-
return-to-zero signals, which is a critical issue for applications
where high reliability is required. Moreover, due to the high
optical power load within old optical infrastructures, a more
than 0.15 dB increase of relative loss per year in tested routes,
compared with reference routes, has been observed.

Index Terms— Optical fiber, harsh environment, polarization
mode dispersion, aging.

I. INTRODUCTION

OPTICAL fibers offer numerous benefits that allow them
to be widely deployed in hazardous areas or harsh

conditions such as nuclear power plants and undersea links,
or in power lines operating at up to 400 kV within a specified
temperature range from −40 °C to +85 °C [1]. Novel active
optical networks demand significantly greater transmission
characteristics, but the costs of replacing old optical infrastruc-
tures are high and challenging (222 million kilometers of
optical fibers were installed between 1998 and 2000 though
older fibers and cables still coexist [2]

The reliability of an optical communication system in
a hazardous area may be adversely affected by tempera-
ture variation, pressure, humidity, high voltage transmission,
and radiation. In such circumstances, optical fibers undergo
structural changes that may result in their transmission
characteristics being temporarily or permanently degraded [3].
The temperature-induced attenuation of optical fibers for an
avionics application was investigated in [4], where a single-
mode optical fiber (SMF) with acrylate, or silicone coating,
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was exposed to temperatures from −196 °C to 122 °C resulting
in increased attenuation of up to 1 dB/km depending on the
materials in question. Temperature has a significant influence
on optical losses, even for shorter optical fiber links connected
by optical connectors as was experimentally demonstrated
in [5] for an aircraft multimode (MM) optical network.

In addition to attenuation, polarization mode disper-
sion (PMD) has a profound influence upon the optical system
as PMD is induced by birefringence in optical fibers and
defined by differential group delay (DGD); the mean DGD
value is then referred as a PMD value [6]. Due to its strong
structural dependence, random behavior and high sensitivity
to strain or temperature, PMD has become a useful indicator
of the aging process of optical fiber-based infrastructures [7].
Special cables proposed for leading power lines were investi-
gated in environmental tests, in a temperature range of −40 °C
to +85 °C, while observing PMD changes for variable cable
buffer materials [1], [8]. Results indicated PMD increases
of up to 500 % at temperatures below −20 °C within primary
coated fibers. Several long-term PMD monitoring campaigns
have been performed to determine the state of polariza-
tion (SOP) and corresponding DGD changes in optical fibers.
The Müller matrix method (MMM) was adopted for a two-day
measurement of 150 km long optical route with semiconductor
optical amplifier (SOA) in the bandwidth of 100 nm, showing
a slowly varying long-term structure to DGD spectra [9].
Detailed characterization of installed long-haul buried optical
cables with MMM and summarized experimental data in an
empirical model was shown in [10]. Based on these results,
authors published a new model of temporal dependence of
PMD for long fiber links in [11]. The Jones matrix method
(JME) approach was also used in a detailed 35-day-long
PMD-measurement of two 127 km-long dispersion shifted
fibers (DSF), resulting in an average daily DGD drift of around
10% which was mainly attributed to temperature changes
in exposed sections of the cable [12]. Another measurement
campaign using the JME method was performed in a long-term
five-month PMD continuous measurement [13]. Two cables,
79.5 km and 24.5 km long, experienced a daily variation of
up to 10% of the DGD in synchronicity with temperature
changes. The results imply- the bigger the PMD value, the
higher the PMD variation. The most detailed long-term PMD
measurement to date was an 18-month field observation of
SOP and corresponding PMD on three fiber links employing
40 Gbps transmissions [14]. It revealed that DGD changes in
the order of days can be described by the Maxwell distribution.
However, the above-mentioned papers have not investigated
the detailed connection between the aging of optical fibers
and long-term PMD drift, so extended tests are needed.

1041-1135 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Fig. 1. Monitoring scheme: of laser diode (LD), erbium-doped fiber
amplifier (EDFA), a monitoring link system (MLS), polarization mode
dispersion (PMD) and chromatic dispersion (CD) monitoring points

To the best of our knowledge, this letter represents the longest
experimental investigation of aging of optical cables.

II. LONG-TERM MONITORING SETUP

A special testing testbed was assembled on the roof of the
Czech Technical University (CTU) in Prague as the location
suitably simulates a harsh environment exposed to seasonal
and spatial temperature variations. Alcatel optical cable, dating
from 1997 and fulfilling ITU-T G.652 [15], was selected to
monitor optical cable aging. The cable was formerly used in
the optical network of the Prague metro system prior to this
measurement. The 1 km-long cable contains six tubes each of
which has twelve fibers spliced together to create a 72 km-long
optical route. The optical cable was installed on the edge
of the building roof in six approx. 130-meter-long circles
next to the banister to ensure high exposure to atmospheric
effects. To compare the accelerated aging process in the fibers
better, the link was further divided into two 36 km-long
routes – the reference and the testing routes. The initial PMD
coefficient of the testing route was 1.45 ps/

√
km. The reference

route carried only a weak monitoring signal (< 0 dBm), in
contrast an optical power load of 27 dBm was launched into
the testing route using a seed signal from a laser diode (LD)
(type KTI KC-300D-W5315) amplified by an erbium-doped
fiber amplifier (EDFA) via a power splitter (PS) and a
wavelength-division multiplexer (WDM) at the wavelength
of 1550 nm (see scheme in Fig. 1). Note that the power load
along the testing route has been distributed corresponding to a
conventional optical link, where the power gradually decreases
from maximum fed at the beginning of the testing route. Prior
to the measurement, the testing route was characterized by
an optical time domain reflectometer (OTDR), proving the
fiber attenuation of 0.33 dB/km and additional insertion losses
by several splices and components in the route resulting in
received route output power of 12.9 dBm. Furthermore, 4.2%
of the launched power load was rejected due to stimulated
Brillouin scattering (SBS). However, we kept the measure-
ment below the Brillouin threshold, due to the wide spectral
bandwidth (on the order of GHz) of the seed laser and also
owing to higher fiber attenuation. Continuous power monitor-
ing was performed in the opposite direction at a wavelength
of 1615 nm by a monitoring link system (MLS) device.
The testbed was designed to monitor optical attenuation,

Fig. 2. Distributed temperature measurements in the first 150 meters of the
reference route for hot (upper line) and cold (lower line) days in 2015.

chromatic dispersion (CD) and PMD (see PMD monitoring
points in Fig. 1). Since PMD was captured at 1550 nm, the
aging load from the EDFA had to be turned off when PMD was
measured. Along with the PMD measurement, the temperature
within the testbed was continuously monitored by a weather
station and, in particular periods, by a distributed temperature
sensing (DTS) device (Ditest STA-R) exploiting Brillouin
scattering at wavelengths from 1528 nm to 1595 nm. The fully
equipped testbed was completed in September, 2014, and the
reference and testing routes, since then, have been periodically
monitored.

III. LONG-TERM MONITORING RESULTS

The optical cable has been exposed to thermal changes
over year-long cycles and intense thermal variations can be
experienced throughout one measurement moment due to the
heating of the black surface of the cable and diverse orien-
tation/shadowing on the roof. Figure 2 shows a comparison
of distributed temperature measurements via DTS in the first
150 meters of the cable from February (blue) and June (red),
2015. The greatest observed temperature difference along the
fiber between a cloudy day in February and a sunny day in
June, was 65 °C, clearly illustrating the variety of operating
conditions experienced during the year. In contrast to a set
measured one day in February, which evinced flat characteris-
tics, with the exception of one spike due to an air-conditioning
unit outlet, the thermal distribution from the sunny June
day varied considerably. The shadowed areas can be easily
identified in Fig. 2 by drops in the temperature profile, whereas
the sections exposed to the sun are, more or less, heated over
an ambient temperature of up to approx. 60 °C. Note that the
surface temperature of the cable, measured by an IR camera,
climbed up to 80 °C. Further, a comparison between the
average temperature inside the cable (dashed orange line) and
the ambient temperature outside (solid green line) is provided
courtesy of an 800-day-long cycle in Fig. 3. Note that the
temperature from the fiber represents the average temperature
for the first kilometer of the cable, even though the maximal
difference between inner and outer temperatures is more
than 10 °C, especially on hot summer days. Periodic PMD
monitoring has been running for more than two years. Several
PMD monitoring methods – a general interferometry technique
(GINTY – EXFO FTB5500), a scrambled state-of-polarization
analysis (SSA – EXFO FTB5700) and a polarization optical
time domain reflectometer (POTDR – EXFO FTB 5600)]
have been adopted to test the standard PMD measurement
tools in practice. Fig. 4 shows a three-day PMD measurement
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Fig. 3. Comparison of outside ambient temperature (green solid curve) vs.
average temperature inside optical cable (orange dashed curve).

Fig. 4. Three-day polarization mode dispersion (PMD) measurement (blue)
in testing route displayed showing ambient temperature (orange).

TABLE I

COMPARISON OF THE PMD METHODS ACCURACY

from June 2016, using the GINTY method at the testing
route together with the capture of an ambient temperature
profile. The horizontal lines, having a difference of 0.71 ps,
show the long-term and immediate (measured over three days)
mean PMDs. The long-term mean value is being reached
only at night when temperatures drop. The measured PMD
then correlates with an immediate temperature at the value
of the Pearson correlation coefficient of 0.57. The maximal
difference of the instant PMD and long-term mean PMD is
38 % and this was observed under an enormous increase
of the temperature between 3700 and 4200 min. To validate
the long-term measurement results, three methods were used.
The results are influenced by the accuracy of the particular
methods, which is shown in Tab. I, or, when compared to
GINTY, SSA and POTDR were measured from only the end
of the fiber that resulted in reduced accuracy. The mean long-
term value with GINTY is 8.91 ps, 9.49 ps for SSA and 8.08 ps
for POTDR. The total differences of SSA and POTDR against
the GINTY method in testing are, thus, 6.5 % and 9.4 %,
respectively. However, not all POTDR and SSA results were
obtained at the same time, so both methods have an identical
trend as a GINTY curve.

Figure 5 depicts PMD results from the long-term
measurement campaign in the testing route from September
2014, as compared to the average monthly changes of ambi-

Fig. 5. Average temperature in Prague (dashed orange line) vs. average
polarization mode dispersion (PMD) (solid blue line) within the testing fiber.

TABLE II

MAXIMAL DGD LIMITS ACCORDING TO [17]

ent temperature. All PMD results were obtained using the
GINTY method as the reference [16] in a bandwidth between
1526 - 1595 nm. Periodic measurements have subsequently
been conducted at least once a month (most of the mea-
surements taking place once in the evening and again the
following morning). Each measurement point represents the
average value taken from five consecutive measurements from
both ends of the fiber. The solid line represents the average
PMD values over a two-month period, while the horizontal line
determines the long-term mean PMD. Figure 5 also reveals
the seasonal behavior of PMD changes due to temperature
differences. We can observe a 16 % fluctuation of moving
averaged PMD characteristic from the long-term mean PMD
for both summer and winter periods. The maximum recorded
PMD variation, in an almost two-year cycle, achieved 30%
difference from mean PMD value in the testing route. It must
be taken into consideration that PMD is a mean value of a
number of DGDs, given by the Maxwell’ s distribution, so
the maximal observed DGD values are a few times higher.
The PMD in the testing route reaches a correlation coefficient
of 0.71 with the immediate temperature in cables, whereas
the moving averaged PMD has a higher correlation coefficient
(0.85) with the temperature of a particular month. The standard
deviation of PMD from the 6-, 12- and 24- month periods
reached values of 0.876 ps, 1.120 ps and 1.190 ps respectively.
It also derived a 0.120 ps increase in standard deviation per
year. To fully describe the distribution of measured PMD
values, a histogram from measured data, as shown in Fig. 5,
is provided in Fig. 6. The derived bimodal distribution of
measured values is bound by normalized probability density
functions (PDF) for a normal distribution for lower and upper
PMD values with standard deviations of 0.58 ps and 0.64 ps,
respectively. The mean values of particular modes then approx.
correspond to mean winter (7.85 ps) and summer (10.25 ps)
PMD values.

Therefore, it is crucial to determine the correct seasonal
behavior of such an optical cable as it may lead to a higher
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Fig. 6. Bimodal distribution of measured polarization mode dispersion
(PMD) values with a PDF for the normal distribution of a particular mode.

Fig. 7. Relative loss for reference (green) and testing (red) routes during the
monitoring campaign.

probability of an optical network outage. The maximal values
of DGD for particular optical signals without PMD compensa-
tion and at a bit error rate (BER) target of 10−12, provided by
ITU-T G.959.1 [15], are displayed in Tab. II. To ensure high
network reliability, the maximum tolerable PMD is determined
to be around three to four times smaller than the maximum
tolerable DGD. That is, the PMD of optical fiber, employing
a 10 Gbps non-return-to-zero (NRZ) signal, has to be at least
three times smaller than 30 ps to guarantee a 4.2 × 10−5

probability [15] (22 minutes per year) of the exceeding limit.
When assuming the average winter PMD (7.85 ps) or the long-
term average PMD (8.91 ps) in the testing route, the limit of
the maximal tolerable DGD is fulfilled. However, the average
PMD value in summer reached 10.25 ps resulting in a maximal
DGD of 30.75 ps which is beyond the limit of 30 ps [15].
To fulfill the probability of the limit exceeding 7.4 × 10−9

(less than one second per year), the PMD value has to be
multiplied by four for the 10 Gbps NRZ. Subsequently, this
leads to the recommendation that such an exposed and aged
network must be extremely well characterized in at least a
one-year period.

Figure 7 shows the results of the influence of a permanent
high-power signal in optical fibers and components on the
accelerated aging process. The testing route is permanently
loaded by an optical power of 27 dBm (as described in Chapter
II) and compared to a reference route to describe degradation
in time. Each point in Fig. 7 represents the average value of
normalized received power from any particular day containing
more than 10,000 measurements done by MLS. The presence
of EDFA has resulted in a higher variation of measured values
(with a standard deviation of 0.13 dB) compared to unloaded
fiber (0.025 dB). We can observe the significant increase of

relative loss in the power-based accelerated aging process,
and a neutral trend in the reference trace. The testing route
experienced a drop of more than 0.3 dB during the two-year
monitoring campaign with the slope of the linear trend of
0.0125 dB/month attributed to the higher load.

IV. CONCLUSION

A long-term monitoring scheme in a unique testbed has been
evaluated and discussed. Hazardous effects on old exposed
optical cable were characterized, as well as the PMD vari-
ations and long-term attenuation changes. Derived statistics
imply that significant seasonal PMD average dependence on
temperatures reaches up to 16 % of the mean value. Based
on these results, the behavior of old, or high-PMD, cables can
be predicted better while being designed for high data rate
transmissions, especially in places where the deployment of
advanced optical system is costly or difficult. Please note, the
results shown pertain to exposed cables, so for buried cables,
less PMD variations are expected.

In addition, we have observed attenuation changes in the
testing route under a load of a 27 dBm optical signal
at 1550 nm, resulting in 0.15 dB/year increase of testing route
attenuation compared to the reference route.

REFERENCES

[1] K. Borzycki, “Temperature dependence of PMD in optical fibres and
cables,” in Proc. ICTON, Barcelona, Spain, Jul. 2005, pp. 441–444.

[2] A. A. Huurdeman, The Worldwide History of Telecommunications.
Hoboken, NJ, USA: Wiley, 2003, pp. 455–456.

[3] J. C. Schlesinger, Optical Fibers Research Advances. New York, NY,
USA: Nova Science Publishers, 2007, pp. 355–368.

[4] A. A. Stolov et al., “Effects of low temperature and hot steam on
reliability of specialty optical fibers designed for avionics applications,”
in Proc. AVFOP, San Diego, CA, USA, Oct. 2013, pp. 29–30.
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4.8 Adaptation of Transmitting Signals over Joint Aged Optical Fiber and 

Free Space Optical Network under Harsh Environments 
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Points pertaining to my PhD thesis: 

The paper provides a thorough summarization of the more than 2-year-long 

continuous measurement with uniquely derived statistics from the long-term evaluation. 

Based on the new statistical model, the mean PMD value can be predicted for a long-term 

measurement in such meteorologically exposed cables. Moreover, this paper combines 

previous short-term system experiments, now applied over the long-term aged infrastructure - 

the application of various transmission signals, including common 10 Gbps NRZ OOK and 

recently proposed DP RoF and RoFSO systems within the aged optical infrastructure, is 

experimentally investigated more in detail. Furthermore, the additional simulations of higher 

modulation formats were carried out to verify the impacts of such an aged infrastructure 

on high bit rate transmission systems. Finally, the reduction of PMD in systems using DP 

multiplexing was experimentally verified for the first time.    
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a  b  s  t  r  a  c  t

Over  the last  two  decades,  a large  amount  of  optical  fiber  (OF)  cables  has  been  deployed
as  part  of  the  global  communication  networks.  Both  the  aging  of  OFs  as well  as the need
to  increase  transmission  data  rates,  particularly  in  the  backbone,  have  become  hot  topics.
We present  the  study  of the  aged  OF  deployment  in  various  optical  networks  including
free  space  optics  (FSO)  link  as  a part  of modern  optical  communication  networks.  Here,  we
show extended  results  obtained  using  a dedicated  OF  testbed  focusing  on  the long-term
monitoring  of  polarization  mode  dispersion  (PMD)  because  of  its time-varying  nature.  The
adaptation  of polarization  multiplexed  radio  over  fiber  (RoF)  and  radio  over  FSO  (RoFSO)
systems  as  well  as  10 Gbps  on-off-keying  (OOK)  non-return-to-zero  (NRZ)  intensity  mod-
ulation with  the  direct detection  system,  which  is  common  cost-effective  transmission
system  in  passive  networks,  are  demonstrated.  Moreover,  simulation  of 100  and  200  Gbps
return-to-zero  (RZ)  differential  quadrature  phase  shift  keying  (DQPSK)  with  direct  detection
is outlined  to  verify  the impact  of  aged  OF  network  connected  with  FSO  under  turbulence
conditions.  Results  reveal  more  than  6 dB of power  penalty  with  the  aged  OF  route  for
100 Gbps  systems.  In  addition,  there  is  a 0.8  dB  power  penalty  due  to the  strong  seasonal
induced  PMD  fluctuations.  The  influence  of scintillations  in  terms  of  Rytov  variance  for  the
FSO link  is also  investigated  for weak  to moderate  turbulence.  Finally,  we  derive  an  expres-
sion for  the  long-term  mean  PMD  value  determined  over  one-month  measured  frequency
response.

© 2017  Elsevier  GmbH.  All  rights  reserved.

1. Introduction

The optical technologies are finding still new areas of applications and challenges due to the increasing demands on the
capacity, cost reduction or safety [1]. In [2] the utilization of both optical fiber (OF) and optical wireless infrastructures as
part of the next generation networks was discussed. The optical infrastructures are frequently utilized for mobile networks
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fronthauls, where the radio over fiber (RoF) technology [3] can be adopted to benefit from the combined features of OF
fronthaul and the simplification of base stations. The long-term evolution (LTE), known as the 4th generation of mobile
network, has been widely deployed worldwide and furthermore, the technology provides challenges for RoF applications
leading to cost reduction [4,5]. One of the key benefits of the RoF technology is its utilization as a solution for the cloud radio
access network (C-RAN) architecture where baseband units (BBUs) are centralized in a central office or BBU hotel [6]. The
converged optical/wireless systems can support the distribution of broadband signals in future wireless systems such as
5 G and 60 GHz networks. The capacity of RoF-based links can be significantly increased by using the polarization division
multiplexing (PDM) technique as proposed in [7]. A dual polarization (DP) scheme was  utilized for transmission of LTE-A
2 × 2 multiple-input multiple-output (MIMO) over up to a 100 km of single mode fiber link.

Large sections of the OF based telecommunication networks, which are still in-service, are many years old. For example,
more than 222 million kilometers (corresponding to the distance between the Mars and the Sun) of OFs were installed
between 1998 and 2000 [8] and many of them have been still in use with some even under harsh environments. Such
infrastructures were initially designed to support on-off keying (OOK) non-return-to-zero (NRZ) signal formats with a speed
of 2.5 Gbps or 10 Gbps. However, the subsequent higher bit rate systems (>40 Gbps) are mostly operating with higher optical
transmit power and minimum system requirements of 50 GHz spacing, optical signal-to-noise-ratio (OSNR) tolerance not
greater than 16 dB and a maximum mean polarization mode dispersion (PMD) tolerance of 30 ps with an outage probability
of 10−5 [9]. Therefore with the coexistence of old and new OF based telecommunication infrastructures, it is essential to
ensure that OF properties are fully characterized to ensure the quality of services. One of the cost-effective and energy-
efficient solutions for 100 Gbps systems is the deployment of differential quadrature phase shift keying (DQPSK) modulation
format enabling dense wavelength division multiplexing (DWDM) with a spacing of 100 GHz [10,11].

However, replacing of the existing OFs and installing new ones is highly time-consuming and costly especially in dense
urban areas. Alternatively, the free space optics (FSO) technology, which offers OF features (i.e., high data rates and longer
transmission span), could be one option that can be deployed rapidly over a transmission spans up to a few km [12,13]. In
[14,15], a combination of radio over FSO (RoFSO) and the RoF technology with PDM was reported to transmit two  independent
radio signals at the same radio frequency within the optical channel. The authors investigated the performance and reliability
of the system under the atmospheric turbulence. Note that OFs, used as part of the system, were kept inside the laboratory
environment. However, there is the need for assessing the system performance under a real environmental condition, where
OFs are also exposed to the harsh outdoor conditions.

In this paper, we present original results on the utilization of the real aged OF infrastructure affected by thermal changes
and interconnected with the FSO subsystem under a harsh environment. The paper provides analyses of the various types
of optical transmission systems and discusses a methodology to achieve improved statistics and reliability of the network.
The unique extended results are and based on, to our best knowledge, the longest studies and monitoring of PMD, capturing
long-term drift. The paper is organized as follows. Section 2 describes OF testbed and its characterization obtained from
long-term PMD  monitoring. Section 3 provides the comparison of experimental campaigns for (i) DP RoF and RoFSO, and (ii)
10 Gbps NRZ system, which is still very commonly used in practice, over the tested infrastructure. We  compare statistics for
three cases – an optical power load aged OF, aged OF without load, and new OF infrastructure – all interconnected with FSO
subpart. Moreover, to extend the influence of atmospheric conditions on the proposed link, additional simulation results at
higher data rates are provided under specific conditions. Finally, the summary concludes the paper.

2. Accelerated aging process in old optical infrastructure

One of the key parameters in OF communications, which limits the higher bit rate transmissions, is PMD  (the mean value
of differential group delays (DGD)) [16]. Due to its strong structural dependence, random behavior and high sensitivity to
strain or temperature, PMD  has become a useful indicator of the OF’s aging process [17]. Moreover, to fully characterize an
OF link in terms of PMD, a longer period of measuring is required. A long-term PMD  measurement based on Jones matrix
method using installed G.653 optical cables with exposed sections was  carried out over a 5 months period [18]. The optical
path with the exposed sections displayed a significantly higher variance of the mean of DGD. In [19] longer-term PMD
measurement (∼10,000 h) using an installed OF link span from 30 to 273 km was carried out by means of observing the state
of polarization on the Poincaré sphere. Although these research findings have demonstrated a strong daily temperature
based PMD  fluctuations, they do not show longer-term seasonal PMD  drift, especially for systems with exposed installed
OFs.

In [20] one of the most extensive investigations on monitoring PDM of old and exposed OF over a long period (>2.5 years)
was reported. In this paper, we extend the results from [20] to fully characterize experimental testbed over a long-term
monitoring campaign in order to further analyse data transmission over a combined OF and FSO link span. The measurement
campaign is mostly focused on monitoring of the key OF parameters and its characteristics under a harsh test environment
as well as investigating the long-term system reliability.

Fig. 1(a) shows an aerial view of the building at Czech Technical University in Prague where the proposed testbed is
located on the edge of the roof. The fiber routes are consisting of a 1 km long optical cable containing 72 fibers (type G.652)
[21] from 1997, which are spliced together with a total length of 72 km and are laid on the roof next to the banister (green
dashed line). The link is divided into two 36 km long sections – the reference and testing paths. An optical signal with a
power of 27 dBm at 1550 nm is launched into the testing route for emulating accelerated aging process and high power load
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Fig. 1. (a) Aerial view of the testbed placed on the roof of the CTU in Prague, and (b) an IR image obtained in January 2016 with optical fiber located within
the  black dashed lines.

Fig. 2. Measured PMD (blue) and the average temperature (orange) against the days for: (a) testing route, and (b) reference route. (For interpretation of
the  references to colour in this figure legend, the reader is referred to the web version of this article.)

in OF, whereas for the reference route we used an optical power level of 0 dBm from the monitoring link system in order to
measure received power. To fully monitor weather conditions, we placed a weather station next to the testbed as depicted
in Fig. 1(a). Since the outside jacket of the OF cable is a dark color, therefore on exposure to the sunlight the temperature
on the black cable surface can reach 80 ◦C or more during the peak times. Fig. 1(b) shows an infrared (IR) image taken in
January 2016 outlining the temperature distribution of the testbed. Note that, the shadowed areas are shown as cold with
the air temperature around 1 ◦C, whereas the area with sun has a temperature >20◦ C. These differences along the route then
influence the transmission characteristics and in particular PMD.

We measured both PMD  and chromatic dispersion (CD) of the reference and testing routes periodically once every month
since September 2014. PMD  is measured based on the general interferometry technique (GINTY – EXFO FTB5500) as in [22]
mostly in the morning and in the evening to capture daily fluctuations. The measurements were repeated five times from
both ends, and then we used the average value of PMD  per route. Fig. 2 depicts the average monthly temperature profiles
and the PMD  for the reference and testing routes paths for wavelength span between 1526 and 1595 nm.

We can observe the seasonal behavior of PMD, which is strongly dependent on the weather. The reference route correlates
with the actual temperature at the value of the Pearson correlation coefficient [23] of 0.64 and testing route correlates with
the actual temperature at the value of 0.81. The mean values of PMD, �PMD, represented by the horizontal blue lines,
are 8.69 ps and 3.61 ps for testing and reference route, respectively, with the standard deviation values of 1.24 ps and 0.53,
respectively. For testing of the real data transmission over the aged infrastructure, we  carried out a more detailed assessment
of PMD  on a daily basis based on short-term measurements. Fig. 3 illustrates both the temperature and PMD  plots performed
over three days in June 2016 (red) and January 2017 (blue). As shown in Fig. 3, the immediate values of PMD  reflect the
daily temperature changes (i.e., orange curves). Dashed colored (red and blue) and black horizontal lines represent the two
short-term and the overall long-term �PMD of 9.62 ps, 6.26 ps and 8.69 ps, respectively. Note that, the difference in mean
values between June and January is 3.36 ps, which corresponds to �PMD change of 38%.

PMD  influences mostly systems with higher data rates with no compensation and complex detection. The maximal values
of DGD (DGDmax) for OOK based optical transmission with no PMD  compensation and with a bit error rate (BER) target of
10−12 defined by ITU-T G.959.1 [21] are provided in Table 1. To ensure high network reliability, the maximum tolerable
PMD is determined to be around three to four times smaller than tolerable DGDmax. For example, for 10 Gbps return-to-zero
(NRZ) OF transmission at a BER of 4.2 × 10−5 (i.e., 22 min  per year), PMD  must be at least three times smaller than 30 ps [21].
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Fig. 3. The comparison of three-day PMD  measurements in the testing route from June 2016 and January 2017. Orange lines represent actual temperatures,
and  horizontal lines illustrate short and long-term �PMD . (For interpretation of the references to colour in this figure legend, the reader is referred to the
web  version of this article.)

Table 1
Maximal DGD limits according to recommendation ITU-T G.959.1.

Optical tributary signal DGDmax

2.5 Gbps NRZ 120.0 ps
10 Gbps NRZ 30.0 ps
40  Gbps NRZ 7.5 ps

Fig. 4. The convergence of PMDdiff to the long-term �PMD for (a) testing route, and (b) reference route.

DGDmax is satisfied for PMD  values of 7.41 ps and 8.69 ps for the winter and long-term cases, respectively. However, PMD
of 10.25 ps (summer time) results in a DGDmax of 30.75 ps, which exceeds the limit of 30 ps [21]. To fulfill the probability of
the limit exceeding 7.4 × 10−9 (less than one second per year), the PMD  value should be four times lower for a 10 Gbps NRZ
optical link. Note that, for 100 Gbps OOK NRZ with direct detection the tolerated magnitude of DGD is reported to be ∼3 ps
[24].

To fully access the performance of the route, which is aged by long term loading of high optical power, it is necessary
to distinguish for how long the fluctuations of �PMD starts to converge to a stable value. Fig. 4 shows the evolution of �PMD
differences (PMDdiff) determined for a particular period as it converges to the long-term �PMD value corresponding to 8.69 ps
and 3.61 ps for the testing route as in Fig. 4(a) and the reference route in Fig. 4(b), respectively. Note that, PMDdiff is expressed
in terms of the absolute value. Results indicate that to achieve an accurate long term �PMD within ± 5% – fully covering the
seasonal fluctuation of the exposed part of the transmission paths – links need to be monitored for more than 12 months at
given time intervals. Also shown in the figure is the expected curve fitting, which provides the upper limit and is given by:

|PMDdiff

(
Tspan

)
| = |PMDdiff 0| × e−

(
Tspan

SPMD×75

)
, (1)

where Tspan is the monitoring period in days, SPMD is the long term mean value of PMD  for a particular route in ps and
PMDdiff 0 stands for the biggest difference from �PMD in percent. Note that, for shorter monitoring period the recommended
minimal PMDdiff 0 value is 20%. Using (1) and assuming the same monitoring period, we can obtain �PMD for the testing
route with accuracy better than 5% within the period of 450 days.
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Fig. 5. The simplified measurement schemes for: (a) dual-polarization RoF & RoFSO system transmitting LTE signal with EVM evaluation, and (b) OOK NRZ
10  Gbps transmissions with BER and eye-diagram evaluation.

3. Optical transmissions over aged optical infrastructure

In this section, we assess the performance of the combined link of the aged optical infrastructure and FSO for two cases,
see Fig. 5.

Case 1 – Dual-polarization radio over fiber and FSO (DP RoF & RoFSO), see Fig. 5(a): At the transmitter (Tx), the optical
signal (OS) was  split into two arms via a polarization beam-splitter (PBS) prior to modulating by radio signals using the
LTE evolved universal terrestrial radio access (E-UTRA) test model-2 (TM2) with 64-QAM [25]. Both modulated light beams
were then converted into a PDM scheme (for details about Tx see [15]) prior to transmission over the optical channel (i.e.,
OF and FSO). At the receiver (Rx), following optical to electrical conversion and the link performance evaluation in terms
of the error vector magnitude (EVM). We  have adopted the LTE setup parameters that were reported in our previous work
[15].

Case 2 – 10 Gbps OOK NRZ, see Fig. 5(b): A bit error rate tester (BERT) was used to generate an optical signal with a
transmit power of 1.7 dBm. At the Rx, we assessed the directly detected link performance in terms of the BER performance.

The hybrid optical channel was composed of a 36 km long OF (hereinafter denotes as a fiber under test (FUT)), an Erbium
doped fiber amplifier (EDFA) (Keopsys – KPS-BT2-C-10-LN-SA) and a 2 m long FSO link. Three types of FUT were considered:
(i) FUT1–for the testing route; (ii) FUT2 – the reference route (both described in the previous chapter); and (iii) FUT3 – a
new OF link (G.652) [21].

All key system parameters are given in Table 2.

Table 2
Measuring setup parameters.

Parameter Value

General
Wavelength 1550 nm
FSO  channel length 2 m
FSO channel loss 15 dB
FUT1 loss 26.0 dB
FUT2 loss 21.0 dB
FUT3 loss 8.4 dB

EDFA
-output power 0 dBm
-noise figure <5 dB
-return loss >40 dB

RoF & RoFSO
Optical power 8.0 dBm
RF power −5 dBm
RF  carrier frequency 2.6 GHz
RF System bandwidth 1.4–20.0 MHz
OFDM subcarriers 667
Modulation scheme 64-QAM
LTE test model E-TM2 [25]
PIN responsivity 0.75 A/W
TIA bandwidth 10 kHz–12 GHz

OOK NRZ 10 Gbps BERT
Output power 1.7 dBm
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Fig. 6. Experimentally measured EVM vs. bandwidth for FUT1-3.

3.1. Dual-polarization RoF and RoFSO

Here, we investigate the LTE signal transmission for E-UTRA TM2  at a bandwidth of 1.4–20.0 MHZ  and a carrier frequency
of 2.6 GHz. Note that, the power budgets of both reference and test routes were normalized to compensate for different
insertion losses (IL). Fig. 6 shows the EVM as a function of bandwidth for FUTs 1–3. Insets represent the constellation
diagrams of 64-QAM for a particular EVM. There is also shown the EVM limit of 9% as a reference. As shown, the EVM values
increase with the bandwidth for all three FUTs and are considerably lower than 9%. FUT3 followed by FUT2 display the lowest
EVM compared with FUT1.

Fig. 7 depicts the EVM performances for FUT1-3 against the variation in OSNR, which is caused due to IL changes. Note that,
FUT3 offers the best EVM (i.e., 2% lower than the 9% limit for OSNR of 6 dB) compared to FUT1&2, which are higher than the
9% limit. FUT1&2 display almost the same EVM profile (with a difference of 0.5%), even though �PDM-FUT1 > 2 �PDM-FUT2. The
maximum OSNR values for FUT1, FUT2 and FUT3 were 25.5 dB, 26.5 dB and 30.5 dB, respectively. Note that, the bandwidth
of LTE TM2  signal in this case was 20 MHz.

The impact of atmospheric turbulence within FSO link results in worse EVM and higher fluctuating received power
magnitude of the whole system. With connected 2 m long laboratory FSO link, we observed 5.5% increase in EVM when we

Fig. 7. Experimentally measured EVM vs. changes in OSNR for FUT1-3.
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Fig. 8. Comparison of measured PMD  of the testing route with and without PBS applied.

ten times increased Rytov variance �2
R from 0.002 to 0.02 (more details on �2

R describing turbulence effects of optical link
performance are given in [26]).

At the Rx, a PBS was used to split the polarization multiplexed signal into two orthogonal polarization states. Note that,
PBS also reduces the impact of PMD. Fig. 8 illustrates the measured PMD  as a function of time for the testing route with and
with no PBS (in June 2016). As can be seen, with PBS PMD  is reduced by 63% from 9.86 ps to 3.66 ps, thus, demonstrating the
resistance of such a system to PMD.

3.2. OOK NRZ signal

Next, we transmitted a 10 Gbps OOK NRZ signal over the proposed link as in Fig. 5(b). Fig. 9 shows the BER performance
against the OSNR for FUT1-3. The insets show the measured eye diagrams corresponding to the BER values of 10−2 (upper)
and 10−7 (lower). Note that, all plots show almost the same profile up to OSNR of 25 dB. Beyond the OSNR of 25 dB FUT1
displays higher BER. This can be attributed to higher PMD  compared to the reference OF. Generally, a �PD of 8.69 ps for
FUT1 is not that significant in 10 Gbps NRZ transmissions. On the other hand, for higher bit rates PMD  should be taken
into consideration, especially in hazardous areas with high temperature variations. Please note, we only illustrated PMD

Fig. 9. Experimentally measured BER as a function of OSNR for 10 Gbps OOK NRZ in the case of implemented FUT1-3.
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Fig. 10. 100 Gbps RZ DQPSK transmission system.

Table 3
Simulation parameters.

Parameter Value

General
Modulation type DQPSK
Coding RZ
Wavelength 1550 nm
Tx  power 3 dBm
Channel spacing 100 MHz
Symbol rate 50/100 Gbaud
FSO channel length 500 m
FSO channel loss 16.5 dB
FUT length 36 km
FUT loss 12.6 dB
EDFA gain 32 dB
PIN responsivity 0.6 A/W

influence, however, to reach higher BER values (i.e., 10−6) there will be additional requirements on the Tx and Rx (higher
power or smaller noise level) and the bandwidth of transimpedance amplifier used at the Rx.

3.3. Higher data rates

Here, we have simulated transmission of return-to-zero (RZ) DQPSK over the old infrastructure combined with a longer
FSO length (i.e., 500 m),  see a simplified scheme in Fig. 10. We  have considered data rates of 100 Gbps (4 × 25 Gbps) and
200 Gbps (4 × 50 Gbps) in a 100 MHZ  DWDM grid at the wavelength of 1550 nm.  At the Rx, a direct detection based balanced
detector was used. Further information from modulation setup is provided in Table 3.

Fig. 11 depicts the OSNR performance against OSNR for 100 Gbps RZ DQPSK for a range of PMD  covering 0.3 ps (FUT3),
6.3 ps (FUT1 minimal winter values) and 11.1 ps (FUT1 maximal summer values). The green and red plots show the difference
between PMDmin and PMDmax during the year. Insets provide example of the eye diagrams for OSNR of 28 dB. As can be

Fig. 11. Simulated BER vs. OSNR for a range of PMD  of 0.3 ps (FUT3), 6.3 ps (FUT1 winter) and 11.1 ps (FUT1 summer) for 100 Gbps RZ DQPSK.
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seen, the BER plots for FUT1 are almost the same but higher than FUT3. The utilization of such an old infrastructure can be
translated to induced power penalty (PP) for a fixed BER. E.g., considering FUT3 and a BER of 1 × 10−6 the PP is 1 dB, which
is increased to 1.9 dB at a BER of 1 × 10−8 compared to FUT1. Note that, at lower OSNR (i.e., <16 dB) the BER plots converge
reaching at BER of 10−3 at OSNR of −14 dB, thus implying negligible impact of the higher PMD  in comparison with lower
OSNR levels. Despite the small difference between curves for FUT1 influenced by summer and winter conditions (i.e., red
and green curves), the difference in BER performance should be still taken into account. Insets illustrate 1.7 times higher
BER experienced in summer compared to the winter for OSNR and PP of 28 dB and 0.8 dB, respectively at a BER of 1 × 10−9.
Note that, the BER results will depend on the adopted modulation formats as well as on the electrical SNR (except OSNR).

Finally, we investigated the impact of atmospheric turbulence on the entire system performance for 100 Gbps and
200 Gbps RZ DQPSK. Note that, the scintillation is characterized by Rytov variance as given by [26]:

�2
R = 1.23k

7
6 C2
nL

11
6 , (2)

where k is the wave number, L is the length of the channel and Cn2 is the refractive index structure parameter, which depends
on the strength of the turbulence and is defined as:

C2
n =

(
79 × 10−6 Pa

T2

)2
C2
T , (3)

Fig. 12. Simulated BER vs. Rytov variance for FUT #1 (red) and FUT #3 (blue) in: (a) 100 Gbps RZ DQPSK, and (b) 200 Gbps Rz DQPSK transmission scheme;
insets  show eye diagrams for �2

R
= 0.1.. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this

article.)
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where Pa is the atmospheric pressure in millibars. C2
T is the temperature structure constant, which is defined as:

C2
T = (T1 − T2)2/L

2⁄3
p , (4)

where T1 and T2 are temperatures at two points separated by the distance Lp. Knowing the thermal distribution along the
FSO propagation path, it is possible to determine C2

T and then Cn2. The impact of atmospheric turbulence on the propagating
optical beam is given in detailed in [27].

Fig. 12 displays the BER performance against the scintillation for FUT1 and FUT3 for 100 Gbps and 200 Gbps RZ DQPSK.
For the 100 Gbps link we observe almost the same BER profile regardless of the turbulence regime, see Fig. 12(a). The insets
show the eye diagrams for �2

R of 0.1, illustrating a very small difference in BER for the 100 Gbps system. For the 200 Gbps
link FUT3 displays considerably lower BER profile compared to FUT1, see Fig. 12(b).

4. Summary

We  have presented a study on the aged OF infrastructure combined with the FSO channel for various transmission systems.
Extended and updated results based on a long-term PMD  monitoring and measurements were evaluated and presented. We
described strong daily and seasonal PMD  drift with long-term �PDM difference estimation on the daily and seasonal basis.
Based on the results, to achieve a variation in �PMD lower than 5%, at least 450 days of measurement campaign on a monthly
basis would be required. The measuring period should be increased to 1642 days to achieve �PMD better than 1% for the
aged and exposed network. The seasonal differences were further discussed together with the simulation of 100 Gbps RZ
DQPSK transmissions, with a power penalty of 0.8 dB at a BER of 10−9. We  showed that at a BER of 10−10 there was  a 6 dB
of PP between the aged and normal OF based networks with the FSO link. Based on the experimental results for 10 Gbps
OOK NRZ, the difference between FUT1 (�PMD = 8.69 ps) and FUT2 (�PMD = 3.61 ps) were negligible. For RoF and RoFSO with
64-QAM, for a range of OSNR and RF bandwidth at the carrier frequency of 2.6 GHz, the average difference in PDM was <0.5%
of EVM. Moreover, we demonstrated an average of 64% reduction in PMD  while using a polarization beam splitter, which
led to improved robustness against the changes in PMD.

Finally, the impact of scintillation on the FSO part of the link was  evaluated for 100 Gbps and 200 Gbps RZ DQPSK trans-
missions. We  recorded almost two and five times higher BER for FUT1 and FUT3 at 100 Gbps and 200 Gbps, respectively.
Furthermore, we showed that the normal and aged OF paths offered converging performance profiles for a Rytov variance
value of up to 0.5, behind which considerably higher PMD  impact (i.e., higher BER) was observed for the aged route case.
The results indicated that adaptation of higher data rates with lower BER is possible, provided the aged routes are precisely
characterized and the potential FSO effects are considered.
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5 Conclusions 

5.1 Contribution of the thesis 

This thesis provides new insights on the reliability of optical structures in harsh 

environments. A methodology for the evaluation of the influence of aging processes on 

optical fiber infrastructures has been derived. Moreover the combined DP RoF and RoFSO 

system has been proposed. In addition, the short-term influences of the optical network 

operation have been validated in a specific case relating to a very peculiar area of avionics 

[J3], [C1]. The comprehensive methodology for the characterization of the aging process of 

optical infrastructures has been published, including significant amounts of data and novel, 

derived statistics [J4], [C1], [C2]. The results determine the specific service limitations for 

optical network design and a long-term outlook of structural changes. The proposed 

measurement methodology reveals strong seasonal dependence of PMD on temperature. This 

methodology has been statistically described. The utilization of older aged optical 

infrastructures with various transmission formats have been experimentally verified in terms 

of outage probability [J5]. Within this testing, a DP RoF and RoFSO systems performance 

was verified on the aged infrastructure, doubling the capacity of the optical channel and 

allowing for the simpler architecture of xG mobile networks [J1], [J2]. The work has already 

been cited by other international teams in international journals.  

The presented results offer greater insight to optical communications which have 

become an inseparable part of a variety of applications, some of which involve hazardous 

areas. Such areas are primarily characterized by significant temperature variations and the 

presented results, thus, enable more accurate predictions of optical fiber network behavior. 

Moreover, the great benefit of this thesis lays in the longest overall monitoring of crucial 

transmission characteristics which has ever been published. 

5.2 Future research opportunities 

Due to the long-term testing and monitoring which is still ongoing, we expect to 

receive more detailed results in the near future and, as was revealed in this thesis, to capture 

significant material structural changes of the aging process, though this will require a notably 

extended period of research. I would like to continue to evaluate testbed route behavior and 

further adapt this test to real applications as indicated in [J5]. Moreover, more environmental 

tests would have great value to better describe short-term changes whose concepts were 

described in the thesis. 

I would also like to continue to investigate changes in modal behavior of MMF under 

special conditions as introduced in [J3]. Due to the enormous number of data centers being 

built with MMF connections, modal influence is certain to play a significant role. 

Last but not least, during the writing of this thesis, many new challenges have emerged 

in RoF and RoFSO applications, in particular those related to the launch of 5G networks and 

new (higher) frequencies usage. We have already started several new measurement campaigns 

with foreign research institutions in this field. 
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