
Czech Technical University in Prague

Faculty of Electrical Engineering

Department of Computer Science

Supporting Exploratory Testing by Automated Navigation Using the

Model of System Under Test

by

KAREL FRAJTÁK

A dissertation thesis submitted to

the Faculty of Electrical Engineering, Czech Technical University in Prague,

in partial fulfillment of the requirements for the degree of Doctor.

PhD Programme: Electrical Engineering and Information Technology

Branch of Study: Information Science and Computer Engineering

August 2017

Supervisor:

doc. Ing. Ivan Jeĺınek, CSc.

Department of Computer Science

Faculty of Electrical Engineering

Czech Technical University in Prague

Karlovo náměst́ı 13

121 35 Prague 2

Czech Republic

Copyright c© 2017 KAREL FRAJTÁK

ii

Abstract and Contributions

Exploratory Testing (ET) is software testing technique, which is applicable to software

development projects, in which test basis (design documentation) is not available, or at

least not complete and consistent enough to allow the creation of efficient test cases. The

principle of this technique is simultaneous learning, creation of the test cases and testing

of the explored system under test (SUT).

The key factor for the efficiency of this technique a documentation of explored tester’s

path in the SUT and the exercised test cases. When this is not being documented properly,

ET loses its potential efficiency. Documentation of the explored paths in the SUT also

allows more accurate reports of found defects, together with the possibility of the more

systematic creation of the test cases during the exploratory testing process, preventing

potential duplicities in executed tests. Created test cases can be used later in the next

testing phases (retesting of fixed defects or regression testing, for instance).

Currently, a large ratio of web applications is usually developed without any or suffi-

cient underlying models. In the most of the cases, this is a consequence of required low

development costs and usually short time-to-market in the competitive software develop-

ment environment. Nevertheless, the model is still implicitly present in the SUT code and

with proper techniques, it is possible to reconstruct it from the SUT.

Using the browser extension and server application, the framework automatically re-

cords selected actions of the exploratory testers in the SUT. Based on this recorded data,

a screen-flow based model of the SUT is incrementally created and automatically updated.

Based on this model and tester’s position in the SUT during the testing process, the

framework dynamically creates navigational test cases guiding the testers in the SUT and

supports its efficient exploration.

The recorded model consists of parts representing SUT pages, forms, input elements

of the pages, and action elements as submit buttons and links. Besides that, home page,

error pages and transition between SUT pages are defined. The model constructs are

accompanied by technical information and meta–data to support the model construction

iii

and generation of navigational test cases.

In the test leader role, the tester can also extend the model with additional meta–

data. For example, he can prioritize certain pages or selected actions as a result of a risk

analysis of the SUT. Moreover, he can define equivalence classes determining the suitable

test data for particular inputs (e.g. text boxes in the forms) for the later generation of the

navigational test cases. The SUT model is described formally and defined constructs are

used to document the proposal and the experiments verifying the framework functionality

and practical efficiency.

During the dynamical generation of navigational test cases, several navigational strate-

gies can be selected. These strategies are based on combinations of the inputs like the

parts of the SUT previously explored by an individual tester or all testers in the team,

priority of the particular pages marked by the test team leader, or complexity of explored

page elements.

Performed experiments show that Exploratory Testing aided by this automated support

is less resource demanding than Exploratory Testing performed manually only. With this

support, also larger parts of the SUT were explored by the experiment participants in

the defined time. Also, as defect injection experiments have shown, that the proposed

automated support helped the testing teams to detect more inserted software defects than

ET performed as a manual process only.

In particular, the main contributions of the dissertation thesis are as follows:

◦ Design and experimental implementation of automated method, which makes Explor-

atory Testing process more efficient in terms of spent resources, extent of explored

SUT and found defects.

◦ Innovative combination of Exploratory Testing, Model–Based Testing and Reverse–

Engineering.

◦ Definition of formal model of the underlying system under test, which serves as a

basis for the framework functionality.

◦ Design of initial navigational strategies, ranking functions, and test data strategies,

used in the framework. These strategies are supporting the individual as well as team

exploratory testing.

◦ Practical applicability of the proposed framework to industrial software development

and testing projects.

Keywords:

Model–Based Testing, Exploratory Testing, Test Automation, System Under Test Model,

Test Data, Test Management.

iv

Abstrakt

Metoda pr̊uzkumného testovańı (angl. Exploratory Testing, dále jen ET) je metoda př́ıstu-

pu k testováńı softwarových projekt̊u vhodná pro situace, ve kterých neńı k dispozici

žádná návrhová dokumentace, nebo je neúplná nebo nekonzistentńı do té mı́ry, aby ji bylo

možné využ́ıt pro tvorbu testovaćıch scénář̊u. Principem tohoto př́ıstupu je souběžné pro-

zkoumáváńı testovaného systému, tvorba testovaćıch scénář̊u a testováńı tohoto systému.

Pro zajǐstěńı efektivity této testovaćı techniky je kĺıčová dokumentace prozkoumaných

část́ı systému i vykonaných testovaćıch scénář̊u. Pokud neńı zajǐstěna, efektivita této

techniky výrazně klesá. Tato dokumentace umožňuje i detailněǰśı a přesněǰśıch hlášeńı

zjǐstěných defekt̊u v testovaném softwaru. Daľśı výhodou je systematičtěǰśı př́ıstup k vytvá-

řeńı testovaćıch scénář̊u v pr̊uběhu pr̊uzkumného testováńı, který omeźı př́ıpadné duplicity

v testech. Scénáře vytvořené v této fázi, pak mohou být použity později v daľśıch ko-

lech testováńı, např́ıklad při kontrolńım testováńı opravených defekt̊u nebo při regresńım

testováńı.

Aktuálně je řada webových systémů vyv́ıjena bez jakéhokoliv modelu nebo s pomoćı ne-

dostatečného či neúplného modelu. Tato situace je často d̊usledkem vysoce konkurenčńıho

prostřed́ı, ve kterým vývoj softwarových aplikaćı prob́ıhá, tlaku na redukci náklad̊u na

vývoj a nutnost́ı rychlého dodáńı výsledného produktu na trh. Nicméně model, který

potřebujeme pro efektivńı vytvářeńı testovaćıch scénář̊u, je v principu implicitně př́ıtomen

v kódu testované aplikace a vhodnou technikou je možné jej z tohoto kódu zrekonstruovat.

Rekonstrukci tohoto modelu, společně se sledováńım aktivit testera v testovaném systé-

mu a připojenými metadaty, lze využ́ıt pro automatickou navigaci tohoto testera v pr̊uběhu

pr̊uzkumného testováńı. Tato podpora snižuje náklady na nutné pořizováńı dokumentace

v pr̊uběhu testováńı, č́ımž zvyšuje transparentnost a efektivitu pr̊uzkumného testováńı.

V této práci představujeme model a framework, který tuto podporu poskytuje.

Rozšǐruj́ıćı modul webového prohĺıžeče společně se serverovou část́ı umožňuje frame-

worku automaticky nahrávat akce prováděné testerem v testovaném systému. Nahrávaná

data slouž́ı k pr̊uběžnému vytvářeńı modelu testovaného systému a k jeho aktualizaci.

v

Framework dynamicky vytvář́ı navigačńı testovaćı scénáře na základě dostupného modelu

a aktuálńı pozice testera v systému a t́ım zajǐst’uje vyšš́ı efektivitu pr̊uzkumného testováńı.

Vytvořený model se skládá z část́ı reprezentuj́ıćıch jednotlivé stránky systému a jejich

elementy jako jsou formuláře, vstupńı pole, odkazy a tlač́ıtka pro odeśıláńı dat formulář̊u

umı́stěná na těchto stránkách. Dále jsou jeho součást́ı domáćı a chybová stránka a přechody

mezi stránkami. Jednotlivé části modelu mohou být doplněny technickými detaily a meta-

daty, které jsou dále použity při tvorbě modelu nebo testovaćıch scénář̊u.

Tyto doplňuj́ıćı informace může do modelu přidávat vedoućı skupiny tester̊u. Na základě

analýzy d̊uležitosti jednotlivých část́ı testovaného systému může např́ıklad určit prioritu

pro vybrané stránky nebo akce. Dále může definovat tř́ıdy ekvivalence pro data zadávaná

do vstupńıch poĺı na jednotlivých stránkách. Tyto informace jsou frameworkem využity

při generováńı navigačńıch testovaćıch scénář̊u, jejichž součást́ı jsou doporučená testovaćı

data.

Formálně popsané konstrukty modelu testovaného systému jsou v této práci použity

jak pro dokumentaci vytvořeného frameworku, tak pro formulaci metrik použitých při

experimentech ověřuj́ıćıch jeho funkčnost a praktickou použitelnost.

V pr̊uběhu dynamického generováńı navigačńıch testovaćıch scénář̊u může být použito

několik navigačńıch strategíı, které jsou popsány v textu práce. Tyto strategie využ́ıvaj́ı

řadu vstup̊u, jako je informace o předchoźıch návštěvách dané stránky konkrétńım testerem

nebo jeho kolegy z daného týmu, priorita stránek nebo komplexnost stránek z hlediska

počtu a druhu sledovaných prvk̊u.

Provedené experimenty ověřily, že metoda pr̊uzkumného testovańı prováděného s au-

tomatickou podporou navrženého frameworku, ve srovnáńı s pr̊uzkumným testováńım

prováděným pouze manuálně, zvyšuje efektivitu této techniky v několika oblastech. Navrže-

ná automatická podpora snižuje čas potřebný na jednotlivé úkoly a vede testery k otes-

továńı větš́ı části systému. Pokusy se zanesenými umělými defekty v testovaném systému

ukázaly, že navržený framework pomohl tester̊um odhalit větš́ı množstv́ı těchto zanesených

defekt̊u oproti skupině tester̊u pracuj́ıćıch bez jeho podpory.

Hlavńımi př́ınosy této disertačńı práce jsou:

◦ návrh a experimentálńı implementace frameworku pro zvýšeńı efektivity metody

pr̊uzkumného testovańı z hlediska náročnosti na zdroje, rozsahu prozkoumaných část́ı

systému a nalezených defekt̊u,

◦ inovativńı kombinace pr̊uzkumného testovańı, testováńı na základě modelu a re-

verzńıho inženýrstv́ı,

◦ definice formálńıho modelu testovaného systému, na jehož základě je postavena funk-

cionalita navrženého frameworku,

vi

◦ pilotńı návrh navigačńıch strategíı a strategíı pro doporučováńı testovaćıch data

použitých ve frameworku. Tyto strategie jsou zaměřeny na podporu jak individuálńıho,

tak týmového pr̊uzkumného testováńı, a

◦ praktická využitelnost navrženého frameworku v reálném vývoji softwarových pro-

dukt̊u a testovaćıch projektech.

Kĺıčová slova:

Testováńı na základě modelu, pr̊uzkumné testováńı, automatizace test̊u, model testo-

vaného systému, testovaćı data, ř́ızeńı test̊u

vii

Acknowledgements

First of all, I would like to express my gratitude to my dissertation thesis supervisor, doc.

Ing. Ivan Jeĺınek, CSc. He has been a constant source of encouragement and insight during

my research and helped me with numerous problems and professional advancements.

I would like to thank to my supervisor–specialist Ing. Miroslav Bureš, PhD. for sharing

his knowledge in the field of software testing, being a mentor to me and providing great

help with this work. Without him and his insightful comments the dissertation thesis

would not have ever been finished. Special thanks go to the staff of the Department of

Computer Science, who maintained a pleasant and flexible environment for my research.

I would like to express special thanks to the department management for providing most

of the funding for my research. Finally, my greatest thanks go to my family members, for

their infinite patience and care.

My research has also been supported by the following grants:

◦ by the Technological Agency of Czech Republic, grant No. TH02010296 Quality

Assurance System for Internet of Things Technology

◦ by the Grant Agency of the Czech Technical University in Prague, grant No.

– SGS11/157/OHK3/3T/13 Automated support of manual testing of web soft-

ware systems based on formal model of the application,

– SGS14/076/OHK3/1T/13 Automated support of manual testing of web soft-

ware systems based on formal model of the application,

– SGS15/085/OHK3/1T/13 Automated support of manual testing of web soft-

ware systems based on formal model of the application,

– SGS16/090/OHK3/1T/13 Automated support for more efficient software test-

ing,

– SGS17/097/OHK3/1T/13 Automated methods for software testing.

ix

Dedication

To my family and all the software testers in the world.

x

Contents

Abbreviations xvii

1 Introduction 1

1.1 Exploratory Testing . 2

1.1.1 Situations Suitable for Exploratory Testing 5

1.1.2 Benefits of the Exploratory Testing 5

1.1.3 Exploratory Testing Challenges . 6

1.2 Motivation . 6

1.3 Goals of the Dissertation Thesis . 7

1.4 Structure of the Dissertation Thesis . 8

2 Background and State-of-the-Art 9

2.1 Model–Driven Engineering and Testing . 9

2.2 Model–Based Testing . 11

2.3 Model Validation and Model Checking . 15

2.4 Reverse Engineering . 17

2.5 Capture and Replay . 19

2.6 Challenges in Dynamic Web Systems Testing 21

2.7 Exploratory Testing . 22

2.8 Error Guessing . 23

2.9 Summary of the State of the Art . 24

3 Proposed Solution 27

3.1 Principle of the Tapir Framework . 27

3.2 System Under Test Model . 29

3.2.1 Discussion . 33

3.3 Build of the Model During Exploratory Testing 34

xi

Contents

3.4 Generation of Navigational Test Cases from the Model 35

3.4.1 Structure of the Navigational Test Case 35

3.4.2 Navigational Strategies . 37

3.4.3 Test Data Strategies . 41

3.5 Framework Architecture and Implementation Details 43

3.5.1 Tapir Browser Extension . 44

3.5.2 TapirHQ . 51

3.5.3 Tapir Analytics . 55

3.5.4 Handling the Changes in the SUT 58

4 Experiments 59

4.1 Research Questions . 60

4.2 System Under Test with Injected Defects 60

4.3 Case Study 1: Evaluation of the Tapir Framework Efficiency 62

4.3.1 Method of Case Study . 64

4.3.2 Case Study Results . 65

4.3.3 Evaluation of the Results and Discussion 65

4.4 Case Study 2: Evaluation of the Tapir Framework Efficiency (Alternative

Method) . 69

4.4.1 Method of Case Study . 69

4.4.2 Metrics Used to Evaluate Case Studies 2 and 3 70

4.4.3 Case Study Results . 72

4.4.4 Evaluation of the Results and Discussion 77

4.5 Case Study 3: Comparison of Navigational Strategies 81

4.5.1 Case Study Results . 82

4.5.2 Evaluation of the Results and Discussion 85

4.6 Case Study 4: Applicability of the Tapir Framework to Various SUTs . . . 88

4.6.1 JTrac . 88

4.6.2 OFBiz . 88

4.6.3 Moodle . 90

4.7 Threats to Validity . 92

4.8 Other Applications of the Tapir Framework 94

4.8.1 Monitoring of Testers to Evaluate Efficiency of Static Testing . . . 94

4.8.2 Evaluation of Test Coverage . 95

5 Conclusions 97

5.1 Summary . 97

5.2 Contributions of the Dissertation Thesis 100

5.3 Future Work . 100

xii

Contents

Bibliography 103

Publications of the Author 115

xiii

List of Figures

1.1 Average cost per defect shown by where defects are detected and percentage

of defects defected in each SDLC phase [105] 3

1.2 Example of cost reductions of detecting bugs and fixing them faster [105]. . . . 3

2.1 Overview of the Model–Driven Engineering approach [28] 10

2.2 Example of WebML — a composition and navigation specification [22] 15

2.3 Example of an IFML model — an administrator site [27] 16

3.1 Overall schema of the Tapir Framework . 29

3.2 Model of SUT Web Page and related concepts 32

3.3 Model of navigational test case and related concepts 38

3.4 Overall architecture of the Tapir Framework 44

3.5 Logical grouping of elements on the web page 47

3.6 Recording of tester’s session displayed in TapirHQ module 50

3.7 A sample of testers’ navigational test case (simplified) 52

3.8 A sample of SUT screen with highlighted elements with hints 53

3.9 A sample of recorded details of a SUT form 54

3.10 A sample of Test Lead’s overview of part of the SUT model 56

3.11 A sample from the Tapir Analytics module – SUT pages and possible trans-

itions between them . 57

4.1 Potential of manual exploratory testing and the Tapir Framework approach to

detect injected defects in the SUT . 74

4.2 Average times spent on SUT pages by testers using manual approach and the

Tapir Framework . 76

4.3 Unique inserted defects activated by testers using manual approach and the

Tapir Framework . 76

4.4 A sample of the JTrac application — list of issues 89

xiv

List of Figures

4.5 A sample of the OFBiz application — system dashboard 90

xv

List of Tables

3.1 Navigational strategies . 39

3.2 Ranks used in navigational strategies . 40

3.3 Test data strategies . 42

4.1 Research questions and Case Studies and that are answering them 60

4.2 Defects injected to the system under test for the Case Study 1 62

4.3 Defects injected to the system under test for the Case Study 2 and 3 63

4.4 Time efficiency of manual ET process vs. the proposed approach – phase 1 –

the first test . 66

4.5 Time efficiency of manual ET process vs. the proposed approach – phase 2 –

the second test round . 66

4.6 Time efficiency of manual ET process vs. the proposed approach – phase 3 –

the third test round . 67

4.7 Average time efficiency of manual ET process vs. the proposed approach . . . 67

4.8 Results of the defect injection experiment in Case Study 1 68

4.9 Metrics used to evaluate the Case Studies 2 and 3 72

4.10 Comparison of manual exploratory testing approach with the Tapir Frame-

work: data from the SUT model . 73

4.11 Participant groups performing the Case Study 3 81

4.12 Comparison of Tapir navigational strategies based data from SUT model . . . 83

4.13 Relative differences between results of Case Study 3 groups 85

xvi

Abbreviations

AJAX Asynchronous JavaScript And XML

API Application programming interface

BPMN Business Process Model and Notation

CIM Computation Independent Model

CIT Computation Independent Test

CR Capture and Replay

CSS Cascading Style Sheets

DOM Document Object Model

EC Equivalence Class

ET Exploratory Testing

HTML Hyper–text Markup Language

HTTP Hyper–text Transfer Protocol

IFML Interaction Flow Modeling Language

JSON JavaScript Object Notation

MBT Model–Based Testing

MDE Model–Driven Engineering

OCL Object Constraint Language

OMG Object Management Group

PIM Platform Independent Model

PIT Platform Independent Test

SDLC Software Development Life Cycle

SUT System Under Test

UI User Interface

UX User Experience

UML Unified Modeling Language

URL Uniform Resource Locator

W3C World Wide Web Consortium

xvii

Chapter 1

Introduction

In the last two decades, the dependency of various peoples’ activities and social processes

on software information systems increased significantly. Complexity and integration level of

these systems is growing steadily, together with a growing demand for availability of these

systems. From a commercial point of view, software projects are conducted in a highly

competitive environment characterised by ever present pressure to optimise the costs and

to make the time to market shorter. These requirements are frequently in contradiction.

The cost optimisation and pressure to deliver a software product faster, together with its

complexity can lead to a decline in final product quality, and, thus, production risks.

Such a situation creates a challenge to software testing and quality assurance methods,

which have to be continuously evolved to work efficiently in the current state of the software

development domain. For the systems with consistent and detailed underlying models and

design specification, contemporary Model–Based Testing discipline offers a number of very

well applicable methods to test these systems efficiently.

However, accurate, consistent and up–to–date design documentation or model is not

present in a significant ratio of contemporary software projects in various business domains.

Many factors can contribute to this state — the pressure to optimise the costs, use of naive

software development methods, frequent change requests in the project scope, or lack of

qualified software development resources can be examples of these factors. As a direct

consequence, the efficiency of testing of these systems is also put at risk.

Setting an effective testing strategy for such projects is a challenge for software testing

practitioner. More to that, this situation represents also an exciting research challenge.

Can we provide an efficient and automated software testing methods also for these numer-

ous software projects, in which the design documentation (and the information from which

we can derive the testing scenarios) is biased and inconsistent to prevent standard testing

process based on test cases prepared in advance before the test execution?

As a stage where the defects present in the system should be discovered and fixed,

software testing represents an important part the software development life cycle [54]. The

1

1. Introduction

current software testing is also considered to be a costly process. Study [35] estimates

its costs to be even between 40% and 80% of the total costs of the development. As the

First Boehm’s law, based on empirical evidence from an extensive number of software

development projects says, the price of defect detection and removal grows with the stage

of the software project. Correcting a wrong requirement in a requirement catalogue can

be a matter of half–hour discussion with the investor. Correcting a defect caused by this

wrong requirement in production stage can impose extensive costs: It is not only really

expensive because the application has to be reworked and released again, but it can annoy

users to the point when they stop using the tested system, which can result in loss of

potential income acquired by the tested system (see Fig. 1.1)1. An example of potential

savings gained by a more efficient testing process and detection of defects are outlined

in Fig. 1.2. Here, the shaded area represents the developers’costs due to an inadequate

infrastructure for software testing [105].

To ensure efficient testing of software projects, various strategies can be taken. On

one side of the specter, we can position the Model–Based Testing, where high coverage

test cases are generated from a suitable model of the system under test (SUT). On the

other side of the spectrum, Exploratory Testing (ET) can be positioned. Here, test case

scenarios are not prepared in advance and are defined during the testing process. Thus,

Exploratory Testing is suitable for projects, where test basis is not present, or at least not

complete and consistent to the extent allowing the creation of efficient test cases. In this

Dissertation Thesis, we focus on a fusion of these two approaches, despite the fact, that

such a combination may seem unusual. To explain the reasons, why we did so, let’s start

with a more detailed introduction of the Exploratory Testing technique.

1.1 Exploratory Testing

Let’s begin with an analogy. Imagine you have a new game and you start playing that

game, if you don’t want to start with the tutorial and you have already played a similar

game in the past — then, intuitively, you have a basic understanding of how this new

game is played and what the goal is. The task of an exploratory tester similar — using

1The legend for the figure:

RD Requirements gathering and analysis/architectural design

CU Coding/Unit testing

IS Integration and component system test

ER Early customer feedback/beta test programs

PR Post–production release

2

1.1. Exploratory Testing

Figure 1.1: Average cost per defect shown by where defects are detected and percentage
of defects defected in each SDLC phase [105]

Figure 1.2: Example of cost reductions of detecting bugs and fixing them faster [105].

3

1. Introduction

his intuition the tester is not trying to win the game but to detect as many defects in the

tested software as possible.

More formally, Exploratory Testing is defined as simultaneous learning, test design, and

test execution. The Exploratory Testing technique requires highly skilled and experienced

testers who rely on their intuition and the knowledge of the SUT to detect possible defects

[97].

Exploratory testing allows the full power of the testers’ mind to help with bugs detection

and to verify the functionality of the system under test without any limitations [101].

During the exploratory testing, the tester has to rely on his own experience and intuition,

freely exploring the application. However, for the efficiency, the testing process should be

planned and testing area predetermined and agreed in a document called test charter (it

can be also called a test planning checklist). Also, the exercised tests, found defects and

previously explored parts of the SUT have to be documented. These factors influencing

an efficiency of the ET process have also been the subject of software engineering research

[41].

Typically, the Exploratory Testing approach is being used as a contingency technique

when consistent and up-to-date test cases and test basis are missing in the project. Also,

in combination with the Error Guessing [46] technique it is being used as an addition to

classical test cases based techniques to increase a test coverage.

To perform the ET efficiently, very important part of this technique is documentation

of the explored paths in the SUT and the exercised test cases. When the explored path

and exercised test cases are not documented properly, this technique loses its potential

efficiency. Currently, a large ratio of web applications is usually developed without any or

sufficient underlying models. In the most of the cases, this is a consequence of required low

development costs and usually short time-to-market in the competitive environment. Nev-

ertheless, the model is still implicitly present in the SUT code and with proper techniques,

it is possible to reconstruct the model from the application. To achieve this, for instance,

AJAX–enabled applications can be explored by a crawler tool[70] to identify clickable ele-

ments. Alternatively, reverse engineering technique can be used to add a cross–platform

adaptation feature to the web application [7]. Input elements in HTML page can be ana-

lyzed to infer user interface patterns like login form or search field. Input elements in

HTML page can be analyzed to infer user interface patterns like login form or search field

[91, 34, 73]. For example, crawler–based approach is also used by A2T2 [2] tool for Android

phone applications.

There is a number of these options and we will come back to discuss them thoroughly in

the state–of–the–art review in Chapter 2. Before that, let’s discuss benefits and limitations

of the Exploratory Testing technique.

4

1.1. Exploratory Testing

1.1.1 Situations Suitable for Exploratory Testing

Exploratory Testing is very well applicable in situations, where test cases cannot be de-

signed in advance. This scenario often arises in the early stage of product development

when the application is not stable and prone to changes, or in various situations, in which

sufficient design documentation is missing. Nevertheless, there are more situations being

a good candidate for ET application. Let’s summarize these situations as follows:

◦ rapid feedback on product quality in a short span of time has to be provided,

◦ the product is in early development stage when the system is not stable,

◦ the scope and variations of a discovered defect has to be explored,

◦ scripted tests are not detecting many errors, and, mainly

◦ the requirements for the project are vague, documentation is incomplete and it is

difficult to determine test cases to be run.

In these situations, several benefits of Exploratory Testing can be exploited.

1.1.2 Benefits of the Exploratory Testing

The Exploratory Testing technique provides following typical beneficial features:

Product Analysis. Testers are free to test the application executing many test cases.

They are using their intuition and creativity to break the application. The testers focus

more on using the application from the end–user point of view and discovering realistic

defects.

Critical Defects Detection. The testers can start testing new features immediately

without preparing the test scripts first. Again the testers focus on areas where they sense

the defects can be detected.

Quick Product Feedback. The testers detect defects quite quickly and report it imme-

diately back to the product manager or the development team. Thus, found issues can be

fixed in a shorter time than those found in a standard software testing lifecycle, for instance

[58]. The testing plan or schedule does not have to be altered unlike when scripted tests

are executed.

Free form testing. There are no rules in exploratory testing. The testers can be quickly

dispatched to test another part of the system under test or even another tested system.

Guidelines should be made available to the testers to improve the efficiency of the testing.

5

1. Introduction

Improve the Efficiency of Scripted Tests. In the ET, a number of defects might be

left undetected. The technique can, however, improve existing test designs and refine the

test scripts by using inputs and data collected.

These advantageous features make the Exploratory Testing suitable option for testing

of software projects with missing, obsolete or incomplete design documentation, as well

as a complement to standard testing process, in which a test design phase precedes a test

execution phase.

1.1.3 Exploratory Testing Challenges

Besides its advantages presented in the previous section, the Exploratory Testing technique

has also its drawbacks and challenges that should be addressed to perform this technique

in an efficient way. These challenges are mainly:

Resources demand. Exploratory Testing technique requires highly experienced testers

who are also familiar with the SUT and its details (to the extent of knowing rarely used

features of the SUT). Highly experienced testers are usually expensive team resources, so

practical trend is to make the testing costs lower and compromises are demanded by the

project investor or manager. Obviously, Exploratory Testing can be performed with a more

junior team whose members do not have knowledge of SUT functions and structure, but

the efficiency of such testing is questionable.

Documentation. The testers must document explored SUT functions systematically

and consistently — either to prevent duplicate tests or for the reproduction and fixing of

the discovered defects. If this is not ensured, this technique loses its efficiency rapidly and

converges to “free testing” without proper control.

Distribution of work. To prevent duplicities in tests and test data and to allocate

resources efficiently, strong Test Lead’s presence is required. The testers should be also

involved in the planning of the execution of the test cycles.

1.2 Motivation

The motivation of this thesis arises from the challenges of Exploratory Testing performed

manually, which have been outlined in section 1.1.3. The state–of–the–art triggers the

following questions:

(1) Is there a possibility how to aid the Exploratory Testing by a suitable automated

support?

6

1.3. Goals of the Dissertation Thesis

(2) Can we get the best practices of the model–based testing and apply them in an

extreme situation, when we have only an implicit model given by the already imple-

mented SUT, without any underlying design model or documentation?

(3) Can we make the Exploratory Testing available also to a more junior testing team,

letting a machine to take over part of administrative managerial tasks as a docu-

mentation of explored SUT parts or distribution of work to individual testers?

After the extensive literature survey, which we did during this project, we consider

these problems to be not sufficiently solved yet. It seems that this area lays a bit outside

of the main streams in the research, which is classical Model-Based Testing or research of

Exploratory Testing performed manually, but seen rather from a managerial point of view.

Our opinion is that a combination of these areas would deserve more attention.

1.3 Goals of the Dissertation Thesis

Based on the motivation, presented in the section 1.2, the goals of this Dissertation Thesis

are the following:

1. Explore the possibility how to aid an Exploratory Testing process by a suitable

automated support, which will (1) take over part of administrative overhead related

to operational management of testing team, (2) will lead to more efficient exploration

of SUT functions, (3) enables the testing team to detect more defects in the SUT and

(4) will prevent duplication of executed tests by individual testing team members. By

operational management in this context, we mean the assignment of particular testing

tasks to individual testers and documentation of already explored SUT functions and

exercised test data combinations.

2. Design a model of SUT, which will serve as a basis for this automated support.

Explore already existing screen–flow based models and either adopt and adjust an

existing model or to design an own model, if the situation requires.

3. Use the defined SUT model for a real-time generation of navigational test cases,

which will help the exploratory tester to explore SUT in an efficient way. Formalize

a mechanism of generation of these test cases. Include also test data suggestions to

this process.

4. Implement a framework, which will guide the exploratory testers in the SUT and

support them by the navigational test cases in accord with the defined model and

principles of generation of these test cases. The framework will consist of three

principal parts: (1) browser extension, which will analyzes the SUT front-end pages,

7

1. Introduction

(2) back-end system, which will maintain the SUT model, generate the navigational

test cases and present them to the testers in a separate guidance web application, (3)

administration part, which will allow to browse, edit and visualize the SUT model,

as well as manage the testing team using the framework.

5. Conduct case studies, which will verify the functionality of the implemented frame-

work and compare its efficiency with Exploratory Testing performed manually. Test

the applicability of the proposed system on at least three different system under tests.

As one of these systems, select a SUT, which HTML front–end structure will by dy-

namically generated, which could cause the problems with analyzing of the front-end

pages. Assess applicability of the proposed framework also for this type of SUT.

In this Dissertation Thesis we limit the scope of the systems under tests to web–based

applications and information systems, providing a HTML–based user interface.

1.4 Structure of the Dissertation Thesis

The thesis is organized into five chapters as follows:

1. Introduction: Gives an initial description of the problem we are solving in this Dis-

sertation Thesis, the motivation for our work and the goals of this Thesis. Finally,

contributions of this Thesis are summarized in this chapter.

2. Background and State-of-the-Art: Analyzes the related work in several areas related

to the topic of our research and summarizes the results of these literature surveys in

the context of this Thesis.

3. Proposed Solution: Describes the functionality of the proposed framework and its

internal structure. Then, this chapter contains definition of the model of the System

Under Test, which serves as a basis for the framework functionality. Further on,

the process by which automated navigation of the exploratory tester is generated,

is described in this chapter. Finally, this chapter overviews selected implementation

details of the framework.

4. Experiments: Describes four case studies we conducted to verify functionality and

practical applicability of the proposed framework, discusses threats to the validity

of performed experiments and gives an overview of alternative applications of the

proposed framework.

5. Conclusions: Summarizes the results of our research, discusses the future work we

are planning in the next two years horizon, and concludes the thesis.

8

Chapter 2

Background and State-of-the-Art

In this section, the relevant previous research and literature that relates to this Dissertation

Thesis are reviewed. Several principal related areas are discussed, as the topic of this thesis

is practically a combination of Exploratory Testing, Model Re–engineering and Model–

Based Testing in its specific variant.

We start the overview with a general introduction to the Model–Driven Engineering

and Testing discipline. Then, we discuss the state–of–the–art of the most relevant sub-

part of this discipline, the Model–Based Testing. Briefly, we comment also on Model

Validation and Model Checking disciplines since they are related to the discussed area.

Then, we discuss the state-of-the-art of the Reverse Engineering discipline.

Then, we summarize a literature survey in the area, which is conceptually close to

the reverse engineering approach: we examine Capture and Replay approach used in

the automated testing discipline. Further on, in section Challenges in Dynamic Web

Systems Testing we discuss potential technical difficulties and challenges related to this

recording.

Finally, we summarize related research dedicated to Exploratory Testing technique,

which is the main concept we support by the framework presented in this Dissertation

Thesis. As this discipline is confused with the Error Guessing technique by the prac-

titioners sometimes, we comment also on this area. Finally, we summarize the presented

discussion in the context of the goals of this Thesis.

2.1 Model–Driven Engineering and Testing

Model–driven engineering (MDE) [92, 110, 47] is a software development methodology fo-

cusing on creating and using the domain models as a basis for implementing the software

system. Using the model has a significant advantage — it allows to specify the system

much more exactly compared to a written text only. This can significantly lower probab-

9

2. Background and State-of-the-Art

Figure 2.1: Overview of the Model–Driven Engineering approach [28]

ility of software defects, as wrong or ambiguous specifications cause a large ration of the

defects. Domain specific models are an abstract representation of the entities and actions

representing the application domain. MDE approach increases productivity by maximising

the compatibility between systems via the reuse of the models. The models are then trans-

formed into a more concrete code, and in the end, an executable source code of the system

is generated, see Figure 2.1.

The principle of MDE is to use of system models and transformations to support all

tasks of the software development life cycle (SDLC), spanning from analysis to testing.

Modern MDE technologies use various models to represent different perspectives of the

system at a different level of abstraction.

With the MDE tools, the productivity rates can increase, and a significant amount of

source code can be generated. Though, someone has still to write and debug the trans-

formation rules.

Aligning MDE methods and tool capabilities with the system acquisition strategy can

improve system quality, reduce time to deliver the product, and reduce maintenance cost.

Otherwise, using the methods and tools can result in increased risk and cost in development

(extending and adding new features) and maintenance1. The tool–set must be carefully

1https://insights.sei.cmu.edu/sei blog/2015/05/model-driven-engineering-automatic-code-generation-

10

2.2. Model–Based Testing

evaluated before selected — switching to another tool (as well as the evaluation of that

tool beforehand) later in development can be expensive.

As mentioned, MDE approach can be applied in various places in SLDC, testing and UI

design included. The UI is usually created using domain–specific components and patterns.

These components do have typical and expected behaviour across the domains (and even in

the niche fields, for example, a medical software or production line visualization software,

the standard behaviour is expected). The consistent application of these patterns increases

the usability and User Experience (UX). The use of models, in this case, removes the need

for the UI design, which is tedious and painstaking task (although the transformations of

the model must be adjusted accordingly to achieve the desired level of user experience[80]).

From the perspective of this Dissertation Thesis, we are interested in quality assurance

techniques employing this model–driven approach. The quality in MDE can be verified by

three principal techniques: Model Validation, Model Checking, and Model–Based Testing,

which we are going to discuss in the following sections.

2.2 Model–Based Testing

Black–box testing is defined as the examination of SUT functionality without the know-

ledge of its internal mechanisms. In this context, Model–Based Testing (MBT) can be

discussed as the automation of black–box testing approach verifying the compliance of the

implementation of a system with the specification — the model.

Abstract model representation of the SUT is provided as an input to a test case gen-

erator. The generator creates abstract or implementation specific test case scenarios. The

concrete scenarios are then executed against the SUT. The key point here is the automa-

tion of the process, which allows generating an extensive number of test scenarios with a

high level of test coverage.

In the model-based testing [107, 65, 53, 31, 95] the standard approach is the test case

generation from the formal model of the system requirements and behaviour. The model

is usually created manually from information specifications or requirements. Creating a

formal model from the requirements also results in an immediate feedback. The modelers

can reciprocally clarify the missing information in the specification. The model describing

the system is usually an abstract, partial presentation of the desired behaviour of the

system. Test cases generated from such a model are functional tests on the same level

of abstraction as the model forming an abstract test suite. An abstract test suite cannot

be executed directly against an SUT because, usually, there are physical details of the

test missing. By employing a model transformation, an executable test suite is derived

from a corresponding abstract test suite [82]. In some model–based testing environments,

the models do contain enough information to generate executable test suites directly. A

and-beyond.html

11

2. Background and State-of-the-Art

mapping has to exist between the elements of the abstract test suite and executable code

in the software to create a particular test suite. As test suites are derived from models

and not from the SUT source code, Model–Based testing is usually seen as one form of

black–box testing.

The MBT process usually has four stages [106]:

1. Building an abstract model of the system under test

2. Validating the model

3. Generating abstract tests from the model

4. Refining those abstract tests into concrete executable tests

The abstract–to–executable test suite transformation is usually applied mechanically.

The common approach is to consolidate all test derivation related parameters into a sep-

arate package often known as “test requirements”. This package can contain additional

meta–data that are not captured by the model. The meta–data can define the risk level of

selected application modules; expected relationship between the observed and controlled

environment variables once the system is put in place, assumptions about the environment

due to conditions external to the system, or the relations that the system must maintain

with the environment [26], or the conditions indicating when the testing is finished (test

exit criteria).

A number of concepts and approaches can be found in this area, as well as various

types of underlying models, which are used for this process. Let’s give some examples. A

model transformation framework is presented in [40]. In this framework, forward engineer-

ing stream goes from computation independent model (CIM) to application code and the

testing stream goes from computation independent test (CIT) specification to an execut-

able test script. The authors are describing vertical transformation for composing the two

streams and horizontal mapping for reflecting changes made in the modelling framework.

The chain of transformations produce tests, meta models represent test cases for web ap-

plications at different levels of abstraction. The important part is the focus on automatic

alignment of the platform independent test (PIT) specification after changes were made to

PIM — the alignment is keeping the models synchronized. In this concept, different model-

ling languages are used on different levels: Business Process Model and Notation (BPMN)

for Computation Independent Model (CIM) and WebML for Platform Independent Model

(PIM). The WebML model enriches the BPMN process scheme with operational details.

As introduced above, the abstract test cases are often generated from the model, and

these abstract tests cannot be executed against the SUT. The abstract tests can be mapped

to concrete (physical) tests, but without a dedicated support, the data flows cannot be

mapped to these tests. A test generation methodology — Abstract to Concrete Tests —

was proposed in [16] which is using state chart diagrams and symbolic execution to resolve

12

2.2. Model–Based Testing

the data flow between the components. In this concept, the abstract test can be then

effectively mapped to a concrete test and executed.

Testers transform the abstract tests into concrete tests with (1) particularly selected

test input values (test data) from the abstract determination of the data ranges in the

abstract tests (if present there), (2) test oracles that determine the results to be asserted

as a result of the executed tests and (3) physical details about the particular test steps

and verify the correctness of test case execution. The problem which arises when we need

to determine the correct behavior of the SUT and distinguish it from potentially incorrect

behavior is called the “test oracle problem” [6]. Automation of the test oracle is essential

to prevent manual determination of the SUT correct behaviour, which can be resource

demanding task for large sets of test scenarios [62, 64]. A comprehensive survey on the

testing using test oracles, a process called metamorphic testing, is provided in [93]. Even

when a test oracle is automated, the problem is not solved completely, because the test

oracle itself can contain defects, and, thus, provide misleading information about expected

results of the tests.

A primary concern in the model–driven engineering is how to ensure the quality of the

model–transformation mechanisms. One of the validation methods that is commonly used

is model transformation testing addressing the efficient generation, selection the validity

of the transformed models [56].

There are many general purpose modelling languages available for describing the system

high–level model used in the industry. The most widespread and used is Unified Modeling

Language (UML2).

Structural and behaviour diagrams of UML can capture and describe various aspects

of the application. With the addition of constraints using Object Constraint Language

(OCL), the UML model can be made more descriptive. OCL complements the UML

model with the constraints that it cannot capture - for example, restrictions on a class

model attribute (Age of a person cannot be a negative number).

Wide usage of UML as design modelling language also implies its use as a source for

the Model–Based Testing techniques. Shirole at al. [96] conducted a survey to improve

the understanding of the UML based testing techniques. Authors of this study focused on

the usage of the behavioural specification diagrams. Related work can be tracked on areas

of sequence diagrams [5, 100, 59], state chart diagrams [16], activity diagrams [55, 59, 52],

or state machine diagrams [111] diagrams. The research approaches were classified by

the formal specifications, graph theory, heuristics of the testing process, and direct UML

specification processing. UML collaboration diagrams provide a complete path for a use

case or the realisation of an operation. That makes them suitable for MBT purposes

because they describe the connections between the functions provided by the software in a

form that can be manipulated using an automated approach. Class diagrams and use–case

2http://www.uml.org/

13

2. Background and State-of-the-Art

diagrams are not precise enough for model based testing; hence additional description from

dynamic behavioural models is required [107]. UML diagrams [33] have been also widely

used as a source for code generation [60, 1, 67]. Use–case models [63] or specification of

integration interfaces [85] can be used in this process as well.

Usually, the UML diagrams are transformed into more suitable application model, from

which the test case scenarios are generated. Nevertheless, an accurate, consistent and

detailed model is often very costly to create, and the maintenance and synchronisation of

such model with the rapid development of the project are difficult. The more dynamic or

chaotic the environment of the web applications development is, the more expensive is the

necessity to update the model to reflect all updates and changes.

Unfortunately, the standard set of UML 2.0 diagrams does not directly focus on the user

front–end interaction. UML notation was also used to model the user interface, but it does

not have the capabilities to model all the nuances of the UI. Even though a user interface

diagram was introduced with a user interface specialisation in [38], there are more suitable

modelling languages available to model the user interface of an application, especially in

the domain of the web applications.

The first example of these web modelling languages [90] is the Web Modeling Language

(WebML [74, 12], see an example in Figure 2.2), which was created introducing visual nota-

tions and a methodology for designing complex data–intensive Web applications. Later on,

this language then evolved into IFML [11, 13, 109] to cover a wider spectrum of the front–

end interfaces and the data flow between the application front–end components. IFML

was standardised in 2013. Its notation is easily extensible — new containers, compon-

ents, events can be added or custom UML stereotypes applied as described in [14], where

new components and events (swipe, camera event, location sensor event for mobile UI

modelling) were added to define mobile–specific interfaces and interaction. It represents

a prospective modelling tool to describe application front–end and a flexible and easily

extensible notation.

Data driven application front–end is often built using reusable components (forms, list

views, detail views, etc.). Components have expected behaviour — forms on the page are

expected to be filled with data for further processing, lists show record details, etc. These

operations can be modeled using the IFML notation (see an example in Figure 2.3). IFML

capabilities are promising to generate front–end test case scenarios, as we have explored in

one stage of this Dissertation Thesis project [A.9].

In Model–Based Testing, correctness and completeness of used models has the direct

impact on the effectiveness of the generated test cases. Faults, which can remain undetec-

ted by these generated test cases can be detected with Exploratory Testing performed

manually by experienced test engineers [23]. The combination of these concepts can also

be traced in the literature — the tool–set proposed in [23] analyses the recordings of per-

formed tests with the aim to identify inconsistencies on in system models. These identified

14

2.3. Model Validation and Model Checking

Figure 2.2: Example of WebML — a composition and navigation specification [22]

inconsistencies are used for the refinement of models to be able to generate more efficient

test cases. The approach was applied in the context of an industrial case study to improve

the models for model–based testing of a Digital TV system. After applying this approach,

three critical faults were detected. These defects were not detected by the initial set of

test cases, and they were also missed during the exploratory testing activities.

The MBT represents very prospective concept to create efficient test cases in an auto-

mated way. However, it is still limited be needed presence of the consistent and up–to–date

model of the system under test. Here, the question arises: Are we able to use this power-

ful concept, when the model is partial only, or when this model is generated by reverse

engineering technique? Let’s explore more. After having a quick glance at a related area,

Model Validation and Model Checking in Section 2.3, we will discuss the possibilities of

reverse engineering in Section 2.4.

2.3 Model Validation and Model Checking

As related concepts to Model–Based Testing, we briefly outline also Model Validation and

Model Checking areas. The importance of a having valid and consistent model before

generation of the source code or test scenarios is essential. The model should be validated

(its consistency checked) with respect to the defined criteria — the semantic and syntactic

criteria (to verify if the model was created correctly and conforms the rules of the modelling

language) or constraints defined by the author of the model (to verify if the model complies

the rules and constraints of the domain). For example, when the model is represented using

UML notation the constraints can be created using OCL that supplements UML with a

code–like constraint expressions.

15

2. Background and State-of-the-Art

Figure 2.3: Example of an IFML model — an administrator site [27]

Model is validated with a special tool which often requires switching to a different

perspective and paradigm (for example theorem solvers, Petri nets or solvers for Constraint

Satisfaction Problems) and to learn how to use another tool–set. A more natural for persons

authoring the model is to use the modelling language itself as described in [42], where UML

and OCL are used. A valid model is an input of the model transformation (or a chain of

model transformations) that should also be correct and valid and should be a subject to

testing as well.

The system requirements are described in the specification. In model checking, a sys-

tem is considered correct when all specification requirements are met [36]. Therefore the

model must be precisely defined. The process of formalization of the SUT description

can help in discovering inconsistencies in the model or reciprocally inconsistencies in the

specification. The correctness of the model can be determined even before a single line of

code is written preventing complications later and complicated modifications later in the

software development stages.

The developers cannot wait for the analysts to complete and finalise the model or until

the whole model has been completely checked, they often start writing lines of code before

the model is finished. Even this incomplete model must be checked which is a challenging

task. For instance, the authors of [4] dealt with this problem using probabilistic logic and

employing a three–valued logic.

For the model checking process, temporal logic is also used as one of options to con-

duct this process [10, 66, 15]. Temporal logic is a decidable logic to reasoning about the

16

2.4. Reverse Engineering

behaviour of the system in time. Temporal logic have temporal logic operators to quantify

over the state of the system over time — for example Always, Never, Next. The properties

of the system are described with the temporal logic operators, and the checker uses this

description to reason over the states of the system to determine whether the specification

is true or not.

The topic of model checking is beyond the scope of this thesis, more on this topic and

the topic of model checking tools with the introduction to transition systems as a formal

model of systems and temporal logic as a formal language for behavioural properties can

be found in [8]. A detailed survey on six selected model checkers was conducted by authors

of [39] to check a library system to identify features of the model checker that are required

to validate the information systems.

2.4 Reverse Engineering

In the case when the SUT model is not available, Reverse Engineering Technique (RET)

is a suitable approach to recreate it from the actual state of the SUT. The model of the

application can be recreated using RET by analysing the static content of the HTML pages

– namely the HTML elements – and to build a directed graph with web pages as nodes

and transitions/links as edges. Not every web applications have static pages only; some

content is dynamic, and the content has to be treated differently in this case. Analyzing

of the content requires the execution of the code, and it can depend on the value of input

variable(s). Prospectively, not only all the possible flows of screens and actions in the SUT

but also flows representing business processes could be re–engineered. In this process,

proper manual input to mark which sequence parts belong to the particular workflow

is needed. Authors of [76] have created a tool called iMPAcT [75, 64] for mobile pattern

testing. They are focusing on an automated testing of recurring behaviour, i.e. UI patterns.

For a UI pattern to be matched, the current state of the application is analysed when an

event is fired. The pattern preconditions must be verified, and all checks met. Each UI

pattern has a test pattern associated with testing. A catalogue of UI patterns was created

for the mobile application, which can be prospectively also used in reverse engineering of

the SUT model.

With the evolution of development techniques, many legacy applications are left behind.

Adding new feature to such application or fixing a bug might be difficult — for example

when the application was developed using a programming language from the past. A

systematic model driven reverse engineering process to generate an IFML representation

from such applications is presented in [89]. The authors leverage IFML to modernise the

front–ends of the framework–based legacy web applications created before the adoption of

Model Driven Web Engineering.

The Exploratory Testing technique does not require precisely specified and documented

17

2. Background and State-of-the-Art

test cases. In [48, 50], it was even demonstrated that detailed test scenarios do not increase

overall testing efficiency from the economic point of view. The reason is that many resources

are spent on creating such detailed scenarios. For projects with low and medium demands

on SUT reliability, this is worth considering. Also, lots of applications are usually developed

without any or sufficient underlying models.

Another study proposed using ET approach to acquire knowledge for a model-based

testing [32]. The main target area of Exploratory Testing is GUI testing where the tester

tries to find defects and break the application by exploring the possible actions in the SUT

using his intuition. Testers can start testing new feature immediately since the planning of

the testing process is not necessary. In contrary to these advantages, certain disadvantages

shall also be mentioned [94]. It is difficult to assess whether a feature was tested, the

process is not monitored and tracked, the quality of testing is unclear and depends on the

experience and skills of the tester. The problem is also to re-evaluate the test later.

Kim et al. [57] focused on generating formal specifications from manually written test

cases – a possible synergy between Exploratory Testing and model-based testing. The

SUT model is re–engineered to get a better insight into the legacy code. Reverse engin-

eering provides an insight into the application without having its documentation available.

Test scripts written for Sikuli 3 tool are transformed into a model with preconditions and

post–conditions, screen, action, and input element identifiers. Sikuli is a tool for desktop

automation that uses Optical Character Recognition (OCR) to identify elements visible

on the screen. The knowledge of creating Sikuli scripts and the requirement to have some

tests created in advance is required.

A tool called MobiGUITAR [3] focuses on automated model-based testing of mobile

applications (a similar tool called GUITAR [79] was created for automated testing of GUI–

driven desktop software written in Java). In the first step (called ripping), a state machine

model of the SUT is created — the application is launched with a given start state, then a

list of the events that can be triggered in that state is created. The tool then triggers the

events from the list and analyses the new states the application is traversed in a breadth-

first order. The crawler proposed by Mesbah et al. [70] works similarly – clickable elements

on an AJAX–enabled web page are detected. Then the click action is triggered and when

the response is returned from the server, and the document object model of the page is

settled, the resulting state of the application is analyzed, and the system state machine

model is created.

Open2Test test scripts are automatically generated from software design documents in

[103]. A design document, design model and test model is extended with the information

about the structure of the web page (identificators of the HTML elements) in the integ-

ration testing tool called TesMa [104]. When software specification changes, the latest

scripts are regenerated from latest test design documents. This reduces the cost of the

3http://www.sikuli.org/

18

2.5. Capture and Replay

maintenance of the test scripts. However, the design documents must be extended with

the detailed information before the test generation process can even start.

The structure of the web application is analysed to create a page flow graph (PFG)

representing the flow of the pages in [84]. The graph captures the relationship between the

web pages of the application, and the test cases are then generated by traversing this graph

(all sequences of web pages). The PFG is then converted into a syntax model consisting

of rules, and test cases are generated from this model. Unfortunately, the construction of

the PFG is not described in the cited paper and an extra step is required to convert the

PFG to syntax model to generate the tests later. Common elements, user interface (UI)

patterns, are used when developers are creating the UI of the applications — examples of

such pattern are Login, Find, Search. The users with a certain degree of experience know

how to use the UI or how it should be used. As described in [77] it is possible to define

and generic test strategies to test these patterns. Pattern based model testing uses domain

specific language PARADIGM to build the GUI tests models based on UI patterns and

PARADIGM based tools to build the test models, generate and execute the tests. To avoid

a large number of test cases, they are filtered based on particular configuration or selected

randomly.

Another solution, GUISurfer [98] automatically reverse engineers a behavioural model

of the GUI from the source code of Java Swing-based GUI applications to produce a Haskell

specification. This model of the application is then validated by running test cases. An

alternative, REGUI2FM [81] reconstructs a GUI into a Spec# model, which can be used

in Spec Explorer environment [108] to generate test cases. It also captures user actions

into scenarios which are used for testing [78].

In relation to the Reverse Engineering of the SUT model, also the Capture and Replay

concept can be discussed, which we are going to do in the following section.

2.5 Capture and Replay

The Capture and Replay (CR) technique is used for automated testing of the user interface

and functionality of software applications. As the name suggests, the Capture and Replay

tools operate in two modes — capture and replay. When using the tool in capture mode,

testers run an application and record the interactions between the user and the application.

Recorded interactions with the SUT can be persisted and repeatedly replayed later without

human intervention in the replay mode. CR tools often support regression testing.

In the framework proposed in this Thesis, we are employing this technique to capture

the interaction of the user with the SUT, which serves as a basis for reverse engineering of

the SUT model.

The Capture and Replay scenarios are quite easy to create, and no unique skills of

testers are required. But the testers have to manually the widgets and some of their

19

2. Background and State-of-the-Art

properties they are interested in during a capture session. This is also the cause of the

problem with the Capture and Replay scenarios — the recorded tests tend to be very

fragile because of the nature of the application development and evolution — changes to

UI can break the test cases [61]. The first tools that were recording the mouse movements

and the mouse event coordinates were very brittle since the smallest change, like changing

the location of an element by few pixels, resulting in failing test. This problem was solved

by capturing the UI elements and not the mouse coordinates.

Also, the sequence of captured interaction is not a complete test case unless the frame-

work supports verifications. These verifications have to be added manually. For example,

Selenium IDE4, an integrated development environment for Selenium scripts implemented

as a Firefox extension, is using the commands like assertElementPresent, assertText,

assertTextNotPresent, . . . to assert certain conditions.

The fragility of Capture and Replay scenarios is cited as a frequent problem; these tests

usually fail as the required elements cannot be located because the structure of the page

or their naming has changed. In a study [44] 153 versions of 8 different web applications

were analysed, an observation was made that UI element locators caused over 73% of the

test breakages, and attribute–based locators caused the majority of these. Failures are

also caused usability improvements — page reloads or the lack of them, JavaScript pop–up

boxes, using AJAX for server calls etc. In surveys conducted on this topic, for instance

[17, 87], maintenance of front–end based automated tests has been reported as the main

problem of this technology. Record and Replay approach displays more severe maintenance

issues than its alternative, the Descriptive Programming, in which a program code creates

the test steps and various reusable objects and design patterns can be used to optimise the

tests to be more stable [18]. The results of another study support the idea of a vast number

of test cases becoming unusable for modified GUI versions. The repairing algorithms, with

four simple transformations, can repair more than half of the test cases, short test cases

are less likely to become unusable [68]. Changes to parts of the system that dominate the

result in a significant number of test cases make these tests unusable and failing.

Tools using capture and replay technique are targeting various testing (Windows, Linux,

OS X) and tested platforms (mobile, desktop, web), programming languages and techno-

logies. For instance, the user events of Android applications are captured and converted

into Robotium5 test scripts that can be executed to replay the recorded actions of users

in [64]. The approach also allows inserting assertions when capturing user interactions for

verifying the outputs of Android UI components for desktop applications [37].

Authors of [88] have conducted an experiment to evaluate selected Capture and Replay

tools. The study also indicates that for simple testing tasks the effort of using a CR–based

tool is lower than using an MBT tool, but with the increasing testing complexity, the

4http://www.seleniumhq.org/projects/ide/
5Robotium is an Android test automation framework, https://github.com/RobotiumTech/robotium

20

2.6. Challenges in Dynamic Web Systems Testing

advantage of using MBT grows significantly.

Also, defect reporting can be aided and automated by the Capture and Replay ap-

proach: A tool called Reanimator6 was originally designed to record web application crashes

for later debugging — the recorded sequences of user actions were replayed to reproduce

the problem. The usage of the tool is not limited to recording only; it can be used to

create tutorials or automated browser tasks. Reanimator was inspired by Mugshot [72], a

system that is capturing every event in a JavaScript program, which is allowing developers

to replay those events in a deterministic way. The tool can replay every step the user has

taken that led to a failure. This has the advantage over the commonly used error–based

reporting systems since the stack trace gives insufficient information about the crash (it

only provides a snapshot of the system after the failure).

Inspiration acquired from this area has served us during the design of the parts of the

proposed framework, which is recording the testers’ activity in the SUT. This area brings

many technical challenges, which we explain in the following section.

2.6 Challenges in Dynamic Web Systems Testing

The current Web has practically evolved from a platform for publishing of static material to

the major medium for learning, business, entertainment and many other areas of peoples’

activity today. Users are no longer only passive consumers of Web content but also creators

and providers of the content. New software development paradigms such as service–oriented

and cloud computing are based on Web technologies.

The specifics of modern web applications differentiate them from any other software

application and these details significantly affect the testing of such applications. In [30] the

main differences between Web applications and traditional ones are discussed, including

their impact on the testing (white–box, black–box and grey–box testing strategies). The

advance of Web 2.0 applications brought new specifics the tests should deal with, and the

question is what is coming in Web 3.0. Contemporary development styles of user interface

construction are not HTML–based only, the user experience is dynamically enhanced using

JavaScript making identification the HTML elements more demanding task. The dynamic

nature of the UI makes it harder to identify the UI elements correctly. Crawlers, tools

systematically visiting all pages of the web application, are quite often used to quickly

collect the information about the structure, content and navigation relationships between

pages/actions of the web application [102, 25, 19]. While the crawlers can go through

the whole application very quickly, a sequence of steps by such crawl may differ from

the sequence made by a manual tester. Also, some parts of the application could be not

reachable by the crawler; also crawlers could meet difficulties when user authorisation is

required in the SUT.

6https://github.com/WaterfallEngineering/reanimator/

21

2. Background and State-of-the-Art

Unlike desktop applications, web browsers are adding another level of interaction to

the tested application. The tester is not limited to use only the SUT capabilities, but

can also interact directly with the browser — reload the page, navigate back and forward

using designated buttons, disable JavaScript, delete cookies, use auto–complete, close the

browser window or tab, use browser extensions and others. These browser features are

adding some un–predictability to how the user interacts with the application. Some older

web applications even use frame–sets to organise multiple frames and even nest the frame–

sets to make the layout of web pages identical and simplify the development. Each frame

in a frame–set displays different web page. The interaction with the page then breaks into

interaction with multiple pages which must be taken into consideration [99].

2.7 Exploratory Testing

Exploratory Testing technique itself is a subject of current software testing research. As

explained in the introduction, this technique gives software testers certain level of freedom

to design and execute the tests while exploring the product [45, 49, 83, 51]. The tester uses

the data gathered from the execution of the first set of tests to conduct the next round

of tests. ET can find critical defects in a shorter time. Unlike documented test cases,

exploratory testing does not follow any testing rules. Testers with strong knowledge of the

business and technical domain explore the application. By browsing through and using

the application like a real user, testers are more likely to find issues that customers might

face.

An industrial case study to evaluate the impact of education level and experience level

on the effectiveness of ET was conducted by Gebizli et al. [24]. In this study, 19 practi-

tioners, who have different education and expertise levels, were involved in applying ET

for testing a Digital TV system. The results show that efficiency regarding the number

detected failures per unit of time is significantly affected by both the educational back-

ground and experience. Experience also has a significant impact on the number of detected

critical failures, whereas education has not. Though the formal education, formal training

or test certification is not required and regular end–users regularly find and report bugs

in systems even though they are not trained as testing professionals, the testing process

encompasses a broad range of skills (planning, design, automation, exploratory testing).

A certain level of formal proficiency in these areas is required [71].

Controlled experiments with 70 participants were conducted by authors of [9] to quantify

the effectiveness and efficiency of exploratory testing. The report showed that ET (com-

pared to testing with documented test cases) found a significantly greater number of defects

and also found significantly more defects of varying levels of difficulty, types and severity

levels (though the difference in numbers of reported false defects was not significant).

Another research was conducted to improve the efficiency of the ET process. A method

22

2.8. Error Guessing

called team exploratory testing (TET) [86] improves the results of this technique, employing

the team work more intensively. The motivation behind this idea is that higher number of

people in quality assurance team increases the number of the found defects and that anyone,

not only the testers, can report the defects. The testing can be performed for example by

domain experts and thanks to the nature of ET; the testing session does not require any

preparation or post–work from the participants. TET has similarities to software reviews

and usability inspections. The TET sessions were found to be more efficient than other

testing methods on average and were more likely to detect usability and UI–related defects

while other testing vehicles detect more functionality related defects. The results of the

research are not generalised for wider use but might be applicable to similar projects.

In our approach, we also employ the idea of the teamwork during the ET process.

Differently to the TET approach, this teamwork support is not based on team sessions,

but on the recordings of testers’ activities in the SUT and subsequent optimisation of

navigation provided to the tester.

2.8 Error Guessing

Error Guessing is usually interpreted as a testing technique separate from Exploratory

Testing, for instance, [58, 46]. From a conceptual point of view, it can be discussed, if this

technique can also be interpreted as a part of the ET process. For this reason, we included

this technique to our state–of–the–art survey.

Software programs often produce incorrect behaviour when special cases data is provided

as an input. This situation can arise when the developer forgets to handle this particular

case or the situation was handled on one level of code but left unhandled elsewhere. For

example, when the code tries to divide a value by zero or a purchase order is issued with

the issue date in past.

Special cases will often depend on the data and the function of that particular part

of the application. These special cases have to be identified by testers’ intuition and

experience. Consequently, determining special cases is also called error guessing [69]. The

experienced testers are encouraged to think of situations in which the software may not be

able to process correctly, which would result in an unexpected error. Experienced testers

or users with long experience with a particular system usually have much higher ability to

predict possible defects in such a system.

For these reasons, Error Guessing technique can be used as an effective complement to

more formal techniques. Usually, the Error Guessing is performed after execution of test

cases prepared by the formal techniques7. The objective of this technique is to focus on

areas not covered by the other formal testing techniques.

7http://istqbexamcertification.com/what-is-error-guessing-in-software-testing/

23

2. Background and State-of-the-Art

Skill and experience of the tester are the key factors to the success of error guessing

technique. Testing using formal techniques usually has strict rules for how to test the

system. Here, the tester is using the system and the more he knows how it works, the

more chances he has to detect the defect by addressing the components of the system

where the system may fail.

The tester will try to provide input values that will very likely break the application —

for example, when he notices a field whose value is a divisor in an operation, he will try to

include zero value, blank input or no input at all; empty files and the wrong kind of data

— alphabetic characters where numeric are required, invalid date values and other.

Similarly to the Exploratory Testing, also in Error Guessing requires a certain struc-

tured approach to be performed efficiently. This can be achieved by creating a list of

possible system defects or malfunctions, followed by a set of tests aimed at their detection.

Such a list can be based upon the testers’ experience with the system under test. Also,

consultations with other specialists having this knowledge can lead to the identification of

such possible defects. Another possibility is common knowledge about why software fails8.

2.9 Summary of the State of the Art

During thorough literature survey, we have not found a concept which would address the

intended use case of the framework which we present in this Dissertation Thesis. In the

individual areas as Model–Based Testing, Model Reengineering or Exploratory Testing, a

number of related works are available; nevertheless, much less work is present in cross–over

of these areas.

As an example of the combination of Model-Based Testing and Exploratory Testing,

solution presented in [23] can be given. The authors analyse the recordings of performed

tests with the aim to identify inconsistencies on in system models. These identified incon-

sistencies are later used for the refinement of models to be able to generate more efficient

test cases. However, goals of this Dissertation Thesis differ, as we reconstruct the SUT

model to generate the navigational support for the exploratory tester.

The majority of the related work is assuming the existence of the SUT model preceding

the test case generation process. In this point, our approach differs, as we are going to create

the SUT model dynamically and incrementally during the exploratory testing process.

Also, the navigational test cases, which will be produced by the proposed framework are

dynamic, as the inputs are not only the current state of the constructed model but also

SUT parts explored by the particular testers or all testers in the exploratory testing team.

In our approach, we will use web application model which was created by adoption,

modification and extension of the model by Deutsch et al. [29]. Nevertheless, during

our work, the model underwent significant changes. From the related work, the model is

8http://istqbexamcertification.com/what-is-error-guessing-in-software-testing/

24

2.9. Summary of the State of the Art

conceptually most close to the IFML standard. In our previous work, we were exploring

the possibility to use IFML as an underlying model [A.9]. Nevertheless, specifics of the

presented case led us to keep the model as defined in this Dissertation Thesis.

In this Thesis, we also explore the potential of organized teamwork during the ET

process, which is an area covered by previous study [86]. Nevertheless, we approach this

topic from a completely different viewpoint, our teamwork support is not based on team

sessions as proposed in [86], but on the recordings of testers’ activities in the SUT and

subsequent optimisation of navigation provided to the tester.

25

Chapter 3

Proposed Solution

This section summarizes the functionality of the Test Analysis SUT Process Information

Reengineering (Tapir) Framework, gives details about the underlying model of the SUT,

on which the framework processes are based, and presents a mechanism, by which the auto-

mated guidance of the exploratory tester through the SUT is conducted. This mechanism

includes generation of navigational test cases, which are presented by the framework to the

exploratory tester and preparation of testing data to these test cases.

3.1 Principle of the Tapir Framework

The aim of the Tapir Framework is to make the Exploratory Testing of web-based system

under tests more efficient by automation of activities related to

1. recording of the test actions performed by the exploratory testers in the SUT,

2. taking decisions, which parts of the SUT shall be explored in the next test steps, and

3. organization of the work for a group of exploratory testers.

The Tapir Framework tracks tester’s activity in the browser and incrementally builds

the model of the SUT based on its user interface. In this process, a web-based SUT with

HTML–based user interface is assumed. Based on this model, which can be further exten-

ded by tester’s inputs, navigational test cases (more details in Section 3.4) are generated.

Together with this, explored paths in SUT are recorded for the individual exploratory test-

ers. The navigational test case helps the testers to explore the SUT more efficiently and

in a systematic way - especially, when considering a teamwork of more extensive testing

group (typically 5 and more testers).

Technically, the Tapir Framework consists of three principal parts:

27

3. Proposed Solution

◦ Tapir Browser Extension. This extension tracks tester’s activity in the SUT and

sends the required information to the TapirHQ component. It also highlights the

GUI elements of the SUT in a selected mode (elements already analyzed by Tapir

Framework or elements suggested to explore in the next tester’s step). The exten-

sion also analyzes the SUT pages during the SUT model build process. Currently,

implementation for Chrome browser is available.

◦ TapirHQ implemented as a standalone web application, which guides the tester

through the SUT, provides navigational test cases and allows Test Lead to priorit-

ize the pages and links, enter suggested equivalence classes for the SUT inputs and

related functionality. This part constructs and maintains the SUT model. The Ta-

pirHQ runs in separate browser window or tab, like a test management tool displaying

the test cases for the SUT.

◦ Tapir Analytics, which allows to visualize the current state of SUT model and the

particular state of SUT exploration. This part is also implemented as a module of

TapirHQ, sharing the SUT model with the TapirHQ application.

The overall schema of the framework is depicted in 3.1. The Tapir Framework defines

two principal user roles:

1. Test Lead - senior team member, who explores the SUT first before letting the

testers perform detailed tests. Besides the Tester’s functionalities (see further on),

the Test Lead has the following principal functionalities available:

a) Prioritization of the pages, links and user interface action elements of the SUT.

During the first exploration, the Test Lead can determine a priority of the

particular screens and related elements. This priority is saved to constructed

SUT model and is used later on in the navigational strategies (see Section 3.4.2).

b) Definition of suitable input test data. During the first exploration, the Test Lead

can define Equivalence Classes (ECs) for individual input fields detected on the

particular page. The ECs are saved to the SUT model and used later on in

the process when generating navigational test cases. Also, after the definition

of ECs for all inputs of the form on the particular page, the Test Lead can

let the Tapir Framework generate the test data combinations using external

Constrained Interaction Testing (CIT) module.

2. Tester - team member, who is being guided by the Tapir Framework to explore

the previously unexplored parts of the SUT. For the particular tester, the test lead

selects particular:

a) Navigational strategy, determining the suggested path in the SUT suggested to

the tester in the generated navigational test cases, and

28

3.2. System Under Test Model

Figure 3.1: Overall schema of the Tapir Framework

b) test data strategy, determining, which test data will be suggested by the frame-

work to be filled into the SUT forms and similar inputs.

The Test Lead can change navigational and test data strategy of particular testers dynam-

ically during the testing, to reflect current state and priorities in the testing process. These

strategies are explained further on in sections 3.4.2 and 3.4.3. The role of Test Lead is not

mandatory in the process - the Tapir Framework can be used by a team of exploratory

testers without a necessity to define this role. In such a case, functions related to priorit-

ization and test data definitions are not available to the team and navigational strategies

for team members are set by framework administrator.

3.2 System Under Test Model

For the purpose of systematic navigation of Exploratory Testers in the SUT, during our

work and experiments with the Tapir Framework, we have evolved the following model.

Originally, the model was inspired by the web application model proposed by Deutsch et

al. [29]. During the work on the Tapir project, the model underwent major changes.

29

3. Proposed Solution

T denotes all exploratory testers testing the SUT. The set T includes testers t1, . . . , tn.

A tester can be given a role of Test Lead.

Definition 3.2.1 (System under test). The SUT is defined as a tuple

(W , w0, we, S, I, A, L,M)

where:

◦ W is a set of SUT pages,

◦ w0 ∈ W represents the home page (defined page, from which the exploratory testers

start exploring the SUT),

◦ we ∈ W represents the standard error page displayed during fatal system malfunc-

tions (for instance an exception page in J2EE applications),

◦ S is a set of SUT state values,

◦ I is a set of input elements displayed to the user on the web pages of SUT user

interface,

◦ A is a set of action elements (typically <form> element submit buttons),

◦ L a set of link elements displayed to the user,

◦ M ⊆ W a set of user interface master pages. The Master Page models repeating

components of the SUT user interface, for example, a page header with a menu or a

page footer with a set of links. The definition of the Master Page is the same as a

Web Page and the Master Pages can be nested (see definition 3.2.3).

Definition 3.2.2 (Data range). range(i) denotes particular data range which can be

entered in an input element i ∈ Iw. The range(i) can be either interval, or a set of discrete

values (items of a list–of–values for instance). Then, range(Iw) contains these ranges for

the input elements of Iw.

Definition 3.2.3 (Web Page). A Web Page w ∈ W is a tuple (Iw, Aw, Lw,Θw, φw,Mw),

where

◦ Iw ⊆ I is a set of input elements,

◦ Aw ⊆ A is a set of action elements,

◦ Lw ⊆ L is a set of link elements located on page w . As a Web Page w can contain

more action elements which can perform actions with more than one form displayed

on the page, in our notation Ia ⊆ Iw contains a set of input elements connected to

action element a ∈ Aw.

30

3.2. System Under Test Model

◦ Θw is a set of action transition rules θ : w×range(Iw)×Aw → wnext, where wnext ∈ W
is a SUT web page displayed to the user as a result of submitting an action element

a ∈ Aw with particular input data entered in input elements Ia ⊆ Iw.

◦ Φw is a set of action transition rules φ : w × Lw → wnext, where wnext ∈ W is a

SUT web page displayed to the user as a result of clicking on a link element l ∈ Lw.

Web pages accessible from a Web Page w by defined transition rules Θw and Φw are

denoted as next(w).

◦ Mw ∈M is a set of Master Pages of the page w , this set can be empty.

The model of Web Page and related concepts are depicted in 3.2. Parts of the model

automatically re–engineered by the Tapir Framework during the exploratory testing process

are depicted by a white background. Of these parts, elements specifically related to the

interaction of the tester with the SUT are depicted by dotted background. Meta–data

entered by Test Lead during the exploratory testing process are depicted by blue–gray

background.

The SUT model is continuously built during the exploratory testing process. Team of

testers T contributes to this process; WT denotes SUT pages explored by the whole team,

whereas Wt denotes SUT pages explored by tester t ∈ T . By analogy, LT resp. AT denotes

SUT link, resp. action elements explored by the whole team and Lt resp. At denotes link,

resp. action elements explored by tester t ∈ T .

By principle, a link or action element can be exercised more times during the test

exploration process, also a page can be visited more times. To capture this fact, visits(w)t,

visits(l)t, resp. visits(a)t denotes number of visits of the page w, link element l, resp.

action element a by tester t. Further, visits(w)T , visits(l)T , resp. visits(a)T denotes

number of visits of the page w, link element l, resp. action element a by all testers in

testing team T .

For each input element i ∈ I, the Test Lead can define a set of equivalence classes

EC(i).

Definition 3.2.4 (Equivalence class). Equivalence class EC(i) determines the input test

data, which shall be entered by the exploratory testers during the tests to an input element

i ∈ I. When the equivalence class is not defined, EC(i) is empty. Furthermore, for each

ec(i) ∈ EC(i) it holds, that if range(i) is an interval, then ec(i) is a sub–interval of

range(i), if range(i) is a set of discrete values, then ec(i) ∈ range(i).

⋂
ec(i)∈EC(i)

ec(i) = ∅

for each i ∈ I.

31

3. Proposed Solution

Figure 3.2: Model of SUT Web Page and related concepts

32

3.2. System Under Test Model

Equivalence classes can be defined dynamically during the exploratory testing process:

some can be removed from the model, another added.

The data range range(i) and equivalence class ec(i) can contain an interval or a set

allow Data range — comment interval values vs. discrete values (typically items from a

list–of–values)

Moreover, data(i)t, resp. data(i)T denotes a set of test data values entered to input

element i by tester t, resp. by all testers in testing team T during the testing process.

A set of test data combinations entered by tester t, resp. by all testers in testing team

T in input elements Ia ⊆ Iw connected to action element a is denoted as

data(Ia)t = {(d1, . . . , dn) | d1 ∈ data(i1)t, . . . , dn ∈ data(in)t, i1 . . . in ∈ Ia}

resp.

data(Ia)T = {(d1, . . . , dn) | d1 ∈ data(i1)T , . . . , dn ∈ data(in)T , i1 . . . in ∈ Ia}

The Test Lead can also set a priority for selected elements of the SUT model. This is

denoted as prio(X), prio(X) ∈ {1 . . . 5}, 5 is the highest priority. X can be particular web

page w ∈ W , link element l ∈ L, or action element a ∈ A.

3.2.1 Discussion

During the evolution of the Tapir Framework, we explored also alternative modelling pos-

sibilities. In this section, we briefly present explored possibilities and we explain the reasons

for selection of the final model.

The first explored possibility was to base the SUT model on the UML notation. Such

an approach would have a potential advantage, which can be used in the testing process:

the Tapir Framework would produce UML specification of the actual tested version of

the system under test. Nevertheless, there were several reasons, why we dismissed this

idea after several initial experiments. First, for automated computational processing, an

underlying formal data structure is needed, so we would need to continuously convert UML

to this structure. This might be a challenging task. Second, in the Tapir Framework we

record model of the screens (SUT pages W), actions which trigger a transition to a next

page in the SUT (A and L) and testing data which have been entered in input elements of

the pages (I). In UML 2.0, there is not a diagram, which explicitly supports such a model

and adoption of the current diagrams would be demanding task.

However, another possibility was available to explore — the IFML language. The

use–case of the Tapir Framework and the underlying model we need for its functionality

is conceptually most close to the IFML standard. In the middle of the evolution of the

framework, we considered this alternative as prospective, and we did several experiments

using the IFML as an underlying model [A.9]. Finally, we decided to return back to the

33

3. Proposed Solution

model as specified in Section 3.2. There were two major reasons for this decision: (1) As

in case of the UML, for computational processing, an underlying formal data structure

is needed. Real–time conversions of IFML model to such a structure would bring an

additional overhead and complexity. (2) The case of the Tapir Framework became to be

too much specific to just adopt the IFML. In the SUT model, we store the history of

the exercised tests, entered testing data, equivalence classes and other related elements as

specified in Section 3.2. Thus, we finally decided to use a straightforward model, specifically

created for this case.

3.3 Build of the Model During Exploratory Testing

During the Exploratory Testing, the SUT model is incrementally built and updated by the

following process:

1. When a tester t ∈ T navigates to a web page w ∈ W of the SUT, the browser tracking

extension detects all link, action, and input elements and add them to temporary

collections initialized for sets Lw, Aw and Iw.

2. The captured data are analyzed and used to build the model:

a) If any of discovered elements have not been explored previously, the whole set

of elements is added to the model.

b) Otherwise, the model is updated by adding the newly discovered elements to

the corresponding model collection.

c) Discovered link elements are analyzed. The internal links are included in the

model, the external links are ignored.

3. The recorded model can be also modified manually by the tester. This is a contin-

gency option for the situations when the SUT model is recorded incorrectly due to

various technical obstacles in the SUT.

During analysis of a web page w ∈ W and its elements, the events like a form submit

(form submit button is clicked) or navigation in the SUT (link element is clicked) are

recorded. The actions which are performed only in the browser environment are ignored.

For instance, we do not capture the process of choosing the colour by dragging the colour

picker handle on the colour palette view, but the result of such action — filling in the value

of selected colour into an input element that will be submitted later. Thus, the proposed

solution does not support testing of the detailed behaviour of the page components.

In this process, SUT menu links are treated differently: clicking on these links usually

starts a tested use case, but clicking on these links during the execution of particular test

34

3.4. Generation of Navigational Test Cases from the Model

can break the execution of tested use case. Thus, we treat these transitions in the SUT in

a different way to the link transitions, which are the part of tested use case.

Then, in the web-based SUT, tested use cases usually consist of filling in the form input

elements and clicking a button to submit the data to a server-side of the application. The

action triggered by that button and the filled data are recorded, and a new transition is

created. In the exploratory testing process, the tester can repeat already executed actions

– for example when adding another order item to an order. In that case, only state data

are recorded.

3.4 Generation of Navigational Test Cases from the Model

As explained above, the Tapir Framework generates high–level navigational test cases

aimed to guide the group of exploratory testers through the SUT. The primary purpose of

these test cases is to guide the tester in the SUT. The test cases are created dynamically

from the SUT model during the ET process.

3.4.1 Structure of the Navigational Test Case

The navigational test cases are constructed for individual tester t ∈ T dynamically from

the SUT model during the exploratory testing process. The navigational test case is

constructed for actual page w ∈ W visited in the SUT and helps the tester to decide the

next step in the exploratory testing process. The structure of the navigational test case is

the following:

1. Actual page w ∈ W visited in the SUT,

2. Lw (list of all link elements leading to other SUT pages accessible from the actual

page). In this list, following information is given:

a) Lw ∩ Lt (links elements leading to other SUT pages accessible from the actual

page visited previously by the particular tester t),

b) visits(l)t for each l ∈ Lw ∩ Lt,
c) Lw ∩ LT (links elements leading to other SUT pages accessible from the actual

page visited previously by all testers in the team T),

d) visits(l)T for each l ∈ Lw ∩ LT , and

e) prio(l) and prio(wl)for each l ∈ Lw. Link l leads from the actual page w to a

page wl.

3. Aw (list of all action elements leading to other SUT pages accessible from the actual

page). In this list, following information is given:

35

3. Proposed Solution

a) Aw ∩At (action elements leading to other SUT pages accessible from the actual

page visited previously by the particular tester t),

b) visits(a)t for each a ∈ Aw ∩ At,

c) Aw∩AT (action elements leading to other SUT pages accessible from the actual

page visited previously by all testers in the team T),

d) visits(a)T for each a ∈ Aw ∩ AT , and

e) prio(a) for each a ∈ Aw.

4. The five best candidates/elements to explore in the next test steps for each of naviga-

tional strategies assigned to the tester t by the Test Lead. These elements are ordered

by their rank computed by respective navigational strategy. As particular tester can

have more navigational strategies available, these suggestions are displayed for each

of assigned navigational strategies in a separate list and the tester can choose the op-

timal one, according to his personal testing strategy, choose within the navigational

strategies set by the Test Lead. The elements suggested to explore are:

a) A link lnext ∈ Lw and page next(w) suggested to explore in the next test step,

or

b) An action element anext ∈ Aw suggested to explore in the next test step.

5. For each a ∈ Aw, if Ia 6= ∅:

a) data(Ia)t,

b) data(Ia)T ,

c) for each i ∈ Ia:

i. Suggested ec(i) ∈ EC(i), determined by the test data strategy (see section

3.4.3) set by the Test Lead. Based on this suggestion, tester t can select a

particular data value from ec(i) to enter it to the input element i. for the

actual test,

ii. data(i)t (all test data data previously entered by the particular tester i to

the input element i), and

iii. data(i)T (all test data data previously entered by the all testers in the

testing team T to the input element i).

6. Previous test data combinations entered in Ia, leading to display the error page we
(typically a J2EE exception page for instance) or a standardized error message which

can be recognized by the Tapir Framework (typically a PHP parsing error message

or application specific error message formated in unified standard way for instance).

36

3.4. Generation of Navigational Test Cases from the Model

7. Notes for testers, which can be entered by the Test Lead to page w, all link elements

from Lw and all action elements Aw. The Teas Lead can enter these notes as simple

text fields (the notes are not defined in the model in the section 3.2).

The concepts of navigational test case are depicted in Figure 3.3. In this schema, Lnext
stands for suggested link elements to explore and Anext stands for suggested action links

to explore. Web page wi ∈ next(w) and wj ∈ next(w).

In Figure 3.3, Lw ∩ LT (links elements leading to other SUT pages accessible from

the actual page visited previously by all testers in the team T) and Aw ∩ AT (action

elements leading to other SUT pages accessible from the actual page visited previously by

all testers in the team T), are not depicted. These two parts of navigational test case are

only an analogy to depicted Lw ∩Lt (links elements leading to other SUT pages accessible

from the actual page visited previously by the particular tester t) and Aw ∩ At (action

elements leading to other SUT pages accessible from the actual page visited previously by

the particular tester t).

3.4.2 Navigational Strategies

To create the navigational test cases during the exploratory testing process, several nav-

igational strategies specified in Table 3.1 can be used. A navigational strategy determines

a principal way how the tester will be exploring the SUT. The most of the navigational

strategies can be further adjusted using the particular ranking function, specified in Table

3.2. The navigational strategies cover guided exploration of new SUT functions for all test-

ers individually or as a collaborative work of the testing team, the same process enhanced

by navigation driven by priorities of SUT pages, link and action elements, or regression

testing for a defined historic period. This last strategy is also applicable to retests of defect

fixes after a new SUT release.

Navigational strategy determines SUT user interface elements suggested for actual SUT

page w in the navigational test case (see 3.4.1). Input of this process is an application

context (tester t and related meta–data) and actual state of SUT model specified in 3.2.

By the rules specified in Table 3.1 and ranking functions specified in Table 3.2, a list of

l ∈ Lw and a ∈ Aw, sorted by these rules and functions, is created.

37

3. Proposed Solution

Figure 3.3: Model of navigational test case and related concepts

38

3.4.
G

en
eration

of
N

av
igation

al
T

est
C

ases
from

th
e

M
o
d
el

Navigational strategy Rules for element suggestion for page w and tester t.
Elementε can be link element l ∈ Lw or action

element a ∈ Aw.

Ranking functions
(see Table 3.2) used

Use case

RANK NEW ε satisfying the following conditions:
(1) visits(ε)t = 0, AND

(2) (ε has the highest ElementTypeRank(ε) OR a
page wn ∈ next(w) to which ε leads has the highest

PageComplexityRank(wn)), AND
(3) ε ∈ w ∈ W \M are preffered to ε ∈ w ∈M

ElementTypeRank
PageComplexityRank

Exploration of
new SUT
functions

RANK NEW TEAM As RANK NEW, (1) modified to:
visits(ε)T has the minimal value among all ε ∈ Lw

and ε ∈ Aw.

ElementTypeRank
PageComplexityRank

Exploration of
new SUT
functions

RT TIME ε satisfying the following conditions:
(1) visits(ε)t > 0, AND

(2) time elapsed from the last exploration of ε by
tester t > LastT ime constant, AND

(3) ε ∈ w ∈ W \M are preferred to ε ∈ w ∈M

- (1) Retesting of
defect fixes, (2)

Regression
testing

PRIO NEW ε satisfying the following conditions:
(1) visits(ε)t = 0, AND

(2) prio(ε) has the maximal value among all ε ∈ Lw
and ε ∈ Aw, AND

(3) if ε is a link element l ∈ Lw, page wn ∈ next(w)
has the highest PriorityAndComplexityRank(wn),

AND
(4) ε ∈ w ∈ W \M are preffered to ε ∈ w ∈M

PriorityAnd
ComplexityRank

Exploration of
new SUT

functions by
priorities set by

Test Lead

PRIO NEW TEAM As RANK NEW, (1) modified to:
visits(ε)T has the minimal value among all ε ∈ Lw

and ε ∈ Aw.

PriorityAnd
ComplexityRank

Exploration of
new SUT

functions by
priorities set by

Test Lead

Table 3.1: Navigational strategies

39

3. Proposed Solution

Rank Definition

ElementTypeRank(ε) IF ε is link THEN ElementTypeRank(ε) = 1
IF ε is action element THEN

ElementTypeRank(ε) = 2
PageComplexityRank(wn) PageComplexityRank(wn) =

(((| Iw |· inputElementsWeight
+| Aw |)· actionElementsWeight +| Lw |)

· linkElementsWeight
Iw ∈ wn, Aw ∈ wn, Lw ∈ wn

PriorityAndComplexityRank(wn) PriorityAndComplexityRank(wn) =
((((prio(wn)· pagePriorityWeight
+| Iw |)· inputElementsWeight

+| Aw |)· actionElementsWeight +| Lw |)
· linkElementsWeight

Iw ∈ wn, Aw ∈ wn, Lw ∈ wn
Table 3.2: Ranks used in navigational strategies

Ranking function ElementTypeRank is used for both link elements l ∈ Lw and action

elementsa ∈ Aw. The PageComplexityRank is used for link elements l ∈ Lw only. In case

of actions elements we are not able to determine exact SUT page following the process

triggered by an action element a, as entered test data also can play a role in decisioning

which page will be displayed in the next step (refer to the SUT model in Section 3.2).

In the PageComplexityRank ranking function, constants actionElementsWeight, input-

ElementsWeight, and linkElementsWeight determine how strongly the individual page

action elements, input elements and link elements are preferred in determination of the

page wn ∈ next(w), which is suggested to be explored in tester’s next step via exercising a

link element leading to wn. The increase of particular constant will cause the pages with

higher numbers of particular elements to be more preferred. All of these constants can be

set by Test Lead dynamically during the exploration testing process. Their default value

is 256. Without any change, pages with higher number of forms, then with higher number

of input fields, the higher number of action elements and finally with higher number of

link elements are considered as more complex for the testing purposes and suggested to be

explored first.

In the PriorityAndComplexityRank priorities of the SUT pages set by Test Lead plays

the strongest role in the determination of the suggested next page to explore. Constant

pagePriorityWeight determines, how strong role plays this prioritization. Then, the de-

cision is influenced by the number of input fields, the number of action elements and finally

by the number of link elements. The constants actionElementsWeight, inputElements-

Weight, and linkElementsWeight have the same meaning and function as in the Page-

40

3.4. Generation of Navigational Test Cases from the Model

ComplexityRank.

3.4.3 Test Data Strategies

During the construction of navigational test cases, test data are suggested for input ele-

ments Ia ⊆ Iw connected to action elements a ∈ Aw of the particular page w ∈ W . For

this suggestion, test data (1) previously entered by the testers (data(i)t and data(i)T for

each i ∈ Ia) and (2) equivalence classes defined by the Test Lead (EC(i) for each i ∈ Ia)
are used.

For this process, test data strategies described in Table 3.3 are available. These test

data strategies are specifically designed for different cases in the testing process: retesting

of defect fixes, regression testing or exploration of new test data combinations.

41

3
.

P
r
o
p
o
se

d
S
o
l
u
t
io
n

Test data strategy Description Use case

DATA REPEAT LAST For each i ∈ Ia, suggest the value of data(i)t used in
the last test made by tester t on page w.

If data(i)t = ∅, no suggestion is made.

(1) Retesting of defect
fixes, (2) Regression

testing
DATA REPEAT RANDOM Suggest a randomly selected test data combination

from data(Ia)t.
If data(Ia)t = ∅, no suggestion is made.

Regression testing

DATA REPEAT RANDOM TEAM Suggest a randomly selected test data combination
from data(Ia)T .

If data(Ia)T = ∅, no suggestion is made.

Regression testing

DATA NEW RANDOM For each i ∈ Ia:
if EC(i) 6= ∅, suggest a ec(i) ∈ EC(i), such that

d /∈ ec(i) for any d ∈ data(i)t
if EC(i) = ∅, suggest a value d ∈ range(i), such

that d /∈ data(i)t

Exploration of new test
data combinations

DATA NEW RANDOM TEAM For each i ∈ Ia:
if EC(i) 6= ∅, suggest a ec(i) ∈ EC(i), such that

d /∈ ec(i) for any d ∈ data(i)T
if EC(i) = ∅, suggest a value d ∈ range(i), such

that d /∈ data(i)T

Exploration of new test
data combinations

DATA NEW GENERATED The Tapir engine suggests combination, which was
not used previously by individual tester t.

Combination of test data is taken from a pipeline of
test data combinations created by a combination

interaction testing (CIT) module, connected by the
defined interface

Exploration of new test
data combinations

DATA NEW GENERATED TEAM As DATA NEW GENERATED TEAM, modified
to: combination, which was not used previously by

any tester of the testing team T

Exploration of new test
data combinations

Table 3.3: Test data strategies

42

3.5. Framework Architecture and Implementation Details

As in the case of navigational strategies, the test data strategies for independent ex-

ploration of the SUT by individual testers or team collaboration are available. They are

marked by postfix “ TEAM” in name of the test data strategy.

Test data strategy DATA NEW RANDOM TEAM aims at minimization of particular

test data variants entered repeatedly by multiple testers during the exploration of new test

data variants - either by chance, or by a not suitable organization of work. Another case is

intended testing of defect fixes or regression testing, where DATA REPEAT LAST, DATA

REPEAT RANDOM and DATA REPEAT RANDOM TEAM strategies are available to

save tester’s overhead remembering the last entered test data. The team strategy DATA

REPEAT RANDOM TEAM can make the process even more efficient by minimizing the

particular test data variants entered multiple times by multiple testers during the regression

testing.

Equivalence classes entered by the Test Lead during his pioneer exploration of the SUT

contribute to the prevention of entering test data, which are actually belonging to one equi-

valence class, thus exercising the same SUT behavior according to the SUT specification.

Possibility to connect the Tapir Framework to a combination interaction testing module

(DATA NEW GENERATED and DATA NEW GENERATED TEAM strategies) makes

the process further more controlled and systematic — only the efficient set of test data

combinations are used by the testers to exercise the SUT functions.

3.5 Framework Architecture and Implementation Details

As introduced in Section 3.1, the Tapir Framework consists of three principal parts: Tapir

Browser extension, TapirHQ and Tapir Analytics module. The tester interacts with

the SUT in a browser window with installed extension. In the second window, the tester

has opened TapirHQ front–end application, which serves as the test management tool.

Here, suggestions for the navigational test cases are presented to the tester. The Analytics

module can be accessed by the testers, Test Leads or administrator as a part of the TapirHQ

module and allows visualization of the actual state of the SUT model. The overall physical

architecture of the Tapir Framework is depicted in 3.4. The Tapir Framework back–end

part is physically distributed amond two back–end systems, (1) the TapirHQ Server, which

ensures generation of the TapirHQ application front–end, communication with the Tapir

Browser Extension and identity management of the Tapir Framework users, and (2) Tapir

BE Server, maintaining the SUT model and providing computational functions related to

the model.

In this section, we give additional implementation details of the functionality of the

individual framework modules.

43

3. Proposed Solution

Figure 3.4: Overall architecture of the Tapir Framework

3.5.1 Tapir Browser Extension

The browser extension is implemented as a Chrome browser extension in JavaScript. It

analyzes the structure of the current page, intercepts the internal browser events — since it

would be difficult to intercept them on the server side (e.g. page was loaded or redirected,

user navigated back, authentication is required, . . .) and registers event handlers for all the

links and buttons on the page. All events relevant to the Tapir Framework functionality

are intercepted and tracked. Also, the browser extension has a functionality to highlight

SUT page elements in a mode selected by the Test Lead (elements already analyzed by the

Tapir Framework or elements suggested to explore in the next tester’s step).

The extension runs on top of the page with full access to the document object model of

this page. In the previous stages of the implementation, we have been experimenting with

JavaScript snippet code injected into each page of the web application, but the extension

to the browser was proven to be a more stable solution.

44

3.5. Framework Architecture and Implementation Details

3.5.1.1 SUT Page Analysis

To analyze the web pages W of the SUT and to capture all the relevant data, set of

activities is performed by the Tapir Browser Extension. Although the content of the SUT

page w ∈ W is created using the common technologies (HTML, CSS and JavaScript), the

logical structure of the SUT page has to be analyzed to update the SUT model. For a new

SUT analyzed by the Tapir Framework, the code of the page content analyzer (being part

of the Tapir Browser Extension) had to be adapted to match its nuances.

The analyzer extracts selected properties for every link, input and action element.

CSS selector is extracted for each element, the element will be later located using this

selector (when more than one element is matched, then elements are selected with the

help of additional extracted properties). In this section we present technical details of this

analysis for the main elements of the SUT page w, the action elements Aw, input elements

Iw and link elements Lw.

Action elements. An action element is represented by an HTML input element with

attribute type set to submit that is nested under a form element. When rendered on the

page, it has the appearance of a button — a button submitting the form. Currently, from

the Tapir Framework perspective, the following properties are extracted for the parent

form element:

◦ action — the URI of a program that processes the form information (value of the

attribute with the same name)

◦ method — the HTTP method (POST or GET) that the browser uses to submit the

form (value of the attribute with the same name)

◦ name – the name of the form (value of the attribute with the same name)

◦ CSS selector.

For the action element a ∈ Aw, the following properties are extracted:

◦ value — the text displayed (value of the attribute with the same name)

◦ type — in this case, the value is submit

◦ CSS selector.

Input elements. An input element is represented by an HTML input element with

attribute type not set to submit (including hidden input elements) or by <select> or by

<textarea>) element that is nested under a form element. The following properties are

extracted for an input element i ∈ Iw:

45

3. Proposed Solution

◦ name (value of the attribute with the same name)

◦ label — the label is not part of the element and the detection of its value differs,

for example the value is located in <label> element whose value of for attribute

matches the value of id attribute of the input element

◦ type of the element (the value of the type attribute for input elements, name of the

element otherwise)

◦ CSS selector.

During this analysis, corresponding input elements Ia are assigned to particular action

element a ∈ Aw.

Link elements. A link element is represented by an HTML <a> element with href

attribute. Modern web application use <a> elements with the use of JavaScript as ac-

tion elements. Links with href pointing to local element (starting with ’#’ symbol, ...) or with JavaScript code (...)

are excluded. For a link element l ∈ Lw, the following properties are extracted:

◦ value — the inner text value of the link

◦ location — the URL where the link goes to (the value of the href attribute)

◦ query — the optional part of the URI containing data that does not fit conveniently

into a hierarchical path structure; cutting off the query string it is possible to get the

system identifier of the target node

◦ local — value indicating local or external link

◦ target — value specifying where to open the linked document (value of the attribute

with the same name)

◦ CSS selector.

The page content analyzer recursively traverses the Document Object Model (DOM)

tree of the web page and collects the information on the elements mentioned before. The

analyzer is grouping the elements into larger groups — for instance, HTML element <form>

is not defined as a SUT model element, but on the level of HTML code, it is an element that

is a parent to input, and action elements, and possibly also links. Another example is a

horizontal menu on the of the page. This example is depicted in Figure 3.5. The groups are

emphasized with the green border. During the process, the blocks can be further analyzed

to determine master pages M , particular forms and relevant groups of input elements I.

46

3.5. Framework Architecture and Implementation Details

Figure 3.5: Logical grouping of elements on the web page

part of this analysis is pre–processed by the Tapir Framework, the final arrangement of

these elements in the SUT model can be refined by the Test Lead. The pseudocode of the

page content analyzer main algorithm is presented in Algorithm 1.

3.5.1.2 Tester’s Session Recording

Actions performed by the tester t in the SUT in the browser are recorded by the Tapir

Browser Extension. A shortened example of a recorded session as displayed in TapirHQ is

presented in Fig. 3.6. During the recording of tester’s session, the following sequence of

steps is performed:

◦ Tester navigates the browser to an initial page of the SUT, which is part of the

configuration of the Tapir Framework.

◦ When the page requested by tester is not the initial page, the tester is informed by

Tapir to navigate to the initial page.

47

3. Proposed Solution

Input: HTML element E
Output: Groups of model elements extracted from DOM tree fragment with E

being the root of that fragment
begin

for every element C, C is child of E do
switch C do

case <a> with valid value of href attribute do
extract element properties, add to group; . the reason this element is
treated differently compared to action and input elements is, that
those elements are nested inside <form> element

case <form> do
extract element properties for each nested <input>, <select> and
<textarea> element

case layout <table> do
recursively call this for C; . layout table is a table created to arrange
elements, for example inside a <form> element

case data <table> do
collect data for table headers, cells and rows; . a table displaying
data, it can be identified by the presence of table header cells <th>

or by row elements <tr> with certain CSS classes (for example
row-1, row-2 for alternating row styles)

otherwise do
recursively call this for C;

end

end

end

end
Algorithm 1: Pseudocode of the page content analyzer

– An API request from the Tapir Tracking Extension to the TapirHQ server is

sent, the response indicates whether the site is Tapir–enabled (a configuration

exists in the Tapir database).

– Another request from the Tapir Tracking Extension to the TapirHQ server is

made to get the configuration for the site (for example the definition of page

conditions).

◦ Tester’s session is started when the tester lands on starting page and from this point,

every action is recorded by the Tapir Browser Extension. The following events are

recorded:

– form submitted event,

– link clicked event,

48

3.5. Framework Architecture and Implementation Details

– an error was detected by Tapir event,

– page reload event (the user has refreshed the page using browser command,

usually by pressing F5 key),

– client redirect event caused by JavaScript running in the page or a “refresh”

pragma in the page’s meta tag1,

– server redirect event caused caused by a 3XX HTTP status code sent from the

server1,

– history navigation event (the user has moved back or forward to a previously

visited page, usually by pressing the combination of Alt and Right or Left Arrow

keys),

– address changed event when the user triggers the navigation from the address

bar.

◦ The tester’s session is closed when the tester:

– closes the browser or the browser tab,

– navigates away from the SUT, or

– has been inactive for a period of time, defined in the tester’s profile configuration.

3.5.1.3 Authentication

For tester’s authentication in the Tapir Framework, standardized Google authentication is

used. Standard web authentication protocols utilize HTTP features, but Chrome Exten-

sions run inside the application container; they don’t load over HTTP and can’t perform

redirects or set cookies. Thus, with the use of Google Identity API the user can be easily

authenticated using Google authentication (and the Google Account the user is currently

logged to in the browser)2 by calling a single method getAuthToken. If the user is not

authenticated a pop–up window is displayed with the Google authentication dialog. The

3rd party authentication was not implemented, although it is technically possible.

3.5.1.4 Support for Other Browsers

Currently, the browser extension is developed for the Google Chrome browser. We decided

to use Google Chrome browser because of its current largest market share (76.7% by W3C

statistics up to July 20173). The future road–map of the project includes also the creation

1https://developer.mozilla.org/en-US/Add-ons/WebExtensions/API/webNavigation/TransitionQua-
lifier

2https://developer.chrome.com/apps/app identity
3https://www.w3schools.com/Browsers/default.asp

49

3. Proposed Solution

Figure 3.6: Recording of tester’s session displayed in TapirHQ module

50

3.5. Framework Architecture and Implementation Details

of Firefox Tapir Browser Extension. Firefox WebExtensions are designed for cross–browser

compatibility. The Firefox technology is declared to be compatible with the extension API

supported by Google Chrome and Opera. Chrome and Opera extensions shall in most cases

run in Firefox with minor changes only4. Currently, the porting of the Chrome extension

to a Firefox version of the browser extension is in progress.

3.5.2 TapirHQ

TapirHQ represents the core of the Tapir Framework functionality. This module receives

the events from the Browser Extensions, constructs the SUT model, constructs the navig-

ational test cases and present them to the tester.

Figure 3.8 depicts tester’s navigation support in the SUT. The left side (the larger

screenshot) depicts Tapir HQ guidance for the tester. Besides the navigational statistics,

the system displays suggested actions to be explored (sorted by ranking functions) by

several navigational strategies allowed to the user. Regarding the format of this article,

the view is simplified: test data suggestions and other details are not visible in this sample.

In Figure 3.8 a corresponding screenshot from SUT is presented. The Tapir Browser

Extension highlights the elements to be explored in the next step, together with the value

of the ranking function. The Figure 3.9 depicts a sample of recorded details of a SUT form.

The TapirHQ is a client application implemented as a JavaScript single page application

using the ReactJS framework. The server back–end part is implemented in .NET C#.

When a tester starts testing the SUT – the tester has to land on the staring page (defined

as w0 in 3.2), a real–time bidirectional event–based communication channel (a socket)

is opened between TapirHQ back–end service and TapirHQ front–end application in the

browser to synchronize the data in real–time. For this communication, the SocketIO5

library is used.

TapirHQ also contains an open interface to Combination Interaction Testing tool to

import preferred test data combinations (ref. to test data strategies DATA NEW GEN-

ERATED and DATA NEW GENERATED TEAM). The interface is based on upload of

CSV files of defined structure, or, alternatively, in a predefined JSON format.

The SUT model is stored in a NoSQL database MongoDB6. The document–oriented

NoSQL database was selected because the JSON documents are first–class citizens there

and can be stored in this database directly.

The data with SUT model stored in the database is shared by both TapirHQ and Tapir

Analytics modules. The TapirHQ back–end service exposes the API for indirect access to

the database by the individual modules.

4https://developer.mozilla.org/en-US/Add-ons/WebExtensions/Porting a Google Chrome extension
5https://socket.io/
6https://www.mongodb.com/

51

3. Proposed Solution

Figure 3.7: A sample of testers’ navigational test case (simplified)

52

3.5.
F

ram
ew

ork
A

rch
itectu

re
an

d
Im

p
lem

en
tation

D
etails

Figure 3.8: A sample of SUT screen with highlighted elements with hints

53

3
.

P
r
o
p
o
se

d
S
o
l
u
t
io
n

Figure 3.9: A sample of recorded details of a SUT form

54

3.5. Framework Architecture and Implementation Details

3.5.3 Tapir Analytics

Tapir Analytics module visualises the current state of SUT model in a textual represent-

ation or in a form of directed graph and a particular state of SUT exploration. This part

is implemented as a module of TapirHQ, sharing the SUT model with the TapirHQ ap-

plication. The framework administrator grants access rights to this module. This part is

implemented in .NET C#. Visualization of the SUT model is implemented using ReactJS

framework.

Figure 3.10 depicts a sample of Test Lead’s overview of part of the SUT model —

a particular SUT page. Prioritization of SUT pages and elements can be done in this

function. Figure 3.11 then depicts a sample from Analytics module — visualisation of

SUT pages and possible transitions between the pages.

55

3. Proposed Solution

Figure 3.10: A sample of Test Lead’s overview of part of the SUT model

56

3.5.
F

ram
ew

ork
A

rch
itectu

re
an

d
Im

p
lem

en
tation

D
etails

Figure 3.11: A sample from the Tapir Analytics module – SUT pages and possible transitions between them

57

3. Proposed Solution

3.5.4 Handling the Changes in the SUT

The SUT usually does evolve and change even during the testing phase of the software

project — the defects are fixed, the end–users require new features, the UI is changed to

reflect the new features (the elements were moved on the page, new elements were added,

the page was restructured and other changes can be made). These changes shall be reflected

in the model of the SUT and the model has to be up–to–date with the application. The

changes cannot be incorporated automatically into the model of the SUT since the impact

on the whole model cannot be predetermined.

There are several possible scenarios how to deal with these changes, depending on a size

of the modification and a fact, if the testing team knows the exact location of the changes:

1. Major part of the system was affected by the change, including page struc-

ture and page flow.

If the change in SUT is so significant, that complete re-testing of SUT is needed,

administrator archives previous SUT model and the testing team explores the SUT

building a new up-to-date model.

2. Significant part of the system was affected by the change, including page

structure and page flow, impact analysis of the changes is not known.

Undocumented changes made to the SUT are not desirable in a software development

process. This type of changes will affect manual testers as well; the manual test

scenarios will become obsolete and not corresponding to an actual state of the SUT.

Unfortunately, when a change is not documented, also the Tapir Framework cannot

provide an efficient support here; a correct solution is to archive the previous version

of the SUT model and start building a new one again.

3. Significant part of the SUT was affected by the change, and the testing

team knows exactly, where these changes have been made.

Using the release notes or an impact analysis document the user with the appropriate

permission can invalidate affected parts of the model and let the testers to explore

those parts first (a “dynamic priority” can be used in this case).

4. Changes known to the testing team affect only small parts of the SUT

(only the content of pages is changed, the page flow is not affected).

Again, the release notes or an impact analysis document can be used to invalidate

affected parts of the model that describe the content of the page and testing data.

58

Chapter 4

Experiments

To analyze the practical applicability of the proposed Tapir Framework and its efficiency

when used to support Exploratory Testing process, we conducted four case studies, which

we present in this chapter.

The aim of Case Studies 1 and 2 was to compare the efficiency of the Tapir Framework

with the manually performed Exploratory Testing process. In these case studies, we split

the testers to two principal groups. The first group was using the support of the Tapir

Framework. The second group was only monitored using the Browser Tracking extension.

During this process, the SUT model was constructed, but no navigational support was

provided to the testers of this group. In the both case studies, we compared data collected

from constructed models. In the Case Study 1, we also collected testers reports on time

spent on individual tasks in the testing process. In the Case Study 2, we relied more on

time measurement connected to model construction. The Case Study 2 was performed

using a more recent prototype of the Tapir Framework and the method also differed in

several points which we explain further on.

The aim of Case Study 3 was to assess proposed navigational strategies and suggest the

best option to be evolved further on. We compared team versus individual navigational

strategies, as well as alternative ranking functions.

Case Studies 1–3 primarily focused to an efficiency of the process of exploration of new

SUT functions, as we consider this activity as a main use case of the Tapir Framework.

The aim of Case Study 4 was to assess the applicability of the Tapir Framework to

different types of SUTs and also to assess its applicability when used on an SUT with

dynamically generated front–end HTML pages, including the structure of the pages and

URL format.

The case studies 1–4 were aiming to answer seven research questions following in the

section 4.1.

59

4. Experiments

Table 4.1: Research questions and Case Studies and that are answering them

Research question Case study

Q1 In which sub-tasks of the Exploratory Testing process does the
support provided by the Tapir Framework bring time savings and
how significant these savings are?

1

Q2 Is the proposed approach more efficient than manual Exploratory
Testing regarding detected defects?

1, 2

Q3 Will exploratory testers supported by the Tapir Framework cover
a larger part of the SUT using the proposed approach?

2

Q4 What is an efficiency of ET process supported by the Tapir Frame-
work measured by metrics based on particular key elements of the
SUT model compared to this process performed manually?

2

Q5 Are there any aspects, where the Tapir Framework decreases the
efficiency of the Exploratory Testing process, compared to its pure
manual execution?

1, 2

Q6 Which of the proposed navigational strategies and ranking func-
tions, designed for exploration of new parts of the SUT, are the
most efficient?

3

Q7 How applicable to different types of SUTs the Tapir Framework is? 4

4.1 Research Questions

To assess the efficiency and applicability of the proposed solution, we defined seven research

questions, which are summarized in Table 4.1. In this table, these research questions are

linked to the case studies, which were performed to answer them.

4.2 System Under Test with Injected Defects

As a system under test for Case Studies 1–3, we used open–source MantisBT1 issue tracker.

This system is written in PHP and is using MySQL relational database. We modified the

source code of the SUT by insertion of a group artificial defects. To automate reporting

of activation of these artificial defects, we accompanied the defective code lines by logging

mechanism, reporting each activation of the defective line code. For Case Study 1, we

used a group of artificial defects specified in Table 4.2. For Case Studies 2 and 3, we

used artificial defects specified in Table 4.3, because, based on the experiment results, we

considered the defects injected for the Case Study 1 as rather too easy to detect.

The used version of the MantisBT (1.2.19) composed of 202964 lines of code, 938

application files, the database schema has 31 database tables. Also, we have scanned the

1https://www.mantisbt.org/

60

4.2. System Under Test with Injected Defects

MantisBT source code for the occurrence of the elements relevant for SUT model. In the

version of Mantis BT used for the case studies, the system composed of front–end 73 pages.

These pages contained 117 input forms and 292 links in total.

Injected

defect

ID

Type SUT function

synt 1 Syntax error Plugin installation function broken

synt 2 Syntax error Plugin uninstallation function broken

synt 3 Syntax error Import issues from XML function broken

synt 4 Syntax error Adding empty set of users to a project causes system

defect of the SUT

synt 5 Syntax error Setting configuration option with empty value

causes system defect of the SUT

synt 6 Syntax error Configuration option of float type cannot be created

synt 7 Syntax error Configuration option of complex type cannot be cre-

ated

synt 8 Syntax error User cannot change the password for his account

synt 9 Syntax error Roadmap page has a serious syntax error preventing

it from being loaded

synt 10 Syntax error Selected Tag filter links do throw an error

synt 11 Syntax error Access level for changing status cannot be changed

synt 12 Syntax error Cannot show users with global access when editing

a project

synt 13 Syntax error The action “Close” on search issues page to close

selected issues throws an error

synt 14 Syntax error Cannot view the issues in separate window (the “^”

link on issue view page)

synt 15 Syntax error Plugin setting cannot be modified

synt 16 Syntax error Hiding issues with selected status (and above) is

broken

synt 17 Syntax error Workflow thresholds for selected operations cannot

be modified

synt 18 Syntax error Priority of the issue cannot be changed

synt 19 Syntax error Jump to bug does not work

synt 20 Syntax error JavaScript code to show UI to change the reporter

of the issue does not work

mc 1 Missing code Export to CSV is not implemented

mc 2 Missing code Export to Excel is not implemented

61

4. Experiments

mc 3 Missing code The action “set sticky” in search issues screen is not

implemented

mc 4 Missing code Printing of the issue details is not implemented

mc 5 Missing code User cannot be deleted

mc 6 Missing code File cannot be uploaded and attached to an issue

mc 7 Missing code New profile cannot be created

mc 8 Missing code Logout does not work properly

mc 9 Missing code A link to send an email to administrator is not work-

ing

mc 10 Missing code Cannot filter the issues by OS

cc 1 Change in condition Issue configuration option value cannot be set in

database

cc 2 Change in condition Issue configuration option value in not loaded prop-

erly from database

cc 3 Change in condition Tag with the name “Tapir” (predefined in the SUT)

cannot be deleted

cc 4 Change in condition Properties of a read–only bug can be modified

cc 5 Change in condition A project is wrongly considered to be read–only and

its properties cannot be modified

var 1 Wrong set of variable Language in user preferences is always “English”

and cannot be changed

var 2 Wrong set of variable User defined columns in issue list cannot be copied

between projects

var 3 Wrong set of variable When adding new bug note, its status cannot be

“private”

var 4 Wrong set of variable Bug note view status cannot be changed

var 5 Wrong set of variable Only a university email address can be used when

creating new account

Table 4.2: Defects injected to the system under test for

the Case Study 1

4.3 Case Study 1: Evaluation of the Tapir Framework

Efficiency

To answer the research questions Q1, Q2 and Q5 we conducted the following case study

with a group of exploratory testers. This case study was performed using an initial proto-

62

4.3. Case Study 1: Evaluation of the Tapir Framework Efficiency

Injected defect ID Type SUT function

synt 1 Syntax error Plugin installation function broken
synt 2 Syntax error Plugin uninstallation function broken
synt 3 Syntax error Import issues from XML function broken
synt 4 Syntax error Adding empty set of users to a project causes

system defect of the SUT
synt 5 Syntax error Setting configuration option with empty

value causes system defect of the SUT
synt 6 Syntax error Configuration option of float type cannot be

created
synt 7 Syntax error Configuration option of complex type cannot

be created
mc 1 Missing code Export to CSV is not implemented
mc 2 Missing code The action “set sticky” in search issues screen

is not implemented
mc 3 Missing code Printing of the issue details is not implemen-

ted
mc 4 Missing code User cannot be deleted
mc 5 Missing code Bug note cannot be deleted
cc 1 Change in condition Issue configuration option value cannot be

set in database
cc 2 Change in condition Issue configuration option value in not loaded

properly from database
cc 3 Change in condition Tag with the name “Tapir” (predefined in the

SUT) cannot be deleted
var 1 Wrong set of variable Language in user preferences is always “Eng-

lish” and cannot be changed
var 2 Wrong set of variable User defined columns in issue list cannot be

copied between projects
var 3 Wrong set of variable When adding new bug note, its status cannot

be “private”
var 4 Wrong set of variable Bug note view status cannot be changed

Table 4.3: Defects injected to the system under test for the Case Study 2 and 3

63

4. Experiments

type of the Tapir Framework.

4.3.1 Method of Case Study

To provide an answer to research questions Q1 and Q5, the Exploratory Testing process

was decomposed to a set of sub-tasks (see Table 4.4) and the time spent by performing each

sub-task was recorded by individual testers. Fourteen testers carried out the experiment

on the selected SUT. The testing group was divided into two groups with seven testers in

each to prevent a learning effect. The first group was instructed to test the SUT using

the classical manual exploratory testing technique. The second group has been using the

proposed solution to aid the ET process. background of the experiment participants in

software testing was from 1.5 years to 8 years. The participants were split into the both

groups in a way to keep the distribution of this praxis as equal as possible.

The group performing manual exploratory testing was provided with the Tapir Browser

Extension only. Thus, this group was performing standard manual exploratory testing with

no additional support. Only the SUT model was recorded in the background. The second

group has been given the full support of the proposed solution.

The testing environment was set for each tester to keep their work isolated from each

other. We have chosen Docker for its deployment simplicity and created a Docker container

to host the SUT. Then, we have created a Docker container for the MantisBT application.

The container with SUT was then distributed to the testers.

The testing experiment was conducted in three phases. The first phase was a simulation

of the first round of exploratory test when the testers are not familiar with the SUT. The

second and third phase were simulating two rounds of exploratory tests when the testers

already knew the SUT and they were adding new test cases to cover more situations. For

each of the phases, the time limit for testing was set to 4 hours. We let the testers to

decide when they consider the SUT explored and tested. Data were collected from the

experiment participant using the structured questionnaires.

To provide an answer to research question Q2, we used a defect injection technique.

We modified used SUT by adding a set of configurable artificial defects. When turned on,

the artificial defect demonstrated as an artificial malfunction of the SUT. These artificial

defects changed processed data or displayed an error message on the screen, but they were

not changing the proper flow of the functions and screens in the SUT. When the defect

was reached (its code was activated) by the particular tester, this event was logged by the

SUT to a special log created for this purpose. Besides that, the testers were reporting the

defects in the separate defect tracker.

We prevented the learning effect by the following measure: The majority of the injected

artificial defects activated in Phase 1 was deactivated in Phase 2 and this phase, a set of

new artificial defects has been activated. The same we applied for the transition between

64

4.3. Case Study 1: Evaluation of the Tapir Framework Efficiency

Phase 2 and Phase 3. By this, we simulated defect fixing and regression effect between the

testing phases.

4.3.2 Case Study Results

Tables 4.4, 4.5 and 4.6 display the average times in minutes reported by experiment par-

ticipants as times needed for completing the ET subtasks in each testing phase. The

measured time is averaged for one subtask execution (e.g. average time needed for execu-

tion of a test case or average time needed for documentation of test case). Test cases in this

experiment were defined as complete End–to–end test case exercising a principal business

functionality of the SUT. Table 4.7 displays the average values for all three phases.

The collected data documents that the proposed solution was efficient in subtasks re-

lated to documentation of the path that has been explored by the testers and documenta-

tion of the parts which have to be explored in the future tests.

Minimal or no improvement was observed in the initial stage of testing - the testers in

both groups were exploring the application with no structure prepared beforehand. In the

later testing phases, support of the Tapir Framework.

In overall average, the exploratory testing process aided by the framework was 23.54%

more resource efficient in terms of reported task execution times than the manual version

of this process.

The results of the defect injection experiment are presented in Table 4.8. As the data

show, there was a slight increase in an average number of detected defects for the ET aided

by the Tapir Framework in comparison to the manually performed ET process.

4.3.3 Evaluation of the Results and Discussion

In this case study, two groups of testers were involved. One group was using manual ET

process — only SUT model was reconstructed in the background of the process, but it was

not visible for the testers. The second group was testing the SUT with the help of the

proposed system.

The results of this study show that considerable effort was saved for the part of subtasks

of the ET process when performed with the aid of an automated support (research question

Q1). The savings have been achieved mostly in the subtasks related to the documentation

of the test case (steps which have to be taken) and overall documentation of the explored

parts of the SUT. Overall time savings in the case study were 23.54% when the proposed

solution was used.

In the subtasks which were not directly supported by the proposed solution (e.g. spe-

cification of the test expected result, or defect report), no significant improvement has been

achieved. These tasks had to be performed manually by the testers in both experimental

groups.

65

4. Experiments

Table 4.4: Time efficiency of manual ET process vs. the proposed approach – phase 1 –
the first test

ET process subtask
Manual

ET
Aided

ET
Savings

(%)

Execution of the test case 12.78 12.60 1.41
Documentation of test case: process flow 10.50 8.50 19.05
Documentation of test case: test input data 5.70 5.25 7.89
Documentation of test case: expected test result 7.65 7.42 3.01
Documentation of which part of SUT has been explored 4.75 0.00 100.00
Documentation of which part of SUT to be explored in
the next phase

7.15 0.00 100.00

Report of possible defects 9.15 8.67 5.25
Revision of the test cases for next iteration of tests 8.60 7.60 11.63
Time spent by all subtasks 66.28 50.04 24.50

Table 4.5: Time efficiency of manual ET process vs. the proposed approach – phase 2 –
the second test round

ET process subtask
Manual

ET
Aided

ET
Savings

(%)

Execution of the test case 10.45 9.40 10.05
Documentation of test case: process flow 7.83 6.90 11.88
Documentation of test case: test input data 3.15 3.05 3.17
Documentation of test case: expected test result 7.40 6.80 8.11
Documentation of which part of SUT has been explored 2.80 0.00 100.00
Documentation of which part of SUT to be explored in
the next phase

3.1 0.00 100.00

Report of possible defects 7.71 7.50 2.72
Revision of the test cases for next iteration of tests 7.07 4.85 31.40
Time spent by all subtasks 49.51 38.50 22.24

66

4.3. Case Study 1: Evaluation of the Tapir Framework Efficiency

Table 4.6: Time efficiency of manual ET process vs. the proposed approach – phase 3 –
the third test round

ET process subtask
Manual

ET
Aided

ET
Savings

(%)

Execution of the test case 9.80 8.95 8.67
Documentation of test case: process flow 7.40 6.10 17.57
Documentation of test case: test input data 2.90 2.76 4.83
Documentation of test case: expected test result 6.18 5.67 8.25
Documentation of which part of SUT has been explored 3.8 0.00 100.00
Documentation of which part of SUT to be explored in
the next phase

1.8 0.00 100.00

Report of possible defects 7.58 7.00 7.65
Revision of the test cases for next iteration of tests 6.45 4.61 28.53
Time spent by all subtasks 45.91 35.09 23.57

Table 4.7: Average time efficiency of manual ET process vs. the proposed approach

ET process subtask
Manual

ET
Aided

ET
Savings

(%)

Execution of the test case 11.01 10.32 6.30
Documentation of test case: process flow 8.58 7.17 16.44
Documentation of test case: test input data 3.92 3.69 5.87
Documentation of test case: expected test result 7.08 6.63 6.31
Documentation of which part of SUT has been explored 3.78 0.00 100.00
Documentation of which part of SUT to be explored in
the next phase

4.02 0.00 100.00

Report of possible defects 8.15 7.72 5.20
Revision of the test cases for next iteration of tests 7.37 5.69 22.88
Time spent by all subtasks 53.90 41.21 23.54

67

4. Experiments

Table 4.8: Results of the defect injection experiment in Case Study 1

Exploratory testing phase Phase 1 Phase 2 Phase 3

Previous artificial defects deactivated 0.0 16.0 12.0
New artificial defects activated 20.0 10.0 8.0
Total defects activated 20.0 14.0 10.0
Defects reached by manual ET testers (average) 17.1 11.2 9.2
Defects reported by manual ET testers (average) 16.1 10.7 9.0
Defects reached by aided ET testers (average) 17.8 12.0 9.8
Defects reported by aided ET testers (average) 17.2 11.4 9.3
Difference between manual and aided ET
approaches for reached defects (%)

4.1 7.1 6.5

Difference between manual and aided ET approaches for
reported defects (%)

6.8 6.5 3.3

No significant decrease of time efficiency has been observed as a consequence of Tapir

Framework support (research question Q5).

Further on, there was a slight increase in an average number of detected defects for

the aided exploratory testing in comparison to the manually performed ET process by 6%

(research question Q2).

68

4.4. Case Study 2: Evaluation of the Tapir Framework Efficiency (Alternative Method)

4.4 Case Study 2: Evaluation of the Tapir Framework

Efficiency (Alternative Method)

To get more data about the efficiency of the Tapir Framework and also to verify the more

recent version of the framework prototype, we conducted Case Study 2. The aim of this

study is to answer research questions Q2, Q3, Q4 and Q5. Differently to the Case Study

1, this study was aimed at the exploration of the SUT functions in a simulated smoke–

tests, primarily interested in the extent of the SUT functions explored in a limited amount

of time. The collection of the data was based on machine processing of the SUT models

recorded during the experiment. Details are presented in the following subsections.

4.4.1 Method of Case Study

In this case study, ET process performed manually by individual testers was compared with

ET process supported by the Tapir Framework. In this case study, we used the following

method:

Group of 54 testers performed exploratory testing in the SUT, the MantisBT issue

tracker with inserted artificial defects (see Table 4.3). Each of the testers acted individu-

ally. The testers were instructed to perform exploratory smoke-test and in this process,

to explore the maximal extent of the SUT. Exit criteria were left to individual tester’s

consideration.

To evaluate the results of this case study, we used data which were available in the SUT

model created by the Tapir Framework during the exploratory testing process (for details

refer to Section 4.4.3). In difference to Case Study 1, We have not relied on subjective

reports by individual testers.

1. Group of 23 testers performed Exploratory Testing process manually. The activity of

these testers was recorded by a Tapir Framework tracking extension and the TapirHQ

Back-End service. The TapirHQ Front–End application was not available to this

group, so no navigational support was provided to its members.

2. Group of 31 testers, disjunctive to the previous one, performed the Exploratory

Testing process with support provided by the Tapir Framework. This group used

RANK NEW navigational strategy. Within this strategy, one randomly selected half

of this group used PageComplexityRank and the second half used ElementTypeRank.

As test data strategy, DATA NEW RANDOM was used, but no equivalence classes

were defined by the Team Lead and the testers in this group were explicitly instructed

to do not rely on the framework suggestions in terms of test data and to be initiative

in determining which test data to enter. This was done to make the conditions

of the both groups as equal as possible (the group performing the ET manually

69

4. Experiments

has not received any support regarding the test data). No priorities were set for

SUT pages and its elements. The Test Lead was not changing any set–up during

the experiment. Values of the actionElementsWeight, inputElementsWeight, and

linkElementsWeight constants were left to their default value 256.

Regarding the experimental groups, we ensured that all participants had received the

equivalent initial training regarding software testing techniques: principle of Exploratory

Testing, identification of boundary values and equivalence classes, combination of testing

data to an input in SUT (condition, decision and condition/decision coverage, pairwise

testing and basics of constraint interaction testing) and techniques to explore a SUT work-

flow (process cycle test). The participants were differing in praxis in software testing from

0,5 to 4 years. Participants were distributed randomly to the particular groups. This

applies also to the experimental groups of Case Study 3 described further on.

Intentionally, in this Case Study we have not used team variants of the navigational

strategies provided (principally RANK NEW TEAM). To perform an experiment in an

objective way, equivalent team support shall be also present in case of ET performed

manually. We have tried such an initial experiment, nevertheless, an equivalent simulation

of the Tapir Framework functionality by a human team leader was very hard to achieve.

Thus, we evaluate the team versions of the navigational strategies further on in the Case

Study 3.

4.4.2 Metrics Used to Evaluate Case Studies 2 and 3

To evaluate the Case Studies 2 and 3, we used a set of metrics, which are summarized in

Table 4.9. In this table, we define the metrics by elements of the SUT model presented in

section 3.2. When referring to these metrics in the further text, we use their unified names

and codes (Table 4.9, columns “Code” and “Metric name”).

Code Metric name Definition of metric by

SUT model elements

Number of participants |T |
PE Average number of pages explored, pages can

repeat
∑

t∈T
∑

w∈Wt
visits(w)t

|T |

UPE Average number of unique pages explored ∑
t∈T |Wt|
|T |

RUP Ratio of unique pages explored
UPE

PE
· 100%

70

4.4. Case Study 2: Evaluation of the Tapir Framework Efficiency (Alternative Method)

LE Average number of links explored, elements

can repeat
∑

t∈T
∑

l∈Lt
visits(l)t

|T |

ULE Average number of unique links explored ∑
t∈T |Lt|
|T |

RUL Ratio of unique links explored
ULE

LE
· 100%

AE Average number of action elements explored,

elements can repeat
∑

t∈T
∑

a∈At
visits(a)t

|T |

UAE Average number of unique action elements

explored
∑

t∈T |At|
|T |

RUA Ratio of unique action elements explored
UAE

AE
· 100%

TP Average time spent on page [seconds]

τ
/∑

t∈T
∑

w∈Wt
visits(w)t

|T |

TUP Average time spent on unique page [seconds]

τ
/∑

t∈T |Wt|
|T |

TL Average time spent on link element [seconds]

τ
/∑

t∈T
∑

l∈Lt
visits(l)t

|T |

TUL Average time spent on unique link element

[seconds] τ
/∑

t∈T |Lt|
|T |

TA Average time spent on action element

[seconds] τ
/∑

t∈T
∑

a∈At
visits(a)t

|T |

TUA Average time spent on unique action element

[seconds] τ
/∑

t∈T |At|
|T |

71

4. Experiments

Table 4.9: Metrics used to evaluate the Case Studies 2

and 3

In Table 4.9, τ stands for total time spent by exploratory testing activity, averaged for

all testers in the group, given in seconds. In Table 4.9, we have not defined metrics for

measurement of the efficiency of defect detection, as information about detected defects in

not a part of the SUT model.

4.4.3 Case Study Results

Table 4.10 summarizes the comparison of manual exploratory testing approach with the

Tapir Framework, based on the data which we were able to automatically collect from the

recorded SUT model. In this overall comparison, the averages of particular results from

used navigational strategy RANK NEW USER and ranking functions ElementTypeRank

and PageComplexityRank are provided for the Tapir Framework and as test data strategy,

DATA NEW RANDOM was used. The

DIFF =
AUT −MAN

AUT

in percentage, where AUT stands for value measured in the case of the Tapir Framework

manual and MAN stands for value measured in the case of the manual approach. In the

statistics, we excluded excessive lengthy steps (tester spent more than 15 minutes on a

particular page), caused by leaving the session opened and not testing actually.

Average times spent on the page are measured using the Tapir Framework logging

mechanism. Average time to activate a defect is calculated as average total time spent by

exploratory testing process divided by the number of activated defects. When a defect is

activated, it is reached during the exploratory testing process, thus a tester can notice and

report this defect.

Out of 19 inserted artificial defects, 3 were not activated by any of the testers in the

group supported by the Tapir Framework, which is 15.8% ratio. In particular, it was

defects synt 6, synt 7 and mc 2. In the case of ET performed manually, one the defect

mc 2 was activated by one tester from the group.

The efficiency of manual exploratory testing approach compared to exploratory testing

supported by the Tapir Framework in terms of potential to detect injected artificial defects

in SUT is depicted in Figure 4.1.

For particular injected defects, we depict an average value how many times the defect

has been activated by one tester. Value 1 would mean, that all the testers in the team have

activated the defect once. For example, value 0,5 would mean, that 50% of the testers in

the team has activated the defect once. The injected artificial defects have been introduced

in Table 4.3.

72

4.4. Case Study 2: Evaluation of the Tapir Framework Efficiency (Alternative Method)

Metric
Manual

approach
Tapir used DIFF

Number of participants 23 31
UPE — Average number of pages ex-
plored, pages can repeat

151.8 197.9 23.3%

UPE — Average number of unique pages
explored

22.2 37.7 41.0%

RUP — Ratio of unique pages explored 14.6% 19.0% 23.1%
LE — Average number of links explored,
links can repeat

64.7 113.2 42.9%

ULE — Average number of unique links
explored

21.4 44.0 51.3%

RUL — Ratio of unique links explored 33.1% 38.9% 14.8%
AE — Average number of action elements
explored, elements can repeat

24.5 59.0 58.5%

UAE — Average number of unique action
elements explored

9.6 28.3 66.2%

RUA — Ratio of unique action elements
explored

39.1% 47.9% 18.5%

TP — Average time spent on page
[seconds]

21.5 20.1 -6.6%

TUP — Average time spent on unique
page [seconds]

146.7 105.7 -38.7%

TL — Average time spent on link element
[seconds]

50.4 35.2 -43.2%

TUL — Average time spent on unique link
element [seconds]

152.3 90.6 -68.1%

TA — Average time spent on action ele-
ment [seconds]

133.1 67.5 -97.3%

TUA — Average time spent on unique ac-
tion element [seconds]

340.7 140.8 -141.9%

Average activated defects logged (defects
can repeat)

11.1 16.6 32.8%

Average unique activated defects logged 4.6 6.6 31.1%
Average time to activate 1 defect (when
activated defects can repeat) [seconds]

292.8 240.5 -21.7%

Average time to activate 1 unique defect
[seconds]

713.8 601.3 -18.7%

Table 4.10: Comparison of manual exploratory testing approach with the Tapir Framework:
data from the SUT model

73

4
.

E
x
p
e
r
im

e
n
t
s

Figure 4.1: Potential of manual exploratory testing and the Tapir Framework approach to detect injected defects in the
SUT

74

4.4. Case Study 2: Evaluation of the Tapir Framework Efficiency (Alternative Method)

Regarding the average times spent on SUT page by testers using manual exploratory

testing approach and testers using the Tapir Framework support, the details are provided

in Figure 4.2.

Another comparison can be made for unique inserted defects activated during the activ-

ity of individual testers in the both groups. Details are presented in Figure 4.3.

75

4
.

E
x
p
e
r
im

e
n
t
s

Figure 4.2: Average times spent on SUT pages by testers using manual approach and the Tapir Framework

Figure 4.3: Unique inserted defects activated by testers using manual approach and the Tapir Framework

76

4.4. Case Study 2: Evaluation of the Tapir Framework Efficiency (Alternative Method)

4.4.4 Evaluation of the Results and Discussion

To evaluate the case study, let’s analyze the data in Table 4.10. Usage of the Tapir

Framework lead the testers to explore larger extents of the SUT, compared to ET performed

manually. This effect can be observed for average number of total explored and unique

explored SUT pages (values PE and UPE), where Tapir support leads the testers to explore

23.3% pages in total and 41% more of unique SUT pages. For average number of explored

total and unique link elements (values LE and ULE) and also for total and unique action

elements of the pages (values AE and UAE) the differences are even higher. However,

individual times spent by ET process differ, thus, the efficiency of the exploratory testing

process aided by the framework has to be examined in more detail, analyzing the data in

proper relations. Here, we can analyze three principal indicators:

(1) ratio of repetition of the pages and page elements during the testing process (research

question Q4),

(2) extent of SUT explored per time unit (research question Q3) and

(3) defect detection potential (research question Q2).

(1) Ratio of repetition of the pages and page elements during the testing

process could indicate an extent of possible unnecessary action done in the SUT during

the ET process. In collected data (ref. to Table 4.10) we express this metric as the ratio

of unique pages or elements exercised during the tests. Considering the average ratio

of explored unique pages explored in the ET process (value RUP), for Tapir framework

it improves by 4.4% (23.1% in relative difference DIFF). The average ratio of explored

unique link elements (value RUL) improves by 5.8% (14.8% in relative differenceDIFF)

in case of the Tapir Framework support. In case of action elements (value RUA), we

achieve the largest improvement of 8.8% (18.8% in relative difference DIFF). Also, these

improvements are significant, but we need to discuss the relevance of these metrics.

When analyzing the data, the first–glance–conclusion is, that the ratio of unique pages

is relatively low. For instance, when exploring the SUT in manual ET process, in average,

each page was repeated 6.83 times to achieve a new page in the SUT. In the case of the Tapir

Framework support, this number lowers to 5.25. Nevertheless, the sound explanation can

be quickly provided when analyzing this situation. Pages repeat in the testing flows, as the

aim of the process is to exercise action elements and link transitions. What is maybe more

surprising is that also the links are repeated relatively frequently in the testing process.

For ET performed manually, participants exercised each link 3.02 times in average to

explore one new unique link transition. In the case of the Tapir Framework support,

this ratio lowered to 2.57. When imagining navigation in the SUT and repetition of its

particular functions with various test data, also this fact matches the overall picture. The

77

4. Experiments

same case is the average repetition of action elements, where each action has been repeated

2.56 times in case of manual ET process and 2.08 in the case of Tapir support.

Our conclusion is that we cannot base the evaluation of the efficiency of the Tapir

Framework or ET process in general solely on the ratio of unique elements. Exercising

the SUT with more combinations of test data could make these numbers lower and thus

making an impression of the inefficiency of the testing process. The fact is, that using

more test data combinations (and thus repeating the SUT elements more times during

the exploration) can lead to the detection of more defects. Here, it strongly depends on

the testing goals and principal types of defects we want to detect. If the testing goal is a

rapid smoke test of the SUT, the ratio of unique pages or page elements can be the good

indicator of process efficiency. If the goal is to detect more complex structural defects in

the SUT, such a metric can be even contra productive. In any case, we need to analyze

and consider also other indicators, which are following in this section.

(2) Extent of SUT explored per time unit indicates overall time efficiency when

exercising the SUT with exploratory tests. Average time spent on page (value TP) im-

proves by 6.6% in case of Tapir support, which can be explained by Tapir handling overhead

connected to ET process (documentation of the path taken, decisions what to test next,

documentation of the test data). As SUT pages were repeated quite often significance of

this result is not major. As detailed data in Figure 4.2 show, there are differences between

individual times spent on page by testers — still, this factor is strongly influenced by

individual tester’s attitude and the efficiency of work.

In individual time spent on SUT pages, we need to distinguish two factors, which

contribute to the overall testing time:

(1) overhead related to ET process which, as result shows, is being decreased by the

Tapir Framework, and,

(2) time essential to analyze the SUT page, notice and report the defects.

The second part shall remain the same in the both manual and aided exploratory testing.

In the first factor, the machine support can lower the time spent on overhead activities.

In the provided data, the both parts are mixed together (as it is practically impossible to

distinguish these two parts when collecting the data based on monitoring of the events in

the SUT user front–end).

Because we are rather interested in exploring SUT functions available on pages, more

significant can be a discussion, how much time was needed in average to explore an SUT

action element (value TA) or link (value TL). In the case of action elements, the time

changes significantly by 97.3% in case of Tapir support, in the case of links, the difference

is also significant (43.2%). The differences are even more striking in case of considering

unique pages (value TUP, difference 38.7% in favor of the Tapir Framework), unique action

78

4.4. Case Study 2: Evaluation of the Tapir Framework Efficiency (Alternative Method)

elements (value TUA, difference 141.9%) and unique link elements (value TUL, difference

68.1%).

From these figures, we can draw a conclusion, that the Tapir Framework leads to more

efficient exploring of the SUT functions in relation the spent testing time. However, this

optimism can diminish when we discuss the possible various goals of the testing process

again. For a rapid smoke or exploratory lightweight testing of SUT, when the primary

mission statement is to explore the new SUT parts rapidly and efficiently, it seems, that

the Tapir can give promising support. Nevertheless, for more thorough testing, the validity

of these metrics shall be revised, as more thorough tests and more extensive variants of

test data are used. Thus, also results in this part shall be analyzed together with efficiency

in terms of defect detection potential.

(3) Defect detection potential is an alternative to defect detection rate — in this

metric we measure if the artificial defect has been activated in the code (which was ensured

by the Tapir Framework logging mechanism). When a tester activates a defect, he/she is

capable of noticing and reporting it later on. In the case of the Tapir Framework support,

testers activated 32.8% more defects in average when we considered all activated defects,

including repeating ones (a tester exercised the same functionality with an inserted defect

more times) and 31.1% more defects in average when we consider unique defects only. Out

of 19 inserted defects, 4.6 unique defects in average were defected in average in manual

execution of ET, whereas with Tapir support this amount raised to 6.6. Still, this is

approximately one–third of all inserted defects only, which we attribute to a rather difficult

character of the inserted artificial defects.

Keeping in mind that the group using the Tapir support exercised the SUT longer than

the group without his support, we are rather interested in the time needed to activate a

defect. With the support of the Tapir Framework the average time to activate a defect

(regardless if activated defects repeat), this time was lower by 21.7%. When we consider

unique defects, the difference is 18.7% in favor of the Tapir Framework.

Statistics by individual inserted defects are presented in Figure 4.1. Details to the

efficiency of individual participants are given in Figure 4.3. Also here, we see differences

between individual testers in terms of their efficiency. When analyzing the data, we have

not observed a direct correlation between time spent on page and number of defects which

were detected by individual testers in the both groups.

The Case Study 2 provided data to answer research questions Q2, Q3, Q4 and Q5.

Compared to the manual approach, support of the Tapir Framework lead the testers to

explore larger extents of the SUT and supports the testers to explore parts of the SUT

unreached previously (research question Q3). This is also documented by average number

of SUT pages explored per time unit, which rises slightly in case of SUT pages in favor of

the Tapir Framework (6.6%), but this difference starts to be significant, when we consider

unique pages (38.7%), total links (43.2%), unique links (68.1%), total action elements

79

4. Experiments

(97.3%) and unique action elements (141.9%) (research question Q4). Nevertheless, we

need to keep in mind, that these figures document only the capability of the framework

to lead the testers to explore new parts of the SUT time–efficiently. No relation to the

intensity of testing is expressed here: more thorough testing involves repetition of the SUT

parts, thus, the reliability of this indicator shall be discussed in this case. On the other

hand, measured defect detection potential also speaks in favor of the Tapir Framework:

with the systematic support (and mainly because the testers were able to explore the larger

extent of the SUT), the testers activated 31.1% more unique inserted defects in average.

Regarding an average time efficiency to detect a defect, in the case of the Tapir Framework,

this indicator was better by 18.7% for unique inserted defects (research question Q2).

Regarding the question Q5, no indicator documenting an aspect in which efficiency of

the Exploratory Testing process supported by the Tapir Framework would decrease was

found during the analysis of the results.

Practically, the Case Study 2 confirms the first results acquired by the Case Study 1.

In both of the studies, we used different version of the Tapir Framework prototype and al-

ternative method of data collection (in Case Study 1 we let the testers to measure the times

spent on individual tasks and report them in prepared forms, in Case Study 2 we relied

on automated data collection and gained the data from the recorded SUT model). Also,

the experiment instructions have been formulated differently to the participants (complete

Exploratory Testing cycle including documentation of the test cases versus smoke–test

with primary aim to explore the large extent of the SUT) and the participants were exer-

cising different parts of the SUT, which was triggered by different user roles in the system.

However, the results demonstrate benefits of the Tapir Framework in both of the cases.

80

4.5. Case Study 3: Comparison of Navigational Strategies

Group
ID

Number of
participants

Navigational
strategy

Ranking
function

Test data strategy

1 13
RANK NEW

TEAM
ElementTypeRank

DATA NEW
RANDOM TEAM

2 11 RANK NEW ElementTypeRank
DATA NEW

RANDOM

3 12
RANK NEW

TEAM
PageComplexityRank

DATA NEW
RANDOM TEAM

4 12 RANK NEW PageComplexityRank
DATA NEW

RANDOM

Table 4.11: Participant groups performing the Case Study 3

4.5 Case Study 3: Comparison of Navigational Strategies

In the Case Study 3, we focused to answer the research question Q6, related to selection of

the most efficient navigational strategy. With independent groups of testers, we compared

proposed navigational strategies focused primarily to explore new SUT functions. In this

study, a group of 48 testers performed exploratory testing in MantisBT issue tracker with

inserted artificial defects (see Table 4.3), all of them using the support of the Tapir Frame-

work. The testers were instructed to explore the maximal extent of the SUT. This group

was split to 4 subgroups specified in Table 4.11.

In this case study, no equivalence classes were defined by the Team Lead and the testers

in this group were explicitly instructed to do not rely on the framework suggestions in terms

of test data and to act actively in determining which test data to enter. No priorities

were set for SUT pages and its elements. The Test Lead was not changing any set-up

during the experiment. Values of the actionElementsWeight, inputElementsWeight,

and linkElementsWeight constants were left to their default value 256.

Regarding the strategies using prioritization of the page elements and pages (particu-

larly PRIO NEW and PRIO NEW TEAM), this concept adds extra opportunities to make

the Exploratory Testing process more efficient. No comparable alternative in proposed nav-

igational strategies is available at this stage of the Tapir Framework development. When

equivalent prioritization is done in the manual Exploratory Testing process, we expect

the same increase of testing process efficiency. For these reasons, we have decided to not

include evaluation of navigational strategies PRIO NEW and PRIO NEW TEAM in the

described case study.

Regarding the test data strategies, each of the individual strategies is designed practic-

ally for different use case (ref. to Table 3.3). Comparison can be done between individual

tester and team version of the strategies, e.g. DATA NEW RANDOM versus DATA NEW

RANDOM TEAM. As the presented case study primarily focuses on the efficiency of the

81

4. Experiments

process of exploration of new SUT functions, comparison of the strategies DATA NEW

RANDOM and DATA NEW RANDOM TEAM were included in this Case Study.

4.5.1 Case Study Results

Table 4.12 presents comparison of the different Tapir Framework navigational strategies

(ref. to Table 3.1) based on data automatically collected from the SUT model. In Table

4.12 the same metrics as in Table 4.10 are used.

Metric Group 1 Group 2 Group 3 Group 4

Navigational strategy
RANK NEW

TEAM
RANK

NEW

RANK NEW

TEAM
RANK

NEW

Ranking function
ElementType

Rank

ElementType

Rank

Page

Complexity

Rank

Page

Complexity

Rank

Test data strategy

DATA NEW

RANDOM

TEAM

DATA NEW

RANDOM

DATA NEW

RANDOM

TEAM

DATA NEW

RANDOM

Number of participants 13 11 12 12

PE — Average number of

pages explored, pages can

repeat

224.0 211.7 233.6 206.2

UPE — Average number

of unique pages explored

47.1 39.0 51.4 42.2

RUP — Ratio of unique

pages explored

21.0% 18.4% 22.0% 20.5%

LE — Average number

of links explored, elements

can repeat

131.8 104.2 142.5 118

ULA — Average number

of unique links explored

54.4 37.9 58.1 41.1

RUL — Ratio of unique

links explored

41.3% 36.4% 40.8% 34.8%

AE — Average number of

action elements explored,

elements can repeat

69.3 57.5 75.1 62.7

UAE — Average number

of unique action elements

explored

34.8 24.6 38.3 29.6

82

4.5. Case Study 3: Comparison of Navigational Strategies

RUA — Ratio of unique

action elements explored

50.2% 42.8% 51.0% 47.2%

TP — Average time spent

on page [seconds]

17.8 19.1 19.0 21.4

TUP — Average time

spent on unique page

[seconds]

84.6 103.6 86.3 104.7

TL — Average time spent

on link element [seconds]

30.2 38.8 31.1 37.4

TUL — Average time

spent on unique link ele-

ment [seconds]

73.2 106.6 76.3 107.5

TA — Average time spent

on action element [seconds]

57.5 70.3 59.0 70.4

TUA — Average time

spent on unique action ele-

ment [seconds]

114.5 164.3 115.8 149.2

Average activated defects

logged (defects can repeat)

19.7 16.8 20.3 17.3

Average unique activated

defects logged

8.6 6.9 9.1 7.4

Average time to activate 1

defect (when activated de-

fects can repeat) [seconds]

202.2 240.6 218.4 255.3

Average time to activate 1

unique defect [seconds]

463.3 585.8 487.2 596.9

Table 4.12: Comparison of Tapir navigational strategies

based data from SUT model

Relative differences between results of Case Study 2 groups are presented in Table 4.13.

Relative difference formula

(α stands for a metric from

Table 4.12)

αGroup1−αGroup2

αGroup1

αGroup3−αGroup4

αGroup4

αGroup2−αGroup4

αGroup2

αGroup1−αGroup3

αGroup1

83

4. Experiments

Comment RANK

NEW vs.

RANK

NEW

TEAM for

Element-

TypeRank

RANK

NEW vs.

RANK

NEW

TEAM

for Page-

Complexity-

Rank

Element-

TypeRank

vs.

PageCom-

plexityRank

for RANK

NEW

Element-

TypeRank

vs. Page-

Complexity-

Rank for

RANK

NEW

TEAM

PE — Average number of

pages explored, pages can

repeat

5.5% 11.7% 2.6% -4.1%

UPE — Average number

of unique pages explored

17.2% 17.9% -8.2% -8.4%

RUP — Ratio of unique

pages explored

12.4% 7.0% -11.1% -4.4%

LE — Average number

of links explored, elements

can repeat

20.9% 17.2% -13.2% -7.5%

ULE — Average number

of unique links explored

30.3% 29.3% -8.4% -6.4%

RUL — Ratio of unique

links explored

11.9% 14.6% 4.2% 1.2%

AE — Average number of

action elements explored,

elements can repeat

17.0% 16.5% -9.0% -7.7%

UAE — Average number

of unique action elements

explored

29.3% 22.7% -20.3% -9.1%

RUA — Ratio of unique

action elements explored

14.8% 7.4% -10.3% -1.5%

TP — Average time spent

on page [seconds]

-7.4% -12.9% -12.2% -6.3%

TUP — Average time

spent on unique page

[seconds]

-22.5% -21.3% -1.0% -1.9%

TL — Average time spent

on link element [seconds]

-28.3% -20.3% 3.5% -2.8%

84

4.5. Case Study 3: Comparison of Navigational Strategies

TUL — Average time

spent on unique link ele-

ment [seconds]

-45.6% -40.8% -0.8% -4.0%

TA — Average time spent

on action element [seconds]

-22.3% -19.3% -0.2% -2.6%

TUA — Average time

spent on unique action ele-

ment [seconds]

-43.5% -28.9% 9.2% -1.1%

Average activated defects

logged (defects can repeat)

14.7% 14.8% -3.0% -3.0%

Average unique activated

defects logged

19.8% 18.7% -7.2% -5.5%

Average time to activate 1

defect (when activated de-

fects can repeat) [seconds]

-19.0% -16.9% -6.1% -7.4%

Average time to activate 1

unique defect [seconds]

-26.5% -22.5% -1.9% -4.9%

Table 4.13: Relative differences between results of Case

Study 3 groups

4.5.2 Evaluation of the Results and Discussion

In the Case Study 3, we compared the efficiency of the individual strategies provided

by the framework with aim to answer the research question Q6. In our analysis of the

data, we will refer to Table 4.13. Let’s start with comparison of individual test-

ing strategy RANK NEW with team strategy RANK NEW TEAM (columns
αGroup1−αGroup2

αGroup1
· 100% and

αGroup3−αGroup4

αGroup4
· 100%). Results differ by ranking function used

(ElementTypeRank vs. PageComplexityRank), but still, there are general trends, which

can be observed in the data. Team navigational strategy RANK NEW TEAM increased

the ratio of unique explored pages (value RUP) by 12.4% for ElementTypeRank, resp. by

7.0% for PageComplexityRank.

In case of ratio of unique link elements (value RUL), improvement is 11.9% for Element-

TypeRank and 14.6% for PageComplexityRank. Similar trend can be observed for unique

action elements (value RUA), where the improvement is 14.8% for ElementTypeRank and

7.4% for PageComplexityRank used as a ranking function.

More relevant can be statistics related to time efficiency of the testing process: here,

the RANK NEW TEAM performs also better. Average time spent on unique page (value

TUP) was decreased by 22.5% for ElementTypeRank and 21.3% for PageComplexityR-

85

4. Experiments

ank. Average time spent on unique link element (value TUL) was decreased by 45,6%

for ElementTypeRank and 40.8% for PageComplexityRank. Average time spent on unique

action element (value TUA) was decreased by 43.5% for ElementTypeRank and 28.9% for

PageComplexityRank. These numbers are speaking in favour of team strategy again.

Regarding the average unique activated defects logged, RANK NEW TEAM raises the

result by 19.8% for ElementTypeRank and 18.7% for PageComplexityRank. Also average

time to detect one unique defect drops by 26.5% in case of ElementTypeRank and by

22.5% in case of PageComplexityRank. These results correspond to explored extent of

SUT functions, which is higher in case of RANK NEW TEAM navigational strategy.

From these relative differences, it might seem, that ElementTypeRank performs better

and in case of team version of the navigational strategy, it gains better improvement. That

would not be the right conclusion; to assess the efficiency of ElementTypeRank and

PageComplexityRank , we need to analyze the data independently.

Generally, PageComplexityRank leads to exploration of slightly larger extent of SUT

(Table 4.13). The ratio of unique pages explored is 11.1% higher for RANK NEW and

4.4% higher for RANK NEW TEAM navigational strategy. Also, the ratio of unique forms

explored is 10.3% higher for RANK NEW navigational strategy.

Regarding the average times spent on SUT page, link and action elements, the only

significant difference is average time spent on page (value TP), which is 12.2% in favour of

ElementTypeRank in the case of RANK NEW and 6.3% in case of RANK NEW TEAM

navigational strategy. PageComplexityRank leads to the exploration of more complex

pages, which takes more time in the process, resulting in higher time spent on SUT page.

As the more complex pages usually aggregate more unexplored links and action elements,

the extent of explored SUT parts is higher than in the case of ElementTypeRank, as already

discussed above.

What is interesting, PageComplexityRank leads to exploration of more action elements

than ElementTypeRank (Table 4.12, value UAE). The explanation lays in the navigational

strategy algorithm: with PageComplexityRank, the Tapir Framework mechanism scans

the possible following pages and prefers the more complex pages (usually containing more

action elements to explore).

PageComplexityRank also slightly increased the number of average unique activated

defects by 7.2% for RANK NEW and 5.5% for RANK NEW TEAM strategies. In average

time to detect these defects, no significant difference was found.

From all analyzed data, the most efficient combination of navigational strategy and

ranking function are RANK NEW TEAM with PageComplexityRank regarding the num-

ber of activated inserted defects and extent of the SUT explored, but when we consider time

efficiency to explore the new SUT functions, RANK NEW TEAM with ElementTypeRank

seems to be a better candidate.

This case study provided data to answer research questions Q6 to identify the most

86

4.5. Case Study 3: Comparison of Navigational Strategies

efficient navigational strategy. Regarding the comparison of RANK NEW and RANK

NEW TEAM navigational strategies, the team navigational strategy performs better in

all measured aspects. For ranking function PageComplexityRank average ratio of unique

explored pages increased by 7.0%, average ratio of unique link elements by 14,6% and

the average ratio of unique action elements by 7.4%. Average time spent on unique page

improved by 21.3%, average time spent on unique link, resp. action elements improved by

40.8%, resp. 28.9%. Also, total unique activated defects logged improved by 18.7% and

average time to detect one unique defect improved by 22.5%. Analyzed separately, ranking

function PageComplexityRank performs better than ElementTypeRank in terms of extent

of explored SUT functions, and, thus, slightly higher number of activated unique defects.

No clear favorite is obvious from the combination of navigational strategy RANK NEW

TEAM with ranking functions ElementTypeRank and PageComplexityRank. RANK NEW

TEAM with PageComplexityRank performed slightly better in terms of extent of explored

SUT and detected defects, on the contrary RANK NEW TEAM with ElementTypeRank

was slightly more time–efficient.

87

4. Experiments

4.6 Case Study 4: Applicability of the Tapir Framework

to Various SUTs

The goal of Case Study 4 was to answer the research question Q7 related to applicability of

the Tapir Framework to different types of SUT, especially focusing on an SUT with strongly

dynamically generated HTML pages. For this case study, we selected three another system

under test: JTrac with HTML front-end pages generated dynamically and OFBiz and

Moodle with front-end pages with more fixed elements and their identificators, including

the URL format of the SUT pages.

4.6.1 JTrac

As a part of the experiments, we have tried to use the Tapir Framework with JTrac2.

system as SUT. JTrac is an open–source highly customizable issue tracker written in Java

(a sample screen is presented in Fig. 4.5). The code base is not as large as the code base of

MantisBT, but in terms of system functions, JTrac provides a number of functions related

to issue tracking processes (full–text search, customizable fields, advanced filters, etc.).

The main reason for selection of JTrac, was a dynamic way, by which the SUT front-end

HTML pages are generated, including the URL of the individual pages of the SUT.

Unfortunately, the application showed to be unsuitable for use with the Tapir Frame-

work. The JTrac application is built using component oriented Java web application

framework Wicket3, which has a consequence: URLs of pages in this system are gener-

ated dynamically.

As mentioned, Tapir tracking extension matches the current page the user is view-

ing with the node of the model of the SUT using the page URL. The JTrac pages are

changing their URLs with every post–back or redirect making it problematic to match

to the corresponding page node in the SUT model. In particular, this URL format was

http://.../jtrac/app/?wicket:interface=:<incrementally changing number>::::.

As a result, the Tapir Framework was running partially, but the model reconstruction

was inaccurate. The conclusion from this experiment can be generalized — the SUTs with

dynamically generated URLs, which change with every post–back or redirect call are not

suitable to use with the Tapir Framework.

4.6.2 OFBiz

Apache OFBiz4, which was the next subject of experimental application of the Tapir Frame-

work, is an open–source product for the automation of enterprise processes that includes

2http://jtrac.info/
3https://wicket.apache.org/
4https://ofbiz.apache.org/

88

4.6. Case Study 4: Applicability of the Tapir Framework to Various SUTs

Figure 4.4: A sample of the JTrac application — list of issues

framework components and business applications for ERP (Enterprise Resource Plan-

ning), CRM (Customer Relationship Management), E–Business/E–Commerce, SCM (Sup-

ply Chain Management), MRP (Manufacturing Resource Planning), MMS/EAM (Main-

tenance Management System/Enterprise Asset Management).

The HTML pages of the OFBiz website are well structured, which made it easier to

create the page analyzer easier. Although the forms on this web site can be overflowing with

elements, still the structure is logical and consistent across the web pages — the naming and

identification of elements, application of CSS classes to rows in tables displaying data. This

was not the case of MantisBT where similar patterns were implemented in different ways

and the UI was inconsistent in a number of parts of this system. What was challenging

during the adoption of the Tapir Tracking Extension for the OFBiz web pages was the

usage of JavaScript those pages that are used to improve the UX. For example, the input

elements for date values are enriched with date–picker controls — this resulted in a more

detailed inspection of the created model of the page and adjusting the analyzer accordingly.

Despite these technical obstacles, the adoption of Tapir Tracking Extension to this SUT

was successful. The framework was running without defects and reconstructed SUT model

was accurate.

89

4. Experiments

Figure 4.5: A sample of the OFBiz application — system dashboard

4.6.3 Moodle

Moodle5 is an open–source, on–line Learning Management system enabling educators to

create their own private website filled with dynamic courses that extend learning6. The ap-

plication has a number of customizable management features (create a course with lessons,

upload learning material add quiz questions, badges, . . .) and widgets (student progress

monitor, event calendar, . . .) to help the educators achieve their goal. The web pages of

Moodle are well structured. The structure of the page–master page relationship is well

defined with reasonable hierarchy.

The naming of HTML elements, as well as application of CSS classes, is consistent

making the identification of the elements to create the model of the SUT straightforward.

This was not the case of MantisBT and the code of the analyser had to be adapted. The

application uses modern YUI7 library to create the UI, similar library was not used by

neither of the previously tested applications and the analyser had to be adapted accord-

ingly. The YUI library, for example, uses HTML <i> elements with icons inside HTML

<a> elements as action elements.

The Tapir Framework functionalities have been verified during a set of functional tests

5Modular Object–Oriented Dynamic Learning Environment
6https://moodle.org/
7Yahoo User Interface library, https://yuilibrary.com/

90

4.6. Case Study 4: Applicability of the Tapir Framework to Various SUTs

also with this SUT with positive results – the SUT model was being reconstructed correctly

and the generation of navigational test cases was running by the specification.

91

4. Experiments

4.7 Threats to Validity

In performed case studies, we tried to set the conditions of the compared experimental

groups as equal as possible and, principally, to compare only comparable alternatives,

when fixing other conditions the same for all the participant groups. Nevertheless, several

concerns can be raised regarding the validity of the data, which we discuss in this section.

Regarding the Case Study 1, during the experiments, both groups of the testers were

recording the duration of the individual steps during the testing. This recording probably

prolonged the measured the duration of the subtasks. Also, when measured, it is prob-

able, that testers have been doing their individual tasks more precisely, compared to an

unstructured or non-controlled way. This also could have an impact on measured times.

Nevertheless, the measurement of spent time was performed for the both groups of the

testers, so its impact should be equal for the both groups.

Next concern could be raised about the influence effect of testers‘ skills, experience and

general gift for exploratory testing for on the individual results. We have minimised this

effect by dividing the testers into the groups based on their level of experience and seniority

to keep the groups more or less equal. Nevertheless, this fact must be still considered.

Another point can be raised regarding the method of defect injection. The artificial

defects were not changing the proper flow of the functions and screens in the SUT. When

implemented so, the possibility to explore the SUT would be limited. This can be con-

sidered as a limit of the experiment. Nevertheless, when analysing the situation, such defect

injection would impact the both groups (and their results) equally. Thus, our conclusion

is that we can accept this limitation.

Considering the impact of the learning effect in each group, this effect shall be minim-

ised, as the both groups have been learning the explored application concurrently. Only

the exploratory testing process method (purely manual or aided by the proposed solution)

was different. Still, there is an issue deserving discussion discuss: six of the testers were

already familiar with the MantisBT application, which gave them an advantage in the

exploratory testing. However, we minimised this effect by:

1. Defect injection as described above. The testers were not informed about particular

parts of the SUT, where the injected defects were activated during the testing.

2. Equal distribution of these testers in the both experimental groups.

Regarding the Case Studies 2 and 3, we did a discussion of the relevance of used metrics

already in section 4.5.2. We hope this discussion was conducted in an objective way and

for each of the principal metrics proper disclaimers and possible limiting conditions were

described.

In the Case Studies 2 and 3 we used defect activation concept instead of defect detection.

The defect activation expresses a chance of the tester even to notice the defect, when

92

4.7. Threats to Validity

executed. The Tapir Framework logging mechanism exactly logged the fact that a defect

is activated, so the collected data are accurate at this point. In praxis, we can expect

real defect reporting ratio lower, as some of the activated defects will not be noticed and

reported by testers. Nevertheless, as this metric was used in all comparisons, our opinion is,

it can be utilized for measurement of a trend alternatively to defect detection ratio (which

can be, on the other hand, biased by individual flaws in defect reporting by experimental

team members).

Idle times of tester can influence measured times during the session (this is a likely

scenario when analyzing measured data, see graph in Figure 4.2). Unfortunately, in the

experiments, we had not a better option how to measure times spent during the testing

process: initially we experimented with subjective tester’s report of time spent on indi-

vidual testing tasks, but this proved as less reliable method than automated collection of

timestamps related to tester’s actions in the GUI, which was used in the case studies. We

tried to minimise this problem by excluding excessively long steps (tester spent more than

15 minutes on a particular page), caused by leaving the session opened and not testing

actually.

In Case Study 2 (comparison of manual exploratory testing approach with the Tapir

Framework), the group using the Tapir Framework is larger (31 versus 23 in the group

performing ET without support). Nevertheless the size of the group was large enough to

mitigate this risk; moreover, all testers acted individually, so team synergy did not play a

role in this case study and all analysed data were averages for a particular group.

Previous experience in exploratory testing of the experiment participants and a natural

gift of an individual to perform this type of testing efficiently can differ among the par-

ticipants, and this fact can be raised as another issue. Nevertheless, in the experimental

group, there was no tester expertly specialised to exploratory testing, which could favor-

ise one of the groups. Moreover, case study participants were distributed to the groups

randomly, which shall mitigate this issue.

Regarding the size of the used SUT, Mantis BT tracker workflow sand screenflow model

is extensive enough to draw conclusions regarding research questions Q1–Q6. The used

version of the mantis BT (1.2.19) composes of 202964 lines of code, 938 application files,

the database schema has 31 database tables.

Finally, a concern can be raised about the selection of the SUTs for all of the case

studies: already existing open–source SUTs were used for experiments, which potentially

do not reflect specifics of real software development project. During the experiments, we

tried to find such a project, nevertheless, in the experimental phase of the Tapir Framework,

we have not managed to secure such an experiment in the competitive software development

environment. However, when considering the purpose of the case studies, this shall not

have an effect which could significantly invalidate the results.

In Case Studies 1–3, we simulated a defective behaviour of the SUT by a defect injection

93

4. Experiments

technique. In Case Study 1 we simulated a process of evolution of the SUT, including defect

fixing and regression by the phases of the experiment.

In Case Study 4 we tested the applicability of the Tapir Framework to different SUTs

from the viewpoint of technical feasibility to connect the Tapir Browser Extension to the

SUT front–end. In this point, the technical style of the front–end structure and imple-

mentation details were the major influencers.

4.8 Other Applications of the Tapir Framework

The Tapir Framework allows to monitor software testers during their job and record the

explored path and entered testing data in the model. For these properties, the framework

can be used alternatively for situations, in which we are interested in measuring efficiency

of testing process. In this section, we give two examples of these situations.

4.8.1 Monitoring of Testers to Evaluate Efficiency of Static Testing

Static testing is an efficient method detecting software defects in a phase, where the defect

fixing is rather inexpensive when compared to the later project phases. It can detect

design errors or inconsistencies related to handling of business data objects of the SUT

(e.g. missing functions, wrong assignment of SUT functions to the business data objects,

suboptimal design of particular business data objects) and proper static testing can lead to

the design of more consistent and efficient dynamic test cases designed to verify consistency

of data objects in tested system.

Various concepts and methods exist in this area. Authors of [21] focused on static

testing related to consistency of business data objects in the Enterprise Information Sys-

tems (EIS). Usually, data–flow based techniques apply to data consistency in EIS. On the

conceptual level, the Data Cycle Test (DCyT) [58, 43] is considered as a template for the

data consistency tests. The DCyT bases on a concept of CRUD matrix8 and proposes

fundamental methods of static testing using such CRUD matrices.

To investigate the effectiveness of the static testing in this context, an experiment was

conducted simulating a situation in which an incomplete and inconsistent test basis was

used as an input to the creation of DCyT test cases. Issue tracking system MantisBT was

used as experimental SUT. We let several groups of test designers create DCyT test cases,

part of them were using the proposed static testing, part of them not. Next, we evaluated

the DCyT test cases produced by the experiment participants.

For this evaluation, we used the Tapir Framework, connected to MantisBT. By this, we

had available SUT model, defined by the same elements as the test basis model given to the

experiment participants. The Tapir Framework reconstructed the workflow model based

8http://www.tmap.net/wiki/crud

94

4.8. Other Applications of the Tapir Framework

on the high–level states (pages of the SUT) and transitions between them (SUT functions).

The exact workflow model of this SUT was therefore available for further analysis of the

data consistency test cases produced during the experiment.

As a part of an evaluation process, artificial data consistency defects were added to the

SUT model in the Tapir Framework to evaluate the potential of the DCyT test cases to

detect these defects.

Experiment participants were using predefined Microsoft Excel template to record the

produced test cases. This allowed automated processing of the data. The test cases were

loaded to the Tapir Framework connected to MantisBT defect tracker of the same version

as we used for the experiment (1.2.19).

The results of this research have been published in the Cluster Computing journal [A.2].

4.8.2 Evaluation of Test Coverage

Another possible use case of the Tapir Framework is to let the framework monitor the

testers performing tests by a set of test cases prepared before the test execution and

evaluate a coverage of these test cases. Principally two types of useful information can be

acquired by this process:

(1) Parts of the SUT or transitions between SUT pages not exercised by any tests. If

any business important functionality will be present in these parts, more tests shall

be added to the analysed test set.

(2) Parts of SUT repeatedly executed during the tests. Repetition of particular function

in the executed tests does not necessarily indicate an inefficient duplicity, as the

function can be repeated with various combinations of test data. Nevertheless, when

we analyze a set of smoke tests or priority regression tests, a repetition of the same

scenarios can be an indication for further optimisation of the test set.

Such an analysis can be a useful complement to coverage analysis based on the test basis

(requirements coverage for instance). As passive monitoring of the testers by the tracking

extension and automated reconstruction of the SUT model is performed automatically

and does not add an overhead to the testing process, the cost of this analysis is only an

evaluation of the recorded model and its comparison to the used test cases.

95

Chapter 5

Conclusions

In this chapter, we summarise the results of this Dissertation Thesis, its contributions and

we discuss the future work on the Tapir project, which is planned for the next two years

horizon.

5.1 Summary

The Exploratory Testing technique represents a sound testing alternative for software de-

velopment projects, in which test basis (design documentation used to design the test

cases) is not available, or is significantly obsolete or inconsistent. A number of issues can

influence the efficiency of this technique. When testers actions in the SUT are not sys-

tematically documented during the testing process, it usually leads to repetitive test cases,

including repetitive data combinations. In such situations, it is generally difficult to assess,

whether particular SUT feature was already tested. This makes decisions what to test in

the next steps difficult, especially, for more junior members of the testing team. Also,

this situation usually requires a strong managerial presence of a Test Lead, which has to

organize the testing in an efficient manner. Also, problems when reporting defects can be

experienced, as testers often do not remember the explored path exactly. This impacts the

quality of defect reports, which adds additional overhead to the development and testing

part of the project (more information is required by the development team to reproduce

these defects). Besides the extra costs, this effect also prolongs the defect fixing by the

developers. Consequently, the quality of testing strongly depends on the experience and

skills of the testers.

With the aim to minimise these problems, we designed and experimentally implemented

a framework for automated support of the Exploratory Testing process. This framework is

designed for the systems under tests to web–based applications and information systems,

providing an HTML–based user interface. Browser tracking extension records actions in

97

5. Conclusions

the SUT front–end performed by the testers and based on this information, the SUT model

is created and dynamically updated during testers’ exploration of the SUT. During this

exploration, navigational test cases are automatically created and presented to the testers

by guideline application running side-by-side with the SUT.

The SUT model includes pages of the SUT front–end, input, link and action elements

of these pages, as well as structures for management of test data used in the exploratory

testing process. History of SUT exploration by individual testers is also recorded in the

model.

To evaluate the efficiency and applicability of the proposed solution, we conducted four

Case Studies, which we presented in this Dissertation Thesis.

The first two Case Studies were performed to compare the efficiency of exploratory

testing supported by the proposed framework with exploratory testing performed manually

without such support. The results of these Case Studies are promising: In the Case Study

1, significant effort was saved for the part of subtasks of the ET process when performed

with the aid of an automated support. The savings were achieved mostly in the subtasks

related to the documentation of the test case (steps which have to be taken) and overall

documentation of the explored parts of the SUT. Overall time savings in the case study

were 23.54% when the proposed solution was used. In the subtasks which were not directly

supported by the used version of Tapir Framework (e.g. specification of the test expected

result, or defect report), no significant improvement was achieved. Further on, there was a

slight increase in an average number of detected defects for the aided exploratory testing

in comparison to the manually performed ET process by 6%.

As the Case Study 2 documented, ET supported by the Tapir Framework lead to

exploration of larger extents of the SUT, and, together with that, lead the testers to

explore more parts of the SUT unreached previously. This effect was also confirmed by

the measured average number of SUT pages explored per time unit, which was better by

6.6% in case of the Tapir Framework. In the case of other elements of the SUT model,

this metric improved significantly, in particular, 38.7% for unique pages, 43.2% for total

links, 68.1% for unique links, 97.3% for total action elements and even 141.9% for unique

action elements. These metrics document capability of the framework to lead the testers to

explore new parts of the SUT time–efficiently. However, these metrics are the most relevant

in the case of rapid light–weight exploratory testing, in which the testers’ goal is to explore

new SUT functions time–efficiently and to cover the most previously unexplored functions

as possible. In the case of more thorough testing, the relevance of these metrics shall be

revised. By principle, SUT pages and elements would repeat the tests when exercised more

times by more extensive input test data combinations. Nevertheless, another metrics also

document benefits of the Tapir Framework: with its support, testers were able to reach

and activate 31.1% more inserted artificial defects in average. Regarding the average time

needed to activate one unique defect, this indicator improved by 18.7%.

98

5.1. Summary

In the Case Study 3, we compared selected navigational strategies and ranking functions

to select the best option to be used in the framework.

This comparison clearly documented, that team–based navigational strategies are more

efficient than individual navigational strategies. For PageComplexityRank ranking func-

tion used in the comparison of the strategies, the average ratio of unique explored pages

increased by 7.0% for team navigational strategy. Further on, the average ratio of unique

link elements by 14.6% and the ratio of unique action elements by 7.4%. Average time

spent on unique page improved by 21.3%, average time spent on a unique link, resp. an ac-

tion elements, improved by 40.8%, resp. 28.9%. Also, total unique activated defects logged

improved by 18.7% and average time to detect one unique defect improved by 22.5%.

Regarding the ranking functions, PageComplexityRank performed slightly better than

ElementTypeRank in several aspects. Nevertheless, we are currently doing more experi-

ments to find an optimal ranking function.

Finally, the Case Study 4 explored applicability of the Tapir Framework to different

styles of SUT front–end coding. In the case of OFBiz and Moodle systems, customization

of Browser Extension was entirely feasible, and the Tapir Framework was working without

technical limitations. Our concern was an application with strongly dynamically generated

front–end pages, where only a little stable elements and element IDs are present. As an

example of this application, we selected JTrac. As customization of browser tracking exten-

sion shown, dynamically generated URL of the front–end pages represented a problem to

reconstruct the SUT model; framework was running partially, but the model reconstruction

was inaccurate. This represents an application limit of the proposed framework. It is worth

to mention, that for an automated testing based on the front–end, such dynamic genera-

tion of HTML content also represents a significant obstacle. Such dynamically–generated

applications are considered as anti–pattern by test automation community. JTrac was a

difficult example in this case; in another experiment, we performed recently [20], prepara-

tion of Selenium scripts for JTrac has shown as a technical challenge, for the very similar

reasons it was for adoption of tracking extension for the Tapir Framework.

Results of manual ET process can be influenced by a person of Test Lead. Even

for a manual process, a systematic approach can be effective. Nevertheless, the systematic

guidance of the testers including proper documentation of explored SUT parts is demanding

task and shall be performed all time during the testing process. Thus, the proposed Tapir

Framework can provide efficient support taking over this administrative overhead and

letting Test Lead focus on the analysis of the state, strategic decisions during the testing

process and motivation of the testing team more intensely. Effect of such support would

be even stronger in the case of extensive SUTs and exploratory software testing in business

domains the testers are not entirely familiar with. The results from the presented Case

Studies documented viability of the proposed concept and motivate us to develop the

framework further.

99

5. Conclusions

5.2 Contributions of the Dissertation Thesis

The contributions of this Dissertation Thesis can be summarised as the following:

◦ Design of the framework, which contributes to conduction of Exploratory Testing

process in more efficient way regarding spent resources, extent of explored SUT and

found defects.

◦ Combination of Reverse–Engineering, Model–Based Testing and Exploratory Testing,

which we consider innovative (during extensive literature study on related topic, we

have not identified a research or software industrial project, which addressed the

problem in the way similar to our approach).

◦ Formal model of the underlying system under test, which can be (apart from being

used as a basis for the Tapir Framework processes) further used for modeling of Ex-

ploratory Testing process or for measurement of efficiency of software testing process

in general.

◦ Design of the initial navigational strategies, ranking functions and test data strategies,

which can be further explored and more efficient variants can be found. This includes

the focus on the team work and efficient usage of the individual tester’s resources.

◦ Practical applicability of the proposed framework to industrial software development

and testing projects.

◦ Possible alternative usages of the Tapir Framework, as measurement of the testing

process efficiency or assessment of the efficiency of particular set of test cases.

5.3 Future Work

As case studies demonstrated, the concept of the presented Tapir Framework is promising in

terms of its industrial application. Our further research plans include the further evolution

of the framework. The development road–map of the Tapir Framework for the following

two–year horizon covers the following areas:

◦ Improve usability aspects of the Tapir HQ application, guiding the exploratory tester

through the SUT.

◦ Create Tapir Browser Extension for the Firefox browser, covering the browser with

the second market share, and thus, to cover 90% of the browser market share (by the

W3C browser usage statistic up to July 20171).

1https://www.w3schools.com/Browsers/default.asp

100

5.3. Future Work

◦ If technically feasible, also focus on the testers actions, which are being performed

in the web browser environment only (without requesting the server for the load of

the next SUT page). This would allow us to give higher granularity to the recorded

tests.

◦ Find more efficient navigational strategies, ranking functions and test data strategies.

◦ Let the system collect more immediate feedback from the Exploratory Testing process

and let it adapt the navigational process dynamically to changing conditions during

the process (for instance by adjusting weights in the ranking functions in a feedback

loop).

◦ Explore further possibilities of connecting of the framework to a Combinational In-

teraction Testing (CIT) module for generation of efficient data combinations to be

entered in page inputs (typically various forms on the SUT pages).

◦ Implement the semi–automatic model update. The Browser Extension should com-

pare the structure of the currently explored page with the model of that page. The

difference between the page and its model might be caused by (1) an error or (2) a

change made to the system. The operator will tell the Tapir Framework how to deal

with this change and it will update the model in the case of a wanted change. The

testers will be guided to test these parts of the SUT first.

The further development of the Tapir Framework will also be partially driven by feed-

back from industrial applications. We plan to conduct more case studies providing us with

the feedback to improve the framework further on. Currently, we are in negotiations with

Czech branches of two international companies, who expressed interest in participating in

proof of concept of the Tapir Framework application in their software testing processes.

101

Bibliography

[1] M. Albert, J. Cabot, C. Gòmez, and V. Pelechano. Automatic generation of basic

behavior schemas from uml class diagrams. Software & Systems Modeling, 9(1):47–67,

2010. ISSN 1619-1366. doi: 10.1007/s10270-008-0108-x. URL http://dx.doi.org/

10.1007/s10270-008-0108-x.

[2] D. Amalfitano, A. R. Fasolino, and P. Tramontana. A gui crawling-based technique

for android mobile application testing. In Software Testing, Verification and Valid-

ation Workshops (ICSTW), 2011 IEEE Fourth International Conference on, pages

252–261. IEEE, 2011.

[3] D. Amalfitano, A. R. Fasolino, P. Tramontana, B. D. Ta, and A. M. Memon. Mo-

biguitar: Automated model-based testing of mobile apps. Software, IEEE, 32(5):

53–59, 2015.

[4] S. Arora and M. P. Rao. Probabilistic model checking of incomplete models. In

International Symposium on Leveraging Applications of Formal Methods, pages 62–

76. Springer, 2016.

[5] A. Bandyopadhyay and S. Ghosh. Test input generation using uml sequence and state

machines models. In Software Testing Verification and Validation, 2009. ICST ’09.

International Conference on, pages 121–130, April 2009. doi: 10.1109/ICST.2009.23.

[6] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo. The oracle problem

in software testing: A survey. IEEE Transactions on Software Engineering, 41(5):

507–525, May 2015. ISSN 0098-5589. doi: 10.1109/TSE.2014.2372785.

[7] F. Bellucci, G. Ghiani, F. Paternò, and C. Porta. Automatic reverse engineering

of interactive dynamic web applications to support adaptation across platforms. In

Proceedings of the 2012 ACM international conference on Intelligent User Interfaces,

pages 217–226. ACM, 2012.

103

http://dx.doi.org/10.1007/s10270-008-0108-x
http://dx.doi.org/10.1007/s10270-008-0108-x

Bibliography

[8] B. Bérard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci, and

P. Schnoebelen. Systems and software verification: model-checking techniques and

tools. Springer Science & Business Media, 2013.

[9] K. Bhatti and A. N. Ghazi. Effectiveness of exploratory testing, an empirical scrutiny

of the challenges and factors affecting the defect detection efficiency, 2010.

[10] L. Bozzelli, A. Molinari, A. Montanari, A. Peron, and P. Sala. Interval temporal logic

model checking: the border between good and bad hs fragments. In International

Joint Conference on Automated Reasoning, pages 389–405. Springer, 2016.

[11] M. Brambilla and P. Fraternali. Interaction Flow Modeling Language: Model-Driven

UI Engineering of Web and Mobile Apps with IFML. Morgan Kaufmann, 2014.

[12] M. Brambilla and P. Fraternali. Large-scale model-driven engineering of web user

interaction: The webml and webratio experience. Science of Computer Programming,

89:71–87, 2014.

[13] M. Brambilla, P. Fraternali, et al. The interaction flow modeling language (ifml).

Technical report, version 1.0. Technical report, Object Management Group (OMG),

http://www.ifml.org, 2014.

[14] M. Brambilla, A. Mauri, and E. Umuhoza. Extending the interaction flow modeling

language (ifml) for model driven development of mobile applications front end. In

Mobile Web Information Systems, volume 8640 of Lecture Notes in Computer Science,

pages 176–191. Springer International Publishing, 2014. ISBN 978-3-319-10358-7.

doi: 10.1007/978-3-319-10359-4 15. URL http://dx.doi.org/10.1007/978-3-319-

10359-4 15.

[15] R. Bruni and U. Montanari. Temporal logic and the µ-calculus. In Models of Com-

putation, pages 271–286. Springer, 2017.

[16] K. Bubna and S. K. Chakrabarti. Act (abstract to concrete tests)-a tool for gener-

ating concrete test cases from formal specification of web applications. In ModSym+

SAAAS@ ISEC, pages 16–22, 2016.

[17] M. Bures. Automated testing in the czech republic: The current situation and issues.

In ACM International Conference Proceeding Series, volume 883, pages 294–301,

2014. doi: 10.1145/2659532.2659605.

[18] M. Bures. Metrics for automated testability of web applications. In ACM In-

ternational Conference Proceeding Series, volume 1008, pages 83–89, 2015. doi:

10.1145/2812428.2812458.

104

http://dx.doi.org/10.1007/978-3-319-10359-4_15
http://dx.doi.org/10.1007/978-3-319-10359-4_15

Bibliography

[19] M. Bures. Framework for assessment of web application automated testability. In

Proceedings of the 2015 Conference on research in adaptive and convergent systems,

pages 512–514. ACM, 2015.

[20] M. Bures and B. S. Ahmed. On the effectiveness of combinatorial interaction testing:

A case study. In Software Quality, Reliability and Security Companion (QRS-C),

2017 IEEE International Conference on, pages 69–76. IEEE, 2017.

[21] M. Bures and T. Cerny. Static Testing Using Different Types of CRUD Matrices,

pages 594–602. Springer Singapore, Singapore, 2017. ISBN 978-981-10-4154-9.

doi: 10.1007/978-981-10-4154-9 68. URL https://doi.org/10.1007/978-981-10-

4154-9 68.

[22] S. Ceri, P. Fraternali, and A. Bongio. Web modeling language (WebML): a mod-

eling language for designing web sites. Computer Networks, 33(1-6):137–157, jun

2000. doi: 10.1016/s1389-1286(00)00040-2. URL https://doi.org/10.1016/s1389-

1286(00)00040-2.

[23] C. Ş. Gebizli and H. Sözer. Improving models for model-based testing based on

exploratory testing. In 2014 IEEE 38th International Computer Software and

Applications Conference Workshops, pages 656–661, July 2014. doi: 10.1109/

COMPSACW.2014.110.

[24] C. Ş. Gebizli and H. Sözer. Impact of education and experience level on the effect-

iveness of exploratory testing: An industrial case study. In 2017 IEEE International

Conference on Software Testing, Verification and Validation Workshops (ICSTW),

pages 23–28, March 2017. doi: 10.1109/ICSTW.2017.8.

[25] V. Dallmeier, M. Burger, T. Orth, and A. Zeller. WebMate: Generating Test Cases

for Web 2.0, pages 55–69. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013. ISBN

978-3-642-35702-2. doi: 10.1007/978-3-642-35702-2 5. URL http://dx.doi.org/

10.1007/978-3-642-35702-2 5.

[26] R. Degiovanni, P. Ponzio, N. Aguirre, and M. Frias. Abstraction Based Auto-

mated Test Generation from Formal Tabular Requirements Specifications, pages 84–

101. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011. ISBN 978-3-642-21768-5.

doi: 10.1007/978-3-642-21768-5 8. URL http://dx.doi.org/10.1007/978-3-642-

21768-5 8.

[27] A. Delgado, D. Calegari, and A. Arrigoni. Towards a generic bpms user portal

definition for the execution of business processes. Electronic Notes in Theoretical

Computer Science, 329:39–59, 2016.

105

https://doi.org/10.1007/978-981-10-4154-9_68
https://doi.org/10.1007/978-981-10-4154-9_68
https://doi.org/10.1016/s1389-1286(00)00040-2
https://doi.org/10.1016/s1389-1286(00)00040-2
http://dx.doi.org/10.1007/978-3-642-35702-2_5
http://dx.doi.org/10.1007/978-3-642-35702-2_5
http://dx.doi.org/10.1007/978-3-642-21768-5_8
http://dx.doi.org/10.1007/978-3-642-21768-5_8

Bibliography

[28] J. den Haan. Model Driven Engineering tools compared on user activ-

ities. http://www.theenterprisearchitect.eu/archive/2009/02/18/model-

driven-engineering-tools-compared-on-user-activities, May 2017.

[29] A. Deutsch, L. Sui, and V. Vianu. Specification and verification of data-driven web

applications. Journal of Computer and System Sciences, 73(3):442–474, 2007.

[30] G. A. Di Lucca and A. R. Fasolino. Web Application Testing, pages 219–260. Springer

Berlin Heidelberg, Berlin, Heidelberg, 2006. ISBN 978-3-540-28218-1. doi: 10.1007/

3-540-28218-1 7. URL http://dx.doi.org/10.1007/3-540-28218-1 7.

[31] A. C. Dias Neto, R. Subramanyan, M. Vieira, and G. H. Travassos. A survey on

model-based testing approaches: a systematic review. In Proceedings of the 1st ACM

international workshop on Empirical assessment of software engineering languages

and technologies: held in conjunction with the 22nd IEEE/ACM International Con-

ference on Automated Software Engineering (ASE) 2007, pages 31–36. ACM, 2007.

[32] L. H. do Nascimento and P. D. Machado. An experimental evaluation of approaches

to feature testing in the mobile phone applications domain. In Workshop on Do-

main specific approaches to software test automation: in conjunction with the 6th

ESEC/FSE joint meeting, pages 27–33. ACM, 2007.

[33] A. Domingues, E. M. Rodrigues, and M. Bernardino. Autofun. In Proceedings of the

1st Brazilian Symposium on Systematic and Automated Software Testing - SAST.

ACM Press, 2016. doi: 10.1145/2993288.2993298. URL https://doi.org/10.1145/

2993288.2993298.

[34] B. Dorninger, J. Pichler, and A. Kern. Using static analysis for knowledge extraction

from industrial user interfaces. In 2015 IEEE International Conference on Software

Maintenance and Evolution (ICSME), pages 497–500, Sept 2015. doi: 10.1109/

ICSM.2015.7332501.

[35] S. Eldh, H. Hansson, S. Punnekkat, A. Pettersson, and D. Sundmark. A framework

for comparing efficiency, effectiveness and applicability of software testing techniques.

In Testing: Academic and Industrial Conference - Practice And Research Techniques,

2006. TAIC PART 2006. Proceedings, pages 159–170, Aug 2006. doi: 10.1109/TAIC-

PART.2006.1.

[36] E. P. Enoiu, A. Čaušević, T. J. Ostrand, E. J. Weyuker, D. Sundmark, and P. Pet-

tersson. Automated test generation using model checking: an industrial evaluation.

International Journal on Software Tools for Technology Transfer, 18(3):335–353,

2016.

106

http://www.theenterprisearchitect.eu/archive/2009/02/18/model-driven-engineering-tools-compared-on-user-activities
http://www.theenterprisearchitect.eu/archive/2009/02/18/model-driven-engineering-tools-compared-on-user-activities
http://dx.doi.org/10.1007/3-540-28218-1_7
https://doi.org/10.1145/2993288.2993298
https://doi.org/10.1145/2993288.2993298

Bibliography

[37] V. Entin, M. Winder, B. Zhang, and S. Christmann. Combining model-based

and capture-replay testing techniques of graphical user interfaces: An industrial

approach. In Software Testing, Verification and Validation Workshops (ICSTW),

2011 IEEE Fourth International Conference on, pages 572–577, March 2011. doi:

10.1109/ICSTW.2011.13.

[38] F. Ferri. Visual Languages for Interactive Computing: Definitions and Formal-

izations. Premier reference source. Information Science Reference, 2008. ISBN

9781599045368. URL https://books.google.co.uk/books?id=LNOSq-q7wfoC.

[39] M. Frappier, B. Fraikin, R. Chossart, R. Chane-Yack-Fa, and M. Ouenzar. Com-

parison of Model Checking Tools for Information Systems, pages 581–596. Springer

Berlin Heidelberg, Berlin, Heidelberg, 2010. ISBN 978-3-642-16901-4. doi: 10.1007/

978-3-642-16901-4 38. URL https://doi.org/10.1007/978-3-642-16901-4 38.

[40] P. Fraternali and M. Tisi. Multi-level Tests for Model Driven Web Applications.

In B. Benatallah, F. Casati, G. Kappel, and G. Rossi, editors, Web Engineering,

volume 6189 of Lecture Notes in Computer Science, pages 158–172. Springer Berlin

/ Heidelberg, 2010. ISBN 978-3-642-13910-9.

[41] A. N. Ghazi, R. P. Garigapati, and K. Petersen. Checklists to Support Test Charter

Design in Exploratory Testing, pages 251–258. Springer International Publishing,

Cham, 2017. ISBN 978-3-319-57633-6. doi: 10.1007/978-3-319-57633-6 17. URL

https://doi.org/10.1007/978-3-319-57633-6 17.

[42] M. Gogolla, F. Hilken, P. Niemann, and R. Wille. Formulating model verification

tasks prover-independently as uml diagrams. In European Conference on Modelling

Foundations and Applications, pages 232–247. Springer, 2017.

[43] D.-J. d. Grood. TestGoal: Result-Driven Testing. Springer Publishing Company,

Incorporated, 1 edition, 2008. ISBN 354078828X, 9783540788287.

[44] M. Hammoudi, G. Rothermel, and P. Tonella. Why do record/replay tests of

web applications break? In 2016 IEEE International Conference on Software

Testing, Verification and Validation (ICST), pages 180–190, April 2016. doi:

10.1109/ICST.2016.16.

[45] E. Hendrickson. Explore it!: reduce risk and increase confidence with exploratory

testing. The Pragmatic Programmers, 2014.

[46] B. Homès. Fundamentals of Software Testing. John Wiley & Sons, 2013.

107

https://books.google.co.uk/books?id=LNOSq-q7wfoC
https://doi.org/10.1007/978-3-642-16901-4_38
https://doi.org/10.1007/978-3-319-57633-6_17

Bibliography

[47] J. Hutchinson, J. Whittle, and M. Rouncefield. Model-driven engineering practices

in industry: Social, organizational and managerial factors that lead to success or

failure. Science of Computer Programming, 89:144–161, 2014.

[48] J. Itkonen and M. V. Mäntylä. Are test cases needed? replicated comparison between

exploratory and test-case-based software testing. Empirical Software Engineering, 19

(2):303–342, 2014. ISSN 1573-7616. doi: 10.1007/s10664-013-9266-8. URL http:

//dx.doi.org/10.1007/s10664-013-9266-8.

[49] J. Itkonen and K. Rautiainen. Exploratory testing: a multiple case study. In Em-

pirical Software Engineering, 2005. 2005 International Symposium on, pages 10–pp.

IEEE, 2005.

[50] J. Itkonen, M. V. Mäntylä, and C. Lassenius. Defect detection efficiency: Test

case based vs. exploratory testing. In Proceedings of the First International Sym-

posium on Empirical Software Engineering and Measurement, ESEM ’07, pages 61–

70, Washington, DC, USA, 2007. IEEE Computer Society. ISBN 0-7695-2886-4. doi:

10.1109/ESEM.2007.38. URL http://dx.doi.org/10.1109/ESEM.2007.38.

[51] J. Itkonen et al. Empirical studies on exploratory software testing. 2011.

[52] A. K. Jena, S. K. Swain, and D. P. Mohapatra. A novel approach for test case

generation from uml activity diagram. In 2014 International Conference on Issues

and Challenges in Intelligent Computing Techniques (ICICT), pages 621–629, Feb

2014. doi: 10.1109/ICICICT.2014.6781352.

[53] P. C. Jorgensen. The Craft of Model-Based Testing. CRC Press, 2017.

[54] C. Kaner, J. Bach, and B. Pettichord. Lessons learned in software testing. John

Wiley & Sons, 2008.

[55] S. Kansomkeat, P. Thiket, and J. Offutt. Generating test cases from uml activity

diagrams using the condition-classification tree method. In Software Technology and

Engineering (ICSTE), 2010 2nd International Conference on, volume 1, pages V1–

62–V1–66, Oct 2010. doi: 10.1109/ICSTE.2010.5608913.

[56] M. Kessentini, H. Sahraoui, and M. Boukadoum. Example-based model-

transformation testing. Automated Software Engineering, 18(2):199–224, 2011. ISSN

1573-7535. doi: 10.1007/s10515-010-0079-3. URL http://dx.doi.org/10.1007/

s10515-010-0079-3.

[57] D.-K. Kim and L.-S. Lee. Reverse engineering from exploratory testing to

specification-based testing. International Journal of Software Engineering and Its

Applications, 8(11):197–208, 2014.

108

http://dx.doi.org/10.1007/s10664-013-9266-8
http://dx.doi.org/10.1007/s10664-013-9266-8
http://dx.doi.org/10.1109/ESEM.2007.38
http://dx.doi.org/10.1007/s10515-010-0079-3
http://dx.doi.org/10.1007/s10515-010-0079-3

Bibliography

[58] T. Koomen, L. v. d. Aalst, B. Broekman, and M. Vroon. TMap Next, for Result-

driven Testing. UTN Publishers, 2013.

[59] B. Kumar and K. Singh. Testing uml designs using class, sequence and activity

diagrams. International Journal for Innovative Research in Science and Technology,

2(3):71–81, 2015.

[60] D. Kundu, D. Samanta, and R. Mall. Automatic code generation from unified mod-

elling language sequence diagrams. Software, IET, 7(1):12–28, February 2013. ISSN

1751-8806. doi: 10.1049/iet-sen.2011.0080.

[61] M. Leotta, D. Clerissi, F. Ricca, and P. Tonella. Capture-replay vs. programmable

web testing: An empirical assessment during test case evolution. In 2013 20th Work-

ing Conference on Reverse Engineering (WCRE), pages 272–281, Oct 2013. doi:

10.1109/WCRE.2013.6671302.

[62] N. Li and J. Offutt. Test oracle strategies for model-based testing. IEEE Transactions

on Software Engineering, 43(4):372–395, April 2017. ISSN 0098-5589. doi: 10.1109/

TSE.2016.2597136.

[63] R. Lipka, T. Potuzak, P. Brada, P. Hnetynka, and J. Vinarek. A method for semi–

automated generation of test scenarios based on use cases. In Software Engineering

and Advanced Applications (SEAA), 2015 41st Euromicro Conference on, pages 241–

244. IEEE, 2015.

[64] C. H. Liu, C. Y. Lu, S. J. Cheng, K. Y. Chang, Y. C. Hsiao, and W. M. Chu.

Capture-replay testing for android applications. In Computer, Consumer and Con-

trol (IS3C), 2014 International Symposium on, pages 1129–1132, June 2014. doi:

10.1109/IS3C.2014.293.

[65] M. Lochau, S. Peldszus, M. Kowal, and I. Schaefer. Model-based testing. In Advanced

Lectures of the 14th International School on Formal Methods for Executable Software

Models - Volume 8483, pages 310–342, New York, NY, USA, 2014. Springer-Verlag

New York, Inc. ISBN 978-3-319-07316-3. doi: 10.1007/978-3-319-07317-0 8. URL

http://dx.doi.org/10.1007/978-3-319-07317-0 8.

[66] A. Lomuscio, H. Qu, and F. Raimondi. Mcmas: An open-source model checker for

the verification of multi-agent systems. International Journal on Software Tools for

Technology Transfer, 19(1):9–30, 2017.

[67] A. Mehmood and D. N. Jawawi. Aspect-oriented model-driven code generation: A

systematic mapping study. Information and Software Technology, 55(2):395 – 411,

2013. ISSN 0950-5849. doi: http://dx.doi.org/10.1016/j.infsof.2012.09.003. URL

109

http://dx.doi.org/10.1007/978-3-319-07317-0_8

Bibliography

http://www.sciencedirect.com/science/article/pii/S0950584912001863. Spe-

cial Section: Component-Based Software Engineering (CBSE), 2011.

[68] A. M. Memon. Automatically repairing event sequence-based gui test suites for re-

gression testing. ACM Trans. Softw. Eng. Methodol., 18(2):4:1–4:36, Nov. 2008. ISSN

1049-331X. doi: 10.1145/1416563.1416564. URL http://doi.acm.org/10.1145/

1416563.1416564.

[69] L. Meng. Self-description and regeneration of test cases based on error-guessing

method for safety-critical software automatic testing. Journal of Tongji University

(Nature Science), 32(8), 2004.

[70] A. Mesbah, A. Van Deursen, and S. Lenselink. Crawling ajax-based web applications

through dynamic analysis of user interface state changes. ACM Transactions on the

Web (TWEB), 6(1):3, 2012.

[71] M. Micallef, C. Porter, and A. Borg. Do exploratory testers need formal training? an

investigation using hci techniques. In 2016 IEEE Ninth International Conference on

Software Testing, Verification and Validation Workshops (ICSTW), pages 305–314,

April 2016. doi: 10.1109/ICSTW.2016.31.

[72] J. W. Mickens, J. Elson, and J. Howell. Mugshot: Deterministic capture and replay

for javascript applications. In NSDI, volume 10, pages 159–174, 2010.

[73] R. M. L. M. Moreira, A. C. R. Paiva, and A. Memon. A pattern-based ap-

proach for gui modeling and testing. In 2013 IEEE 24th International Sym-

posium on Software Reliability Engineering (ISSRE), pages 288–297, Nov 2013. doi:

10.1109/ISSRE.2013.6698881.

[74] N. Moreno, P. Fraternali, and A. Vallecillo. Webml modelling in uml. Software, IET,

1(3):67–80, June 2007. ISSN 1751-8806.

[75] I. C. Morgado and A. C. R. Paiva. The impact tool: Testing ui patterns on mo-

bile applications. In 2015 30th IEEE/ACM International Conference on Automated

Software Engineering (ASE), pages 876–881, Nov 2015. doi: 10.1109/ASE.2015.96.

[76] I. C. Morgado and A. C. R. Paiva. Testing approach for mobile applications through

reverse engineering of ui patterns. In 2015 30th IEEE/ACM International Conference

on Automated Software Engineering Workshop (ASEW), pages 42–49, Nov 2015. doi:

10.1109/ASEW.2015.11.

[77] M. Nabuco and A. C. Paiva. Model-based test case generation for web applications.

In Proceedings of the 14th International Conference on Computational Science and

Its Applications — ICCSA 2014 - Volume 8584, pages 248–262, New York, NY,

110

http://www.sciencedirect.com/science/article/pii/S0950584912001863
http://doi.acm.org/10.1145/1416563.1416564
http://doi.acm.org/10.1145/1416563.1416564

Bibliography

USA, 2014. Springer-Verlag New York, Inc. ISBN 978-3-319-09152-5. doi: 10.1007/

978-3-319-09153-2 19. URL http://dx.doi.org/10.1007/978-3-319-09153-2 19.

[78] T. Neil. Mobile design pattern gallery: UI patterns for smartphone apps. ” O’Reilly

Media, Inc.”, 2014.

[79] B. N. Nguyen, B. Robbins, I. Banerjee, and A. Memon. Guitar: an innovative

tool for automated testing of gui-driven software. Automated Software Engineering,

21(1):65–105, Mar 2014. ISSN 1573-7535. doi: 10.1007/s10515-013-0128-9. URL

https://doi.org/10.1007/s10515-013-0128-9.

[80] R. F. Paige, S. Kokaly, B. Cheng, F. Bordeleau, H. Storrle, J. Whittle, and S. Abra-

hao. User experience for model-driven engineering: Challenges and future directions.

In ACM/IEEE 20th International Conference on Model Driven Engineering Lan-

guages and Systems. Institute of Electrical and Electronics Engineers Inc., 2017.

[81] A. C. Paiva, J. C. Faria, and P. M. Mendes. Reverse engineered formal models for

gui testing. In International Workshop on Formal Methods for Industrial Critical

Systems, pages 218–233. Springer, 2007.

[82] B. Peischl, M. Weiglhofer, and F. Wotawa. Executing abstract test cases. In GI

Jahrestagung, 2007.

[83] D. Pfahl, H. Yin, M. V. Mäntylä, and J. Münch. How is exploratory testing used?

a state-of-the-practice survey. In Proceedings of the 8th ACM/IEEE International

Symposium on Empirical Software Engineering and Measurement, page 5. ACM,

2014.

[84] J. Polpong and S. Kansomkeat. Syntax-based test case generation for web applica-

tion. In 2015 International Conference on Computer, Communications, and Control

Technology (I4CT), pages 389–393, April 2015. doi: 10.1109/I4CT.2015.7219604.

[85] T. Potuzak and R. Lipka. Interface-based semi-automated generation of scenarios

for simulation testing of software components. In SIMUL 2014, pages 35–42. IARIA,

2014. ISBN 978-1-61208-371-1.

[86] P. Raappana, S. Saukkoriipi, I. Tervonen, and M. V. Mntyl. The effect of team ex-

ploratory testing – experience report from f-secure. In 2016 IEEE Ninth International

Conference on Software Testing, Verification and Validation Workshops (ICSTW),

pages 295–304, April 2016. doi: 10.1109/ICSTW.2016.13.

[87] D. Rafi, K. Moses, K. Petersen, and M. Mntyl. Benefits and limitations of

automated software testing: Systematic literature review and practitioner sur-

vey. pages 36–42, 2012. doi: 10.1109/IWAST.2012.6228988. URL https:

111

http://dx.doi.org/10.1007/978-3-319-09153-2_19
https://doi.org/10.1007/s10515-013-0128-9
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84864258235&doi=10.1109%2fIWAST.2012.6228988&partnerID=40&md5=594002cd294acc00723ef672b330211b
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84864258235&doi=10.1109%2fIWAST.2012.6228988&partnerID=40&md5=594002cd294acc00723ef672b330211b

Bibliography

//www.scopus.com/inward/record.uri?eid=2-s2.0-84864258235&doi=10.1109%

2fIWAST.2012.6228988&partnerID=40&md5=594002cd294acc00723ef672b330211b.

[88] E. M. Rodrigues, R. S. Saad, F. M. Oliveira, L. T. Costa, M. Bernardino, and

A. F. Zorzo. Evaluating capture and replay and model-based performance testing

tools. In Proceedings of the 8th ACM/IEEE International Symposium on Empirical

Software Engineering and Measurement - ESEM’14. ACM Press, 2014. doi: 10.1145/

2652524.2652587. URL https://doi.org/10.1145/2652524.2652587.

[89] R. Rodriguez-Echeverria, V. M. Pavón, F. Maćıas, J. M. Conejero, P. J. Clemente,

and F. Sánchez-Figueroa. Ifml-based model-driven front-end modernization. 2014.

[90] G. Rossi. Web modeling languages strike back. IEEE Internet Computing, 17(4):

4–6, July 2013. ISSN 1089-7801. doi: 10.1109/MIC.2013.78.

[91] C. Sacramento and A. C. Paiva. Web application model generation through reverse

engineering and ui pattern inferring. In Quality of Information and Communications

Technology (QUATIC), 2014 9th International Conference on the, pages 105–115.

IEEE, 2014.

[92] D. C. Schmidt. Model-driven engineering. COMPUTER-IEEE COMPUTER

SOCIETY-, 39(2):25, 2006.

[93] S. Segura, G. Fraser, A. B. Sanchez, and A. Ruiz-Corts. A survey on metamorphic

testing. IEEE Transactions on Software Engineering, 42(9):805–824, Sept 2016. ISSN

0098-5589. doi: 10.1109/TSE.2016.2532875.

[94] S. M. A. Shah, C. Gencel, U. S. Alvi, and K. Petersen. Towards a hybrid testing pro-

cess unifying exploratory testing and scripted testing. Journal of Software: Evolution

and Process, 26(2):220–250, 2014.

[95] H. K. SHARMA, S. K. SINGH, and P. AHLAWAT. Model-Based Testing: The New

Revolution in Software Testing. Database Systems Journal, 5(1):26–31, May 2014.

URL https://ideas.repec.org/a/aes/dbjour/v5y2014i1p26-31.html.

[96] M. Shirole and R. Kumar. Uml behavioral model based test case generation: A

survey. SIGSOFT Softw. Eng. Notes, 38(4):1–13, July 2013. ISSN 0163-5948. doi:

10.1145/2492248.2492274. URL http://doi.acm.org/10.1145/2492248.2492274.

[97] I. Shufer, A. Ledenev, and Y. Burg. System and method for monitoring exploratory

testing by a plurality of testers, Oct. 8 2013. US Patent 8,555,253.

[98] J. C. Silva, J. Saraiva, and J. C. Campos. A generic library for gui reasoning and

testing. In Proceedings of the 2009 ACM symposium on Applied Computing, pages

121–128. ACM, 2009.

112

https://www.scopus.com/inward/record.uri?eid=2-s2.0-84864258235&doi=10.1109%2fIWAST.2012.6228988&partnerID=40&md5=594002cd294acc00723ef672b330211b
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84864258235&doi=10.1109%2fIWAST.2012.6228988&partnerID=40&md5=594002cd294acc00723ef672b330211b
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84864258235&doi=10.1109%2fIWAST.2012.6228988&partnerID=40&md5=594002cd294acc00723ef672b330211b
https://doi.org/10.1145/2652524.2652587
https://ideas.repec.org/a/aes/dbjour/v5y2014i1p26-31.html
http://doi.acm.org/10.1145/2492248.2492274

Bibliography

[99] B. Song, H. Miao, and S. Chen. Considering web frameset and browser interactions

in modeling and testing of web applications. In 2009 International Conference on

Computational Intelligence and Software Engineering, pages 1–4, Dec 2009. doi:

10.1109/CISE.2009.5363453.

[100] A. Stavrou and G. Papadopoulos. Automatic generation of executable code from

software architecture models. In C. Barry, M. Lang, W. Wojtkowski, K. Conboy,

and G. Wojtkowski, editors, Information Systems Development, pages 1047–1058.

Springer US, 2009. ISBN 978-0-387-78577-6. doi: 10.1007/978-0-387-78578-3 36.

URL http://dx.doi.org/10.1007/978-0-387-78578-3 36.

[101] B. Suranto. Exploratory software testing in agile project. In 2015 International

Conference on Computer, Communications, and Control Technology (I4CT), pages

280–283, April 2015. doi: 10.1109/I4CT.2015.7219581.

[102] H. Tanida, M. R. Prasad, S. P. Rajan, and M. Fujita. Automated System Testing

of Dynamic Web Applications, pages 181–196. Springer Berlin Heidelberg, Berlin,

Heidelberg, 2013. ISBN 978-3-642-36177-7. doi: 10.1007/978-3-642-36177-7 12. URL

http://dx.doi.org/10.1007/978-3-642-36177-7 12.

[103] H. Tanno and X. Zhang. Test script generation based on design documents for web

application testing. In 2015 IEEE 39th Annual Computer Software and Applications

Conference, volume 3, pages 672–673, July 2015. doi: 10.1109/COMPSAC.2015.74.

[104] H. Tanno, X. Zhang, T. Hoshino, and K. Sen. Tesma and catg: Automated test gen-

eration tools for models of enterprise applications. In Proceedings of the 37th Interna-

tional Conference on Software Engineering - Volume 2, ICSE ’15, pages 717–720, Pis-

cataway, NJ, USA, 2015. IEEE Press. URL http://dl.acm.org/citation.cfm?id=

2819009.2819147.

[105] G. Tassey. The economic impacts of inadequate infrastructure for software testing.

Technical report, National Institute of Standards and Technology, 2002.

[106] M. Utting. The Role of Model-Based Testing, pages 510–517. Springer Berlin Heidel-

berg, Berlin, Heidelberg, 2008. ISBN 978-3-540-69149-5. doi: 10.1007/978-3-540-

69149-5 56. URL http://dx.doi.org/10.1007/978-3-540-69149-5 56.

[107] M. Utting and B. Legeard. Practical Model-Based Testing: A Tools Approach. Mor-

gan Kaufmann Publishers Inc., San Francisco, CA, USA, 2007. ISBN 0123725011,

9780080466484.

[108] M. Veanes, C. Campbell, W. Grieskamp, W. Schulte, N. Tillmann, and L. Nachman-

son. Model-based testing of object-oriented reactive systems with spec explorer.

Formal methods and testing, pages 39–76, 2008.

113

http://dx.doi.org/10.1007/978-0-387-78578-3_36
http://dx.doi.org/10.1007/978-3-642-36177-7_12
http://dl.acm.org/citation.cfm?id=2819009.2819147
http://dl.acm.org/citation.cfm?id=2819009.2819147
http://dx.doi.org/10.1007/978-3-540-69149-5_56

Bibliography

[109] R. S. Wazlawick. Object-oriented analysis and design for information systems: Mod-

eling with UML, OCL, and IFML. Elsevier, 2014.

[110] J. Whittle, J. Hutchinson, and M. Rouncefield. The state of practice in model-driven

engineering. IEEE software, 31(3):79–85, 2014.

[111] T. Yue, S. Ali, and L. Briand. Automated transition from use cases to uml state

machines to support state-based testing. In Modelling Foundations and Applications,

pages 115–131. Springer, 2011.

114

Publications of the Author

Articles in Impacted Journals

[A.1] K. Frajták, M. Bureš, and I. Jeĺınek. Exploratory testing supported by auto-

mated reengineering of model of the system under test. Cluster Computing,

20(1):855–865, 2017. ISSN 1386-7857. doi: 10.1007/s10586-017-0773-z. URL

http://link.springer.com/article/10.1007/s10586-017-0773-z. [33%]

[A.2] M. Bureš, T. Černý, K. Frajták, and B. Ahmed. Testing the consistency of

business data objects using extended static testing of crud matrices. Cluster

Computing, Aug 2017. ISSN 1573-7543. doi: 10.1007/s10586-017-1118-7. URL

https://link.springer.com/article/10.1007%2Fs10586-017-1118-7. [25%]

Publications Indexed in ISI Web of Science

[A.3] K. Frajták, M. Bureš, and I. Jeĺınek. Modelbased testing and exploratory test-

ing: Is synergy possible? In Proceedings of the 6th International Conference

on IT Convergence and Security (ICITCS 2016), pages 329–334, Red Hook, US,

2016. ISBN 978-1-5090-3765-0. doi: 10.1109/ICITCS.2016.7740354. URL http:

//ieeexplore.ieee.org/document/7740354/. [33%]

[A.4] K. Frajták, M. Bureš, and I. Jeĺınek. Formal specification to support ad-

vanced model based testing. In Federated Conference on Computer Science and

Information Systems (FedCSIS 2012), pages 1311–1314, New York, US, 2012.

ISBN 978-1-4673-0708-6. URL http://fedcsis.org/proceedings/fedcsis2012/

pliks/90.pdf. [33%]

Publications Indexed in Elsevier Scopus

[A.5] K. Frajták, M. Bureš, and I. Jeĺınek. Manual testing of web software sys-

tems supported by direct guidance of the tester based on design model. World

115

http://link.springer.com/article/10.1007/s10586-017-0773-z
https://link.springer.com/article/10.1007%2Fs10586-017-1118-7
http://ieeexplore.ieee.org/document/7740354/
http://ieeexplore.ieee.org/document/7740354/
http://fedcsis.org/proceedings/fedcsis2012/pliks/90.pdf
http://fedcsis.org/proceedings/fedcsis2012/pliks/90.pdf

Publications of the Author

Academy of Science, engineering and Technology, 80(0):243–246, August 2011.

ISSN 2010-376X. URL http://www.scopus.com/inward/record.url?eid=2-s2.0-

80052142179&partnerID=40&md5=b88ef067ea6c7dad229641221647c1c7. [33%]

[A.6] K. Frajták, M. Bureš, and I. Jeĺınek. Pex extension for generat-

ing user input validation code for web applications. In Proceedings

of the 9th International Conference on Software Engineering and Applica-

tions, pages 315–320, Setúbal, PT, 2014. ISBN 978-989-758-036-9. doi:

10.5220/0004994103150320. URL http://www.scitepress.org/DigitalLibrary/

Link.aspx?doi=10.5220/0004994103150320. [33%]

[A.7] K. Frajták, M. Bureš, and I. Jeĺınek. Reducing user input validation code in web

applications using pex extension. In ACM International Conference Proceeding

Series, Volume 883, ACM International Conference Proceeding Series, pages 302–

308, Rousse, BG, 2014. ISBN 978-1-4503-2753-4. doi: 10.1145/2659532.2659633.

URL http://dl.acm.org/citation.cfm?id=2659532.2659633. [33%]

[A.8] K. Frajták, M. Bureš, and I. Jeĺınek. Using the interaction flow modelling language

for generation of automated frontend tests. In Position Papers of the 2015 Federated

Conference on Computer Science and Information Systems, Annals of Computer

Science and Information Systems, pages 117–122, Warsaw, PL, 2015. ISBN 978-83-

60810-77-4. doi: 10.15439/2015F392. URL https://fedcsis.org/proceedings/

2015/pliks/392.pdf. [33%]

[A.9] K. Frajták, M. Bureš, and I. Jeĺınek. Transformation of ifml schemas to automated

tests. In Proceeding of the 2015 Research in Adaptive and Convergent Systems

(RACS 2015), pages 509–511, New York, US, 2015. ISBN 978-1-4503-3738-0. doi:

10.1145/2811411.2811556. [33%]

Other Publications

[A.10] K. Frajták, M. Bureš, and I. Jeĺınek. Web software systems testing supported by

model-based direct guidance of the tester. Proceedings of International Conference

on Information Technologies, 2012(26):45–52, 2012. ISSN 1314-1023. [33%]

Manuscripts Submitted to Impacted Journals Currently Under

Review

[A.11] M. Bureš, K. Frajták, and B. Ahmed. Automation Support of Exploratory Testing

Using Model Reconstruction of the System Under Test. Submitted to IEEE Trans-

actions on Reliability, Special Section on Software Testing and Program Analysis.

[33%]

116

http://www.scopus.com/inward/record.url?eid=2-s2.0-80052142179& partnerID=40&md5=b88ef067ea6c7dad229641221647c1c7
http://www.scopus.com/inward/record.url?eid=2-s2.0-80052142179& partnerID=40&md5=b88ef067ea6c7dad229641221647c1c7
http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0004994103150320
http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0004994103150320
http://dl.acm.org/citation.cfm?id=2659532.2659633
https://fedcsis.org/proceedings/2015/pliks/392.pdf
https://fedcsis.org/proceedings/2015/pliks/392.pdf

	Abbreviations
	Introduction
	Exploratory Testing
	Situations Suitable for Exploratory Testing
	Benefits of the Exploratory Testing
	Exploratory Testing Challenges

	Motivation
	Goals of the Dissertation Thesis
	Structure of the Dissertation Thesis

	Background and State-of-the-Art
	Model–Driven Engineering and Testing
	Model–Based Testing
	Model Validation and Model Checking
	Reverse Engineering
	Capture and Replay
	Challenges in Dynamic Web Systems Testing
	Exploratory Testing
	Error Guessing
	Summary of the State of the Art

	Proposed Solution
	Principle of the Tapir Framework
	System Under Test Model
	Discussion

	Build of the Model During Exploratory Testing
	Generation of Navigational Test Cases from the Model
	Structure of the Navigational Test Case
	Navigational Strategies
	Test Data Strategies

	Framework Architecture and Implementation Details
	Tapir Browser Extension
	TapirHQ
	Tapir Analytics
	Handling the Changes in the SUT

	Experiments
	Research Questions
	System Under Test with Injected Defects
	Case Study 1: Evaluation of the Tapir Framework Efficiency
	Method of Case Study
	Case Study Results
	Evaluation of the Results and Discussion

	Case Study 2: Evaluation of the Tapir Framework Efficiency (Alternative Method)
	Method of Case Study
	Metrics Used to Evaluate Case Studies 2 and 3
	Case Study Results
	Evaluation of the Results and Discussion

	Case Study 3: Comparison of Navigational Strategies
	Case Study Results
	Evaluation of the Results and Discussion

	Case Study 4: Applicability of the Tapir Framework to Various SUTs
	JTrac
	OFBiz
	Moodle

	Threats to Validity
	Other Applications of the Tapir Framework
	Monitoring of Testers to Evaluate Efficiency of Static Testing
	Evaluation of Test Coverage

	Conclusions
	Summary
	Contributions of the Dissertation Thesis
	Future Work

	Bibliography
	Publications of the Author

