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Abstract 

This thesis focuses on analysing and automating the examination process for the 

‘Computer Support for Study’ course taught at Faculty of Mechanical Engineering, 

Czech Technical University in Prague; and running the plagiarism check on answers 

from the test takers. An application called Testrek is built as a part for this thesis which 

should streamline much of the examination process for the CSS course. The application 

is written using Python programming language with support from external libraries 

which are discussed in the thesis. Testrek essentially checks and downloads the files 

from a publicly accessible network location (public_html folder), where answer files 

are uploaded by the test takers. The Plagiarism check is run using a library called 

fuzzywuzzy which in turn uses the Levenshtein distance to calculate the similarity 

between two strings. At the end, a technical walkthrough of the application is also 

provided for understanding of the use case. 

In conclusion, the required automation of examination process has been achieved. 

Consequently, the analysis in this thesis open opportunity for further scope of 

automation and making the application even more dynamic to cover more courses.  

 

Keywords:  python, process automation, string comparison, HTML parsers, 

plagiarism check, Testrek 
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Glossary 

Python  An Object Oriented and interpreted Programming 

language 

Script Programs written for a special run-time environment 

Open Source The source code that is made available to the public 

under a license to study, change, and distribute the 

software to anyone and for any purpose 

Database a structured set of data held in a computer, 

Web Hosting A web hosting service is a type of Internet hosting 

service that allows individuals and organizations to 

make their website accessible via the World Wide Web 

PEP8[1] Python code style conventions 

Object Oriented 

Programming 

Computer programming in which we can define not 

only the data type of a data structure, but also the types 

of operations (functions) that can be applied to the data 

structure 

Python Interactive 

Shell[2] 

Python’s command line utility 

snippet a small piece or brief code 

Recursion A common computer programming tactic is to divide a 

problem into sub-problems of the same type as the 

original, solve those sub-problems, and combine the 

results. 

Hash function[3] 
A hash function is any function that can be used to map 

data of arbitrary size to data of fixed size. 
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Chapter 1. Introduction 

The major motivation for this thesis comes from the fact that most of the 

work surrounding the examining of students is still done manually. This thesis 

introduces the need, scope and application that is built for the automation of the 

examination process for reducing the manual work. The software solution 

described and developed as a part of this thesis is tend to be designed in a way 

that it utilizes and requires the least resources and infrastructure for its operation. 

The application is made as dynamic as possible hence it can be used outside the 

set scope (i.e. for Computer Support for Study course[4]), if the process of 

examination can be standardized for that course or subject. Different methods of 

approaching the automation are also described along with their benefits and 

shortcomings. 

For the sake of simplicity, CSS course is used as an example all through 

this thesis, to analyze and demonstrate the challenges and solution proposals to 

different aspects of such an automation process. 

When conducted manually, the whole examination process procedure is 

taken care of manually with the help of up to three or more people. From the 

preparation of question paper to reviewing the answers from students (most of the 

times in an unorganized way) and assigning grades. If a course or subject is 

registered by many students (which in fact is a case for the CSS course), for e.g. 

in order of hundreds then the whole process becomes even more cumbersome and 

hard to handle, leading to the slowdown of the review process and requirement of 

even more manual efforts. 

The aim of this thesis is to provides a good understanding of the 

examination process where most of the work is done manually, along with ways 

to approach the automations of such nature. The problem that has been addressed 
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in this thesis is mostly concerned with the organization and automation of the 

answer reviewing system and aid the plagiarism check. Also, a summary of how 

to achieve operational excellence by the deployment of small and cost effective 

automations is made part of this thesis.  

The software solution Testrek, developed mainly in Python as part of this 

thesis can help in organization of reviewing and running a preliminary plagiarism 

check on answers from the students taking part in the examination. The designing 

of the solution is dynamically approached so that the testing of any kind can use 

this solution if it can be standardized as mentioned in the chapters later. This thesis 

can provide a base to conduct further research and development on automating 

the examination sub processes which are out of scope of this bachelor thesis. 

There are information systems that already exists and can provide a 

potential solution for achieving the automation, if modifiable and extensible. For 

example, Moodle[5] is an open-source learning platform which is used by CTU 

to share study material with students. Although by default, there is no possibility 

for students to upload their answers during the examination or for teachers to run 

a plagiarism check, it can be extended in order to do similar tasks that Testrek 

would do but the efforts required for achieving the same results as Testrek would 

require more time, resources, expertise in other front and back end programming 

languages. Moreover, for integrating the extensible application to current Moodle, 

an extensive Black and White box testing[6] will be required, ranging from 

regression and system tastings to integration testing. It is for all these reasons that 

it became necessary to write an autonomous application. 

The information in this thesis is ordered in way so that one starts by 

understanding the aim and challenges faced due to the current process, followed 

by a description of the solution proposals and technologies used to develop the 

solution itself.   
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Chapter 2. Process Analysis and comparison of existing 

tools 

Process Analysis constitute an important part of this thesis as it helped in 

understanding the different aspects of the problem which are tried to be solved 

while designing the software solution described in Chapter 3. 
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2.1. Process Description 

When conducted manually, the process map of whole examination 

process is explained using a swim lane chart on the top. The chart shows 

the current process procedure, with the estimations of work and in some 

cases time required for a sub process to complete. Next chapter contains 

further information about the scope of the software solution developed for 

this thesis and a rough estimation of efforts required to automate the sub 

processes which are not included in the scope. 

2.2. Comparison of already available software solutions 

There are plenty of tools available in the market which can be used 

to automate the testing of students and this section contains a summary of 

the features for some of the tools that were found to be the closest 

alternatives of Testrek. 

1. Moodle 

Moodle is an open source learning platform, which provides a robust, 

secure and integrated system under one tool for educational institutions to 

create a personalized learning platform. Moodle is considered an alternate 

for Testrek because it is easily extensible, light weight, open source and 

already implemented at the Faculty of Mechanical Engineering. 

Technologies used to build Moodle are PHP and MySQL. It utilizes Apache 

servers to run itself[7].  

As Moodle is essentially a learning platform, building a testing 

system would require to interact many other modules which may make the 

whole system unstable. It is a server application and would also need some 

maintenance from time to time in contract to Testrek which is a standalone 

application. Additionally, an aggressive testing scheme would be necessary 
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before the test module can be implemented in the main Moodle application 

system so that it is fail safe at all times. 

It is also required to have a very good understanding of Moodle’s 

object model before one can start developing on it. The implementation of 

the whole solution would also look very different on Moodle when 

compared to Testrek.  

2. Quiz Works 

Quiz Works is a subscription based online examination system which 

can used to create online testing questions for test takers. It is not open 

source so extending the application is not an option. It does support a few 

third-party integrations and web-hooks but none of them are related to the 

scope of this thesis. Additionally, it does not support plagiarism check. As 

it is subscription based, the version with full blown features cost $99 per 

month, which makes it an expensive option[8].  

On the good side, this online tool provides the teacher with test 

analysis which can help in providing the teachers with an insight into the 

performance of the test takers in certain areas and improve the study content 

for those in the upcoming semesters. 

3. Easy Test maker 

Easy Test Maker is another subscription based online examination 

system which can be used to generate question papers for testing but it is 

does not support plagiarism check and it only available online. There are 

several options available to generate different types of questions which can 

later be automatically graded[9]. 

This tool is also not open source which restricts the users to extend 

its capabilities in contract to Testrek or even Moodle. 
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Chapter 3. Proposed Solutions 

3.1. Standardization of the process 

Before designing any solution for automating the examination 

process, it was necessary to standardize it. This in fact proved to be crucial 

while searching for different ways to approach the solution. The 

standardization helped in deciding the best possible way to approach the 

designing of the software solution, in the limited time frame. To make the 

solution fail safe it was necessary to set many rules for different parts of 

the process, but the challenges was to still maintain its dynamical nature. 

After a thorough analysis, the two most qualified solutions which can 

be build are listed below with the requirement for standardisation, 

complexity, maintainability, infrastructure and support. [10] 

 

3.2. Possible Solutions 

1st Solution (Testrek) – Preferred 

Basic Requirements for this solution to run: 

a. Access to the internet 

b. Disk space of about 50 Mega Bytes 

This solution which is essentially a combination of scripts written in 

Python, is built as a part of this thesis. This solution was preferred because 

the requirements for running this application were very low and affordable. 

As the scripts are simple to understand, it would not require a lot of time to 

modify if the need be. 
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This solution also does not demand a lot of infrastructure hence it 

can run on most of the computers of today’s standard. Although it does not 

have a very user interaction to the of GUI, it is still easy to use and maintain. 

The challenging part for this solution is strictly standardizing many parts of 

the examination process, for example, where data is expected from the user. 

The swim lane chart shows the process workflow if application like 

Testrek will be implemented for automation. A more thorough description 

of this solution can be found in the upcoming chapters.  

 

Figure 2 - Workflow for Testrek 

 



8 

2nd Solution – Not preferred 

As this solution will utilize a server, it will have a client side and the 

server side. Basic Requirements for this solution to run: 

On client side: 

a. Internet Connection and a modern web browser 

On server side: 

a. a database 

b. a server supporting Python 

c. an app hosting platform 

d. maintenance and support 

Building this application solution would require a robust web 

framework for Python, e.g. Flask[11], Django[12] etc. It would utilize a 

database to store the information and a server to operate itself. Furthermore, 

the development process would require a lot more time and resources in 

comparison to the 1st solution. 

Though the requirements are on the higher end when compared to 

the 1st solution, this solution which is essentially a web application will be 

more robust in its operation and delivery. This application would run on a 

web browser with an intensive GUI, hence will be more interactive for the 

users. One other essential characteristic of this solution would be the fact 

that it will not require as much standardization of the process as does the 

1st Solution requires. Several validations can be run on the data as and when 

it is received, hence diminishing the need for much standardization. 



9 

 The swim lane chart below shows how the examination process 

would look like if a web application, written for example in python’s web 

framework Django, can be implemented to automate the examination 

process. 

 

Figure 3 - Workflow for a web application 
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Chapter 4. Technologies and Methodologies 

This chapter guides through different technologies and methodologies 

used, from development to the deployment of the application solution. The sub 

sections of this chapter consist of information about the platforms used for 

development, environment settings, programming technology and the libraries 

used. 

4.1. Development Environment 

The solution had been built on a machine running MAC OS and the 

IDE or integrated Development Environment that was used to build the 

software solution is called PyCharm Edu 3.5[13] provided by JetBrains 

s.r.o.. 

This IDE was chosen as it has a great support for Python 

development and is an open-source software. It is best known for intelligent 

code completion, on-the-fly error checking and quick-fixes and easy 

project navigation. It helps keep quality under control with PEP8 checks, 

testing assistance, smart refactoring, and a host of inspections. 

 

Figure 4 - PyCharm Sample Workspace (adopted from PyCharm) 
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4.2. Programming Technologies 

The software solution Testrek is purely written in the programming 

language called Python. Python is an interpreted, multi-purpose 

programming language that can be used to write web applications, GUIs, 

scripts and much more. It is strongly and dynamically typed with focus 

given to its readability and productivity. With an immense support from the 

community around it which builds a great range of libraries, it has proved 

to be a powerful language for scientific use and mathematical modelling. It 

is a self-contained object oriented programming language that has an 

interactive shell, strong introspection, cross platform capabilities and a 

variant for specific use like CPython, JPython, IronPythnon etc.[14] 

 The versions of Python used for building and testing the software 

solution for this thesis are Python 2.7.10 and Python 3.5.2. 

 

Hello World in Python 

Writing “Python” in the command line starts the Python interactive 

shell which can be used to write python commands. 

#!/usr/bin/env python 
print "Hello World!" 

 

Indentation is necessary 

 Unlike most other programming languages, Python cares about the 

indentation and structure of the code. A sample is shown below: 

#!/usr/bin/env python 
for i in range(1, 10): 
  print ("I am number " + str(i)) 
  if i == 9: 
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    print ("9, here again!") 

 

Comments 

Comments in Python are written as shown below. Any string that is 

not assigned to a variable or function is regarded as a comment. 

# One line comment  
""" 
This is a multi-line 
comment. 
""" 
"Any string not assigned to a variable is a comment" 

 

Data Types 

Python has built in support for primitive data type like strings, 

Numbers, Null, Booleans, Lists, Tuples and Dictionaries[15]. Python 

dynamically assign the data type after a variable is initialized, hence 

declaration of variable is not included in Python. 

# Strings 
  address = "This is a string." 
  address_long = """This is a 
  long string.""" 
 
# Numbers 
  # Integers 
  age = 9 
  year = int("2010") 
  #Float 
  pi = 3.14159 
 
# Null 
  data = None 
 
# Booleans 
  is_Python = True 
 
# Lists 
  # initialisation 
  names = ["Charlie", "Brown", "Chris", 59, True] 
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  # Appending 
  names.append("Martin") 
 
# Tuples 
  # Can't be changed after initialisation 
  names = ("This", "is", "final", true) 
 
# Dictionaries 
  # initialisation 
  dict = {'Name': 'Zara', 'Age': 7, 'Class': 'First'} 
  # Update 
  dict.update({ 
    'Gender': 'Female', 
    'Hobby': 'Reading', 
  }) 

 

Control Flow 

Python has support for conditionals, for and while loops, and list 

comprehension. An example of list comprehension is mentioned below: 

# List comprehension 
div_by_two = {x for x in range(10) if (x%2 == 0)} 

 

Classes and Functions 

Classes and Functions makes up for an important part of any object-

oriented programming language[16]. Classes can inherit from other classes 

and ultimately from “object” class which is the top-level class in Python 

from which all classes inherit. Functions can accept argument or not. In 

Python, a function can be defined as below: 

# Funtion that excepts an argument 
class Any_name(object): 
  def foo(i): 
  """Function documentation""" 
    remainder = i % 5 
    if (remainder!= 0): 
    return remainder 
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4.2.1. Why Python? 

Python is undoubtedly an easy to use programming language with a 

great community that generously promotes and supports it. Because of the 

reliability that frameworks like Django, Flasks and Pylons etc. provide, 

they are being used as a primary platform for development for many 

software products. Python has no interfaces or real scoping of functions and 

methods, which lets developer concentrate more of the logic of the 

application than the syntax of the code itself. Due to all the above reasons, 

Python proved to be the right choice for developing Testrek. 

 

4.3. External Python libraries 

Python allows adding external modules (libraries) to a project. 

Packages are essentially a collection of dynamically written classes with 

variables and function, which can be re-used in another project. The 

keyword “import” is used to create a reference to these modules in a project 

and then the functions from these classes can be used.  

# importing the whole datetime module and creating an alias 
dt 
import datetime as dt 
# importing only the classes timedelta and date from the 
datetime 
from datetime import timedelta, date 

 

An exhaustive list of all the packages publicly available for Python 

is available on PyPI[17]. 



15 

Apart from the several packages that come by default with Python, a 

few other were also used while developing Testrek. I brief introduction to 

each one of them is mentioned in this section. 

Requests (v. 2.14.2) 

Requests is a HTTP library for Python, which send HTTP/1.1 

requests without the need for much of work that is required to be taken care 

of while sending a HTTP request. For example, there is no need to manually 

add query strings the URLs or to form-encode the POST data.[18] 

Connection pooling is also taken care of in the library itself which reduces 

the need to custom write the related code again and again.  

Testrek utilizes requests library to download files related to each task 

from the user’s filesystem (found under public_html folder) on the 

University server.  

Easygui (v. 0.98.1) 

EasyGUI is a simple yet robust GUI written in Python. It is not event 

driven, instead all the GUI interactions are invoked by simple function 

calls. This GUI library is used to present dialogs with information during 

the runtime of Testrek. It saves the user from knowing anything about 

tkinter, frames, widgets, callbacks or lambda, which are core to it. It runs 

smoothly on Python 2 and 3 and does not have any dependencies. 

Fuzzywuzzy (v. 0.15.0)  

Fuzzywuzzy is a package used for the string comparison. It uses 

Levenshtein Distance to calculate the differences between the sequence of 

strings. It is compatible with python 2.4 or higher. It utilizes difflib library 

that comes bundled with Python and uses the package python-Levenshtein 

to deliver results even faster. In Testrek python-Levenshtein package is 
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used along with fuzzywuzzy in order to get results as quickly as 

possible[19]. 

Tqdm (v. 4.14.0)  

Tqdm package is available for Python 2.6 and higher is used to create 

a progress bar from the number of iterations. For implementation, it must 

simply wrap with the iterable. The snippet below one can see the 

implementation in a real-time scenario[20]. 

from tqdm import tqdm 
 
for i in tqdm(range(500)): 
... 

 

Beautifulsoup4 (v. 4.6.0)  

Beautifulsoup is an extensively used python package for parsing 

through a web page. Since its emergence in 2004, it has been under constant 

development and the latest version provides some great features and robust 

runtime performance. It is built upon am HTML or XML parser, providing 

extensive features to iterate, search and modify the parsing tree[21]. 

In Testrek, it is mainly used to check for the existence of the files on 

the web url before requests library can be used to download that file. This 

was necessary to be done while providing the right results in the download 

success report. 
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4.4. Development and Testing Methodology 

Most of the development work on Testrek, was conducted by me and 

it was necessary to choose the right development techniques. The list of 

possible development methodologies was already shorten down to only a 

few because of this fact. The timeframe available for the development of 

the application was limited as well and it served as the second condition to 

limit the list down to one. For all these reasons, test-driven development 

was chosen. All through the development life cycle, it was necessary to 

design tests and then write the function definitions. Test driven 

development[22] has its own challenges and but it did fit nicely for a small 

project like Testrek. The illustration below provides an overview of how 

the development was approached at different stages 

 

Figure 5 - Development life-cycle 
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The following sequence of steps are generally followed in a test-driven 

development projects[23]: 

• Add a test 

• Run all tests and see if the new one fails 

• Write some code 

• Run tests 

• Refactor code 

• Repeat 

It is true that TDD slows down the development but once one get into the 

loop it becomes quite easy. It was important to produce better designs, allow easy 

and safe refactoring and slowly increase the test coverage in order to adapt to this 

methodology and take its benefits. 
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4.5. Plagiarism Check 

Testrek incorporates a feature to run plagiarism check on answers 

from every test taker against the answers from every other test taker. For 

this purpose, fuzzywuzzy package is used which can provide similarity 

ratios processed for different types of string comparisons.[24] 

Simple Ratio 

>>> from fuzzywuzzy import fuzz 
>>> from fuzzywuzzy import process 
 
>>> fuzz.ratio("we are here, finally", "we are here, 
finally!") 
97 

 

Partial Ratio 

>>> fuzz.partial_ratio("this is a test", "this is a test!") 
100 

 

Token Sort Ratio 

>>> fuzz.ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a 
bear") 
91 
>>> fuzz.token_sort_ratio("fuzzy wuzzy was a bear", "wuzzy 
fuzzy was a bear") 
100 

 

Token Set Ratio 

>>> from fuzzywuzzy import fuzz 
>>> from fuzzywuzzy import process 
 
>>> fuzz.token_sort_ratio("fuzzy was a bear", "fuzzy fuzzy 
was a bear") 
84 
>>> fuzz.token_set_ratio("fuzzy was a bear", "fuzzy fuzzy was 
a bear") 
100 



20 

Fuzzywuzzy utilizes the Levenshtein Distance[25] to compute these 

ratios. Levenshtein distance (LD) is a measure of the similarity between 

two input strings. The distance is the number of deletions, insertions, or 

substitutions required to transform one string into another. The greater the 

Levenshtein distance, the more different the strings are. 

Let’s take two identical strings. If x is "test" and y is "test", then 

LD(s,t) = 0, as no transformations are needed. 

If s is "rent" and t is "rant", then LD(s,t) = 1, because one substitution 

(change "s" to "n") is sufficient to transform s into t. 

Levenshtein distance are used in the following fields: 

• Spell checking 

• Speech recognition 

• DNA analysis 

• Plagiarism detection 

4.5.1. Available plagiarism check methods in Testrek 

In Testrek, there are two available options to run plagiarism check 

between answer files from different students. One being the simple string 

check and other the hash check. These options can be toggled in the 

config_file.py which is explained in the next chapter. 

When a simple string check is selected then the content of each file 

is converted into one long string and is compared to another long string 

created from the content of answer files for the same task from other 

students. While on the other hand, when hash comparison is selected then 
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whole of the file is run through a hash function to convert into a md5 hash. 

The snippet below demonstrates how the conversion is done in Testrek. 

import hashlib 
import codecs 
 
s_buf_raw = fp.read() # fp is an answer file 
s_buf = s_buf_raw.encode('utf-8') 
hasher = hashlib.md5() 
hasher.update(s_buf) 
s = hasher.digest() 
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Chapter 5. Technical walkthrough 

This chapter describes the working of Testrek application, different 

standardized inputs that it requires for its operation and the output files it 

generates. As described in chapter 2, Testrek need standardization of certain 

parameters that it takes before starting the main process of downloading the files 

and running the plagiarism check. 

5.1. Application runtime 

Minimum requirements 

Testrek is designed to run on Linux, Mac and Windows. Below are 

the minimum system requirements for Testrek to run: 

Table 1 System Requirements 

System Requirements 

Operating system Windows 7 or higher, Mac OS X or higher, Linux 

Hard drive 

8 MBs for the application (Testrek) + (number of students X number of tasks X 3) 

MBs disk space for answer files from students 

Python Python 2.7 installed on the local machine 

 

Standardized inputs  

• The students are required to store the answer files in folders under 

pubic_html, which should be named in a certain way. An example 

for uploading the files for Task 1 should be done as follows: 

student folderpublic_htmlTask1(Task file here; of any 

format) 
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• The application takes an input a text file with names of all the test 

takers put on separate lines. These could be short user names as 

“tandoaks” or longer user name as “akshat.tandon”.          

 

 

High Level overview  

The working of the application is as follows: 

• At first, test takers upload answers to every task into a task folder 

named for example as “Task1”, “Task2” etc., directly under the 

public_html folder. Test takers can name the file in any manner. Any 

file type can be downloaded using Testrek. 

• When the test is over, the test supervisor can run the “RUN.py” file 

present in the application directory using “Python Launcher”. 

• While the script is run, it will show a file picker dialog box where 

the instructor should select a text file with name of the test takers. 

• A progress bar can be seen in the Python Launcher command line 

representing the progress of downloading of the files. After the files 

for every test taker is downloaded, a pop up window appears which 

asks if the application should run a plagiarism check or end itself. 

Figure 6 snapshot of file containing names 
of test takers 
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• If yes is clicked, the plagiarism check is run and reports are 

generated. 

• The download success reports in csv format is stored in “Reports” 

folder and answer files in the “Answers” folder. A report for the 

plagiarism check in html format is generated and stored in the 

application directory. 

 

Outputs files 

 There are three main outputs of running the script. 

• Answer files from test takers, which by default are downloaded in 

the application folder under folder called “Answers”. An example is 

shown below: 

TestrekAnswersAnswers_current_date&timetandoaksTas

k1, Task2… 

 

           Figure 7 Screenshot of Answers Folder 

• File download success report, which by default is downloaded in the 

application folder under folder called “Reports”. An example is 

shown below: 
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TestrekReportsReport_current_date&timereport_date&tim.

csv 

NOTE: An example of report can be found attached in the appendix. 

 

                       Figure 8 Screenshot of Reports folder 

• Plagiarism report, which by default is downloaded in the application 

folder directly and is replaced each time the plagiarism check is run. 

An example is shown below: 

Testrekplagiarism_check.html 

NOTE: An example of the plagiarism check can be found attached in the appendix. 

5.2. Testrek components 

The application Testrek is written in a few several modules to so that 

the code be more readable and modifiable if necessary. In this section, 

different modules of the application and their constituent are discussed. 

“__init__.py” module 

This is an empty file in the application directory and is used to mark 

directories on disk as Python package directories. If it were not present, 

then python cannot import the sub modules in other python files in the 

application[26]. 
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“config_file.py” module 

This is a configuration or setting file for the Testrek. It greatly 

contributes to the generality of the whole application by allowing users to 

change certain parameters. In the following snippet, it can be seen which 

all parameters are available to be modified and their meanings. 

 

import os 
 
###################################### 
####### DOWNLOAD FILE SPECIFIC ####### 
 
# Do not modify this parameter 
curr_dir = os.getcwd() 
 
web_url = "http://users.fs.cvut.cz/" 
 
answer_folder = os.path.join(curr_dir, "Answers") 
 
tasks_folders = ["Task1", "Task2", "Task3"] 
 
rep_dir = os.path.join(curr_dir, "Reports") 
 
###################################### 
###### PLAGIARISM CHECK SPECFIC ###### 
 
hash_check = False 
 
type_of_check = "Simple Ratio" 

 

web_url: Specify the root url where the student folders are placed. 

For e.g.: web_url = http://users.fs.cvut.cz/~ 

answer_folder: The directory where downloaded files are stored. 

For e.g.: answer_folder = os.path.join(curr_dir, "Answers") 

tasks_folders: Specify the folders on the web file-system where the 

answer files should be downloaded from. For e.g.: tasks_folders = 

["Task1", "Task2", "Task3"] 

http://users.fs.cvut.cz/~
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type_of_check: Type of string comparison. Set to "Simple Ratio" 

for simple ratio. All available options: "Simple Ratio", "Partial Ratio", 

"Token Sort Ratio", "Token Set Ratio". 

rep_dir: The directory where the reports generated regarding 

downloading of the files should be stored. 

hash_check: Run plagiarism check on hash or whole file content. 

Set to True if check based on hash or False for check based on content. 

Hash check takes much less time as compared to the other option. 

type_of_check: Type of string comparison. Set to "Simple Ratio" 

for simple ratio. All available options: "Simple Ratio", "Partial Ratio", 

"Token Sort Ratio", "Token Set Ratio". 

 

“plagiarism.py” module 

The plagiarism.py file consists of definition of the function 

retrieve_folder_content, which is used to retrieve contents of a folder. 

This function takes in two parameters src_path and file_check, where the 

first is the absolute path to the directory where contents are required to be 

checked and the latter is for checking if to check the sub-directories or files 

in the src_path. It was convenient to write a function like this as there was 

a need of subsequent retrieving of the contents in a directory for checking 

the files.  

 

“scrapper.py” module 

The scrapper.py file consists of definition of the functions that 

checks for the answer files in the student folder on the server filesystem 



28 

and then download the files. Other than that, there are some function 

definitions like move_file to move downloaded files under the right 

student and task folders and test_takers function to get the usernames 

of the test takers.  

The test_takers function uses easygui file picker which restricts 

the selection to only text file containing the names of the test takers on 

separate lines. This function also incorporates several validation checks 

before a list of test takers is returned for the main program to loop through 

in order to download the files from the server file system i.e. public_html 

folder for each test taker. For an expected run and end of the application, 

Exceptions like no text file selected and other unexpected errors are taken 

care of in the function definition itself as shown below: 

except Exception as e: 
    if file_name is None: 
        easygui.msgbox("No text file with usernames selected!" 
---------------------+ "\n" + "Script exited", "Error") 
        raise SystemExit("No text file with usernames --------
-------------selected!") 
    else: 
        easygui.msgbox(e.message, "Error") 
        raise 

 

 

The file_fldr_exists function uses requests library to check 

the status code that is returned while trying to get the file from the 

public_html folder. It was necessary to do to decrease the time complexity 

of the of Testrek during runtime. Below are some status codes that can be 

returned by the server[27]: 
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Table 2 HTTP/1.1 Response Codes 

Code Description 

100 Continue 

200 OK 

201 Created 

202 Accepted 

400 Bad Request 

404 Not Found 

500 Internal Server Error 

 

The file_download function defined below is used to download 

the files from the server. The requests.get[28] method returns the 

response from the URL that is provided as a parameter. The function 

proceeds if the URL can be reached by checking the status code of the 

response method.  

def file_download(file_url): 
    """Downloads file from the server 
 
    :param file_url: url to the file to be downloaded 
    :return: Either the downloaded file or False 
    """ 
    local_filename = file_url.split('/')[-1] 
    r = requests.get(file_url, stream=True) 
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    if r.status_code == 200: 
        with open(local_filename, 'wb') as f: 
            count = 0 
            for chunk in r.iter_content(chunk_size=1024): 
                count += 1 
                if count <= 3000: 
                    if chunk: 
                        f.write(chunk) 
                        f.flush() 
                else: 
                    return 0 
        return local_filename 
        pass 
    return 0 
 

 

“test.py” module 

Test.py module imports TestCase from unittest[29] library 

that comes standard with Python. The function definitions found in test.py 

module runs the unit test on some major functions used in Testrek. Running 

these tests can guarantee that the functions related to downloading the files, 

found in the scrapper.py module are running as expected and can connect 

to the server to download the answers files. 

An example of how the unit tests are approached can be found in the 

snippet below. When run, the  TestDocxFileDownload function mimics 

the normal working of application by downloading a test file from 

public_html folder of server file system which is publicly accessible and 

then self.assertIs is used to verify that the downloaded files exist in 

the Testrek root directory. 

from unittest import TestCase 
from .scrapper import file_download, filenames_from_html 
from .plagiarism import * 
import os 
 
class TestDocxFileDownload(TestCase): 
""" 
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Modify the url parameters to the file_download to test. 
Use url to the file for the user account to which you have 
access. 
""" 
 
BASE_DIR = os.getcwd() 
 
def test(self): 
    base_dir = os.getcwd() 
    if os.path.isfile("test.docx"): 
        os.remove(os.path.join(base_dir, "test.docx")) 
    else: 
        
file_download("http://users.fs.cvut.cz/~tandoaks/test.docx") 
        self.assertIs(True, os.path.isfile("test.docx")) 

 

 

“RUN.py” module 

RUN.py module serves as a main entry point to the Testrek 

application. It joins together all the functionality of Testrek defined in other 

modules described above. This module consists of main method under 

which most of the logic of Testrek lives. 

The main method is called when RUN.py is exclusively run i.e. when 

if __name__ == ‘__main__’[30]. The main function creates the directories 

for Answers and Reports with correct date and time stamp wherever 

necessary and then it looks calls the file_fldr_exists and file_download 

functions to check and download the answer files from the public_html 

folder and generates the download success report at the same time. tqdm 

library is used to show the progress of the runtime to the user in the console. 

The logic behind the plagiarism check is programmed right after the 

downloading of all the files are done. It was necessary to deal with different 

encodings because of the codec error that was thrown on different operation 
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systems. It was taken care of by encoding and decoding the strings using 

the following snippet. 

import codecs 
types_of_encoding = ["utf-8", "cp1252", "cp850", "utf8"] 
for encoding_type in types_of_encoding: 
  codecs.open(Ans_file, encoding=encoding_type, 
__))))))))))))errors='replace') as fp: 
    # Other logic of plagiarism 
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Chapter 6. Conclusion 

The aim of this thesis was to design a feasible way to automate the 

examination process for the Computer Support for Study subject, taught at the 

Faculty of Mechanical Engineering at Czech Technical University. From the 

among the existing software technologies available in CVUT, Moodle qualified 

the most to handle such an implementation of automation. But it was concluded 

based on the reasons provided in the introduction that it will be not be efficient to 

design and implement this automation in Moodle. Based on the analysis of the 

current examination process, two solutions are proposed in Chapter 3, of which 

one is developed as a part of this thesis. 

Testrek application written in Python has been designed in accordance to 

the scope set in the thesis requirements. It downloads the files answer files from 

each test takers’ public_html folder to the local machine and runs a plagiarism 

check on each task file from test taker against every other. Additionally, the 

application is made very dynamic and can be used in other similar examinations 

too. Testrek also deals with several exceptions that may occur during the runtime, 

which gives the user an opportunity to easily debug the application if the need be. 

It also satisfies the need for platform independency as it can run on most major 

platforms as far as Python 2.7 is installed on that machine. 

Testrek provides the user with a config file where they can modify several 

settings based on the requirements of the situation. After every run, it outputs: 

answer files from test takers, a download success report in csv format and a 

plagiarism check report in html format. 

Examination process analysis and proposals, that can be found in chapter 2 

and 3 respectively, can serve for further research on standardizing and automating 

the parts of the examination process which are not included in the scope of this 
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thesis. In fact, an even better and robust solution can be developed using Django 

but it will require much more resources, time and eventually maintenance. 



35 

Appendix  

 

Testrek Application 

The attached zip file below contains the Testrek Application. One can 

download and unzip the folder anywhere on a machine running Linux, Mac or 

Windows with Python 2.7 installed, and use RUN.py file in the directory to run 

the application. No installation of any kind is required as far as Testrek as an 

application is concerned. 

The application directory has the following structure and these python 

modules should not be moved, deleted or modified without prior knowledge of 

the working of this application. A text file containing the usernames of all the 

test takers can be stored anywhere on the computer.

 
Testrek.zip

 

 

 

 

Figure 9Testrek directory structure 
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Download Success Report 

The “Report” folder is created after running Testrek, stores the download 

success report (in CSV format) under the Report folder with specific date and time 

stamp. One success report file is generated on every run. The report contains the 

following columns: 

• Test Taker: Test takers name 

• Tasks: Task number 

• Status: Status of file download 

• File Name: Name of the downloaded file for that particular task 

There can be three possible statuses: 

• Files successfully downloaded: File has been successfully 

downloaded and stored under respective Answers folder. 

• Can't access url or user folder not found: The file download has 

failed either because the user does not access for access to the server 

file location (i.e. public_html) is denied. 

• Folder named Task# not found: Student folder can be accessed but 

a particular task folder cannot be found under public_html. 

An example of download report file is attached. 

report 2017-06-07 

13.12.54.436867.csv  
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Plagiarism Check Report 

Plagiarism check report is stored in the application root directory and is 

overwritten each time the Testrek is run. The plagiarism check report is generated 

in the html file format. The cells with red color in the table highlight that there is 

that similarity between files are over 80%. A screenshot of the plagiarism check 

report can be seen below. 

 

Figure 10 Plagiarism check Report 

 

plagiarism_check.html
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