CzECH TECHNICAL UNIVERSITY IN PRAGUE
FACULTY OF INFORMATION TECHNOLOGY

ASSIGNMENT OF BACHELOR'’S THESIS

Title: MCTS library for unit movement planning in real-time strategy game StarCraft
Student: Mykyta Viazovskyi

Supervisor: RNDr. Michal Certicky, Ph.D.

Study Programme: Informatics

Study Branch: Web and Software Engineering

Department: Department of Software Engineering

Validity: Until the end of summer semester 2017/18

Instructions

The aim of the thesis is to design and implement a library for Al (Artificial Inteligence) agents playing
real-time strategy game StarCraft, implementing Monte-Carlo Tree Search (MCTS) for unit movement
planning. Usage of the library will be demonstrated and evaluated.

1. Introduce the field of RTS (Real Time Strategy) game Al development.
2. Make an overview of available resources and libraries for Starcraft Al.
3. Design and implement a new library for Starcraft Al. The design will allow further extensions - adding
new functionality to the library.
4. The library will support the following two methods:
4.1. Basic graph search-based planning of unit movement.
4.2. Planning based on MCTS Considering Durations.
5. Show the basic use of the library on few expressive examples.
6. Perform experiments and compare the performance with alternative solutions.
7. Document your solution and discuss possible further extensions.

References

Will be provided by the supervisor.

Ing. Michal Valenta, Ph.D. prof. Ing. Pavel Tvrdik, CSc.
Head of Department Dean

Prague February 11, 2017

CZzECH TECHNICAL UNIVERSITY IN PRAGUE

FacuLTy OF INFORMATION TECHNOLOGY /

DEPARTMENT OF SOFTWARE ENGINEERING

Bachelor’s thesis

MCTS library for unit movement planning
in real-time strategy game Starcraft

Be. Mykyta Viazovskyi

Supervisor: RNDr. Michal Certicky, Ph.D.

16th May 2017

Acknowledgements

I would like to thank my supervisor, RNDr. Michal Certicky, Ph.D., for his
tournament organization that led me to the idea and his continuous support
during the work on this thesis. My sincere thanks go to the Department
faculty members for their help and support, and especially the teaching staff,
who instilled the decent amount of knowledge used for the thesis and beyond.
I am thankful to my partner and my friends who supported me through this
project. Last but not the least, I am also grateful to my family for their
endless support and encouragement during the whole period of my study.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on 16th May 2017 .

Czech Technical University in Prague

Faculty of Information Technology

(© 2017 Mykyta Viazovskyi. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Viazovskyi, Mykyta. MCTS library for unit movement planning in real-time
strateqy game Starcraft. Bachelor’s thesis. Czech Technical University in
Prague, Faculty of Information Technology, 2017.

Abstrakt

Existuje spolec¢nost vyvojaru umélé inteligence, ktefi zkousi své napady a pilné
pracuji, aby vytvorili neporazitelného protivnika pro zivou strategickou hru
Starcraft, coz dokézali v Sachéch a Go.

Tato prace predvadi vyuziti knihovny pro Monte CarloTree Search Con-
sidering durations algorytmus, ktery byl prvné navrhnut Albertem Uriarte
a Santagem Ontanon z Drexelské univerzity. Tento algorytmus prokazuje
vynikajici vysledky v fizeni armady v zivych strategickych hrach. Jako mensi
nadhradu pfiddme do knihovny vyhleddavani Negamax. Nase vyuziti algorytmu
je vypracovano jako statickd knihovna ++, kterd muze byt pfipojena k jakémukoli
moznému botovi. Instalace je velmi jednoduchd a nenaro¢na. V prubéhu prace
vyhodnocujeme algoritmy, porovnavame je a demonstrujeme jejich vyuziti.
Tyto algoritmy jsou zalozeny a testovany na platformé UAlberta bot.

Kliéova slova MCTSCD knihovna, Starcraft, strategie v redlném case,
prohledavéani stavového prostoru, uméld inteligence videoher.

X

Abstract

There is a live community of AT developers that are trying their ideas and put-

ting effort to create an unbeatable rival for real-time strategy game Starcraft,
as it was done with Chess and Go.

This work presents an implementation of the library for the Monte Carlo
Tree Search Considering Durations algorithm, that was recently proposed by
Alberto Uriarte and Santiago Ontanén from Drexel University. It appears
to bring outstanding results in real-time strategy army control. As a smaller
substitute, we add a Negamax search to the library. Our implementation
of the algorithms is designed as a static C++ library, which could be easily
plugged in-to any possible bot. The setup is simple and intuitive. During the
course of the work we evaluate the algorithms, compare them and demonstrate
their usage. The algorithms are based and tested on UAlberta bot framework.

Keywords MCTSCD library, Starcraft, real-time strategy, state space search,
video game Al

Contents

Introductionl 1
................................. 2
A & hesig 5
(L ['hesis structurel. 6
2R [T . owl v
|3 Library design| 11
[3.1 Library format| 11
[3.2 Library architecture|, 14
3.3 Algorithm structure] 17
4 Implementation| 19
4.1 Negamax algorithm planning| 21
|4.2 Planning based on MCTS Considering Durations| 22
4.3 Library usage| 24
25
b.1 Casestudy| 25
0.2 Testsetup|. 26
B3 Resultsl. . . . o o oo o e 27
Conclusion| 31
IBibliography| 33
|A Acronyms| 35
[B_Contents of enclosed Cl) 37

X1

List of Figures

2.1 BWTA terrain partition. Green: unpassable line. Red: the most

narrow distance between regions. 8
2.2 BWTA regionsplit|. 9
2.3 BWEM region split|. 9
3.1 Dave Churchill’s UAlbertaBot structurel 13
3.2 Combat simulation design class model| 15
3.3 Class diagram|. 16
[3.4 Search class diagram| Lo 18
4.1 Map graph| 19
4.2 Unit abstraction| oo 20
5.1 Combat manager diagram| 26
[5.2 Unit score per frame] 29
.3 Kill score per frame| o oL 29

xiii

Introduction

“The only way to get smarter is
by playing a smarter opponent.”

Fundamentals of Chess 1883

Probably many of us have already heard of exponential growth. Tech-
nology skyrocketed at the end of the previous century and the amount of
information is growing exponentially. In 1985 maximum hard disk capacity
was around 10 MB, 1 GB in 1995, more than 100 GB in 2005 and in 2016 it
was 16 TB. The world’s technological per capita capacity to store information
has roughly doubled every 40 months since the 1980s; as of 2012, every day
2.5 exabytes (2.5 x 10'8) of data are generated. In the age of hyper-innovation
the number of world-changing inventions developed within the next 10 years
will be equal to those produced in the previous 100 years. And in order
to assist us to cope with the ever-increasing information flow, the artificial
intelligence comes into play. In many fields strict algorithms are beaten by ar-
tificial intelligence (AI) in performance, in ability to grasp high dimensionality
and even in presentation of interesting insights that previously have remained
hidden. Image and speech recognition have had a big advancement due to
neural networks. The Big Data is handling such complex challenges as: ana-
lysis, capture, data curation, search, sharing, storage, transfer, visualization,
querying, updating and information privacy. The world encloses an unima-
ginably enormous amount of digital information which is getting ever bigger
ever more rapidly.[I8] AI allows us to do many things that previously were
not possible: spot business trends, prevent diseases, combat crime and so on.

Nowadays gamers are pushing the limits of creativity, attention, reaction
and many other game-related skills. Even modern built-in Al is not inter-
esting to play with for an average player. But machine learning is evolving,
thus providing new opportunities for both computer opponent and general
computational comprehensiveness.

INTRODUCTION

The Starcraft bot development is a field, where pleasure and science go
hand in hand. Creating a more advanced bot contributes makes it more inter-
esting to play. And as the skill of human play rises, he needs to have a more
advanced enemy. Thus, the aim of the work could be seen as a contribution
to both science and gamers’ enjoyment.

Therefore this topic was decided to be a contribution to the combination
of Al and game development. This will help to achieve better results in both
fields with the enthusiasm of the respective communities.

Challenges

Real-Time Strategy (RTS) games pose a significant challenge to AI mainly
due to their enormous state space and branching factor, and because they are
real-time and partially observable.

Early research in AI for RTS games identified the following six challenges[4]:

e resource management;

e collaboration (between multiple Als);
e opponent modelling and learning;

e decision making under uncertainty;

e spatial and temporal reasoning;

e adversarial real-time planning.

Some of these fields are being developed, while others stay untouched (e.g.
collaboration). With the current implementation we tackle the last three of
these challenges.

As mentioned above, the size of the state space in RTS games is much lar-
ger than that of traditional board games such as Chess or Go. This is one of
the reasons they were chosen as a path of general Al research. As mentioned
at BlizzCon 2016, Starcraft 2 will be the next platform to be conquered by
Deepmind. Research scientist Oriol Vinyals states, that ” StarCraft is an inter-
esting testing environment for current Al research because it provides a useful
bridge to the messiness of the real-world. The skills required for an agent to
progress through the environment and play StarCraft well could ultimately
transfer to real-world tasks”.[17]

Additionally, the number of actions that can be executed at a given instant
is also much larger. Thus, standard adversarial planning approaches, such as
game-tree search, are not directly applicable. As it could be anticipated,
planning in RTS games is approachable with the layer of high abstraction:
the game is not perceived as individual units and locations, but rather unified
groups and modules supervising every responsibility. [10]

2

Challenges

Adversarial planning under uncertainty in domains of the size of RTS
games is still an unsolved challenge. The uncertainty consists of two parts.
On the one hand, the game is partially observable, and players cannot see the
whole map, but need to scout in order to see what is happening in the dark
region. This kind of uncertainty can be lowered by good scouting, and know-
ledge representation (to infer what is possible given what has been seen). On
the other hand, there is also uncertainty arising from the fact that the games
are adversarial, and a player cannot predict the actions that the opponent(s)
will execute. For this type of uncertainty, the Al, as the human player, can
only build a sensible model of what the opponent is likely to do.[10]

Certainly, this great amount of challenges made RTS games a fruitful play-
ground for new Al algorithms.

Many of the algorithms are tested at the tournament, as there is a big
variety of strategy approaches. The Student StarCraft AI Tournament (SS-
CAIT) currently has 57 bots and 124 registered bot authors[12]. In addition to
SSCAIT, there are two other important SC Al competitions - both collocated
with research conferences: AIIDE and CIG[6]. Currently, there are 5 types of
tournaments being held[I].

CHAPTER 1

Aim of the thesis

This thesis is aimed at helping to create accessible tools for AI game develop-
ment. The particular target used in our thesis is Blizzard’s Starcraft real-time
strategy game, which is an excellent example of complex, deep and challen-
ging competition platform. Even though the Starcraft was released in 1998,
there are not that many Starcraft bot development tools available up to this
moment. We review them in the following chapter.

The reason this topic was selected is the shortage of building blocks that
a regular developer can use. The articles on various strategy improvements
either lacked implementation or crudely integrated into the author’s bot. This
is exactly the case of MCTSCD, which we want to make accessible to general
public.

The core of the thesis is to make an easily attached algorithm of search
through the vast game state space. The user will be given a set of functions
and classes, which will grant him an ability to get the most effective way to
retreat, attack or defend. The answer will be based on many dimensions of the
state space, like: number and position of our army, number and position of the
enemy army, map layout, chokepoints, etc. We believe that implementation
of the library would assist fellow researchers or even ordinary geeks to get new
inspiration and push the limits of Al while playing their favourite game.

In video games the frame is a picture which is usually shown to the user
every i seconds. The architecture of video games forces the logic to process
before the frame is displayed. Because of this real-time constraint, the al-
gorithm has to show results quickly, without stopping the frame for too long.
Otherwise the picture will look intermittent. For further discussion see Section
3.1.

1. AIM OF THE THESIS

1.1 Thesis structure

This work is structured in the following manner.

At first, we investigate the state of the art for Starcraft bot development.
We list the main and popular items that are ready to be used. These are
mostly map tools, data mining tools and a generic bot framework.

Secondly, we discuss the design of the library and the algorithms. The
most important parts are illustrated in figures.

Further, we describe the implementation details. The MCTSCD will be
tested against a Negamax algorithm. So, we state what is common for the two,
and then dive into implementation of each individual algorithm. As promised,
there are simple setup instructions, which are at the end of the chapter.

Finally, we test the implementations. We argue about the testing ground
and show the performance of two methods.

CHAPTER 2

Resources and libraries overview

There are various libraries for the Starcraft. Most of them cover map ana-
lysis or offer some base for a rapid start for bot development. But the most
significant framework is the Brood War Application Programming Interface
(BWAPI). BWAPI is a free and open source C++ framework that is used to
interact with the popular Real Time Strategy (RTS) game Starcraft: Brood-
war. This framework allows many people to channel their thoughts and ideas
to the creation of Artificial Intelligence in Starcraft.

BWAPI only reveals the visible parts of the game state to AI modules by
default. Information on units that have gone back into the fog of war is denied
to the AIL. This enables programmers to write competitive non-cheating Als
that must plan and operate under partial information conditions. BWAPI also
denies user input by default, ensuring the user cannot take control of game
units while the AT is playing.[9]

With BWAPI one is able to:

e Write competitive Als for Starcraft: Broodwar by controlling individual
units.

e Read all relevant aspects of the game state.

e Analyze replays frame-by-frame, and extract trends, build orders and
common strategies.

e Get comprehensive information on the unit types, upgrades, technolo-
gies, weapons, and more.

e Study and research real-time AT algorithms in a robust commercial RTS
environment.

Thus, the appearance of BWAPI was the crucial point of the bot develop-
ment for Starcraft.

2. RESOURCES AND LIBRARIES OVERVIEW

¥ B

nd Centers

Terran SCV MENU

Figure 2.1: BWTA terrain partition. Green: unpassable line. Red: the most
narrow distance between regions.

Next, there is the Broodwar Terrain Analyzer 2 (BWTA2), a fork of
BWTA, an add-on for BWAPI that analyzes the map and computes the re-
gions, chokepoints, and base locations. The original BWTA was not able
to analyze all kinds of Starcraft maps, especially the ones from tournament.
The BWTA2 is a basis for any bot development, as we can easily access and
understand the basic blocks of the current map, get all possible locations,
compute the distance to our next target etc. As our library provides a way
for developers to search for best shifts through the map, it is heavily relying
on BWTA2.[15]

There is an alternative to BWTA2, Brood War Easy Map (BWEM), which
is a C++ library that analyses Brood War’s maps and provides relevant in-
formation such as areas, choke points and base locations. It is built on top of
the BWAPI library. It first aims at simplifying the development of bots for
Brood War, but can be used for any task requiring high level map information.
It can be used as a replacement for the BWTA2 add-on, as it performs faster
and shows better robustness while providing similar information. [7]

Figure 2.2: BWTA region split

Though BWEM has some limitations[7]:

e BWEM doesn’t provide any geometric description (polygon) of the com-
puted areas.

e It is not compatible with older versions of BWAPI, which might be useful
if the bot is not being updated to the newest version of the library.

Starting Base

Base with its assigned Ressources

Area with altitude rendered (min. dist. to Sea)
Sea =unwalkable zone

Lake =unwalkable zone inside an Area

ChokePoint
(shortest) Path between two starting Locations
two blocking Static Buildings

The dotted rectangle means the Base cannot be
built before some close Mineral is gathered

Figure 2.3: BWEM region split

2. RESOURCES AND LIBRARIES OVERVIEW

The BWAPI Standard Add-on Library (BWSAL) is a project that aims at
developing several add-ons for BWAPI that will be useful for a wide variety
of Als, including different managers per each aspect of the game: workers,
buildings, build orders, supply, bases, technologies, upgrades, scouts, defence,
general information and unit groups. It is similar to the UAlbertabot, but it
is providing only individual managers, not the whole solution. [§]

What is rather unique in its presence is the StarCraftBenchmarkAlI. This
is a benchmark for Starcraft Intelligent Agents. It allows different metrics
to evaluate the performance of the agents: survivor’s life, time survived, time
needed to complete the goal, units lost. These metrics are applicable to various
scenarios, where agents can perform different tasks, like navigation though
obstacles, kiting enemy or strategy placement and recovery.[14]

UAlbertaBot has been written and its code made public by Dave Churchill
of the University of Alberta, Canada. UAlbertaBot is an Al capable of playing
Random, and in that possesses D-level game play in all three races. It is very
well documented and recommended as a starting platform for new bot-coders.
It is essentially a framework that could be easily expanded into a bot of our
choice. It has simple configuration, well-done documentation and design. It
was used for testing purposes for our library. The framework contains not
only the bot, but also a combat simulator, called SparCraft, which allows us
to make predictions on the forthcoming battle. And the last feature of the
UAlbertaBot is the Build Order Search System (BOSS), which helps with
selecting and comparing a proper build order, hence giving more strategy
options. We will more closely consider the UAlbertaBot in the Section 3.1.[5]

Another interesting project is the TorchCraft. It is a bridge between Star-
craft and Torch, a scientific computing framework with wide support for ma-
chine learning algorithms. [11]

10

CHAPTER 3

Library design

3.1 Library format

As for the C++ library for the Al development there are two options to select
from: statically- and dynamically-linked. The library was decided to be static
for the following reasons:

e it will be compiled directly into bot executable
e it saves execution latency

e if search functionality is needed, most probably it is to be provided
constantly (throughout the whole match)

e it is ensured that all functionality is up to date (no versioning problem)

The BWAPI interface is a shared library itself due to the reverse-engineered
nature of the solution, which could add some delay on its own. As with the
CPU-bound projects like Starcraft and BWAPI, it is always good to think
about performance. Even though on a regular basis we may allow some delay
for the bot and game response (as those are bound), it is forbidden, during
the official tournaments, to cross some predefined limit.

Aside from the obvious causes to suffer defeat like a crash or loss of all
units and buildings, the bot is considered defeated if it has spent:

e more than 1 frame longer than 10 seconds, or
e more than 10 frames longer than 1 second, or
e more than 320 frames longer than 55 milliseconds.

One could argue, that use of static library could be a waste of space. But
as long as it provides essential part of bot logic, and if that logic is used, it is
presumably going to be used constantly during the whole match. Additionally,

11

3. LIBRARY DESIGN

the size of the library would be negligible (25 MB) in relation to Starcraft size
and the size of modern average data storage devices.

As the library is intended to provide only individual algorithms, its best
option is going to be used from one of the managers of the bot.

With the current MCTSCD algorithm, its best place would be some squad
manager, to control the movement of separate groups of units. Though
guidelines on the bot structure are not defined in Starcraft, most developers
either use UAlbertaBot or have similar approach. The UAlbertaBot has the
CombatManager module, which we are basing our tests on (Figure 3.1).

12

<<singleton>> <<singleton>>
GameManager InformationManager
+update () : void +update () : void
+onUnitDestroy(): void +onUnitDestroy(): void
<<singleton>> <<singleton>> <<singleton>> <<singleton>> <<singleton>> <<singleton>>
CombatManager BaseManager ProductionManager WorkerManager UnitInfoState MapGrid
+update () : void +update(): void +update () : void +update () : void +update(): void +update () : void
+onUnitDestroy(): void +onUnitDestroy(): void +onUnitDestroy(): void +onUnitDestroy(): wveoid +onUnitDestroy(): void +onUnitDestroy(): void
. [| | .
MicroManager Squad Base 6 0 WorkerData
. - . <<singletenz> BuildOrderQueue .
+update () : void +update () : void +update () : void BuiIdingManager +update () : void
+onUnitDestroy () : wvoid +onUnitDestroy () : void +onUnitDestroy () : wvoid +update () : void +onUnithestrov(): vold
+update () : void +onUnitDestroy () : void
+onUnitDestroy () : void I
) ! — ‘
0 i 0 i
MicroUtil ClassMicroManager BuildingPlacer BuildingData MetaType BuildOrderTtem
+update () : void +update () : void +update () : void +update () : void +update () : void +update () : void
+onUnitDestroy () : wvoid +onUnitDestroy () : void +onUnitDestroy () : void +onUnitDestroy(): void +onUnitDestroy(): void +onUnitDestroy(): wvoid
Building
+update () : void
+onUnitDestroy(): void

€1

Figure 3.1: Dave Churchill’s UAlbertaBot structure

T

JeULIO} AIRIQI]

3. LIBRARY DESIGN

3.2 Library architecture

Now it is time to check the class structure. Overall, the project consists of 23
classes. The most crucial ones are: AbstractGroup, ActionGenerator, Combat-
Simulator, FEvaluationFunction, GameNode, GameState, MCTSCD, Region-
Manager and UnitInfoStatic (see Figure 3.3). These are the absolute core of
the library, and we should examine each of them.

AbstractGroup. This class keeps the parameters of the abstract group,
where all units of the same type and from the same region are joined. We
cover the strategy decomposition in the following chapter. Aside from afore-
mentioned specification, the group also has to note the order to be executed,
the average hit points, size of the group, and the frame bounds, in which the
group will exist.

ActionGenerator is responsible for noting all possible actions for the
player and his army, and retrieve different sets of actions. The actions could
have the following parameters: number, randomness, bias, player and abstrac-
tion level.

CombatSimulator. Whenever in the search there is a situation, where
two rival groups collide, the outcome is resolved in a combat simulation.
This is an interface, because there are different approaches to the simulation:
Target-Selection Lanchester’s Square Law Model (CombatSimLanchester), Sus-
tained Damage per Frame (DPF) Model (CombatSimSustained) and Decreas-
ing DPF Model (CombatSimDecreased)[16].

EvaluationFunction is a simple yet important class for the search. In
our implementation it evaluates the number of units of each type times the
”destroy score”, the amount of score points awarded the player gets for the
unit kill (at the end of the match).[9]

GameNode is part of the search core. It represents the tree node, and
holds many parts related to evaluation, such as: actions (what actions are
to be executed if player is at this node of the tree), totalEvaluation (a nu-
merical representation of how advantageous current actions are), totalVisits
(how many times the node has been visited), gameState (what is the actual
situation on the map when the node is visited) and actionsProbability (how
likely it is to have the selected actions appear in the game). totalVisits is the
crucial point to evaluate the search tree before the simulation.

GameState is a view of the actual game. First of all, it is the army of
both sides, that has to be reflected in the state. Next, there are the regions
in combat, to check the expected end frame of the current state and, con-
sequently, be able to forward the game state in future. This bit contributes
to the Considering Durations part of the algorithm name.

MCTSCD is the search itself. It is controlled by the depth, number of
iterations and maximum simulation time. All these values have to be provided
by the user. All these parameters are discussed in the section 4.3.

14

3.2. Library architecture

<<Interface=>
CombatSimulator

timeToKillEnemy : int
timeToKillFriend : int
extraTimeTokKillEnemy : int
extraTimeToKillFriend : int

+ clong() : CombatSimulator®

+ sortGroups()

+ canSimulate() : bool

+ getCombatLength({army)

+ simulateCombatiarmylnCombar, army, frames)
+ removeGroup()

+ removeAllGroups()

+ removeAl MilitaryGroups()

+ removeHarmlessindestructibleUnits()

I I

I I

i :
~ ~

CombatSimSustained

CombatSimDecreased

+ clonel) : CombatSimulator®
+ getCombatLength{army)
+ simulateCombatiarmyIinCombar, army, frames)

+ clone() : CombatSimulator
+ getCombatLengthiarmy)
+ simulateCombatiarmyinCombar, army, frames)

~
CombatSimLanchester

- winner :int
- combatLength : int
- easyCombat : bool

+ clone() : CombatSimulator*®
+ getCombatLengthlarmy)
+ simulateCombatiarmylnCombar, army, frames)

Figure 3.2: Combat simulation design class model

RegionManager is a static entity (not in terms of C++ though). An
object of this class has to be created once, but is used throughout the game.
It represents the regions, chokepoints and all that is connected to them. It
helps all other modules get instant information about the map, such as:

e What is the region, the Id of which we dispose (regionId).
e What is the id of the given region (regionFromlId).
e Given X and Y coordinates, what region it is (regionldMap).

e same applies to chokepoints

UnitInfoStatic. Similar to the previous class, this one is fixed after
its creation, but provides useful information about all the available units in

15

3. LIBRARY DESIGN

the game. It offers the following information: typeDPF (a mapping from
unit types to their damage output), DPF (similar mapping, but in regards
to ability to attack air and/or ground units) and HP (hit points against air

and/or ground attacks).

MCTSCD

- depth :int
- iterations @ int
- maxSimTime : int

GameNode

+ MCTSCD{maxDepth, simulations, maxSimulationTime, evalFunc)
+ start{gameState) : playerActions_t

ActionGenerator

AbstractGroup

+ _player/_isFriendly : bool
+ lastAction : playerActions_t
+size:int

+ unitType :int

+ actions : vector<playerActions_t=
+ totalEvaluation : double

+ totalVisits : int

+ parent : GameNode

+ children : vector<GameNode>

+ gameState : GameState

+depth :int

+ player : int

+ moveGenerator : ActionGenerator
+ nextPlayerinSimultaneousNode : int
+ actionsProbability : double

+ unitNumber : int
+ region : int

+ getNextAction()
+ getRandomAction()
+ getUniqueRandomAction()

+ order : int

+ targetRegion : int
+ endFrame : int

+ startFrame : int

+ createChild(action)

+ bestChild{maxDepth)
+ nodeValue(node)

+ deleteAllChildren()

+ isTerminal()

+ GameState(CombatSimulator)

+HP

+ getBiasAction(+
+ getMostProbAJctionU Fili ot + E%(B:E{}
+ getMextActionProbability(double& prob) + eGreedyl()
+ getHighLevelFriendlyActions() + eGreedylnformed()
+ getHighLevelEnemyActions()
+ getLowlLevelFriendlyActions()
+ getLowLevelEnemyActions()
+ getSparcraftFriendlyActions()
+ getSparcraftEnemyActions()
+ getLowlLevelActions(BWAPI::Unitset units) AbstractGroup
+ getSparcraftActions(BWAPIL:Unitset units)
+ unitType
+ unitNumber
GameState EvaluationFunction + region
+ order
+army_t army + evaluate(gameState) : float + targetRegion
+ _regionsinCombat : set<int> + endFrame

+ startFrame

UnitlnfeStatic

RegionManager

+ typeDPF : vector<vector<double>>
+ PDF : vector<DPF_t>
+ HP : vector<HP_t>

<<<Interface>>>
CombatSimulator

+ regionld

+ regionFromlid

+ regionldMap

+ distanceBetweenRegions
+ chokePointld

+ chokePointFromld

+ onlyRegions : bool

+ getCombatLength{army_t) : int

+ simulateCombat{armylnCombat, army, frames) : void

+ initRegions() : void
+ getMearestRegion()

16

Figure 3.3: Class diagram

3.3. Algorithm structure

3.3 Algorithm structure

The backbone of the algorithm developed by Uriarte and Ontanén is on the
Figure 3.4 [13].

The core of the algorithm is the MCTSCD class. It performs the search
itself based on possible actions in the GameNode and the game estimate from
EvaluationFunction.

Building block of the search tree is the GameNode. Every GameNode takes
care of the actions (order-region bundle), an evaluation of the current game
state, number of visits of the node, the evaluated GameState and identification
of whose turn it is. This class aggregates the game situation and possible
actions in form of GameState and ActionGenerator respectively.

The GameState class is responsible for the representation of the game
in terms of army and regions that are in combat, ongoing or in the future.
GameState uses CombatSimulator interface to approximate the result of com-
bats that are to happen in that state.

As already stated, the CombatSimulator interface helps with estimation
of the combat outcome. Currently, one of the following implementations of
the interface could be selected: CombatSimLanchester, CombatSimSustained
and CombatSimDecreased (see Section 3.2).

17

31

GameNode

MCTSCD

- depth : int
- iterations : int
- maxSimTime : int

+ totalVisits : double
+ parent : GameNode

+ MCTSCD{maxDepth, maxSimulations, maxSimulationTime, evaluationFunction)

+ start{gameState): playerActions_t

------------ | GEG R e m————
) + depth :int

+ player : int

+ prob : double

<<ysess >

I
w

-—----

RegionManager

+ regionld

+ regionFromld

+ regionldMap

+ distanceBetweenRegions
+ chokePointld

+ chokePointFromlid

+ onlyRegions : bool

+ initRegions() : void
+ getNearestRegion()

|

+ actions : vector<playerActions_t>
+ totalEvaluation : double

+ children : vector<GameNode>
+ gameState : GameState

+ moveGenerator : ActionGenerator
+ nextPlayerlnSimultaneousNode : int

EvaluatienFunction

+ evaluate(gameState) : float

GameState

AbstractGroup

+army_t _army
+ regionsinCombat: set<int>

+ unitType @ int

+ unitNumber : int
+region : int

+ order : int

+ targetRegion : int
+endFrame :int

+ startFrame : int
+ HP: float

+ GameState{CombatSimulator)

<<<Interface>>>
CombatSimulator

+ getCombatLength(army_t): int
+ simulateCombat{armylnCombat, army, frames): void

Figure 3.4: Search class diagram

ActionGenerator

+ isFriendly : bool

+ getNextAction()

+ getRandomAction()

+ getUniqueRandomAction()

+ getBiasAction()

+ getMostProbAction()

+ getNextActionProbability(double& prob)

+ getHighLevelFriendlyActions()

+ getHighLevelEnemyActions()

+ getlowlevelFriendlyActions()

+ getLowlLevelEnemyActions()

+ getSparcraftFriendlyActions()

+ getSparcraftEnemyActions()

+ getlowlevelActions(BWAPL:Unitset units)
+ getSparcraftActions(BWAPI:Unitset units)

€

NOISHA AYVYdIT

CHAPTER 4

Implementation

Combat is a gist mechanic in most RTS games. During a combat each player
commands his units to defeat the opponent. Thus, a unit’s positioning could
be a critical moment of the match. The unit movement planning is at the core
of general army strategy. There could often be such circumstances, in which
both rivals have almost the same resources, map control and army size. That
would be the case when positioning determines everything.

To address the location of the army properly we represent the map as a
graph, where each adjacent region (set of tiles) corresponds to a graph node.
Strategic decisions are made across the graph. Furthermore, instead of consid-
ering every individual unit, we classify the same unit type on the same region
as one entity. The entities in the same region (graph node) are recognized as
being next to each other, and those in different regions — not being able to
reach one another. The map from the Figure 4.1 would have 20 regions, 5 of
which are not connected by land, which gives us a graph with 15 nodes, and
5 separate ones. Those nodes are only accessible by air units.

Figure 4.1: Map graph

19

4. IMPLEMENTATION

In order to prevail in the RTS game it is necessary to evaluate the vast game
state space of all possible moves. This considers not only building placement
and unit recruiting, but also the movement of every unit. In Starcraft, there
is a virtual 200 units upper bound (400 for Zerg race) per player, which means
4200 moves per frame, or 4200 x 24 x 60 moves per minute. Obviously, such
complexity must be overcome with some abstraction. We offer an abstract
representation of the game state with army and time bounds, which could be
shifted to the future state through simulation. This helps to greatly decrease
the branching factor in the game-tree search.

It is important to remark the high- and low-level representation of the
movements. Initially, all attack units are added to the game state. They are
joined into groups, and mapped to the map graph. Secondly, the search with
simulations is performed on the game node, unfolding the tree as the search
proceeds. And finally, the set of actions is returned, which has to be assigned
back to the corresponding groups that were considered in the first step. This
gives us the deliberation of the abstract state and exactness of the detached
groups.

Every group must be uniform in terms of type and place. So all together
group has to store: owner, type of unit, unit number, average health, cur-
rently performed action, start frame, end frame and the region (see Figure
3.3). Based on these and other features the search is able to perform proper
simulation and reasoning.

The small battle in Starcraft could look like the one on the Figure 4.2.
Clearly, 21 units are far from the upper bound (200 per player). But granted
that every unit could move, stay idle or attack, it gives us total 32! actions
just on this small field! Conversely, in abstract domain this is just 32 actions.

Figure 4.2: Unit abstraction

20

4.1. Negamax algorithm planning

4.1 Negamax algorithm planning

As our library is going to offer a unit movement algorithm, in order to show
the benefits and advantages we decided to compare it against some simpler
algorithm.

After extensive research, it became clear that the Negamax algorithm was
right for the job.

We have a slightly modified Negamax to correspond to RTS game real-
ity. Negamax search is a variant form of Minimax search that relies on the
zero-sum property of a two-player game.[19] Thus, if our move has the same
consequences as opponent’s move, but with negative sign, then it’s a zero-sum
game. In most situations of the game, Starcraft is a zero-sum game (with rare
exceptions, which could be fixed with proper evaluation function). But we are
focusing on the movement search, or so to say, strategic positioning, which is
clearly a zero-sum.

The heuristic value of the node is evaluated as the number of our units
in the region versus the number of enemy units. This allows us to have the
simplified strategy of arranging our army in such a way that we would have
the dominance at the region. That will help to crush the enemy locally and
have the advantage afterwards.

The Negamax search task is to search for the best node score value of the
player who is playing from the root node. The pseudocode below (Code 4.1)
shows the Negamax base algorithm|[3], where we could limit the maximum
search depth:

Code 4.1: Negamax pseudocode

1 function negamax(node, depth, color)

2 if depth = 0 or node is a terminal node

3 return color % the heuristic value of node
4

5 bestValue := —o0

6 foreach child of node

7 v := —negamax(child , depth — 1, —color)

8 bestValue := max(bestValue, v)

9 return bestValue

The root node inherits its score from one of its children. The child node
that ultimately sets the root node’s best score also represents the best move to
play[3]. Although this Negamax function shown only returns the node’s best
score as bestValue, our Negamax implementation keeps both the evaluation
and the node, which is keeping the game state value. In the basic Negamax
the only important information from non-root nodes is the best score. And
the best move isn’t necessary to retain nor return for those nodes.

21

4. IMPLEMENTATION

The calculation of the heuristic score could be perplexing. At first, the
color of the user has to be provided. This is the arithmetic detail to alternate
the heuristic result. In this implementation, the heuristic value is always cal-
culated from the point of view of player A, whose color value is one. Higher
heuristic values mean more favourable situations for player A. This behaviour
is similar to the regular Minimax algorithm. The heuristic score is not ne-
cessarily the same as a node’s return value, bestValue, due to result negation
by Negamax and the color argument. The Negamax node’s return value is a
heuristic result from the point of view of the node’s current player.

Alterations of Negamax may omit the color parameter, which is our case.
The heuristic evaluation function returns values from the point of view of two
players, noting the size of the army for every player[3]

4.2 Planning based on MCTS Considering
Durations

Monte Carlo tree search relies on the Monte Carlo method. The idea be-
hind the method is to continuously sample random elements to obtain res-
ults. It is using randomness to address deterministic problems. Additionally,
Monte Carlo methods can be used to solve any problem having a probabilistic
interpretation.[20]

Generally, Monte Carlo methods have the following structure:

Define a domain of possible inputs.

Generate inputs randomly from a probability distribution over the do-
main.

Perform a deterministic computation on the inputs.

Aggregate the results.

Even though the Monte Carlo tree search is based on the Monte Carlo
principle, it requires a search tree. Instead of just running random simula-
tions from the current node, it uses the results of the simulations to compare
simulations and propagate the search recursively through the search tree.

MCTS is an alternative to Negamax, that helps to oppose the high branch-
ing factor. The initial idea of the MCTS is to simulate the current state of
the game until some point, which could be final result or intermediate, but
defined step. The key in the algorithm is to balance between the exploration
and exploitation of the tree. In these terms, exploration is looking into un-
discovered subtrees, and exploitation is expanding the most promising nodes.
There is a variability of policies to simulate the game until the logical stop,
the default one being the uniform random actions of the player.[13]

22

4.2. Planning based on MCTS Considering Durations

What is impressive about the MCTS is that it is able to run almost indef-
initely (as it explores the great state space), and be stopped at any moment.
This behaviour resembles the human thinking process, when we are allowed
to consider the problem for some time, and then give the final result. Pos-
sibly, the result would have been better, if given extended time, but it is the
constraint that we always have to face.

Ability to "think” and stop is the biggest difference between Negamax and
MCTS. To balance out the Negamax, we must manually adjust the depth of
the search to fit into computation bounds.

The other positive difference of MCTS is the use of heuristic selection to
explore the search tree. It does not unroll all possible results, which helps to
avoid potentially poor decisions. If we know, that some move is highly un-
desired, it is indifferent what could be done out of it. This is the essential part
of what makes the algorithm so effective in finding the favourable solutions.

Code 4.2: MCTS Considering Durations

1 function MCTSSearch(so)

2 no := CreateNode(sg, 0)

3 while withing computational budget do
4 nl := TreePolicy (ng)

5 4 := DefaultPolicy (nl)

6 BACKUP(nl, 4)

7 return (BestChild(ng)).action

8

9 function CreateNode(s, ng)

10 n.parent = ng

11 n.lastSimult := ng.lastSimult

12 n.player := PlayerToMove(s, n.lastSimult)
13 if BothCanMove(s) then

14 n.lastSimult := n.player

15 return n

16

17 function DefaultPolicy (n)

18 lastSimult := n.lastSimult

19 S = n.s

20 while withing computational budget do
21 p := PlayerToMove (s, lastSimult)
22 if BothCanMove(s) then

23 lastSimult := p

24 simulate game s with a policy and player p
25 return s.reward

23

4. IMPLEMENTATION

4.3 Library usage

To start with the library application, it would be needed to import header
files and create corresponding classes of the search.

There is an option to provide several arguments for the Monte Carlo search:
depth, number of iterations and maximum simulation time. The depth limits
how deep the search should go down the tree. Upon reaching this limit, the
node will be considered terminal. Number of iterations tells us how many
children will the root node have. This parameter sets how many additional
tries of the search are going to be performed. Depending on the computational
budget this could be high in case the machine is able to perform far more
operations than it is necessary for the game, or vice versa.

All these arguments are to be provided to the MCTSCD on initialization.
The search object has to be created once, and then invoked every time the
user wants to have strategic results. It is up to him, if he wants the algorithm
to give suggestions every frame, or on some defined intervals. For example, it
is possible to run very long search, and rely on its results for several frames,
as it would make predictions further to the future, than the short one. On the
other hand, it is possible to run short searches every frame, to keep the army
ideal positioning up to date. The first approach might need some computation
rebalance on the slow machine.

24

CHAPTER 5

Testing

The library testing has been performed with UAlbertaBot, which offers a
basic bot structure, has good architecture and is easy to modify. It has been
empirically proven that this framework is a great place to start. Many bot
creators got inspired by it[12].

5.1 Case study

For the proper placing, we had to investigate the structure of both UAlbert-
aBot and the search, how those two could be merged effectively with the least
amount of effort for the end user.

Because our search does not use the squads of the user, it is necessary to
bind the user squad to the internal unit grouping.

The CombatManager module (see Figure 5.1) of the UAlbertaBot is the
correct place to start with search integration. It serves a function of controlling
the combat units of a player. The execution of modules is hierarchical: the
BWAPI library is calling the onFrame function of UAlbertaBot, which gets
propagated to GameManager (Figure 3.1) and then to CombatManager. The
manager has access to the squadData, a set of all squads of the player. This
gives the control over the unit distribution across groups, which is exactly
what is needed for the search.

The division of units into groups inside the search is based on unit type and
the region. The closer the squad formation is to the group, the more precise
army coordination is achieved. Given the unit set the search does the mapping
from to internal structure on its own, but the user has to keep track of the
set, as it will have to be joined with the returned actions correspondingly.
The more squad units mapping conforms with unit type and place, the better
the search results are. Thus, we decided to split the army into several sets,
based on their location. When the result is computed, it is assigned to the
corresponding squad.

25

5. TESTING

Figure 5.1: Combat manager diagram

<<Singleton>>
CombatManager

<<Singleton=>

- dDat:
GameManager N ainis

+ update() : void
+ onUnitDestroy() : void + update() : void

+ onUnitDestroy() : void

- getMainAttackLocation() : void

Squad MicroManager
+ update() : void + update() : void
+ onUnitDestroy() : void + onUnitDestroy() : void

The updateAttackSquads method is the proper place to embody the search
results. The result of each algorithm is the vector of locations corresponding
to the vector of squads that the player currently owns.

5.2 Test setup

As long as the game is partially observed, the MCTSCD would not be able
to give decent results on the strategy. Thus, we would enable the whole game
information from the BWAPI, so bots would see each other from the very
beginning, and would not need to scout the map.

This fog of war is another complexity dimension of the game, which could
be partially solved by thorough map investigation. But that would require
an additional manager to be written (or the old one improved). Still, to
refine the results of the matches and avoid additional random element in the
measurements, we enable the entire map vision for both opponents.

Testing has been performed on the following basis. Both algorithms are
compiled into bots, and run to play against the in-game Al. The UAlbertaBot
is able to outplay the default version of the bot, but offers a scripted behaviour.
This could be noticed, remembered and exploited. With the search based
on simulation, the results are not always victorious, but they are much less
exploitable (if at all). Thus, the players will benefit from more advanced play,
and Al will become more general.

26

5.3. Results

We decided to make 160 iterations of competitive play to show comparative
performance of the MCTSCD and Negamax.

It is important to select a proper map to compare the performance of the
searches. Ideally the map graph has to be fully connected and have the highest
distance between the nodes, but Starcraft maps are limited in size (128 x 128
tiles because of the memory restrictions — the game was released in 1998).
In addition to that, the map has to offer some path finding challenges and
strategic areas which would allow players deliberate tactical formations. All
in all, we selected the maps that are as close to the ideal, as possible. They
have many regions, and these regions are mostly connected.

In every match bots play the same race (Zerg) and build order (that means
they build same buildings and recruit the same units). This is done to ensure
as minimal random factor, as possible.

The in-game Al is set to play Protoss race. It has stable build order and
doesn’t depend on player actions. This is also selected to decrease randomness.

5.3 Results

Let us discuss the results of the comparison. The bots were set to log the frame
at which the game was finished (frame), the total number of points for created
units (unit score), the total amount of points for killed units (kill score) and
the winner. Each bot played 160 games, statistic data was cleared from outliers
— Negamax was not able to reach his enemy several times due to UAlbertaBot
limitation. Based on the winning data, the win ratio for MCTSCD is exactly
50% and 23,7% for Negamax. Thus, we can safely conclude that MCTSCD
is twice better than Negamax for this case.

5.3.1 Unit score

The unit score metric shows us the number of points for all our units at the
end of the game. The meaning behind this result is how well did the bot
expand during the game. In other words, how well did it survive the enemy
attacks.

As could be noted from Figure 5.2, the Monte Carlo method is leading
until the 30000 frame mark (21 minutes on normal game speed). Moreover,
it finishes the game sooner with bigger number of units (having fewer units
lost). It is an incontestable leader in this case.

5.3.2 Kill score

On the contrary, the kill score metric shows how many units were killed by
the bot. And again, the MCTSCD has bigger score up to 28000 frames and
its average converges with Negamax at 40000 frames (see Figure 5.3).

27

5. TESTING

As we can see, there is a clear split of data into two parts for each algorithm.
This is due to the success in the battle — if you won the battle, you are more
likely to win the next one and eventually the whole game. Likewise, losing
a battle brings more threats to lose the game. Such split was not present
for unit score, as making more units doesn’t directly influence the number of
units to be made afterwards.

Higher kill score of the Negamax is not an index of better performance
in the long game. As its results are shifted to the right, this means that
algorithm failed to finish the game earlier, therefore it tortures the opponent
longer.

28

5.3. Results

Unit score to frame unit score / frame
|]
4 Negamax MNegamax trend * MCTSCD MCTSCD trend
&
. ’
BO000 2. &
Y
.
F Y - .
i L]
A A Y " e
- []
40000 ‘ﬁ'; o, 4 L
i o - A
a® . " . L"
A® e
1#‘ + [
"‘t " u:‘.-. P
o -
20000 o te .'.'H." A
£ L{.“-‘ A 4
fou 4t .
L] ™ Fy
" 20000 40000 60000

Figure 5.2: Unit score per frame

Kill score to frame kill score / frame
4 Negamax MNegamax trend & MCTSCD MCTSCD trend
i
0000
ry .
'y &
A
. &
. -
& A . | B
40000 A &
ry
"0
a *a he -
. ¢ . | e ®
“‘. e
20000 LY WA — S u s
A Y kl 4 g e @8
-’A" b A .; . . “
&
o T s, LA
“ .‘4 & @il
-] 2%, . A
K s 20000 - 40000 60000

Figure 5.3: Kill score per frame

29

Conclusion

The purpose of the thesis was to make a tool for Starcraft bot development,
specifically, library for Monte Carlo Tree Search Considering Durations al-
gorithm and test it against an alternative.

The key result is that researchers can now have an easy access to state
space search tools, and they can focus on different aspects of the game AlI;
there are numerous challenges to be solved. The task is going to be completed
clearly and effortlessly saving time and efforts for more inspiration.

As a part of our future work, we would like to put some additions to
the library. There are many future possible extensions for the library, as it
just began to exist. Several algorithms were developed in the recent past:
Alpha-Beta Considering Durations, Portfolio Greedy search, Upper Confid-
ence Bound and others. As RTS games have high dimensionality, there are
many places for algorithm application.

We would like to add different measurement and tuning possibilities to
the library, so that every parameter of the algorithm and all that is connected
could be easily reachable, logged and analyzed.

Finally, we would definitely collaborate with our clients for the future re-
search. As the purpose of the product is to be used by other people extensively,
it has to be convenient and understandable as much as possible. In addition
to that we would have everything thoroughly commented and documented as
this helps with extension of the problem and lets new people understand what
is going on behind the scenes.

31

Bibliography

Starcraft Al. Starcraft AI, the resource for custom starcraft brood war
Als, May 2017. URL: http://www.starcraftai.com.

arXiv. arxiv.org e-print archive, May 2017. URL: https://arxiv.org.

Dennis M. Breuker. Memory versus Search in Games. PhD thesis,
Maastricht University, October 1998.

Michael Buro. Real-Time Strategy Games: A New Al Research Chal-
lenge. In IN PROCEEDINGS OF THE 18TH INTERNATIONAL
JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, pages
1534-1535. International Joint Conferences on Artificial Intelligence,
2003.

Dave Churchill, May 2017. URL: https://github.com/davechurchill/
ualbertabot.

David Churchill, Mike Preuss, Florian Richoux, Gabriel Synnaeve, Al-
berto Uriarte, Santiago Ontafinén, and Michal Certicky. StarCraft Bots
and Competitions, pages 1-18. Springer International Publishing, Cham,
2016. URL: http://dx.doi.org/10.1007/978-3-319-08234-9_18-1,
doi:10.1007/978-3-319-08234-9_18-1.

Igor Dimitrijevic. BWEM library, May 2017. URL: http://

bwem.sourceforge.net.

Fobbah. Bwapi standard add-on library (”"v2”), May 2017. URL: https:
//github.com/Fobbah/bwsall

Adam Heinermann. An API for interacting with Starcraft: Broodwar,
May 2017. URL: http://bwapi.github.io|

33

https://github.com/davechurchill/ualbertabot
https://github.com/Fobbah/bwsal
http://dx.doi.org/10.1007/978-3-319-08234-9_18-1
https://arxiv.org
http://dx.doi.org/10.1007/978-3-319-08234-9_18-1
http://www.starcraftai.com
https://github.com/Fobbah/bwsal
http://bwapi.github.io
https://github.com/davechurchill/ualbertabot
http://bwem.sourceforge.net
http://bwem.sourceforge.net

BIBLIOGRAPHY

[10]

[11]

34

Santiago Ontandén, Gabriel Synnaeve, Alberto Uriarte, Florian Richoux,
David Churchill, and Mike Preuss. A Survey of Real-Time Strategy Game
AT Research and Competition in StarCraft. IEEFE Trans. Comput. In-
tellig. and AI in Games, 5(4):293-311, 2013. URL: http://dx.doi.org/
10.1109/TCIAIG.2013.2286295, |[doi:10.1109/TCIAIG.2013.2286295.

Gabriel Synnaeve, Nantas Nardelli, Alex Auvolat, Soumith Chintala,
Timothée Lacroix, Zeming Lin, Florian Richoux, and Nicolas Usunier.
Torchcraft: a library for machine learning research on real-time strategy
games. arXiv preprint arXiw:1611.00625, 2016.

SSCAIT team. SSCAIT: Bots and Score, May 2017. URL: http://

sscaitournament.com/index.php?action=scores.

Alberto Uriarte and Santiago Ontanén. Game-tree search over high-level
game states in rts games. In AIIDFE, 2014.

Alberto Uriarte and Santiago Ontanén. A benchmark for starcraft intel-
ligent agents. In AIIDE, 2015.

Alberto Uriarte and Santiago Ontanén. Improving terrain analysis and
applications to rts game ai. In AIIDE, 2016.

Alberto Uriarte and Santiago Ontanén. Combat models for RTS
games. CoRR, abs/1605.05305, 2016. URL: http://arxiv.org/abs/
1605.05305.

Oriol Vinyals. DeepMind and Blizzard to release StarCraft
IT as an Al research environment, May 2017. URL: https:
//deepmind.com/blog/deepmind-and-blizzard-release-starcraft-
ii-ai-research-environment.

Wikipedia. The Free Encyclopedia, May 2017. URL: https://
en.wikipedia.org/wiki/Big_datal

Wikipedia. The Free Encyclopedia, May 2017. URL: https://
en.wikipedia.org/wiki/Negamax.

Wikipedia. The Free Encyclopedia, May 2017. URL: https://
en.wikipedia.org/wiki/Monte_Carlo_method.

https://deepmind.com/blog/deepmind-and-blizzard-release-starcraft-ii-ai-research-environment
https://en.wikipedia.org/wiki/Big_data
https://en.wikipedia.org/wiki/Monte_Carlo_method
http://arxiv.org/abs/1605.05305
https://en.wikipedia.org/wiki/Monte_Carlo_method
https://deepmind.com/blog/deepmind-and-blizzard-release-starcraft-ii-ai-research-environment
http://arxiv.org/abs/1605.05305
https://en.wikipedia.org/wiki/Big_data
https://en.wikipedia.org/wiki/Negamax
https://deepmind.com/blog/deepmind-and-blizzard-release-starcraft-ii-ai-research-environment
http://sscaitournament.com/index.php?action=scores
http://dx.doi.org/10.1109/TCIAIG.2013.2286295
http://sscaitournament.com/index.php?action=scores
http://dx.doi.org/10.1109/TCIAIG.2013.2286295
https://en.wikipedia.org/wiki/Negamax
http://dx.doi.org/10.1109/TCIAIG.2013.2286295

APPENDIX A

Acronyms

MCTSCD Monte Carlo Tree Search Considering Durations
AT Artificial Intelligence

RTS Real Time Strategy

BWTA Broodwar Terrain Analyzer

BWAPI Brood War Application Programming Interface

DPF Damage per Frame

35

APPENDIX B

Contents of enclosed CD

readme.tXbt . ovvintiin i, the file with CD contents description
ot o PP the directory of source codes
t staralgoooiiiiiiii i implementation sources

thesisS...oovvvvn.... the directory of IXTEX source codes of the thesis
L= v PO the thesis text directory
Lthesis.pdf the thesis text in PDF format

	Introduction
	Challenges

	Aim of the thesis
	Thesis structure

	Resources and libraries overview
	Library design
	Library format
	Library architecture
	Algorithm structure

	Implementation
	Negamax algorithm planning
	Planning based on MCTS Considering Durations
	Library usage

	Testing
	Case study
	Test setup
	Results

	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed CD

