
Ph.D. Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering

Department of Measurement

Methods for Verification and
Validation of Automotive
Distributed Systems

Ing. Jan Sobotka
Electrical Engineering and Information Technology
Branch of study: Measurement and Instrumentation

August 2017

Supervisor: doc. Ing. Jiří Novák, Ph.D.

Acknowledgement / Declaration
Many people helped me during a long
time of writing of this thesis. I would
like to thank all of them. Some of them
are my supervisor for the guidance, our
lab crew for fruitful discussions, and a
number of great students which helped
me a lot with the implementation part
of this work. Also, I would like to thank
my girlfriend Radka for the patience
and my family for the support, since
the time of my studies was quite longer
than expected.

The thesis is dedicated to my grand-
mother Anna, because she always said,
that I will be a great doctor. (smile)

I declare that I carried out this doctor-
al thesis independently, and only with
the cited sources, literature and other
professional sources.

In Prague 30. 8. 2017.

. .

iii

Abstrakt /
Stále narůstající složitost automobilo-
vých elektronických systémů vytváří
poptávku po vhodných validačních
a testovacích metodách. Směrování
automobilového průmyslu k plně
autonomním vozidlům tento trend
dále podporuje. Cílem práce je roz-
šířit množinu dostupných testovacích
metod v několika oblastech. První
takovou oblastí jsou měřicí metody
pro komunikační sběrnici FlexRay. V
porovnání se staršími standardy CAN a
LIN je řadič této sběrnice konfigurován
mnohem větším množstvím parametrů.
Pro zajištění správné funkce systému
je nutné ověřit, že aktuální hodnoty
těchto parametrů odpovídají hodnotám
požadovaným. Tento úkol vyžaduje
návrh měřicích metod schopných
identifikovat skutečné hodnoty pa-
rametrů. Další oblastí vyžadující
doplnění stávajících testovací možností
je integrační testování automobilové
elektroniky. S rostoucím počtem
elektronických řídicích jednotek začíná
být stávající způsob testování pomocí
ručně navržených a implementovaných
testovacích sekvencí nedostatečný.

Práce se zabývá automatizací gene-
rování těchto testovacích sekvencí
s využitím principů Model-based
testování. Testovací sekvence jsou
generovány z modelů specifikovaných
časovanými automaty. Součástí práce je
návrh tohoto inovativních testovacího
konceptu. Řešení je následně implemen-
továno ve formě testovacího nástroje
Taster a také je představena nová
HIL testovací platforma založená na
modulárním hardwaru firmy National
Instruments. Ověření této metody je
provedeno formou dvou případových
studií. První demonstruje metodu
na problému testováním systému
bezklíčového zapalování, druhá potom
testuje reálný systém otvírání pátých
dveří automobilu.

Klíčová slova: Testování, FlexRay, Pa-
rametry, Autobilová, Elektronika

iv

Abstract /
The growth of complexity together
with the severity of the potential
failure of electronic systems in modern
vehicles create pressure on development
of powerful validation and testing
techniques. This thesis is trying to fill
few identified gaps in this field. One
of the gaps is the absence of suitable
measurement methods for relatively
new automotive communication system
called FlexRay. In comparison with
older communication standards CAN
and LIN, each FlexRay communication
controller is parametrized by almost
hundred of parameters. From the
validation point of view, it is necessary
to evaluate that the parameters
programmed into communication
controller are in conformance with
the specified parameters values. Such
evaluation is not possible without
suitable methods capable of measuring
the actual parameters values. Another
blank space which this thesis is trying
to fill is related to the Integration
testing of automotive electronics
systems. Due to increasing number
of electronic control units and number
of implemented functions, traditional
approach incorporates, the manual test
case design is reaching its limits.

This thesis proposes several improve-
ments for this specific domain. Namely
it is testbed platform based on National
Instruments products, a novel approach
based on the Model Based Testing
techniques using the Timed Automata
specification, several test generation
algorithms, and implementation of
the proposed concept. The presented
solutions were experimentally eval-
uated. The FlexRay measurement
methods were validated on the real
communication network. Moreover,
in the case of Integration testing, the
implemented concept was proved by
two case studies. The objective of the
first one was the car keyless access
system. The second study validated
the described solution on the automatic
trunk opening system.

Keywords: Automotive, Model, Based,
Testing, FlexRay, Parameter, Evalua-
tion

v

Contents /
1 Introduction . 1
2 State of the Art 2
2.1 FlexRay . 2

2.1.1 Of the Shelf Avail-
able Solutions 3

2.1.2 Related Work 4
2.1.3 Risk of Incorrect Pa-

rameterization 5
2.2 Integration Testing and MBT. . 6

2.2.1 Weaknesses of Tra-
ditional Approach 7

2.2.2 Terminology. 7
2.2.3 Taxonomy 9
2.2.4 Embedded System

Modeling 9
2.2.5 Test Selection Criteria . . 12
2.2.6 Test Generation. 12
2.2.7 Existing Tools 13
2.2.8 Hardware–in–the–

Loop. 14
2.2.9 Related Work 14

2.3 Summary . 15
3 Thesis Objectives 17
3.1 FlexRay Objectives 17
3.2 Integration Testing Objec-

tives . 18
4 FlexRay . 20
4.1 Overview of FlexRay Com-

munication System 20
4.2 Parameter Set Analysys 21
4.3 Wakeup Parameters 23

4.3.1 pWakeupChannel 23
4.3.2 gdWakeupTxIdle,

gdWakeupTxActive,
pWakeupPattern 24

4.3.3 gdWakeupRxLow,
gdWakeupRxIdle,
gdWakeupRxWindow. . . 24

4.4 Startup Parameters 25
4.4.1 Type of Node 25
4.4.2 gColdStartAttempt 25
4.4.3 Collision Avoidance

Symbol 25
4.4.4 pdListenTimeout 26

4.5 Evaluation of Clock Syn-
chronization Parameters 26
4.5.1 Cycle Length Influ-

encing and Measure-
ment . 26

4.5.2 Offset Correction
Measurement. 27

4.5.3 pdMicrotick 27
4.5.4 pClusterDrift-

Damping 28
4.5.5 pRateCorrectionOut 28
4.5.6 pOffsetCorrectionOut . . 29

4.6 Validation on Real
FlexRay Network 30
4.6.1 FPGA FlexRay

Controller 30
4.6.2 FlexRay Hardware –

EUT . 31
4.6.3 Experiments 32

4.7 Measurement Accuracy
and Speed . 34

4.8 Summary . 35
5 Integration Testing 36
5.1 Selection of Formal Model 36

5.1.1 Passenger Car Inner
Light Model 38

5.2 Timed Automata Theory 40
5.2.1 Finite–State Machine . . . 40
5.2.2 Automata for Infi-

nite Input 40
5.2.3 Büchi Automaton. 41
5.2.4 Timed Automaton 41

5.3 Testing Workflow Proposal . . . 42
5.4 Testbed for Comfort Sys-

tems . 43
5.5 System Modeling 44
5.6 Test Generation Theory. 45

5.6.1 Graph terminology 45
5.6.2 Selected Graph Al-

gorithms. 47
5.6.3 Discussion of Timed

tours. 48
5.7 Algorithms. 48
5.8 Evaluation Metrics 50
5.9 Taster . 52

vi

5.9.1 Taster Architecture 52
5.9.2 Model Parser. 52
5.9.3 Model Execution. 53
5.9.4 Test Adapter 53
5.9.5 Trace Logger 54
5.9.6 Implementation 54
5.9.7 User Interface 54

5.10 Case Study – KESSY 56
5.10.1 Specification 57
5.10.2 Models 57
5.10.3 SUT Implementation . . . 59
5.10.4 Results 61

5.11 Case Study – Trunk 62
5.11.1 Specification 62
5.11.2 Experiment Plan. 64
5.11.3 Models 65
5.11.4 Original Test Suite 69
5.11.5 Results 70
5.11.6 Conclusion 71

5.12 Summary . 74
6 Future Work . 76
7 Conclusion . 78

References . 81
A Author’s Publications and

Grants . 87
A.1 Publications Related to the

Thesis . 87
A.1.1 Publications in Jour-

nals with Impact
Factor 87

A.1.2 International Con-
ference Proceedings 87

A.2 Selected Grants Related to
the Thesis. 88

B Abbreviations . 89
C Taster User Guide 91

vii

Tables / Figures
4.1. Parameter set summary 22
4.2. An example of real param-

eterization. 23
4.3. Wakeup parameters sum-

mary . 24
4.4. Startup parameters sum-

mary . 25
4.5. List of measured parameters . . 26
4.6. Test Network Configuration. . . 32
4.7. Selected experimental results . . 33
4.8. pOffsetCorrectionOut mea-

surement (all values in µT) . . . 34
4.9. Overview of measurement

duration . 35
5.1. Selection of modeling envi-

ronment . 36
5.2. Supported subset of UP-

PAAL modelling language 45
5.3. Metrics suitable to TA 51
5.4. Kessy model summary 58
5.5. Kessy – fault injection re-

sults . 61
5.6. Kessy performed test runs 62
5.7. Trunk ECU Inputs 63
5.8. Trunk ECU Outputs 63
5.9. Trunk model summary 69

5.10. EXAM Test Suite 70
5.11. Performed test runs 71
5.12. Test runs – SUT int. 1 72
5.13. Test runs – SUT int. 2 73

2.1. Wrong pdListenTimeout
value . 6

2.2. Possible taxonomy of MBT 7
2.3. Possible taxonomy of MBT . . . 10
2.4. PN example – Button model . . 11
3.1. FlexRay objectives 18
3.2. Integration testing objec-

tives . 19
4.1. FlexRay comm. overview 21
4.2. Wakeup pattern in context

wakeup window 24
4.3. pdListenTimeout measure-

ment. 26
4.4. Cycle length measurement 27
4.5. Cycle difference accumula-

tion . 28
4.6. Offset correction affected

by pClusterDriftDamping 28
4.7. Offset correction affected

by pClusterDriftDamping 29
4.8. Offset correction measure-

ment limitation 30
4.9. Measurement Setup 31

4.10. Structure of FlexRay SoC 31
5.1. Inner Light Controller 39
5.2. Driver model 39
5.3. MBT concept for Integra-

tion testing. 42
5.4. MBT Workflow in details 43
5.5. NI HIL platform 44
5.6. TA coverage enumeration 51
5.7. Taster architecture 53
5.8. Taster Viewer 55
5.9. Syntax error window 55

5.10. Taster Run Screen 56
5.11. Trace Viewer 56
5.12. Start button model 58
5.13. Lock button model 58
5.14. Key position model 59
5.15. Observer model – Lock

System . 59
5.16. Observer model – Ignition

System . 60
5.17. Lock able signal 60
5.18. Unlock able signal 60

viii

5.19. Start able signal 60
5.20. A part of SUT implemen-

tation model 61
5.21. Input – SoftTouch button 65
5.22. Input – Button on inner

door’s side . 65
5.23. Input – Button on Key 66
5.24. Input – Button on Dash. 66
5.25. Input – Close by hand. 67
5.26. Input – Virtual Pedal 67
5.27. Input – Unlock button 67
5.28. Environment – A Driver

Model . 68
5.29. Trunk Observer – Basic 68
5.30. Trunk Observer – Full 69
5.31. Trunk Node Coverage 71
5.32. Trunk Edge Coverage 72
C.1. Input Model 93
C.2. Model Viewer 94
C.3. Taster Runtime Screen 95
C.4. Trace Viewer 96

ix

Chapter 1
Introduction

The length of a development cycle of new car models is continually decreasing. Aside
of question if it is meaningful or not. Such situation makes a lot of pressure for
research and development of appropriate validation, verification and testing methods,
which would ensure the quality of final products (i.e. cars). The trend is noticeable
for several decades and still it has not reached the peak. Rather, then it accelerates
together with the expansion of a number of electronics systems equipped in vehicles [1].
In modern vehicles, multiple communication buses are involved. Most common ones
are Controller Area Network (CAN) and Local Interconnect Network (LIN). Due to
theirs limitations, newer communication standards find more and more applications
and are slowly replacing the old ones. One of those newer communication systems is
called FlexRay [2]. The FlexRay communication system is intended for reliable data
transfer with speed up to 10 Mb/s. Its intended application is x–by–wire systems (e.g.
steer or brake by wire). More common real–world application is drive train and chassis
stability control in high–class Audi, BMW, and Mercedes–Benz vehicles. The focus on
reliability makes FlexRay much more complicated in comparison to other automotive
communication systems. For example, FlexRay configuration set contains tens of
parameters in comparison with several for CAN. The difference between intended and
actual parameters can significantly affect system reliability. Some of the configuration
parameters are easy to measure. For example, incorrect setup of communication cycle
length will not allow integration into running communication or, in the case of cold
start node, the initialization of communication. A different situation occurs in the case
of incorrect values of clock synchronization parameters. Under common conditions,
the FlexRay communication can operate without any observable variance.
In connection with the area mentioned above, there is highly actual and exciting area of
Model–Based Testing. Term Model–Based Testing (MBT) covers large research area,
and its meaning can differ across disciplines. In this thesis, the MBT will be denoted a
testing method based on an executable model. Much work was done on this field in past
few decades [3]. Despite this, a significant number of challenges await for a solution.
MBT technologies are not sufficiently widespread in automotive development. To help
to MBT dissemination, it is necessary to continue with inventing new and adapting
existing methods in a form meeting specific car industry requirements Deployment
of an MBT oriented processes can solve multiple challenges in automotive electronics
testing.
An integral part of the testing of an automotive electronics system is the Integration
testing. It is a high–level function oriented examination. The purpose of this testing
is to examine if newly developed Electronic Control Units (ECU) can work in a group
as a distributed system. Moreover, many functions are not implemented only in single
ECU. The Integration testing is essential for a tryout of such features. The MBT
approach can address challenges such as the needful amount of human work, increase
the test coverage or decrease time to test.

1

Chapter 2
State of the Art

Passenger car manufacturers play a role of a system integrator today, as a substantial
part of vehicle subsystems is supplied by their contractors. This is especially true
for vehicle electronics, where particular ECUs are supplied by different manufacturers.
Nevertheless, the ECUs have to seamlessly collaborate together. The ECUs collabo-
ration utilizes vehicle communication network technologies like CAN, LIN or FlexRay,
thus expected network functionality is vital for reliable and safe vehicle operation.

In the case of FlexRay ECU, communication behavior is affected by tens of parameters
that must be set according to the vehicle manufacturer specification to ensure FlexRay
cluster robustness and reliability. The vehicle manufacturer may not rely on ECU
manufacturer declaration of conformity (in terms of correct parameter values) and has
to measure the actual parametrization instead. This approach is common for CAN
and LIN networks, where the number of critical parameters is lower, and measurement
methods and instruments are widely available. As far as I know, such measurement
methods are not available for the FlexRay technology at all.

2.1 FlexRay
Deployment of a communication system starts with a bus (technology) selection. In
general, it requires the availability of proper testing and analysis tools and meth-
ods. A project continues with fundamental network design such as network topology,
communication speed, and selection of basic parameters. Network design results in a
complete parameter set (parameterization) for each network controller. The complexity
of this parameterization depends on chosen communication technology. In the case of
researched FlexRay, it is tens of parameters. This section maps work related to FlexRay
configuration parameters evaluation.

Conformance of a FlexRay communication controller – part of System on a Chip with
FlexRay protocol specification [2] is ensured by conformance testing specified by [4].
This document provides exact instructions for chip manufacturers how to test their
newly implemented FlexRay devices. From the parameterization point of view, it
defines couple of tests for each parameter. The objective of the tests is to examine if
parameters influence communication controller behavior as it is defined in the standard.

A car manufacturer (system integrator) starts at best with tested FlexRay silicon
chips. Verification of everything else is its own business. One of these responsibilities
is validation if the parameters specified by a network designer conform with parameters
programmed into registers of communication controllers. This task is usually done by
some network analyzer connected to a communication bus. For well–adopted commu-
nication protocols these devices are commonly available on the market as development
support tools.

2

. 2.1 FlexRay

2.1.1 Of the Shelf Available Solutions
The section provides an overview of analysis tools and devices available on the market
and their features. The list is not comprehensive due to the limited information pro-
vided on companies websites. The intention of this section is an outline of production
solution capabilities.

The first representatives are Digital Oscilloscopes. Producers, such as Agilent Technolo-
gies, Tektronix or Teledyne LeCroy offer oscilloscopes with a frame decoding capability.
Teledyne LeCroy probably provides the most advanced solution with its product called
Trigger, Decode, Measure/Graph and Physical Layer (TDMP), which is capable of
measuring some physical layer characteristics as propagation delay or jitter. No one
can extract data link layer parameters.

The second group of representatives contains Specialized FlexRay Interfaces. For in-
stance supplier of modular hardware for rapid prototyping, National Instruments offers
two types of FlexRay interface card. As the label suggests, NI PXI–8517/2 designed
for PCI eXtensions for Instrumentation (PXI) platforms and NI PCI–8517/2 is for
conventional PCI. Programming resources are unified in NI–XNET driver. Application
development is possible in LabView or ANCI C/C++ environment. The simple FIBEX
editor is also included under the name Database Editor. The platform provides a
flexible environment for high–level tests implementation. Low–level features necessary
for parameter evaluation are not accessible.

From the list of specialized bus tools manufacturers for the automotive Industry,
Eberspächer, and Vector were selected. Eberspächer Electronics portfolio contains
hardware interfaces e.g. FlexCard USB and FlexCard PMC II. The difference is in a
number of physical interfaces and its combination – FlexRay, CAN/CAN FD, Ethernet.
There is no difference in analysys capabilities related to this work. Hardware is based
on Bosch E–Ray IP core. The analysis is possible by Caromee software. In product
manual is stated capability to display of unspecified synchronization information. The
benefit of Eberspächer software is multivendor hardware support including Vector or
National Instruments.

Vector Informatik GmbH is state of the Art company in automotive communication
systems development support tools. Vector offers several FlexRay network interfaces
which differ on a number of channels and PC connection type. One of the highest
spec options, VN8900 is available in our department, and it can be used for the thesis
purposes. Vector interfaces are based on same Bosch E–Ray IP core as Eberspächer
products. Available analysis software is CANoe. Vector also provides FIBEX editor
with some useful advanced functionality like parameters constraints check. The CANoe
can show some parameters such as an actual value of rate and offset correction. Features
can be extended by CAPL scripting.

Of the shelf available solutions can be summarized in following way. Large variety
of FlexRay development support tools products is available on the market. Many of
them support active bus transmission to provide synchronization node ability. Tools are
usually connected with complex software environment. Bundled features are frequently
extensible by scripting or programming. Nevertheless, capabilities are oriented to
the application layer of International Organization for Standardization (ISO) / Open
Systems Interconnection (OSI). Configuration parameters evaluation is data link layer
problem. It requires ability to influencing of frame transmission e.g. transmit time
variation. This kind of features no one of available devices can offer.

3

2. State of the Art .
2.1.2 Related Work

The growing complexity of automotive embedded systems requires new measurement
and validation techniques [5]. The similar research focused on other vehicle distributed
systems (mostly the CAN) was conducted in the past, e.g. in [6]. The CAN interface
configuration is much simpler than for the FlexRay, since only a few parameters are
used, such as time quantum, a length of particular bit segments and synchronization
jump width. One parameter, in particular, is critical for the ECU with CAN interface
deployment – the sample point position within the bit time. The risk of incorrect
setting and the measurement method was described in [6].

Book [7] is an overview of Time–Triggered Communication Systems. It is not only
focused on FlexRay, but also other Time–Triggered procotols are discussed with their
pros and cons. An example might be Time–Triggered variants of CAN (TTCAN)
and Ethernet (TTEthernet). Remarkable is the description of core Time–Triggered
Communication principles. In the context of this work clock synchronization study
in section [8] can be helpful. Some general verification recommendations are also
mentioned in [9].

Authors of [10] have focused on the extraction of FlexRay cluster global parameters.
Their primary goal was to develop an FPGA device with the capability of automated
parameters identification from ongoing FlexRay communication. The solution is based
on passive bus monitoring. A subset of Global parameters marked with g prefix in
FlexRay standard is investigated. Analysys start with bitrate detection for proper
sampling frequency selection. Consequently, duration of communication segments is
extracted. Direct measurements, as well as calculations using protocol constraint, are
performed. The work can be viewed as automation of Time Division Multiple Access
(TDMA) constraints identification using an oscilloscope. Clock synchronization related
parameters are not investigated under this work.

Paper [11] is also focused on global cluster communication parameters. The motivation
for configuration parameters evaluation is discussed in details. Also, it is discussed
in context of intended application – automotive safety–critical control systems. The
parameter set is analyzed and divided into three classes according to its scope. Sim-
ilar to paper described in the previous paragraph, the approach is based on passive
bus observation. Experimental results using five different network setups are shown.
Implementation of a health–monitoring node used for measurement is not covered in
many details. The impact of bus traffic density to parameter identification is presented.
Clock synchronization related parameters are categorized in parameter set analysis, but
no experimental results are included.

In summary works [10] and [11] targets to extraction of FlexRay cluster global param-
eters. They rely on the passive bus communication monitoring approach only. The
limitation of this approach is its inability to reveal the values of all parameters, espe-
cially the local node–specific parameters that define node–specific behavior within the
wakeup, startup and synchronization. These parameters apply to boundary conditions
that are not usually reached during normal operation.

Work [12] studies the behaviour of local oscillators used as a clock source in individual
FlexRay nodes. FlexRay specification allows usage of the ordinary crystal oscillator
with deviation from nominal frequency up to 1500 ppm. Autors present the interesting
method for local clock frequency measurement. The method works remotely using
the connection to a FlexRay bus. In comparison with the above–mentioned works, it

4

. 2.1 FlexRay

requires active bus transmission to influence clock synchronization algorithm. Despite
the paper is not focused directly on configuration parameters measurement, it shows
the interesting method for revealing actual value of offset correction in a FlexRay node.
Knowledge of actual offset correction is basis for evaluation of pOffsetCorrectionOut
parameter – offset correction limit.

2.1.3 Risk of Incorrect Parameterization

A significant FlexRay node parameter is pRateCorrectionOut, which determines the
maximal possible rate correction value the node is allowed to apply. Let’s consider
the following situation: the desired value of pRateCorrectionOut parameter in ECU
specification is 601 µT (unit Microtick defined in FlexRay standard and abbreviated
µT), which is the maximal value for communication speed 10 Mb/s and communi-
cation cycle length 5 ms. This value allows the communication controller to correct
maximal permitted oscillator deviation, which is defined by standard [2] as 1500 ppm
of oscillator’s nominal frequency.

Let us assume that in the supplier delivered ECU the configured pRateCorrectionOut
value is not 601, but only 300 µT instead. Such a violation of node parameter
specification would not influence the ECU’s behaviour under most conditions, unless
the local oscillator’s frequency reaches a deviation higher than 750 ppm from the
nominal value (more precisely from the cluster average value). At this moment the ECU
ends communication and goes to the halt state, while it would continue operating with
correct parametrization. Considering a crystal oscillator natural behaviour [13], this
probably happens after a long time (several years) due to crystal aging in combination
with high or low temperatures [14]. To detect this kind of specification breach special
testing methods are needed, allowing the car manufacturer to ask the ECU supplier to
fix the parametrization during the pre–production phase.

A wrong value of pdListenTimout is another example of a manufacturer specification
breach. The pdListenTimeout value specifies the time spent in a coldstart listen phase.
According to specification [2] the pdListenTimeout value has to be calculated according
equation (2.1):

pdListenT imeout[µT] = 2∗(pMicroPerCycle[µT]+pRateCorrectionOut[µT]) (2.1)

Depending on the communication cycle schedule, lower as well as higher parameter
values can cause problems with FlexRay cluster startup (e.g. leading coldstart node
change or startup phase extension). Three possible scenarios are shown in Figure 2.1.
All cases consider two coldstart nodes in a communication network.

The first case labelled I. shows a situation when the gap between Collision Avoidance
Symbol (CAS) and the startup frame in a static slot (actual pdListenTimeout of node
2) is shorter than the required pdListenTimeout. In this case the startup behaviour of
the cluster is not seriously affected. The second scenario shows the change of leading
coldstart node. The pdListenTimeout timer of node 2 expires before node 1 sends its
first startup frame (assigned key slot is later in static segment of communication cycle)
and cluster startup is thus delayed. Case III. means that pdListenTimeout parameters
in both nodes are too small; the nodes are alternating in coldstart leading and the

5

2. State of the Art .
I. CAS

Static segment
Node 1 Node 2

Frame

<
pdListenTimeout2

II. CAS Frame

pdListenTimeout2

CAS

III. CAS

pdListenTimeout2

CAS

pdListenTimeout1

CAS CAS

pdListenTimeout2

. . . pColdStartAttempts == 0

Figure 2.1. Effects of wrong pdListenTimeout value

startup delay is significant. To prevent all these problems, an evaluation of the actual
value of the pdListenTimeout parameter is necessary.
The examples presented above show that the problems originating from incorrect
ECU parametrization may occur later (caused by components ageing), under specific
operating conditions (e.g. extreme temperature), under the spare part change or under
the simultaneous influence of aforementioned effects. This kind of problem is hard
to detect because of its sporadic nature. Evaluation of configuration parameters can
dramatically increase confidence in the fault–free operation of FlexRay networks during
the car life cycle.

2.2 Integration Testing and MBT
Integration testing is widely used term covering various methods and processes in
testing of software or electronic systems. In general, Integration testing denotes a phase
after some parts (modules, components, code fragments, etc.) are joined. Further in
this work by name Integration testing is denoted Automotive Integration testing as
described below. Integration testing phase is placed close to the end of a new car elec-
tronic system development. An example of a development process with corresponding
testing methods is depicted in the Figure 2.2. Application area of this work is marked
by a yellow background. By nature it is a high level, function oriented testing of
almost finished car electronics system or part of that system (a network of ECUs).
The objective of the testing is to examine whether the whole system is able to operate
in synergy and functions distributed over multiple ECUs work as expected. Automotive
Integration testing is being performed on Hardware–in–the–Loop basis on a testbed.
An industrial experience says that implementation of test sequences is usually done
by test engineers. In general, this area has great potential for research and real word
application of MBT solutions.
Test management, development, and execution are usually performed by some soft-
ware tool. For the purpose of this work EXAM is considered. It is complex testing
tool co–developed and used by Volkswagen AG. Graphical user interface provides the
environment for individual test cases development. A test case is implemented as
sequences or activity diagrams. These test cases are organized in test suites and test
campaigns. The test suite is executed by test runner in a sequence of test cases. Finally
test results are stored in the database for various assessments.
Current test suites are mostly implemented using typical driver use cases. Time to test
of complex systems is limited and thus number of uncovered situations in test suites

6

. 2.2 Integration Testing and MBT

is significant. Considered systems have multiple inputs and outputs and particular
function behavior is typically constrained by other distributed system parts. I.e.
behavior of car inner light depends on the state of doors locking, ignition state, switch
position, etc. Frequently basic and low–end functionality test cases are preferred in
test suites from high–end variants.

Figure 2.2. An automotive distributed system development process [15]

2.2.1 Weaknesses of Traditional Approach
Manual design and implementation of test cases is very laborious and demanding task.
The quality of this approach strongly depends on the quality of test engineers work.
Like every human activity, it is prone to errors. Good test rule policy and its enforce-
ment can be beneficial. Weaknesses of manual test case design and implementation
can be viewed in a similar way as problems in ordinary coding. Produced code can
be great, but there is no guarantee. There are numerous coding as well as software
projects management recommendation which can help to ensure the desired level of
quality. However, the result is in hands of coding/testing team.
Specifically, in intended Integration testing, supplementary cons are identifiable. One
of them is fixation to the behavior of an average driver. It means that test cases
mostly acts like the average driver and some less common, but still, valid scenarios
remain uncovered. Another con example – a Modern car is offered in various trim
levels. Some optional extras can be selected across defined trim levels. It creates a
significant number of combinations. The manual combination of test cases covering
particular features is practically impossible. Last but not least during a vehicle life
cycle, electronics system is often changed. Every change requires an update to a test
suite to fit exact system specification. Maintenance of test suites is also very demanding
and error prone task.

2.2.2 Terminology
Terminology in fields related to this thesis – Integration testing (defined in 2.2) and
Model–Based testing might be confusing. Differences in the meaning of individual

7

2. State of the Art .
terms are caused by various aspects. One of these aspects is liveliness of the scientific
areas. Especially the domain of MBT is only a few tens of years old, and research is
still active. Another reason is in different conventions in target application area. An
example is testing in software development and testing in the automotive industry. To
make the work clearly understandable, used terminology is briefly described.
Model–based testing (MBT) covers very extensive research area. The reason of area
extensiveness is that in general, it is possible to classify as Model–Based every test
method, which using some model (including non–executable or mental model). For
the purpose of this work, a testing method is denoted as Model–Based if the method
directly uses some executable model to performing a testing.
System under Test (SUT) is a system which is the object of a Testing. In this thesis
primarily a car electronics system or its part.
Testing is an interaction with some system. The purpose of the testing activity is
to achieve some level of confidence that behavior of the system under test meets the
defined objectives. A reasonable definition of test objective is essential for successful
test implementation. Demonstration of general test objective is conformance testing.
The goal is to find out if the behavior of the system under test is in compliance with
system specification.
Hardware–in–the–Loop (HIL) is the testing method with roots in aircraft industry
suitable for testing complex electronic control systems like an electronic control unit
or whole electronics system. The object of testing is an embedded system, but sensors
and actuators are simulated or stimulated by testbed facilities. SUT works identically
as in its final deployment, but interaction with the environment is controlled by some
test equipment.
Reactive system is a system which reacts to inputs from environment by producing
some outputs. Reactive system are usually non–terminating. Behavior of this kind of
systems can be non–deterministic and it is usually based on internal system state.
For this reason, testing of reactive systems is more challenging in comparison to
transformative systems. Transformative systems deterministically produce output after
input and some portion of time.
Real–Time Systems is system with responds to an event within defined time window.
Test Objective or test purpose is definition what a test case should test. Test objective
can be very different from a formal property, e.g. system does not contain deadlock,
to some performance or durability criterion of an SUT.
Test Case is sequence of steps to examine some SUT property or properties. It can be
viewed as implementation of one or more test objectives.
Test Suite is a collection of test cases.
Test Campaign denotes higher level entity containing an arbitrary number of test
suites. It is used by some test tools to improve test management options.
Offline Testing means the test case or whole test suite is generated before it is executed.
Test generation and test execution are strictly separated. The process is similar to
manual test case development when tester designs and implements test case. Afterward,
test case is executed on a target platform.
Online Testing In opposite to offline testing the border between test generation and
test execution is not sharp. Online testing tool interacts with SUT in command and

8

. 2.2 Integration Testing and MBT

response way. This approach allows reacting to SUT non–deterministic behavior. The
technique is especially suitable for slowly interacting system, e.g. car and driver.

2.2.3 Taxonomy
World of MBT can be categorized in different ways. A possible taxonomy suitable
to thesis goals is depicted in Figure 2.3. Firstly it divides MBT into four classes
which correspond with consequent steps during testing. Each class is subdivided into
multiple categories and options. Titles used for options designate specific methods and
technologies. Only this last column refers to specific technology. Classes and categories
have a general meaning.
Class models are distinguished on the basis of model purpose and its relation to SUT.
Model directly related to the SUT is considered as System Model. An abstract model
for deriving test cases only is classified as Test Model. As usual the most common in
practice is a combined approach.
With some model, three consequent steps (classes) can be performed. Performing
testing in MBT way does not necessarily contain all depicted phases. Test generation
class covers test selection (objective). The second part of the class is technology
cappable to achieve desired test objective. Moreover, final step is rank test generation
by a format of obtained results.
Third class categorizes MBT according to execution options. It differentiates what is
tested – Model, Software, Hardware or Processor. The ordinary testing process can
start with testing of SUT model and continues until it is possible to test final hardware
with software. Systems related to this thesis are tested after hardware and software
are available. No model or processor in the loop simulation is performed.
Test evaluation refers different approaches to the test result processing. In the simplest
way it can be done manually – only test input is generated. In presented case, a model
providing test oracle capability is supposed.

2.2.4 Embedded System Modeling
There are numerous options for modeling of automotive embedded systems. The re-
searched system class has two specific features. It is Real–Time and Reactive behavior.
Selected model language should be able to capture these attributes. These requirements
limit the number of applicable formalisms, but the list of possible languages still
contains at least hundreds of options. E.g. paper [17] present a survey on Timed
Automaton (TA), and it contains almost eighty variants. The problem is not lack
of suitable formalism, rather the opposite – too many options. Enumeration can
begin with process algebras like Communicating Sequential Processes (CSP). As the
name suggest, the systems are represented by process and interaction between them.
Properties can be specified by some modal temporal logic. A known example is Linear
Temporal Logic (LTL). The problem of this theoretical description possibilities is that
they are not well accepted by practitioners. Graphical representation based on an
Finite–state machine (FSM) is much better adopted to a wider audience. Some of
them significant in the field of interest are outlined in rest of the section.
Petri net
The first example of an embedded system representation is Petri net. The net consists
of places, arcs, and transitions. Arcs can be coupled with weights. There is a huge
number of Petri net variants. One of the Petri net definition given by [18], is:

9

2. State of the Art .

Ó±Ľ»´

Ý´ż»ć Ýż¬»ą±®·»ć Ń°¬·±˛ć

ÓŢĚ ľż· Í§¬»ł ł±Ľ»´

Ě»¬ ł±Ľ»´

Ý±«°´»Ľ §¬»ł ł±Ľ»´ ż˛Ľ ¬»¬ ł±Ľ»´

Ó«¬ż¬·±˛óż˛ż´§· ľż»Ľ

Í¬®«˝¬«®ż´ ł±Ľ»´ ˝±Ş»®żą»

Î»Ż«·®»ł»˛¬ ˝±Ş»®żą»

Ě»¬ ˝ż» °»˝·B˝ż¬·±˛

Îż˛Ľ±ł ż˛Ľ ¬±˝¸ż¬·˝

Úż«´¬óľż»Ľ

ß«¬±łż¬·˝ńłż˛«ż´

Îż˛Ľ±ł ą»˛»®ż¬·±˛

Ů®ż°¸ »ż®˝¸ ż´ą±®·¬¸ł

Ó±Ľ»´ ˝¸»˝µ·˛ą

Í§łľ±´·˝ »¨»˝«¬·±˛

Ű¨»˝«¬żľ´» ¬»¬ ł±Ľ»´

Ű¨»˝«¬żľ´» ¬»¬ ˝®·°¬

Ű¨»˝«¬żľ´» ˝±Ľ»

Ó·Ô ń Í·Ô ń Ř·Ô ń Đ·Ô ř·ł«´ż¬·±˛÷
Î»ż˝¬·Ş»ń˛±˛®»ż˝¬·Ş»

Ů»˛»®ż¬·˛ą ¬»¬ ´±ą

Î»ş»®»˛˝» ·ą˛ż´óş»ż¬«®» ľż»Ľ

Î»ş»®»˛˝» ·ą˛ż´ ľż»Ľ

Î»Ż«·®»ł»˛¬ ˝±Ş»®żą»

Ě»¬ »Şż´«ż¬·±˛ °»˝·B˝ż¬·±˛

ß«¬±łż¬·˝ńłż˛«ż´
Ě»˝¸˛±´±ą§

Í°»˝·B˝ż¬·±˛

Ű¨»˝«¬·±˛
±°¬·±˛

Î»«´¬ ±ş ¬¸»
ą»˛»®ż¬·±˛

Ě»˝¸˛±´±ą§Ě»¬
ą»˛»®ż¬·±˛

Ě»¬ »¨»˝«¬·±˛

Ě»¬
»Şż´«ż¬·±˛

Üż¬ż ˝±Ş»®żą»

Đ®±°»®¬·» ő

Ě»¬ »´»˝¬·±˛
˝®·¬»®·ż

Figure 2.3. Overview of the taxonomy for Model–Based Testing[16]

.Petri net is quintuple (S, T, F,M0,W) where.S is a finite set of places..T is a finite set of transitions..F is a finite set of arcs F ⊆ (S × T) ∪ (T × S)..M0 : S → N is initial marking, where a place s ∈ S contains n ∈ N dots..W : F → N+ is set of arc weights, where for every f ∈ F weight is n ∈ N+.
Weight denotes how many dots are consumed by a transition, or it is a count of dots
produced in output places.

Petri net according to the definition can also be viewed as weighted bipartite graph.
Execution is nondeterministic and depends on marking. Firstly it is necessary to fulfill
a minimal number of dots(tokens) on some transition. The enabled transition can be
consequently fired. According to weights, tokens are consumed by a transition, and an

10

. 2.2 Integration Testing and MBT

Figure 2.4. PN example – Button model

arbitrary number of tokens is inserted into output place. A timed–arc Petri net button
model is depicted in Figure 2.4.

Timed Automata

Theory of timed automata was originally published by Alur and Dill [19]. Actually
the term timed automata usually means slightly modified version called Timed Safety
Automata [20] which uses local invariant conditions to ensure automaton progress.
Formal definition of a single timed automaton, given by [21], is:.A timed automaton A is a tuple A = (N, l0, E, I) where.N is a finite set of locations (or nodes),. l0 ∈ N is an initial location,.E ∈ N × B(C) ×Σ× 2C ×N is the set of edges and.I : N −→ B(C) assigns invariants to locations.We shall write l g,a,r−−→ l′ when 〈l, g, a, r, l′〉 ∈ E

Local invariant is constraint in form x < n, x ≤ n where n is natural number.

Informally, the timed automaton is an oriented graph which contains states and tran-
sitions. One of the states is called initial. Transitions are labeled by guards which
enable relevant transition. One of the key concepts of timed automata theory is
parallel composition of individual automatons to the network of timed automata.
The theoretical background for this operation provides parallel composition operator
know from CSP. Timed Safely Automata are implemented e.g. in UPPAAL [22] tool.
Comparison of TA and Petri net (PN) is provided by [23].

UML

In comparison to formalisms presented above, Unified Modeling Language (UML) is a
bit more complex. TA and PN are compact modeling systems with strong mathematical
background. UML was born for practice. UML application is not limited to model a

11

2. State of the Art .
system behavior, but it is capable of capturing most of the aspects of a software system
including business processes. MBT tools usually implement a subset of UML. I.e.
system structure is expressed by UML block diagram, and system behavior is modeled
by FSM. With the presumption of usage of an FSM variant for behavior modeling, it
is UML as MBT basis very similar to TA.

2.2.5 Test Selection Criteria

An integral part of a test generation are test selection criteria. It is specification what
the generated cases should or should not contain. Definition of reasonable test criteria
is work for a test engineer. It is similar to manual test case design, just in the more
general way. Unfortunately it is not possible to select single best test selection criteria
for any SUT. Based on the work [24] test selection criteria suitable for transition based
models is overviewed. Also, test generation can be directly influenced by form of an
environment model.

Structural Model Coverage Criteria

They use model structure to expresses test objectives. In case of FSM based models cri-
teria are in form which nodes and edges should be incorporated in test case. Obviously,
full node or full edge coverage are very commons criteria. Another criterion is a coverage
of all automaton cycles. Instead of full/all entities a certain level of coverage can be
chosen. E.g. test case has to cover at least 70% of edges. As not so straightforward
options the isomorphism–checking methods [25] can be mentioned. Similarly to code
testing, Modified condition/decision coverage (MC/DC) can be applied to an FSM.

Data Coverage Criteria

Industrial strength formalism works with variables as well as complex data structures.
It makes case structural coverage criteria hardly applicable. Due to state space mag-
nitude, it is necessary to pick significant variable values. Data coverage criteria are
based on some partition of value space into classes or intervals of boundary values. As
a representative Classification Tree Method [26] is listed.

Fault–based Criteria

Evaluation of test cases or entire suites bases on effectiveness to reveal pre–defined bugs
in SUT. Instead of model oriented metrics – e.g. node coverage is Fault–based criteria
expressed as a count of revealed injected bugs to an SUT. A well–known member of this
group is Mutation Testing [27]. The key idea is to test a test suite by small variation
(a mutant) of SUT implementation. A mutation example is replacing operator such
as < to <=. Same tests are executed over original and mutated SUT. The significant
disadvantage of Mutation Testing is a required access to an SUT code, which is not
possible in many cases.

2.2.6 Test Generation

This is a first phase of the testing process automation. After the model development
and specification of test selection criteria is time to release the power of MBT. With
all necessary information in machine–readable form, rest of testing process can be
completely automated. Suitable algorithms run over the model and generate test cases
which fulfill given criteria.

12

. 2.2 Integration Testing and MBT

Graph search techniques
Taking into account graph nature of many modeling formalisms, application of graph
search algorithms act naturally. Graph traversing is possible in various ways. Some
suitable for MBT are for instance random search, Breadth–first search (BFS), and
Depth–first search (DFS) respectively its modified versions according to the used
modeling formalism. Model semantics bring some constraint into the exploration. For
example, it is not possible to pick any edge if some enabling condition (guard) is not
fulfilled. Optimized test generation using shortest path algorithms is also widely used.
Symbolic execution
Instead of specific (single) variable values, a model is executed with a valuation of
variables by a set of values (intervals). Alternatively, another analogy with fixed–step
discrete simulation, symbolic execution is like a discrete simulation for multiple steps
at one time. Model is executed using constraints instead actual values. The result of
execution are symbolic test cases. One symbolic test case can represent a group of
real test cases. Symbolic as well as real test cases have to fulfill test selection criteria.
Instantiation of symbolic to real test cases is done by a sampling of given intervals.
The examples of this approach from TA world are Region and Zone graphs [17][20].
Model Checking
MC or property checking is decision making if a system meets given property (deadlock–
free, all states are reachable). As a side effect, model checkers can work as test
generators. In this case, the test selection criterion is expressed as reachability property.
The idea of usage of a model checker to produce test cases for a real system seems very
logical as there are a lot of high–level Model Checker (MC) tools and methods [28].
Also, a synergy of model formal analysis with testing of its implementation can be
beneficial [29]. Deployment of UPPAAL MC engine for test case generation was
objective of the dissertation theses [30][31].

2.2.7 Existing Tools
TRON
Uppaal TRON (UPPAAL for Testing Realtime systems ONline) is MBT tool developed
as a part of Marius Mikucionis Ph.D. project [31]. The tool is available from webpage
[32]. TRON is intended to online conformance testing of system specified by timed
automata network. The modeling language is the same for both SUT and environment
models. Models are explored using UPPAAL model checking engine. Inputs for
testing are choosen randomly. Test objective is specified by environment model – fully
permissive model performs full conformance test. For real SUT connection multiple
examples how to implement test adapter are provided. Presentation [33] provides
further information.
CoVer
Uppaal CoVer is a command line extension [34] for offline test generation based on
UPPAAL model checking engine. Test suite generation is controlable by Observer and
Property files. Syntax is described in Backus–Naur Form. Format of abstract test cases
can be modified by Extensible Markup Language (XML) config file. Model coverage
criteria are specified by observer automata [35]. Tool generates abstract test suite
which has to be converted to an executable form. Detailed CoVer description can be
found in Anders Hessel Ph.D. thesis [30].

13

2. State of the Art .
Yggdrasil
Simple offline test–case generation tool integrated in UPPAAL since version 4.1.19.
Yggdrasil derives traces with edge coverage criteria. It is necessary to fulfill some con-
ditions (deterministic, deadlock free models ...), otherwise tests might not be generated.
To make generated traces executable it is possible to add a test code into the model.
Test code can be added to nodes and edges of the model.

Features:.Offline test generation.Depth or Breadth search order selection.Load a trace into UPPAAL simulator.Export of outputs to a file

2.2.8 Hardware–in–the–Loop
Testing can be performed from a very beginning stage of the development as it is
shown in Figure 2.2. Whichever is available it can be distinguished as Model–in–the–
loop, Software–in–the–loop, Processor–in–the–loop and finally Hardware–in–the–loop.
Integration testing works with pre–production versions of an electronic car system.
The intelligent part of this system is usually implemented as electronic units called an
ECU. ECU is Microcontroller Unit (MCU) controlled module with various input and
output types. Individual ECUs are interconnected by a communication link.
The main purpose of Hardware–in–the–loop (HIL) facilities is to handle SUT inputs and
monitor its outputs. It creates the interface between real hardware and software testing
tools. The method serves inputs to an SUT and observes its reaction by observing
outputs. Identically as testing of a computer program, but Inputs/Outputs (I/O)
are physical. In–the–loop postfix indicates cyclic nature of the process. Input values
generation, as well as the evaluation between right and wrong outputs, is the task of
test generator.
Working in desired time window is required since investigated systems have Real–time
properties. It means that a new input has to be served within specified time and
similarly output is valid only within a given time interval. Handling time constraints is
also dedicated to an HIL platform. Simulation of complex subsystems such as sensors,
actuators, and communication interfaces is frequently necessary. To conclude the HIL
method allows performing MBT with real hardware.
HIL test execution has its specifics [36]. The mapping between abstract test cases
to the real ones have to be solved. For instance in a step of an abstract test case is
input value specified by equivalence class. However, in execution time is necessary to
choose the certain value. In a simplified example, it can be done by selecting a random
value from given interval. Instantiation of test sequences is usually done by a software
module called test adapter. The extensiveness of the adapter depends on input and
output formats compatibility.

2.2.9 Related Work
In previous text, an introduction to the large world of MBT was outlined. This section
analyses few papers, which are the most relevant for intended work. The referred works
present results of an application of different MBT approaches. Target SUT class are
embedded Real-Time systems. The thesis is focused on the same system class.

14

. 2.3 Summary

Paper [29] proposes a scenario of usage UPPAAL tools in the Automotive domain.
An object of interest is a car turn indicator system. This system is modeled as TA
network, and consequent formal analysis and testing are driven by the model. Formal
properties can be checked by symbolic MC or Statistical Model Checker (SMC). Both
are incorporated in UPPAAL tool. SMC offers speed in exchange of confidence level.
The formal analysis is used to check model (system requirements) in the early design
phase and some safety standards, e.g. ISO 26262 requires usage of formal techniques.
The same model can be later used for test generation by Yggdrasil for implemented
SUT. Yggdrasil is offline symbolic test case generator included in UPPAAL. In conclu-
sion, it is stated that TA modeling is acceptable for the industry but still requiring the
reasonable amount of training.

Work [37] is focused to timed test traces generation from TA model. The novelty of
presented approach is in the employment of meta–heuristic algorithm for producing
of traces. The method was evaluated on an Anti-Slip Regulation (ASR) / Anti-lock
Braking System (ABS) model. The system was designed in SystemC and TA was
generated from it. Resulting automaton is quite large to analyze by a model checking
engine. It contains 261 nodes and 229 transitions. UPPAAL MC can’t compute
nodes reachability with 4 GB of RAM. Presented test generation is done by evolution
algorithm. Proposed algorithm try to achieve the best possible transition coverage.
Result for the ABS example was 95.45 % coverage in comparison with 45.45 % for MC
and randomized approach.

Comparison of various MBT solutions is a difficult task. A freely available benchmark
model is offered by [38]. The model captures a complete turn indicator system on
observation level. SUT outputs are monitored in detail including Pulse–width modula-
tion (PWM) duty cycle. The benefit is that the modeled SUT is the real–world system
as it is used by Daimler. The only difference is pure UML2 format instead modified
UML used by Daimler for some HIL connection reasons. A reference test generation
solution is based on the calculation of symbolic test cases represented as logic formulas.
Criteria for benchmarking are clearly described. Unfortunately, to harmonize result of
two MBT tools to comparable form can require inconsiderable work.

2.3 Summary
Practice in the automotive industry was outlined. The current situation requires
a wide range of testing and validation techniques. The first area waiting for new
testing methods is parameterization of FlexRay Communication Controller (CC). Key
principles of FlexRay communication system were presented. Features and types of
available solutions were overviewed. Available tools can be divided into two group.
The first group is smart oscilloscopes with FlexRay bus decoding function. The second
group uses programable network interfaces. Tools from the second group are more
suitable for automotive electronics development but still are not disposable for low–
level FlexRay testing. In the corresponding related work, the published results are
summarized. Results are mostly based on passive bus observation. Also, parameters
are estimated for the whole cluster and not precisely measured for a single node.
Furthermore, the motivation for the evaluation configuration parameters is stated.
Despite the long list of market solutions as well as huge amount of publications, it
can be concluded that measurement methods for a single FlexRay node parameters
evaluation are unavailable.

15

2. State of the Art .
In the second part of this chapter, the scenario with carmaker and supplier was
described on a higher level. The Integration testing is introduced as a particular
development phase. In comparison with FlexRay parameter evaluation, the bus com-
munication is tested indirectly at the system function level. The ECUs are connected
by their communication interfaces. The communication is usually monitored, but its
malfunction is backward identified only if some function fails.

A common Integration testing procedure with manually developed test cases was
sketched. Weaknesses of this approach bringing motivation for this work were discussed.
A modern MBT approach was summarized in the rest of the chapter. As the MBT
terminology is not exactly uniform, used notion was defined. Hereafter whole testing
process was discussed according to MBT approach, starting from modeling of the
intended class of automotive electronics systems and continuing with the test selection
specification. At this point, human (i.e. test engineer) work ends and the rest can be
fully automatized. The test generation phase prepares test cases and whole test suites
or campaigns. Finally, the test execution on an HIL platform was discussed. Arising
thesis objectives are specified in the consecutive section.

16

Chapter 3
Thesis Objectives

In section 2.3, two prospective research areas are identified. Evaluation and mea-
surement of the FlexRay configuration parameters is the first of them. The second
part of the objectives targets to the area of high–level function oriented Integration
testing. Respectively, the goal is an improvement of the Integration testing using MBT
principles. According to the testing practice, both fields belong to different part of the
testing process. Measurement of a bus configuration parameters is classified as lower
level testing while high–level testing of the nearly finished distributed system as an
Integration testing case. For this reason, the thesis objectives, as well as entire thesis,
is divided into two parts.

3.1 FlexRay Objectives
The aim of this part of the dissertation thesis is to fill the gap in the area of available
FlexRay communication system measurement and validation techniques. State of the
art analysis in section 2.1 shows the lack of evaluation techniques focused on a single
FlexRay node parameters. Paper [11] supports the conviction that the approach based
on the application of active stimuli is needed. This work is thus an expected extension
of communication parameter extraction methods based on passive bus observation.
Existing work is mostly focused on an analysis of whole FlexRay cluster parameters.
Marginalization evaluation of individual nodes might cause unsafe behavior described
e.g. in 2.1.3. The goal of this work is expressed in Figure 3.1.

The set of the FlexRay communication protocol standards describes Physical [39]
and Data Link [2] layers according to ISO/OSI model. Configuration parameters
mentioned in this work influence Data Link Layer behavior. A network designer creates
a configuration based on some requirements. A configuration tool can be deployed
in the design process. The set of configuration parameters is used for configuration
of individual FlexRay controllers deployed in ECUs. This work is not intended for
verification of proper network design, but it is intended to validate if parameters
values specified by car manufacturer conform with actual values programmed into a
communication controller. The validation is based on the active bus communication,
no access to ECU firmware is required.

Firstly, the parameterization (set of tens of parameters) of a FlexRay controller will be
analyzed with the focus on potential risks in case of the wrong setup. It is presumable,
that not all of them are critical, due to the robust protocol design. Based on this
analysis, measurement methods will be designed and developed. Finally, these methods
will be implemented and evaluated on a real FlexRay network.

17

3. Thesis Objectives .
Highlights of particular objectives:.Analysis of the configuration parameters set..Evaluation of single FlexRay node parameters – design of measurement algorithms..Implementation and evaluation of the measurement methods..Characterization of measurement methods accuracy and time requirements.

Figure 3.1. FlexRay objectives

3.2 Integration Testing Objectives
The starting point for this part of the thesis is test suite design and implementation by
test engineers without automation as sketched in section 2.2. This area has excellent
research and development potential. In general, the idea is to improve the Integration
testing using the MBT techniques. Slightly wider beginning formed specific particular
objectives. The work goes from the selection of applicable theory, through its imple-
mentation to results evaluation by a case study. Effort transfer from test cases coding
to model development is expressed by Figure 3.2.

First of all, it is necessary to choose suitable modeling formalism for intended system
class. Fundamental options with required attributes were also overviewed in 2.2.
Selected model type proceeds to the suitable MBT concept proposal. Based on the
proposed concept, the relevant theory is studied in detail. The MBT solution imple-
mentation is described including target HIL platform. The concept is proven on a case
study.

Highlights of particular objectives:.Selection of suitable modeling formalism..Overview of relevant theory..Proposal of suitable MBT concept..Development of HIL test place..MBT solution implementation..Knowledge-based test generation..Evaluation by a case study.

18

. 3.2 Integration Testing Objectives

Specification

</CODE>

</Model>
Online Test
Generation

Test Suite

Test Execution

Figure 3.2. Integration testing objectives

19

Chapter 4
FlexRay

The FlexRay communication stack within an ECU complies with the OSI model. The
Data–link layer entities and protocols are implemented by the FlexRay communication
controller – the chip provided by the semiconductor manufacturer. However, the Data–
link layer behavior is also significantly influenced by parametrization of its protocols
and entities. Values of particular parameters are set by the ECU firmware, and thus
it is the responsibility of the ECU manufacturer to set the required parameter values.
The ECU is a black (or at best a gray) box from the car manufacturer point of view.
The manufacturer knows what parameter values should be set (they have specified
them), but they have no access to the ECU firmware to verify them. Therefore, the
car manufacturer needs measurement methods and instruments suitable for measuring
values of these parameter without having access to internal ECU data.

4.1 Overview of FlexRay Communication System
Description of FlexRay Communication System can be found in [40] or directly in
protocol specification [2], which is the primary information source. The following
paragraphs are focused on relevant principles only. Briefly, FlexRay is high speed (up to
10 Mbit/s) communication technology primarily intended for automotive applications.
Both time–triggered and event–triggered communication is possible and redundant
physical layer topology can be used for increased reliability.

The wakeup procedure serves to drive the network from low power mode (e.g. after a car
is unlocked) [41] to normal operation mode. The procedure starts with ECUs in either
standby or sleep mode, where only bus drivers are powered. The process is controlled
at application layer by the ECU firmware. An ECU initiating the cluster wakeup starts
by sending a wakeup pattern to the bus on one of the redundant channels. Another
ECU, which recognizes the wakeup pattern, wakes up and continues the process by
sending the wakeup pattern to the second FlexRay channel (if it is present). After
the wakeup is finished and all the ECUs are woken up, they continue with a startup
phase. Below, the methods for evaluation of proper wakeup pattern transmission and
recognition are provided.

The communication startup phase is intended to initialize the communication cycle
and clock synchronization. The start of the FlexRay network depends on the network
type. FlexRay specification distinguishes three network types: TT–L, TT–D and TT–
E, according to the clock synchronization principle. In a TT–L network the nodes are
synchronized using a single clock master. A TT–D cluster uses a distributed clock
synchronization mechanism, which will be discussed in next paragraph. Finally, a
TT–E type uses an external time gateway. This work is focused on TT–D FlexRay
network type, which is the most widespread. For the startup process, the network is

20

. 4.2 Parameter Set Analysys

divided into coldstart and noncoldstart nodes (ECUs). Only the coldstart ones are
active during the communication startup. The first coldstart node, which does not
detect bus communication, becomes a leading coldstart node. This node immediately
sends a CAS and then starts sending startup frames (normal frames with a startup flag
set) according to the TDMA communication schedule. The following coldstart node
initializes its clock synchronization and joins communication in communication cycle
No. 4. Finally, the noncoldstart nodes join the communication. Below, the methods
for evaluation of proper ECU startup parameter values are provided.

FlexRay normal operation phase is based on the modified TDMA communication cycle
structure, as depicted in Figure 4.1. The individual ECU clocks are synchronized using
the distributed clock synchronization algorithm. ECUs labelled as synchronization
nodes are sending frames with the sync flag set within the static segment slots. Other
(non–synchronization) ECUs only correct their clock according to the synchronization
nodes. All nodes measure an arrival time of synchronization frames locally. Based
on the deviations in arrival time, the clock corrections are calculated using the Fault–
tolerant midpoint (FTM) algorithm [42] and applied in particular nodes.

A

B

. . .

. . .

Static Slots Minislots Symbol Window Idle

ID 3 ID x ID i MTSID i ID iID 2ID 1

ID 1 ID 2 ID 3 ID x ID i ID i

Communication Cycle

Time triggered com. Event triggered com. Service com.

ECU 1 ECU 2 ECU 3 ECU n

Figure 4.1. FlexRay communication overview.

The latest version of the specification is [2]. It can be viewed as the final version.
FlexRay consortium submitted them to ISO to become technical normative. Docu-
ments are not longer maintained by FlexRay consortium. Probably only significant
problems will cause publication of revised documents in the future. From the appli-
cation point of view version [43] is important. The reason is that the most of the
today’s application is based on 2.1 version. Moreover for the purpose of this work a
repetitive survey of available FlexRay controllers integrated into an MCU was done
(last in November 2016). All founded products have CC v 2.1. None of the known
silicon manufacturers had CC supports 3.0.1 in the portfolio.

Version 3.0.1 in comparison to 2.1 brings reasonable number of improvements. Lot of
them are related to text of the specification only. A variety of applications is extended
by the introduction of 2.5 and 5 Mbit/s communication speed. Basic TT–D clock
synchronization architectures were extended by TT–L and TT–E options. Despite
the changes, presented work is valid for both mentioned variants. Just parameter
pdMaxDrift was replaced by pRateCorrectionOut.

4.2 Parameter Set Analysys
One of the first goals of the thesis was to analyze parameter space of FlexRay protocol.
In Table 4.1 are parameters divided into groups according to specification. First are
protocol constants – definition of fundamentals such as highest static slot ID, the length

21

4. FlexRay .
of mandatory communication segments or maximal payload length. Two parameters
in second section performance constants defining how long time synchronization pa-
rameters calculation have to take.

Major part – configurable parameters are divided into Global cluster and Node param-
eters. They are easily distinguised by g or p prefix. Among all categories subsidiary
prefix d is used to designate time duration. This convention is followed by silicon chip
manufactures in datasheets. Global parameters are the same for the whole cluster,
and node local ones can differ between individual nodes. Division to subgroups of
protocol relevant and protocol related means only that related parameters are used in
Specification and Description Language (SDL) diagrams.

The physical layer group contains values related to a bus driver. In the context of
this work are similar to protocol constants as they are not configurable. Last part
is auxiliary parameters which are used in configuration constraints definition. It is
set of equations which verify formal correctness of a FlexRay parameterization. Total
parameter count according to the latest version 3.0.1 is one hundred and eighty–one.

Group Count Prefix Section
Protocol constants 40 c A.1
Performance constants 2 cd A.2
Global cluster
Protocol relevant 25 g B.3.1.1
Protocol related 11 g B.3.1.2
Node parameters
Protocol relevant 29 p B.3.2.1
Protocol related 4 p B.3.2.2
Physical layer 34 B.3.3
Auxiliary parameters 36 a B.3.4
Total 181

Table 4.1. Parameter set summary

In the case of automotive application domain is important sixty–nine cluster global
and node local parameters. This set is programmed into each CC connected to the
vehicle network. The correctness of chosen values, as well as conformance of desired
and actual values, should be verified.

Parameterization of available CCs is not an exact copy of parameterization mentioned
in the specification. In this work two MCUs with integrated FlexRay CC were analyzed.
The first representative is 16–bit MCU MC9S12XF manufactured by Freescale Semi-
conductor. Configuration of this device contains fifty–four parameters according to
datasheet[44]. The second device was Texas Instruments TMS570LS31. Beside firstly
mentioned MCU it is a generation newer more powerful with 32–bit architecture. CC
registers are described in [45] and it is possible to configure fifty–one values. Detailed
structure of parameterization is shown in Table 4.2.

The difference between some parameters in specification and number of parameters
in registers of real CCs is not caused by the limited implementation of these specific
controllers. Most of missing parameters are from both protocol related groups. Cluster
global related contain for example gdBit which defines bit time. Bit time seems like

22

. 4.3 Wakeup Parameters

Freescale Texas Instruments
Group MC9S12XF TMS570LS31
Global cluster
Protocol relevant 22 21
Protocol related 1 3
Node parameters
Protocol relevant 29 26
Protocol related 2 1
Total 54 51

Table 4.2. An example of real parameterization

required parameter, but practically it is defined as multiplication of constant cSam-
plesPerBit and gdSampleClockPeriod. Another example is gdMaxInitializationError.
It specifies maximal timing error for a node following integration. This kind of values
can be viewed as configuration constraint, as it is not possible to assure this timing
deadline by a configuration of CC. Some parameters are derivable from other ones –
the specification is redundant in some parts for the better readability.

The set of approximately fifty important parameters is very heterogeneous. It varies
from transmittion channel enable by pChannels to limit of the rate correction pRate-
CorrectionOut. Although pChannels should not be omitted in validation, the test
case design and implementation are straightforward and do not required any special
knowledge nor equipment. Methods for automatic identification of fundamental com-
munication cycle schedule are published in [10].

The situation is more complicated than for static schedule in the case of variating
parameters e.g. time synchronization or parameters which influence only short time
behavior during some distinctive event. An example of these events is cluster Wakeup
and Startup. Parameters that were identified important together with the assumption
for non–trivial measurement are researched in following sections. Parameters are
categorized according to Protocol Operational Control (POC) automaton states.

4.3 Wakeup Parameters
Bus communication starts with a wakeup procedure, which is intended to power up
and force the FlexRay POC automaton of each connected node to the ready state.
Responsibility for the proper wakeup of a node is divided among the bus driver, host
(an MCU) and a FlexRay communication controller. The bus driver should be able
to recognize the wakeup pattern and to wakeup other components including the host
MCU and communication controller. Remaining steps are driven by the host with
support of a communication controller. A summary of relevant parameters is given in
Table 4.3

Parameter gdBit expresses nominal bit time, for bit rate 10 Mbit/s it is equal to 100
ns.

4.3.1 pWakeupChannel
pWakeupChannel denotes a channel where the wakeup pattern is transmitted by the
node. Evaluation is simple and based on a bus observation only. If the node does

23

4. FlexRay .
Parameter Range

pWakeupChannel Channel A or B
gdWakeupRxLow 8 – 59 gdBit
gdWakeupRxIdle 8 – 59 gdBit
gdWakeupRxWindow 76 – 485 gdBit
gdWakeupTxIdle 45 – 180 gdBit
gdWakeupTxActive 15 – 60 gdBit
pWakeupPattern 0 – 63

Table 4.3. Wakeup parameters summary

not detect a wakeup pattern, it sends a wakeup pattern on the channel defined by
pWakeupChannel.

4.3.2 gdWakeupTxIdle, gdWakeupTxActive, pWakeupPattern
These three parameters define the wakeup pattern waveform. gdWakeupTxIdle defines
the duration of the bus idle state. gdWakeupTxActive is a time period of low bus state.
A wakeup symbol consists of one gdWakeupTxActive followed by gdWakeupTxIdle. The
wakeup pattern is a sequence of several wakeup symbols specified by pWakeupPattern.
Evaluation of these parameters is possible by an oscilloscope or bus sampling with a
reasonable sampling period (lower than gdBit/2 period).

4.3.3 gdWakeupRxLow, gdWakeupRxIdle,
gdWakeupRxWindow

Complementary to wakeup pattern transmission, reception of wakeup pattern is con-
trolled by gdWakeupRxLow, gdWakeupRxIdle and gdWakeupRxWindow. Relationship
between parameters is shown in Figure 4.2. For the proper node wakeup it is crucial
to test its ability to recognize wakeup pattern on the bus.

Idle

RxD

Data_0

gdWakeupRxLowgdWakeupRxIdlegdWakeupRxLow

gdWakeupRxWindow

gdWakeupRxIdle

Figure 4.2. Wakeup pattern in context wakeup window

Testing of wakeup pattern recognition is based on the assumption that if a node has
recognized the wakeup pattern, it does not send a wakeup pattern itself. The selected
wakeup pattern parameter is being decreased from the maximal permitted length until
the wakeup pattern is not detected by the ECU under test (EUT). This principle is
used for gdWakeupRxLow and gdWakeupRxIdle. The third parameter is evaluated by
changing the right side of inequality (4.1). Modification of gdWakeupRxLow value can
be used.

gdWakeupRxWindow ≥ 2 ∗ gdWakeupRxIdle+ gdWakeupRxLow (4.1)

Evaluation of the wakeup parameters is straightforward, but also an integral part of
the exhaustive validation of FlexRay controller parametrization. A similar principle
is used for LIN cluster wakeup testing [46]. On the contrary, the LIN wakeup signal
timing is fully defined by the standard.

24

. 4.4 Startup Parameters

4.4 Startup Parameters
Startup is a key process intended to initialize time synchronization for a whole cluster.
Critical parameters influencing a startup procedure are summarized in Table 4.4. A
correct setting of FlexRay startup parameters is necessary to ensure fault–free cluster
startup.

Parameter Range
vColdstartInhibit True or False
pdListenTimeout 1926 – 2567692 µT
cdCASRxLowMin 29 gdBit
gdCASRxLowMax 28 – 254 gdBit
gColdStartAttempt 2 – 31 gdBit

Table 4.4. Wakeup parameters summary

4.4.1 Type of Node

Test of the startup related parameters has to be distinguished by type of FlexRay node.
Four node types are considered in the following test. They are TT–D and TT–L, both
variants of coldstart or noncoldstart. Coldstart or noncoldstart node is determined
by vColdstartInhibit parameter. The parameter is of Boolean type. True denotes the
ability to start communication (coldstart node) while False defines a noncoldstart node.
A coldstart node starts sending a startup frame, which could be detected by the tester.

4.4.2 gColdStartAttempt

This test is relevant for the TT–D coldstart node only, because a TT–L coldstart node
never terminates a coldstart attempt (it sends two startup and synchronization frames).
Evaluation of gColdStartAttempt is possible by the counting of received startup frames
according to equation (4.2).

gColdStartAttempt = NRSF

NF CA
(4.2)

Where NRSF is the number of received Startup frames and NF CA is the number of
startup frames per coldstart attempt defined by standard, equals to 5.

4.4.3 Collision Avoidance Symbol

Collision avoidance symbol length shall be between cdCASRxLowMin and gdCAS-
RxLowMax, otherwise it does not have to be recognized. The same idea as for the
measurement of wakeup pattern parameters is used. If the collision avoidance symbol
is not detected, the tested node tries to send a collision avoidance symbol by itself. The
iterative algorithm is used, where the tester starts sending the collision avoidance sym-
bol with a slightly lower length than the minimal permitted value for cdCASRxLowMin
discovering. Next, the tester continues increasing collision avoidance symbol length to
gdCASRxLowMax. The range of recognized symbol lengths is finally evaluated.

25

4. FlexRay .
4.4.4 pdListenTimeout

Measurement of pdListenTimeout uses the property that the pdListenTimeout timer is
restarted when the idle state is recognized on the bus. After the timeout expiration
the ECU sends a collision avoidance symbol. The time interval measured between
collision avoidance symbols should be corrected by cChannelIdleDelimiter and cdCAS-
ActionPointOffset values (standard defined constants) that affect bus idle recognition
and collision avoidance symbol transmission. The principle is shown in Figure 4.3 and
expressed by equation (4.3), where ts CAS means timestamp of CAS.

Bus

cChannelIdleDelimiter pdListenTimeout cdCASActionPointOffset

CAS

Tester EUT

CAS

RESET
pdListenTimeoutCAS

Figure 4.3. pdListenTimeout measurement

pdListenT imeout =ts CASEUT − ts CAST ester−
cChannelIdleDelimiter − cdCASActionPointOffset

(4.3)

4.5 Evaluation of Clock Synchronization Parameters
Functionality of a FlexRay synchronization mechanism is influenced by four parame-
ters. The first parameter is local time unit microtick, the nominal value of which is
specified by pdMicrotick. Limit values for the offset and rate part of clock correction are
pOffsetCorrectionOut and pRateCorrectionOut. Rate correction is additionally reduced
by the pClusterDriftDamping parameter. Incorrect parametrization is difficult to reveal
under normal operating conditions. An example of such a violation and its consequence
is provided in section Motivation for evaluation of configuration parameters. Parameter
names and their ranges are recapitulated in Table 4.5.

Parameter Range
pdMicrotick (µT) 12.5 ns, 25 ns, 50 ns
pClusterDriftDamping 0 – 10 µT
pOffsetCorrectionOut 15 – 16082 µT
pRateCorrectionOut 3 – 3846 µT

Table 4.5. List of measured parameters

4.5.1 Cycle Length Influencing and Measurement
All presented methods are based on knowledge of communication cycle length (duration
time). Cycle length is measured using a principle depicted in Figure 4.4. All incoming
frames are marked by a timestamp.

EUT cycle length is synchronized by the FTM algorithm. For three synchronization
frames (two of them with the same cycle length are generated by the tester) two of the

26

. 4.5 Evaluation of Clock Synchronization Parameters

Cycle 2n Cycle 2n + 1

Static segment

S1 S2 S3 Si

Static segment

S1 S2 S3 Si

Cycle length of node under test

Cycle length of FPGA based FlexRay tester

Figure 4.4. Cycle length measurement

three measured time deviations (the highest and the lowest one) are discarded. The
EUT frame deviation is always zero and therefore it is either the highest or the lowest
one (other two are the same). The remaining deviation value is always that generated
by the tester, and the EUT is thus forced to follow its communication cycle length.

4.5.2 Offset Correction Measurement
Some methods presented later require the value of the offset correction in a particular
communication cycle. The method for offset correction measurement published in [12]
can be utilized. In my opinion, there is a mistake in the formula in section III.C
of [12], where the even and odd communication cycles are swapped. Offset correction
is applied in the odd communication cycle. To obtain an offset correction with the
correct sign, it is necessary to subtract the even cycle length from the odd cycle length.
Presumption for the proper use of the method is short–term oscillator stability (con-
stant rate correction). The magnitude of offset correction can be calculated according
to equation (4.4).

OC(2n+ 1) = CL(2n+ 1)− CL(2n) (4.4)

Where OC(2n + 1) is the offset correction applied in the odd communication cycle
(2n + 1). CL(2n + 1) is the length of the odd communication cycle. CL(2n) is the
length of the previous even communication cycle.

4.5.3 pdMicrotick
Usually pdMicrotick is directly derived from a local clock source. Depending on the
desired communication speed, three nominal values are possible – 12.5 ns, 25 ns and
50 ns. The complete communication cycle schedule is derived from this parameter.
The pdMicrotick parameter represents the minimal possible change in the FlexRay
node timing. The change is observable by a frame transmission transmit time for
frames transmitted in a static slot. The proposed method deals with the presumption
that clock synchronization works with microtick resolution and two FlexRay nodes
are never synchronized absolutely. The cycle length is affected by components from
equation (4.5).

CL(2n+ 1) = pMicroPerCycle+RC(2n+ 1) +OC(2n+ 1) (4.5)

27

4. FlexRay .
A small difference between EUT and tester communication cycle lengths (denoted ∆)
always exists. This small difference is accumulated over a few communication cycles
until it exceeds magnitude of 1 µT (as shown in Figure 4.5). Within the following
odd communication cycle the EUT synchronization mechanism corrects the difference
by adding 1 µT to the actual offset correction value. pdMicrotick value can thus be
evaluated by precise measurement of EUT communication cycle lengths. The minimal
distance in the communication cycles histogram is equal to pdMicrotick.

2n 2n + 1 2n + i

cl + Δ cl + 2Δ cl i·Δ
≥1µT

Figure 4.5. Cycle difference accumulation

4.5.4 pClusterDriftDamping
The parameter value is subtracted from the actual calculated value of rate correction.
Thus, pClusterDriftDamping can be interpreted as the insensitivity zone of rate cor-
rection. A clock frequency difference below this limit has to be corrected by an offset
correction (red squares in Figure 4.6). For example, if pClusterDriftDamping is equal
to 5 µT and the clock frequency difference is higher than 5 µT per cycle, the minimal
applied offset correction is 10 µT per each odd communication cycle.

2n 2n + 1

clnom+RC2n

2n + 2 2n + 3

clnom+RC2n OC2n+1 clnom+RC2n+2clnom+RC2n+2 OC2n+3

Figure 4.6. Offset correction affected by pClusterDriftDamping

For measurement of the parameter it is necessary to assure that the tester and the
EUT clock difference is higher than maximal permitted pClusterDriftDamping value,
which is 10 µT. Afterwards, the value can be extracted from measured cycle lengths
according to equation (4.6) (it does not reflect sporadic 1 µT corrections). Division by
two reflects the accumulation of the parameter value over two communication cycles.

pClusterDriftDumping = CLEUT (2n+ 1)− CLEUT (2n)
2 (4.6)

Where CL(2n + 1) is the length of the odd communication cycle and CL(2n) is the
length of the previous even communication cycle.

4.5.5 pRateCorrectionOut
The idea for pRateCorrectionOut measurement is to slightly push the EUT synchro-
nization mechanism to its limits. After the limit is reached, EUT stops sending frames.
The measurement takes place in even communication cycles, since only even cycles are
not affected by the offset correction. Maximal and minimal measured cycle lengths

28

. 4.5 Evaluation of Clock Synchronization Parameters

determine the value of pRateCorrectionOut according to equation (4.7). Either a
positive or negative Rate correction value is applied (lengthening or shortening of
communication cycle, respectively). To obtain the actual value of the parameter it is
necessary to divide the measured difference of cycle lengths by two.

pRateCorrectionOut = CLmax − CLmin

2 ∗ pdMicrotick
(4.7)

Figure 4.7 depicts this measurement step by step. The first cycles are of the same length
(EUT and tester are synchronized). Next, the tester starts forcing EUT to shorten its
communication cycle using the principle described in section Cycle length control and
measurement. When the lower limit is discovered, the tester starts with increasing the
communication cycle length and the upper limit is discovered consequently. Missing
communication is expressed by white bars in Figure 4.7.

Ev
en

 c
yc

le
 le

n
gt

h
 d

if
fe

re
n

ce

fr
o

m
 n

o
m

in
al

 [
µ

T]

Communication cycle number

0

+ pRateCorrectionOut

- pRateCorrectionOut

0 n

Tester communication cycle length
EUT communication cycle length

Figure 4.7. Rate correction affected by pClusterDriftDamping

4.5.6 pOffsetCorrectionOut
The offset correction is calculated using the FTM algorithm from the deviations mea-
sured in each odd communication cycle. This value is applied at the end of the same
communication cycle. Thus the offset correction value evaluation is only possible within
the corresponding odd communication cycle. EUT offset correction is induced by a fast
shift of the tester’s synchronization frames time position. This shift magnitude should
be corrected by the EUT offset correction, whose value is measured using the method
described in section Offset correction measurement. If the required offset correction
value is higher than the pOffsetCorrectionOut limit, only this limit value is applied.
This method is further limited by the actual duration of the static slot. The shifted test
frame may not violate the static slot boundaries. The area of possible synchronization
frames shifting is expressed by green shaded area in Figure 4.8.
The maximal negative offset correction value (frame shift towards start of static slot)
that can be measured is limited by gdActionPointOffset and is denoted by the minus
superscript in equation (4.8).

29

4. FlexRay .

Frame

Action
point

gdStaticSlot

Figure 4.8. Offset correction measurement limitation

OC−[µT] =gdActionPointOffset∗
(gMacroPerCycle÷ pMicroPerCycle)

(4.8)

The maximal positive offset correction value (a frame shift towards the end of static
slot) that can be measured is limited by the frame length, gdStaticSlot and gdAction-
PointOffset, and is denoted by the plus superscript in equation (4.9).

OC+[µT] =(gdStaticSlot− gdActionPointOffset)∗
(gMacroPerCycle÷ pMicroPerCycle)− FrameLength

(4.9)

FrameLength[µT] =(gdTSSTransmitter + cdFSS + 80gdBit(header+
trailer) + 2 ∗ gPayloadLength ∗ 10 + cdFES)∗
(cSamplesPerBit÷ pSamplesPerMicrotick)

Definitions of all parameters used in the equations above can be found in FlexRay
standard [2].

A frame shifted over the limits is marked invalid by EUT internally and thus not used
for synchronization. This behaviour can be used for evaluation of gdActionPointOffset
and gdStaticSlot parameters.

4.6 Validation on Real FlexRay Network
Proposed methods were experimentally evaluated on real FlexRay network. Experi-
ments were performed using setup shown in the figure 4.9. The control element is PC.
Oscilloscope with FlexRay frame decoding feature was used as an auxiliary monitoring
device. The major part is FPGA tester node, and as EUTs two different MCUs were
used. Used network hardware (predominantly CTU developed) is described in the
following text.

4.6.1 FPGA FlexRay Controller
Due to limited capabilities of production FlexRay CC, a VHSIC Hardware Description
Language (VHDL) tester implementation was used as the evaluation platform. The
controller is designed in VHDL and implemented on an Altera FPGA as master the-
sis [47]. Features of this controller were specified to address this research requirement.
Especially precise control of frame transmission and receiving time timestamping. The

30

. 4.6 Validation on Real FlexRay Network

Tester

Console
EUT

MC9S12XF or

TMS570LS31

FPGA Tester

CLK

Generator
Tektronix AFG3102

FlexRay

RS232

Oscilloscope
Tektronix DPO4034
with FlexRay module

Figure 4.9. Measurement Setup

NIOS II microprocessor is used as a control element and runs testing methods. The
synthesis was done for Cyclone II EP2C20F484C7N chip. For integration of NIOS
softcore MCU, FlexRay core, and other necessary function blocks (UART, SRAM,
PLL ...) Qsys – System Integration Tool was used.

The methods are implemented in C using NIOS II Integrated development environment
(IDE) for Eclipse. Tester is operated by a serial terminal connected to a PC by RS232.
The menu–based user interface was also implemented. The structure is similar to
parameters and attached methods description in sections above. The method is labeled
by the parameter name and selectable by numeric keyboard. Internal system structure
as it is interconnected by Qsys is depicted in figure 4.10.

Nios II core

Event Logger Trigger Injector FlexRay controller UART

IO pins 2x TJA1080 MAX232

64 bit
Timestamp

RxTx RxTx

Data bus

FPGA

Figure 4.10. Structure of FlexRay System on a chip (SoC) [47]

4.6.2 FlexRay Hardware – EUT

Two EUT types were used for measurement method evaluation. Both controllers are
implemented according to specification version 2.1 [43]. Differences in CCs parameter-
ization are mentioned in 4.2. Both EUTs use TJA1080 bus drivers. The first EUT is
a FlexRay board developed in CTU in past. It is based on a 16–bit microprocessor
MC9S12XF with integrated Freescale FlexRay controller. The board was used as
wheel speed sensor unit for a FlexRay ABS prototype. Hardware description can be

31

4. FlexRay .
found in [48]. Parameterization of CC was modified by MCU programming using
CodeWarrior integrated development environment. Except FlexRay parameter set,
same firmware as for wheel speed sending unit was used.

The second EUT is Ethernet–FlexRay gateway developed by two bachelor program
student as their thesis [49][50]. It is based on a 32–bit microprocessor TMS570LS31
from Texas Instruments with integrated Bosch FlexRay controller called E–Ray [51].
This gateway is the ideal piece of hardware for any FlexRay development. In a nutshell,
it is small Printed Circuit Board (PCB) with mentioned MCU, FlexRay and Ethernet
physical interfaces accompanied by the necessary electronics. FlexRay communication
is user controllable by an Application. Gateway provides sufficient data throughput for
Real–time monitoring. FlexRay setting is stored in custom format XML file. Specific
features such as node startup, integration to running cluster or just listening are also
application controllable.

4.6.3 Experiments

The FlexRay network used for practical evaluation of the presented methods was pa-
rameterized according to the Table 4.6. Parameters closely related to the measurement
methods are explained in corresponding paragraphs; a detailed description of each
parameter can be found in the FlexRay Communication System Specification [2]. The
testing network consisted of just two nodes (Tester and EUT). Standard Category 5e
cable was used for interconnection.

Parameter Value
gdActionPointOffset 3 MT
gdDynamicSlotIdlePhase 1
gdMinislot 40
gdStaticSlot 50
gdSymbolWindow 13 MT
gdTSSTransmitter 11 gdBit
gMacroPerCycle 5000 MT
gNumberOfMinislots 22
gNumberOfStaticSlots 60
gOffsetCorrectionStart 4920 MT
pClusterDriftDamping 1 µT
pDecodingCorrection 56 µT
pDelayCompensation[A] 1 µT
pDelayCompensation[B] 1 µT
pdListenTimeout 401202 µT
pLatestTx 21
pMacroInitialOffset[A] 5 MT
pMicroInitialOffset[A] 5 µT
pMacroInitialOffset[B] 23 MT
pMicroInitialOffset[B] 23 µT
pMicroPerCycle 200000 µT
pMicroPerMacroNom 40 µT

Table 4.6. Test Network Configuration

32

. 4.6 Validation on Real FlexRay Network

Measured values were compared with values configured in communication controller
registers. As far as I know, similar work with comparable results has not yet been
published. The results fully correspond with assumptions with respect to clock fre-
quency differences discussed in section 4.7. To eliminate this issue, the validation tests
are made using a tester clock frequency very close to the clock frequency of the EUT
(driven by arbitrary generator Tektronix AFG3102). The tester clock frequency was
80.0206 MHz for the ECU with E–Ray controller and 80.0011 MHz for the ECU with
Freescale controller. Pre–set values of particular measured parameters are chosen from
the interval of all possible values. Global FlexRay controller settings are mentioned in
Table 4.7 (with exception of measured parameters). Bus monitoring was done using
a Tektronix DPO4034 oscilloscope. Regrettably methods were not tested with a CC
implemented according to last specification 3.0.1. Since none was on the market in
time of work realization.

Parameter Set Value MC9S12XF TMS570LS31
gdCASRxLowMin [gdBit] 29 29 29
gdCASRxLowMax [gdBit] 64 64 64

83 83 83
120 120 120

pdListenTimeout [µT] 1926 1934 1933
401202 401211 401211
800000 800010 800009

pdMicrotick [ns] 25 25 25
pClusterDriftDamping [µT] 1 1 1

3 3 3
10 10 10

pRateCorrectionOut [µT] 500 500 499
600 599 600
700 700 699

Table 4.7. Selected experimental results

Real measurement of parameters gdCASRxLowMin and gdCASRxLowMax shows that
designed methods are able to identify actual values with bit level resolution precisely.
Measurement of the pdListenTimeout parameter after subtraction of CAS symbol
length according to equation (4.3) contains a maximal error of 10 µT or 250 ns. This
error is caused by a combination of three factors. They are the remaining difference
in tester and EUT clock frequencies, the delay in the receiving path of the controller
and the tester time stamping implementation. The practical impact of this error on
result usability is nevertheless negligible. Methods for identification of pdMicrotick and
pClusterDriftDamping work fully within expectations. Vital evaluation pRateCorrec-
tionOut works according to presumptions.

Results of offset correction limits evaluation are summarized in Table 4.8. Due to the
limits represented by equations (4.8) and (4.9), two FlexRay network schedules were
used. The first schedule, labelled as default setup, is the setup previously mentioned in
Table 4.6. The modified setup enables the full range measurement of permitted offset
correction. The schedule of the static segment was changed to the static slot length
100 MT, 30 static slots per communication cycle and the action point offset 10 MT.

33

4. FlexRay .
Set Value Expected MC9S12XF TMS570LS31

pOffsetCorrectionOut OC+ OC− OC+ OC− OC+ OC−

1201 Default setup 224 120 230 128 230 130
1201 Modified setup 1201 400 1201 410 1200 410
300 Modified setup 300 300 300 300 300 300

Table 4.8. pOffsetCorrectionOut measurement (all values in µT)

Results correspond with presumptions with the exception of static slot boundaries
violation. Experiments demonstrate that the used controllers consider received frames
valid approximately 10 µT before and after the defined static slot boundaries. All
experimental results indicate that the presented methods are able to evaluate critical
parameters of a single FlexRay node.

4.7 Measurement Accuracy and Speed

Tester and EUT clock frequencies are never equal. There is always a small difference
between frequencies, usually a few microticks per communication cycle in terms of
FlexRay. Clock frequency differences must be taken into account in order to evaluate
the presented parameters. It is assumed that the difference of oscillator frequencies
is at worst 1500 ppm from the nominal value. This is the maximal permitted clock
deviation according to standard[2]. For a nominal clock frequency of 80 MHz it is equal
to a deviation of up to 120 kHz. The quality of an used oscillator should be subject of
special testing.

The test objective is to reveal EUT parameter values from communication controller
registers; therefore, it is necessary to know the actual EUT clock frequency or minimize
clock frequency difference between the tester and the EUT. Our experiments were
done using the second approach. Before the measurement, the clock source (Tektronix
AFG3102) was set as close to the EUT actual clock frequency as possible. The tester
clock frequency setting was done using observation of tester rate and offset correction
actual values. The achieved clock difference was better than 1 µT per communication
cycle. The explanation can be found in the paragraph about pdMicrotick measurement.
According to [13] the short term stability the measurement methods rely on is usually
not the issue.

In the context of the intended application, measurement time is not critical. Moreover,
it is short – typically in the range of a few communication cycles. An overview
of measurement times is stated in order to provide complete characteristics of the
presented methods. Results are summarized in Table 4.9. The measurement time
always depends on the parameter value and mostly on global network setup. Presented
methods can be divided into two groups. Measurement algorithms from the first group
work in a fixed number of steps. In the second group there are iterative algorithms,
where the number of steps depends on the parameter value and the network setup.
Measurement time estimation is provided in Table 4.9. in the column Approximate
Time.

34

. 4.8 Summary

Parameter Algorithm – steps Approximate Time
pdListenTimeout fixed 2 * pdListenTimeout
1926 – 2567692 µT
cdCASRxLowMin Depends on gdCASRxLowMax –
cdCASRxLowMax cdCASRxLowMax cdCASRxLowMin +
29 – 254 gdBit pdListenTimeout
gColdStartAttempt Depends on (5 * pMicroPerCycle +
2 – 31 gColdStartAttempt pdListenTimeout) *

gColdStartAttempt
pdMicrotick Depend on 1.25 s – worst case for
12.5 | 25 | 50 ns clock difference setup in Table 4.6
pClusterDriftDamping Depend on 2 * pMicroPerCycle *
0 – 10 µT pClusterDriftDamping pClusterDriftDamping
pOffsetCorrectionOut Fixed 2 * pMicroPerCycle
15 – 16082 µT
pRateCorrectionOut Depend on 2 * pMicroPerCycle *
3 – 3846 µT pRateCorrectionOut pRateCorrectionOut

Table 4.9. Overview of measurement duration

4.8 Summary
The aim of this work was to fill the gap in the area of (available) FlexRay communi-
cation system measurement and testing techniques. The novel complex set of methods
was proposed for measurement of the Data–link layer parameters of a FlexRay network
node. Presented methods cover the parameters related to all three FlexRay node
operational control states, i.e. the cluster wakeup, startup and normal operation.
Individual measurement methods are described in detail; they were designed with
respect to usability in a real–world testing by means of a straightforward imple-
mentation and short execution time. Compared to the cited publications, the new
methods are based not only on passive communication monitoring, but active stimuli
are used as well. The validity of the presented measurement methods is checked by
experiments. Experiments have been conducted on the real FlexRay ECUs based on
two different FlexRay controller implementations (Freescale and Bosch E–Ray) to avoid
implementation specific results. Detailed experimental results with measurement setup
and discussion of measurement accuracy are included. The experimental results prove
the validity of all new methods. For pOffsetCorrectionOut measurement method, they
simultaneously show its fundamental dependence on the static slot configuration.

35

Chapter 5
Integration Testing

The general objective of this part is the improvement of the Integration testing process
by utilization of the Model–Based Testing techniques. Objectives in details are covered
by section 3.2. The work related to the automatic test generation for Integration testing
has started let say from scratch. Thus, the significant amount of work is dedicated
to the built background for the scientific work. Namely, it includes selection of the
formal model as the basis for consequent automation. The proposed concept was
implemented. Moreover, the implementation is divided into software tool Taster and
new HIL platform based on NI products. Without this playground, there would not
be any platform for evaluation of proposed testing methods. At the beginning, several
benefits of MBT approach are stated to explain why this general idea was chosen..System specification in executable form (a model) opens ways to various computer

processing..From one model, a vast number of test with different objectives can be generated..Model development can reveal bugs in a specification..Work amount reduction – when it is done in right way..Maintenance of a model is usually easier than the maintenance of the original test
suite..Cost reduction – additional tests can be generated with zero costs..Reduced work is the boring one, saved time could be invested in the better way.

5.1 Selection of Formal Model
Planned approach strongly depends on the suitable formal model. A number of existing
formal specification languages is relatively high. The question is which is the best
suitable for the application in the context of Integration testing. Tools and formal
languages can be further divided by many aspects; from theoretical properties to purely
practical issues like if the tool is user–friendly. Some of the considered options with
characteristic features are summarized in Table 5.1.

Model RT Reactiveness Concurency Tool
Aldebaran ◦ • ◦ JTorX
AsmL ◦ • • Spec Explorer
Network of TA • • • UPPAAL
Timed–Arc PN • • • TAPAAL
UML/SysML • • • RT–Tester

Table 5.1. Selection of Formal Model

36

. 5.1 Selection of Formal Model

Choice of formal model is comparable to a selection of programming language for a
project. There are some options. Some of them are not suitable. Some of them are.
From the rest, technically suitable options, it is hard to choose right one considering
the only list of features. Pros and cons will appear together with some experience with
chosen language. Also, success not only depends on the selected language, different
IDEs, compilers and other connected tools may produce different results. Based on
this perspective following requirements were written.

Requirements for modeling formalism

Selected formalism should be capable to model complex distributed system with multi-
ple inputs and outputs (analog and digital). These kinds of systems are usually referred
as Reactive Systems. Time dependencies should be easily expressible. Possibility to
model multiple time domains could be beneficial. Formalism should be able to deal
with some level of parallelism. Model of SUT should be executable. Some reasoning
about model should be beneficial (completeness, reachability, etc.). The specification
should have appropriate data representation for further processing (e.g. no proprietary
binary formats).

A tool experience

With specified requirements, academics and companies web sites are searched for
downloadable MBT tools. The intention was to find a tool, which can create a good
starting point for this dissertation project. No such a tool was available to thesis
author on the department at the time of project start. First attempt was made with
Aldebaran (.aut) specification format and tool JTorX [52] v. 1.9.4. JTorX is JAVA
reimplementation of original TorX. Aldebaran describes a system in form of transitions.
One line per one transition. The tested implementation is not able to handle RT
properties. Also, complex model creation seems difficult in given format.

Another remarkable tested tool was SpecExplorer [53]. It is the plugin for Microsoft
Visual Studio developed by Microsoft Research division. Input for the tool is not a
model in the traditional view; it works with annotated C# code or Cord scripts. A
wide range of examples provides a good knowledge base for a start. The tool is highly
matured and usable. Regrettably, handling of RT properties and model creation with
the absence of C# code (SUT is not probably implemented in C# and is not available
at all) makes Spec Explorer not suitable.

Few other tools - review articles [17][54] sometimes contain up to hundreds of tools,
were tested with vague results. The maturity, as well as documentation level, excluded
them from further work.

Next tried tool was UPPAAL. It is Timed Automata based model checker. The software
is multi platform and requires only Java Runtime Environment. Although verifyta
engine is not controllable outside the tool. It provides very usable Timed Automata
model editor. The user can design a model in the graphical environment. The model
is stored in UPPAAL 4 XML file format. TA can handle RT, concurrency, and other
required features as they were designed for it. On this view, Timed Automata and
their implementation in UPPAAL tool were selected for experimental evaluation of
their suitability as a model editor for further work.

37

5. Integration Testing .
Arguments in behalf of Timed Automata:.Well accepted FSM based notation.Multiple clocks domains.Boolean and integer data types.Automata can be connected into network.Synchronization of Automata by channels.Available tool in high maturity level.The tool can be used as model editor.Model is stored in XML file format suitable for further software processing

5.1.1 Passenger Car Inner Light Model

The example of natural language specification of a part of SUT was modeled in
UPPAAL. The example describes the behavior of a passenger car inner light. The inner
light state (on/off) is determined by a couple of input signals. Behavior depends on the
three–position inner light switch (on/on if a doors are open/off) together with signals
derived from doors positions (open/closed), the state of central locking (lock/unlock)
and ignition state (position of ignition key).

The simplest case is if the interior light switch position is off. No matter on other
signals, the state of the light must be off. A similar situation is if the inner light
switch position is on. The light must be switched on with an exception when the car
is locked. After the car has been locked, the light must turn off within three seconds
(slow dimming). When the car has been unlocked, light must turn on immediately
(within one second). The most complicated behavior of the inner light is associated
with a switch position labeled “on if a door is open.” Previously described reaction
on central locking stays valid, and the light is switched on when the car has been
unlocked. If the doors are not opened within 30 seconds interval, the light is turned
off. In opposite case, a 30 seconds interval counter is restarted, and light is switched
off after another 30 seconds interval is elapsed, or the ignition key position is changed
to ignition on. Turning an engine off (ignition key position off) switches the inner
light on for another 30 seconds. The interval counter is restarted by any door activity
(open/close). Selected specification language should be capable of model similar kind
of SUT, but real automotive distributed systems are usually much more complex. Need
for expression of time constraints is clear from the previous paragraphs.

Example specification was modeled by timed automata. The situation corresponds
to expected workflow because in our real situation formal models are not available.
Passenger car inner light is modeled by two automata. First automaton describing
the behavior of inner light controller (typically part of an ECU) is depicted in the
figure 5.1. Model states represent situations that determine the controller behavior
(locked/unlocked car, on/off ignition and switch position). Initial transition happens
when the user unlocks the car. After the car was locked automata return to the initial
state.

Second automaton depicted in the figure 5.2 expresses behavior of car driver. E.g.
driver unlocks the car, opens the door, closes the door, and turns the ignition on.
Eventually, changes switch position, turns the ignition off, opens a door, closes a door
and locks the car. System states are expressed by variables (Integer and Boolean
type). Models interactions are synchronized by urgent channels. The second model is

38

. 5.1 Selection of Formal Model

Figure 5.1. Inner Light Controller

Figure 5.2. Driver model

important for the presented concept. The test can be driven using the model. Time
constraints (inner light timer) are expressed by clock variable x.

Gained experience with modeling the light controller as the network of two timed
automata is concluded following way. The behavior of the controller as well as the
behavior of a driver is easily expressible. Despite the first one is electronic system
and the second one is human being. To keep model well–arranged UPPAAL provides
some construct from ANSI C. Progress of individual automata is synchronizable by

39

5. Integration Testing .
channels. Model is stored in XML format, which is employable for further processing.
Models developed in UPPAAL environment are the promising beginning for following
objectives.

5.2 Timed Automata Theory

Origin of the Timed Automaton is in the rich theory of finite state machines. The
way from FSM to Timed Safely Automata (known as Timed Automata) is described.
It provides a valuable perspective for the rest of the work. In a nutshell theory is
connected in this direction: FSM → ω–automaton → Büchi automaton → Timed
Automaton. The cause of different symbols used for the same topic is evoked by an
effort to ensure consistency with source papers. Therefore, for instance, the initial state
is marked by a different symbol for each automaton type.

5.2.1 Finite–State Machine

FSM is the computational model which contains states and transitions (arrows). One
state is initial, and one or more states are final. Transitions are labeled by symbols
which enable relevant transition – formally transition function. Usual representation
of FSM is in graphical form or by transition table. If more than one states are in a
column of transition table, the FSM is named nondeterministic.

Acceptor deterministic FSM is commonly mathematically defined [55] by quintuple
(Q,Σ, σ, q0, F) :.Q is a non–empty set of automaton states,.Σ is a finite set called the alphabet (input symbols),.σ : Q× Σ −→ Q is state transition function (would return next state),.q0 ∈ Q is initial state,.F ⊆ Q is set of final (accepting) states.

5.2.2 Automata for Infinite Input

FSM runs on finite input. A reactive system is usually considered non–terminating.
A theoretical solution to this problem is ω – automaton or stream automaton, which
is a modification of FSM for infinite input sequences. Instead of accepting states,
accepting condition is used. Stream automaton types are further distinguished by
acceptance condition. List of the most known conditions variants follows.

Acceptance conditions.Büchi condition.Rabin condition.Streett condition.Parity condition.Muller condition

40

. 5.2 Timed Automata Theory

5.2.3 Büchi Automaton

Stream automaton version, which uses Büchi accepting condition is named Büchi
automaton after his inventor Julius Richard Büchi.

Büchi automaton formal definition [56] is quintuple (Q,Σ, σ, q0, F) :.Q is a non–empty set of automaton states,.Σ is a finite set called the alphabet (input symbols),.σ : Q× Σ −→ Q is state transition function (would return next state),.q0 ∈ Q is initial state,.F ⊆ Q is the acceptance condition.

Büchi automaton accepts exactly runs when F is non–empty. At least one of accepting
states have to occur infinitely often in a run. Transferability of LTL formulae to
Büchi automaton is one of important feature used in MC. It is the direct ancestor
for Automata for Real–Time Systems modeling which were introduced by Alur and
Dill [19].

5.2.4 Timed Automaton

The original [19] version of Timed automaton is defined as follows:

A timed automaton is a tuple 〈Σ, S, S0, C,E〉, where.Σ is a finite set called the alphabet (input symbols),.S is a non–empty set of automaton states,.S0 ∈ S is initial state,.C is a finite set of clocks,.E ⊆ S × S × [Σ ∪ {ε}]× 2C × Φ(C) is the set of edges (transitions).

In couple with a set of accepting states F ⊆ S it creates Timed Büchi automaton.
Accepting condition works in the same way as for Büchi automaton. The accepted run
is run in which at least one of accepting states occurs infinitely often.

Commonly used is the modified definition introduced by [21]. Instead of accepting
condition the local invariants are used. Local invariant is the downward closed con-
dition on clock variable. This condition limits time, which automaton can spend in a
location. The original name is Time Safety Automata. Currently, is by term Timed
Automaton almost certainly mentioned this definition (for the text consistency repeated
from 2.2.4):

A timed automaton [21][20] A is a tuple A = (N, l0, E, I), where.N is a finite set locations (or nodes),. l0 ∈ N is initial location,.E ∈ N × B(C) ×Σ× 2C ×N is the set of edges and.I : N −→ B(C) assigns invariants to locations.We shall write l g,a,r−−→ l′ when 〈l, g, a, r, l′〉 ∈ E

Local invariant is constraint in form x < n, x ≤ n where n is natural number. Invariant
is equivalent to accepting contidition.

41

5. Integration Testing .
Semantics

Semantics of Timed Automaton operation is defined as Timed Transition System with
following rules [20]:

1. 〈l, u〉 d→ 〈l, u+ d〉 if u ∈ I(l) and (u+ d) ∈ I(l) for a non−negative real d ∈ R+

2. 〈l, u〉 a→ 〈l′, u′〉 if l g,a,r−−→ l′, u ∈ g, u′ = [r 7→ 0] u and u′ ∈ I(l′)

Letter l denotes location; u denotes clock assignment mapping function; g is a guard,
a is an action and r is clock reset operation. The first rule allows idle in a state for a
time bounded by location invariant. The second rule is applied if an allowed transition
is taken.

Parallel Composition

Modeling of a real system is almost impossible with a single TA model. Therefore
a system is often composed by multiple automata. Decomposition to several models
with an adequate number of states is also helping clarity of whole model. Parallel
composition operator from Calculus of Communicating Systems (CCS) is used in theory
of TA. The composition of two TA is denoted by pipe | character. The theoreti-
cal background for this operation provides parallel composition operator know from
Communicating Sequential Processes (CSP) [57]. Deeper explanation of the theory is
provided e.g. in [22][58]. Synchronization between automata is done synchronously by
synchronization channels or asynchronously by shared variables.

5.3 Testing Workflow Proposal
Considering all the fact discussed in the previous text, MBT concept suitable for the
Integration testing is proposed. Schematically it is shown in the picture 5.3. In the
beginning, there is some textual document that specifies SUT. Instead of static test
sequences, the model–driven approach is used. The key element is dual purpose TA
model derived from a specification. Correct SUT behavior has to be captured by the
model. This part is called System Model. It is complemented by environment section
which specifies input behavior. Syntactically are both part same. Differentiation is
only on by purpose.

Specification

</Model>

Executable
Model

Test Generation
Tool

Test Adapter
&

Communication

System under Test

</Tool>

Figure 5.3. MBT concept for Integration testing

42

. 5.4 Testbed for Comfort Systems

Prepared TA model is loaded into a software tool. The dominant part of the testing
process is performed in this program. All activity is the model–driven. An input
file is syntactically analyzed. The online testing approach is chosen because it suits
loop nature of HIL method. Test inputs are generated by TA network exploration.
Moreover, these inputs periodical feed SUT. After each step, SUT outputs are compared
with simulated ones to determine conformance between model and SUT behavior.
Exploration strategies, which directly influenced input generation are covered in the
special section.

Targeted deployment of this work is HIL test place. The connection between MBT
software tool and testing facility is necessary. In MBT world it is usually realized
by a piece of software called test adapter. Our industrial cooperation results in two
types of test adapter. First test adapter directly communicates using .NET Application
Programming Interface (API) [59] with NI VeriStand. It allows direct interconnection
with a broad range of NI modular hardware suitable for performing HIL test. Direct
connection to test performing hardware preserve straightforward control on input
and output timing. The second variant counts with an indirect connection to the
testbed. EXAM is utilized as an additional layer between MBT testing tool and
testing hardware. It becomes harder to control timing properties. The advantage
is the opening of access to all testbeds on industrial partner side, which are based on
various hardware platforms. The concept implementation is depicted in Figure 5.4.
Instead of abstract variant 5.3, specific model, tool and adapter are presented.

Specification

Taster

Timed Automata Model

NI VeriStand or EXAM System under Test

Figure 5.4. MBT Workflow in details

5.4 Testbed for Comfort Systems
The target platform for the work is HIL test place for testing automotive distributed
systems. The testbed is based on National Instruments hardware and software solu-
tions. Test purpose is Integration testing. Typical SUT is a bunch of automotive

43

5. Integration Testing .
Electronic Control Units (ECU). The system is capable of handling its input and
outputs, which are predominantly digital. Handling of analog I/O is also possible.
One or multiple CAN buses are monitored and, if required, a part of CAN traffic is
simulated. Diagram is depicted on the picture 5.5.

PC

Ethernet

E
th

e
rC

A
T

EtherCAT RIO NI 9144

EtherCAT RIO NI 9144

EtherCAT RIO NI 9144

EtherCAT RIO NI 9144

EtherCAT RIO NI 9144

ECU 1

ECU 2

ECU 3

ECU 4

ECU 5

C
A

N
 B

U
S

NI PXIe-1062Q

EtherCAT RIO NI 9144

ECU 6

EtherCAT RIO NI 9144

ECU 7

EtherCAT RIO NI 9144

ECU 8

ECU 9

ECU 10

EtherCAT RIO NI 9144

EtherCAT RIO NI 9144

Figure 5.5. NI HIL platform

The central element is industrial controller NI PXIe–8133 RT in chassis NI PXIe–
1062Q. Similar to the tested system, testbed architecture is also distributed. The
controller communicates with NI 9144 8–Slot EtherCAT Slave Chassis. Each EtherCAT
slave handles one ECU. The communication link between master and slaves is Ethernet
with EtherCAT protocol to maintain synchronization over the system. A slave is
equipped with C series modules according to corresponding ECU electrical connection.
Specific functions, behind NI hardware capabilities, are handled by a custom hardware
solution. An example of this kind of function is CAN message manipulation on data
link layer.

The software can be divided into two parts. The first is non–RT on standard PC with
Windows operation system. The second part is RT engine which runs on PXIe. It is NI
proprietary version of Pharlap RT OS. The main loop frequency is 1 kHz. Therefore
testbed can feed SUT inputs and monitor outputs with 1 ms resolution. The actual
software platform is based on NI product version 2015 or 2015 SP1. The system is
based on NI VeriStand, and its functionality is extensible in LabView programming
environment. PC runs Windows 7 operation system. Tests are implemented and
executed by EXAM. More software architecture detail is in section 5.9.

5.5 System Modeling
The concept of Timed Automata is implemented in UPPAAL tool, which is used as
a modeling environment for the proposed solution. Beyond theoretically described
time and transition properties, the UPPAAL implementation offers usage of variables,
conditions, synchronization channels, and other language construct to provide a certain
level of expressivity (in theory summarized by term action). The used modeling

44

. 5.6 Test Generation Theory

language is a subset of UPPAAL modeling language summarized in Tab 5.2. The subset
is chosen concerning tested system class. Supported data types are bool, int, clock and
synchronization type chan. Edges can contain guard, sync, and update expressions.

Besides the original implementation, Taster additionally utilizes labeling of timed
automata states by relevance. Relevance is a natural number assigned to an automaton
state. The parameter expresses the importance of a model state summarized by one
number. The higher value implies, the higher priority. Relevancies are assigned by
SUT expert knowledge. It is determined manually or automatically and originates in
for example safety impact, the impact on rest of the system operability, and previously
revealed issues (bugs). Kessy system testing example presented later shows Relevancies
usage on environment models of start and door buttons. They are used to influence
the frequency of short and long button press and button inactivity. Start button
environment model is depicted in Figure 5.12. Relevancies are expressed as comments
in the form REL = X;.

The success of proposed solution strongly depends on the reasonability of used model.
In this work, two types of models are used. The first category is an environment
model which simulation produces input for SUT. The second category is observer
model which has Oracle function – they check expected SUT output by invariant
conditions. The model division into environment and observer is only imaginary,
and it is possible to combine input and output actions to single timed automaton.
Nevertheless, partitioning of entire model to these two model types is recommended to
keep clarity.

Action
Data type Guard Update Sync
clock • reset ◦
chan ◦ ◦ •
bool • • ◦
int • • ◦

Table 5.2. Supported subset of UPPAAL modelling language

5.6 Test Generation Theory
A brief overview of test generation theory is presented in State of Art section 2.2.6.
Now promising theoretical works will be analyzed deeper. To remind Timed Automaton
can be viewed as an oriented graph. Guard condition and receiving synchronization
channels might prevent taking an edge in certain time. Simulation of TA with the
purpose of production of test stimuli can be considered as a special case of graph
traversing as it knows from graph theory. Due to the possibility to restrict usage of an
edge at the time, well-known graph algorithms can not be used directly. However, they
can create a good starting point for the design of modified version which can handle
TA specifics.

5.6.1 Graph terminology
Predominantly terms and names in graph theory are the same for undirected and
directed graphs. Usually, the designation for a directed graph is expressed by preceding

45

5. Integration Testing .
word directed. In the following survey, all described terms and algorithms are for
directed graphs if not stated otherwise.

Eulerian Cycle

Tour over a graph visiting all edges exactly once. Tour starts and ends in the same
node. Edge coverage criterion is equivalent to the finding of Eulerian Cycle. This tour
exists iff a graph (automaton) has nodes with the same number of input and output
edges.

Eulerian graph

The graph in which Eulerian Cycle exist. It was named after Leonhard Euler which
solved Konigsberg Bridge Problem.

Eulerian Path

The path over a graph where start node is not equal to end node. Again all edges in
the graph are visited, and every edge is visited exactly ones.

Hamiltonian Cycle

It is the cycle over a graph where every node is visited exactly once. Similar to the
situation with Eulerian cycle and edge coverage criterion Hamiltonian Cycle can be
considered as a solution of node coverage criterion. The first and the last node is the
same.

Traveling Salesman Problem

Finding of an optimal (in the distance) Hamiltonian Cycle is called Traveling Salesman
Problem.

Hamiltonian graph

A graph which contains Hamiltonian Cycle. The problem of finding the cycle in
dodecahedron is called Hamiltonian Game or Icosian Game.

Hamiltonian Path

Path or in another word tour visiting every graph nodes exactly ones. The starting
point is not equal to finish point.

Chinese Postman Tour

Not all graphs are Eulerian. In non-eulerian case, a tour visiting all edges of a graph
is called Chinese Postman Tour. Obviously, some edges have to be traversed multiple
times.

Optimal Chinese Postman Tour

Chinese Postman Tour with minimal cost. It means that the tour has the minimum
possible sum of weights. For unweighted graph is problem reduced to the sum of
edges contained in a path. Notation of the tour by word optimal is often omitted, and
Optimal Chinese Postman Tour is referred simply as Chinese Postman Tour.

46

. 5.6 Test Generation Theory

5.6.2 Selected Graph Algorithms

Solving of the Chinese Postman as well as Traveling salesman problem is not a trivial
task. Some remark on this topic follows. The text is not intended as the comprehensive
overview of these problems. The purpose is to give a basic indication of this extensive
area.

Chinese Postman Problem (CPP)

Let’s start with computationally less intensive problem according to complexity
classes [60]. The CPP problem is solvable in polynomial time. It is true for directed
and undirected CPP variant. A mixture of oriented and bidirectional edges is
considered as NP-hard and is called Rural Postman Problem.

The idea of CPP algorithmic solution follows. Some edges are added to a strongly
connected graph until it is not Eulerian. Afterward, a Eulerian cycle can be constructed
using i.e. Hierholzer’s algorithm [61] which works in linear time.

The graph completition is inserting additional edges between unbalanced vertexes
(nodes). Because result should be optimal, firstly is necessary to find shortest paths
between all pairs of nodes. Floyd–Warshall [62] algorithm can be employed for that
part.

With the knowledge of shortest paths nodes are divided into two sets. The first group
contains nodes with the more incoming edges than outcoming. In the second group are
oppositely nodes with more outgoing than incoming arcs. Both sets are interconnected
with preserving usage of the shortest possible cost of additional edges.

Although CPP is quite familiar, implementation with code fragment is rarely described
in graph theory books. Paper [63] tries to fix it and contains detailed implementation.
Also, a variant for finding an open path across all edges not ending in the same node
is presented. Open variant perfectly fits e.g. for testing when return to start point is
not required.

Traveling Salesman Problem (TSP)

A solution of TSP is considered NP-hard. Which is mean, no polynomial time algorithm
is known. The original problem statement is to found a shortest possible route between
all given cities (nodes). Usually, a graph is complete and undirected. For the purpose
of this thesis better suitable directed variant is called Asymmetric TSP.

Intuitive solution – Nearest Neighbour algorithm works as the name suggests. Some
node is selected as start city. In the second step the nearest city - lowest cost edge is
picked. Choosing of the nearest city ends when a tour is closed. Unfortunately, this
approach not guaranteed an optimal solution.

From the long list of reputable algorithms, the optimal solution can be calculated
by exact algorithms, but time requirement is high and becomes impractical for large
problem instances let’s say hundred of nodes. Using some tricks and parallel computing
it is possible to achieve outstanding results, but invested work and costs are also
corresponding.

Another big class of TSP solvers is heuristic algorithms. The output is not optimal but
is very close to it. For practical usage in Testing, it could be the right way. Deviation
from the best possible tour is in the range 2 - 3 %.

47

5. Integration Testing .
In connection with TSP, it is possible to mention Czech mathematician V. Chvátal,
who deals with this problem and achieve some remarkable results [64]. Luckily Eulerian
Cycle or Path, which is easier to found is probably sufficient for most of the testing
challenges.

5.6.3 Discussion of Timed tours

This section intends to outline problems linked with the construction of desired tours or
paths in given TA (graph). Traversing of TA is constrained by guards, synchronization,
and it is distinguished by clock valuation. The first two aspects restrict edges, which
are possible picked up at the time. So TA traversing gives different results based on
variable variation and clock valuation. In other words, the challenge which is hard for
an ordinary graph is yet complicated by additional restriction came from TA semantics.

Mentioned issues are now discussed in detail. The first case is synchronization. To
remind in this work only basic synchronization channels - a pair of transmitting edge
with postfix ! and receiving edge with postfix ? is reflected. In the case of construction
of Eulerian tour sequence of edges have to respect synchronization. E.g. if a graph
contains edge with exclamation mark corresponding edge with questioner have to be
taken.

The second case is guards. Guard is a condition which fulfillment enables the edge to
be taken. Conditions are defined over boolean, integer, and clock data types used in
formulas with the common logic conjunctions. Relation of traces with clock valuation is
discussed in special section. Boolean and integer variables can be modified by an update
expression connected with an edge and by interaction with SUT by test adapter. Test
adapter reads input variables before a test step and writes output variables afterward.
Similar to the previous case with synchronization pair of edges the challenge is how to
ensure that edge is pickable in desired time during a graph traversing.

The third case deals with the key element of TA – clocks. A clock variable can be
used in guard condition, in invariant condition and the variable can be reset. Intuitive
view says two traces are same when clock valuation in a particular state is the same
(it is not so straightforward, comparison of clocks can be found, i.e. in [58]). Two
problems can be identified. The first one is how to found clock valuation valid for a
Eulerian tour. The second one is how many different time traces are necessary to cover
all remarkable clock intervals. Covering of all values is not possibles as clock are real
numbers. Distribution clocks values into intervals are solved by two main theories -
theory of clock regions and theory of clock zones. An introduction to this topic with
further reading references can be found in [58].

5.7 Algorithms
Suggested test generation is based on the model exploration using graph search tech-
niques. Timed automata model is simulated in Real–time. SUT inputs and outputs are
linked to model variables. Variable assignment on model edges produces test stimuli.
SUT outputs are observed using variables utilized in location invariant conditions.
Time is simulated discretely with an arbitrary step. Used algorithms are described in
pseudo code. The first algorithm 1 describes the overall testing process.

48

. 5.7 Algorithms

Algorithm 1

DoTesting (Model):
while invariantsSatisfied and coverageCriterionNotSatisfied

ReadInputs
DoStep (random, prioritized random, systematic)
UpdateClocks
WriteOutputs

Three different strategies are used to choose next step (edge). First step common for all
strategies is the creation of a list of allowed edges in that time. Allowed edge is an edge
with satisfied guard condition. If the edge contains synchronization, corresponding
receiving edge also has to be allowed. In case the list of allowed edges is empty, no
edge is taken, clocks are incremented, and the loop continues to next iteration. The
loop is stopped in case the invariant is violated, coverage criterion is satisfied, or test is
stopped by the test operator. Algorithms 2 and 3 take next edge randomly from the list
of allowed edges. Algorithm 2 works with discrete uniform distribution – probability
of pickup is the same for all edges in the list.

Algorithm 2

DoStepRandom (Model):
for each ActiveNode in Model Templates:

for each OutEdge in OutEdges:
if GuardIsSatisfied(OutEdge)

listOfAllowedEdges.Add(OutEdge)
nextEdge = Random(listOfAllowedEdges)

Algorithm 3 modifies discrete uniform distribution using relevance numbers defined in
the previous section. Probability of taking for an edge i from the list of allowed edges
is:

P (Ei) = relEi∑
relE

(5.1)

Implicit relevance is equal to one. Relevance is assigned to an edge from its target
node. It may be confusing, but reason is to preserve compatibility with UPPAAL
model format. Relevance is stored as a node comment, which is not possible with an
edge.

Algorithm 3

DoStepPrioritizedRandom (Model):
for each ActiveNode in Model Templates:

for each OutEdge in OutEdges:
if GuardIsSatisfied(OutEdge)

listOfAllowedEdges.Add(OutEdge)
nextEdge = PrizedRandom(listOfAllowedEdges)

Algorithm 4 favorites edge with the lowest takes count from a list of allowed edges.
Model exploration is more uniform than for random strategy. This behavior may speed
up structural model coverage if it is desired.

49

5. Integration Testing .
Algorithm 4

DoStepSystematic (Model):
for each ActiveNode in Model Templates:

for each OutEdge in OutEdges:
if GuardIsSatisfied(OutEdge)

listOfAllowedEdges.Add(OutEdge)
nextEdge = PickLowestTakenEdge(listOfAllowedEdges)

Concerning black box testing approach only model coverage criteria are feasible. Con-
dition coverageCriterionNotSatisfied unify coverage of all timed automata model
nodes or edges.

5.8 Evaluation Metrics
To express some quantitative measure of produced test cases is important to choose
some coverage criteria suitable to TA models. Despite SUT code coverage is useful
complementary metric, it is not used in the thesis. The code and appropriate tools
for this kind of coverage calculation are not commonly available in targeted area. For
this reason, code coverage criteria are not considered. To unify terminology used terms
coverage criteria, test selection criteria, as well as metrics, have the similar meaning.
They expressed the same thing in different context. Metrics and coverage criteria rates
result of a test generation. Test selection criterion is objective for this test generation
expressed in same quantities.

If we leave SUT code coverage measures, according to workflow proposed in 5.3, a metric
can be referenced to specification and model. A specification is a textual document.
Despite the fact that it is structured, it is not directly computer processable. Still,
it is possible to make an expert analysis. Automation of the process is the separate
problem. Usually, requirements or specification are formalized, and some requirements
↔ model relation is established. Once a model is traceable to a requirement, it is
possible to evaluate coverage of individual statements in a document. A specification
based metric is proposed in [65].

Intuitive and natural measure a state based model is coverage of its states (nodes)
and transitions (edges). This criterion directly expressed how many nodes or edges are
visited from total count during a test run. Naturally, if all edges were visited full node
coverage is also fulfilled. Full edge coverage of a TA network also guaranteed all guards
were satisfied and taken because conditions (guards) are coupled with edges. On the
other hand, it not ensures, that case with not fulfilled guard was tested.

Data coverage is another important family of coverage criteria. In our case, we work
with boolean and integer variables. For logical variables is, of course, reasonable to
examine both states (true and false). For one variable it is not an issue. With increasing
number of booleans number of combination grows. Second used variable type are
integers up to 64-bit range in Taster and 16-bit range in UPPAAL. Signed in both
instances.

Even for one 16 bit integer is covering all possible values practically impossible – one
test step takes with SUT in our case is in the range of seconds. The combination
of multiple integers makes state space unexplorable. It is referred as state explosion

50

. 5.8 Evaluation Metrics

problem [66]. In many cases, only several values are used from the variable range. E.g.
an enumeration of some switch states. Explicit bounding of variable values as it is
possible in UPPAAL 4 model format is beneficial. A common solution is partitioning
of (bounded) integer in domains (significant intervals). Classification tree method
in embedded system variant can be mentioned as a representative [67]. Coverage is
consequently expressed as coverage of individual domains.

The most complex problem is connected with time. As it was discussed in 5.6.3 two TA
tour are not same if clock valuation is different. The clock is float (theoretically real
number) downward closed variable. The design of intelligent timed traces generation,
as well as its evaluation, is out of the scope of this thesis. It creates a possibility for
future research and will be cover in the corresponding section.

Figure 5.6. TA coverage enumeration

To show possibilities of coverage calculation on Timed Automata situation is depicted in
Figure 5.6. Also, criteria applicable in the context of the presented work are highlighted
in Table 5.3. To recapitulate previous paragraphs produces test traces can be evaluated
based on following constructs. They are Nodes, edges, guards, synchronization edges,
update assignments and clock operations. A comprehensive overview of evaluation
criteria is stated in [68].

Criterion coverage Family Related to
All-requirements Requirements-Based Specification

Nodes Structural Model
Edges Structural Model

Booleans values Data Model
Integers values Data Model

Synchronization edges Structural Model
Guards Decision Model

Table 5.3. Metrics suitable to TA

Fault-based criteria are trying to show, that system not containing some predefined
set of bugs. One way how to demonstrate the strength to reveal these faults original
system is a mutation of original SUT behavior. Usually is defined a group of mutation
operators, which are applied to an SUT code. An example of the operator can be the
exchange of plus sign to minus sign or less or equal to less. Regrettably, modification
of SUT code is not possible in our area of interest. On the other hand, we can mutate
models. A nine member set of mutation operator proposed by [69] follow:

51

5. Integration Testing .
1. Change action - name of output in assignment is changed to another output.
2. Self loop - edge target location is replaced by source location.
3. Change target - target location is replaced by another one.
4. Change source - same as Change target with source location.
5. Change guard - quality/inequality sign in a guard is changed randomly to a different

operator.
6. Negate guard - change of the guard by its negation.
7. Change invariant - change of invariant by adding one to its right side.
8. Sink location - replating target location by new don’t care state.
9. Invert reset - replacement of clock reset by a different clock operation.

Each of these mutation operators should mimic one common fault. Suitable application
of model mutation is to validate model correctness. This fits intended application
because straightforward fault injection is not possible.

5.9 Taster
The proposed concept with MBT theory and algorithms results in the implementation
of a testing tool named Taster. The first version was implemented by master thesis [70]
under the thesis author supervision. Taster works with models stored in UPPAAL 4
format. After a model is loaded, it is possible to performed testing as proposed. SUT
is connected by a test adapter. In following sections, the Taster is described concerning
testing workflow. First is the model parser and last is the result viewer. Taster provides
those main features:.TA model syntax check.TA model viewer.Online MBT testing driven by Env/SUT (Observer) model.Multiple coverage criteria Node/Edge or infinite run for stress testing.Model exploration algorithm selection from Random/Systematic/Experimental.Complete trace with visualization for comfortable debugging.Replay function from a test run.Test run statistics

5.9.1 Taster Architecture
The software implementation is represented in Figure 5.7. It can be viewed as two
separated parts. The first part is TA Model Analyzer, which converts a model into
suitable data structures. This part can be substituted by another one for different
model formalism (SysML, Petri nets). The second element – Run Time is testing
engine itself. The component labels used in Figure 5.7 corresponds with programming
classes.

5.9.2 Model Parser
TA model prepared in UPPAAL tool is input for the model parser. This model is
pre–processed before Taster can perform a test run. First of all syntactical correctness
is checked. It guarantees usage of only supported language constructs in a model. For
this task syntactical analyzer code generator utility ANTLR [71] was employed. Then
model templates are instantiated. Each automaton is represented as a list of nodes

52

. 5.9 Taster

RunTime

Adapter – VeriStand | EXAM

TraceLogger

TA Model Analyzer

Syntactical Check

TA Objects

TA Object Instances

Model Execution

Figure 5.7. Taster architecture

connected with edges. Global and local variables lists are also created. Parser job is
done when all objects are constructed and initialized.

5.9.3 Model Execution
Model execution lays on continuous graph traversing using algorithm explained in 5.7.
Simulation runs in steps. The time between steps is adjustable. In each step list of
allowed edges is created and one of the allowed edges is chosen (depends on selected
strategy). Allowed edge means that guard condition satisfied. In the case of edge with
synchronization channel is picked, a corresponding receiving edge is also chosen. If no
edge is allowed, simulation goes to next step (waits until progress is possible). Guard,
invariants, and update expression are evaluated using Shunting–yard algorithm [72].

5.9.4 Test Adapter
Taster offers two types of test adapter. The first uses direct interconnection to National
Instruments hardware platform through NI VeriStand Real–Time testing software. The
adaptor is based on NI provided .NET API [59]. Each step starts with reading of input
variables using ReadVariables function.

void ReadVariables(Dictionary<string, Variable> variables)
{

foreach (var v in _outputVariables)
{
_ws.GetSingleChannelValue(v.Value, out double val);
variables[v.Key].Value = (int)val;
}

}

Similarly, each step ends with writing output values using WriteVariables function.

void WriteVariables(Dictionary<string, Variable> variables)
{

foreach (var v in _inputVariables)
_ws.SetSingleChannelValue(v.Value, variables[v.Key].Value);

}

53

5. Integration Testing .
To help to the deployment of presented work into automotive industry practice, an
EXAM adapter was created [73]. As EXAM does not provide suitable API, the
architecture of this adapter is more complicated. Client (Taster) – server (EXAM)
communication model is employed. The adapter is executed as a test step in EXAM test
sequence and delegates Taster full control on SUT. Edges of Timed Automata model
contain names of EXAM packages which are executed with edge pickup during model
simulation. Technically Taster with EXAM speaks by the following set of predefined
messages.

Supported messages.
MSG_STOP = ’stop’
MSG_LOAD = ’load’
MSG_ACKNOWLEDGE = ’acknowledge’
MSG_EXECUTE = ’execute’
MSG_FAILURE = ’failure’
MSG_READ = ’read’
MSG_WRITE = ’write’
MSG_END = ’end’

5.9.5 Trace Logger
To make further analysis possible test steps are recorded. A captured trace is saved in
an XML file. Trace viewer provides comfortable walkthrough over test run. Simulation
progress is visualized by an active node change. Every saved step also contains variables
snapshot. Additionally, is provided a replay function for reconstruction of interaction
with SUT. Recording of a trace is implemented as separated class Tracelogger with
has characteristic operation SaveStep which is called after a step to store it. Class
Tracelogger also provides statistical calculations over a trace.

5.9.6 Implementation
The Taster is developed using Microsoft .NET Framework. Programing language is
C#. The technology was not chosen randomly; the reason is National Instruments
product are mostly designed for Windows platform, and NI VeriStand is available for
Windows platform only. Programing language was chosen with the knowledge that
NI Veristand offers simple, but powerful API. The code is written in C# using .NET
4.5 and Microsoft Visual Studio 2013 IDE. The program is designed with Object–
oriented programming (OOP) principles. The executable is ordinary Windows Forms
application. It is runnable on common Windows 7 machine. Requirements for the
machine are stated in Appendix C.

5.9.7 User Interface
User interaction with the Taster is implemented in the form of Graphical user interface
(GUI). Window depicted in Figure 5.8 is the model viewer. This window is shown
after the program launch. The user selects a model in open file dialog. In the case of
syntactical error warning 5.9 is shown. Afterward, can browse over model templates
and check initialization script. The main purpose of the script is an instantiation of
model templates.
All template instances are visible on run screen which is displayed in Figure 5.10. A
major part of the tool features as well as test execution is controlled from this window.

54

. 5.9 Taster

A syntactically correct model have to be opened before run screen launch. Instead of
a description of individual buttons test control is presented as a sequence of steps.

First, required action is a connection to test adapter. As it was mentioned in the
previous text, in the context of the thesis two types (EXAM and VeriStand) of test
adapters are considered. Windows in Figure 5.10 shows EXAM variant. Well, by
clicking Connect to EXAM a connection is established, and fundamental parameters
are checked. Without the connection, test run execution is not possible.

With a connection to an SUT, a test run can be started by Run button. In this case,
default test parameters are used. Otherwise, the user can select coverage criteria,
step time and the test generation strategy. Maximal testing time can be limited by a
timeout. A complete test run is stored and can be inspected in Trace Viewer. Trace
viewer is commanded by Open Trace, Save Trace, and View Trace buttons. The screen
is illustrated in 5.11. The viewer is linked with the automata in the run screen, and
active states are in relation to highlighted trace line.

Figure 5.8. Taster Viewer

Figure 5.9. Syntax error popup window

55

5. Integration Testing .

Figure 5.10. Taster Run Screen

Figure 5.11. Trace Viewer

5.10 Case Study – KESSY
Keyless access system (KESSY) is a system allowing control a car without inserting
a key to lock or ignition switch. The presence of a key is technically represented by
a detection of key Radio-frequency identification (RFID) tag by the corresponding
receiver. A model implementation for National Instruments PXIe platform was chosen
for a tryout of proposed and implemented novel Integration testing concept. Firstly is
stated SUT specification. Based on the specification SUT model and its implementation
were developed. The purpose of the study is a preliminary evaluation of the suitability
of the testing concept.

56

. 5.10 Case Study – KESSY

5.10.1 Specification

The example system function (textual specification) is captured by this description.
Door locking system is controlled by lock button built in the driver side door handle.
Start/stop button works as the ignition switch. The short press is designated to turn
the ignition on, and the button long press is the command for engine start operation.
Button press longer than one second is considered long. Ability to lock and unlock
the door, as well as start or stop the engine, is determined by detected key position.
The system contains two equal keys RFID tags marked Key 1 and Key 2. The system
recognizes following states of each key: detected outside the car, detected inside the
car and not detected. The door unlocking is not possible if no key is detected outside
the car. The door locking is not allowed if a key is detected inside the car. The engine
start requires a key to be detected inside a car.

In modern vehicles KESSY, the system is implemented as a distributed system. Let’s
consider a system composed from three ECUs. First ECU is the Kessy system itself
which cooperates with a Body Control Module (BCM) and Engine Control Unit. All
ECUs are interconnected by CAN bus [74]. Kessy ECU is responsible for keys and
button status monitoring. Based on its command BCM controls power supply system
and individual door locks. Engine start and stop procedures are driven by Engine
Control Unit. The system inputs are described in the previous paragraph. The
system is observable by four digital outputs. Door locking system has locked and
unlocked states. Start button controls ignition system which controls three power
supply branches. German language prefix Klemme for individual clamps is preserved
as is standardized by DIN 72552 standard [75] and ISO equivalent does not exist. The
system controls Klemmen 15, 50 and S. Klemme 15 is active if the ignition is on.
Klemme 50 is active during engine startup only, and in this work, it is used for engine
start monitoring. Klemme S is turned on by switching ignition on, and it is active until
the car is locked. Common usage is for audio system powering.

5.10.2 Models

The KESSY system is modeled by the network of nine timed automata. Every system
input is modeled by a single automaton. Kessy system provides two functions – ignition
switch controlled by start button and door locking system control. Correct behavior
of each is observed by the separate observer automaton. The relation between keys
position and corresponding system behavior is modeled by additional three automatons.

The first pair of models is depicted in Figures 5.12 and 5.13. Door lock button has
two states only (pressed and released). Furthermore, in case of the start button, the
long and short press are distinguished. Models also contain auxiliary wait states which
are used for simulation of user inactivity. Labeling automaton states by Relevance
parameter are used for preferring inactivity (wait) to button press and short to the
long press.

Model in Figures 5.14 describes three possible keys states. These states are “key is not
detected,” the “key is detected outside the car,” and “key is detected inside the car.”

The most important part, which distinguishes between expected and incorrect SUT
reactions are observer models. Our example uses two observers. Locking System Ob-
server is depicted in Figure 5.15. Ignition System Observer is shown in the Figure 5.16.
System behavior is checked by location invariants. Variables in invariant conditions are

57

5. Integration Testing .

Figure 5.12. Start button model

Figure 5.13. Lock button model

Entity Count
Templates 8
Instances 9
Nodes 30
Edges 39
Clocks 7
Variables 15
In/Out variables 6

Table 5.4. Kessy model summary

mapped to system outputs. Observers are synchronized with button handling models
by synchronization channels.

Simple models in Figures 5.17, 5.18, and 5.19 capture relation between keys position
and allowed system behavior. Key location determines whether it is possible to unlock,
lock, and start the car. The models produce corresponding signals to handle this
situation.

58

. 5.10 Case Study – KESSY

Figure 5.14. Key position model

Figure 5.15. Observer model – Lock System

5.10.3 SUT Implementation

The experimental KESSY system was developed in NI VeriStand Real–Time Testing
Software. The platform was chosen on the basis of previous experience during devel-
opment HIL test place with our industrial partner. Real Kessy ECU was replaced by
a fully programmable dedicated SUT, as fault injection is much less complicated. The
KESSY system described by specification in Section 5.10.1 is implemented as three
simulation models executed by NI VeriStand Real–Time engine. SUT partitioning to
multiple models better reflects distributed nature of a real automotive system. The
interconnection between models is realized by VeriStand channels. The connection of
Taster tool to SUT is made by test adapter which uses VeriStand .NET API [59].
Model example implemented in LabView is depicted in Figure 5.20.

59

5. Integration Testing .

Figure 5.16. Observer model – Ignition System

Figure 5.17. Lock able signal

Figure 5.18. Unlock able signal

Figure 5.19. Start able signal

60

. 5.10 Case Study – KESSY

Figure 5.20. A part of SUT implementation model

5.10.4 Results

Created KESSY system specification was implemented in LabView as VeriStand simu-
lation models and modeled in UPPAAL in Taster supported language constructs. The
implementation was afterward tested by the Taster. Test step period was 100 ms and
frequency of Primary Control Loop of NI VeriStand was 50 Hz. The objective of the
first set of tests was an error detection capability, and it was evaluated by injection of
three independent faults into SUT.

Fault 1: Klemme S goes off after two seconds from turning on the ignition.

Fault 2: Short start button press is not recognized while the ignition is on – it is not
possible to shut down the ignition.

Fault 3: Car is not able to lock if both keys are detected outside the car.

Faults were injected by modification of implementation models. All inserted faults are
successfully detected. Detailed results are summarized in Table 5.5. Detection time
is lengthened by key position templates; they wait for arbitrary time quanta between
key position changes. Fault No. 1 and 2 needs at least one key inside the car to allow
switching on the ignition. Otherwise, the fault is not detectable. Fault No. 3 is exposed
if Key one and two detected outside the car. Optimization for time or step count is
possible in future work and was not objective of presented work. Algorithm 2 – the
Random strategy was used for fault detection experiment.

Fault Detected Time to detect Steps State of detection
F1 • 39 s 392 ign on
F2 • 28 s 276 power off
F3 • 99 s 992 check locked

Table 5.5. Kessy – fault injection results

Correct implementation was evaluated by performing nine test runs summarized in
Table 5.6. No fault was revealed. Node coverage of complete model was selected as
the stop condition. The SUT model was not optimized for the fastest possible node
coverage.

61

5. Integration Testing .
Trace Strategy Test Steps Lock state Engine

Time [s] change Start–Stop
TR 1 Random 45 446 2 2
TR 2 Random 46 458 10 1
TR 3 Random 195 1950 57 2
TR 4 Relevance R. 152 1525 43 1
TR 5 Relevance R. 36 363 1 1
TR 6 Relevance R. 84 841 25 2
TR 7 Systematic 300* 3005 78 9
TR 8 Systematic 300* 3002 78 9
TR 9 Systematic 300* 3004 79 9

Table 5.6. Kessy – overview of performed test runs

*test run was terminated after 300s because it is not possible to reach node coverage

The testing ability for the specific SUT is expressed by locking state change and
engine start and stop included in a test trace. If these two features are examined, the
major part of SUT functionality is tested, because they are conditioned by the correct
reaction to key position and door and start buttons. Test runs that use Algorithm 4
(Systematic) discover impossibility to achieve node coverage. The reason is in demand
of generation of two short start button presses in a row, which is not possible with
systematic exploration. Without two consequent short presses, it is not possible to
test switching ignition on and off without engine start.

5.11 Case Study – Trunk
Opportunity to examine the proposed concept and testing methods come from our
industry cooperation. The object of testing was Trunk opening system controlled by
dedicated ECU. It is the system, which is responsible for control of opening and locking
system of vehicle trunk door. The system has the manual and automatic variant.
Manual variant does not have actuators, and it operated by a human. An automatic
variant can operate door on user request by a button or foot gesture. The SUT was
chosen concerning reasonable complexity. System specification with its inputs and
outputs is captured below.

5.11.1 Specification

Trunk opening system is implemented as dedicated ECU which controls trunk door
opening and closing. The ECU cooperates with rest of distributed system by CAN
bus. Actuators are directly connected. The buttons located on the door are also wired,
and remaining buttons are distributed over the communication bus. The virtual pedal
function is processed straightforwardly by Trunk ECU. System behavior is handled by
user commands. The operation of the system is constrained by locking system state
and vehicle speed.

The automatic variant can be understood as complete system description. Then, the
manual variant is its subset. System input are summarized in Table 5.7. Trunk doors
are commanded by four buttons. Two of them are placed on trunk doors. One is

62

. 5.11 Case Study – Trunk

Description Location States
Open button Outside trunk door pressed / released
Close button Inside trunk door pressed / released
Open button Center console pressed / released
Open button Car Key pressed / released
Virtual Pedal Under bumper geasture recognized / no

Close by pushing door Door drive yes / no
Open position limit Infotainement 0 – 100 %

Table 5.7. Trunk ECU Inputs

outside and second is inside. Another option is open or close the trunk by the button
on car key or from Center console.

The trunk open is launched by one of these buttons. The button on the outer side of
the door, the button on the center console, or button on the car key. The action is
not launched if the vehicle is locked. The function of outer trunk button is deactivated
during a ride.

The closing of the trunk door can be triggered by same buttons as opening except
for the button on the center console. The movement can be activated as well by
pushing door downward. The closing is stopped if a collision occurs. Either opening
process can be stopped by pressing any buttons. In that case, the warning sound is
heard. The sound signal is also accompanying opening trunk by center console button.
Opening/closing by car key button is also accompanied by the sound signal.

In case of a low ceiling or to help manipulation with trunk smaller persons maximal
open position can be set. The position is stored by following step sequence. Users stop
door is desired position and hold inner door button until the sound signal is heard. The
limit is reset if the door is fully opened by hand and same as in previous case position
is stored by the inner button press.

Observable outputs are stated in Table 5.8. In the automatic variant the Actuator is
one or two motors – depend on actual configuration. From the Test view, count of
motors does not affect system behavior.

Description States
Position Binary open / closed

Position in Percent 0 – 100 %
Trunk Lock locked / unlocked

Warning sound yes / no

Table 5.8. Trunk ECU Outputs

For the testing purpose, the manual variant is considered as the automatic (full) variant
subset. Instead of a linear motor drive, the trunk is opened by releasing of spring.
Spring is not able to fully open the door; it opens doors only partially. Closing is purely
hand-operated. Instead of the set of four buttons, the trunk is opened exclusively by
exterior door button. Car key button is dedicated to trunk unlock. Inner door button,
as well as center console button, are not present in this variant. Dependencies with car
speed and locking system state are the same.

63

5. Integration Testing .
5.11.2 Experiment Plan

The objective of the experiment is to examine practicability of designed and imple-
mented testing concept on a physical automotive system. The system will be modeled
as TA network; this should show the suitability of selected modeling formalism. Taster
will be installed into control PC of an HIL testbed. Performing test runs on a targeted
platform should indicate the applicability of proposed solution and shows direction for
the future work. Initial conditions for the case study realization are the following:.Functional specification of SUT (textual PDF).Original test suite specification.Trunk opening system with HIL facilities.EXAM < − > Taster adapter for communication with HIL testbed

At first, it is necessary to develop a model of SUT. Modeling of Trunk actuating system
is covered in special section 5.11.3. With the model, it is possible to perform testing
using Taster tool. Test adapter needs to define a dictionary of function names used in
EXAM and names used in the model. Probably the biggest challenge is the design of
quantification of the two different approaches with hardly comparable results.

Research questions can be divided into several categories. The first questions group
is focused on modeling SUT by Timed Automata. The intention is to examine if TA
is suitable for the area of interest (partially discussed in 5.1). How difficult is model
development? Alternatively, is chosen TA subset reasonable or should be extended in
future work?

The second group covers chosen online test generation strategies based on graph search
techniques. Random, Systematic, and Experimental strategies will be compared ac-
cording to achieved model coverage on the Trunk System model.

The third group judged implemented adapter according to the provided list of op-
eration. Capabilities of the adapter are summarized in 5.9.4. The question is: Are
provided functions comprehensive or should be supplemented?

Finally, the case study should answer overall suitability of proposed concept. Iden-
tify its strength and weaknesses, suggest improvements, and indicate future research
directions. Researched questions as a listing:

1. Model related questions.
a) Which behavior is difficult to model?
b) Which behavior is easy to model?
c) How labor intensive is model development?
d) What are the demands for an expert?

2. Test generation related questions.
a) Is random test generation strategy applicable?
b) Is systematic test generation strategy applicable?
c) Is ’experimental’ test generation strategy applicable?

3. Test adapter (EXAM variant) related questions.
a) Are the method calls input parameters helpful?
b) Are the outputs processing by a method return value sufficient?
c) Is the implemented list of operation convenient?

4. Overall concept suitability questions.
a) Is designed MBT testing solution suitable to target area?

64

. 5.11 Case Study – Trunk

b) What are the advantages of the selected solution?
c) What are the disadvantages of the solution?
d) Is there any future research directions?

5.11.3 Models

The SUT inputs – buttons and leg gesture are modeled as simple two state automata.
The button model captures situation of an input activation, e.g. button press. Delay
before return to the initial state is arbitrary and is expressed by a constant. A transition
is equipped with the corresponding function which is called by EXAM. These calls
provide interaction with a tested system. Also, the variant for an input activation and
deactivation was created. It is intended for modeling different button operation like a
short and long press. Due to long (hundred of milliseconds) and unpredictable delay
in HIL system were not used (probably caused by the low–level implementation).

The first depicted automaton simulates SoftTouch button located outerside trunk door.
It is depicted in Figure 5.21. The button triggers trunk opening. The closing of the
trunk by this button is also possible. Underlying EXAM operation is the parameter of
Execute command.

Figure 5.21. Input – SoftTouch button

Complementary to the opening button, the Trunk is closed by the button located on
inner side of the door. Model is in Figure 5.22. Delay after button press is defined
by constant DELAY AFTER PRESS. The opening of the trunk by this control is not
possible.

Figure 5.22. Input – Button on inner door’s side

65

5. Integration Testing .

Figure 5.23. Input – Button on Key

Besides commonly located buttons suggesting classical trunk door operating by hand,
Open and Close of the door is possible by the button on the car key. TA representing
this control element is depicted in Figure 5.23. Due to HIL realization of Key buttons,
only press operation is available. Constant DELAY AFTER PRESS prevents another
activation for a defined time.

In some cases opening the trunk from driver’s seat can be beneficial. E.g. quick pickup
of a passenger on a busy road. For that reason, the system is equipped with the button
on the center console. The only open function is linked with this button. TA is shown
in 5.24.

Figure 5.24. Input – Button on dash

Pushing of trunk door down by hand is expressed in Figure 5.25. This action is
implemented using worm drive and a DC motor. Control of the testing equipment
is hidden for the tester, and it is controlled by a test primitive (step) CloseManual.
The solution is very suitable for proposed approach because uniform input model can
be used for all system inputs.

The last automaton in Figure 5.26 is a little bit special. It is not a button; it is called
Virtual Pedal. The operation is trigger by foot gesture. A user swings foot under the
bumper. If the gesture is recognized, the system starts opening the door. The input
is very different from a user point of view, but from the testing perspective, it can be
modeled by similar automaton as an ordinary button.

Pressing of any of button during system operation will cause system stop. The excep-
tion is Virtual Pedal which has only trunk opening function. No additional gestures
are recognized.

66

. 5.11 Case Study – Trunk

Figure 5.25. Input – Close by hand

Figure 5.26. Input – Virtual Pedal

Figure 5.27. Input – Unlock button

The function of Trunk opening system is closely coupled with Locking system. Unlock
button model 5.27 can be viewed as an auxiliary model. It makes the SUT operable
by unlocking the car.

Input models presented in previous paragraphs can be considered as full permissible.
Its simulation allows random activation of all input at almost any time. Pressing of a
button is restricted by receiving synchronization edges in observer model. To remind
synchronization edge with exclamation mark can be pickup only if a corresponding
receiving edge is available.

To show a different option to input (environment) modeling another model was devel-
oped. It is depicted in Figure 5.28. In a nutshell, model controls the SUT in following
way. The trunk is periodically open and closed by a permitted button. Door opening,
as well as closing, can be stopped. Using Relevancies proposed in section 5.5 is cancel
operation penalized against operation successful finish five times.

67

5. Integration Testing .

Figure 5.28. Environment – A Driver Model

The correct behavior is observed by the dedicated model. In a nutshell, it monitors
if trunk opening or closing is activated in right times. The ability to catch off–
specification behavior is directly related to the accuracy of the observer. This fact
is express by two version of the observer model developed during the case study. Basic
version is depicted in Figure 5.29. It omits several important things. It does not reflect
that trunk operation is restricted by some conditions. Major is state of car locking
system. Naturally, the trunk has not to be opened if the vehicle is locked. The opening
system also is stopped by a collision with loaded stuff or by a button. This scenario is
also not covered. However, the advantage of this model is its simplicity. It is easy to
understand and was helpful in earlier study phase during system debugging.

Figure 5.29. Trunk Observer – Basic

Extending of basic version gives us version which is very close to full system specifi-
cation. This model is shown in Figure 5.30. Several states and number of edges were
added to increase faulty behavior detection capability. Initial stated allows inputs
activation until the car is unlocked. Trunk actuating system can be operated until
doors are locked again. The opening, as well as closing procedure, is stoppable by all
control buttons.

Table 5.9 summarizes properties of both models. The model called Simple is TA
network created from automata depicted in Figures 5.21, 5.22 5.23, 5.24, 5.25, 5.27,
and 5.29. Model labeled Full consists from automata shown in Figure 5.28 and 5.30. All
automata are depicted in its final version developed and debugged during experiments.
With one expection – Virtual pedal model, which was not possible to use in the time
of experiment due to HIL testbed technical reasons.

68

. 5.11 Case Study – Trunk

Figure 5.30. Trunk Observer – Full

Entity Basic Variant Full Variant
Templates 7 2
Instances 7 2
Nodes 18 22
Invariants 2 4
Edges 22 55
Clocks 7 2
Channels 6 7
Variables 0 1
EXAM commands 8 9

Table 5.9. Trunk model summary

5.11.4 Original Test Suite
Handwritten test sequences used for Trunk Opening System have the origin in a test
specification. This document describes individual test cases in a structured form. Those
test cases are consequently implemented in EXAM as a sequence diagram. The set
creates test–suite. To make this section understandable an example of a test case
specification is given.

Test Case Example

Description:

Evaluation of trunk opening no interruption by turning On KL 15 (ignition switched
power supply).

Initial Conditions:.All Doors closed..Car is unlocked by the button on key..KL S Off.

Actions:.Action 1: Active trunk opening by center console button.

69

5. Integration Testing .
.Action 2: After trunk position reached 50%, turn KL 15 On.

Expected results:.Result 1: Tailgate starts opening..Result 2: Tailgate continues opening.

The specification contains over one hundred test cases. These test cases are imple-
mented for three different platform, which uses a variant of Trunk Opening System
(ECU). Some available characterization of in EXAM developed test sequences is in
Table 5.10. A Smaller number of test cases on platform number one is because only
manual variant is present.

Test cases count Duration
Specification 106 –

Platform nr. 1 40 3:30h
Platform nr. 2 105 7h
Platform nr. 3 116 7h

Table 5.10. EXAM Test Suite

5.11.5 Results

A case study on a real Trunk opening system was the last step of the thesis. It
was intended to try out designed MBT solution in the target area – Automotive
Integration testing. The experiments were performed in HIL test laboratory on our
industrial partner side. Total time spent in the laboratory was five man–days. Overall
characteristic of performed test runs is in Table 5.11. Test runs TR 6–TR 10 ends by
invariant failure. The cause was in different delay of individual buttons calls (hundred of
milliseconds). The delay caused that trunk move did not stop, but the model supposes
stop, and a partially opened position was checked. The model constants were adjusted,
and simulation step was decreased to 250 ms. Shorter step gives finer resolution, which
allowed for precise time delays specification. Test runs TR 11–TR 18 are the final ones
with fully debugged model and EXAM operation calls.

Progress of node and edge coverage in time for selected test runs is shown in Figures 5.31
and 5.32. The first graph demonstrates the evolution of node coverage. TR 4 uses
the Basic model variant (without the possibility to stop Trunk operation). Observer
utilized in this model is not capable of return to the initial state. For this reason, full
node coverage was not achieved. The reason why not full node coverage was achieved
in the case of TR 15, TR 16, and TR 18 is the minor bug in the model. In driver
automaton in Figure 5.28 commands for Trunk Manual Close was switched with the
command for open by the button on Car Key. It caused absence of the corresponding
synchronization edges pairs, and a small part of the observer model was not traversable.

The second graph 5.32 shows edge coverage evolution. In the case of TR 4 full edge
coverage was achieved according to expectation. The situation for TR 15, TR16, and
TR 18 has the same cause as for node coverage. In the Driver automaton in Figure 5.28
command for Trunk Manual Close was switched with the command for open by the
button on Car Key. It caused absence of the corresponding synchronization edges pairs,
and a small part of the observer model was not traversable.

70

. 5.11 Case Study – Trunk

Trace Strategy Test Steps Step Model
Time [s] Time [ms] Variant

TR 1 Random 374 375 1000 Basic
TR 2 Systematic 408 408 1000 Basic
TR 3 Relevance R. 340 340 1000 Full
TR 4 Random 600 599 1000 Basic
TR 5 Random 340 341 1000 Full
TR 6 Random 189* 758 250 Full
TR 7 Random 132* 531 250 Full
TR 8 Random 62* 249 250 Full
TR 9 Random 369* 1479 250 Full
TR 10 Random 72* 289 250 Full
TR 11 Random 399 1595 250 Full
TR 12 Systematic 610 2442 250 Full
TR 13 Relevance R. 612 2446 250 Full
TR 14 Random 611 2443 250 Full
TR 15 Systematic 1800 7201 250 Full
TR 16 Relevance R. 1800 7200 250 Full
TR 17 Systematic 861 3446 250 Full
TR 18 Random 634 2535 250 Full

Table 5.11. Performed test runs

*invariant failed

500 1000 1500
@sD

20

40

60

80

100

@%D

Traces

TR 4 HBasicL
TR 15 HFullL
TR 16 HFullL
TR 18 HFullL

Figure 5.31. Trunk Node Coverage

Characterization of test runs according to performed interaction with SUT is sum-
marized in Tables 5.12 and 5.12. Seven input actions and three output actions were
monitored. Data are separated into two tables to achieve reasonable formatting.

5.11.6 Conclusion
Let’s start case study conclusion with a discussion of questions stated in section 5.11.2.
The discussion is followed by overall analyses of achieved results.

71

5. Integration Testing .

500 1000 1500
@sD

20

40

60

80

100

@%D

Traces

TR 4 HBasicL
TR 15 HFullL
TR 16 HFullL
TR 18 HFullL

Figure 5.32. Trunk Edge Coverage

Trace Unlock Lock SoftTouch Close Key Open
button button button

TR 1 1 0 3 3 0
TR 2 1 0 2 2 3
TR 3 1 0 9 4 6
TR 4 1 0 4 4 2
TR 5 4 3 2 6 2
TR 6 5 4 6 6 0
TR 7 1 0 4 2 0
TR 8 1 0 1 2 0
TR 9 1 0 4 2 0
TR 10 1 0 5 1 0
TR 11 2 1 10 10 2
TR 12 4 3 15 10 3
TR 13 2 1 17 8 5
TR 14 5 4 9 12 3
TR 15 10 9 30 29 9
TR 16 1 0 26 18 12
TR 17 6 5 20 15 4
TR 18 5 4 10 13 3

Table 5.12. Test runs – SUT interaction 1

1. Model related questions.
a) Which behavior is difficult to model?

Proper expression of the relations between individual SUT functions modeled by
separate automata. Synchronization channels provide powerful tool, but still is
necessary to design pair of synchronization edges correctly.

b) Which behavior is easy to model?
All kinds of Trunk inputs were very easy to model.

72

. 5.11 Case Study – Trunk

Trace Dash Manual Trunk Trunk Trunk
button close opened closed stoped

TR 1 6 3 6 5 0
TR 2 3 2 6 6 0
TR 3 3 0 6 0 3
TR 4 5 4 9 9 0
TR 5 4 0 4 3 3
TR 6 7 0 0 1 2
TR 7 0 0 2 2 1
TR 8 0 0 2 2 1
TR 9 0 0 2 2 1
TR 10 0 0 2 1 0
TR 11 5 0 6 6 9
TR 12 7 0 5 4 9
TR 13 7 0 8 8 3
TR 14 8 0 5 4 8
TR 15 19 0 13 13 26
TR 16 15 0 25 24 10
TR 17 10 0 6 6 12
TR 18 8 0 6 6 12

Table 5.13. Test runs – SUT interaction 2

c) How labor intensive is model development?
It is hard to quantify, but it seems very reasonable in comparison to manual test
sequence implementation. Let’s say Basic model variant is one man–day work.
Understanding to the specification probably took longer.

d) What are the demands for an expert?
A technician with knowledge of FSM should be able to create TA model after short
training.

2. Test generation related questions.
a) Is random test generation strategy applicable?
b) Is systematic test generation strategy applicable?
c) Is ’experimental’ test generation strategy applicable?

All proposed algorithms are suitable for the Trunk opening system. Prioritization
by relevancies is very suitable to navigate tool over a state space. In future
prioritized systematic algorithm will be developed to achieve best possible coverage
in short time and in long term will be able to prefer some model parts.

3. Test adapter (EXAM variant) related questions.
a) Are the method calls input parameters helpful?

Yes, for example, Trunk position check methods requires parameter, which defines
position to evaluate (Open, Close, Partially Open).

b) Are the outputs processing by a method return value sufficient?
In the case of the Trunk opening system it is. The position check methods return
unsigned integer value.

c) Is the implemented list of operation convenient?
It is. Possibility to define EXAM method aliases, which are used in TA model is
helpful. Also, TA models are understendable with rational command names.

4. Overall concept suitability questions.

73

5. Integration Testing .
a) Is designed MBT testing solution suitable to target area?

With the experience given by the case study it is. Modeling by TA network is very
natural and suitable. Software tool Taster fits well to HIL control PC environment.
Communication with SUT by EXAM test adapter also works very well.

b) What are the advantages of the selected solution?
For example with the reasonable amount of work it is possible to make a model
for Random stress testing of SUT.

c) What are the disadvantages of the solution?
If precise sequence of steps is required, the only way how to implemented it, is
special model traversable exactly in one path.

d) Is there any future research directions?
It is discussed in Future Work section.

The object of interest for the case study was the Trunk opening system. The main
part of the system is dedicated ECU, which controls Trunk actuators and monitors
door position. Buttons located on the door are also monitored by the ECU. The
rest of inputs is distributed over CAN bus. The intention was to evaluate proposed
and implemented MBT concept on real system of reasonable size. In the first phase,
the system specification was analyzed. With the knowledge of system behavior, two
models were designed. The first is labeled Basic and is capable of opening or closing
trunk by every active button. The second is called Full, and beyond Basic model
capabilities, is capable of testing sudden system stop during opening or closing. Each
model variant demonstrates a different approach to input modeling. In basic models,
inputs are modeled as the set of simple two state automata, and in Full variant is
input model designed as a Driver model. System behavior is not covered fully. Only
operations available on HIL system at the time of experiment were captured in models.
The test are afterward driven by these models. Eighteen independent test runs are
recorded. The longest test run took thirty minutes. All three implemented exploration
algorithms were examined. Results can be summarized that proposed concept fits well
to the targeted area. Amount of work required to model development is reasonable.
The weak point of the study is the comparison with the traditional test suite. A
technical solution capable of comparing both types of test cases was not available at
the time of the experiment. This solution was also not developed due to limited time
for this experiments.

5.12 Summary
Chapter Integration Testing proposes complete framework for automatic test case
generation intended for Integration testing of automotive electronics. The work starts
with vague objective stated as improvement of the known testing process by utilization
of formal methods. Suitable methods were sourced in the vital scientific area of Model–
Based Testing. From the long list of options, extended Timed Automata were selected
for system modeling. Consequently, the workflow proposal with selected formalism was
presented. The principle according to the MBT terminology is online test generation
from TA network model. Theory of the test generation was overviewed. Based on the
overview, the test generation algorithms were designed and described by pseudocode.
The theoretical concept was implemented as the testing tool named Taster. The tool
offers two independent test adapters providing interconnection with HIL testbed. The
adapters are designed for connection to EXAM or NI VeriStand. The result – Taster

74

. 5.12 Summary

tool was evaluated by two case studies. The SUT was laboratory implementation of
a KESSY system and real Trunk opening system in the HIL laboratory of industrial
partner. Both studies indicate the suitability of proposed solution to the targeted
area. During experiments, many topics for future work were identified. For instance,
since the method should in the first step complement traditional approach, a metric
for comparison both test suites should be developed to avoid overlapping of test cases.

75

Chapter 6
Future Work

Measurement methods presented in Chapter 4 are focused on the FlexRay node local
parameters. Together with existing methods described in 2.1.2, they create the compre-
hensive set of measurement methods capable of identifying a FlexRay parameter set.
Probably there is not much room for further research. The analysis of parameter set
in 4.2, which supports this statement, is part of the thesis. However, there is an oppor-
tunity to implement all of these algorithms into the FlexRay bus intelligent interface.
It could create an effective development tool. Another application of presented work
could be online health monitoring of a FlexRay cluster or selected critical nodes. As
FlexRay is being used as the communication infrastructure for safety–critical systems.
Results achieved in Chapter 5 create the platform for future research in the area of
Integration testing. Opening research possibilities in this promising area was one of the
objectives of this dissertation thesis. Prospective topics for future work are divided into
several groups. System modeling is first of them. Car inner light, KESSY system, and
Trunk opening system were modeled during the dissertation. Although no serious issue
was found, system modeling still contains a room for improvement. For example, the
committed and urgent locations known in the UPPAAL language can be implemented
to the Taster. Support of reasonable subset of a procedural language like C could
help to keep model clear. The complete electronics system of a car is quite complex,
therefore some hierarchical or layered architecture of TA models could be beneficial to
deal with this complexity. Modeling of an environment (inputs generation) requires
some level of randomness. Enhancement of the model for Markov chain constructs
could help to express a driver behavior.
Proposed algorithms can be viewed as basic versions, which can be enhanced in multiple
ways. The systematic strategy does not consider receiving synchronization edges. It
could be improved in future. Also, some advanced algorithm, which will consider next
step concerning future progress can be beneficial. The concept of weighting nodes by
Relevancies proposed in the thesis becomes powerful with automatic assignment of
these numbers. One of the possible future directions is sourcing of this numbers from
a database of previously identified bugs. Using this information, the state space will
be partitioned into more and less important parts. Machine learning methods like the
Support vector machine can be employed for this task. Optimization of produced traces
according to given criterion could be another subject of the future work. Example of
such a criterion is producing of time optimal test runs.
Complete presented MBT solution needs a proper method for quantitative evaluation
of produced tests according to specified criteria. Without this metric, it is hard to
judge the quality of future improvements. In the thesis, the node and edge coverage of
TA model were used. The first step in future work should be to define and implement
various advanced measures to overcome this problem. Some possibilities are stated
in 5.8. Traceability of requirements in the specification with TA model could also be a
promising idea.

76

. .
With the appropriate evaluation metrics, the work can continue by one of this direction.
For instance, tests can be generated based on a hypothesis. Combination of the testing
with model checking of relevant model parts could bring interesting results. Fault
injection into SUT is problematic in the area of interest. Validation of the model
by the mutation analysis is the promising approach for systematic model validation.
Finally, the Real–Time aspect of the Taster implementation can be mentioned. Taster
in the actual version is not capable of working with delays smaller than one hundred
milliseconds. In conclusion topics for future work are recapitulated as a list..Implementation of the Urgent and Committed locations in the TA model..Markov chain based user profile..Layered/hierarchical architecture of the model..Enhancement of systematic algorithm..Assignment of relevancies by Machine learning methods..Suitable evaluation metrics..Avoiding of test cases covered by the original test suite..Combination of testing with model checking..Model validation by the mutant analysis..Real–Time properties of Taster tool.

77

Chapter 7
Conclusion

The FlexRay communication controller is configured by almost one hundred parame-
ters. From validation point of view it is necessary to evaluate if actual values conform
with values specified, e.g. specified by a network designer. Identification of these
parameters usually requires measurements methods. Available methods, as well as
solutions available on the market, were overviewed in State of Art section 2.1. In the
list of available measurement methods, the blank spaces were identified. In general, no
measurement methods focused on individual FlexRay node were available.

The first goal was analysis of the FlexRay parameterization using of FlexRay com-
munication system specification. The parameter set defined in the standard was com-
pared with two independent implementations the FlexRay communication controllers
available on the market. The first sample came from Freescale and the second was
produced by Texas Instruments. The analysis creates the background for following
work – measurement methods for selected parameters.
(Objective: Analysis of the configuration parameters set.)

According to Protocol Operational Control (POC) states, the parameters are divided
into three logical groups. They are wakeup, startup, and synchronization. Wakeup
phase is intended to power up nodes from low power mode. The startup provides initial
communication cycle schedule. Last one – synchronization is one of the key concepts
of the protocol. It guarantees that each node transmits its frames in right time. In
each group, several parameters requiring validation methods were found. Afterward,
new methods were designed, which were in details described in corresponding sections.
These measurement methods are in facts algorithms capable of identifying the values
from bus communication. According to the POC states, the measurement methods
are capable of revealing seven wakeup parameters, five startup parameters, and four
synchronization related values.
(Objective: Evaluation of single FlexRay node parameters – design of measurement
algorithms.)

The experimental approach was chosen for evaluation of the algorithms. Capabilities of
production controllers are limited in the meaning of control over precise frame trans-
mission and reception time. Special FlexRay controller fulfilling these requirements
was developed for FPGA and used for these experiments. The algorithms were coded
into this controller in C. Two types of EUT were utilized for the evaluation of presented
methods. There were Freescale MC9S12XF and Texas Instruments TMS570LS31. The
measurement setup and the results are stated in the corresponding section. It can be
concluded that all of the presented methods work as expected. Some minor limitations
were identified in offset correction measurability.
(Objective: Implementation and evaluation of the measurement methods.)

The last piece related to the FlexRay is the discussion of measurement accuracy and
speed. Inaccuracy is caused by the difference in the clock frequencies of the tester and

78

. .
tested device – each is driven by independent clock source (crystal oscillator). This
inaccuracy is explained, and the methods to deal with this issue are presented. All
measurement methods need some small time amount to a parameter identification. In
general, it takes few communication cycles. A number of each algorithm steps and its
dependency on the FlexRay parameters is summarized in Table 4.9.
(Objective: Characterization of measurement methods accuracy and time require-
ments.)

The challenge, which is hidden under the name Integration testing improvement by
adaptation of the Model–Based Testing (MBT) methods starts with the selection of
suitable modeling language. The Timed Automata (TA) were selected from the exten-
sive list of options. Labeling of nodes by numbers called Relevancies was proposed.
Purpose of the Relevancies is to provide a way to label more and less important parts
of the model.
(Objective: Selection of suitable modeling formalism.)

To built a strong foundation for further work, the relevant theory was summarized.
Namely, there is the theory of Timed Automata and analysis of a test generation pos-
sibilities from the model. Moreover, relations between presented theoretical concepts
is outlined. The background is directly used in the following work.
(Objective: Overview of relevant theory.)

With the selected modeling formalism and the knowledge of the applicable theory, it
was possible to propose MBT concept suitable for the area of interest – Integration
testing of automotive electronic systems. The proposed concept uses TA model devel-
oped in UPPAAL tool. The model is loaded into a software tool, which performs Online
test generation. The communication with the SUT is realized by a test adapter, which
provides interconnection with HIL test place. The concept is depicted in Figure 5.3.
(Objective: Proposal of suitable MBT concept.)

During the time of realization of this thesis, I was the member of the team, which
developed an HIL test place with a novel architecture based on National Instruments
modular hardware. This project perfectly fits the thesis objectives and gives us a
practical overlook to the researched area. Also, the Taster tool can perform testing on
this platform using its NI VeriStand adapter. I was responsible for software part of the
project.
(Objective: Development of HIL test place.)

The proposed MBT concept resulted in the implementation of a software utility, which
implemented proposed algorithms and methods. The tool is called Taster and is
programmed in C# using .NET technology. It offers three testing strategies (Random,
Systematic, and Prioritized Random). HIL testbed with SUT is connectable by two
types of test adapter. Tool features are highlighted in 5.9, and the user point of
view is described in Appendix C. The first version, on which this work is based, was
implemented by master thesis [70] under my supervision.
(Objective: MBT solution implementation.)

Three testing strategies are implemented. One of these algorithms uses Relevancies
numbers to modify discrete uniform distribution. In this thesis these values are assigned
by expert knowledge of the model designer. One of prospective direction for the future
work is machine extraction of this information from test history database.
(Objective: Knowledge-based test generation.)

79

7. Conclusion .
Two case studies were made to evaluate presented MBT solution. The SUT for the
first study was a keyless access system (KESSY). This system was implemented in
LabView and simulated by NI VeriStand. The system was afterward modeled as TA
network, and several test runs were performed. At first, the ability to detect fault was
tested by inserting three artificial errors into the system. The second study was more
complex. The SUT was a real Trunk opening system in the HIL laboratory of our
industrial partner. The test runs were performed with two different TA models. All
three strategies were tried. Test runs were characterized according to the activation of
inputs and outputs. Afterwards, the progress of node and edge coverage was analyzed
for selected test runs. The results show that the proposed MBT solution is suitable to
given problem and opens multiple perspective directions for future research.
(Objective: Evaluation by a case study.)

80

References

[1] U. Abelein, H. Lochner, D. Hahn, and S. Straube. Complexity, quality and ro-
bustness - the challenges of tomorrow’s automotive electronics. In: 2012 Design,
Automation Test in Europe Conference Exhibition (DATE). 2012. 870-871.

[2] ISO 17458-2:2013(E). Road vehicles – FlexRay communications system – Part 2:
Data link layer specification. . International Organization for Standardization.

[3] E. Bringmann, and A. Krämer. Model-Based Testing of Automotive Systems.
In: 2008 1st International Conference on Software Testing, Verification, and
Validation. 2008. 485-493.

[4] ISO 17458-3:2013(E). Road vehicles – FlexRay communications system – Part 3:
Data link layer conformance test specification. . International Organization for
Standardization.

[5] M. Desogus, M.S. Reorda, L. Sterpone, V.A. Avantaggiati, G. Audisio, and M.
Sabatini. Validation and robustness assessment of an automotive system. 2013.

[6] Jiří Novák. New measurement method of sample point position in controller area
network nodes. Measurement. 2008, 41 (3), 300 - 306. Innovative Design and
Paradigms in Instrumentation and Measurements.

[7] Roman Obermaisser. Time-Triggered Communication. 1st edition. Boca Raton,
FL, USA: CRC Press, Inc., 2011. ISBN 1439846618, 9781439846612.

[8] M. Paulitsch, W. Steiner, R. Obermaisser, and C. El Salloum. In: Time-Triggered
Communication, CRC Press, 2011. Core Algorithms. ISBN 978-1-4398-4661-2.
http://dx.doi.org/10.1201/b11155-5.

[9] P. Pop, A. Goller, T. Pop, and P. Eles. In: Time-Triggered Communication, CRC
Press, 2011. Development Tools. ISBN 978-1-4398-4661-2.
http://dx.doi.org/10.1201/b11155-16.

[10] M. Heinz, V. Hoss, and K.D. Muller-Glaser. Physical Layer Extraction of
FlexRay Configuration Parameters. In: Rapid System Prototyping, 2009. RSP
’09. IEEE/IFIP International Symposium on. 2009. 173-180.

[11] E. Armengaud, A. Steininger, and M. Horauer. Automatic Parameter Identi
cation in FlexRay based Automotive Communication Networks. In: 2006 IEEE
Conference on Emerging Technologies and Factory Automation. 2006. 897-904.

[12] E. Armengaud, and A. Steininger. Remote measurement of local oscillator drifts in
FlexRay networks. In: Design, Automation Test in Europe Conference Exhibition,
2009. DATE ’09.. 2009. 1082-1087.

[13] H.-P. Company. Fundamentals of Quartz Oscillators. 1997. In HP Application
Note 200-2.

[14] R.W. Johnson, J.L. Evans, P. Jacobsen, J.R. Thompson, and M. Christopher.
The changing automotive environment: high-temperature electronics. Electronics

81

http://dx.doi.org/10.1201/b11155-5
http://dx.doi.org/10.1201/b11155-16

References .
Packaging Manufacturing, IEEE Transactions on. 2004, 27 (3), 164-176.
DOI 10.1109/TEPM.2004.843109.

[15] Mirko Conrad, and Ines Fey. In: Automotive Embedded Systems Handbook, CRC
Press, 2008. Testing Automotive Control Software. ISBN 978-0-8493-8026-6.
https://doi.org/10.1201/9780849380273.ch11.

[16] Justyna Zander, Ina Schieferdecker, and PieterJ Mosterman. In: CRC Press,
2011. A Taxonomy of Model-Based Testing for Embedded Systems from Multiple
Industry Domains. ISBN 978-1-4398-1845-9.
http://dx.doi.org/10.1201/b11321-2.

[17] M.T.B. Waez, J. Dingel, and K. Rudie. A survey of timed automata for the
development of real-time systems. Computer Science Review. 2013, 9 1-26.
DOI 10.1016/j.cosrev.2013.05.001.

[18] ”Desel. In: ”Unifying Petri Nets: Advances in Petri Nets”. ”Berlin: ”Springer
Berlin Heidelberg”, ”2001”. ISBN ”978-3-540-45541-7”.
"http://dx.doi.org/10.1007/3-540-45541-8_1" .

[19] Rajeev Alur, and D. L. Dill. Automata for Modeling Real-time Systems. In: Pro-
ceedings of the Seventeenth International Colloquium on Automata, Languages
and Programming. New York, NY, USA: Springer-Verlag New York, Inc., 1990.
322–335. ISBN 0-387-52826-1.
http://dl.acm.org/citation.cfm?id=90397.90438.

[20] Johan Bengtsson, and Wang Yi. Timed Automata: Semantics, Algorithms and
Tools. Lecture Notes in Computer Science. 2004.
http://dx.doi.org/10.1007/978-3-540-27755-2_3.

[21] ”T.A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine”. ”Symbolic Model Check-
ing for Real-Time Systems”. ”Information and Computation”. ”1994”, ”111” (”2”),
”193 - 244”. DOI ”http://dx.doi.org/10.1006/inco.1994.1045”. ””.

[22] UPPAAL Team, and others. UPPAAL 4.0: Small tutorial, November 2009 .
http://www.it.uu.se/research/group/darts/uppaal/small_tutorial.pdf.
Accessed: August 2017.

[23] ”Srba J.”. In: ”Ciardo, eds. ”Applications and Theory of Petri Nets 2005: 26th
International Conference. ”Berlin: ”Springer Berlin Heidelberg”, ISBN ”978-3-
540-31559-9”.
"http://dx.doi.org/10.1007/11494744_22" .

[24] Mark Utting, Alexander Pretschner, and Bruno Legeard. A Taxonomy of Model-
based Testing Approaches. Softw. Test. Verif. Reliab.. 2012, 22 (5), 297–312.
DOI 10.1002/stvr.456.

[25] David Lee, and Mihalis Yannakakis. Principles and methods of testing finite state
machines-a survey. Proceedings of the IEEE. 1996, 84 (8), 1090–1123.

[26] Matthias Grochtmann, Joachim Wegener, and Klaus Grimm. Test case design
using classification trees and the classification-tree editor CTE. In: Proceedings of
Quality Week. 1995. 30.

[27] ”Aichernig. In: ”Tests and Proofs: 7th International Conference. ”Berlin:
”Springer Berlin Heidelberg”, ISBN ”978-3-642-38916-0”.
"http://dx.doi.org/10.1007/978-3-642-38916-0_2" .

[28] Edmund M Clarke, Orna Grumberg, and Doron Peled. Model checking. MIT press,
1999.

82

http://dx.doi.org/10.1109/TEPM.2004.843109
https://doi.org/10.1201/9780849380273.ch11
http://dx.doi.org/10.1201/b11321-2
http://dx.doi.org/10.1016/j.cosrev.2013.05.001
"http://dx.doi.org/10.1007/3-540-45541-8_1"
http://dl.acm.org/citation.cfm?id=90397.90438
http://dx.doi.org/10.1007/978-3-540-27755-2_3
http://dx.doi.org/"http://dx.doi.org/10.1006/inco.1994.1045"
http://www.it.uu.se/research/group/darts/uppaal/small_tutorial.pdf
"http://dx.doi.org/10.1007/11494744_22"
http://dx.doi.org/10.1002/stvr.456
"http://dx.doi.org/10.1007/978-3-642-38916-0_2"

. .
[29] ”Kim. In: ”Formal Methods for Industrial Critical Systems: 20th International

Workshop. ”Cham”: ”Springer International Publishing”, ”47–61”. ISBN ”978-3-
319-19458-5”.
"http://dx.doi.org/10.1007/978-3-319-19458-5_4" .

[30] ANDERS HESSEL. Model-Based Test Case Generation for Real-Time Systems.
Ph.D. Thesis, Uppsala University. 2007.

[31] Marius Mikucionis. Online Testing of Real-Time Systems. Ph.D. Thesis, Aalborg
University. 2010.

[32] Uppaal TRON Website.
http://people.cs.aau.dk/˜marius/tron. Accessed: 2015-09-09.

[33] Marius Mikucionis. UPPAAL TRON: Testing Real-time systems ONline. MoDES
project meeting. 2007.
http://people.cs.aau.dk/˜marius/tron/MoDES-2007.pdf.

[34] Uppaal CoVer Homepage.
http://www.hessel.nu/CoVer/. Accessed: 2015-09-09.

[35] Johan Blom, Anders Hessel, Bengt Jonsson, and Paul Pettersson. Specifying and
Generating Test Cases Using Observer Automata. Lecture Notes in Computer
Science. 2005.
http://dx.doi.org/10.1007/978-3-540-31848-4_9.

[36] Jürgen Großmann, Philip Makedonski, Hans-Werner Wiesbrock, Jaroslav
Svacina, Ina Schieferdecker, and Jens Grabowski. In: CRC Press, 2011. Model-
Based X-in-the-Loop Testing. ISBN 978-1-4398-1845-9.
https://doi.org/10.1201/b11321-13.

[37] J. Hänsel, D. Rose, P. Herber, and S. Glesner. An Evolutionary Algorithm for
the Generation of Timed Test Traces for Embedded Real-Time Systems. In: 2011
Fourth IEEE International Conference on Software Testing, Verification and Val-
idation. 2011. 170-179.

[38] Jan Peleska, Artur Honisch, Florian Lapschies, Helge Löding, Hermann Schmid,
Peer Smuda, Elena Vorobev, and Cornelia Zahlten. A Real-world Benchmark
Model for Testing Concurrent Real-time Systems in the Automotive Domain.
In: Proceedings of the 23rd IFIP WG 6.1 International Conference on Test-
ing Software and Systems. Berlin, Heidelberg: Springer-Verlag, 2011. 146–161.
ISBN 978-3-642-24579-4.
http://dl.acm.org/citation.cfm?id=2075545.2075556.

[39] ISO 17458-4:2013(E). Road vehicles – FlexRay communications system – Part 4:
Electrical physical layer specification. . International Organization for Standard-
ization.

[40] C. El Salloum, and K. Bilic. In: Time-Triggered Communication, CRC Press,
2011. FlexRay. ISBN 978-1-4398-4661-2.
http://dx.doi.org/10.1201/b11155-7.

[41] Christoph Schmutzler, Martin Simons, and Jürgen Becker. On Demand Depen-
dent Deactivation of Automotive ECUs. In: Proceedings of the Conference on
Design, Automation and Test in Europe. San Jose, CA, USA: EDA Consortium,
2012. 69–74. ISBN 978-3-9810801-8-6.
http://dl.acm.org/citation.cfm?id=2492708.2492726.

83

"http://dx.doi.org/10.1007/978-3-319-19458-5_4"
http://people.cs.aau.dk/~marius/tron
http://people.cs.aau.dk/~marius/tron/MoDES-2007.pdf
http://www.hessel.nu/CoVer/
http://dx.doi.org/10.1007/978-3-540-31848-4_9
https://doi.org/10.1201/b11321-13
http://dl.acm.org/citation.cfm?id=2075545.2075556
http://dx.doi.org/10.1201/b11155-7
http://dl.acm.org/citation.cfm?id=2492708.2492726

References .
[42] Jennifer Lindelius Welch, and Nancy Lynch. A New Fault-tolerant Algorithm

for Clock Synchronization. Inf. Comput.. 1988, 77 (1), 1–36. DOI 10.1016/0890-
5401(88)90043-0.

[43] FlexRay Protocol Specification V2.1 Rev. A. 2005.
[44] MC9S12XF512 Reference Manual. 2010. Freescale Semiconductor. Rev.1.20.
[45] TMS570LS31x/21x 16/32-Bit RISC Flash Microcontroller . 2011. Texas Instru-

ments. Preliminary.
[46] Road vehicles – Local Interconnect Network (LIN) – Part 6: Protocol conformance

test specification. . International Organization for Standardization.
[47] Martin Paták. Methods for testing the flexray start-up mechanism. Master’s The-

sis, CTU in Prague. 2012.
[48] M. Okrouhly, and D. Waraus. Anti-lock braking system based on FlexRay protocol.

In: Proceedings of the 6th IEEE International Conference on Intelligent Data
Acquisition and Advanced Computing Systems. 2011. 283-286.

[49] Jiří Blecha. Ethernet/FlexRay Gateway, hardware and firmware. Bachelor’s The-
sis, CTU in Prague. 2012.

[50] Martin Zeman. Firmware of Ethernet/FlexRay Gateway. Bachelor’s Thesis, CTU
in Prague. 2012.

[51] FlexRay Communication Controller IP.
http: / / www . webcitation . org / 6mVXlFHki. Robert Bosch GmbH. 2016.
Accessed: 2017-02-18.

[52] ”Axel Belinfante”. ”JTorX: A Tool for On-Line Model-Driven Test Derivation
and Execution”. In: ”Javier Esparza, and Rupak Majumdar”, eds. ”Tools and
Algorithms for the Construction and Analysis of Systems. ”Springer Verlag”,
”2010”. ”266–270”. ISBN ”978-3-642-12001-5”.

[53] Margus Veanes, Colin Campbell, Wolfgang Grieskamp, Wolfram Schulte, Nikolai
Tillmann, and Lev Nachmanson. Model-Based Testing of Object-Oriented Reactive
Systems with Spec Explorer. In: Formal Methods and Testing. Springer Verlag,
2008. 39-76. ISBN 978-3-540-78916-1.
http://dl.acm.org/citation.cfm?id=1806209.1806211.

[54] Arilo C. Dias Neto, Rajesh Subramanyan, Marlon Vieira, and Guilherme H.
Travassos. A Survey on Model-based Testing Approaches: A Systematic Review.
In: Proceedings of the 1st ACM International Workshop on Empirical Assessment
of Software Engineering Languages and Technologies: Held in Conjunction with
the 22Nd IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE) 2007. New York: ACM, 2007. 31–36. ISBN 978-1-59593-880-0.
http://doi.acm.org/10.1145/1353673.1353681.

[55] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to
automata theory, languages, and computation - international edition (2. ed).
Addison-Wesley, 2003. ISBN 978-0-321-21029-6.

[56] ”Büchi. In: ”The Collected Works of J. Richard Büchi”. ”New York: ”Springer
New York”, ”1990”. ISBN ”978-1-4613-8928-6”.
"http://dx.doi.org/10.1007/978-1-4613-8928-6_23" .

[57] ”Garavel. In: ”Formal Methods for Protocol Engineering and Distributed Systems:
FORTE XII / PSTV XIX’99 IFIP TC6 WG6.1 Joint International Confer-
ence on Formal Description Techniques for Distributed Systems and Commu-
nication Protocols (FORTE XII) and Protocol Specification. ”Boston: ”Springer

84

http://dx.doi.org/10.1016/0890-5401(88)90043-0
http://dx.doi.org/10.1016/0890-5401(88)90043-0
http://www.webcitation.org/6mVXlFHki
http://dl.acm.org/citation.cfm?id=1806209.1806211
http://doi.acm.org/10.1145/1353673.1353681
"http://dx.doi.org/10.1007/978-1-4613-8928-6_23"

. .
US”, ISBN ”978-0-387-35578-8”.
"http://dx.doi.org/10.1007/978-0-387-35578-8_11" .

[58] ”Bérard. In: ”Control of Discrete-Event Systems: Automata and Petri Net Per-
spectives”. ”London”: ”Springer London”, ”2013”. ”169–187”. ISBN ”978-1-4471-
4276-8”.
"http://dx.doi.org/10.1007/978-1-4471-4276-8_9" .

[59] NI VeriStand™.NET API Help.
http: / / zone . ni . com / reference / en-XX / help / 372846J-01 / vsnetapis /
bp_vsnetapis/. Accessed: August 2017.

[60] Lance Fortnow. The status of the P versus NP problem. Communications of the
ACM. 2009, 52 (9), 78–86.

[61] Hierholzer’s Algorithm for directed graph.
http://www.webcitation.org/6rGWoiCEb. GeeksforGeeks. 2017. Accessed:
2017-06-16.

[62] Steven S. Skiena. The Algorithm Design Manual. Springer Publishing Company,
Incorporated, 2008. ISBN 978-1-84800-069-8.

[63] Harold Thimbleby. The directed Chinese Postman Problem. Software: Practice
and Experience. 2003, 33 (11), 1081–1096. DOI 10.1002/spe.540.

[64] David L. Applegate, Robert E. Bixby, Vasek Chvatal, and William J. Cook.
The Traveling Salesman Problem: A Computational Study (Princeton Series in
Applied Mathematics). Princeton, NJ, USA: Princeton University Press, 2007.
ISBN 0691129932, 9780691129938.

[65] P. E. Ammann, and P. E. Black. A specification-based coverage metric to evaluate
test sets. In: Proceedings 4th IEEE International Symposium on High-Assurance
Systems Engineering. 1999. 239-248.

[66] Jan Friso Groote, Tim W.D.M. Kouters, and Ammar Osaiweran. Specification
guidelines to avoid the state space explosion problem. 2015.
http://dx.doi.org/10.1002/stvr.1536.

[67] Mirko Conrad. Systematic testing of embedded automotive software the classifi-
cation tree method for embedded systems (CTM/ES). In: Dagstuhl Seminar Pro-
ceedings. 2005.

[68] ”Chapter 4 - Selecting your tests ”. In: ”Utting, eds. ”San Francisco”: ”Practical
Model-Based Testing, ”2007”. ”107 - 137”. ISBN ”978-0-12-372501-1”.
https://doi.org/10.1016/B978-012372501-1/50005-3.

[69] Bernhard K. Aichernig, Klaus Hörmaier, and Florian Lorber. Debugging with
Timed Automata Mutations. In: Proceedings of the 33rd International Conference
on Computer Safety, Reliability, and Security - Volume 8666. New York, NY,
USA: Springer-Verlag New York, Inc., 2014. 49–64. ISBN 978-3-319-10505-5.
http://dx.doi.org/10.1007/978-3-319-10506-2_4.

[70] Tomáš Grus. Implementation of Integration Testing Test Cases Generation Tool.
Master’s Thesis, CTU in Prague. 2014.

[71] Terence Parr. The definitive ANTLR 4 reference. Pragmatic Bookshelf, 2013.
[72] ”Edsger W. Dijkstra”. ”Algol 60 translation : An Algol 60 translator for the x1

and Making a translator for Algol 60” . . ”Mathematisch Centrum.
[73] Michal Veselka. TaSysTest and EXAM software interface implementation. Bach-

elor’s Thesis, CTU in Prague. 2016.

85

"http://dx.doi.org/10.1007/978-0-387-35578-8_11"
"http://dx.doi.org/10.1007/978-1-4471-4276-8_9"
http://zone.ni.com/reference/en-XX/help/372846J-01/vsnetapis/bp_vsnetapis/
http://zone.ni.com/reference/en-XX/help/372846J-01/vsnetapis/bp_vsnetapis/
http://www.webcitation.org/6rGWoiCEb
http://dx.doi.org/10.1002/spe.540
http://dx.doi.org/10.1002/stvr.1536
https://doi.org/10.1016/B978-012372501-1/50005-3
http://dx.doi.org/10.1007/978-3-319-10506-2_4

References .
[74] M. Farsi, K. Ratcliff, and M. Barbosa. An overview of controller area network.

Computing Control Engineering Journal. 1999, 10 (3), 113-120.
[75] NORM, D. I. N. 72552: Klemmenbezeichnungen in Kraftfahrzeugen. 1971. .

Deutsches Institut für Normung.

86

Appendix A
Author’s Publications and Grants

A.1 Publications Related to the Thesis

A.1.1 Publications in Journals with Impact Factor
[J1] SOBOTKA, J. and NOVÁK, J. FlexRay ECU mission critical parameters mea-

surement. Measurement. 2017, 100 pp. 213-222. ISSN 0263-2241.
http://www.sciencedirect.com/science/article/pii/S0263224116307357
Co-authorship: 70%

A.1.2 International Conference Proceedings
[C1] SOBOTKA, J. and NOVÁK, J. FlexRay Controller with Special Testing Capa-

bilities. In: 2012 International Conference on Applied Electronics. 2012 Interna-
tional Conference on Applied Electronics. Plzeň, 06.09.2012 - 08.09.2012. Pilsen:
University of West Bohemia. 2012, pp. 269-272. ISSN 1803-7232. ISBN 978-80-
261-0038-6.
Co-authorship: 50%

Cited by:.Shreejith, S. , Fahmy, S.A. Enhancing communication on automotive networks
using data layer extensions. FPT 2013 - Proceedings of the 2013 International
Conference on Field Programmable Technology, 2013. ISBN 978-1-47992-199-0..Shreejith, S., Fahmy, S.A., Lukaseiwycz, M. Accelerating validation of time-
triggered automotive systems on FPGAs FPT 2013 - Proceedings of the 2013
International Conference on Field Programmable Technology, 2013. ISBN 978-
1-47992-199-0..Shreejith, S., Fahmy, S.A. Extensible FlexRay communication controller for
FPGA-based automotive systems IEEE Transactions on Vehicular Technology,
2015..Radhiga, R.; Pradeep, J. Design of FlexRay communication controller protocol
for an automotive application Proceedings of 2015 IEEE 9th International
Conference on Intelligent Systems and Control (ISCO), 2015.

[C2] SOBOTKA, J. and NOVÁK, J. Methods for Measurement of Flexray Node Basic
Timing Parameters. In: XX IMEKO World Congress 2012 - Proceedings. XX
IMEKO World Congress 2012 - Metrology for Green Growth. Busan, BEXCO,
09.09.2012 - 14.09.2012. Busan: IMEKO. 2012, ISBN 978-1-62748-190-8.
Co-authorship: 50%

87

http://www.sciencedirect.com/science/article/pii/S0263224116307357

A Author’s Publications and Grants .
[C3] SOBOTKA, J. and NOVÁK, J. Automation of Automotive Integration Testing

Process. In: IDAACS 2013 - Proceedings of the 2013 IEEE 7th International
Conference on Intelligent Data Acquisition and Advanced Computing Systems.
IDAACS 2013 - Intelligent Data Acquisition and Advanced Computing Systems:
Technology and Applications. Berlin, 12.09.2013 - 14.09.2013. Berlin: IEEE.
2013, pp. 349-352. ISBN 978-1-4799-1426-5.
Co-authorship: 50%

Cited by:.Sagstetter, F.; Waszecki, P.; Steinhorst, S.; Lukasiewycz, M.; Chakraborty,
S. Multischedule Synthesis for Variant Management in Automotive Time-
Triggered Systems IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 35, no. 4, pp. 637 - 650, 2016. ISSN 0278-0070.

[C4] SOBOTKA, J. and NOVÁK, J. Testing Automotive Reactive Systems using
Timed Automata. In: IDAACS 2017 - Proceedings of the 2017 IEEE 9th In-
ternational Conference on Intelligent Data Acquisition and Advanced Computing
Systems. IDAACS 2017 - Intelligent Data Acquisition and Advanced Computing
Systems: Technology and Applications. Bucharest, 21.09.2017 - 23.09.2017. (Ac-
cepted.)
Co-authorship: 80%

[C5] SOBOTKA, J. and NOVÁK, J. Application of Extended Timed Automata to
Automotive Integration Testing. In: VALID 2017 - The Ninth International Con-
ference on Advances in System Testing and Validation Lifecycle. Athens, Greece,
8.10.2017 - 12.10.2017. ISSN: 2308-4316 ISBN: 978-1-61208-593-7(Accepted.)
Co-authorship: 80%

A.2 Selected Grants Related to the Thesis
[G1] Kocourek, P. (2005-2011). Josef Božek Research Center of Engine and Auto-

motive Technology II, Czech Ministry of Education, grant No. 1M0568. (Team
Member.)

[G2] Ripka, P. (2009-2012). Sensors and intelligent sensor systems, Czech Science
Foundation (GACR), grant No. GD102/09/H082. (Team Member.)

[G3] Macek, J. (2012-2017). Josef Božek Competence Centre for Automotive Industry,
Technological Agency, Czech Republic, programme Centres of Competence, project
TE01020020. (Team Member.)

[G4] Sobotka, J. (2013). Methods for diagnostics and solving of the critical situations
in individual transport, Czech Technical University in Prague, Czech Republic,
SGS13/085/OHK3/1T/13.

[G5] Sobotka, J. (2016-2017). Model–Based Testing methods for automotive
electronics systems, Czech Technical University in Prague, Czech Republic,
SGS16/171/OHK3/2T/13.

88

Appendix B
Abbreviations

ABS Anti–lock Braking System

API Application Programming Interface

ASR Anti-Slip Regulation

BFS Breadth–first search

CAN Controller Area Network

CAS Collision Avoidance Symbol

CC Communication Controller

CCS Calculus of Communicating Systems

CPP Chinese Postman Problem

CSP Communicating Sequential Processes

DFS Depth–first search

ECU Electronic Control Unit

EUT ECU under test

FSM Finite–state machine

FTM Fault–tolerant midpoint

GUI Graphical user interface

HIL Hardware–in–the–loop

IDE Integrated development environment

I/O Input/Output

ISO International Organization for Standardization

LIN Local Interconnect Network

LTL Linear Temporal Logic

LTS Labelled Transition System

MBT Model–Based Testing

MC Model Checker

MC/DC Modified condition/decision coverage

MCU Microcontroller Unit

89

B Abbreviations .
OEM Original Equipment Manufacturer

OOP Object–oriented programming

OSI Open Systems Interconnection

PCB Printed Circuit Board

PN Petri net

POC Protocol Operational Control

PWM Pulse–width modulation

PXI PCI eXtensions for Instrumentation

RFID Radio–frequency identification

RT Real–time

SDL Specification and Description Language

SMC Statistical Model Checker

SoC System on a chip

SUT System under Test

TA Timed Automaton

TDMA Time Division Multiple Access

TSP Traveling Salesman Problem

UML Unified Modeling Language

VHDL VHSIC Hardware Description Language

XML Extensible Markup Language

90

Appendix C
Taster User Guide

In this section, tool Taster described in 5.9, is presented from the user point of view. To
provide the best possible readability are screenshots placed in landscape orientation.
Since the pictures, come from the wide screen display. Setup of HIL testbed, as well
as software installation, is not covered in this guide. The intention is to provide reader
look up how the proposed solution works from the user point of view in reasonable
detail. It should not be seen as the step by step guide to deploy the presented solution.

Prerequisites:.Windows 7 on reasonable PC capable run NI VeriStand/EXAM.Microsoft .NET Framework 4.5.NI VeriStand 2015 or EXAM Version: 4.3.4.UPPAAL 4.1.19.Taster

The first step of the testing process is the design of SUT model in UPPAAL. Supported
subset of modeling language is listed in 5.2. The proper design of the model is the key
point. Environment part guides input generation, and observer part defines correct and
incorrect system behavior. A Timed Automaton example in UPPAAL environment is
shown in Figure C.1.

Taster user interface is divided into two main windows. There are viewer and runtime
windows. The viewer is depicted in Figure C.2. Model is loaded by selecting File →
Open. If the model is syntactically compatible with Taster, it is loaded. Otherwise,
the pop-up window with an error message is shown. On the right side is placed a list
of available templates. By listing of templates, the user can view the prepared model.

Most of the features are integrated into Runtime window. PrintScreen is shown in
Figure C.3. In the screen are shown all templates which create TA system. The size of
each automaton depends on number and complexity of templates in the model. Active
nodes are dynamically highlighted during a test run. In up, left corner is the pair of
Connect and Disconnect buttons. They control connection with SUT by selected test
adapted. The adapter is chosen by the radio buttons. EXAM/NI VeriStand can run
on a separate machine - IP address or computer name is assigned in the box beside
Disconnect button.

After connection to test facilities, it is possible to start a test run. In the middle top
section of Runtime window are controls for influencing of test engine behavior. There
are Run tick interval (step time) and model exploration strategy (Random, Systematic,
Experimental). Minimal reasonable step time is 100 ms as Taster runs on Non-RT
operation system, maximal step time is not limited. For the debugging purposes, it is
implemented step function, which is similar to common IDEs. Testing can be stopped
by one of the following situations. Related to SUT behavior is a violation of invariant

91

C Taster User Guide .
condition. If invariant it is not satisfied, model simulation is terminated. Other ways
to stop testing are: stop by the user, stop if coverage criteria are fulfilled, and stop
after a preset period.

After a test run is terminated, it is possible to analyze results by View Trace button,
which opens the separate window. Viewer is depicted in Figure C.4. Left part of the
screen contains step with its time and event (taken edge). Selecting of a step caused
the update of variable snapshot window (top right corner), and corresponding active
nodes are highlighted in Runtime windows. Bottom right corner contains text box with
Trace statistics - count of visited edge for each template. A trace is possible to store
and load by corresponding buttons. In the case of existing connection to testbed is
also possible to make a step from a trace.

92

. .

Fi
gu

re
C
.1

.
In

pu
t

M
od

el

93

C Taster User Guide .

Fi
gu

re
C
.2

.
M

od
el

V
ie

w
er

94

. .

Fi
gu

re
C
.3

.
Ta

st
er

R
un

tim
e

Sc
re

en

95

C Taster User Guide .

Fi
gu

re
C
.4

.
Tr

ac
e

V
ie

w
er

96

	TITLE
	Acknowledgement/Declaration
	Abstrakt
	Abstract
	Contents/
	Tables/Figures
	Introduction
	State of the Art
	FlexRay
	Of the Shelf Available Solutions
	Related Work
	Risk of Incorrect Parameterization

	Integration Testing and MBT
	Weaknesses of Traditional Approach
	Terminology
	Taxonomy
	Embedded System Modeling
	Test Selection Criteria
	Test Generation
	Existing Tools
	Hardware--in--the--Loop
	Related Work

	Summary

	Thesis Objectives
	FlexRay Objectives
	Integration Testing Objectives

	FlexRay
	Overview of FlexRay Communication System
	Parameter Set Analysys
	Wakeup Parameters
	pWakeupChannel
	gdWakeupTxIdle, gdWakeupTxActive, pWakeupPattern
	gdWakeupRxLow, gdWakeupRxIdle, gdWakeupRxWindow

	Startup Parameters
	Type of Node
	gColdStartAttempt
	Collision Avoidance Symbol
	pdListenTimeout

	Evaluation of Clock Synchronization Parameters
	Cycle Length Influencing and Measurement
	Offset Correction Measurement
	pdMicrotick
	pClusterDrift-Damping
	pRateCorrectionOut
	pOffsetCorrectionOut

	Validation on Real FlexRay Network
	FPGA FlexRay Controller
	FlexRay Hardware -- EUT
	Experiments

	Measurement Accuracy and Speed
	Summary

	Integration Testing
	Selection of Formal Model
	Passenger Car Inner Light Model

	Timed Automata Theory
	Finite--State Machine
	Automata for Infinite Input
	Buchi Automaton
	Timed Automaton

	Testing Workflow Proposal
	Testbed for Comfort Systems
	System Modeling
	Test Generation Theory
	Graph terminology
	Selected Graph Algorithms
	Discussion of Timed tours

	Algorithms
	Evaluation Metrics
	Taster
	Taster Architecture
	Model Parser
	Model Execution
	Test Adapter
	Trace Logger
	Implementation
	User Interface

	Case Study -- KESSY
	Specification
	Models
	SUT Implementation
	Results

	Case Study -- Trunk
	Specification
	Experiment Plan
	Models
	Original Test Suite
	Results
	Conclusion

	Summary

	Future Work
	Conclusion
	References
	Author's Publications and Grants
	Publications Related to the Thesis
	Publications in Journals with Impact Factor
	International Conference Proceedings

	Selected Grants Related to the Thesis

	Abbreviations
	Taster User Guide

