
Application for Automated Collection of Test Files

 for CSS Class via HTTP and for Local Plagiarism Check:

Testrek

by

Akshat Tandon

 Submitted in Partial Fulfillment of the

Requirements for the Degree of

Bachelor of Mechanical Engineering (Information and Automaton Technology)

at the

Czech Technical University in Prague

Faculty of Mechanical Engineering

© Akshat Tandon

Czech Technical University in Prague

Summer 2017

ii

iii

Annotation List

Authors Name: Akshat Tandon

Name of Bachelor’s

Thesis:

Application for Automated Collection of Test

Files for CSS Class via HTTP and for Local

Plagiarism Check

Year: 2017

Field of study: Information and Automation Technologies

Department: Department of Instrumentation and Control

Engineering

Supervisor: doc. Ing. Ivo Bukovský, Ph.D.

Bibliographical data: Number of pages 49

Number of figures 10

Number of tables 2

Number of attachments 3

Keywords: python, process automation, string comparison,

HTML parsers, plagiarism, Testrek

iv

Statement

I declare that I have written this thesis independently assuming that the results

of the thesis can also be used at the discretion of the supervisor of the thesis as

its co-author. I also agree with the potential publication of the results of the thesis

or its substantial part, provided I will be listed as the co-author.

In Prague: 16.06.2017 Signature: Akshat Tandon

v

Abstract

This thesis focuses on analysing and automating the examination process for the

‘Computer Support for Study’ course taught at Faculty of Mechanical Engineering,

Czech Technical University in Prague; and running the plagiarism check on answers

from the test takers. An application called Testrek is built as a part for this thesis which

should streamline much of the examination process for the CSS course. The application

is written using Python programming language with support from external libraries

which are discussed in the thesis. Testrek essentially checks and downloads the files

from a publicly accessible network location (public_html folder), where answer files

are uploaded by the test takers. The Plagiarism check is run using a library called

fuzzywuzzy which in turn uses the Levenshtein distance to calculate the similarity

between two strings. At the end, a technical walkthrough of the application is also

provided for understanding of the use case.

In conclusion, the required automation of examination process has been achieved.

Consequently, the analysis in this thesis open opportunity for further scope of

automation and making the application even more dynamic to cover more courses.

Keywords: python, process automation, string comparison, HTML parsers,

plagiarism check, Testrek

vi

Acknowledgements

I would like to express my deepest appreciation to Ing. Matouš

Cejnek for all the guidance that he has provided during the preparation of

this thesis work. Without his persistent help, motivation and immense

knowledge in Python, this would not have been as doable as it had been.

I would like to thank Professor Ivo Bukovský for trusting in my

ability to work on this thesis topic and for his precious time that he has

invested in making this thesis look well presented. Most of all, the Python

course taught by him helped me in familiarizing with many aspects of the

programming language and its capabilities.

In addition, a big thanks to Kristyna Steidlova from Accenture sro

for helping with creating the process maps and for providing her valuable

suggestions pertaining to different ways of approaching the automation

from her experience and expertise.

vii

Table of Contents

Abstract ... v

Acknowledgements .. vi

Table of Contents .. vii

List of Acronyms.. viii

Glossary ... ix

Chapter 1. Introduction .. 1

Chapter 2. Process Analysis and comparison of existing tools 3

2.1. Process Description .. 4

2.2. Comparison of already available software solutions 4

Chapter 3. Proposed Solutions .. 6

3.1. Standardization of the process ... 6

3.2. Possible Solutions... 6

Chapter 4. Technologies and Methodologies ... 10

4.1. Development Environment ... 10

4.2. Programming Technologies.. 11

4.2.1. Why Python? .. 14

4.3. External Python libraries ... 14

4.4. Development and Testing Methodology .. 17

4.5. Plagiarism Check .. 19

4.5.1. Available plagiarism check methods in Testrek 20

Chapter 5. Technical walkthrough ... 22

5.1. Application runtime ... 22

5.2. Testrek components ... 25

Chapter 6. Conclusion ... 33

Appendix Testrek Application ... 35

Download Success Report .. 36

Plagiarism Check Report ... 37

References ... 38

viii

List of Acronyms

CTU Czech Technical University

CSS Computer Support for Study

GUI Graphical User Interface

IDE Integrated Development Environment

PyPI Python Package Index

TDD Test Driven Development

ix

Glossary

Python An Object Oriented and interpreted Programming

language

Script Programs written for a special run-time environment

Open Source The source code that is made available to the public

under a license to study, change, and distribute the

software to anyone and for any purpose

Database a structured set of data held in a computer,

Web Hosting A web hosting service is a type of Internet hosting

service that allows individuals and organizations to

make their website accessible via the World Wide Web

PEP8[1] Python code style conventions

Object Oriented

Programming

Computer programming in which we can define not

only the data type of a data structure, but also the types

of operations (functions) that can be applied to the data

structure

Python Interactive

Shell[2]

Python’s command line utility

snippet a small piece or brief code

Recursion A common computer programming tactic is to divide a

problem into sub-problems of the same type as the

original, solve those sub-problems, and combine the

results.

Hash function[3]
A hash function is any function that can be used to map

data of arbitrary size to data of fixed size.

1

Chapter 1. Introduction

The major motivation for this thesis comes from the fact that most of the

work surrounding the examining of students is still done manually. This thesis

introduces the need, scope and application that is built for the automation of the

examination process for reducing the manual work. The software solution

described and developed as a part of this thesis is tend to be designed in a way

that it utilizes and requires the least resources and infrastructure for its operation.

The application is made as dynamic as possible hence it can be used outside the

set scope (i.e. for Computer Support for Study course[4]), if the process of

examination can be standardized for that course or subject. Different methods of

approaching the automation are also described along with their benefits and

shortcomings.

For the sake of simplicity, CSS course is used as an example all through

this thesis, to analyze and demonstrate the challenges and solution proposals to

different aspects of such an automation process.

When conducted manually, the whole examination process procedure is

taken care of manually with the help of up to three or more people. From the

preparation of question paper to reviewing the answers from students (most of the

times in an unorganized way) and assigning grades. If a course or subject is

registered by many students (which in fact is a case for the CSS course), for e.g.

in order of hundreds then the whole process becomes even more cumbersome and

hard to handle, leading to the slowdown of the review process and requirement of

even more manual efforts.

The aim of this thesis is to provides a good understanding of the

examination process where most of the work is done manually, along with ways

to approach the automations of such nature. The problem that has been addressed

2

in this thesis is mostly concerned with the organization and automation of the

answer reviewing system and aid the plagiarism check. Also, a summary of how

to achieve operational excellence by the deployment of small and cost effective

automations is made part of this thesis.

The software solution Testrek, developed mainly in Python as part of this

thesis can help in organization of reviewing and running a preliminary plagiarism

check on answers from the students taking part in the examination. The designing

of the solution is dynamically approached so that the testing of any kind can use

this solution if it can be standardized as mentioned in the chapters later. This thesis

can provide a base to conduct further research and development on automating

the examination sub processes which are out of scope of this bachelor thesis.

There are information systems that already exists and can provide a

potential solution for achieving the automation, if modifiable and extensible. For

example, Moodle[5] is an open-source learning platform which is used by CTU

to share study material with students. Although by default, there is no possibility

for students to upload their answers during the examination or for teachers to run

a plagiarism check, it can be extended in order to do similar tasks that Testrek

would do but the efforts required for achieving the same results as Testrek would

require more time, resources, expertise in other front and back end programming

languages. Moreover, for integrating the extensible application to current Moodle,

an extensive Black and White box testing[6] will be required, ranging from

regression and system tastings to integration testing. It is for all these reasons that

it became necessary to write an autonomous application.

The information in this thesis is ordered in way so that one starts by

understanding the aim and challenges faced due to the current process, followed

by a description of the solution proposals and technologies used to develop the

solution itself.

3

Chapter 2. Process Analysis and comparison of existing

tools

Process Analysis constitute an important part of this thesis as it helped in

understanding the different aspects of the problem which are tried to be solved

while designing the software solution described in Chapter 3.

F
ig

u
re

 1
 -

 C
u

rr
e

n
t

E
x
a

m
in

a
ti
o
n

 P
ro

c
e
s
s
 w

o
rk

fl
o

w

4

2.1. Process Description

When conducted manually, the process map of whole examination

process is explained using a swim lane chart on the top. The chart shows

the current process procedure, with the estimations of work and in some

cases time required for a sub process to complete. Next chapter contains

further information about the scope of the software solution developed for

this thesis and a rough estimation of efforts required to automate the sub

processes which are not included in the scope.

2.2. Comparison of already available software solutions

There are plenty of tools available in the market which can be used

to automate the testing of students and this section contains a summary of

the features for some of the tools that were found to be the closest

alternatives of Testrek.

1. Moodle

Moodle is an open source learning platform, which provides a robust,

secure and integrated system under one tool for educational institutions to

create a personalized learning platform. Moodle is considered an alternate

for Testrek because it is easily extensible, light weight, open source and

already implemented at the Faculty of Mechanical Engineering.

Technologies used to build Moodle are PHP and MySQL. It utilizes Apache

servers to run itself[7].

As Moodle is essentially a learning platform, building a testing

system would require to interact many other modules which may make the

whole system unstable. It is a server application and would also need some

maintenance from time to time in contract to Testrek which is a standalone

application. Additionally, an aggressive testing scheme would be necessary

5

before the test module can be implemented in the main Moodle application

system so that it is fail safe at all times.

It is also required to have a very good understanding of Moodle’s

object model before one can start developing on it. The implementation of

the whole solution would also look very different on Moodle when

compared to Testrek.

2. Quiz Works

Quiz Works is a subscription based online examination system which

can used to create online testing questions for test takers. It is not open

source so extending the application is not an option. It does support a few

third-party integrations and web-hooks but none of them are related to the

scope of this thesis. Additionally, it does not support plagiarism check. As

it is subscription based, the version with full blown features cost $99 per

month, which makes it an expensive option[8].

On the good side, this online tool provides the teacher with test

analysis which can help in providing the teachers with an insight into the

performance of the test takers in certain areas and improve the study content

for those in the upcoming semesters.

3. Easy Test maker

Easy Test Maker is another subscription based online examination

system which can be used to generate question papers for testing but it is

does not support plagiarism check and it only available online. There are

several options available to generate different types of questions which can

later be automatically graded[9].

This tool is also not open source which restricts the users to extend

its capabilities in contract to Testrek or even Moodle.

6

Chapter 3. Proposed Solutions

3.1. Standardization of the process

Before designing any solution for automating the examination

process, it was necessary to standardize it. This in fact proved to be crucial

while searching for different ways to approach the solution. The

standardization helped in deciding the best possible way to approach the

designing of the software solution, in the limited time frame. To make the

solution fail safe it was necessary to set many rules for different parts of

the process, but the challenges was to still maintain its dynamical nature.

After a thorough analysis, the two most qualified solutions which can

be build are listed below with the requirement for standardisation,

complexity, maintainability, infrastructure and support. [10]

3.2. Possible Solutions

1st Solution (Testrek) – Preferred

Basic Requirements for this solution to run:

a. Access to the internet

b. Disk space of about 50 Mega Bytes

This solution which is essentially a combination of scripts written in

Python, is built as a part of this thesis. This solution was preferred because

the requirements for running this application were very low and affordable.

As the scripts are simple to understand, it would not require a lot of time to

modify if the need be.

7

This solution also does not demand a lot of infrastructure hence it

can run on most of the computers of today’s standard. Although it does not

have a very user interaction to the of GUI, it is still easy to use and maintain.

The challenging part for this solution is strictly standardizing many parts of

the examination process, for example, where data is expected from the user.

The swim lane chart shows the process workflow if application like

Testrek will be implemented for automation. A more thorough description

of this solution can be found in the upcoming chapters.

Figure 2 - Workflow for Testrek

8

2nd Solution – Not preferred

As this solution will utilize a server, it will have a client side and the

server side. Basic Requirements for this solution to run:

On client side:

a. Internet Connection and a modern web browser

On server side:

a. a database

b. a server supporting Python

c. an app hosting platform

d. maintenance and support

Building this application solution would require a robust web

framework for Python, e.g. Flask[11], Django[12] etc. It would utilize a

database to store the information and a server to operate itself. Furthermore,

the development process would require a lot more time and resources in

comparison to the 1st solution.

Though the requirements are on the higher end when compared to

the 1st solution, this solution which is essentially a web application will be

more robust in its operation and delivery. This application would run on a

web browser with an intensive GUI, hence will be more interactive for the

users. One other essential characteristic of this solution would be the fact

that it will not require as much standardization of the process as does the

1st Solution requires. Several validations can be run on the data as and when

it is received, hence diminishing the need for much standardization.

9

 The swim lane chart below shows how the examination process

would look like if a web application, written for example in python’s web

framework Django, can be implemented to automate the examination

process.

Figure 3 - Workflow for a web application

10

Chapter 4. Technologies and Methodologies

This chapter guides through different technologies and methodologies

used, from development to the deployment of the application solution. The sub

sections of this chapter consist of information about the platforms used for

development, environment settings, programming technology and the libraries

used.

4.1. Development Environment

The solution had been built on a machine running MAC OS and the

IDE or integrated Development Environment that was used to build the

software solution is called PyCharm Edu 3.5[13] provided by JetBrains

s.r.o..

This IDE was chosen as it has a great support for Python

development and is an open-source software. It is best known for intelligent

code completion, on-the-fly error checking and quick-fixes and easy

project navigation. It helps keep quality under control with PEP8 checks,

testing assistance, smart refactoring, and a host of inspections.

Figure 4 - PyCharm Sample Workspace (adopted from PyCharm)

11

4.2. Programming Technologies

The software solution Testrek is purely written in the programming

language called Python. Python is an interpreted, multi-purpose

programming language that can be used to write web applications, GUIs,

scripts and much more. It is strongly and dynamically typed with focus

given to its readability and productivity. With an immense support from the

community around it which builds a great range of libraries, it has proved

to be a powerful language for scientific use and mathematical modelling. It

is a self-contained object oriented programming language that has an

interactive shell, strong introspection, cross platform capabilities and a

variant for specific use like CPython, JPython, IronPythnon etc.[14]

 The versions of Python used for building and testing the software

solution for this thesis are Python 2.7.10 and Python 3.5.2.

Hello World in Python

Writing “Python” in the command line starts the Python interactive

shell which can be used to write python commands.

#!/usr/bin/env python
print "Hello World!"

Indentation is necessary

 Unlike most other programming languages, Python cares about the

indentation and structure of the code. A sample is shown below:

#!/usr/bin/env python
for i in range(1, 10):
 print ("I am number " + str(i))
 if i == 9:

12

 print ("9, here again!")

Comments

Comments in Python are written as shown below. Any string that is

not assigned to a variable or function is regarded as a comment.

One line comment
"""
This is a multi-line
comment.
"""
"Any string not assigned to a variable is a comment"

Data Types

Python has built in support for primitive data type like strings,

Numbers, Null, Booleans, Lists, Tuples and Dictionaries[15]. Python

dynamically assign the data type after a variable is initialized, hence

declaration of variable is not included in Python.

Strings
 address = "This is a string."
 address_long = """This is a
 long string."""

Numbers
 # Integers
 age = 9
 year = int("2010")
 #Float
 pi = 3.14159

Null
 data = None

Booleans
 is_Python = True

Lists
 # initialisation
 names = ["Charlie", "Brown", "Chris", 59, True]

13

 # Appending
 names.append("Martin")

Tuples
 # Can't be changed after initialisation
 names = ("This", "is", "final", true)

Dictionaries
 # initialisation
 dict = {'Name': 'Zara', 'Age': 7, 'Class': 'First'}
 # Update
 dict.update({
 'Gender': 'Female',
 'Hobby': 'Reading',
 })

Control Flow

Python has support for conditionals, for and while loops, and list

comprehension. An example of list comprehension is mentioned below:

List comprehension
div_by_two = {x for x in range(10) if (x%2 == 0)}

Classes and Functions

Classes and Functions makes up for an important part of any object-

oriented programming language[16]. Classes can inherit from other classes

and ultimately from “object” class which is the top-level class in Python

from which all classes inherit. Functions can accept argument or not. In

Python, a function can be defined as below:

Funtion that excepts an argument
class Any_name(object):
 def foo(i):
 """Function documentation"""
 remainder = i % 5
 if (remainder!= 0):
 return remainder

14

4.2.1. Why Python?

Python is undoubtedly an easy to use programming language with a

great community that generously promotes and supports it. Because of the

reliability that frameworks like Django, Flasks and Pylons etc. provide,

they are being used as a primary platform for development for many

software products. Python has no interfaces or real scoping of functions and

methods, which lets developer concentrate more of the logic of the

application than the syntax of the code itself. Due to all the above reasons,

Python proved to be the right choice for developing Testrek.

4.3. External Python libraries

Python allows adding external modules (libraries) to a project.

Packages are essentially a collection of dynamically written classes with

variables and function, which can be re-used in another project. The

keyword “import” is used to create a reference to these modules in a project

and then the functions from these classes can be used.

importing the whole datetime module and creating an alias
dt
import datetime as dt
importing only the classes timedelta and date from the
datetime
from datetime import timedelta, date

An exhaustive list of all the packages publicly available for Python

is available on PyPI[17].

15

Apart from the several packages that come by default with Python, a

few other were also used while developing Testrek. I brief introduction to

each one of them is mentioned in this section.

Requests (v. 2.14.2)

Requests is a HTTP library for Python, which send HTTP/1.1

requests without the need for much of work that is required to be taken care

of while sending a HTTP request. For example, there is no need to manually

add query strings the URLs or to form-encode the POST data.[18]

Connection pooling is also taken care of in the library itself which reduces

the need to custom write the related code again and again.

Testrek utilizes requests library to download files related to each task

from the user’s filesystem (found under public_html folder) on the

University server.

Easygui (v. 0.98.1)

EasyGUI is a simple yet robust GUI written in Python. It is not event

driven, instead all the GUI interactions are invoked by simple function

calls. This GUI library is used to present dialogs with information during

the runtime of Testrek. It saves the user from knowing anything about

tkinter, frames, widgets, callbacks or lambda, which are core to it. It runs

smoothly on Python 2 and 3 and does not have any dependencies.

Fuzzywuzzy (v. 0.15.0)

Fuzzywuzzy is a package used for the string comparison. It uses

Levenshtein Distance to calculate the differences between the sequence of

strings. It is compatible with python 2.4 or higher. It utilizes difflib library

that comes bundled with Python and uses the package python-Levenshtein

to deliver results even faster. In Testrek python-Levenshtein package is

16

used along with fuzzywuzzy in order to get results as quickly as

possible[19].

Tqdm (v. 4.14.0)

Tqdm package is available for Python 2.6 and higher is used to create

a progress bar from the number of iterations. For implementation, it must

simply wrap with the iterable. The snippet below one can see the

implementation in a real-time scenario[20].

from tqdm import tqdm

for i in tqdm(range(500)):
...

Beautifulsoup4 (v. 4.6.0)

Beautifulsoup is an extensively used python package for parsing

through a web page. Since its emergence in 2004, it has been under constant

development and the latest version provides some great features and robust

runtime performance. It is built upon am HTML or XML parser, providing

extensive features to iterate, search and modify the parsing tree[21].

In Testrek, it is mainly used to check for the existence of the files on

the web url before requests library can be used to download that file. This

was necessary to be done while providing the right results in the download

success report.

17

4.4. Development and Testing Methodology

Most of the development work on Testrek, was conducted by me and

it was necessary to choose the right development techniques. The list of

possible development methodologies was already shorten down to only a

few because of this fact. The timeframe available for the development of

the application was limited as well and it served as the second condition to

limit the list down to one. For all these reasons, test-driven development

was chosen. All through the development life cycle, it was necessary to

design tests and then write the function definitions. Test driven

development[22] has its own challenges and but it did fit nicely for a small

project like Testrek. The illustration below provides an overview of how

the development was approached at different stages

Figure 5 - Development life-cycle

18

The following sequence of steps are generally followed in a test-driven

development projects[23]:

• Add a test

• Run all tests and see if the new one fails

• Write some code

• Run tests

• Refactor code

• Repeat

It is true that TDD slows down the development but once one get into the

loop it becomes quite easy. It was important to produce better designs, allow easy

and safe refactoring and slowly increase the test coverage in order to adapt to this

methodology and take its benefits.

19

4.5. Plagiarism Check

Testrek incorporates a feature to run plagiarism check on answers

from every test taker against the answers from every other test taker. For

this purpose, fuzzywuzzy package is used which can provide similarity

ratios processed for different types of string comparisons.[24]

Simple Ratio

>>> from fuzzywuzzy import fuzz
>>> from fuzzywuzzy import process

>>> fuzz.ratio("we are here, finally", "we are here,
finally!")
97

Partial Ratio

>>> fuzz.partial_ratio("this is a test", "this is a test!")
100

Token Sort Ratio

>>> fuzz.ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a
bear")
91
>>> fuzz.token_sort_ratio("fuzzy wuzzy was a bear", "wuzzy
fuzzy was a bear")
100

Token Set Ratio

>>> from fuzzywuzzy import fuzz
>>> from fuzzywuzzy import process

>>> fuzz.token_sort_ratio("fuzzy was a bear", "fuzzy fuzzy
was a bear")
84
>>> fuzz.token_set_ratio("fuzzy was a bear", "fuzzy fuzzy was
a bear")
100

20

Fuzzywuzzy utilizes the Levenshtein Distance[25] to compute these

ratios. Levenshtein distance (LD) is a measure of the similarity between

two input strings. The distance is the number of deletions, insertions, or

substitutions required to transform one string into another. The greater the

Levenshtein distance, the more different the strings are.

Let’s take two identical strings. If x is "test" and y is "test", then

LD(s,t) = 0, as no transformations are needed.

If s is "rent" and t is "rant", then LD(s,t) = 1, because one substitution

(change "s" to "n") is sufficient to transform s into t.

Levenshtein distance are used in the following fields:

• Spell checking

• Speech recognition

• DNA analysis

• Plagiarism detection

4.5.1. Available plagiarism check methods in Testrek

In Testrek, there are two available options to run plagiarism check

between answer files from different students. One being the simple string

check and other the hash check. These options can be toggled in the

config_file.py which is explained in the next chapter.

When a simple string check is selected then the content of each file

is converted into one long string and is compared to another long string

created from the content of answer files for the same task from other

students. While on the other hand, when hash comparison is selected then

21

whole of the file is run through a hash function to convert into a md5 hash.

The snippet below demonstrates how the conversion is done in Testrek.

import hashlib
import codecs

s_buf_raw = fp.read() # fp is an answer file
s_buf = s_buf_raw.encode('utf-8')
hasher = hashlib.md5()
hasher.update(s_buf)
s = hasher.digest()

22

Chapter 5. Technical walkthrough

This chapter describes the working of Testrek application, different

standardized inputs that it requires for its operation and the output files it

generates. As described in chapter 2, Testrek need standardization of certain

parameters that it takes before starting the main process of downloading the files

and running the plagiarism check.

5.1. Application runtime

Minimum requirements

Testrek is designed to run on Linux, Mac and Windows. Below are

the minimum system requirements for Testrek to run:

Table 1 System Requirements

System Requirements

Operating system Windows 7 or higher, Mac OS X or higher, Linux

Hard drive

8 MBs for the application (Testrek) + (number of students X number of tasks X 3)

MBs disk space for answer files from students

Python Python 2.7 installed on the local machine

Standardized inputs

• The students are required to store the answer files in folders under

pubic_html, which should be named in a certain way. An example

for uploading the files for Task 1 should be done as follows:

student folderpublic_htmlTask1(Task file here; of any

format)

23

• The application takes an input a text file with names of all the test

takers put on separate lines. These could be short user names as

“tandoaks” or longer user name as “akshat.tandon”.

High Level overview

The working of the application is as follows:

• At first, test takers upload answers to every task into a task folder

named for example as “Task1”, “Task2” etc., directly under the

public_html folder. Test takers can name the file in any manner. Any

file type can be downloaded using Testrek.

• When the test is over, the test supervisor can run the “RUN.py” file

present in the application directory using “Python Launcher”.

• While the script is run, it will show a file picker dialog box where

the instructor should select a text file with name of the test takers.

• A progress bar can be seen in the Python Launcher command line

representing the progress of downloading of the files. After the files

for every test taker is downloaded, a pop up window appears which

asks if the application should run a plagiarism check or end itself.

Figure 6 snapshot of file containing names
of test takers

24

• If yes is clicked, the plagiarism check is run and reports are

generated.

• The download success reports in csv format is stored in “Reports”

folder and answer files in the “Answers” folder. A report for the

plagiarism check in html format is generated and stored in the

application directory.

Outputs files

 There are three main outputs of running the script.

• Answer files from test takers, which by default are downloaded in

the application folder under folder called “Answers”. An example is

shown below:

TestrekAnswersAnswers_current_date&timetandoaksTas

k1, Task2…

 Figure 7 Screenshot of Answers Folder

• File download success report, which by default is downloaded in the

application folder under folder called “Reports”. An example is

shown below:

25

TestrekReportsReport_current_date&timereport_date&tim.

csv

NOTE: An example of report can be found attached in the appendix.

 Figure 8 Screenshot of Reports folder

• Plagiarism report, which by default is downloaded in the application

folder directly and is replaced each time the plagiarism check is run.

An example is shown below:

Testrekplagiarism_check.html

NOTE: An example of the plagiarism check can be found attached in the appendix.

5.2. Testrek components

The application Testrek is written in a few several modules to so that

the code be more readable and modifiable if necessary. In this section,

different modules of the application and their constituent are discussed.

“__init__.py” module

This is an empty file in the application directory and is used to mark

directories on disk as Python package directories. If it were not present,

then python cannot import the sub modules in other python files in the

application[26].

26

“config_file.py” module

This is a configuration or setting file for the Testrek. It greatly

contributes to the generality of the whole application by allowing users to

change certain parameters. In the following snippet, it can be seen which

all parameters are available to be modified and their meanings.

import os

######################################
####### DOWNLOAD FILE SPECIFIC #######

Do not modify this parameter
curr_dir = os.getcwd()

web_url = "http://users.fs.cvut.cz/"

answer_folder = os.path.join(curr_dir, "Answers")

tasks_folders = ["Task1", "Task2", "Task3"]

rep_dir = os.path.join(curr_dir, "Reports")

######################################
PLAGIARISM CHECK SPECFIC ######

hash_check = False

type_of_check = "Simple Ratio"

web_url: Specify the root url where the student folders are placed.

For e.g.: web_url = http://users.fs.cvut.cz/~

answer_folder: The directory where downloaded files are stored.

For e.g.: answer_folder = os.path.join(curr_dir, "Answers")

tasks_folders: Specify the folders on the web file-system where the

answer files should be downloaded from. For e.g.: tasks_folders =

["Task1", "Task2", "Task3"]

http://users.fs.cvut.cz/~

27

type_of_check: Type of string comparison. Set to "Simple Ratio"

for simple ratio. All available options: "Simple Ratio", "Partial Ratio",

"Token Sort Ratio", "Token Set Ratio".

rep_dir: The directory where the reports generated regarding

downloading of the files should be stored.

hash_check: Run plagiarism check on hash or whole file content.

Set to True if check based on hash or False for check based on content.

Hash check takes much less time as compared to the other option.

type_of_check: Type of string comparison. Set to "Simple Ratio"

for simple ratio. All available options: "Simple Ratio", "Partial Ratio",

"Token Sort Ratio", "Token Set Ratio".

“plagiarism.py” module

The plagiarism.py file consists of definition of the function

retrieve_folder_content, which is used to retrieve contents of a folder.

This function takes in two parameters src_path and file_check, where the

first is the absolute path to the directory where contents are required to be

checked and the latter is for checking if to check the sub-directories or files

in the src_path. It was convenient to write a function like this as there was

a need of subsequent retrieving of the contents in a directory for checking

the files.

“scrapper.py” module

The scrapper.py file consists of definition of the functions that

checks for the answer files in the student folder on the server filesystem

28

and then download the files. Other than that, there are some function

definitions like move_file to move downloaded files under the right

student and task folders and test_takers function to get the usernames

of the test takers.

The test_takers function uses easygui file picker which restricts

the selection to only text file containing the names of the test takers on

separate lines. This function also incorporates several validation checks

before a list of test takers is returned for the main program to loop through

in order to download the files from the server file system i.e. public_html

folder for each test taker. For an expected run and end of the application,

Exceptions like no text file selected and other unexpected errors are taken

care of in the function definition itself as shown below:

except Exception as e:
 if file_name is None:
 easygui.msgbox("No text file with usernames selected!"
---------------------+ "\n" + "Script exited", "Error")
 raise SystemExit("No text file with usernames --------
-------------selected!")
 else:
 easygui.msgbox(e.message, "Error")
 raise

The file_fldr_exists function uses requests library to check

the status code that is returned while trying to get the file from the

public_html folder. It was necessary to do to decrease the time complexity

of the of Testrek during runtime. Below are some status codes that can be

returned by the server[27]:

29

Table 2 HTTP/1.1 Response Codes

Code Description

100 Continue

200 OK

201 Created

202 Accepted

400 Bad Request

404 Not Found

500 Internal Server Error

The file_download function defined below is used to download

the files from the server. The requests.get[28] method returns the

response from the URL that is provided as a parameter. The function

proceeds if the URL can be reached by checking the status code of the

response method.

def file_download(file_url):
 """Downloads file from the server

 :param file_url: url to the file to be downloaded
 :return: Either the downloaded file or False
 """
 local_filename = file_url.split('/')[-1]
 r = requests.get(file_url, stream=True)

30

 if r.status_code == 200:
 with open(local_filename, 'wb') as f:
 count = 0
 for chunk in r.iter_content(chunk_size=1024):
 count += 1
 if count <= 3000:
 if chunk:
 f.write(chunk)
 f.flush()
 else:
 return 0
 return local_filename
 pass
 return 0

“test.py” module

Test.py module imports TestCase from unittest[29] library

that comes standard with Python. The function definitions found in test.py

module runs the unit test on some major functions used in Testrek. Running

these tests can guarantee that the functions related to downloading the files,

found in the scrapper.py module are running as expected and can connect

to the server to download the answers files.

An example of how the unit tests are approached can be found in the

snippet below. When run, the TestDocxFileDownload function mimics

the normal working of application by downloading a test file from

public_html folder of server file system which is publicly accessible and

then self.assertIs is used to verify that the downloaded files exist in

the Testrek root directory.

from unittest import TestCase
from .scrapper import file_download, filenames_from_html
from .plagiarism import *
import os

class TestDocxFileDownload(TestCase):
"""

31

Modify the url parameters to the file_download to test.
Use url to the file for the user account to which you have
access.
"""

BASE_DIR = os.getcwd()

def test(self):
 base_dir = os.getcwd()
 if os.path.isfile("test.docx"):
 os.remove(os.path.join(base_dir, "test.docx"))
 else:

file_download("http://users.fs.cvut.cz/~tandoaks/test.docx")
 self.assertIs(True, os.path.isfile("test.docx"))

“RUN.py” module

RUN.py module serves as a main entry point to the Testrek

application. It joins together all the functionality of Testrek defined in other

modules described above. This module consists of main method under

which most of the logic of Testrek lives.

The main method is called when RUN.py is exclusively run i.e. when

if __name__ == ‘__main__’[30]. The main function creates the directories

for Answers and Reports with correct date and time stamp wherever

necessary and then it looks calls the file_fldr_exists and file_download

functions to check and download the answer files from the public_html

folder and generates the download success report at the same time. tqdm

library is used to show the progress of the runtime to the user in the console.

The logic behind the plagiarism check is programmed right after the

downloading of all the files are done. It was necessary to deal with different

encodings because of the codec error that was thrown on different operation

32

systems. It was taken care of by encoding and decoding the strings using

the following snippet.

import codecs
types_of_encoding = ["utf-8", "cp1252", "cp850", "utf8"]
for encoding_type in types_of_encoding:
 codecs.open(Ans_file, encoding=encoding_type,
__))))))))))))errors='replace') as fp:
 # Other logic of plagiarism

33

Chapter 6. Conclusion

The aim of this thesis was to design a feasible way to automate the

examination process for the Computer Support for Study subject, taught at the

Faculty of Mechanical Engineering at Czech Technical University. From the

among the existing software technologies available in CVUT, Moodle qualified

the most to handle such an implementation of automation. But it was concluded

based on the reasons provided in the introduction that it will be not be efficient to

design and implement this automation in Moodle. Based on the analysis of the

current examination process, two solutions are proposed in Chapter 3, of which

one is developed as a part of this thesis.

Testrek application written in Python has been designed in accordance to

the scope set in the thesis requirements. It downloads the files answer files from

each test takers’ public_html folder to the local machine and runs a plagiarism

check on each task file from test taker against every other. Additionally, the

application is made very dynamic and can be used in other similar examinations

too. Testrek also deals with several exceptions that may occur during the runtime,

which gives the user an opportunity to easily debug the application if the need be.

It also satisfies the need for platform independency as it can run on most major

platforms as far as Python 2.7 is installed on that machine.

Testrek provides the user with a config file where they can modify several

settings based on the requirements of the situation. After every run, it outputs:

answer files from test takers, a download success report in csv format and a

plagiarism check report in html format.

Examination process analysis and proposals, that can be found in chapter 2

and 3 respectively, can serve for further research on standardizing and automating

the parts of the examination process which are not included in the scope of this

34

thesis. In fact, an even better and robust solution can be developed using Django

but it will require much more resources, time and eventually maintenance.

35

Appendix

Testrek Application

The attached zip file below contains the Testrek Application. One can

download and unzip the folder anywhere on a machine running Linux, Mac or

Windows with Python 2.7 installed, and use RUN.py file in the directory to run

the application. No installation of any kind is required as far as Testrek as an

application is concerned.

The application directory has the following structure and these python

modules should not be moved, deleted or modified without prior knowledge of

the working of this application. A text file containing the usernames of all the

test takers can be stored anywhere on the computer.

Testrek.zip

Figure 9Testrek directory structure

36

Download Success Report

The “Report” folder is created after running Testrek, stores the download

success report (in CSV format) under the Report folder with specific date and time

stamp. One success report file is generated on every run. The report contains the

following columns:

• Test Taker: Test takers name

• Tasks: Task number

• Status: Status of file download

• File Name: Name of the downloaded file for that particular task

There can be three possible statuses:

• Files successfully downloaded: File has been successfully

downloaded and stored under respective Answers folder.

• Can't access url or user folder not found: The file download has

failed either because the user does not access for access to the server

file location (i.e. public_html) is denied.

• Folder named Task# not found: Student folder can be accessed but

a particular task folder cannot be found under public_html.

An example of download report file is attached.

report 2017-06-07

13.12.54.436867.csv

37

Plagiarism Check Report

Plagiarism check report is stored in the application root directory and is

overwritten each time the Testrek is run. The plagiarism check report is generated

in the html file format. The cells with red color in the table highlight that there is

that similarity between files are over 80%. A screenshot of the plagiarism check

report can be seen below.

Figure 10 Plagiarism check Report

plagiarism_check.html

38

References

[1] PEP 8 -- Style Guide for Python Code. Python.org [online]. [vid. 2017-

05-28]. Dostupné z: https://www.python.org/dev/peps/pep-0008/

[2] 2. Using the Python Interpreter — Python 2.7.13 documentation [online].

[vid. 2017-06-17]. Dostupné

z: https://docs.python.org/2/tutorial/interpreter.html

[3] Hash function [online]. 2017. Dostupné

z: https://en.wikipedia.org/w/index.php?title=Hash_function&oldid=7840

87124

[4] BUKOVIVO. Computer Support for Study (E372041). Department of

Instrumentation and Control Engineering [online]. 3. duben 2013

[vid. 2017-06-17]. Dostupné

z: http://control.fs.cvut.cz/en/courses/computer-support-study-e372041

[5] Moodle - Open-source learning platform | Moodle.org [online].

[vid. 2017-06-17]. Dostupné z: https://moodle.org/

[6] FARCIC, Viktor. Black-box vs White-box Testing. Technology

Conversations [online]. 11. prosinec 2013 [vid. 2017-06-17]. Dostupné

z: https://technologyconversations.com/2013/12/11/black-box-vs-white-

box-testing/

[7] About Moodle - MoodleDocs [online]. [vid. 2017-06-17]. Dostupné

z: https://docs.moodle.org/33/en/About_Moodle

[8] Features of our online examination system | Onlineexambuilder.com

[online]. [vid. 2017-06-17]. Dostupné

z: https://www.onlineexambuilder.com/features/item10065

[9] EasyTestMaker [online]. [vid. 2017-06-17]. Dostupné

z: http://www.easytestmaker.com/?utm_campaign=elearningindustry.com

&utm_source=%2Ffree-testing-tools-for-online-

education&utm_medium=link

[10] VEYRAT, Pierre. Business Process Standardization: All you need to

know. HEFLO EN [online]. 25. leden 2016 [vid. 2017-06-17]. Dostupné

z: https://www.heflo.com/blog/bpm/business-process-standardization/

[11] Flask - Full Stack Python [online]. [vid. 2017-06-17]. Dostupné

z: https://www.fullstackpython.com/flask.html

[12] The Web framework for perfectionists with deadlines | Django [online].

[vid. 2017-06-17]. Dostupné z: https://www.djangoproject.com/

[13] PyCharm. JetBrains [online]. [vid. 2017-05-28]. Dostupné

z: https://www.jetbrains.com/pycharm/

[14] NOWELL STRITE. Introduction to Python. In: [online]. Technology.

B.m. 20:50:44 UTC [vid. 2017-05-29]. Dostupné

z: https://www.slideshare.net/nowells/introduction-to-python-5182313

39

[15] TUTORIALSPOINT.COM. Python Dictionary. www.tutorialspoint.com

[online]. [vid. 2017-05-29]. Dostupné

z: https://www.tutorialspoint.com/python/python_dictionary.htm

[16] Learn Python the Hard Way [online]. [vid. 2017-05-29]. Dostupné

z: https://learnpythonthehardway.org/book/ex40.html

[17] PyPI - the Python Package Index : Python Package Index [online].

[vid. 2017-05-29]. Dostupné z: https://pypi.python.org/pypi

[18] Requests: HTTP for Humans — Requests 2.17.3 documentation [online].

[vid. 2017-05-30]. Dostupné z: http://docs.python-requests.org/en/master/

[19] fuzzywuzzy: Fuzzy String Matching in Python [online]. Python. B.m.:

SeatGeek, 2017. Dostupné z: https://github.com/seatgeek/fuzzywuzzy

[20] DEVELOPERS, tqdm. tqdm: Fast, Extensible Progress Meter [online].

Python. nedatováno. Dostupné z: https://github.com/tqdm/tqdm

[21] RICHARDSON, Leonard. beautifulsoup4: Screen-scraping library

[online]. Python. nedatováno. Dostupné

z: http://www.crummy.com/software/BeautifulSoup/bs4/

[22] FARCIC, Viktor. Test Driven Development (TDD): Example

Walkthrough. Technology Conversations [online]. 20. prosinec 2013

[vid. 2017-06-08]. Dostupné

z: https://technologyconversations.com/2013/12/20/test-driven-

development-tdd-example-walkthrough/

[23] Introduction to Test Driven Development (TDD) [online]. [vid. 2017-06-

17]. Dostupné z: http://agiledata.org/essays/tdd.html

[24] MARCO. Fuzzy String Matching in Python. Marco Bonzanini [online].

25. únor 2015 [vid. 2017-06-08]. Dostupné

z: https://marcobonzanini.com/2015/02/25/fuzzy-string-matching-in-

python/

[25] Levenshtein Distance [online]. [vid. 2017-06-08]. Dostupné

z: https://people.cs.pitt.edu/~kirk/cs1501/Pruhs/Spring2006/assignments/e

ditdistance/Levenshtein%20Distance.htm

[26] python - What is __init__.py for? - Stack Overflow [online]. [vid. 2017-

06-11]. Dostupné z: https://stackoverflow.com/questions/448271/what-is-

init-py-for

[27] HTTP/1.1: Status Code Definitions [online]. [vid. 2017-06-17]. Dostupné

z: https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

[28] Quickstart — Requests 2.18.1 documentation [online]. [vid. 2017-06-17].

Dostupné z: http://docs.python-

requests.org/en/master/user/quickstart/#make-a-request

[29] 25.3. unittest — Unit testing framework — Python 2.7.13 documentation

[online]. [vid. 2017-06-17]. Dostupné

z: https://docs.python.org/2/library/unittest.html

40

[30] 29.4. __main__ — Top-level script environment — Python 3.6.1

documentation [online]. [vid. 2017-06-17]. Dostupné

z: https://docs.python.org/3/library/__main__.html

	Abstract
	Acknowledgements
	Table of Contents
	List of Acronyms
	Glossary
	Chapter 1. Introduction
	Chapter 2. Process Analysis and comparison of existing tools
	2.1. Process Description
	2.2. Comparison of already available software solutions
	1. Moodle
	2. Quiz Works
	3. Easy Test maker

	Chapter 3. Proposed Solutions
	3.1. Standardization of the process
	3.2. Possible Solutions
	1st Solution (Testrek) – Preferred
	2nd Solution – Not preferred

	Chapter 4. Technologies and Methodologies
	4.1. Development Environment
	4.2. Programming Technologies
	Hello World in Python
	Indentation is necessary
	Comments
	Data Types
	Control Flow
	Classes and Functions
	4.2.1. Why Python?

	4.3. External Python libraries
	Requests (v. 2.14.2)
	Easygui (v. 0.98.1)
	Fuzzywuzzy (v. 0.15.0)
	Tqdm (v. 4.14.0)
	Beautifulsoup4 (v. 4.6.0)

	4.4. Development and Testing Methodology
	4.5. Plagiarism Check
	Simple Ratio
	Partial Ratio
	Token Sort Ratio
	Token Set Ratio
	4.5.1. Available plagiarism check methods in Testrek

	Chapter 5. Technical walkthrough
	5.1. Application runtime
	Minimum requirements

	5.2. Testrek components
	“__init__.py” module
	“config_file.py” module
	“plagiarism.py” module
	“scrapper.py” module
	“test.py” module
	“RUN.py” module

	Chapter 6. Conclusion
	Appendix Testrek Application
	Download Success Report
	Plagiarism Check Report
	References

