LOAD CALCULATION:

The key is to support on posts and columns.

\[N_{Ed} = 17150 \text{ KN} \rightarrow \text{Result is taken from the column preliminary calculation.} \]

Dimensions of the column:

- Self weight of the footing:

\[Q_e = 0.1, \ N_{Ed} = 0.1 \times 17150 = 1715 \text{ KN} \]

- Design strength of subsoil:
 - Gravel: \(f_k = 400 \text{ kPa} \rightarrow \text{table value} \)
 - No extendibility included

\[\rightarrow \text{PLAN CONCRETE} \]
$$h = a \cdot \log(x) = \left(\frac{b \cdot b_s}{c} \right) \cdot \log(x)$$

$$G = \frac{\kappa a + G_0}{\Delta e} \leq \Delta e$$

$$\Delta e = \frac{\kappa a + G_0}{\Delta e} = \frac{950 + 95}{400} = 3.8181$$

$$a = 4.511$$

$$b = 4.511$$

Dimensions of the footing pad is too large!

Because of the subsoil condition, geological condition needs to be assumed.

From the website of Czech Geology Service, was found that original subsoil is mostly composed from **loess**.

From this reason was decided to use **reinforced concrete** with the slab thickness 500 m/ and wall thickness 300 m/.

For the more sophisticated design of the foundations geological survey and engineering geological survey should be done for the purpose of this project is this design satisfied.