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Abstrakt / Abstract
Cílem této práce je navrhnout řízení

laboratorní soustavy skládající se z ak-
tivně poháněného vozíku s pasivně při-
pojeným vozíkem a kyvadelem. Síťová
řídící architektura je použita pro přená-
šení řídícího a zpětnovazebního signálu
prostřednictvím internetového komu-
nikačního protokolu. Pro laboratorní
soustavu byl odvozen a identifikován
matematicky model za účelem návrhu
řízení soustavy. Pro potlačení vibrací
flexibilních mechanických části soustavy
byl použit nový typ tvarovače signálu s
distribuovaným dopravním zpožděním,
jenž byl v inverzní formě zapojený ve
zpětné vazbě. Proporcionálně derivační
regulátor pro řízení polohy vozíku je na-
vržen s ohledem na dopravní zpoždění
způosbené přenosem signálů internetem
a tvarovačem signálů ve zpětné vazbě.

Klíčová slova: Potlačvání vibrací,
Tvarovač signálů, Řízení přes inter-
net, Dopravní zpoždění, Identifikace
systému, Kompenzace tření, Stavová
formulace

The goal of this thesis is to design a
control system of a laboratory set-up
that consists of an active cart with a
passively connected cart and pendulum.
The networked control architecture
is used to transmit a control signal
together with a feedback signal via
Internet communication protocols. A
mathematical model of the laboratory
set-up is derived and subsequently iden-
tified for the control design purposes. A
novel type of zero vibration shaper with
distributed time-delay is applied in an
inverse form in the feedback path in
order to suppress oscillations of flexible
parts. A classical proportional deriva-
tive controller is designed with respect
to introduced time-delays caused by
transmission and signal shaper.

Keywords: Vibration Suppression,
Signal Shaper, Networked Control Sys-
tem, Time Delay, System Identification,
Friction Compensation, State-Space
Representation
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Chapter 1
Introduction

Vibration suppression is an important and extensively studied subject in most engineer-
ing fields. In the most cases, vibrations are undesirable phenomena, mainly because
they can substantially reduce machine life or even cause life-threating situations, e.g.
machine failure. The vibration suppression control techniques can be divided into two
major categories, active and passive techniques. The active approaches usually con-
sist of the state feedback controllers, that are designed to dampen system’s vibrations
at desired frequencies. Whereas, the passive approach is based on the shaping of the
reference signal in such a way that the energy supplied to the system does not in-
duce system’s vibrations. This technique, also known as Signal Shaping, is studied and
applied for a laboratory set-up in this thesis.

Signal shaping has been applied in many control systems with flexible mechanical
parts, such as cranes, industrial robots, manipulators, coordinate measuring machines
or hard-drive seekers [1], [2]. The concept of signal shaping was first published as a
Posicast control, by O.J. Smith in 1950’s [3]. Smith’s idea was revisited in 1990’s by
Singer, Seering and Singhose [4], [5], who proposed concepts of zero-vibration (ZV)
shapers and developed more robust types of signal shapers. Recently, a novel type of
signal shapers with distributed time-delay (DZV) was proposed by Vyhlídal, Kučera
and Hromčík [6], [7]. Same authors also proposed a novel control architecture that in-
corporates inverse form of DZV signal shaper directly into the feedback path. The main
benefit of this architecture is possibility to suppress vibrations excited by disturbances,
that is not possible to achieve via classical architecture with signal shaper as reference
command filter [8], [9]. However, any inverse form of the signal shaper in the feedback
path introduces the undesirable time-delayed feedback and this aspect should be taken
into account during the control design. In this thesis the novel DZV shaper and the
control architecture with an inverse shaper will be studied and experimentally tested
on the laboratory set-up with flexible mechanical parts.

1.1 Motivation
The motivation of this thesis is to experimentally verify novel modifications of signal
shaping technique proposed in [6], [8] on the laboratory set-up, moreover, the possibility
of controlling laboratory set-up remotely via Internet communication protocols will be
experimentally tested. The Internet remote control has recently become more appealing
in control applications since the infrastructure of the Internet network has rapidly
evolved during the last two decades. The signal transmission via Internet network has
improved so that its speed and reliability is now sufficient enough for most real-time
control applications. It is now even possible to remotely control systems from almost any
distances at any time. Remote control is especially convenient for the controlled systems
with components that cannot be connected via classical point-to-point cables, however,
control over long distances naturally induces undesired communication time-delays that

1



1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
might negatively affect control performance. Another advantage of the remote control
is its flexibility, since control algorithm can be simply changed or updated on the remote
computer. This comes very handy at situations when control process has different and
frequently changed operational modes, for example a crane can operate with different
type of loads that changes overall dynamics of the system. The control algorithm can
be then simply switched to any specific operational mode.

1.2 Aims of Thesis
In this section the aims of the thesis will be presented and analyzed. The aims contain
the whole process of control engineering design from mathematical modeling to system
identification, control design, and their MATLAB development, which makes it a perfect
topic for a diploma thesis in Control Engineering field. The structure of the thesis was
designed from the following aims of thesis..Study the fundamental concepts of modern control theory : In this introductory

part are studied fundamentals concepts of modern control, that are applied for system
modeling of the laboratory set-up. Concepts such as state-space representation,
controllability, observability and the pole placement method are discussed. This part
is covered in Chapter 2..Study the time-delayed systems and Internet based control architectures : The
Internet based control architectures are becoming more popular in real-time control
applications. This type of architecture usually introduces a undesirable time-delay
phenomena, that can degrade overall control performance. Time-delay systems and
Internet based control are briefly studied in Chapters 3 and 5, respectively. Im-
plementation of networked control architecture via program MATLAB/Simulink is
presented in Chapter 7..Study the signal shapers technique for vibration suppression of the flexible me-
chanical parts : Signal Shaping is an effective method for vibration suppression of
flexible mechanical parts. There are many types of Signal Shapers and this thesis
focuses only one novel modifications of Zero Vibration shaper. This subject covers
Chapter 4..Derive and identify a mathematical model of the controlled system : For a proper
control design a mathematical model of the laboratory-set up has to be derived,
linearized and identified. This part also deals with compensation of system’s non-
linearities. This part is discussed in Chapter 6..Design control system with an inverse signal shaper in the feedback together with
delayed feedback by the transmission delay : In Chapter 8 is designed controller
together with signal shaper to control the laboratory set-up with communication
time delays..Experimentally verify designed control system and evaluate obtained results : In
final Chapter 9 are presented and discussed obtained experimental results.
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Chapter 2
Modern Control Theory

In this chapter, the fundamental concepts of modern control theory based on time-
domain approach for mathematical modeling of physical systems will be represented.
Concepts such as state-space representation, controllability, observability together with
methods for pole placement and state estimation are discussed.

2.1 State-Space Representation
The time-domain state space representation models a physical system as a set of input,
output and state variables represented as vectors that are related by a set of first-
order differential and algebraic equations written in matrix form. The state space
representation is suitable for modeling and analyzing systems with multiple inputs,
outputs and greater number of state variables. The state space representation greatly
simplifies the mathematical representation of systems of equations, since the increase
in the number of state variables, the number of inputs, or the number of outputs does
not increase the complexity of the equations, moreover, models are not restricted by
zero initial conditions and are applicable to linear and nonlinear, time invariant or time
varying systems, ([10], p.29, p.648).

2.1.1 State Space
The n-dimensional space whose coordinate axes consists of n-state variables is called
a state space, ([10], p.30). The state of a dynamic system is represented by a vector
of linearly independent state variables, this vector is known as state vector. The state
variables are the smallest possible subset of system variables that can represent the
entire state of the system at any given time. The state of the system for time t ≥ t0
can be completely determined from knowledge of the input u(t) for t ≥ t0 and given
state variables at time t = t0. Therefore, the future of the state is solely dependent
on the present state. The state-space representation for a given system is not unique,
except that the number of state variables is the same for any different state-space
representations of the same system. The dynamic system must involve elements that
memorize the values of the input for t ≥ t1. Integrators in continuous-time serve as
memory devices, the outputs of integrators can be considered as the variables that
define the internal state of the dynamic system, ([10], p.29, p.30).

2.1.2 State Space Equations
The linear, time-invariant system (LTI) with multiple-inputs m, multiple-outputs p and
n state variables is described by following state equations, ([10], eq.2-14,15)

ẋ(t) = Ax(t) + Bu(t), (2.1)

y(t) = Cx(t) + Du(t), (2.2)

3



2. Modern Control Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
where x(t) ∈ <n is called the state vector, u(t) ∈ <m the input vector, y(t) ∈ <p the
output vector, A ∈ <n×n the state matrix, B ∈ <n×m the input matrix, C ∈ <p×n
the output matrix, and D ∈ <p×m the direct transmission matrix, ([10], p.31). The
state equation (2.1) and the output equation (2.2) can be described by a block diagram
shown in Figure 2.1.

Figure 2.1. Block diagram of the LTI system represented in state space, (taken and mod-
ified from [10], Figure 2-14).

The eigenvalues of the state matrix A are the roots of the characteristic equation

M(s) = det(sI− A), (2.3)

where I ∈ <n×n is an identity matrix. The system’s stability can be determined by
roots’ location in the complex plane and stability criterion is defined as follows, ([11],
eq. 2.3)

{si ∈ C : <(si) < 0,M(s) = 0}. (2.4)

2.2 Controllability and Observability
Controllability plays a crucial role in stabilization of unstable systems by feedback or
in optimal control problems. A system is said to be controllable at time t0 if it is
possible by means of an unconstrained control vector to transfer the system from any
initial state x(t0) = x0 to an arbitrary final state x(tf ) = xf in a finite interval of time
tf < ∞. If every state is controllable, then the system is said to be completely state
controllable and if the system is completely state controllable it is guaranteed that any
state can be reached, however, that does not imply that any state of the system can be
maintained for an arbitrary interval of time, ([10], p. 675, 676). A controllable matrix
R(A,B) ∈ <n×n is defined as follows, ([10], eq. 9-55)

R(A,B) =
(

B
... AB

... . . .
... An−1B

)
. (2.5)

4



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3 Pole-Placement

A continuous-time system (2.1) is controllable if the rank of the controllable matrix
(2.5) equals to the number of state variables n or if column vectors of a controllable
matrix are linearly independent, ([10], p.677)

rank(R(A,B)) = n. (2.6)

Partially controllable system has both controllable and uncontrollable modes. Such
system is said to be stabilizable if the uncontrolled modes are stable and the unstable
modes are controllable. An example of uncontrollable system is a system that has a
subsystem that is physically disconnected from the input, ([10], p.688).

The concept of observability is very important for the state feedback control, since all
system’s state variables are required to construct the control signal. However, in prac-
tice some state measurement are often not accessible for direct measurement. Therefore,
the concept of observability is very important for estimation of the unmeasurable state
variables. The system is said to be completely observable if every state x(t0) = x0 can be
determined from the observation of y(t) = y over a finite time interval, t0 ≤ t ≤ t1, ([10],
p.682). If the system is completely observable, then every transition of the state eventu-
ally affects every element of the output vector. An observable matrix O(A,B) ∈ <n×n
is defined as, ([10], eq. 9-65)

O(A,C) =


C
...

CA
CAn−1

. (2.7)

A continuous-time system described by state equations (2.1) and (2.2) is observable
if the rank of the observable matrix (2.7) is equal to the number of state variables n,
([10], p.688)

rank(O(A,C)) = n. (2.8)

Partially observable system has both observable and unobservable modes. Such sys-
tem is called detectable if the unobservable modes are stable and unstable modes are
observable, ([10], p.688).

2.3 Pole-Placement
In the pole-placement design all closed-loop poles may be placed at any desired location
in the complex plane, however, placing all closed-loop poles requires availability of all
state variables. First the desired closed-loop poles are determined based on the control
design requirements such as transient-response, frequency-response, speed or damping
ratio, ([10], p.723). Next by choosing an appropriate gain matrix K ∈ <1×n, it is possible
to force the system to have closed-loop poles at the desired locations, provided that the
original system is completely state controllable, ([10], p.723).

For the system described by state equations (2.1) and (2.2) the control signal u is
determined by an actual state, ([10], eq. 10-2)

u = −K · x. (2.9)
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By substituting Equation (2.9) into (2.1) we receive a closed-loop control system

with no input and with target to maintain the zero output, ([10], p.724). This system
is described as follows, ([10], eq. 10-3)

ẋ(t) = (A− BK)x(t), (2.10)

Ã = A− BK,

ẋ(t) = Ãx(t). (2.11)

The stability and transient response are determined by the eigenvalues of new sys-
tem’s state matrix Ã and for properly chosen K the system (2.11) can be made asymp-
totically stable. If the system is not completely state controllable, but is stabilizable,
then it is possible to make the entire state stable by placing the closed-loop poles at
desired locations for controllable modes, ([10], p.728).

The selection of the closed-loop poles is a compromise between the speed of the re-
sponse of the error vector and the sensitivity to disturbances and measurement noises.
That is, if we increase the speed of error response, then the adverse effects of distur-
bances and measurement noises generally increase, ([10], p.732).

For SISO systems we can determine the feedback gain matrix K by Ackermann’s
formula, that is based on the Cayley-Hamilton theorem that states that every square
matrix over a commutative ring satisfies its own characteristic equation, ([10], p.730,
[11], p.11)

φ(Ã) = Ãn + α1Ãn−1 + . . .+ αn−1Ã + αnI = 0, (2.12)

Ackermann’s forumula is then defined as follows, ([10], eq. 10-18)

K =
(

0 0 . . . 0 1
)
R−1φ(A). (2.13)

2.4 State Observers
A state observer is a subsystem that estimates the state variables based on the measure-
ments of the output control variables. The state observer can be designed if and only
if the condition of observability (2.8) is satisfied. The notation x̂ defines the observed
state vector that is often used in conjunction with the state feedback to generate the
desired control vector. The main purpose of state observer is to reconstruct the state
vector of the plant, therefore, the observer’s mathematical model is derived from the
plant with an additional term that includes the observer error. The observer error is
the difference between the measured output and the estimated output, ([10], p. 751,
752).

Compensation of inaccuracies caused by difference between the observer’s mathemat-
ical model and the physical plant is performed by including an additional correction
term Ke(y −Cx̂) where y is the measured output , Cx̂ is the estimated output and the
matrix Ke is a weighting matrix to the correction term also called as the observer gain.
Correction term continuously corrects the model output and improves the performance

6
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of the observer. Observer’s inputs are the plant output y and the control input u, ([10],
p.752). Mathematical model of the observer for system defined by equations (2.1), (2.2)
is defined as follows, ([10], eq.10-57)

˙̂x = Ax̂ + Bu+ Ke(y − Cx̂)
= (A−KeC)x̂+ Bu+ Key. (2.14)

The observer is said to be full-order if its order of the state is the same as that of the
plant. Block diagram of the system and full-order observer is shown in Figure 2.2.

u

y

y~

Full-order state observer

A

B C

Ke

兰

A

B C兰

x

x

~

+
+

+
+

+
+

+–

Figure 2.2. Block diagram of system and full-order state observer, when input u and output y
are scalars, (taken and modified from [10], Figure 10-11).

Observer’s error e and error’s dynamics ė are defined by following equations respec-
tively, ([10], eq.10-58,59)

e = x− x̂, (2.15)
ė = (A−KeC)e. (2.16)

If the eigenvalues of matrix (A−KeC) are chosen so that the dynamic behavior of
the error vector is asymptotically stable and with sufficient speed of response, then
any observer’s error vector will converges to zero, however, if there are modeling errors
between plant’s and observer’s matrices A,B and C then error e might not approach
zero value, ([10], p.754). Therefore we should choose Ke so that error is acceptably
small, converges sufficiently fast and the observer is stable.

Complete observability of the system is the sufficient condition for the observation
of the state of the system (2.1), (2.2), then observer gain matrix Ke can be determined

7
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to yield the desired matrix (A−KeC). The design problem of Ke is mathematically
equivalent to the discussed pole-placement problem. In many practical cases, the se-
lection of the best matrix Ke is the trade-off between speedy response and sensitivity
to disturbances and noises, ([10], p.757). Observer gain matrix can be determined by
modified Ackermann’s formula, ([10], eq. 10-65)

Ke = φ(A)O−1( 0 0 . . . 0 1
)T
. (2.17)

2.4.1 Observer based Friction Compensation
The state observer is often used in compensation schemes that are designed to compen-
sate non-linearities of the system. Main purpose of this technique is to reduce system’s
nonlinearities so that the controller can be designed by means of linear control theory.
The friction often causes non-linear behavior and the knowledge of velocity of moving
object is necessary for effective compensation of these non-linearities. To obtain an
effective friction compensation it is necessary that the velocity is either measured or
estimated with a good resolution and small time delay, ([12], p.23).

The idea behind the friction compensation is that the friction force F is estimated by
using a friction model that determines a compensation signal ucomp which is added to the
control signal u to compensate the estimated friction force F̂ , however, it is important
to ensure that the friction force is not overcompensated, since its overcompensation
could destabilize the overall system, ([12], p.23). A practical approach how to prevent
friction overcompensation is to scale down the estimated friction force F̂ by a value that
should be determined through experimental analysis, ([13], p.54). One of the possible
compensation scheme is shown in Figure 2.3.

Figure 2.3. Block diagram of one of the possible friction observer based compensation scheme,
(taken and modified from [12], Figure 13).
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Chapter 3
Time Delay Systems

In many real physical systems the past events influence the future results, therefore, the
mathematical model in form of classical state-space representation might be in some
cases insufficient because the major assumption of such model is that the future state is
independent of the past. Time delay systems (TDSs) represent dynamics of real plant
more accurately since time-delay phenomena occurs in many systems either in the state,
the control input, or the measurement. Considerable time-delay frequently occurs in
systems with heat transfer, chemical processes, or remote control, ([14], p. 10).

The cost of a more authentic mathematical model is more complicated system anal-
ysis and control design. In general, every real control system operates in the presence
of time-delays, due to the time it takes to acquire the information needed for decision-
making (communication delay), to create control decision (computation delay), and to
execute these decisions (signal conversion delay), ([15], p. 1). Time-delay is often a
source of instability and this is especially true for feedback control systems, where the
time-delay always worsen control conditions and quality of the control process , ([14],
p. 10).

The time-delay is mathematically represented as a time shift, therefore, TDSs are
usually modeled by means of differential equations with an deviating argument, these
differential equations are also known as functional differential equations (FDEs). FDEs
are infinite-dimensional and allow us to model systems that are dependent on the present
and the past events, ([16], p.2).

3.1 Time Delay
A general form of the time delay can be described by using the Stieltjes integral,
([17–18], p.72, p.257)

r(t) =
∫ T

0
u(t− τ) dh(τ), (3.1)

with the L-transform form, considering zero initial conditions

R(s) =
∫ ∞

0
e−sτdh(τ) ·X(s) = H(s)X(s), (3.2)

where u ∈ < and r ∈ < are the input and output, respectively. T ∈ < is the delay
length and the delay distribution h(τ) is defined in the time domain as follows, ([17],
p.72)

h(τ) =
{ 0, τ < 0
hd(τ), τ ∈ [0, T ]
1, τ > T

, (3.3)

9
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the function hd(τ) describes the delay distribution over the time interval τ ∈ [0, T ],
which can be either continuous or discontinuous, ([17], p.72). Some of the frequently
used delay distribution functions are the lumped delay (LD) and, the equally distributed
delay (EQD). The LD is defined as follows, ([18], p.257)

hd(τ) = Hhs(τ − T ), (3.4)
H(s) = e−sT , (3.5)

where Hhs(.) denotes the Heaviside step function. While the EQD has following form,
([18], p.257)

hd(τ) = 1
T
τ, (3.6)

H(s) = 1− e−sT

sT
, (3.7)

the combination of the LD and the EQD is given as follows, ([9], p.2052)

hd(τ) = 1
(1− α)T (τ − αT ), (3.8)

H(s) = 1
(1− α)T

e−sαT − e−sT

sT
, (3.9)

where the parameter α ∈ [0, 1) determines the ratio between the length of the lumped
delay and the overall delay T ([9], p.2052). A graphical representations of functions
(3.4), (3.6) and (3.8) are shown in Figure 3.1.

Figure 3.1. Delay distribution functions, A - the LD, B - the EQD, C - the combination
of LD and EQD, (taken and modified from [7], Fig. 1).

3.2 Linear Time Delay Systems
The state-space representation of a linear system (2.1), with the time delays in any
state accumulation, in the input and in the output of the retarded type is defined as
follows, ([17], p.75, [19], p.27)

ẋ(t) =
∫ T

0
dA(τ)x(t− τ) +

∫ T

0
dB(τ)u(t− τ), (3.10)

y(t) =
∫ T

0
dC(τ)x(t− τ) +

∫ T

0
dD(τ)u(t− τ), (3.11)

10
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where the argument of the state, the input and the output variables are shifted by a
delay τ . The upper limit of integration T is the maximal system delay. The state of the
system in the state-space representation (2.1) is defined by a vector of state variables
x(t). However, the state of TDSs (3.10), is given by function segments of the state
variables xt on a segment of the system history, ([11], 17). The state and the initial
conditions of the TDSs, respectively, are now defined as, ([20], p.6)

xt(τ) = x(t+ τ), τ ∈ [−T, 0], (3.12)
x0(τ) = x(τ), τ ∈ [−T, 0]. (3.13)

Figure 3.2. Graphical representation of the state and the initial conditions of the scalar
TDSs, (taken and modified from [20], p. 6).

The equations (3.10), (3.11) are represented in s domain under zero initial conditions
as follows, ([19], p.29)

sX(s) = A(s)X(s) + B(s)U(s), (3.14)
Y(s) = C(s)X(s) + D(s)U(s), (3.15)

for zero initial conditions, we can derive following equation ([19], p.29)

Y(s) =
(

C(s)
(
sI− A(s)

)−1B(s) + D(s)
)

U(s) = G(s)U(s), (3.16)

where Y(s) is a column vector of the outputs with m outputs, U(s) is a column vector of
the inputs with n inputs and G(s) is a m×n dimensional matrix of non-rational transfer
functions. Poles of the TDSs are those values of s for which G(s) tends to infinity, ([19],
p.29). The poles can be determined by the following characteristic equation, ([20], p.7)

M(s) = det(sI− A(s)) = 0, (3.17)

the equation (3.17) is a transcendental equation due to the presence of exponential
terms e−sτ in the matrix A(s) and has an infinite number of roots, set of all roots is
also called as the spectrum of TDSs, ([19], p.29). Therefore, the state space of TDSs
is infinite-dimensional and the characteristic equation is of quasi-polynomial type as
opposed to a polynomial type for simple linear systems. If the spectrum of TDSs is
distributed as a finite number of exponential asymptotic chains of roots, whose most
dominant roots lie rightmost, then the TDSs is called Retarded System. The TDSs is
called Neutral System if the spectrum distribution has no exponential character and

11



3. Time Delay Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
lies between two vertical boundaries a < <(s) < b, ([11], p. 23). Note that in this case,
the neutral time delay model reads as, ([11], p.17)

ẋ(t) +
∫ T

0
dH(τ)ẋ(t− τ) =

∫ T

0
dA(τ)x(t− τ) +

∫ T

0
dB(τ)u(t− τ). (3.18)

3.3 Stability of Time-Delay Systems

Since, the characteristic equation M(s) is not longer polynomial but quasi-polynomial,
classical algebraic methods, e.g. Routh–Hurwitz stability criterion, for stability analysis
cannot be directly applied. However, the stability criterion (2.4)

{si ∈ C : <(si) < 0,M(s) = 0}, (3.19)

can be still used for the stability analysis of TDSs. TDSs system is considered to be
stable if all roots of the characteristic equation, M(s) = 0, lie in the open left half of
complex plane, ([14], p.52). However, equation (3.17) contains an infinite number of
roots due to its transcendental nature, therefore, it is impossible to determine every
root of M(s). Nevertheless, if the TDSs is of retarded type then the stability can be
guaranteed by (2.4), moreover, the overall dynamic of the retarded system is mainly
affected by the dominant roots which lie closest to the imaginary axis since the dynamics
of components defined by the rest of roots, that lie further from the imaginary axis, are
so fast that their influence is negligible ([14], p.52). For a stability analysis of neutral
type of TDSs the reader is referred to [11].

Numerous analytical and numerical methods have been developed to compute the
location of the roots of quasi-polynomial characteristic equation. One of the analytical
method is based on the contour mapping of the real R = <(M(s)) and the imaginary
part I = =(M(s)) of the characteristic equation (3.17). The contours are, for s = β+jω,
defined as follows, ([20], p.8 )

R(β, ω) = 0,
I(β, ω) = 0, (3.20)

the roots of M(s) are determined as the intersection points of the contours (3.20). One
of the algorithm based on the contour mapping technique is Quasipolynomial Mapping
Based Rootfinder (QPMR) presented in [21].

12
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Figure 3.3. Example of contour mapping technique for roots finding of M(s) by use of
QPMR algorithm, red - =(M(s)) = 0, blue - <(M(s)) = 0, black - roots, (taken from [20],

p. 8).
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Chapter 4
Signal Shapers

Signal shapers are basically notch finite impulse response (FIR) filters, which purpose is
to minimize oscillations of mechanical systems by removing excitation frequencies from
the reference command. The main difference between signal shaping and traditional
FIR filtering is that no frequency passband is used since there is no requirement that
some frequencies must pass through the filter without significant attenuation, therefore,
design procedure of signal shaping is simpler and resulted shaper will be faster than
corresponding FIR filter that must pass certain frequencies. This technique is mainly
used for compensation of oscillation modes of flexible mechanical parts, ([1], p.65).

Signal shapers are used mainly as a reference command filter for manipulators and
cranes with flexible loads, ([1], p.29). The key idea of signal shaping is to dampen
system’s oscillations by delaying a part of the input signal so that the energy supplied to
the system does not induce system’s oscillation at its oscillatory modes. This idea, also
known as posicast control, was first introduced by O.J. Smith in 1958 and was revisited
in the 1990’s by Singer, Seering and Singhose, who developed several signal shaping
techniques based on Smith’s posicast control with improved robustness for varying
oscillation modes, namely, zero-vibration (ZV) shaper, zero-vibration-derivative (ZVD)
shaper, extra insensitive (EI) shaper, and multi mode shapers [22]. Signal shapers
are usually implemented in feed-forward control architecture and work as a reference
command filter, however, disadvantage of this architecture is that they are not able to
suppress oscillations excited by disturbances, ([8], p. 2050).

Shapers are designed to compensate oscillatory mode of the system defined by a
complex conjugate couple of poles

r1,2 = −β ± jΩ, (4.1)
β = ω0ζ, (4.2)
Ω = ω0

√
1− ζ2, (4.3)

where ζ is the damping ratio and ω0 natural frequency of the mode to be compensated.
A graphical representation of r1,2 in the s plane is shown in Figure 4.1.
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Figure 4.1. Complex conjugate poles r1,2 depicted in the s-plane, (taken and modified
from 1), 21.04.2017).

General form of an input shaper in the time domain and the s domain, respectively,
is given as follows, ([18], eq. 9, 10)

u(t) = A0w(t) +
n∑
k=1

Akw(t− τk), (4.4)

S(s) = A0 +
n∑
k=1

Ake
−sτk , (4.5)

where w and u are the shaper’s input and output, respectively. The parameters are
gains Ak ∈ < satisfying condition

∑n
k=0Ak = 1, the time delays τk ∈ <+ and number

of shapers’s pulses n ∈ <+.
Shaper’s effectiveness depends on the precise estimation of the system’s target os-

cillation mode determined by ζ and ω0. Robustness to model’s imperfections can be
described by equation of residual vibration V (ω, ζ), that is for shapers with lumped
delays defined as follows ([1], eq. 5.1-3)

V (ω, ζ) = e−ζωτN
√
R(ω, ζ)2 + I(ω, ζ)2, (4.6)

R(ω, ζ) = A0 +
n∑
k=1

Ake
ζωτkcos(τkω

√
1− ζ2), (4.7)

I(ω, ζ) =
n∑
k=1

Ake
ζωτksin(τkω

√
1− ζ2), (4.8)

the equation (4.6) is expressed in a non-dimensional form. It is generated by taking the
amplitude of residual vibration induced by an impulse series (shaped signal) divided
by the vibration amplitude caused by a single, unity-magnitude impulse (non-shaped
signal) at time t = τN that is usually the time location of the final impulse, ([1], p.35).

1) http://www.wikiwand.com/en/Root_locus
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4.1 Zero Vibration Shaper

Zero Vibration (ZV) shaper is used in a feedforward connection with a system and is
described by following equations in time domain and s domain, ([7], eq.1, 2)

u(t) = Aw(t) + (1−A)w(t− τ), (4.9)
SZV (s) = A+ (1−A)e−sτ , (4.10)

the ZV shaper has no poles but infinitely many zeros that are determined by the roots
of the equation (4.10), ([7], eq.3)

s2k+1,2k+2 = −1
τ
ln

A

1−A ± j
π

τ
(2k + 1), k = 0, 1, . . . ,∞, (4.11)

where shaper’s parameters gain A and lumped delay τ can be derived by placing the
dominant zero s1,2 at the position of oscillatory mode (4.1) and are given as follows,
([7], eq.4)

A = K

1 +K
, K = e

βπ
Ω , (4.12)

τ = π

Ω . (4.13)

4.2 Robust Zero Vibration Shapers
The ZVD Shaper was implemented to address poor robustness of ZV shaper to mod-
eling errors. ZVD shaper is designed by requiring the partial derivative of the residual
vibration (4.6), with respect to the frequency, to be equal to zero at the modeling
frequency, ([1], eq. 7.4)

∂V (ω, ζ)
∂ω

= 0. (4.14)

This constraint keeps the vibration near zero as the actual frequency starts to deviate
from the modeling frequency. The resulting ZVD is defines as follows, ([1], eq. 7.5)

u(t) = A0w(t) +A1w(t− τ1) +A2w(t− τ2), (4.15)
SZV D(s) = A0 +A1e

−sτ1 +A2e
−sτ2 , (4.16)

where impulses Ak and time delays τk are

A0 = 1
(1 +K)2 , A1 = 2K

(1 +K)2 , A2 = K2

(1 +K)2 , K = e−
βπ
Ω ,

τ1 = τ

2 , τ2 = τ.

Delay τ is defined by equation (4.13). Unlike the ZV shaper, the ZVD shaper splits
the input command on three parts. Another approach how to improve robustness of
ZV shaper is to combine two or more ZV input shapers in series connection with zeros
placed in the neighborhood of the flexible poles. This type of shaper is called Extra
Insensitive (EI). The trade-off of ZVD and EI shapers is increased rise time since the
duration of the combined shaper is the sum of the individual shaper durations, ([1],
p.52).
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4.3 Distributed Zero Vibration Shaper
DZV shaper is a more generalized form of the ZV shaper, whose delay distribution
function (4.17) can be parametrized. The delay distribution function can be described
by Stieltjes integral as follows

u(t) =
∫ T

0
w(t− η)dh(η), (4.17)

where w is the delay input, u the delay output and the function h(η) describes the delay
distribution over interval [0, T ]. The delay distribution of the ZV shaper is of lumped
type

h(η) = H(η − τ), η ∈ [0, τ ], (4.18)
G(s) = e−sτ , (4.19)

where H(.) is the Heaviside step function and τ the lumped delay value. Another used
delay distribution function for signal shapers is the trapezoidal function that distributes
time delay equally

h(η) = 1
T
η, η ∈ [0, T ], (4.20)

G(s) = 1− e−sT

Ts
, (4.21)

where T is the distributed delay length. Compared to the ZV shaper, the response time
of the DZV shaper with equally distributed delay is considerably longer, ([6], p.259).
The response time can be improved by delaying the pulse part of the shaper signal,
so that the time-delay is composed of the lumped delay τ and of the shifted equally
distributed delay T . This solution was proposed in the article [7] and this type of shaper
is called Distributed Zero-Vibration Shaper with lumped and equally distributed delay
(DeZV ). The delay distribution function of the DeZV shaper is defined as follows,
([18], eq. 20, 23)

h(η) =

 0, η ∈ [0, τ ]
1
T (η − τ), η > τ
1, η > T

, (4.22)

G(s) = 1− e−sT

Ts
e−sτ . (4.23)

An analytical parametrization of DeZV shaper was first proposed in [18]. By con-
sidering s = −β + jΩ the parameters of DeZV shaper are defined as follows, ([18], eq.
24, 25)

T ∈ (0, πΩ], (4.24)

τ = π + ϕ

Ω , (4.25)

A = me
β
Ω (π+ϕ)

1 +me
β
Ω (π+ϕ)

, (4.26)
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where,

m = |G(s)|, (4.27)
ϕ = arg(G(s)). (4.28)

4.4 Shapers in Feedback Architecture
Signal shapers are most used as reference command filters and classical control architec-
ture with signal shapers is shown in Figure 4.2. The main drawback of this architecture
is an inability to suppress the oscillations caused by the unmeasurable disturbance d,
([8], p. 4418).

Figure 4.2. Feedback loop with shaper as reference command filter, (taken and modified
from [8], Figure 2).

The transfer functions of the closed loop system, are shown in Figure 4.2, are, ([8],
eq. 11, 12)

Twθ = C(s)G(s)S(s)
1 + C(s)G(s)S(s)F (s), (4.29)

Tdθ = G(s)
1 + C(s)G(s)S(s)F (s). (4.30)

From the equation (4.29) it can be seen that the active zeros of the shaper S(s) are the
zeros of the closed loop system and can compensate the pole r1,2 of the flexible system
F (s), therefore, oscillations induced by the reference w are suppressed. Nevertheless,
from the equation (4.30), is clear that shaper’s zeros does not appear in the numerator
of the closed loop system, therefore, the signal shaper does not suppress oscillations
caused by the disturbance d, ([8], p. 4419).

To address this problem a novel type of feedback architecture with an inverse signal
shaper, was proposed by Vyhlídal, Hromčík, Kučera in articles [8, 6]. Feedback loop
with an inverse shaper in the feedback path is shown in Figure 4.3.
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Figure 4.3. Feedback loop architecture with an inverse shaper, (taken and modified from
[8], Figure 3).

The transfer functions of the closed loop system with an inverse signal shaper is
defined as follows, ([8], eq. 15, 16)

Twθ = C(s)G(s)
1 + C(s)G(s) 1

S(s)
F (s)

= C(s)G(s)S(s)
S(s) + C(s)G(s)F (s), (4.31)

Tdθ = G(s)
1 + C(s)G(s) 1

S(s)
F (s)

= G(s)S(s)
S(s) + C(s)G(s)F (s), (4.32)

where it can be seen that transfer function S(s) appears in the numerator of both
equations (4.31) and (4.32), therefore, the shaper can compensate the oscillatory mode
induced by both the reference w and the disturbance d ([8], p. 4420).

The block diagrams that are shown in Figures 4.2 and 4.3 are valid only for special
case where the dynamics of the system G(s) and the flexible system F (s) can be con-
sidered as decoupled, e.g. the mass of the system F (s) is significantly smaller than the
mass of the system G(s). However, in reality the dynamics of G(s) and F (s) are always
coupled as it is shown for example in Figure 4.4.

Figure 4.4. Coupled case of feedback loop architecture with an inverse shaper, (taken and
modified from [9]).
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where R(s) is the coupling transfer function. The transfer functions of the closed-loop
system with coupled dynamics are defined as follows, ([9], eq. 62, 63)

Twθ = C(s)G(s)
1 + C(s)G(s) 1

S(s) − F (s)R(s)G(s)
F (s), (4.33)

Tdθ = G(s)
1 + C(s)G(s) 1

S(s) − F (s)R(s)G(s)
F (s), (4.34)

the system F (s) can be considered decoupled on frequency range of interest if the
following condition holds true, ([9], eq. 64)

∣∣∣∣1 + C(jω)G(jω) 1
S(s)

∣∣∣∣ >> ∣∣∣∣F (jω)R(jω)G(jω)
∣∣∣∣. (4.35)

As can be seen from (4.35), decoupled case can be obtained by an appropriate choice
of the controller C(s) and the shaper S(s). However, if the dynamics of G(s) and F (s)
are strongly coupled, then it is clear from (4.33) and (4.34) that the required zero-pole
compensation is not guaranteed. Therefore, a different approach has to be applied in
order to compensate oscillatory modes, e.g., compensation via input command shaper.
The issue of mode compensation of systems with coupled dynamics via inverse shapers
in feedback architecture has been recently discussed in the article [23]. In this thesis
will be considered only systems with decoupled dynamics.
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4.4.1 Implementation of Inverse Shaper

Transfer functions of shapers ZV , DZV and DeZV in the inverse form are defined as
follows, ([8], eq. 17, 18)

1
SZV (s) = 1

A+ (1−A)e−sτ , (4.36)

1
SDZV (s) = 1

A+ (1−A) 1−e−sT

sT

, (4.37)

1
SDeZV (s) = 1

A+ (1−A) 1−e−sT

sT e−sτ
. (4.38)

It was shown in [8] that the spectrum of zeros of ZV shaper given by equation (4.11)
is of neutral type, i.e., parallel to the imaginary axis of the complex plane, therefore,
ZV shaper in the inverse form is not preferred since its zeros might cause instability of
the closed-loop system due to the low stability robustness against model imperfections.
Thus, a shaper with retarded spectrum, i.e., zeros depart from the imaginary axis to the
stable region as the moduli of roots increase, should be used especially if the oscillatory
mode is very close to the imaginary axis, i.e., slightly damped system.

Inverse forms of DZV and DeZV shapers are suitable, since their spectrum of zeros
are of retarded type. Spectra of zeros of ZV , DZV and DeZV shaper are shown in
Figure 4.5 and their frequency responses in Figure 4.6.
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Figure 4.5. Zeros of ZV (blue), DZV (red) and DeZV (yellow) shaper designed to com-
pensate poles r1,2 = −0.1± j0.99 (purple), source of example [18].
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and DeZV (yellow) shaper designed to compensate poles r1,2 = −0.1 ± j0.99 (purple),

source of example [18].

Any type of inverse shaper included in the closed loop causes its infinite dimension-
ality and this aspect should be taken into account during the controller design C(s),
([8], p. 4421).

Inverse Signal shapers can be implemented in program MATLAB/Simulink by use of
block LTI System from Control System Toolbox library where the argument is shaper’s
transfer function, or via standard Simulink’s blocks as it is shown in Figure 4.7.

22



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.4 Shapers in Feedback Architecture

Figure 4.7. Implementation of inverse vibration shapers: a) ZV , b) DZV , c) DeZV
,(taken and modified from [8]).
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Chapter 5
Internet-based Control Systems

Process of integration of information and control plays an important role in the com-
plex control applications of manufacturing industries. This process is often referred
as Computer Integrated Manufacturing (CIM), ([24], p.3). An effective CIM improves
plant energy efficiency, better monitoring, manpower savings and effective integration
of the plant. Most of the process control components have RS232 connectivity, however,
connecting every device via RS232 would result in a highly unmaintainable and rigid
infrastructure. Thanks to the rapid development of the Internet infrastructure, the
concept of Internet-based control has been receiving more attention in the recent years.
This type of control system allows remote control, monitoring and adjustment of the
plant over the Internet. Plants can benefit from its use by allowing world-wide control
or information retrieval at anytime, ([25], p.1). The problem of device integration can
be solved by designing a reasonable Information Architecture (IA) of the whole system.
The IA can be separated into 4 levels from the highest to the lowest, as follows, ([25],
p.4):.Management level : commercial data, accessed by customers and managers..Optimization level : global databases with plant-wide information in process plants..Supervisory level : process database that contains real-time status of process plants..Regulatory level : for control of local control units (Controllers, PLC)..Sensor/Actuator level : the lowest level for direct transmission of control and mea-

sured signals.

These levels are distinguished from each other by 4R’s principle criteria, that are
defined as follows, ([25], p.4):.Response time : Higher levels of the IA have higher tolerance level of the time-delay

of the receiving data. For example, information used at the management level can
be several days old, unlike at the regulatory or sensor/actuator level..Reliability : Required level of reliability increases with every lower level of the IA. For
instance, host computers at the management level can be safely shutdown for hours,
with relatively little consequence. However, this does not hold for the supervisory or
the regulatory control level..Resolution : The higher the level, the more abstract data are preferred..Reparability : The reparability considers the ease with which control and computing
devices can be maintained.

As it is shown in Figure 5.1, the Internet can be linked with a local computer system
at any level in the IA, even at the lowest level of sensors and actuators. These links
result in a range of 4R’s. For instance, if a fast response time is required, then a link
should be made to the control loop, however, if only the abstract information is needed,
then the Internet should be linked at a higher level in the IA, such as management or
optimization level, ([25], p.5). Table 5.1 shows a simple evaluation for the possible
Internet links.
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Figure 5.1. The layers of Information architecture, (taken from [25], Figure 5).

Information
level

Information
exchange

Advantages Disadvantages

Management
level

Commercial
data systems

Commercial data
are accessible by
managers

Not suitable for
real-time
control tasks.

Optimization
level

Global
database

Easy access to
the plant-wide
information.

Not suitable for
real-time
control tasks.

Supervisory
level

Process
database

Easy access to
the real-time status
of the plant.

Lacks management
information

Regulatory
level

PLC, Control
Unit

Direct access of
the controller to
the Internet.

Internet delay,
safety risks

Sens./Act.
level

Smart
Devices

Controlling the
devices directly
from the Internet.

Internet delay,
safety risks

Table 5.1. Pros and cons of possible links between the Internet and control levels, (taken
from [25], Table 1.).
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5.1 Internet-Based Control Architectures

If the Internet is linked directly with sensors or actuators, than a controller is located at
a remote site, connected to an actuator and sensor via the Internet, in this architecture
the Internet becomes a part of the control system as it is shown in Figure 5.2. This
architecture is also known as Networked Control System (NCS) and will be described in
detail in the chapter 5.2. Major disadvantage of this architecture is that the transmis-
sion delay is introduced to both the actuator and the sensor communication channel,
([25], p.5).

Figure 5.2. Control architecture with the remote controller, (taken and modified from [25],
Figure 6).

Controllers such as programmable logic controllers (PLC) are often directly inte-
grated with the Internet by using a Transmission Control Protocol/Internet Protocol
(TCP/IP). In such a case, a desired input can be sent from the remote site to the con-
troller located at a local site of a plant, via Internet, and in order to monitor the state
of the plant over time, measured output is usually fed back to the remote site. The
Internet is excluded from the closed loop of the controller and because of that Internet
transmission delay will not affect the dynamics of the control system, ([25], p. 5). This
architecture is shown in Figure 5.3.

Bilateral control architecture has a controller located at the plant site, and another
one at the remote site linked via the Internet as it is shown in Figure 5.4. The con-
troller at the plant site is responsible for process regulation during normal operation.
However, if the performance of the controller degrades, for example due to the change
of production or a environmental disturbances, the controller at the remote site can be
used to retune paramters or change the desired input for the controller at the plant site.
Such a control architecture is widely used in tele-robot control systems, ([25], p.6).
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Figure 5.3. Control architecture with re-
motely sent input signal to the local con-
troller, (taken and modified from [25], Fig-

ure 7).

Figure 5.4. Control architecture with bi-
lateral controllers , (taken and modified

from [25], Figure 8).

5.2 Networked Control System

The Networked control systems (NCSs) basically use internet-based control architecture
with the remote controller shown in Figure 5.2. The NCSs have a feedback control loop,
where a plant is controlled via a communication network. The information of the plant
output and the control input is exchanged using the communication network among
system components (sensors, actuators, controller, etc.), ([15], p. 4). A block diagram
of simple NCSs system with one sensor and one actuator network node is shown in
Figure 5.5.

Figure 5.5. Block diagram of the networked control system, (taken and modified from [15],
Fig. 1.4).
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Where us is the control signal sent by the remote control station, ur the control

signal received by the plant, ys is the measured output sent by the plant and yr the
measured output received by the remote control station. The performance of the NCSs
is negatively affected by the imperfect transmission of signals us and ys.

us(t) 6= ur(t),
ys(t) 6= yr(t).

Transmission imperfections are mostly caused by a variable sampling intervals, vari-
able or constant communication delays, packet loss and quantization errors caused by
the finite word length of packets ([15], p. 4). The presence of these constraints can
degrade the overall performance of the control loop and can even lead to instability of
the controlled system ([15], p. 4).

Compared to the traditional feedback control systems, where the components are
usually connected via point-to-point cables, the introduction of communication network
media brings some advantages, such as low cost, simple installation, maintenance and
an easily modifiable long distance control ([15], p. 4). NCSs are implemented by
using digital technology and involve both a continuous-time dynamics and a discrete-
time control due to an analog-to-digital converter (a sampler) and a digital-to-analog
converter (a zero-order hold).

5.3 Time Delay in Packet-Switched Networks
The nodes of modern communication networks mostly utilize the method called Packet
Switching (PS) to pass the data from a source end system, through the correct links
and nodes, to a destination end system. The sent data is broken into smaller chunks
of data known as packets. Between source and destination, each packet travels through
communication links and packet switches and is transmitted at a rate equal to the full
transmission rate of the link ([26], p.22). For a more general description of computer
networking the reader is referred to e.g. [26].

The performance at a network node is often measured in terms of time delay and
the probability of packet loss ([26], p.41). The delay of packet is a time variable, which
changes with Internet traffic. Overall nodal delay consists of the nodal processing delay
τproc, queuing delay τqueue, transmission delay τtrans, and packet propagation delay τprop,
([26], p.36), as shown illustratively in Figure 5.6.

Figure 5.6. The nodal delay at router A, (taken from [26], Fig. 1.16).

The overall nodal delay is sum of individual delay components, ([26], p.40)

τnodal = τproc + τqueue + τtrans + τprop. (5.1)
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5.3.1 Processing Delay

The processing delay is composed of the time required to examine the packet’s header
and determine where to direct the packet and the time needed to check for bit-level
errors of arriving packet. After this nodal processing, the router directs the packet
to the queue that precedes the link to the destination router. Processing delays are
often negligible and in high-speed routers are typically on the order of microseconds to
milliseconds, ([26], p.37).

5.3.2 Queuing Delay

The packet is delayed at the queue as it waits to be transmitted onto the link. The
length of the queuing delay of a specific packet will depend on the number of earlier-
arriving packets that are queued and waiting for transmission onto the link. If the
queue is empty and no other packet is currently being transmitted, then queuing delay
will be equal to zero. However, queuing delay increases with an increasing network
traffic due to the larger amount of waiting packets, therefore, the queuing delay can
vary from packet to packet. Queuing delays are usually on the order of microseconds
to milliseconds, ([26], p.37).

The significance of queuing delay depends on the rate at which traffic arrives at the
queue, the transmission rate of the link, and the nature of the arriving traffic, that is,
whether the traffic arrives periodically or arrives in bursts. The extent of the queuing
delay is often estimated by the traffic intensity (TI), that is defined as follows, ([26],
p.40)

TI = L · a
R

, (5.2)

where a (packets·s−1) is the average rate at which packets arrive at the queue, L (bits) is
the size of the packets and R (bits·s−1) is the transmission rate, (for further explanation
see 5.3.3). Assume that the queue is infinitely large, so that it can hold an infinite
number of bits.

If the TI is close to zero, then packets arrivals are few and far between and the
probability that some pockets are in the queue is small, therefore, the average queuing
delay will be close to zero, ([26], p.40).

If the TI approaches 1, there will be intervals of time when the arrival rate exceeds the
transmission capacity, and a queue will become larger, therefore, the average queuing
delay will get larger, ([26], p.40).

And in the case of TI > 1, the average rate at which bits arrive at the queue exceeds
the rate at which the bits can be transmitted from the queue, therefore, the queue
will tend to increase without bound and the queuing delay will approach infinity, ([26],
p.40). The dependence of average queuing delay on the TI is shown in Figure 5.7.
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Figure 5.7. Dependence of average queuing delay on Traffic Intensity, (taken from [26],
Fig. 1.18).

5.3.3 Transmission Delay
The packets, in packet-switched networks, are transmitted in a first-come-first-served
manner, therefore, the packet can be transmitted only after all the packets that have
arrived before it have been transmitted. The transmission delay is the amount of time
required to transmit all of the packet’s bits into the link and is defined as follows, ([26],
p.37)

τtrans = L

R
, (5.3)

where L (bits) is the length of the packet and R (bits · s−1) is the transmission rate
of the link from the sending router to the destination router. Transmission delay is
usually negligible for R = 10 (Mbps) and higher (for example, for LANs), however, it
can be of hundreds of milliseconds for large packets send over low-speed dial-up modem
links. Transmission delays are usually on the order of microseconds to milliseconds in
practice, ([26], p.37).

5.3.4 Propagation Delay
The propagation delay is the time required to propagate a bit from the beginning of the
link to the destination router. The bit propagates at the propagation speed vprop of the
link that depends on the physical medium of the link, e.g., fiber optics, twisted-pair,
copper wire, and is in the range of 2 · 108 (m · s−1) to 3 · 108 (m · s−1). The propagation
delay is defined as, ([26], p.37)

τprop = d

vprop
, (5.4)

where d is the distance between the sending router and the destination router. Propa-
gation delay is usually negligible for a link connecting two routers in the same building,
however, it can be of hundreds of milliseconds for two routers interconnected by a geo-
stationary satellite link, these delays are usually on the order of milliseconds, ([26],
p.38).
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5.3.5 Basic Communication Protocols of Transport Layer
Overall nodal delay can be reduced by choosing an appropriate transport layer’s com-
munication protocol used to stream data. The most popular protocols used to trans-
mit data over the Internet are the Transmission Control Protocol/Internet Protocol
(TCP/IP) and the User Datagram Protocol (UDP).

The TCP is the connection-oriented and confirmation based protocol that provides a
point-to-point channel for applications that require reliable communication with no loss
of information. It is a higher-level protocol that manages to robustly string together
data packets, sorting them and retransmitting them, ([27], p. 128). However, in the
article, [27], it was shown that the TCP protocol is not suitable for real-time control
applications due to the substantial variation of the transmission time delay during
connection.

The UDP is connectionless; i.e., a message can be sent from a sender to a receiver
without prior arrangement, ([26], p.199). The provided communication between two
applications over network, is not guaranteed because the UDP is not confirmation based
protocol, therefore, the packet arrival and the order of arrival at the destination is not
guaranteed, ([27], p.128). The UDP sends independent packets of data, called data-
grams, from one application to another. These packets are addressed (with Internet
Protocol Address and Port number) and then transmitted. The UDP is more sim-
pler protocol then TCP and have a more raw interface to the network, therefore, the
transmission delay is minimized by omitting the connection setup process, flow control,
and retransmission ([28], p.1). However, this simplicity comes at the expense of some
packets getting lost. The major requirement of most real-time control applications is
fast, consistent and efficient data transmission. In the article [27] it was proved that
the UDP provides a consistent sample rate with lower variations of the transmission
delay, unlike TCP. For these reasons and its simplicity is UDP often preferred in the
real-time control applications, ([29], p.1583, [27], p.129).
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Chapter 6
Controlled System

In the first part of this chapter, a laboratory setup of a controlled system will be
presented. Then a mathematical model of the controlled system will be derived, and
finally the parameters of mathematical model will be identified.

6.1 System Description
The basic part of the laboratory set-up is a frame built of the standardized aluminum
profiles that allows easy reconfigurability, ([30], p. 91). The controlled system is the
electro-mechanical system which consists of carts a and b mounted on a linear ball-
bearing rails, that are connected to each other via springs. A pendulum p is mounted
on the cart b. The whole laboratory setup is shown in Figure 6.1.

Figure 6.1. Photo of the laboratory set-up.

The active part is the cart a which is fixed to a teeth belt underneath powered by an
AC servo motor (Estun-EMJ-04) controlled by a servo drive (Estun-Pronet-E-04A).

The servo drive is operated in the torque-generator regime, where the generated
torque is proportional to the analog control signal, ([9], p.2058), and is commanded by
an analog DC voltage signal, with the operating range 0− 10(V ) from an attached PC.

The PC is equipped with a data acquisition card (DAQ) (AD-622) whose 14 bit
Digital/Analog converters are used to convert the digital control signal, generated by
programs MATLAB/Simulink, to the analog control signal.

The measured variables are the positions of carts a, b and the deflection of the
pendulum p. The position of the active cart a is determined from the feedback of the
servo motor. The position of the passive cart b is measured by an incremental position
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sensor with integrated Hall elements (AS5304) and magnetic strip for measuring linear
motion. The deflection of the pendulum p is measured by an angle position sensor
(AS5048) with a 14-bit high resolution output. This sensor measures the absolute
position of the magnet’s rotation angle and consists of Hall sensors. All sensors’ outputs
are collected by a 32 bit micro-controller (STM32F407), that sends acquired data to
the PC via serial communication port (COM). Received data are then processed by the
program MATLAB/Simulink.

In the case of NCS setup, the feedback loop is closed through the communication
network. The personal computer PCp, that is nearby the plant, sends the measured
data, via UDP communication connection, to the remote personal computer PCc that
computes the control signal and sends it back to the PCp. The scheme of the controlling
system is depicted in Figure 6.2.

Figure 6.2. The scheme of the whole system.

6.2 Mathematical Model

The mathematical model of the controlled system is derived only for the mechanical
part of the controlled system that is shown in Figure 6.2. In order to obtain a practically
usable mathematical model of the system a several major assumptions had to be made.
The modeling assumptions are:

.The belt’s elasticity is omitted and an ideally rigid belt is assumed.The transfer of the control signal to the control force is assumed to be without delay.Carts and the pendulum bob are treated as point particles.The rod on which the pendulum bob swings is inextensible.The mass of the rod is negligible and the bob is a point mass.The bob moves only in two dimensions and in the direction of cart’s motion.The motion of carts a and b is only of the translation type with friction.Both springs have linear characteristic.The air resistance is omitted
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a b

p

a b

p

Figure 6.3. Mechanical diagram of the system with two carts and pendulum (at the top)
and free body diagrams of carts and the pendulum bob (at the bottom), (taken and

modified from [31]).

A mathematical model was derived by means of Newton-Euler equations of motion
for free body diagrams that are shown in Figure 6.3. Indexes a, b and p denotes carts
a, b and the pendulum p. Gi = gmi is a gravitational force and Ni is a corresponding
normal force where mi denotes mass. The spring force Fk and the damping force Fb
are defined as follows

Fk = ks∆x = ks(xb − xa), (6.1)
Fb = bs∆ẋ = bs(ẋb − ẋa), (6.2)

where ks, bs are the stiffness and the damping of the spring. The control force F is
given by equation

F (t) = sau(t), (6.3)
where sa is the static gain and u(t) the control signal. T denotes tension force in
the pendulum’s rod. The same force from the friction torque is equivalent to the force
applied at the end of the pendulum rod (Newton’s Third law) [31], therefore, the friction
force Ffp is defined as follows

Ffp = Ffpkin + Ffpstat = µp
lp
θ̇ +

Msp(θ̇)
lp

, (6.4)
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where µp is the viscous friction coefficient of the pendulum, lp the length of the pendu-
lum and Msp(θ̇) the static friction torque of the pendulum. Friction forces Ffa Ffb of
carts a and b are given by following equitations

Ffa = Ffakin + Ffastat = µaẋa + Fsa(ẋa), (6.5)
Ffb = Ffbkin + Ffbstat = µbẋb + Fsb(ẋb), (6.6)

where µa and µb are viscous friction coefficients and Fsa(ẋa), Fsb(ẋb) are static friction
forces.

6.2.1 Derivation of Equations of Motion
The Newton-Euler-Method was used to determine the dynamics equations of the sys-
tem. The Newton-Euler (N-E) equations for force components in the y-axis of carts a
and b are omitted since they are not necessary for derivation of equations of motion
(they can be used to find normal forces Na and Nb). The N-E equation of the cart a is

maẍa + (bs + µa)ẋa + ksxa = F + bsẋb + ksxb − Fsa(ẋa), (6.7)

N-E of the cart b

mbẍb + (bs + µb)ẋb + ksxb = Tsin(θ) + Ffpcos(θ) + bsẋa + ksxa − Fsb(ẋb), (6.8)

N-E of bob of the pendulum p

mpẍp = −Tsin(θ)− Ffpcos(θ), (6.9)

mpÿp = Tcos(θ)− Ffpsin(θ), (6.10)

where ẍp and ÿp are derived from kinematic equations of the bob (6.11), (6.12), as
follows

xp = xb + lpsin(θ),
ẋp = ẋb + lpcos(θ)θ̇,
ẍp = ẍb + lp(cos(θ)θ̈ − sin(θ)θ̇2), (6.11)

yp = lpcos(θ),
ẏp = −lpsin(θ)θ̇,
ÿp = −lp(sin(θ)θ̈ + cos(θ)θ̇2). (6.12)

Equation of motion of the cart b is derived by substituting Tsin(θ) from equation
(6.9) to (6.8)

(mb +mp)ẍb + (bs + µb)ẋb + ksxb = −lpmpcos(θ)θ̈ + lpmpsin(θ)θ̇2

+ bsẋa + ksxa. (6.13)

Next by multiplying equation (6.10) by sin(θ), equation (6.9) by cos(θ) and by
substituting term Tsin(θ)cos(θ) from the equation (6.9) to the equation (6.10) we can
receive the following equation

35



6. Controlled System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

lpmpsin(θ)2θ̈ + lpmpsin(θ)cos(θ)θ̇2 = −Ffpcos(θ)2 −mpcos(θ)ẍb + lpmpcos(θ)2θ̈
+ lpmpcos(θ)sin(θ)θ̇2 − Ffpsin(θ)2

− gmpsin(θ). (6.14)

By applying trigonometric identity sin(θ)2 + cos(θ)2 = 1 in the equation (6.14) and by
substituting (6.4) to Ffp, the equation of motion of the pendulum bob is received

lpmpθ̈ + µp
lp
θ̇ +mpcos(θ)ẍb + gmpsin(θ) = −

Msp(θ̇)
lp

. (6.15)

In the next steps we need to isolate second derivative terms ẍb and θ̈ from equations
(6.15) and (6.13) so that we receive equations in the following forms

ẍa = f(xa, ẋa, xb, ẋb, θ, θ̇)
ẍb = g(xa, ẋa, xb, ẋb, θ, θ̇)
θ̈ = h(xa, ẋa, xb, ẋb, θ, θ̇)

Equation of motion of the cart a is derived straightforwadly from the equation (6.7)

ẍa = 1
ma

(
F + bsẋb + ksxb − (bs + µa)ẋa − ksxa − Fsa(ẋa)

)
. (6.16)

For equations (6.13), (6.15) more rearrangements have to be done. First make θ̈ the
subject of the equation (6.15) and then substitute this subject θ̈ to the equation (6.13).
After rearranging the final form of equation of motion for the cart b is

ẍb = 1
mb +mpsin2(θ)

(
bsẋa + ksxa +mplpsin(θ)θ̇2 + cos(θ)

(µp
lp
θ̇ +

Msp(θ̇)
lp

)
+ gmpsin(θ)cos(θ)− (bs + µb)ẋb − ksxb − Fsb(ẋb)

)
. (6.17)

Next, make ẍb the subject of the equation (6.13) and then substitute this subject ẍb
to the equation (6.15). After rearranging the final form of equation of motion for the
pendulum bob p is the following equation

θ̈ = 1
lp(mb +mpsin2(θ))

(
cos(θ)((bs + µb)ẋb + ksxb − bsẋa − ksxa)

− (1 + mb

mp
)
(µp
lp
θ̇ +

Msp(θ̇)
lp

)
− g(mp +mb)sin(θ)− lpmpcos(θ)sin(θ)θ̇2

+ cos(θ)Fsb(ẋb)
)
. (6.18)
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6.2.2 Linearization of Mathematical Model
Linear models are necessary for most control system design methods such as stability
analysis or controller design, however, our mathematical model is described by nonlinear
equations (6.16), (6.17) and (6.18), therefore, the model linearizion is needed for further
control design and analysis.

First nonlinearity of our model is caused by a function sign(ẋ) that occurs in static
friction forces Fsa ,Fsb and Msp , therefore, all static friction forces are set to zero. An-
other nonlinearities are caused by trigonometric functions sin(.) and cos(.), these func-
tions can be linearized for assumption of small angles, θ = ±0.1(rad), so that sin(θ) ≈ θ,
cos(θ) ≈ 1, θ̈ ≈ 0 and θ̇2 ≈ 0. Linearized equations of motions of our model are then
defined as follows

ẍa = 1
ma

(
F + bsẋb + ksxb − (bs + µa)ẋa − ksxa

)
, (6.19)

ẍb = 1
mb

(
bsẋa + ksxa + µp

lp
θ̇ + gmpθ − (bs + µb)ẋb − ksxb

)
, (6.20)

θ̈ = 1
lpmb

(
(bs + µb)ẋb + ksxb − bsẋa − ksxa − (1 + mb

mp
)µp
lp
θ̇ − g(mp +mb)θ

)
.(6.21)

6.2.3 Model in State-Space Representation
Mathematical model can be now represented as linear time invariant (LTI) model in the
state-space representation. In order to do that 2nd order differential equations (6.19),
(6.20) and (6.21) have to be converted into six 1st order differential equations. For that
it is necessary to reformulate state variables as follows

x1(t) = xa(t),
x2(t) = ẋa(t),
x3(t) = xb(t),
x4(t) = ẋb(t),
x5(t) = θ(t),
x6(t) = θ̇(t),

The state-space model is then given as follows

ẋ1 = x2, (6.22)

ẋ2 = 1
ma

(
F + bsx4 + ksx3 − (bs + µa)x2 − ksx1

)
, (6.23)

ẋ3 = x4, (6.24)

ẋ4 = 1
mb

(
bsx2 + ksx1 + µp

lp
x6 + gmpxV − (bs + µb)x4 − ksx3

)
, (6.25)
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ẋ5 = x6, (6.26)

ẋ6 = 1
lpmb

(
(bs + µb)x4 + ksx3 − bsx2 − ksx1 − (1 + mb

mp
)µp
lp
x6

− g(mp +mb)x5

)
. (6.27)

The state-space representation of the derived mathematical model in the matrix form
is then as follows

ẋ(t) = Ax(t) + Bu(t), (6.28)
y(t) = Cx(t) + Du(t), (6.29)

x =
(
x1 x2 x3 x4 x5 x6

)T
, (6.30)

A =



0 1 0 0 0 0
− ks
ma

− bs+µa
ma

ks
ma

bs
ma

0 0
0 0 0 1 0 0
ks
mb

bs
mb

− ks
mb
− bs+µb

mb

mpg
mb

µb
lpmb

0 0 0 0 0 1

− ks
lpmb

− bs
lpmb

ks
lpmb

bs
lpmb

− (mb+mp)g
lpmb

−µp(1+mb
mp

)
l2pmb


, (6.31)

u =
(

F
sa

)
, (6.32)

B =
(

0 sa
ma

0 0 0 0
)T
, (6.33)

C =

 1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0

, (6.34)

D =
(

0 0 0
)T
, (6.35)

where x is the state vector, A the state matrix, u the input, B the input matrix, C the
output matrix and D the direct transmission matrix for measured state variables xa,
xb and θ.
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6.3 Compensation of System’s Nonlinearities
During my experiments with a laboratory setup, was it found out that the influence
of the static friction of the cart a on system’s dynamic is not negligible and causes a
significant non-linear behavior of the controlled system. I have decided to use method
Friction Observer (FO), described in the chapter 2.4.1 and in the article [12], in order
to compensate system’s nonlinearities. In the ideal case, the system’s nonlinearities
are compensated by FO, therefore, the system’s behavior can be assumed to be almost
linear.

In order to compensate friction a mathematical model of friction has to be first
determined. A chosen friction model is the classical static friction model, with coulomb
and stiction components. The model is graphically represented in Figure 6.4.

Figure 6.4. Graphical representation of the used friction model described by equations
(6.36), (taken and modified from [12], Fig. 5).

And described by following equations, ([12], p. 8, eq. 5)

Ffstat(ẋa, Fe) =


Fcol1 · sign(ẋa), ẋa ≥ ε

2
Fst1 · sign(Fe), ẋa ≥ ε

2 and |Fe| ≥ Fst
Fcol2 · sign(ẋa), ẋa < − ε

2
Fst2 · sign(Fe), ẋa ≤ − ε

2 and |Fe| ≥ Fst
Fe, ẋ ∈ (− ε

2 ,
ε
2 ) and |Fe| ≤ Fst

, (6.36)

where Ffstat is the modeled static friction force, Fcol1 , Fcol2 the coulomb friction forces,
Fst1 , Fst2 the stiction friction forces and, Fe the external force applied to the object. It
is necessary to implement Dead Zone with an interval ε, in order to prevent excessive
switching of the friction force of the friction model implemented in computer programs
such as MATLAB. Parameters of the static friction model (6.36) were determined ex-
perimentally as follows

Fst1 = 4.8 (N), Fcol1 = 0.1 (N),
Fst2 = 5.52 (N), Fcol2 = 0.1 (N),
ε = 0.1 (m.s−1).
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During experiments with friction compensation was it found out that the controlled

system is strongly influenced by another source of nonlinearity, that manifested as a
significantly smaller applied control force F on the cart a for lower values of the control
signal u ∈ (−4, 4) (V ).

The cause of this nonlinearity is still unknown, however, my presumption is that the
transfer of the control signal u to the control force F is not linear (F = Sa · u) but
nonlinear (that might be caused by an actuator or by transfer of actuator’s torque to
the longitudinal movement of carts). Experimentally was it found that this nonlinearity
can be sufficiently approximated by a function that is shown in Figure 6.5.
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F = Sa · u, u ∈ (−10,−4] ∪ [4, 10)

Figure 6.5. Approximation of the nonlinearity of the transfer of the control signal u to the
control force F .

Additional force Fact to compensate nonlinearities in the interval u ∈ (−4, 4) is
defined as follows

Fact(u) =
{
Sa · (|u| − u2

4 ) · sign(u), u ∈ (−4, 4)
0, u ∈ (−10,−4] ∪ [4, 10)

(6.37)

Both nonlinearities, caused by the friction and by the actuator, can be compensated
simply by summing their parts. The total estimated compensation control force F̂comp
and the compensation control signal ucomp are then defined as follows

F̂comp = F̂fstat + F̂act, (6.38)

ucomp = ufstat + uact = F̂fstat
Sa

+ F̂act
Sa

, (6.39)

where F̂fstat and F̂act are estimated compensation forces and Sa is the actuator’s static
gain. The used compensation scheme is shown in Figure 6.6, where A(s) denotes the
actuator and C(s) the controller. The designed friction compensator is implemented in
Simulink’s block MATLAB Function its source code can be found in the appendix A.1
or enclosed CD.
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Figure 6.6. Designed scheme to compensate nonlinearities.

6.3.1 State Observer for Friction Compensation
In this chapter, the design procedure of the state observer will be outlined. The mea-
surement of the velocity ẋa of the cart a was not available and for that reason I have
decided to estimate ẋa by means of the state observer of the system described by equa-
tions (6.31), (6.33), (6.34) and (6.35). The state observer is described as follows

˙̂x = Ax̂ + Bu+ Ke(y − Cx̂)
= (A−KeC)x̂+ Bu+ Key, (6.40)

where Ke is the observer gain. Design of the observer gain was an iterative process
since the parameters of the matrix of dynamics A (6.31) were initially unknown. In the
first iteration some of the parameters of (6.31) were determined by means of physical
measurement (masses of carts and pendulum, length of the pendulum), while the rest
were guessed (kinematic frictions, spring stiffens and damping) and subsequently the
observer gain Ke was calculated.

In the next iterations, new parameters of (6.31) were determined based on the re-
sults of pulse response identification of the controlled system with an applied friction
observer, that was designed in the previous iteration. This process was repeated un-
til a good correspondence between the identified model and the measured results was
found. Before design of state-space observer, first the system observability has to be
determined. A system is observable if its observability matrix O is full rank. Next we
determine the observer gain matrix Ke so that the error dynamics ė are asymptotically
stable with a sufficient speed of the response. The objective of observer design is then
defined as follows

e(t) = x(t)− x̂(t), (6.41)

lim
t→∞

e(t) = 0, (6.42)
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the error e will approach zero if the matrix (A−KeC) is stable. The speed of con-
vergence depends on the placement of poles of the matrix (A−KeC). We can make
speed of convergence faster by placing poles of the matrix (A−KeC) further to the left
from the imaginary axis. An example of observer design procedure for identified system
parameters will be presented in Chapter 6.4.2.

6.4 System Identification
Parameters of the derived mathematical linear model were identified experimentally
by comparing pulse responses of the linear model with a responses of the real system.
Model’s parameters were tuned so that dynamic properties of the linear system match
the dominant dynamics of the real system. Identified system’s parameters are given in
Table 6.1.

Parameter Value Unit
ma 1.8 (kg)
mb 3.25 (kg)
mp 2 (kg)
µa 14.5 (N.s.m−1)
µb 3 (N.s.m−1)
µp 0.01872 (N.s.m−1)
lp 0.67 (m)
ks 300 (N.m−1)
bs 1 (N.s.m−1)
Sa 4.8 (N.V −1)

Table 6.1. Identified parameters of the LTI model.

The results of the system identification are presented in the following Figures 6.7,
6.8, 6.9 and 6.10, where pulse responses of the identified linear model (with parameters
from Table 6.1) with pulse responses of the real system are compared. First graph
shows response of the cart xa, the response of the cart xb is in the second graph is, the
position difference between carts xa − xb is in the third graph, the displacement of the
pendulum p is in the fourth graph and the applied control signal u is in the fifth graph.

In Figures 6.7, 6.8 it can be seen that measured configuration without compensator
does not correspond to the dynamics of the linear model very well. However, influence
of system’s nonlinearities diminishes with a higher value of the pulse signal as it can
be seen in Figures 6.9 and 6.10. In all cases the designed compensator efficiently
compensates system’s nonlinearities for the control signal of values u ∈ [0, 4) without
overcompensation. More importantly model dynamics correspond with real system
dynamics. Therefore, identified mathematical model is suitable for the control design
of the controlled system.
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Figure 6.7. Pulse response for u = 2 (V ), simulated (yellow), measured without compen-
sator (blue), measured with compensator (orange), control signal (black), control signal

with compensation part (red).
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Figure 6.8. Pulse response for u = 3 (V ), simulated (yellow), measured without compen-
sator (blue), measured with compensator (orange), control signal (black), control signal

with compensation part (red).
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Figure 6.9. Pulse response for u = 4 (V ), simulated (yellow), measured without compen-
sator (blue), measured with compensator (orange), control signal (black), control signal

with compensation part (red).
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Figure 6.10. Pulse response for u = 5 (V ), simulated (yellow), measured without compen-
sator (blue), measured with compensator (orange), control signal (black), control signal

with compensation part (red).
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The static gain of the actuator Sa was determined from nominal torque Mn =
1.27 (N.m) for input of 10 (V ) of the servomotor Estun-EMJ-04 and from the measured
diameter of the belt pulley dbp = 0.055 (m). For simplicity, a linear characteristic of the
transfer of u to Mn was assumed, so that u = 1 (V ) corresponds to Mn = 0.127 (N.m).

Mn = F · dbp2 ,

F = Mn · 2
dbp

= 0.127 · 2
0.053 = 4.8 (N),

the static gain is then Sa = 4.8 (N.V −1). The poles of the state matrix A (6.31) with
identified parameters from Table 6.1 are

p1,2 = −3.03± 15.5i,
p3,4 = −0.34± 4.3i,
p5 = −3.12,
p6 = 0.

The system is astatic since pole p6 has zero value. This fact corresponds to the
properties of the real system. Poles in s-plane are shown in Figure 6.11.
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Figure 6.11. Poles of the state matrix A with identified parameters.
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6.4.1 Identification of Input Delay

Input delay τinput of the response of the cart a was identified by comparing time of the
control signals u with the cart a response. Measured results are shown in Figure 6.12.
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Figure 6.12. Input delay for different pulse responses, u = 2 (V ) (blue), u = 3 (V )
(orange), u = 4 (V ) (yellow), y = 5 (V ) (purple).

Based on the measured results, the input delay is assumed to be τinput = 5 (ms).

6.4.2 Design of State Observer
The identified parameters in Table 6.1 and equations (6.31), (6.33) were used to design
observer’s gain Ke. Only the output of the measured position xa was used for state
estimation. Therefore, matrices C and D had to be modified as follows

Cob =
(

0 0 1 0 0 0
)
, (6.43)

Dob =
(

0
)
, (6.44)

The observability matrix was calculated and checked in program MATLAB by fol-
lowing commands.

n; % total state variables
sys_ss = ss(A,B,C,D); % define state-space model
obs = obsv(sys_ss); % calculate observability matrix
rank_of_obs = rank(ob); % calculate rank
rank_of_obs == n; % check condition, if true system is observable
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rank(O) = 6, (6.45)
the rank of the matrix O is equal to the number of state variables n = 6, thus, the
system is observable. The poles of the observer gain Ke were determined iteratively so
that the observer accurately matches the dynamics of the real system, chosen poles are

p1,2 = −3.2± 16i,
p3,4 = −0.38± 4.6i,
p5 = −10,
p6 = −15,

P =
(
p1 p2 p3 p4 p5 p6

)
, (6.46)

finally the observer’s gain Ke was determined by MATLAB command place for matrices
(6.46), (6.43), (6.31), by following MATLAB commands

P = [-p1, -p2, -p3, -p4, -p5, -p6]; % poles are at different location
K_e = place (A’, C’, P)’;

Ke =
(

21.31 59.6 22.28 107.97 32.52 62.07
)T
, (6.47)

the designed observer can be cross-checked by command eig(A - K_e *C_ob), this
command should return a vector of poles equal to the chosen poles (6.46). Comparison
of the measured position xa with an estimated state x̂a is shown in Figure 6.13.
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Figure 6.13. Comparison of observed outputs and measured values, observed (blue), mea-
sured (orange).

The measured position xa and estimated position x̂a are almost identical and the
designed observer meets criteria of stability and fast error convergence.
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6.5 Identification of oscillation mode of flexible
subsystem

In order to design an effective signal shaper first it is important to precisely identify the
dominate oscillation mode of the flexible system, because the effectiveness of the de-
signed signal shaper solely depends on the accuracy of the match between the identified
mode and the real mode. The oscillation mode was experimentally identified by fixing
position of the cart a and measuring excited oscillation of the pendulum connected to
the cart b. A mechanical scheme of the measured flexible part is shown in Figure 6.14.

Figure 6.14. Mechanical scheme of the cart b and the pendulum p.

6.5.1 Analytical Identification
The pendulum’s oscillation mode to be compensated was analytically determined from
the adjusted state matrix Ared that does not contain states of the cart a and is derived
from (6.31) with identified parameters in Table 6.1. This matrix is defined as follows

Ared =


0 1 0 0
− ks
mb
− bs+µb

mb

mpg
mb

µp
lpmb

0 0 0 1
ks
lpmb

bs
lpmb

− (mb+mp)g
lpmb

−µp(1+mb
mp

)
l2pmb

, (6.48)

Ared =


0 1 0 0
− 300

3.25 − 1+3
3.25

29.81
3.25

0.01872
0.673.25

0 0 0 1
300

0.673.25
1

0.673.25 −
(3.25+2)9.81

0.673.25
−0.01872(1+ 3.25

2 )
0.6723.25

, (6.49)

the mode rm1,2 is a pair of dominant poles of Ared. This mode was determined by
MATLAB’s command eig(A_red) and is shown in Figure 6.15.

rm1,2 = −0.065± j3.63. (6.50)
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Figure 6.15. Poles of the reduced state matrix Ared.

6.5.2 Experimental Identification
Experimental model identification was performed, in order to obtain more accurate
parameters (ω0, ζ) of the pendulum oscillatory mode r1,2. First pulse response of the
adjusted system (that is shown in Figure 6.14) was measured. Measured data were then
used to identify parameters of the estimated pendulum’s transfer function structure.
The free body diagram of the pendulum is shown in Figure 6.16.

Figure 6.16. Free body diagram of the pendulum.

where Tu is the input torque, Tf = µf θ̇ the friction torque and G = mg the gravitational
force. The pendulum p is a flexible subsystem F (s) with an oscillation mode r1,2 to be
compensated. The structure of the flexible system’s transfer function F (s) for small
angles sin(θ) ≈ θ, was derived as follows

ml2θ̈(t) + Tf +Gsin(θ(t)) = Tu

ml2θ̈(t) + µf θ̇(t) +mgθ(t) = Tu, (6.51)

51



6. Controlled System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The transfer function F (s) of pendulum’s mathematical model is of second order and

is described as follows

F (s) = b0
a2s2 + a1s+ a0

, (6.52)

system’s parameters a2, a1, a0 and b0 were determined by a MATLAB’s function
s = tftest(DATA, NP, NZ), where the first argument DATA is a iddata object con-
taining the input and the measured output (in the time domain), and arguments NP
(number of poles) and NZ (number of zeros) define model’s structure. The output sys
is the transfer function of the estimated model. The structure of model (6.52) has two
poles NP = 2 and no zeros NZ = 0. The results of identification are given in Figure 6.17
and in Table 6.2.

0 2 4 6 8 10 12 14 16 18

time (s)

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

θ
(r
a
d
)

Identification of the oscillation mode

Measured

Simulated

Figure 6.17. Identification of pendulum’s oscillation mode, red - result of simulation, blue
- result of measurement.

a0 a1 a2 b0

1 0.08526 15.75 1.544

Table 6.2. Identified parameters of the model (6.52).

The model’s fit to estimation data is 96.23 (%) that gives fair agreement between
simulated and measured responses. The natural frequency and damping ratio can be
calculated as follows
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ω0 =
√
a2 =

√
15.75 = 3.9683 (rad.s−1), (6.53)

ζ = a1

2ω0
= 0.08526

2 · 3.96 = 0.0107 (1), (6.54)

and the pendulum’s oscillation mode r1,2 is derived as follows

β = ω0 · ζ = 3.96 · 0.0107 = 0.042 (rad.s−1), (6.55)
Ω = ω0 ·

√
1− ζ2 = 3.9683 ·

√
1− 0.01072 = 3.968 (rad.s−1), (6.56)

r1,2 = −β ± jΩ = −0.042± j3.968. (6.57)

The pendulum’s mode can also be obtained directly by the MATLAB’s command
r_12 = pole(tftest(iddata,2,0)).

It can be seen that there is a slight mismatch between analytically identified mode
rm1,2 = −0.065±j3.63 and experimentally identified mode r1,2 = −0.042±j3.968. This
disagreement is probably caused by approximation properties of the linear model that
is able to capture only dominant components of the real non-linear system. Experimen-
tally identified mode will be used to design signal shaper since it describes real mode
more accurately.
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Chapter 7
Design of Internet Control Architecture

The Networked Control System for the controlled laboratory set-up, described in the
chapter 6.1, was implemented according to the outlined theory in Chapter 5.2. Basic
diagram of NCS’s signal flow is shown in Figure 7.1.

Figure 7.1. Signal flow of the designed NCS, feedback siganl (blue), control signal (red).

The signals are transmitted between the local computer PCl and the remote com-
puter PCr via the UDP communication protocol, this means that the feedback loop
is closed through the Internet network. Signals are received, sent and processed on
both computers by program MATLAB/Simulink. The simulink program on the remote
computer acts as a controller, i.e., computes and sends a control signal while simul-
taneously receives a feedback signal. Meanwhile, the simulink program on the local
computer calculates value of the friction compensation signal and transmits the resul-
tant control signal, e.g., sum of received and compensation control signal, to the plant
while simultaneously sends collected measured signals.

Program Simulink offers several libraries for the network communication with various
communication protocols. The UDP was chosen as the transport layer’s communication
protocol for the reasons already discussed in the chapter 5.3. The following Simulink’s
libraries supporting UDP communication were tested (library/blocks):.DSP System Toolbox (DSPST) / UDP Send, UDP Receive. Instrument Control Toolbox (ICT) / UDP Send, UDP Receive.Simulink Desktop Real-Time (SDRT) / Packet Output, Packet Input (for the

Simulink versions 8.3/R2014a and newer).Real Time Windows Target (RTWT) / Packet Output, Packet Input (for the
Simulink versions 8.2/R2013b and older)

The libraries SDRT and RTWT are compatible with each other, i.e., communication
via blocks Packet Input/Output between the versions 8.2/R2013b and 8.3/R2014a have
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been established. Surprisingly, the performance in terms of time delay, packet loss
and stability of Simulink’s libraries were not consistent. That is probably due to their
different implementation and purposes.

After several experiments with different combinations of the above mentioned blocks
and libraries, I have concluded that blocks Packet Input/Output (libraries SDRT and
RTWT) are, in terms of connection quality, the most reliable, stable and appropriate
for the purposes of NCS. Moreover, these blocks have already included the Simulink
Real-Time Kernel that is necessary for a real-time control of the laboratory set-up.

The block diagram of designed NCS is shown in Figure 7.2,

Figure 7.2. Block diagram of the designed NCS.

where C(s) and 1
S(s) is the controller and the inverse shaper at the controller site, Du(s)

/ Dy(s) are delays at the actuator / sensor node, A(s) is the actuator and G(s) is the
controlled system.

A graphical user interface (GUI) was developed MATLAB, for a more convenient
connection setup and for identification of communication delays. Designed GUI is
shown in Figure 7.3.

Figure 7.3. Designed GUI for control of Networked Control Systems.

The GUI allows to setup Internet Protocol (IP) address of the remote PC, port num-
ber, Matlab version, simulation time, model configuration and the rate of sent/received
packets. To run NCS in simulation mode; i.e. a simulink model is used instead of the
real plant, press button Run Simulation, to run NCS in real mode press button Run
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Real System. The button Test connection is for connection test between two devices
and the button Setup board is used to setup manually blocks Packet Input/Output.
Measured data are saved and can be displayed by pressing the button Plot saved data.

The GUI works for MATLAB versions R2013b, R2014b and R2015b and the GUI’s
repository is provided on the enclosed CD.

7.1 Time Delay Identification
The packets’ transmission delay in the round-trip between the PCr and PCl, also
known as Round Trip Time (RTT), ([32], p.50), was identified experimentally. The
experimental procedure of the time-delay identification consists of sending large number
of packets through the network from PCl to PCr and back from PCr to PCl. The
source code of implemented MATLAB function for delay estimation can be found in
Appendix A.2. The delay is determined by comparing time-stamp from the received
packet (sent from receiver) with current time-stamp. The maximal resolution of time
delay measurement is 0.005 (sec).

The program Wireshark 1) was used to determine the length of the packet Lp sent
from Simulink’s blocks Packet Input and Packet Output. The packet length was found to
be LP = 56 (byte). In order to reduce packet losses, the packet exit period TPE has to be
sufficiently larger than the simulation sampling period TS , ([33], p. 1418). The packet
exit period corresponds to the parameter Sample time in the block Packet Output.
For the fixed parameter TS = 0.001 (s), the packet exit period was experimentally
determined to be TPE = 0.01 (s). The transmission rate of the Ethernet link was
assumed to be R = 10 (Mbps). The traffic intensity (TI) was then calculated as
follows:

a = 1
TPE

= 1
0.01 = 100 (packets · s−1),

T I = LP · a
R

= 56 · 8 · 100
80 · 106 = 5.6 · 10−4 (1). (7.1)

The value of TI is close to zero, therefore, the danger of queuing delay is minimized.
Identification of the time-delay in receiving link τu and in sending link τy (in the case
of plant) was based on the value of RTT. For the sake of simplicity the symmetric link
was assumed, i.e., same connection conditions in the sending link as in the receiving
link. Thus, time-delays τu and τy are equal to the measured time delay τlink and can
be obtained as follows:

τlink = τu = τy = RTT

2 . (7.2)

The measured results for the connection established between two PC via Wi-Fi and
via Ethernet are given in Table 7.1, Figure 7.4, Figure 7.5 and Figure 7.6.

type of connection µτlink (ms) στlink (ms) τmaxlink (ms) LP (%)
Wi-Fi 18.37 4.21 100 8.9

Ethernet 15 0.05 15.5 6.65

Table 7.1. Results of identification of link time-delay.
1) https://www.wireshark.org
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Interpretation of Table 7.1 is as follows, µτlink is the mean of the measured link delay,
στlink the standard deviation of the measured link delay, τmaxlink the maximal measured
link delay and LP the percentage of lost packets.

From the results that are shown in Table 7.1 it is obvious that Ethernet connection
is superior to Wi-Fi connection in every compared aspect. This result is not surprising
at all, since it is well known that connection via physical medium, such as twisted pair
(Ethernet), is more reliable than via wireless technologies (Wi-Fi). Therefore, Ethernet
connection is more suitable for real-time control applications and will be used for data
transmission in NCS.
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Figure 7.4. Link time-delay for connection established via Wi-Fi.
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Figure 7.5. Link time-delay for connection established via Ethernet.
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Figure 7.6. Round Trip Time for connection established via Ethernet.

The standard deviation of the link delay is of small value στlink = 0.05 (ms) and more
than 95 (%) measured packet delays are equal to 15 (ms) (see cumulative distribution
function of measured delay in Figure 7.6). Therefore, constant τ̇u = τ̇y = 0 and equal
τu = τy time-delays in both links are assumed in order to simplify the control design
process. The transfer functions of delay of both links are then given as follows:

Du(s) = Dy(s) = e−τus = e−
15.5
1000 s. (7.3)

During connection tests it was found out that packets sent during an initial phase
of the connection (roughly during first two seconds) were affected by a larger delay
then packets sent later. My opinion is that first packets are probably more affected by
queuing delay caused by Simulink’s block Packet Input. Simple solution to this problem
is to start process received packets after roughly first three seconds of connection, as it
is shown in Figure 7.7.
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Chapter 8
Control Design

In this chapter overall control design procedure will be presented. The control part
consists of an inverse shaper in the feedback and the controller. The control objective
is to suppress oscillation of the flexible subsystem via signal shaper and to control
position of the cart a by controller that guarantees stability of the closed loop with
input and feedback time delays introduced by both communication delays and signal
shaper delays.

8.1 Shaper Design
The signal shaper is designed to compensate oscillatory mode r1,2 of the pendulum p,
that gets excited whenever the controlled cart a is operating. The pendulum oscillatory
mode was identified in Chapter 6.5, see (6.57)

r1,2 = −0.042± j3.968. (8.1)

In order to ensure ensure stability of the feedback loop with inverse shaper, it is
necessary to design shaper with a retarded spectrum of zeros, as was discussed in
Chapter 4. The chosen type of shaper is DeZV shaper, whose spectrum of zeros is of
retarded type

1
SDeZV (s) = 1

A+ 1−A
T

1−e−sT

s e−sτ
. (8.2)

For chosen interval of equally distributed delay T ∈ (0, πΩ ] and the target oscillatory
mode s = −β + jΩ = −0.042 + j3.968, parameters A and τ were calculated as follows

T = π

Ω = π

3.968 = 0.7917 (s), (8.3)

m =
∣∣∣∣1− e−sTTs

∣∣∣∣ = ∣∣∣∣ 1− e−(−0.042+j3.968)0.7917

0.7917(−0.042 + j3.968)

∣∣∣∣ = 0.6475, (8.4)

ϕ = arg

(
1− e−sT

Ts

)
= arg

(
1− e−(−0.042+j3.968)0.7917

0.7917(−0.042 + j3.968)

)
= −1.5815 (rad), (8.5)

K = me
β
Ω (π+ϕ) = 0.6475e

−0.042
3.968 (π−1.581) = 0.6584, (8.6)
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A = K

1 +K
= 0.6584

1 + 0.6584 = 0.397, (8.7)

τ = π + ϕ

Ω = π − 1.5815
3.968 = 0.393 (s). (8.8)

The designed inverse signal shaper in s domain is

1
SDeZV (s) = 1

0.39 + 1−0.39
0.759

1−e−s0.759

s e−s0.3793
, (8.9)

and its spectrum of zeros is shown in Figure 8.1.
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Figure 8.1. Spectrum of designed DeZV shaper with parameters 8.1 (blue +), oscillatory
mode to be compensated (red o).

From Figure 8.1 it can be seen that most dominant couple of zeros of designed shaper
compensates identified oscillatory mode of the pendulum (8.1).
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Figure 8.2. Frequency response of the designed signal shaper.

Frequency response of the designed inverse shaper (8.9) is shown in Figure 8.2. The
main frequency properties of the designed inverse shaper were obtained by program
MATLAB and are defined as follows

lim
ω→0

∣∣∣∣ 1
SDeZV (jω)

∣∣∣∣ = 20 · log(1) = 0 (dB), (8.10)

lim
ω→∞

∣∣∣∣ 1
SDeZV (jω)

∣∣∣∣ = 20 · log
(

1
A

)
= 20 · log

(
1

0.3899

)
= 8.2 (dB), (8.11)

lim
ω→0

arg

(
1

SDeZV (jω)

)
= 0 (deg), (8.12)

lim
ω→∞

arg

(
1

SDeZV (jω)

)
= 0 (deg), (8.13)

the resonant peak is given for the target mode frequency ω = ω0 = 4.138(rad.s−1)∣∣∣∣ 1
SDeZV (jω0)

∣∣∣∣ = 20 · log(72.67) = 37.23 (dB). (8.14)

The signal shaper for vibration suppression of the mathematical mode is designed
analogously. The target oscillation mode of the mathematical model rm1,2 was derived
in Chapter 6.5.1, rm1,2 = −0.065± j3.63. The Table 8.1 shows designed DeZV shapers
for real system and mathematical model.
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System A (1) τ (s) T (s)
Real 0.397 0.393 0.7917
Mathematical 0.3911 0.4324 0.8664

Table 8.1. Designed shapers’s parameters.

8.2 Controller Design

The controller was first designed for system with communication delays without in-
cluded inverse shaper in the feedback path. Communication delays in the feedback
and input were assumed to be constant, lumped and equal to the maximal identified
delay of Ethernet connection, that is τmaxlink = 15.5 (ms). Transfer functions of the
communication delay in the actuator node Da(s) and of the delay in the sensor node
Ds(s) are defined as follows

Da(s) = e−s(τmaxlink+τinput) = e−s
15.5+5
1000 , (8.15)

Ds(s) = e−sτmaxlink = e−s
15.5
1000 . (8.16)

Proportional derivative (PD) controller with a filter was chosen to control astatic
system. The controlled variable is the position of cart xa. The transfer function Tuxa(s)
of the input signal u and the position of cart a was obtained from state-space model
via MATLAB command tf(state_space_model)

Tuxa(s) = 2.67s4 + 3.37s3 + 309.3s2 + 53.19s+ 3604
s6 + 9.876s5 + 293.4s4 + 1127s3 + 5465s2 + 13140s , (8.17)

and the structure of chosen controller C(s) is defined as follows:

C(s) = rds+ r0
Ns+ 1 , (8.18)

where rd is the derivative constant, r0 the proportional constant and N the filter con-
stant. The controller’s parameters were chosen so that the closed-loop system is stable
with sufficient delay margin and fast time response. The proposed parameters are:

r0 (1) rd (s) N (s)
16 1 0.02

Table 8.2. Designed controller’s parameters.

The bode diagram of the open loop transfer functions are shown in Figure 8.3.
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Figure 8.3. Open loop Bode plots: without inverse shaper (C(s)Da(s)G(s)Ds(s)) (blue),
with inverse DeZV shaper (S−1(s)C(s)Da(s)G(s)Ds(s)) (red).

From the inspection of bode diagram 8.3 can be seen that the open loop gain with an
inverse shaper is raised at the target frequency, due to the resonance peak of the inverse
shaper dynamics, and also for higher frequencies by 20log 1

A . Gain Gm and phase Pm
margins were obtained by the program MATLAB. Delay margin Dm can be calculated
as follows:

Dm = Pm
ωc
, (8.19)

where ωc is corresponding phase or gain crossover frequency. Stability margins of the
closed loop without inverse shaper are shown in Table 8.3 and the smallest margins of
the closed loop with inverse shaper are shown in Table 8.4.

Margin Value ωc (rad.s−1)
Gm 11.7 (dB) 10.5
Pm 34.5 (deg) 2.65
Dm 0.227 (sec) 2.65

Table 8.3. Stability margins of closed loop system: C(s)Da(s)G(s)Ds(s).

Margin Value ωc (rad.s−1)
Gm 1.86 (dB) 9.15
Pm 15.5 (deg) 6.45
Dm 0.0419 (sec) 6.45

Table 8.4. Stability margins of closed loop system: S−1(s)C(s)Da(s)G(s)Ds(s).
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Condition of stability for the closed loop is also confirmed by the closed loop spec-
tra for feedback, see Figure 8.4, since every pole lies in the stable region, i.e., left of
the imaginary axis, system is stable. Closed loop spectra was determined via QPMR
algorithm that was briefly discussed in Chapter 3.3.
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Figure 8.4. Closed loop spectra for feedback with inverse shaper and communication de-
lays, (S(s) + C(s)Da(s)G(s)Ds(s)).

Both closed loop with and without inverse shaper are stable. However, the closed
loop with inverse shaper has lower robustness since inclusion of the inverse shaper into
the feedback path raises the open loop gain and decreases all stability margins. Overall
robustness can be increased by decreasing controller’s proportional gain r0, however,
the trade-off of this solution is slower control process.
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Chapter 9
Experimental Results

In this chapter results of the performed experiments with the laboratory set-up are
presented. Designed PD controller, inverse shaper and NCS architecture in previous
chapters were applied. Different experimental configurations were tested, in order to
determine effect of NCS architecture on the overall control performance. Tested con-
figurations are:.Configuration A : System is controlled locally by the PD controller without the

inverse shaper..Configuration B : System is controlled locally by the PD controller with the inverse
shaper..Configuration C : System is controlled remotely by the PD controller without the
inverse shaper..Configuration D : System is controlled remotely by the PD controller with the inverse
shaper.

All MATLAB programs and Simulink models that were used for performed experi-
ments are provided on the enclosed CD.

9.1 Measured Results
The main used parameters to quantify the control performance of cart are:.Rise time : The time required to rise from 0 to 100 % of the reference value..Peak overshoot : The difference between the time response peak and the steady

state..Settling time : The time required for the response of the cart to reach and stay
within a tolerance band of its final value.

The control performance of the flexible subsystem is quantified by the following param-
eters:.Settling time : The time required for the response of the pendulum to reach and

stay within a tolerance band of its final value..Maximal deflection : The maximal deflection of the pendulum.

The measured results are presented in Tables 9.1, 9.2 and in Figures 9.1, 9.2 and
9.3 where the top graph shows the position of the cart a; the middle, the pendulum’s
displacement; the bottom, applied control signal. In all graphs is setpoint indicated
as a dash-dotted red line and tolerance zone as a dashed black line, (±5 (%) of the
setpoint value for cart a and ±5 (◦) for pendulum).
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Figure 9.1. Comparison of measured setpoint responses without applied inverse signal
shaper, local control - configuration A (blue), remote control - configuration C (orange).

In Figure 9.1 are compared results of the remote and the local control of the system
without applied inverse shaper. The control loop without the inverse shaper has a
higher robustness. Therefore, communication delays caused by the Internet network
had almost no effect on system’s dynamics. It can be seen that pendulum’s oscillations
are not suppressed by using a control architecture with only PD controller.
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Figure 9.2. Comparison of measured setpoint responses with applied inverse signal shaper,
local control - configuration B (blue), remote control - configuration D (orange).

In Figure 9.2 are compared results of the remote and the local control of the system
with applied inverse shaper. In this case it is clear that communication delays neg-
atively influenced overall system’s dynamics. The remote control configuration has a
higher value of peak overshoot and settling time for both cart b position and pendulum
displacement. This outcome is not surprising since the inclusion of inverse shaper in
the feedback path decreases all stability margins (gain, phase, and delay) of the closed
loop as it was shown in Chapter 8.2. However, inverse signal shaper efficiently suppress
pendulum’s oscillations in both cases. The pendulum’s maximal deflection has much
smaller value and the settle time is reached significantly sooner than in configurations
without shaper. Nevertheless, pendulum’s oscillations were not suppressed perfectly,
most probably because of the mismatch between identified and real oscillation mode or
actuator’s limitations.
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Figure 9.3. Comparison of measured setpoint responses, remote control without shaper -
configuration C (blue), remote control with shaper - configuration D (orange).

Figure 9.3 compares results of remote control with and without applied inverse
shaper. It can be seen that the control signal is shaped by the inverse signal shaper
and the pendulum’s oscillation is effectively damped in case of control architecture with
inverse shaper.

Criterion \ Configuration A B C D
Rise time (s) 3.5 4.26 3.51 4.15
Settling time (s) 7.19 4.89 7.24 5.9
Peak time (s) 3.62 3.2 3.86 4.45
Peak overshoot (m) 0.0495 0.0203 0.0463 0.0398

Table 9.1. Results of controllers performance criteria for the controlled position of the
cart.

Criterion \ Configuration A B C D
Settling time (s) 9.41 4.73 10.12 5.82
Maximal deflection (◦) 31.91 13.38 30.64 16.28

Table 9.2. Results of controllers performance criteria for the passively controlled pendu-
lum’s deflection.
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In Tables 9.1 and 9.2 are summarized measured results. Control architecture with

the inverse shaper is superior in every aspect expect the rise time. Especially, the
oscillation of the pendulum is significantly suppressed for both configurations with the
inverse shaper. From the measured results it can be concluded that effectiveness of the
inverse shaper part was experimentally verified. Communication delays influence more
configurations with the inverse shaper, that is caused by the fact that the control loop
with inverse shaper is less robust and has smaller time-delay margin.

9.2 Simulation results
In this section, simulation results of the derived mathematical model in Chapter 6 are
presented. Signal shaper was designed to compensate model’s oscillation mode since
real mode and mathematical mode differs from each other. Shaper’s parameters are
presented in Table 6. Simulation result is presented in Figure 9.4.

3 4 5 6 7 8 9

0

0.2

0.4

x
a
(m

)

Simulation results

3 4 5 6 7 8 9

0

0.2

0.4

0.6

x
b
(m

)

3 4 5 6 7 8 9

time (s)

-20

0

20

40

θ
(◦
)

Figure 9.4. Comparison of simulated setpoint responses, control loop without signal shaper
(blue), control loop with signal shaper (orange).

Simulation results again confirm effectiveness of inverse signal shaper. Good agree-
ment between simulated and measured results confirms that derived mathematical
model is adequate for the control design purposes. Pendulum’s oscillations are not
suppressed perfectly due to the fact that oscillation of carts a and b are not very well
suppressed by used PD controller. Better results could be probably achieved by using
a state space or high-order controller, that can provide a more control design options
unlike PD controller that has only two design parameters (proportional and derivative
gain).
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Chapter 10
Conclusion

All goals of this thesis were successfully accomplished. Signal shaping method for
vibration suppression of the flexible system with emphasis on recently developed novel
control architecture with inverse shaper was studied in Chapter 4. The basic concepts
of Internet remote control and time-delays systems, needed for thesis elaboration were
described in Chapters 5 and 3, respectively.

In Chapter 6, state-space model of the laboratory setup was derived and identified.
Next, in order to reduce negative influence of the friction to system responses, the
friction compensation method was applied. This method has proven to be an effective
solution for a simple compensation of friction forces. In Chapter 7 networked control
system (NCS), used for a remote control of the laboratory setup, was designed. More-
over, a graphical user interface for a more convenient control of NCS was developed in
program MATLAB.

The control of the laboratory setup was designed in Chapter 8. Classical
proportional-derivate controller was used for a position control of the cart a and
pendulum’s oscillation was suppressed by an inverse shaper DeZV in the feedback
path. The controller was designed so that the closed feedback loop remains stable even
under influence of time-delays caused by the inverse shaper and the signal transmission.
However, stability margins of the closed loop with inverse shaper are of low value (gain
margin Gm = 1.86 (dB), delay margin Dm = 0.0419 (s)), therefore, a more robust
control design would be necessary for a real industrial application. Nevertheless,
designed control loop was suitable for laboratory experiments.

Finally, designed NCS control architecture with inverse shaper was experimentally
tested and results are presented in Chapter 9. The measured results confirmed effective-
ness of the control architecture with inverse shaper for vibration suppression of flexible
parts. However, control loop with inverse shaper in the feedback path was more prone
to the destabilizing influence of communication delays. This outcome corresponds to
the fact that designed control loop with inverse shaper was less robust then control
loop without inverse shaper. Nevertheless, networked control worked flawlessly and
designed NCS can be extended for a more sophisticated control applications in future
works. Control performance could be improved by using a more sophisticated controller
with more parameters, e.g. stace-space controller, high-order controller, that give us
a greater freedom during control design then simple proportional-derivative controller.
Therefore, future research could concentrate on the design of the control loop with more
sophisticated controller and inverse shaper in the feedback path.
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Appendix A
Source Codes

A.1 Matlab source code of friction compensation

function u_comp = fcn(u,v)
%#codegen
% arg1 - control signal
% arg2 - estimated velocity
% ret1 - compensation control signal

S_a = 4.8; % (N.V-1) - static gain of actuator
dz = 0.05; % (m.s-1) - half interval of dead zone
F_s1 = 4.8; % (N) - stiction friction force for positive velocity
F_s2 = 5.52; % (N) - stiction friction force for negative velocity
F_col1 = 0.1; % (N) - coloumb friction force for positive velocity
F_col2 = 0.1; % (N) - coloumb friction force for negative velocity
v_abs = abs(v); % (m.s-1) - absolute value of the cart velocity
u_abs = abs(u); % (V) - absolute value of the control signal

% friction compensation
if(v > 0) % positive velocity

if(v_abs <= dz && u_abs < F_s1 / S_a)
u_f = u;

elseif(v_abs <= dz && u_abs >= Fs1 / S_a)
u_f = (F_s1 / S_a) * sign(u);

else
u_f = Fc1 / S_a;

end
else % negative velocity

if(v_abs <= dz && u_abs < Fs_2 / S_a)
u_f = u;

elseif(v_abs <= dz && u_abs >= Fs_2 / S_a)
u_f = (Fs_2 / S_a) * sign(u);

else
u_f = Fc2 * -1;

end
end
% actuator compensation
nonlin_end_point = 4;
if(u_abs < nonlin_end_point)

u_act = (u_abs - (1/nonlin_end_point)*u.ˆ2) * sign(u);
else

u_act = 0;
end
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% sum of compensation signals
u_comp = u_f + u_act;

end

A.2 Matlab source code of delay estimation function

function [delay,mem_new] = fcn(packet_in_time,...
curr_time,...
mem_old)

% arg1 - timestamp of arriving packet
% arg2 - timestamp of current packet
% arg3 - timestamp of previous packet
% ret1 - value of packet delay
% ret2 - timestamp of arriving packet
%#codegen

mem_new = 0;

if(packet_in_time > 0)
mem_new = packet_in_time;
if(mem_old ˜= packet_in_time)

delay = curr_time - packet_in_time;
else

delay = 0; % packet is lost
end

else
delay = -5; % no connection

end

A.3 Simulink model used at the remote computer

Figure A.1. Simulink model used at the remote computer

76



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.4 Simulink model used at the local computer

A.4 Simulink model used at the local computer

Figure A.2. Simulink model used at the local computer
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Appendix B
Abbreviations and Symbols

B.1 Abbreviations

CDF Cumulative Distribution Function
CIM Computer Integrated Manufacturing

COM Serial communication port
DAQ Data Acquisition Card
DeZV Distributed Zero-Vibration Shaper with lumped and equally distributed

delay
DSPST DSP System Toolbox

DZV Distributed Zero-Vibration Shaper
EI Extra Insensitive Shaper

EQD equally distributed delay
FDEs Functional Differential Equations

FIR Finite Impulse Response
FO Friction Observer

GUI Graphical User Interface
IA Information Architecture

ICT Instrument Control Toolbox
IP Internet Protocol

LAN Local Area Network
LD Lumped Delay
LTI Linear Time Invariant System

NCSs Networked Control Systems
N-E Newton-Euler equation
PLC Programmable Logic Controller
PC Personal Computer
PCp Personal Computer of Plant
PCc Personal Computer of Controller
PD Proportional-Derivative controller

QPMR Quasipolynomial Mapping Based Rootfinder
RTWT Real Time Windows Target

RTT Round Trip Time
SDRT Simulink Desktop Real-Time Library
SISO Single Input Single Output System
TCP Transmission Control Protocol

TCP/IP Transmission Control Protocol/Internet Protocol
TDSs Time Delay Systems

TI Traffic Intensity
UDP User Datagram Protocol
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ZV Zero Vibration Shaper
ZVD Zero Vibration Derivative Shaper

B.2 Symbols
A state matrix

Ared reduced state matrix
Ã state matrix matrix of closed loop

A(s) actuator’s transfer function
a packet average arrival rate (m.s−1)
A shaper gain
B input matrix
bs damping of spring (N.s.m−1)
C output matrix

C(s) controller’s transfer function
D direct transmission matrix

Da(s) transfer function of communication delay in actuator node
Dm delay margin (s)

Ds(s) transfer function of communication delay in sensor node
Du(s) transfer function of delay of sending link
Dy(s) transfer function of delay of receiving link
dbp diameter of the belt pulley (m)

e(t) error vector
F (s) flexible system’s transfer function
F̂ estimated friction force (N)

F̂comp estimated compensation force (N)
Fcol coulomb friction force (N)
Fb damping force (N)
Fe external force (N)
Ffa friction force of cart a (N)
Ffb friction force of cart b (N)
Ffp friction force of pendulum p (N)
Fk spring force (N)
Fst stiction force (N)
G gravitational force (N)

Gm gain margin (dB)
G(s) system’s transfer function
G(s) matrix of transfer functions
H(.) heaviside step function of .
h(τ) delay distribution function

I identity matrix
=(.) imaginary part of .

K feedback gain matrix
Ke observer gain matrix
ks stiffens of spring (N.m−1)
L size of he packet (bits)
lp length of pendulum (m)

M(s) characteristic equation of system
Mn nominal torque (N.m)
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ma mass of cart a (kg)
mb mass of cart b (kg)
mp mass of pendulum p (kg)
N filter constant (s)
n number of state variables
O observability matrix
Pm phase margin (deg)
R controllability matrix
R transmission rate (bits.s−1)

R(s) coupling transfer function
<(.) real part of .
rd derivative gain constant (s)
r0 proportional gain constant
r1,2 complex conjugate couple of poles
Sa actuator’s static gain (N.V −1)

S(s) transfer function of shaper
SZV (s) transfer function of zero vibration shaper
SZV D(s) transfer function of zero vibration derivative shaper
SDZV (s) transfer function of distributed zero vibration shaper
SDeZV (s) transfer function of distributed zero vibration shaper with lumped and equally

distributed delay
s complex variable, operator of Laplace domain
t time (s)
T length of distributed delay (s)
t0 initial time (s)

U(s) input column vector
u(t) input vector
u(t) input
u control signal (V )

ucomp compensation signal
V (ω, ζ) residual vibration
vprop propagation speed (m.s−1)
xa position of cart a (m)
ẋa velocity of cart a (m.s−1)
ẍa acceleration of cart a (m.s−2)
xb position of cart b (m)
ẋb velocity of cart b (m.s−1)
ẍb acceleration of cart b (m.s−2)

x(t) state vector
x̂(t) observed state vector
Y(s) output column vector
y(t) output vector

ε dead zone interval
ζ damping ratio (1)
θ Pendulum’s displacement (rad)
θ̇ Pendulum’s angular velocity (rad.s−1)
θ̇ Pendulum’s angular acceleration (rad.s−2)
µa viscous friction of cart a (N.s.m−1)
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µb viscous friction of cart b (N.s.m−1)
µp viscous friction of pendulum (N.s.m−1)

µτlink mean of the link delay (ms)
στlink standard deviation of link delay (ms)

τ lumped delay (s)
τnodal nodal delay (s)
τproc processing delay (s)
τprop propagation delay (s)
τqueue queuing delay (s)

τmaxlink maximal link delay (ms)
τtrans transmission delay (s)

τk delay of shaper impulses (s)
τu communication delay of sending link (s)
τy communication delay of receiving link (s)
φ argument of complex number (rad)
ω frequency (rad.s−1)
ωc cross-over frequency (rad.s−1)
ω0 natural frequency (rad.s−1)
Ω damped natural frequency (rad.s−1)
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