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Abstract

In the thesis, we propose two novel short-term object tracking methods, the Flock of
Trackers (FoT) and the Scale-Adaptive Mean-Shift (ASMS), a framework for fusion of
multiple trackers and detector and contributions to the problem of tracker evaluation
within the Visual Object Tracking (VOT) initiative.

The Flock of Trackers partitions the object of interest to an equally sized parts. For
each part, the FoT computes an optical flow correspondence and estimates its reliability.
Reliable correspondences are used to robustly estimates a target pose using RANSAC
technique, which allows for range of complex rigid transformation (e.g. affine trans-
formation) of a target. The scale-adaptive mean-shift tracker is a gradient optimization
method that iteratively moves a search window to the position which minimizes a dis-
tance of a appearance model extracted from the search window to the target model. The
ASMS propose a theoretically justified modification of the mean-shift framework that
addresses one of the drawbacks of the mean-shift trackers which is the fixed size search
window, i.e. target scale. Moreover, the ASMS introduce a technique that incorporates
a background information into the gradient optimization to reduce tracker failures in
presence of background clutter.

To take advantage of strengths of the previous methods, we introduce a novel track-
ing framework HMMTxD that fuses multiple tracking methods together with a pro-
posed feature-based online detector. The framework utilizes a hidden Markov model
(HMM) to learn online how well each tracking method performs using sparsely ”an-
notated” data provided by a detector, which are assumed to be correct, and confidence
provided by the trackers. The HMM estimates the probability that a tracker is correct in
the current frame given the previously learned HMM model and the current tracker con-
fidence. This tracker fusion alleviates the drawbacks of the individual tracking methods
since the HMMTxD learns which trackers are performing well and switch off the rest.

All of the proposed trackers were extensively evaluated on several benchmarks and
publicly available tracking sequences and achieve excellent results in various evaluation
criteria. The FoT achieved state-of-the-art performance in the VOT2013 benchmark,
finishing second. Today, the FoT is used as a building block in complex applications
such as multi-object tracking frameworks. The ASMS achieved state-of-the-art results
in the VOT2015 benchmark and was chosen as the best performing method in terms
of a trade-off between performance and running time. The HMMTxD demonstrated
state-of-the-art performance in multiple benchmarks (VOT2014, VOT2015 and OTB).

The thesis also contributes, and provides an overview, to the Visual Object Track-
ing (VOT) evaluation methodology. This methodology provides a means for unbiased
comparison of different tracking methods across publication, which is crucial for ad-
vancement of the state-of-the-art over a longer timespan and also provides a tools for
deeper performance analysis of tracking methods. Furthermore, a annual workshops
are organized on major computer vision conferences, where the authors are encouraged
to submit their novel methods to compete against each other and where the advances in
the visual object tracking are discussed.
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I would like to thank my advisor Prof. Jiřı́ Matas for guiding me throughout my Ph.D.,
teaching me how to be a good researcher and for the immense patience he showed
during the periods of academic paper writing.

I am grateful to my co-authors Jana Nosková, Matej Kristan, Luka Čehovin Zajc
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Štěpán Obdržálek, Michal Perd’och, Andrej Mikulı́k, Lukáš Neumann, James Pritts,
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Chapter 1

Introduction

The general visual object tracking is one of the most challenging problem in the com-
puter vision field. One of the reason is the large space of possible application and
theoretical problems which are considered to belong to tracking. Since it is currently
not feasible to address the problem in full generality, it is naturally divided into more
narrow subproblems. These subproblems differ greatly in assumptions they impose on
the task or data and in requirements on output. Examples of factors of tracking special-
ization are e.g.the number of cameras, the number of objects of interest, causality (e.g.
video analysis vs. causal processing), data domain type (e.g. medical, depth data, infra-
red imaging or classical RGB camera images), assumed frame-to-frame transformation
or static vs. moving camera.

The visual object tracking problem addressed in this thesis is restricted to single
camera, single object and causal processing. The objective of such tracking task is
to estimate trajectory of the object of interest – target – and its state in each frame
in the video. The target position is usually denoted more generally as a target pose,
which may represent additional geometrical properties such as target size or rotation.
The target is defined by an external source in the first frame of the tracking sequence,
e.g. by rectangular area drawn by a user. The target pose representations may vary
depending on the specific problem and tracking methods. The pose can be for example
position of the target center, a bounding box which also incorporates the target size or
a set of pixels belonging to the target.

Despite addressing only a ”small part” of the general visual object tracking problem,
the topic of the thesis is challenging due to its unconstrained character in terms of
objects types (e.g. from rigid to highly articulated objects), object motions (e.g. planar
or 3D motion), object appearance variations (e.g. changes due to lighting conditions or
object deformations) and unconstrained environment conditions (e.g. high illumination
changes, occlusions, video capture noise, different weather conditions or unconstrained
camera motion and viewpoint). Visual examples are shown in Fig. 1.1.

Evaluation and comparison of different tracking approaches is another challenging
aspect in visual object tracking. In recent years, many tracking methods were published
and the necessity to objectively compare these methods with each other becomes es-
sential problem. Commonly, results of published methods cannot be directly compared
for two main reasons, i.e. each method may have used different set of testing video
sequences and different evaluation metric. A unified framework for evaluation and
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Figure 1.1: Examples of various visual challenges in tracking scenarios. From left to
right and top to bottom: A) extreme global and local illumination changes, B) view
point changes and occlusion, C) highly deformable and articulated target and D) back-
ground clutter and texture-less object.

comparison of tracking methods is imperative for continuous advancement of state-of-
the-art.

Visual tracking is utilized in a vast amount of direct applications or as a building
block in more complex applications of computer vision. Well known applications of
tracking are for example a face tracking in digital cameras, body skeleton tracking in
Microsoft Kinect1 device for video game control or CCTV surveillance application such
as left luggage or pedestrian tracking in the airport2. Many other applications use the
visual tracking as a module and build more complex computer vision algorithms on top
of the outputs of tracking methods. Most prominent examples of these applications are
car assistant systems3 4 used for emergency breaking and adaptive cruise control, eye
tracking for driver attention monitoring5, non-intrusive visual sport analysis software6

which provides rich information about players performance (such as distance run, ac-
celeration or team formations) or systems for augmented reality [KM09]. Figure 1.2
shows several of these applications.

The topic of visual tracking is far from being solved and there is a growing demand
for faster and more robust methods, that would open a path to new applications and,
ultimately, toward a single tracking method that would address all mentioned difficulties
and possible scenarios in the causal single object visual tracking problem.

1.1 The Scope of the Thesis – Tracking Problem

As discussed in the previous section, the general tracking problem is too broad and
diverse to be addressed as whole and this thesis focuses only on a specific area which
will be described more precisely in the following paragraphs.

1http://www.xbox.com/en-US/xbox-one/accessories/kinect
2http://www.fujitsu.com/uk/solutions/industry/transport/aviation/
3http://www.mobileye.com/
4https://www.google.com/selfdrivingcar/
5http://www.lexus.com/models/LS/safety
6http://chyronhego.com/sports-data/tracab
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Figure 1.2: Examples of the use of tracking algorithms in real-world applications. From
left to right: Kinect gaming sensor for body tracking, tracking of cars for collision
detection and autonomous driving and sport analysis.

We categorize tracking problems by four major factors, i.e. single camera vs multi-
ple camera setting, single target vs. multi-target, causal vs. non-causal and short-term
vs. long-term tracking. This thesis is focusing on single camera, causal and single target
tracking for mostly short-term scenarios. In rest of the thesis, by tracking problem we
refer to this definition unless stated otherwise. In next paragraphs, the individual terms
of the tracking problem are explicitly defined.

By single camera we means that the tracking algorithm operates on a sequence of
single 2D images, i.e. most common case when using a standard camera device. On
the other hand, multi-camera system provides multiple 2D images at the same time.
Usually, these images are taken from different overlapping viewpoints and are time
synchronized, e.g. multiple cameras in the corners of a hockey stadium capturing a
game.

The single target tracking considers only one object of interest in the scene and the
rest is treated as a background even when similar object may be present. Multi-target
tracking objective is to report all instances of object of interests in the scene that are
usually from the same category (e.g. group of pedestrians or cars on a road) but not
limited to (e.g. tracking all moving object w.r.t. static background).

Causal tracking requires that the output of the method is produced in each frame
using only information from previous and current frames. Most of the research in object
tracking falls into the category of casual trackers. On the other hand, non-causal tracker
may process information from a whole video sequence at the same time and is not
required to output target poses sequentially. The non-causal tracking task can be viewed
as a video analysis techniques, where the delay in output is not an essential parameter.

The short-term and long-term tracking mainly differ in the expected length of the
video sequence. In the short-term tracking task, the main optimized criterion is a precise
estimation of the object of interest state until for as long as possible until the tracking
method fails after which a recovery is not necessary required. Long-term tracking is
more focused on the online learning of an object appearance and applying this knowl-
edge to recover in case of tracker failure or object disappearance from the field of view
due to other effects such as full occlusion or out-of-image disappearance. Short-term
tracking is usually evaluated up to 1000 frames per sequence while long-term tracking
should work for arbitrary long sequences (benchmark sequence lengths are typically in
a range from 1000 to 10000 frames).
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Given the specification of tracking problem (i.e. single camera and target, casual
and short-term) we can define more formally what the inputs and expected outputs are.
There are several well-established definitions used in the literature from which two –
one standardly used and one more general that represents an ongoing trend of how the
tracking task is interpreted – are presented.

The first definition 1, adapted for example in [MC11], is applicable for ”correspon-
dence” based trackers. The unit for which the correspondence between frames is estab-
lished can vary a lot in size and meaning from small size pixel keypoints (e.g. optical-
flow, sparse or dense, methods) to very large size correspondence of the whole (parts
of) object (e.g. part based, detection based or correlation trackers), see Section 2.2 for
particular tracking methods examples.

Definition 1 Given an initial estimate of X, locate X (or transformation of X) in all
images in a sequence, where X may mean

1. An “interest point” and its neighbourhood
2. A (rectangular) region
3. An “object”

This definition is sufficient when we consider mostly rigid object and planar trans-
formation (e.g. translation, scale and rotation in the image plane), because it makes an
assumption that an object is well represented by a rectangle and the rectangle transfor-
mation between consecutive frames correlates to the transformation that the object un-
dergoes. This assumption is however not true when we consider more complex objects
(e.g. highly articulated or deformable) or object 3D motion (e.g. out-of-plane rotation
where the object undergoes complex 3D motion that does not manifest in change of 2D
bounding box).

The definition 2 generalize the previous definition 1 in such way that it recognizes
that an object has its state and that the state is, at some point, used to estimate the output
object pose (e.g. region); however, there is not necessarily a correlation between object
poses in consecutive frames. For example, in segmentation based methods, the object
state is represented by a set of pixels that belongs to the object and output pose can be a
rectangle that encloses them. However, the corresponding sets of pixels between frames
may differ in size, shape properties or number of connected components and there is no
obvious mapping between them. The only requirement being that the pixels in the set
belongs to the target. This definition also separates target pose from target state more
clearly. The pose is viewed as an extrinsic geometrical property related to the observer,
e.g. bounding box, contour, frame-to-frame transformation and the state represent the
intrinsic parameters of the target, e.g. pixel that belong to the object, articulated parts
of the target or more high level information such as closed/opened eyes during face
tracking.

Definition 2 Given an initial estimate of the pose (and state of X) : In all images in a
sequence, (in a causal manner)

1. estimate the pose of X (e.g. any geometric parameter – position, scale, ..., bound-
ing box, contour, etc...)
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2. (optional) estimate the state of X (e.g. pixel-wise segmentation, shape, articula-
tion, etc...)

The definition 2 emerged when first tracking by segmentation methods appeared;
however, it describe very well the recent state of tracking methods and evaluation frame-
works. In modern tracking benchmarks (e.g. VOT [KML+16]), the ground truth anno-
tation is understood as a rough approximation of the target segmentation opposes to
frame-to-frame target motion (when taking consecutive ground truth annotations) and
it also applies for recent tracking methods, which does not estimate explicit transfor-
mation of target. This definition easily captures the cases of articulated and deformable
object as well as non-rigid and 3D transformations.

The tracking methods proposed in this thesis (Chapter 4, 5) follows both defini-
tions. The FoT tracker is based on sparse point correspondences and assumes rigid ob-
ject which frame-to-frame motion can be described by one global transformation (e.g.
translation, scale, and rotation) of object bounding box. The ASMS tracker is based
on an iterative procedure that optimizes a similarity between two probability distribu-
tions functions, i.e. seeking a region with the highest density of this similarity function,
which can be seen as a segmentation without explicitly defined the segmented pixels.
Finally, the HMMTxD tracker combines several out-of-box tracking methods, there-
fore, it fits to both definition depending on the tracking methods that participate in the
HMMTxD tracker.

1.2 Thesis Overview
This thesis presents several contributions to the causal single object short-term track-
ing problem. First, we introduce a novel visual object tracking evaluation methodology
(VOT) which goal is to create a well-defined protocol, dataset and measurements for
evaluation of tracking algorithms and a principal way how to compare tracking algo-
rithms against each other. This is necessary for systematic advance in the state-of-the-
art as well as for development of new tracking algorithms.

The VOT started in 2013 when there was no standard evaluation benchmark for a
single-target tracking and the first results were presented on VOT workshop which was
organized in conjunction with ICCV 2013 conference. Since then, we have been work-
ing on improving all parts of the methodology (i.e. dataset, measurements, evaluation
toolkit code base) and we have been presenting the progress annually on the VOT work-
shops at major conferences. The main contributions to the VOT were in development
of methodology for selecting a dataset and in the evaluation methodology (i.e. single
evaluation measure for tracker ranking and statistical validation of results). Chapter 3
presents these contributions along with the latest development of the VOT methodology
and results from the last VOT 2015 workshop, where we compared 62 tracking methods
on a dataset of 60 sequences.

In Chapter 4, we present two short-term tracking algorithms that are simple yet ro-
bust and achieve a state-of-the-art performance while running at a speed more than 100
frames per second on average. First approach presented in Section 4.1, called Flock
of Trackers (FoT), is based on a robust combination of sparse optical flow correspon-
dences. The object of interest is covered uniformly by local trackers (i.e. regions for
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Figure 1.3: FoT tracker outputs of the Toyota car tracking framework [CVT+12]. Di-
verse visual conditions in highway scenarios are shown: left - cluttered scene with
partial occlusions, center - difficult lighting condition and right - highway turns and
major road shadows. The whole video sequence, dataset and evaluation protocol are
described at http://cmp.felk.cvut.cz/data/motorway/.

which the correspondences to a consecutive image are estimated) and using multiple
quality predictors a reliable set of local trackers is selected. This reliable set is used to
estimate a global motion of the object, which can be modeled up to projective trans-
formation. This method achieved state-of-the-art results in the VOT2013 benchmark
and even today it provides a robust tracking method for rigid objects with the possi-
bility of more complex motion model (very few methods in visual object tracking are
able to estimate more than translation and scale transformation) at speed 100− 300 fps.
The FoT tracker is also used in two real-world applications: i) in the project with Toy-
ota [CVT+12] (see Fig. 1.3 for visual results), where the algorithm currently runs in the
testing cars, to track cars from a single front-mounted camera and ii) in the TextSpotter
software7 for text localization and recognition in videos (see Fig. 1.4 for visual results),
where the FoT provides temporal smoothing for the text localization between frames,
i.e. if some text is detected a new instance of FoT is run to track that location and helps
to locate the same text in consecutive frames where there is no detection. The Baseline-
TextSpotter algorithm with the tracking module placed first8 in the ICDAR 2015 robust
reading competition[KGBN+15] for the end-to-end system.

The second short-term tracking method, which builds upon a mean-shift tracking
approach [CRM00], is introduced in Section 4.2. The mean-shift tracking minimizes
a distance of a target model to the currently observed model by shifting its position
using a gradient descent technique. The proposed scale-adaptive mean-shift tracker
(ASMS) introduces a theoretically justified scale estimation to the mean-shift track-
ing. The novel scale estimation allows the mean-shift tracker to compete with other
state-of-the-art trackers in challenging tracking video sequences, where scale estima-

7http://textspotter.org/
8http://rrc.cvc.uab.es/?ch=3&com=evaluation
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Figure 1.4: Output of the TextSpotter software for text localization and recognition.
First, text is detected at some point in the video sequence (green regions) and then the
region is tracked using the FoT tracker (yellow regions). The text detections are sparse
and the FoT provides the text positions through frames where the detections are missing.
Images courtesy of Michal Busta.

tion is crucial for achieving good performance. Moreover, a novel general approach
for mean-shift trackers to exploit context information (i.e. background around the ob-
ject of interest) is proposed. It computes the background model and uses it to identify
discriminative parts of the target model, which become more prominent in the gradi-
ent optimization. Two major issues with scale estimation in the mean-shift framework
are discussed (i.e. object symmetry in a feature space and a background clutter) and a
solution is proposed in the form of a scale regularization, forward-backward validation
and, the previously mentioned context exploitation. The ASMS tracker achieved state-
of-the-art results and is the best performing tracker in terms of trade-off between the
performance and the speed on the VOT 2015 benchmark with processing speed around
80− 150 fps in average.

In Chapter 5, we introduce a novel tracking and detection method (HMMTxD)
which fuses multiple short-term tracking methods (Tx) utilizing the hidden Markov
model (HMM) framework and using a feature-based detector (D) as a glue to connect
the learning process of the HMM with the short-term trackers outputs. This method
allows to utilize tracking approaches with complementary designs and alleviate their
failure modes, e.g. fuse a FoT tracker that works for better for rigid object and ASMS
mean-shift tracker that cope well with deformable and articulated object. The feature-
based detector marks key frames, with positive object detections, which are used as
annotated data during the learning of the parameters of the HMM. The state of the
Markov model represents the ”correct” short-term trackers combination {0, 1}n, where
n is a number of trackers and 0 (1) denotes tracker incorrectness (correctness) in the
state. Therefore by inferring the most probable state the output of the method is defined
by the tracker’s combination in that particular state. The HMM models two major char-
acteristics of trackers: i) the temporal performance, i.e. whether this tracker is working
correctly for this particular object and a scene and ii) correlation of current tracker ob-
servables (e.g. tracker confidence measure or model similarity) with the performance.
Both of these parts of the HMM (transition probabilities and observable probabilities)

8



are learned online by the proposed modified Baum-Welch algorithm. The modular-
ity of the proposed method allows replacing individual parts in an application-driven
fashion, e.g. to use an object specific detector (a pedestrian detector) instead of the
generic feature-based detector or a different combination of trackers that performs bet-
ter for a given task. The proposed method achieves a state-of-the-art performance on
VOT benchmarks, OTB [WLY13] benchmark and TV77 collection of sequences. The
processing speed of the method is mainly limited by the feature-based detector and is
between 5− 15 frames per second on average.

1.3 Contributions
The contributions lie in two areas. We present three novel tracking methods, and sec-
ond, we present contributions to the evaluation methodology of the tracking algorithms.
The contributions are listed below,

• Section 4.2 present a novel formulation of the mean-shift tracker [CRM00] which
introduce theoretically justified scale estimation inside the mean-shift framework.
Furthermore, we introduce a background information to the mean-shift procedure
which allows for robust tracking in cluttered scenes. Lastly, a regularization is
proposed for the mean-shift gradient descent optimization to make the motion
and scale estimation more robust and reliable.

The work was published in [VNM14, VNM14] and received the best paper award.
The source code is publicly available at https://github.com/vojirt/
asms.

• Section 4.1 propose a novel short-term tracking method. This method is based
on work of Kalal et al. [KMM10b]. The tracking approach uses local features
placed on the object of interest and their correspondences to the next frame to es-
timate an object motion. There are three major contributions to the design. First,
the placement of the local features is discussed and an improved solution is pro-
posed. Then several techniques for assessing of reliability of the individual local
features are proposed and two approaches for efficient fusion of these indicators
are presented. Finally, a RANSAC technique is used for the motion estimation,
which enables for more complex motion models to be used.

These contributions were published in [VM11, VM14] and indirectly in [CVT+12].
The algorithm was licensed to Samsung and Toyota corporations.

• Chapter 5 propose a novel method which allows fusing information from multiple
”black box” tracking approaches and online learned object detector, e.g. fusing
previously proposed FoT and ASMS with complementary design and therefore
in different failure modes. Trackers performance statistics are learned online uti-
lizing a Hidden Markov model. The method effectively enables to ”switch off”
trackers that are not suitable for a particular sequence in an online manner. We
introduce an algorithm for learning the HMM model from online partially anno-
tated sequence of observed data. For the data annotation, we propose an online
learned feature-based detector set to the operating point of high precision that
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annotates the keyframes where the tracker’s performance is evaluated. This work
was published in [VNM16].

• Chapter 3 presents the Visual Object Tracking (VOT) evaluation methodology.
This methodology uses two standard performance measures[ČKL14] and novel
expected average overlap measure(EAO), a process for automatic selection of a
representative set of sequences for trackers evaluation and toolkit for automatic
evaluation of tracking algorithms and generating performance statistics. The VOT
methodology is used in the workshops, organized in conjunctions with major con-
ferences, and enables the competition between tracking algorithms which allows
monitoring the advance in the state-of-the-art through the years. The author of
this thesis is a major contributor to the dataset selection process, development of
the evaluation toolkit and methodology (single performance measure for tracker
ranking, i.e. EAO) and organization of the workshops.

The paper related to this topics are [KPL+13, KPL+14, FBH+15, KML+15,
KML+16]. Everything related to the VOT is open source and can be accessed
from http://www.votchallenge.net/.
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Chapter 2

Related Work

In this chapter, related work for a single target tracking evaluation and single target
tracking is reviewed. In the first part, performance measures, visualizations approaches
and tracking benchmarks are presented. They are crucial for assessing the quality of
tracking methods, comparing different algorithms across publications and for advancing
the state-of-the-art by allowing to easily identify methods weaknesses.

In the second part of this chapter, related tracking methods are categorized by their
most common characteristics and briefly described. The section does not exhaustively
list all tracking methods, which is not feasible (the number of papers published on
major conferences between years 2013 − 2016 is around 1500), but rather selects the
most influential methods and the recent state-of-the-art.

2.1 Tracking Performance Evaluation
Tracking performance evaluation consists of three key parts: performance measure,
visualization of the measures and evaluation dataset. There is number of performance
measures proposed in literature, where a measure criterion was often proposed to fit a
tracking task narrative. For example, when the tracking task is to estimate a trajectory
of particular cell in microscope images the size of the cell is not an important factor but
the precision of the trajectory (i.e. motion of the cell center) is or when the task is to
remove a moving object from a video sequence a more precise measure that incorporate
object position, size and rotation is desirable for evaluation of tracking methods for this
task.

The other important part of the evaluation is presentation and visualization of re-
sults. Currently, the trend is to use large datasets, therefore, the techniques to clearly
articulate the performance results are crucial, since is not feasible to include a per-
sequence performance in form of a table. Several visualization techniques were design
to address this need. The important aspect that the visualization should have is the abil-
ity to either compare methods with each other or to provide a insides to how the method
perform for certain scenarios (e.g. visual attribute like illumination change) in a clear
compact way.

The third key part is the dataset on which the trackers are evaluated. The dataset
should be ”well-rounded” and ”comprehensive” in terms of visual attributes. Because
of the enormous space of possible sequences and visual phenomenons there is no proper
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definition or guide lines how to select sequences for the dataset. The authors usually
choose the sequences arbitrary or to emphasis particular visual attribute. The problem
of dataset construction is not unique for the tracking but rather it is a general problem
in computer vision.

For the purpose of the comparison of tracking methods across publication, three
popular (standard) single target tracking benchmarks were proposed. Each benchmark
provides datasets, performance measure, results visualization and toolkit for easy and
automatic evaluation of tracking methods. Short overview of these benchmarks is pro-
vided in Section 2.1.3 where their strengths and weaknesses are also discussed.

The scope of this thesis is limited to a single target tracking, which may differ
significantly in evaluation methodology w.r.t. multi-target tracking, so for details about
multi-target tracking evaluation readers are referred to the MOTChallenge1 and to the
paper of Bernardin et al. [BS08].

2.1.1 Performance Measures
Many performance measures have been proposed for tracker evaluation. The range of
different measures varies from a simple center of regions difference to more sophisti-
cated measures that combine multiple aspects of reported regions. This section provides
an overview of the most used measures and their advantages and shortcomings.

The simplest performance measure is the localization error [RLLY08]. It is com-
puted for frame t as an error between centroids of the ground truth position cgtt =
[xgtt , y

gt
t ] and the estimated position ĉt = [x̂t, ŷt] using Euclidean l2 norm δt = ||cgtt −

ĉt||. This measure is usually summarized as an average error (Eg. 2.1) or as a root mean
squared error (Eg. 2.2) for a sequence of length N .

AE =
1

N

N∑
t=1

δt (2.1)

RMSE =

√√√√ 1

N

N∑
t=1

δ2
t (2.2)

The localization error was also adapted for the tracking length [KL09] measure. The
tracking length is defined as the frame number after which the tracking method has the
center localization error higher than a predefined threshold (in [KL09] set to 30 pixels).
Kristan et al. [KPPK09, KKLP10] take it one step further and introduce a failure rate
measure. The failure rate measures the number of times the tracker ”loss” a target. In
the [KPPK09, KKLP10], a ”lost” of the target is indicated by the center localization
error being above a threshold. The same idea can be used with other types of measures
for which a decision whether the tracker is correct or not can be made for each frame.
However, this measure requires an outside intervention to reinitialize the tracker when
the target is lost. Wu et al. [WLY13] propose to measure the percentage of frames in
which the center distance is less than a threshold and plot this in the graph for different
thresholds. The measures based on the average center localization error have two major

1https://motchallenge.net/
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flaws: (i) The error value is not bounded, therefore, for two trackers that failed the error
can become arbitrarily high and the penalization uneven. Even though a normalization
to image size can be applied, this problem perseveres. (ii) This measure takes into
account only translation disregarding other object transformations such as rotation or
scale.

The next set of measures is based on a region overlap [LSS11] criterion inspired by
the Pascal detection challenge [EEVG+14]. For two rectangles, ground truth Rgt and
estimated R̂, the region overlap is defined by the Eq. 2.3.

o =
Rgt ∩ R̂
Rgt ∪ R̂

(2.3)

This formula is general and can be easily applied to polygons or pixel-wise segmen-
tation. The basic use is to evaluate an average frame overlap over a sequence, which,
to some degree, describes the quality of a tracker. In [WLY13], the overlap measure is
used to produced an ROC-like plot of thresholded overlaps and report the area under
this curve. This presents an interesting visualization of trackers accuracy with a differ-
ent threshold on the overlap measure. However, as it was shown later by Čehovin et
al. [ČKL14], the area under the ROC-curve is equivalent to the average region over-
lap computed from all frames. In the extensive analysis of performance measures,
Čehovin et al. [ČLK15], argue that the region overlap has superior quality to the cen-
ter error. Similarly to the tracking length, a recall measure (the Pascal region overlap
criterion [EEVG+14]) appeared as a prominent alternative for evaluation of long-term
trackers, which often possesses a re-detection capability. The recall on sequences is
the percentage of frames where a tracker has overlap higher than a given threshold.
A complementary measure to the recall is precision. It is mostly used in tracking
tasks where the answer ”target is not visible” is important, e.g. detection-based meth-
ods [KMM12, LHMB16]. The precision is the percentage of frames where the tracker
provides output and is correct (correctness defined the same way as in recall measure).
More precisely, the recall and precision are, using classification terminology, defined as

recall =
tp

tp + fn
(2.4)

precision =
tp

tp + fp
, (2.5)

where tp, fn and fp are number of true positive, false negative and false positive detec-
tions respectively. The F-score [KK11, SCC+13b, KMM12] was used to combine the
recall with precision. The F-score, a harmonic mean of recall and precision, is defined
as

F-score = 2
precision · recall
precision + recall

. (2.6)

The measure based on a thresholded overlap depends heavily on the selected threshold,
which is usually set to 0.5. In many cases, this is a very strict threshold for tracking
task and may not represent accurately the failure cases of a tracker (see examples in
Figure 2.1). However, compared to the localization error, it is bounded (failed trackers
have the same overlap) and it takes into account target transformations, such as scale
and rotation.
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Figure 2.1: Examples of bounding boxes (red) at 0.5 overlap with the ground truth
(green). Notice that the rectangles still fit the objects quite well. Image courtesy of
Kristan et al. [KML+16].

There are also more sophisticated measures, such as Combined Tracking Perfor-
mance Score (CoTPS) [NC13, CCCR12], which combines several measures. The CoTPS
incorporates a tracking accuracy, computed as an thresholded overlap o(τ) (overlap
computed according to Eq. 2.3) and integrated over τ and normalized to range [0, 1],
and tracking failures λ0 defined as the number of frames where the tracker did not pro-
duce bounding box and target was present or when bounding box was produced but the
target was not present in the frame. Linear combination is used to produce a single
score:

CoTPS = β
1

C

∫
τ

o(τ) + (1− β)λ0 (2.7)

The merit of the combined measures is the single score representation of the tracker
quality that encompasses multiple characteristics of the tracking performance (e.g. ac-
curacy and failure rate). A downside of the CoTPS is the limited insight into trackers
performance on a finer level which reduces their interpretability, e.g. answering a ques-
tion such as “which tracker is more accurate in the case of illumination changes?”.

2.1.2 Performance Visualization
The measures described so far are usually reported as a single average number per
dataset or per sequence in a table. Recently, a novel trend appeared that compares
the tracking performance visually by so called summarization plots. There are several
types:

• Aggregate all sequences (frames) together and plot the measure-threshold depen-
dence, i.e. a performance measure as a function of a threshold, see Fig. 2.2(A).
Examples of these types are the precision plots [YJS06, BYB11, WLY13], which
measure the object location accuracy in terms of a center error, or the success
plot [WLY13] where the region overlap is used instead.
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• Plot dependency between two performance measures (which are averages per
sequence or per dataset), see Fig. 2.2(B). A tracker performance is then repre-
sented as a single point in a 2D graph, e.g. A-R plot presented in Čehovin et
al. [ČKL14, ČLK15] where the trackers are compared in terms of accuracy and
robustness (using a zero threshold on an overlap and a tracker reinitialization in
the case of a zero overlap). The drawback of this plots is that they typically be-
come cluttered and their clarity degrades when multiple trackers are in the same
plot.

• Survival curve (proposed by Smeulders et al. [SCC+13b]), which shows sorted
per-sequence performance of a tracker. Trackers are then compared on the entire
dataset visually by their survival curves. These graphs show a clear comparison of
trackers on entire datasets; however, they do not allow per-sequence comparison
since the sequence ordering differs for each tracker. Similar approach was used
by Vojir et al. [VNM14] when comparing one particular method against many
(e.g. proposed method compared with state-of-the-art), where the sequences are
ordered by the performance of the selected method, see Fig. 2.2(D). This plot
preserves the clean performance decreasing curve only for the selected method,
however, it allows direct per-sequence performance comparison with the other
methods.

• Challenge plots used where single measure is computed over whole dataset and
tracking methods are ordered by this one measure (e.g. EAO plot in visual object
tracking challenge (VOT) [KML+15, KML+16]), see Fig. 2.2(E).

• Performance with respect to different visual attributes, e.g. radar plot in [NC13,
LVC+17], see Fig. 2.2(C).

2.1.3 Single Target Tracking Benchmarks
There are three popular single target tracking benchmarks [WLY13, SCC+13b, KML+16],
which provide a dataset, evaluation methodology and results for state-of-the-art meth-
ods so a new tracking method can be easily evaluated and compared to them.

The ”Amsterdam Library of Ordinary Videos” (ALOV) benchmark proposed by
Smeulders et al. [SCC+13b] contain 315 video sequences annotated by axis-align rect-
angles every 5th frame and linearly interpolated between the key frames. The dataset
is organized into 14 different categories based on the most dominant attribute (e.g. the
first category contains sequences with an illumination change as a dominant character-
istic). The tracker evaluation uses two performance measures, F-measure with overlap
threshold set to 0.5 and the centroid normalized distance. Tracker results are visual-
ized by the survival curve for each measure. The final ranking is based on the average
F-measure over all sequences. One of the best performing trackers are detection-based
methods TLD [KMM12] and STRUCK [HST11].

The OTB benchmark [WLY13] uses a dataset of 50 video sequences and evalu-
ates 29 trackers (the revised version [WLY15] contains 100 sequences and 31 trackers).
The dataset has a per-frame ground truth annotation by axis-aligned rectangles and 11
attributes per sequence. There are three types of experiments: (i) Baseline one-pass
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Figure 2.2: Different types of tracker performance visualization. A) performance as a
function of a acceptance threshold, B) performance w.r.t. two complementary perfor-
mance measures, C) performance for different visual attributes, D) survival curve with
fixed sequence ordering based on a highlighted method and E) ranking plot w.r.t. a
single performance measure. For further details, see text in Section 2.1.2.

experiment runs a tracker initialized from the first frame to the end of a sequence. (ii)
Temporal perturbation experiment starts the tracker from frames uniformly sampled
from the sequence and averages the performance from these runs. (iii) Spatial pertur-
bation experiment starts the tracking from the first frame but augmented ground truth
bounding box (perturbation in center and scale) and averages results from each run.
The results of each experiment are visualized by a precision and success plots. In the
end, trackers are ranked by the area under curve (AUC) value. Similarly to the previous
benchmark, the best performing trackers are TLD [KMM12], STRUCK [HST11] and
SCM [ZLY12].

There are two major weaknesses of the methodology shared by ALOV and OTB
benchmarks. Firstly, the evaluation initializes trackers at the beginning of a sequence
and lets them run until the end after which the performance measure is computed. This
approach does not fully utilize the sequences since, after the tracker fails, the rest of
the sequence is rendered useless. The exception is the second experiment of the OTB,
which is, however, designed to evaluate a tracker sensitivity to the initialization frame
rather than exploit the whole sequence. Secondly, the benchmarks use unsuitable long-
term measures (recall, precision) on (mostly) short-term sequences, a brittle perfor-
mance measures like center-based or overlap with a questionable threshold 0.5 (see
Figure 2.1). Moreover, these benchmarks do not consider a tracker equivalence prob-
lem that is inherently present because of errors in the ground truth annotations. There-
fore, ranking trackers based on one performance measure, e.g. using only the average
overlap (as used in OTB), does not answer the question “If the average overlap for T1
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is 0.6 and T2 is 0.61, can we say that T2 is better than T1?”.
Additionally, besides the methodology, arguably the most important thing in bench-

marks are data. The proposed datasets (even though they may be enormous) are picked
without a strategy how to balance and control the distribution of visual attributes and
object properties. Many of the used sequences are conceptually similar, which makes
results biased toward some particular types of visual phenomena (e.g. lighting condi-
tions). The data also does not provide a complete ground truth annotation and visual
attributes are per sequence only. The lack of a per frame annotation does not allow
detailed and deep analysis of tracking results since the tracker failure in the sequence
with multiple visual attributes can be caused by any of the attribute or any of their com-
binations. Another common problem of tracking datasets is that the objects of interest,
in some cases, are not well defined or that the sequences are artificially created, e.g.
movie scene cuts or ambiguously defined targets such as fireworks exploding to multi-
ple particles. All the issues mentioned above make these datasets inappropriate for the
short-term tracking evaluation.

Lastly, the baseline tracking results of published methods, which define the state-
of-the-art results of the benchmarks are not kept up to date and no new trackers are
periodically included to advance the performance standard. This makes it hard to mon-
itor the progress of the state-of-the art-results through the years.

To address the aforementioned benchmarks issues a working group was formed,
in collaboration with Kristan et al. and collective, and together we proposed a novel
benchmark [KML+16] focused on the single target visual tracking. It provides a novel
evaluation methodology, a new systematically selected and carefully annotated dataset,
a deep result analysis capability and continuously evolving state-of-the-art results along
with the growing supporting community. The benchmark is presented in Chapter 3.

2.2 Tracking Methods
This section presents an overview of influential basics of tracking algorithms to the
current state-of-the-art methods. The following sub-sections describe the most com-
monly applied underlying principles of tracking algorithm. Nevertheless, some tracking
methods take advantage of multiple different aspects and could be placed in several sub-
sections, nevertheless, they will be described in the sub-section of the tracking principle
that is the most prominent for the particular method.

2.2.1 Gradient-based Tracking
To the best of my knowledge, the first gradient-based tracking method was proposed
by Kanade, Lucas, and Tomasi (KLT) [LK81, TK91, ST94]. In their work, brightness
constancy between consecutive images is assumed and tracking task is formulated as
a template matching using the sum of squared differences as a cost function. The cost
function computes the difference between the target template and a patch related by a
geometric transformation (usually only translation is considered). By linearizing the
effect of the transformation on the image a gradient descent algorithm may be used
efficiently to find a local maximum of the cost function. The size of the template (ob-
ject of interest) defines a trade off for multiple aspects of the method: (i) speed of the
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optimization, (ii) basin of attraction, i.e. maximum possible motion between consec-
utive frames that the algorithm is able to estimate and (iii) estimation robustness. For
small templates, speed and robustness are high, but the possible motion is small. On
the other hand, for large templates (e.g. face) the allowed motion is large but the speed
is lower and robustness suffers from the violation of the brightness constancy assump-
tion. Furthermore, additional errors in the motion estimation are introduced due to
non-planar objects or perspective transformation (this is partially mitigated for smaller
patches since they can be locally well approximated by affine patches).

Multiple methods exploit the simple and fast KLT tracker and build complex algo-
rithm around the KLT method. The Kölsch et al. [KT04] propose an idea of exploiting
a collection of KLT trackers in a method called the Flock of Features for a fast hand
tracking. It is using KLT as local trackers sampled in a location with a high probabil-
ity of being the target. The probability is computed for each pixel as probability ratio
of belonging to histograms of a foreground and background, which are learned in the
first frame and updated online. The method enforces ”flock behavior” [Rey87] to detect
failing local trackers and replenish them on places of high probability. The output of
the tracker is the median position of the local trackers, which manifests the flocking be-
havior. Kalal et al. proposed a similar approach called median-flow tracker [KMM10b]
that places local trackers (KLT) on a regular grid, i.e. the local trackers cover the ob-
ject uniformly. Object motion, which is assumed to be well modeled by translation and
scaling, is estimated by the median of a subset of local tracker displacement estimates
(translation) and the median of the relative change of distance between positions of lo-
cal tracker pairs (scale). The subset of trackers is select by reliability predictors. Two
standard filtering predictors are used, namely the normalized cross-correlation (or sum
of squared differences) of the corresponding patches of local trackers and the consis-
tency of the forward-backward procedure, which tracked local trackers in forward and
backward direction (i.e. from frame t − 1 to t and backward) and threshold position
error.

Mean-shift (MS) [Che95] was another popular technique used in gradient-based
tracking algorithms. The MS maximizes a similarity of target template and candidate
template via a gradient descent optimization. The first tracking approach that utilized
the MS procedure was proposed by Comaniciu et al. [CRM00]. The method repre-
sent the target by a color histogram that approximates the pdf of pixel colors belonging
to the target. The pixels values are weighted during histogram extraction by a spatial
kernel (e.g. Epanechnikov kernel), which adds more weight to the pixels in a center
of the region of interest and smooths the histogram w.r.t. position of the region. The
Hellinger distance is employed as a similarity measure between the template and can-
didate histograms, which well approximates the chi-squared test for histograms, i.e. the
goodness of fit for frequency distributions. An efficient gradient descent is used on
the similarity measure w.r.t. the spatial parameter to iteratively move the position of
the candidate window to the location that maximizes its similarity to the template his-
togram. This method is very simple to implement and achieves a real-time performance,
which leads to large amount of following works that improve the original idea in various
aspects, e.g. a scale estimation [PP06, LHJ+07, ZKR08, NZZW12b], a new similarity
measure [YDD05] which is more discriminative and allows for more general motion
models, incorporating a background information [NZZW12a] in a form of novel pixel
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weighting scheme in the MS procedure or including texture features [ZLQ08, NZZW09,
BDS12] as a complementary source of information for a more precise localization.

2.2.2 Part-based Tracking
Part-based tracking methods models a target by splitting it to smaller parts, which are
either smaller ”independent” parts [KT04, ARS06, KL09, KMM10b, ČKL13] with a
voting scheme to estimate a single pose of the target or the target model is a combination
of multiple global or spatially dependent visual features [SNHY08, FSW12, ČKL13,
LHMB16].

Adam et al. [ARS06] introduced the FragTrack tracker, which represents object by
multiple patches. Each patch is described by a color histogram and by a relative offset
from the center of the target region. During tracking, each patch votes for an object pose
by exhaustively comparing its histogram to patches in a given radius. Robust statistics
technique is then used to combine heat map votes obtained from target patches. Nejhum
et al. [SNHY08] combines global description (a histogram over the whole object) and
a number of small rectangular blocks (weighted histograms) placed on the target. To
determinate the most probable object location the global model is used on the whole
image in a sliding window fashion, after that the local models are used to refine the
position. Lastly, an approximate boundary contour is then extracted using graph-cut
segmentation and block positions and weights are then updated. Cehovin et al. proposed
the LGT [ČKL13] tracker that couples a local and a global visual models. The local
model is a set of local patches that geometrically constrains the appearance of the target.
The local patches evolve in a probabilistic manner to cope with the target deformation
and are managed (added or removed) by the global model. The global model is a
probabilistic representation of the target properties such as color, shape and motion.
The global model is updated from stable local patches. The mutual learning between the
local and global models allows an appearance adaptation while maintaining robustness
to model drifting. Position of the object is computed as the average of the local patches
positions.

2.2.3 Tracking by Detection
The detection based method gained popularity after Viola and Jones [VJ01] introduced
a real-time face detection framework using a sliding window approach with a cascaded
classifier. Structure of such a tracking-by-detection framework is shown in Figure 2.3.
Since then, many approaches were introduced using either a sliding window technique
(e.g. [SLS+10, KMM12, DVM11]) or a local exhaustive search with fast classifiers
(e.g. [Avi07, HST11, ZMS14]). The two most popular classifiers, adopted from a
machine learning field, were AdaBoost [FS97] (or WaldBoost [SM05] variation) and
Support Vector Machine (SVM) [CST00]. On top of those classifiers several popular
methods were built.

Avidan [Avi04, Avi07] proposed two tracking by detection approaches. The first
one is based on the combination of SVM and optical flow (SVT) [Avi04]. The optical
flow is reformulated to optimize SVM score instead of intensity differences. The other
method, the Ensemble Tracker [Avi07], combines a large number of weak classifiers
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Figure 2.3: The tracking-by-detection pipeline with model updates. The sliding win-
dow approach is used in an arbitrarily sized search region to generate sub-patches for a
classifier. The response map is generated from a individual responses of a classifier on
sub-patches. From the response map a new position is inferred, e.g. by taking position
of the sub-patch with the maximum response. The classifier is then updated by col-
lecting new positive and negative examples, which are labeled based on the previously
inferred new position. Image courtesy of Grabner et al. [GLB08].

by the AdaBoost to one strong classifier. The weak classifiers are learned online on
11-dimensional vector of features (i.e. concatenation of local gradient histogram and
color). In each frame, every pixel is classified as either target or background resulting
in a confidence map on which a mean-shift procedure is run to find a location of the
highest density. The weak classifiers are updated (added or removed) using the new
position as a positive example and the rest as negative (background) examples.

Hare et al. [HST11] proposed a STRUCK tracker using a kernelized structured out-
put support vector machine (SVM). The classifier is trained directly on the examples
of the desired transformation (e.g. translation) given a location from which features
are extracted; therefore there is no direct binarization to target/background. This alle-
viates an issue with a precise separation of training data to the positive and negative
group during online learning. In each frame, tentative target windows are generated in
the neighbourhood of the previous frame position and are evaluated by the SVM clas-
sifier. The window with the highest SVM response is selected and all the evaluated
windows are used to retrain the classifier. Zhang et al. [ZMS14](MEEM) keep a pool
of multiple SVM classifiers learned from different time spans and chose the one that
maximizes an entropy-based cost function. The tracking scheme is similar to previous
methods, the classifiers are evaluated exhaustively in the local area around the previ-
ous position and the final bounding box is selected based on SVM responses and the
entropy-based cost function. Babenko et al. [BYB09] incorporate the multiple instance
learning paradigm (MIL) for learning of weak classifiers and combine them similarly as
AdaBoost. The MIL assigns the training data to groups, where each group has a label
(foreground or background) by majority voting of labels of individual examples in that
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particular group. This formulation allows to cope with a model drifting during online
updates from a self-annotated training samples.

The sliding window approach can also be used globally on the whole image, render-
ing the methods robust to large motion, scene cuts, an object disappearance and reap-
pearance in an arbitrary location (e.g. during full occlusion or leaving the field of view)
as a trade of for increased performance demand and background clutter. Santner et
al. [SLS+10] introduce the PROST tracker, where three tracking methods with different
rates of appearance adaptation are combined in a cascade to prevent drift due to incor-
rect model updates. The intermediate stage of the tracker pipeline (modest adaptability)
is a sliding window detector using a randomized forest [Bre01] as a classifier. The other
two trackers, a completely adaptive optical flow based tracker and non-adaptive NCC
tracker, are used to generate training examples for the detector and validate the detec-
tor model in a case of drift, respectively. The approach uses simple, hard-coded rules
how the final position is selected from the different outputs of the three approaches.
Kalal et al. [KMM12] proposed a TLD tracker which combines a sliding window with
randomized forest detector with a short-term tracker (median-flow tracker [KMM10b])
that generates so-called P-N events to a learn new object appearance. The output is de-
fined either by the detector or the tracker based on visual similarity to the learned object
model. Adaptation of the TLD was proposed by Dinh et al. [DVM11] in their “Context
tracker”. They use a TLD as a baseline tracker and build a higher logic on top of it, that
models an appearance of background that helps with the target recognition (supporters)
and background that distracts the tracker (distractors).

The sliding window approaches show promising results, but have two main disad-
vantages: (i) The sliding window technique is usually used only to cope with translation
and scale. The number of search windows increases extensively for more complex ob-
ject transformations (e.g. rotation), thus limiting the real-time applications if more com-
plex transformations are required. (ii) Every window needs to be evaluated and either
accepted or rejected by the classifier, so there is a demand for a fast classifier to keep
the high performance at the expense of discriminative power. To address this issues,
several methods are proposed which utilize a technique of feature matching that allows
more complex transformation and the computational complexity can be controlled by
the number of extracted features. Pernici et al. [PDB14] introduce the ALIEN tracker,
which extracts SIFT [Low04] features from a whole image and matches them to the
model (collection of foreground and background features) to established tentative cor-
respondences between features in the image and the model. Using the RANSAC [FB81]
procedure a transformation model is found to map features from the model to the new
location in the image. Moreover, a novel scheme for updating the feature model by
spatially oversampling the features and filtering of unstable features using a transitive
property of feature matches in consecutive frames was proposed. This alleviates the
drifting problem and allows for long-term tracking.

Lebeda et al. [LHMB16] introduced the LT-FLO tracker, where new edge-based
features are proposed. The tracker is divided to the short-term and long-term parts.
The short-term part works locally, extracting features in each frame assuming they are
close to the previous position, matching them to the model to established tentative cor-
respondences and using RANSAC to estimate a target transformation. The long-term
part of the method monitors the quality of the tracking and in a case of a failure (drop
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in confidence) it starts a re-detection process which reinitializes the short-term part to
previously stored ”correct locations” and the most confident one is used.

2.2.4 Tracking by Segmentation

Segmentation based trackers are characterized by the output in the form of the pixel-
wise labeling to object and background. The following three methods [GRB11, DG13,
FSW12] combine detection-based approach with a segmentation process which pro-
duces the pixel-wise output labeling and simultaneously provide a more precise (then
bounding box) feedback to update the detector.

Godec et al. [GRB11] proposed a HoughTrack which utilizes online learned Hough
Forest classifier, which is a combination of hough voting and randomized forests [Bre01],
and GrabCut [RKB04] segmentation. The Hough Forest is trained by example triplets
consisting of extracted features, label (foreground or background) and the displacement
vector to the target center (in the case of foreground label). During tracking, a classi-
fier is evaluated in the neighbourhood of the previous position and the voting map of
center displacement is used to find the most probable target position. After that, a back-
projection of votes that voted for the selected center is used to generate a sparse support
of points that are used as a seed to the GrabCut algorithm. The resulting segmentation
is outputted and is also used to update the Hough Forest. Similarly to HoughTrack, the
Duffner et al. [DG13] proposed a PixelTrack which also relies on hough voting coupled
with segmentation. PixelTrack quantizes the color space and learns for each quantiza-
tion the most probable center location which is used in hough voting during tracking.
The backprojection of pixels that contribute to the most frequent vote are used as a seed-
ing for the segmentation algorithm. The segmentation is formulated in a probabilistic
manner using recursive Bayesian formulation that incorporates a segmentation from the
previous frame and the current observation (the seeds from the hough voting). The final
segmentation is used to update the hough voting model.

Fan et al. [FSW12] introduced the Scribble tracker, which combines two main com-
ponents: (i) Tracking using short-term salient points, discriminative colors and long-
term bags-of-patches. (ii) Matting to segment the object. First, short-term salient points
(SIFT [Low04]) of the object and background (near the target) are matched, or, if they
do not have a good match, tracked by the KLT tracker. Then the rest of the pixels in
the area, denoted by the object salient points, are labeled as the object or a background
based on their likelihood to belong more likely to the object or background. The pixels
labeled as object and object salient points are used as scribbles for the matting seg-
mentation, which gives a final result. In a case of occlusion or object reappearance,
the long-term bags-of-patches are used to match learned local patches to the image and
find the most likely object pose w.r.t. local patches matching scores and their relative
position to each other. An online update is performed by resampling the salient points
and updating the discriminative color distributions and bags-of-patches from the area
of the precise segmentation from the matting step.

The tracking by segmentation may be also formulated as an estimation of the object
outer closed contour, therefore by defining the boundary of the object the segmentation
is estimated implicitly. When talking about contour tracking there are two compo-
nents that needs to be defined, i.e. a contour representation and a energy (cost) of a
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Figure 2.4: The basic correlation tracker pipeline. The tracker is initialized in the first
image (red bbox) and a correlation filter is learned by minimizing the difference be-
tween filter response and desired output (i.g. Gaussian peak) for the first image. Then,
for each consecutive image, features are extracted from a search region (denoted as the
whole visible image patch in the figure) and cosine window is applied. The transformed
features are element-wise multiplied in the Fourier domain with the learnt filter. The
result is converted back to real domain using inverse FFT to produce the response map.
The new position, i.e. max peak in response map, is used to update the filter. Image
courtesy of Chen et al. [CHT15].

given contour. A contour can be represented as a parametric curve (such as splines) or
implicitly by level sets [OS88]. There is number of ways how to define the energy func-
tional which defines the cost of the given contour. The most common functionals are
snakes [KWT88], geodesic active contour [CKS97], Mumford–Shah functional [MS89]
or region competition [ZLY95]. A variational approach is than used to derive equations
for the time evolution of the curves. Examples of tracking approaches using level sets
are Paragios et al. [PD00] and Shi et al. [SK05]. Cremers et al. [CTWS02, Cre06] use
a spline representation and introduced a prior probabilistic shape model into the en-
ergy functional. Rathi et al. [RVTY07] exploit particle filters inside a geometric active
contour framework for probabilistic curve evolution.

2.2.5 Correlation Tracking

The correlation trackers originates with the MOSSE tracker, proposed by the Bolme et
al. [BBDL10]. There had been several earlier works (UMACE [MVKC87], ASEF [BDB09])
that influenced the MOSSE tracker, but none of them had a significant impact on the
tracking community. The MOSSE tracker pose the tracking task as a finding of a filter
that when convolved with the image patch produces high response in the target location
and, ideally, zero response elsewhere. The tracker is initialized from one image where
a search region is chosen around a target which defines the size of the initial filter. The
initial filter is learned from the single patch extracted from the search window and the
filter is continuously updated during tracking. The learning of the filter is an optimiza-
tion task minimizing the sum of squared differences between the actual output of the
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correlation (i.e. correlation between example patch and a filter) and the desired output
of the correlation (modeled as compact 2D Gaussian shaped peak). Solving of this task
is possible in close form for a single pair (example, response). However, learning from
a single example leads to overfitting, because the minimization produces an exact filter
with zero error which does not generalize well and almost always leads to tracking fail-
ure in consecutive images; therefore, multiple examples are generated by affine warping
of the initial region to produce multiple filters that by taking their average render more
generalizing filter. Moreover, a regularizer term is added to prevent zero division in
cases of low amplitude in some frequencies (i.e. homogeneous areas) to robustify the
filter computation. The tracking is performed as a correlation of input image search
region, usually extracted from previous target position, and the filter in the Fourier do-
main representation using a Fast Fourier Transform (FFT) [PTVF92], where the matrix
multiplication and division become element-wise operations resulting in extremely fast
evaluation of search region subwindows. The output location is found as a peak value
of the filter correlation responses of the subwindows. A convex combination is used to
incorporate the new filter, learned from the current location and the previously obtained
filter to reflect the target appearance changes. The simplified pipeline of correlation
tracking methods (which is common for most method) is illustrated in Figure 2.4.

The MOSSE tracker has two main drawbacks: (i) lack of training examples (limited
to affine warps) and (ii) only linear combination of the filter and image can be used
(by the correlation), which does not allow to use more complex features or multiple
channels. Henriques et al. proposed the Circular Structure Kernel (CSK) [HCMB12]
tracker which addresses these drawbacks of the MOSSE tracker. Firstly, CSK tracker
introduced a circular matrix structure which clarifies the underlaying property of the
learning process in Fourier domain. This structure allows to represent all cyclical shifts
of the training example (i.e. all shifted subwindows of a search region) at the same
time using a matrix representation where each row is a training example represented
as a shifted original. Secondly, the circular structure of the data enables the use of the
kernel trick [SS02] in the formulation of the optimization task, i.e. use of non-linear
kernels in regularized least squares to obtain a filter. Furthermore, a theoretical con-
nection between the MOSSE tracker and newly proposed CSK tracker was shown via
a ridge regression framework. In [HCMB15], Henriques et al. extended the previous
CSK tracker and introduced a KCF tracker. It newly supports multi-channel features
(demonstrated on 32 channels HOG [DT05] features) and provides simpler and more
intuitive derivation of learning equations by a diagonal representation of training sam-
ples. Since the introduction of KCF, which achieved state-of-the-art performance with
processing speed multiple time faster then real-time, a large number of its modifica-
tion appeared. Most notably DSST [DHSKF14] and SAMF [LZ15] trackers which ex-
tended the KCF for scale estimation and incorporated other types of features. Danelljan
et al. [DHSKF15](SRDCF tracker) introduced a spatial regularization in the learning
process, which limits a boundary effect and penalizes filter coefficients depending on
their spatial location. This extension allows to use much larger search region; therefore
the tracker is able to track faster objects and is more discriminative to the background
since it is trained on a large set of negative examples.
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Figure 2.5: The architecture of the MDNet [NH15] tracker. There are three convolu-
tional layers with max pooling which reduce the dimensionality of the data (denoted by
y-z size of the blocks) and provide robustness to a spatial perturbation of a input data.
The convolution layers are followed by two fully connected layers and Domain-specific
(DS) layers which are trained for different object types and combined in evaluation
phase. During tracking, the network computes scores for randomly sampled bounding
boxes around the previous position. The bounding box with the highest score is se-
lected as the new location of the object and the remaining bounding boxes are classified
as background, denoted by yellow and blue color respectively. Image courtesy of Nam
et al. [NH15].

2.2.6 Deep Neural Networks
The next category of trackers is based on deep neural networks, especially convolution
neural networks (CNN). In the most recent years, there has been a surge of tracking
methods based on the deep neural networks and most of them achieves stellar perfor-
mance (disregarding the processing speed factor). The high performance of CNN based
trackers comes from very discriminative and context focused features that are computed
in the convolutional layers. A concrete example of direct performance gain by introduc-
ing features extracted from convolution layers is the SRDCF [DHSKF15] tracker in the
VOT2015 challenge [KML+15] with its ”deep” variation deepSRDCF which achieved
10% and 15% performance increase in expected average overlap and robustness respec-
tively.

One of the fully end-to-end trained CNN tracker was proposed by Nam et al., the
MDNet [NH15] tracker uses three convolution layers and two fully connected layers
followed by a newly proposed Domain-specific (DS) layers, where each DS layer is
trained for different domain (an object type) from large sets of tracking video sequences.
During tracking the pre-trained DS layers are combined with a new binary classification
layer trained online in the current sequence. The MDNet is evaluated in randomly
sampled locations around the previous location and the most confident location is used
for a bounding box regression that produces the final output. The architecture of the
MDNet is shown in Figure 2.5.

Ma et al. [MHYY15] proposed a hierarchical CNN features for tracking using the
VGG-Net [SZ14] pre-trained on ImageNet dataset [DDS+09]. They extract features
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from third, fourth and fifth convolutional layers and learn for each of them a linear
correlation filter. These filters are then used to generate response maps and coarse-
to-fine approach is used to find the location with the maximum response. Similarly,
Qi et al. [QZQ+16] learn ”weak” correlation trackers on features from different layers
of VGG-Net and then weighted sum of theirs outputs is the final position. An adap-
tive Hedge algorithm [CFH09] was introduced to update the weights of the correlation
trackers online.

Wang et al. [WOWL15] propose two CNNs, denoted as GNet and SNet, both with
the same architecture, i.e. two convolutional layers, on top of a pretrained VGG-Net
convolutional layers. The GNet is general network and it captures the category in-
formation of the object. The SNet is trained to discriminate between the object and
background. Both networks produce a foreground heat map from which an object pose
is estimated by locating the maximum peak.

Hong et al. [HYKH15] use pre-trained CNN [GDDM14] in the forward direction
for features extraction from sampled position. Each sample is classified by an online
trained SVM classifier to label the sample as either object or background. For positively
labeled samples the relevant object features, which are identified by the SVM (i.e. pos-
itive SVM model weighs), are back-projected through the pre-trained CNN to obtain
a saliency maps. The target-specific saliency map is obtained by sequential Bayesian
filtering using the saliency maps as observations and is convolved with online learned
generative appearance model to generate a dense likelihood map, where the peak denote
the target new position.
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Chapter 3

Visual Object Tracking Evaluation
Methodology

Evaluation and comparison of different tracking approaches is important task in visual
object tracking. Every year, tens to hundreds of novel tracking approaches are pro-
posed and the necessity to objectively compare these methods becomes an essential
problem. In many cases, the results of published methods cannot be directly compared
for two reasons i) each method may have used different set of testing video sequences
and ii) different evaluation metric was employed. A unified framework for evaluation
and comparison of tracking methods is imperative to alleviate these issues and, conse-
quently, continuous advancement of the state-of-the-art.

This section describes the latest core components of the Visual Object Tracking
challenge (VOT) evaluation methodology [KPL+13, KPL+14, KML+15, KML+16].
The core components consist of the performance measures, selection and annotation
of the data and the experiment setup. The VOT was formed in 2013 as an attempt to
unify the evaluation of the tracking method and to help the advance of the state-of-
the-art by annually organizing the visual object tracking challenge as a workshop on a
major conference, where the novel tracking methods are compared to each other and
the previous state-of-the-art methods. For all resources related to the VOT (datasets,
publication, presentations, evaluation toolkit) and information about future workshops
and tracking challenges please visit the official website1.

The rest of the chapter describes the VOT 2015 methodology (the theoretical and
experimental validation of the proposed aspects of the performance measure) and on
the automatic sequence selection. Please note that the methodology is still evolving
by incorporating comments from the CV community, therefore it may differ, in some
aspects, from previous/future VOT methodology.

3.1 VOT Methodology2

Based on the recent analysis of widely-used performance measures [ČKL14, ČLK15]
two weakly-correlated and easily interpretable measures were chosen: (i) accuracy and

1http://www.votchallenge.net/
2Figures in this subsection are courtesy of Matej Kristan.
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(ii) robustness. The accuracy at a time-step t is measured as an overlap with the tracker
predicted bounding box and the ground truth using the standard definition (described
in Section 2.1). The robustness is the number of times the tracker failed, i.e., drifted
from the target (= zero overlap with ground truth), and had to be reinitialized. A re-
initialization is triggered when the overlap drops to zero.

The reinitialization technique has several advantages, i.e. (i) fully use of all se-
quence frames, allowed by reinitializing the tracker after failure (ii) provides a theoret-
ically more robust estimation of accuracy (shown in Section 3.3.1 and experimentally
validated in Section 3.4.5) (iii) reinitialization-based measures can be used. One of the
drawbacks is an introduction of bias into the performance estimation caused by the non-
random character of the frames where the tracker is re-initialized. The non-randomness
comes from the fact that trackers usually fail during non-standard situations such as
illumination changes, an abrupt motion or occlusion and re-initialization of the tracker
during such condition will likely result in consequent failures. Therefore, to address
this bias, the tracker is re-initialized Nskip = 5 frames after the failure. This value
was set experimentally from a study of this parameter described in the Section 3.4.3.
A similar issue occurs in the accuracy measure, where the measured values right after
a re-initialization are artificially higher than during a regular course of tracking. The
accuracy stabilizes after a few frames, called the burn-in period. Frames within the
burn-in period are labeled as invalid and are not used in the performance estimation.
The burn-in period is set to Nburnin = 10 frames and the effect of this parameter is
studied in Section 3.4.4.

The VOT2015 runs a single type of experiment, where the tracker is initialized in
the first frame and then is let run using the reinitialization principle. To accommodate
for a stochastic trackers each sequence is tracked 15 times to obtain a better statistics
on performance measures. The per-frame accuracy is computed as an average over
these runs. Averaging per-frame accuracies gives the per-sequence accuracy, while the
per-sequence robustness is computed by averaging failure rates over different runs. To
provide a more in-depth result analysis, the performance measures are also computed
w.r.t. per-frame attributes, i.e. performance for a given attribute is estimated only from
the frames where the attribute is present. The benefits of the per-frame attribute analysis
are discussed in Section 3.3.2 and experimentally validated in Section 3.4.6.

In the VOT, the trackers are compared in two ways: (i) by raw values of per-
formance measures and (ii) with each other using a ranking-based methodology akin
to [EEVG+14, GJP+12]. The ranking-based methodology was extended to introduce a
concept of equally-ranked trackers. The tracker ranking goes as follows; for the compu-
tation of trackers ranks two statistical techniques are adopted to made the ranking more
stable and robust. Firstly, the individual rank for each tracker is computed using the raw
values and greater (or less) operator. A statistical test of the performance differences is
employed to modify the ranks to address the subsets of trackers that might be perform-
ing equally well and; therefore, they should have the same rank. Since the VOT2015,
the minimal rank is used for the subset of equally performing trackers. The measured
accuracy is available per frame for each tracker; therefore, a statistical test is applied to
determine if the difference in accuracies for each frame is statistically significant. From
the preliminary tests, the accuracies do not always follow a normal distribution, hence
the Wilcoxon Signed-Rank test as in [Dem06] is applied that tests a null hypothesis
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Figure 3.1: The figure illustrates the computation of the expected average overlap from
sequences of length Ns.

that differences come from a symmetric distribution with a zero median (see [Nav11]
for further details). For the robustness measure, one measure per-sequence per-run
(for stochastic trackers) is obtained and they cannot be paired, therefore the Wilcoxon
Rank-Sum (also known as Mann-Whitney U-test) [Dem06] is used instead to test the
difference in the average number of failures. This is a two-sided rank test which tests
the null hypothesis that the number of failures of two independent trackers follows the
same distribution (see [Nav11] for further details). Furthermore, the practical differ-
ence test (introduced in [KPL+14]) is used to take into account a noisy ground truth
annotation and a bias caused by different annotators. This practical test studies if the
difference in trackers performance is in a range of the annotation noise. The level of the
annotation ambiguity under which the tracker’s performance difference is considered
negligible is called the practical difference threshold. The estimation of these thresh-
olds for the VOT2015 is described in Section 3.4.2. If both of these tests are positive,
then the pair of trackers is considered equally performing.

One of the novelty in the 2015 challenge was introduced to the final ranking of the
trackers. Instead of averaging the tracker ranks for robustness and accuracy, which lack
an intuitive interpretability, a novel single value measures with more clear interpreta-
tion was proposed. The measure can be described as ”expected average overlap on Ns

frames long sequence” Φ̂Ns and is seamlessly computed from the measured values, see
Figure 3.1. Normally, to calculate the Φ̂Ns a large number of sequences of the same
(Ns) length would be required, however, this can be efficiently approximated using the
VOT reinitialization methodology (illustrated in Figure 3.2). Each tracklet (tracking re-
sults from initialization to detected failure) approximates tracking results on sequence
of length Ns such that if the tracklet is longer than Ns frames, then the first Ns frames
are used, otherwise, the tracklet is padded with zero overlap after failure. Using this
approach, lot of tracklets are collected for different Ns and Φ̂Ns is computed more ro-
bustly.

For the final ranking Φ̂ is an average of Φ̂Ns on interval (Nlo, Nhi). The interval is
inferred from the data and depends on the sequences length distribution of the dataset.
The Φ̂Ns is visualized by the expected average overlap curve, see Figure 3.3 where this
curve is illustrated together with the estimation of the interval (Nlo, Nhi) from the data
using a kernel density estimation method.

Additionally to the presented performance measures, the VOT deems the speed as an
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Figure 3.2: The figure illustrates the approximated computation of the expected average
overlap using the VOT reinitialization methodology for sequences of length Ns.
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Figure 3.3: The figure (a) illustrates the expected average overlap curve Φ̂Ns for dif-
ferent values of Ns and respective ranking (right subplot) for interval (Nlo, Nhi). The
figure (b) shows the distribution of the sequence length of the VOT2015 dataset and the
estimated interval (Nlo, Nhi).

important property of a tracking algorithm, therefore, it is also measured and reported
by the evaluation toolkit. To reduce a bias caused by different hardware parameters of
evaluating machines the speed is reported in a novel equivalent filter operations (EFO)
speed unit that was introduced in the VOT2014 [KPL+14]. This unit normalizes the
speed in terms of predefined filtering operation that are automatically computed on
each machine prior a tracker evaluation.

Results in the VOT challenges are visualized by the accuracy-robustness (AR) plots
proposed by [ČKL14], where each tracker is represented as a point in the 2D space and
by the proposed expected average overlap curve. These plots are used for a raw-valued
accuracy and robustness and also for trackers with respect to their accuracy, robustness
and the final Φ̂ ranks. The raw values of robustness are converted to the (0,1) range
representing the probability of tracker failure after S frames. The parameter S does
not change the ordering of the trackers but only affects the scaling (stretching of a
point in robustness axis). The results for the VOT2015 challenge, using the described
methodology, are shown in Section 3.5.

3.2 Automatic Dataset Construction

The VOT2013 [KPL+13] and VOT2014 [KPL+14] introduced a semi-automatic se-
quence selection methodology to construct a dataset rich in visual attributes but small
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enough to keep the time for performing experiments reasonably low. In the VOT2015,
the methodology is extended such that the sequence selection is fully automated and
that the selection process focuses on sequences that are likely challenging to track.

The dataset was prepared as follows. The initial pool of sequences was created
by combining the sequences from existing datasets OTB [WLY13] (51 sequences),
ALOV [SCC+13b] (315 sequences), PTR [VNM13] and over 30 additional sequences
from other sources summing to a set of 443 sequences. After a removal of duplicate se-
quences, grayscale sequences and sequences that contain objects with area smaller than
400 pixels, we obtained 356 sequences. The new automatic sequence selection pro-
tocol requires approximate annotation of targets in all sequences by bounding boxes.
For most sequences, the annotations already existed and we annotated the targets with
axis-aligned bounding boxes for the sequences with missing annotations. Next, the
sequences were automatically clustered according to their similarity in terms of the
following globally calculated sequence visual attributes:

1. Illumination change is defined as the average of the absolute differences between
the object intensity in the first and remaining frames.

2. Object size change is the sum of averaged local size changes, where the local size
change at frame t is defined as the average of absolute differences between the
bounding box area in frame t and past fifteen frame.

3. Object motion is the average of absolute differences between ground truth center
positions in consecutive frames.

4. Clutter is the average of per-frame distances between two color histograms: one
extracted from within the ground truth bounding box and one from an enlarged
area (by factor 1.5) outside of the bounding box.

5. Camera motion is defined as the average of translation vector lengths estimated
by key-point-based RANSAC between consecutive frames.

6. Blur was measured by the Bayes-spectral-entropy camera focus measure [KPPK05].

7. Aspect-ratio change is defined as the average of per-frame aspect ratio changes.
The aspect ratio change at frame t is calculated as the ratio of the bounding box
width and height in frame t divided by the ratio of the bounding box width and
height in the first frame.

8. Object color change defined as the change of the average hue value inside the
bounding box.

9. Deformation is calculated by dividing the images into 8 × 8 grid of cells and
computing the sum of squared differences of averaged pixel intensity over the
cells in current and first frame.

10. Scene complexity represents the level of randomness (entropy) in the frames and
it was calculated as e =

∑255
i=0 bi log bi, where bi is the number of pixels with

value equal to i.
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11. Absolute motion is the median of the absolute motion difference of the bounding
box center points of the first frame and current one.

Note that the first ten attributes are taken from the VOT2014 [KPL+14, KML+16],
with the attributes object size and object motion redefined to make their calculation more
robust. The eleventh attribute (absolute motion) was newly introduced in [KML+15].

To reduce the influence of the varied scales of the attributes a binarization procedure
was applied. A k-means clustering with k = 2 was applied to all values of a given
attribute, and thus each value was assigned a value, either zero or one. In this way
each sequence was encoded as an 11D binary feature vector and the sequences were
clustered by the Affinity propagation (AP) [FD07] using the Hamming distance. The
only parameter in AP is the exemplar prior value p, which was set according to the rule-
of-thumb proposed in [FD07]. In particular, we have set p = 1.25αsim, where αsim is the
average of the similarity values among all pairs of sequences. This resulted in K = 28
sequence clusters, where each cluster k contained a different number of sequences Nk.
The clustering stability was verified by varying the scaling value in the range 1.2 to 1.3.
The number of clusters varied in the range of ±3 clusters, indicating a stable clustering
at the chosen parameter value.

The goal of the sequence selection is to obtain a dataset of size M in which the
following five visual attributes specified in VOT2014 are sufficiently well represented:
(i) occlusion, (ii) illumination change, (iii) motion change, (iv) size change, (v) camera
motion. The binary attributes were concatenated to form a feature vector fi for each
sequence i. The global presence of four of these attributes, except occlusion, is indi-
cated by the automatically calculated binarized values that were used for clustering.
All sequences were manually inspected and occlusion was indicated if the target was at
least partially occluded at any frame in the sequence. To estimate the sequence track-
ing difficulty, three well performing but conceptually different trackers (FoT [VM14],
ASMS [VNM13], KCF [HCMB15]) were evaluated using the VOT2014 methodology
on the approximately annotated bounding boxes. In particular, the raw accuracy (aver-
age overlap) and raw robustness (number of failures per sequence) were computed for
each tracker on each sequence and quantized into ten levels (i.e., into the interval [0,9]).
The quantized robustness was calculated by clipping the raw robustness at nine failures
and the quantized accuracy was computed by 9 − b10Φc, where Φ is the VOT accu-
racy. The final tracking difficulty measure was obtained as the average of the quantized
accuracy and robustness.

With the n = 5 global attributes and tracking difficulty estimated for each sequence,
the automatic sequence selection algorithm proceeded as follows. First, the most diffi-
cult sequence from each cluster is selected as an initial pool of sequences and a max-
imum number of samples {Sk}Kk=1 for each cluster k is calculated. From the selected
pool of sequences, the weighted balance vector b0 is computed and normalized after-
ward. The balance vector controls the attribute representation inside the pool of selected
sequences. We use weights to account for the unbalance distribution of the attributes in
the dataset and compute them as follows w = Ns/

∑
i fi, where Ns denotes the number

of sequences. The vector w have lower values for to the attributes that are most com-
mon, therefore would always over-represented and the sequence without this attribute
would be selected most of the time (e.g. object motion attribute). After initialization,
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the algorithm iterates until the number of selected sequences reaches the desired num-
ber M (M = 60 in VOT2015). In each iteration, the algorithm computes the attributes
that are least represented, aw, using a small hysteresis so that multiple attributes can
be chosen. Then, the Hamming distance between the desired attributes aw and all se-
quences is computed, excluding the sequences already selected and the sequences that
belong to a cluster, which has already Sk sequences selected in the pool. From the set
of most attribute-wise similar sequences, the most difficult one is selected and added to
the pool. In the end, the balance vector is recomputed and the algorithm iterates again.
The sequence selection algorithm is summarized in Algorithm 1.

Algorithm 1: Sequence sampling algorithm
Input : Ns, M , K, {Nk}Kk=1, {fi}Ns

i=1, w
Output: ids
Initialize, t = 0

{Sk}Kk=1, Sk = bNkM
Ns
c

select the most difficult sequence from each cluster ids0 = {id1, . . . , idK}
b0 = w

∑
i∈ids fi, b0 = b0/|b0|

Iterate, t = t+ 1
while |ids| < M do

aw= (h < min (h) + 0.1
n

), where h = bt−1

max (bt−1)

{id1, . . . } = argmini dist(fi, aw)

s.t. if i ∈ cluster k then |cluster k ∩ idst−1| < Sk
select the most difficult sequence id∗ ∈ {id1, . . . }
idst = idst−1 ∪ {id∗}
bt = w

∑
i∈ids fi, bt = bt/|bt|

end

As in the VOT2014, we have manually or semi-automatically labeled each frame
in each selected sequence with five visual attributes: (i) occlusion, (ii) illumination
change, (iii) motion change, (iv) size change, (v) camera motion. In case a particular
frame did not correspond to any of the five attributes, we denoted it as (vi) unassigned.
To ensure the annotation quality, all frames were annotated by an expert and then veri-
fied by another expert. Note that these labels are not mutually exclusive. For example,
most frames in the dataset contain a camera motion.

The relevant objects in all sequences were manually re-annotated by rotated bound-
ing boxes. The annotation guidelines were predefined and distributed among the anno-
tators. The bounding boxes were placed such that they approximated the target well,
with a large percentage of pixels within the bounding box (at least > 60%) belonging to
the target. Each annotation was verified by two experts and corrected if necessary. The
resulting annotations were then processed by approximating the rotated bounding boxes
by axis-aligned bounding boxes if the ratio between the shortest and largest box edge
was higher than 0.95 since the rotation is ambiguous for approximately round objects.
The processed bounding boxes were again verified by an expert. The preview of the se-
lected sequences is shown in the Fig. 3.4. The automatic sequence attribute annotation,
clustering and the final dataset selection is a part of the VOT toolkit and the source code
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Figure 3.4: Preview of the automatically selected sequences for the VOT2015 dataset.
Green box outlines the objects of interest.

is available at https://github.com/votchallenge/vot-toolkit/.

3.3 Theoretical Background of the Methodology3

In this section, the key parts of the VOT methodology are theoretically described and
the benefits of the proposed evaluation methodology compared to the existing ones are
discussed. The theory is experimentally validated in the next section. There are two
main differences in the evaluation methodology between the VOT and the other two
main benchmarks [WLY13, SCC+13b]; the VOT employs an automatic reinitialization
technique in case a tracker failure is detected and, secondly, the VOT use a per-frame
attribute annotations. The following two major differences are theoretically defined and
their effect is discussed in the following sub-sections.

3This section was mainly written by Matej Kristan in the collaborative work [KML+16] and was
included here to make the thesis self-contained and to emphasized the advantages of the VOT design
over standardly used techniques.
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3.3.1 The importance of re-initialization
To establish some theoretical results on performance evaluation with or without apply-
ing re-initializations, the following thought experiment is considered. Assume a tracker
is tested on a set of N sequences, each Ns frames long. A sequence j contains a critical
point at the frame αjNs, where a tracker fails with probability p, i.e., it drifts and re-
mains off the target for the remaining part of the sequence. During a successful period
of tracking, the per-frame overlaps are sampled from a distribution with mean µA and
variance σ2

A. After the failure, the overlaps fall to zero, i.e., they are sampled from a dis-
tribution with µb = 0 and σ2

B = 0. A critical point can occur anywhere in the sequence
with equal probability, meaning that these points are distributed uniformly along the
sequence, i.e., αj ∼ U(0, 1). A tracker is run on each sequence and a set of N per-
sequence average overlaps {Mj}j=1:N is calculated. The final performance is reported
as the average over the sequences, i.e., an overall average overlap M = 1

N

∑
j=1:N Mj .

The aim of the estimator (evaluation methodology) is to recover the hidden average
performance µA. In the following we will study the expected value and the variance of
the output M depending on whether the tracker is re-initialized at failure (WIR) or the
failure is ignored (NOR).

The NOR-based methodologies ([WLY13, SCC+13b]) do not detect the failures
and the overlaps after the failure affect the estimate of the actual overlap µA. Alter-
natively, the WIR-based methodology (our approach) detects a failure, skips ∆ frames
and re-initializes the tracker. It can be shown that the expected value 〈MNOR〉 and the
variance var(MNOR) of the overall overlap MNOR estimated without re-initialization
on the theoretical tracking experiment are

〈MNOR〉 = µA(1− p

2
), (3.1)

var(MNOR) =
(2− p)σ2

A

2NNs

+
p(4− 3p)µ2

A

12N
, (3.2)

while the expected values and variance for the overall overlap estimated by WIR, i.e.,
MWIR, are

〈MWIR〉 = µA, (3.3)

var(MWIR) = σ2
A

Ns −∆(1− p)
NNs(Ns −∆)

≤ var(MNOR). (3.4)

Please see the outline of derivation in appendix of [KML+16].
The following observations can be deduced from Eqs. (3.1-3.4). The NOR estimator

is biased increasingly with the probability of failing at a critical point. If critical points
always cause a failure, i.e., p = 1, then the overall average estimated by the NOR is
half the true overlap. On the other hand, the WIR estimator is unbiased, recovers the
true hidden overlap, and the mean does not depend on the critical points. The variance
of the NOR estimator depends both on the variance of overlaps during successful track
as well as the hidden overlap µA. This leads to a large variance for trackers that track at
high overlap and fail at critical points. On the other hand, the variance of the WIR does
not show this effect and is always lower than for NOR, i.e., var(MWIR) ≤ var(MNOR).

The asymptotic properties of the estimators are visualized in Figure 3.5 w.r.t. the
number of test sequences N for parameters µA = 0.63, σA = 0.4, Ns = 150, p = 0.5,
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Figure 3.5: Effects of re-initialization in performance estimators. The expected values
and standard deviations of the estimators are shown in solid and dashed lines, respec-
tively.

∆ = 15. Note that the WIR estimator is indeed asymptotically unbiased, while the NOR
is biased toward a lower overlap values. Furthermore, the variance of the WIR is signif-
icantly smaller than that of NOR and decreases faster than for WIR, which is primarily
due to the second term in var(MNOR) (3.1), i.e., lack of re-initializations in NOR. A
practical implication is that the methodologies like [WLY13, SCC+13b] require much
more sequences than our methodology to produce a similarly small variance of the esti-
mate and their estimate will always be much more biased than ours when failures occur.
Note that our theoretical model assumes sequences of equal length. If this constrained
was further relaxed such that some sequences were allowed to be significantly longer
than the others, it would not affect the WIR estimator, but would substantially increase
the variance of the NOR even further.

3.3.2 The importance of per-frame annotation
To study the impact of visual property annotation strategies, we will assume running a
tracker on a dataset in which N sequences contain a particular attribute, e.g., an illu-
mination change. The aim is to estimate tracking performance on this visual attribute.
A tracker is thus run on each of N sequences, recovering the set of per-sequence over-
laps {Mj}j=1:N , and the average of these is reported as an overall performance, i.e.,
M = 1

N

∑
j=1:N Mj . For ease of exposition assume that each sequence contains NA

frames with illumination change and the remainingNB = ηNA frames contain the other
attributes. Thus the per-frame overlaps during the NA frames can be described as sam-
ples from a distribution with mean µA and variance σ2

A, while the per-frame overlaps
in the remaining NB frames are governed by a distribution with mean µB and variance
σ2
B. For clarity of the analysis, we will assume that there are no critical points in any

sequence, i.e., a tracker never fails during tracking, and that the variances σ2
A and σ2

B
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are equal.
A global visual property annotation strategy (GLA) (e.g., [WLY13, SCC+13b]) cal-

culates overall per-visual property performanceMGLA using all the frames in sequences
that contain at least one frame with the considered visual property. Alternatively, the
per-frame annotation strategy (PFA) (our approach) considers only frames annotated
with a particular visual attribute to estimate the performance MPFA. Note, however,
that some frames may be incorrectly annotated. From the perspective of bias in state
estimation, the most critical frames are those that are incorrectly annotated as the con-
sidered attribute. Let’s assume, that in each sequence, a set of βNA are added as false
annotations to the correctly annotated NA frames. With these definitions, it is easy to
show that the mean and variance of the MGLA estimator are

〈MGLA〉 =
1

1 + η
µA +

η

1 + η
µB, (3.5)

var(MGLA) =
1

NNA(1 + η)
σ2
A, (3.6)

while the mean and variance for the and MPFA estimator are,

〈MPFA〉 =
1

1 + β
µA +

β

1 + β
µB, (3.7)

var(MPFA) =
1

NNA(1 + β)
σ2
A. (3.8)

According to equations (3.5,3.8) both estimators are biased, but the bias in MGLA

is much greater than the bias in MPFA. For example, assuming sequence lengths NS =
150, with NA = 50 properly labelled frames and five frames per sequence mislabelled,
results in η = 2 and β = 0.1. This means that MGLA is biased with 0.67µB, while the
bias ofMPFA is only 0.09µB. In fact, since typical sequences contain only small subsets
of frames with particular visual attribute, (3.5) shows that the MGLA estimator reflects
performance that is dominated by the other visual attributes, thus significantly skewing
the per-visual attribute performance evaluation. Note that the variance of the MGLA is
lower than that of MPFA by a constant 1+β

1+η
since it applies more frames. Nevertheless,

the variances of both estimators decrease linearly with factor NNA. A practical im-
plication of these results is that per-frame annotation of moderately-sized dataset (our
approach), even with a reasonable number of mislabelled frames, provides a much bet-
ter estimate of true per-visual attribute performance than a per-sequence labeled large
dataset (methodologies used in [WLY13, SCC+13b]).

3.4 Experimental Validation of the Methodology4

The VOT methodology introduced several techniques and parameters that effect the
performance measures. In this section, these techniques are experimentally validated,
the impacts of individual parameter choices are studied and reasoning for particular
choices is provided.

4The results of individual experiments are taken from [KML+16], where the author of this thesis
was responsible for conducting most of the experiments. The summaries were written mainly by Matej
Kristan.
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3.4.1 Influence of difference tests
The proposed methodology applies tests of performance equivalence by testing statis-
tical and practical differences in tracker performance. In the absence of these tests,
trackers that perform slightly differently in average values of performance measures
would be assigned different ranks even tough the difference in performance might not
be statistically significant or below the annotation noise level (practical difference). To
quantify the variations in ranks, we sampled 50 random subsets of 15 sequences from
VOT2014 dataset, ranked DSST, KCF, SAMF, CT, FRT and Struck on all subsets and
computed the average of the rank variances over all trackers. Table 3.1 reports the rank
variations for sequence-pooled and attribute-normalized ranking. The difference tests
consistently reduce the variance in both setups.

accuracy robustness
Seq. pool. Att. norm. Seq. pool. Att. norm.
T N T N T N T N

var 0.1 0.11 0.26 0.31 0.07 0.1 0.09 0.34

Table 3.1: Rank variance (var) with (T) and without (N) difference tests for accuracy
and robustness computed for sequence-pooled (Seq. pool.) and attribute-normalized
(Att. norm.) setting.

3.4.2 Estimation of practical difference thresholds

The per sequence practical difference thresholds [KPL+14] were estimated using in-
dependent (four) annotators each annotating the same selected (five) frames in each
sequence by the axis-aligned bounding boxes. This annotation repeats three times. By
computing overlaps among all bounding boxes per frame, a set of 3300 samples of dif-
ferences was obtained per sequence and used to calculate the practical difference thresh-
olds. Figure 3.6 shows boxplots of difference distributions w.r.t. sequences alongside
with examples of the annotations.

3.4.3 Influence of the re-initialization frame skipping
The effect of the Nskip values was quantified by re-running several of the state-of-the-
art trackers using the VOT2014 dataset. The number of failures and robustness ranks
w.r.t. the skipping values Nskip are shown in Table 3.2. The number of failures most
significantly changes between one to three skipped frames and remains stable with in-
creasing Nskip. The relative changes are consistent across trackers. This is confirmed
by the ranking, which remains stable.

3.4.4 Estimation of the burn-in period
A study was designed to estimate the burn-in period. Seven trackers were run with
re-initialization on the VOT2013 dataset. After each re-initialization, we recorded the
per-frame overlaps with the ground truth (an overlap sequence). Using this protocol we
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Figure 3.6: Box plots of per sequence ground truth practical differences and examples
of annotation variation.

Nskip R DSST KCF SAMF CT FRT Struck
1 raw 1.32 2.04 1.44 1.93 3.76 3.28
3 raw 1.12 1.84 1.56 1.90 3.68 2.76
5 raw 1.16 1.44 1.36 1.57 3.36 2.72
7 raw 1.16 1.56 1.36 1.55 3.48 2.36
9 raw 1.00 1.52 1.16 1.54 2.96 2.28
1 rank 2.58 3.32 2.74 3.40 5.06 3.86
3 rank 2.44 3.18 3.02 3.28 5.26 3.82
5 rank 2.64 3.02 2.94 3.34 5.16 3.90
7 rank 2.70 3.12 2.86 3.20 5.38 3.74
9 rank 2.60 3.32 2.82 3.36 4.94 3.96

Table 3.2: Robustness raw and rank values for different values of frames skipped Nskip.

obtained 3249 overlap sequences, which were averaged into a single average overlap
sequence shown in Figure 3.7. The rate of temporal change in the overlap is character-
ized by the derivative of this sequence (also shown in Figure 3.7). It is apparent that the
rate of overlap change stabilizes at ten frames after re-initialization. The burn-in period
was therefore set to Nburnin = 10 frames in the VOT methodology.

To verify the selected burn-in period a quantitative analysis was performed on the
VOT2014 dataset using several state-of-the-art trackers. Table 3.3 shows the average
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Figure 3.7: Overlaps after re-initialization averaged over a large number of trackers
and many re-initializations (top) and the derivative of this graph with respect to time
(bottom). The derivative becomes negligible after 10 frames.

accuracy for different values of the burn-in period. The average accuracy is, as expected,
slightly reduced when excluding the frames from the burn-in period. The extent of the
drop in accuracy is larger for trackers that fail more often.

Nburnin DSST KCF SAMF CT FRT Struck Average
0 0.6293 0.6386 0.6213 0.4273 0.4871 0.5167 0.5534
2 0.6285 0.6378 0.6205 0.4248 0.4838 0.5143 0.5516
4 0.6273 0.6369 0.6195 0.4209 0.4786 0.5103 0.5489
6 0.6264 0.6370 0.6191 0.4183 0.4749 0.5071 0.5471
8 0.6258 0.6376 0.6192 0.4165 0.4726 0.5047 0.5461
10 0.6256 0.6385 0.6198 0.4149 0.4711 0.5029 0.5455

Table 3.3: Influence of different burn-in values on raw accuracy.

3.4.5 Effects of re-initialization
The theoretical comparison of estimators (Section 3.3.1) that apply re-initialization,
(MWIR), and those that do not, MNOR, was evaluated experimentally. Each tracker
was run on all sequences in the VOT2014 dataset once with re-initializations and once
without. A set of K sequences was randomly sampled and the average overlap was
computed on this set for each estimator. The process was repeated thousand times
for K < 24 to estimate the mean and variance of the average overlap. For K = 24
there are only 25 possible different combinations of sequences; therefore the mean and
variance were computed only on these. Table 3.4 shows results for varying K. Due
to sampling with replacement, sequences were repeated across the sets, which means
that the variance was underestimated, especially for K = 24. The actual variances of
the average accuracy are expected to be higher. Nevertheless, the relative trends are as
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K R DSST KCF SAMF CT FRT Struck

5
N 0.49(.14) 0.49(.15) 0.50(.14) 0.23(.09) 0.24(.09) 0.35(.11)
Y 0.63(.09) 0.64(.08) 0.63(.08) 0.43(.07) 0.49(.06) 0.52(.08)

10
N 0.50(.10) 0.49(.10) 0.51(.10) 0.24(.06) 0.24(.06) 0.36(.08)
Y 0.63(.06) 0.64(.06) 0.63(.06) 0.43(.05) 0.48(.04) 0.52(.06)

15
N 0.50(.08) 0.49(.08) 0.51(.08) 0.24(.05) 0.25(.05) 0.36(.06)
Y 0.63(.05) 0.64(.05) 0.63(.05) 0.43(.04) 0.49(.04) 0.52(.05)

20
N 0.50(.07) 0.50(.07) 0.52(.07) 0.24(.04) 0.24(.04) 0.36(.06)
Y 0.63(.04) 0.64(.04) 0.63(.04) 0.43(.03) 0.49(.03) 0.52(.04)

24
N 0.50(.06) 0.50(.07) 0.52(.06) 0.24(.04) 0.24(.04) 0.36(.05)
Y 0.63(.04) 0.64(.04) 0.63(.04) 0.43(.03) 0.49(.03) 0.52(.04)

Table 3.4: Performance of estimators with re-initialization, Y(WIR), and without re-
initialization, N(NOR) indicated in the column denoted by R. Average overlap is shown
for each tracker and the standard deviation is shown in brackets.

predicted by the theoretical model. The means of MNOR are consistently lower than
for MWIR, which is especially evident for trackers that frequently fail, e.g., FRT and
CT. Moreover, the variance of MNOR is consistently higher than for MWIR across all
trackers. The Wilcoxon paired tests showed that both types of differences are not equal
with statistical significance p < 0.01.

3.4.6 Importance of the per-frame annotation

The properties of estimators that apply a per-frame visual attribute annotation, MGLA,
and the estimators that apply only a per-sequence annotation, MPFA, were estimated us-
ing a similar experiment as in the previous section. For a fair comparison, re-initialization
was utilized in all experiments. The results for K = 24 sequences are visualized in
Figure 3.8 and confirm the predictions from our theoretical model. The variance of per-
attribute MGLA is generally slightly smaller than MPFA since MGLA uses more frames
in estimation, of which many might not contain the attribute in question, making the
MGLA estimator strongly biased toward the global mean. This bias is also reflected
in the dispersion of per-attribute values around their global mean, which is greater for
MPFA than for MGLA. This means that MGLA is much weaker at making predictions
regarding the per-visual attribute performance evaluation. For example, consider the
trackers DSST, KCF and SAMF. These are highly similar trackers by design, which is
reflected in the trends of per-attribute values in Figure 3.8. Nevertheless, theMGLA can-
not distinguish performance with respect to attributes motion change, scale change and
occlusion, while the performance difference is clear from MPFA. A Wilcoxon paired
test on pairs with varying K = 15 : 24 showed that the variance of MPFA is lower
than that of MGLA at level p < 0.01 and an F-test on dispersion showed a difference at
significance p < 0.05.
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Figure 3.8: The mean and variance of estimators for K = 24 sequences that apply
per-frame (green) and per-sequence (red) visual attribute annotation. The dashed lines
show average performance on the dataset. The abbreviations CM, IC, OC, SC, and MC
are used for camera motion, illumination change, occlusion, scale change and motion
change, respectively.

3.5 Results of VOT2015 Challenge5

This section presents the latest results from the VOT 2015 Challenge that were pre-
sented in the workshop on ICCV 2015 conference. In this challenge, a 62 tracking
approaches were evaluated, from which 41 were submitted by authors and 21 baseline
methods by the VOT committee. The tracking methods represented a diverse set of dif-
ferent approaches such as a deep convolutional neural network (MDNet, DeepSRDCF,
SO-DLT), object proposal based (EBT, KCFDP,SPST), part-based (LDP, TRIC-track,
G2T, AOG-track, LGT, HoughTrack, MatFlow, CMT, LT-FLO, THANG, FoT, BDF,
FCT, FragTrack), generative model-based (ASMS, SumShift, S3Tracker, PKLTF, DFT,

5The result plots (AR, an expected average overlap and EFO speed) were created by Luka Čehovin
for [KML+15].
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IVT, CT, L1APG, DAT), discriminative model-based (OAB, MIL, MCT, CMIL), dis-
criminative regression-based (Struck, RobStruck, SRAT, TGPR, HRP, ACT, KCFv2,
DSST, SAMF, SRDCF, PTZ-MOSSE, NSAMF, RAJSSC, OACF, sKCF, LOFT-lite,
STC, MKCF+, MTSA-KCF, MvCFT) and combination of multiple trackers (HMM-
TxD, MEEM, SCEBT, MUSTer, SME). Please note that some trackers have the same
name as their previous version (that have lower performance) such as Struck, which
here represents an improved version of the [HST11] method. For more detailed tracker
descriptions see [KML+15]. Each tracker had assigned a legend mark that is used in all
graphs in this section and is illustrated in Figure 3.9.

Figure 3.9: Legend (mark symbol with name) of the trackers evaluated in the VOT2015
Challenge. For further details on the method, readers are referred to [KML+15].

The results of the VOT are summarized in sequence pooled and attribute normalized
AR rank and AR raw plots in Figure 3.10. The sequence pooling ranking concatenates
the result from all sequences and then computes the single ranking, whereas the attribute
normalization ranking ranks the trackers for each attribute separately and then averaging
the individual ranks.

In both types of the AR plots, there are few methods that clearly outperform the rest
in robust or accuracy. The high accurate methods that were significantly more accurate
than the other algorithms are MDNet, RAJSSC, DeepSRDCF, SRDCF, sPST, SC-EBT
listed in order from the most accurate. The results are more cluttered in the accuracy
dimension, which indicates that there is a lot of short-term accurate tracking methods
which, however, may be not very robust. An example is OACF, which is a correlation-
based tracker and performs exceptionally well in terms of accuracy, but in robustness it
has more than twice the number of failures than MDNet. However, focusing the strength
of the trackers, the OACF tracker may be useful in application where the accuracy is
more important at the expense of the robustness given that OACF is more then two
times faster on a CPU then MDNet on a GPU. In terms of robustness, the MDNet, EBT,
DeepSRDCF and SRDCF were clearly most robust methods, which is well illustrated
in the AR raw plots (right plots in Fig. 3.10) where these methods form a loose cluster
that is separated from the rest on the robustness axis.

The expected average overlap was introduced in VOT 2015 Challenge to rank the
trackers by one single score. Figure 3.11 shows the expected average overlap curves,
with the gray area denoting the used sequence length interval (the top plot), and the
respective ranking based on the Φ̂Ns (the bottom plot). By this score, a winner of the
VOT2015 Challenge was the MDNet method, which outperforms the other methods by
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Figure 3.10: The AR rank plots and AR raw plots generated by sequence pooling (up-
per) and by attribute normalization (below).

a large margin. The bottom plot also highlights the runner-up methods which performs
significantly better than the rest. The gray horizontal line denotes the state-of-the-art
bound, which is an average performance from the methods published at ICCV, ECCV,
CVPR, ICML or BMVC in 2014/2015 (nine papers from 2015 and six from 2014). The
trackers used for computation of the bound are marked by gray circles in the plot. This
bound shows that more than 40% of the submissions exceed the average performance of
the state-of-the-art methods. Furthermore, over 60% of the submissions outperformed
the winner of the VOT2014 Challenge.

The other important aspect of tracking algorithms is the speed performance, which
may be crucial for some task or hardware specifics. Figure 3.12 shows the performance
as the function of the normalized speed measured in the EFO units. The estimated
real-time boundary is illustrated by the gray vertical line, which corresponds to the 20
EFO units. There are only a few real-time methods submitted to the VOT, from which
the mean-shift tracker ASMS shows the best performance at around 100 EFO units
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(1) MDNet
(2) DeepSRDCF
(3) EBT
(4) SRCDF
(5) LDP
(6) sPST

Figure 3.11: The top graph shows the expected average overlap curves. The sequence
length interval for the computation of the Φ̂Ns is denoted by the gray area. The bottom
graph show the ranking of the trackers w.r.t. Φ̂Ns and highlights the names and ranks
of the top performing trackers. The horizontal line shows the state-of-the-art bound
computed from the 15 methods (marked by the gray circles in the plot) published on
major conferences in 2014/1015.

on single CPU with score 0.21 whereas the MDNet runs at 1 EFO on GPU with the
score 0.38. Based on this property, the ASMS tracker may find practical use in speed
demanding applications such as robots or vision in integrated devices (such as mobile
phones).

All the results are summarized in Table 3.5 where the raw accuracy, average number
of failures, expected average overlap, tracking speed and implementation details are
shown.
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Figure 3.12: Plot of expected overlap score Φ̂ in a relation to EFO speed. The dashed
vertical line denotes the estimated real-time performance threshold of 20 EFO units.
See Figure 3.9 for legend.

3.6 Conclusions
This Chapter presents the VOT methodology and the VOT2015 challenge results. The
methodology measure two weakly correlated performance measures, accuracy and fail-
ure rate (i.e. number of tracker failures in the sequence). To measure these scores, the
evaluation methodology uses the tracker reinitialization technique, which was theoret-
ically analyzed and compared to other standard benchmarks that do not use reinitial-
ization and its benefits were shown and experimentally validated. The methodology
proposes to use per-frame attribute annotation, which allows more detailed and pre-
cise analysis of tracker results. The per-frame attribute annotation was theoretically
compared to per-sequence annotation, employed by other standard benchmarks, and
the ability to display more precise analysis was demonstrated by theory and by ex-
periments. In both proposed novelties (i.e. reinitialization technique and per-frame
attribute annotation) the bias and variance of the performance estimators are smaller
than in the standardly used per-sequence annotation and no reinitialization (as done in
[SCC+13a, WLY13, WLY15]).

The results from the VOT2015 Challenge show that the state-of-the-art is constantly
improving and the tracking methods perform significantly better in just a one year span.
The current trend mostly exploits the deep neural networks and correlation based filter,
however, it is not limited to these techniques and there is a variety of different ap-
proaches in top 20 methods (which all perform better than the estimated state-of-the-art
bound).
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Tracker A R Φ̂ Speed Impl. Tracker A R Φ̂ Speed Impl.
MDNet* 0.60 0.69 0.38 0.87 M C G HRP 0.48 2.39 0.19 1.01 M C
DeepSRDCF* 0.56 1.05 0.32 0.38 M C KCFv2 0.48 1.95 0.19 10.90 M
EBT 0.47 1.02 0.31 1.76 M C CMIL 0.43 2.47 0.19 5.14 C
SRDCF* 0.56 1.24 0.29 1.99 M C ACT* 0.46 2.05 0.19 9.84 M
LDP* 0.51 1.84 0.28 4.36 M C MTSA-KCF 0.49 2.29 0.18 2.83 M
sPST* 0.55 1.48 0.28 1.01 M C LGT* 0.42 2.21 0.17 4.12 M C
SC-EBT 0.55 1.86 0.25 0.80 M C DSST* 0.54 2.56 0.17 3.29 M C
NSAMF* 0.53 1.29 0.25 5.47 M MIL* 0.42 3.11 0.17 5.99 C
Struck* 0.47 1.61 0.25 2.44 C KCF2* 0.48 2.17 0.17 4.60 M
RAJSSC 0.57 1.63 0.24 2.12 M sKCF 0.48 2.68 0.16 66.22 C
S3Tracker 0.52 1.77 0.24 14.27 C BDF 0.40 3.11 0.15 200.24 C
SumShift 0.52 1.68 0.23 16.78 C KCFDP 0.49 2.34 0.15 4.80 M
SODLT 0.56 1.78 0.23 0.83 M C G PKLTF 0.45 2.72 0.15 29.93 C
DAT 0.49 2.26 0.22 9.61 M HoughTrack* 0.42 3.61 0.15 0.87 C
MEEM* 0.50 1.85 0.22 2.70 M FCT 0.43 3.34 0.15 83.37 C
RobStruck 0.48 1.47 0.22 1.89 C MatFlow 0.42 3.12 0.15 81.34 C
OACF 0.58 1.81 0.22 2.00 M C SCBT 0.43 2.56 0.15 2.68 C
MCT 0.47 1.76 0.22 2.77 C DFT* 0.46 4.32 0.14 3.33 M
HMMTxD* 0.53 2.48 0.22 1.57 C FoT* 0.43 4.36 0.14 143.62 C
ASMS* 0.51 1.85 0.21 115.09 C LT-FLO 0.44 4.44 0.13 1.83 M C
MKCF+ 0.52 1.83 0.21 1.23 M C L1APG* 0.47 4.65 0.13 1.51 M C
TRIC-track 0.46 2.34 0.21 0.03 M C OAB* 0.45 4.19 0.13 8.00 C
AOG 0.51 1.67 0.21 0.97 binary IVT* 0.44 4.33 0.12 8.38 M
SME 0.55 1.98 0.21 4.09 M C STC* 0.40 3.75 0.12 16.00 M
MvCFT 0.52 1.72 0.21 2.24 binary CMT* 0.40 4.09 0.12 6.72 C
SRAT 0.47 2.13 0.20 15.23 M C CT* 0.39 4.09 0.11 12.90 M
Dtracker 0.50 2.08 0.20 10.43 C FragTrack* 0.43 4.85 0.11 2.08 C
SAMF* 0.53 1.94 0.20 2.25 M ZHANG 0.33 3.59 0.10 0.21 M
G2T 0.45 2.13 0.20 0.43 M C LOFT-Lite 0.34 6.35 0.08 0.75 M
MUSTer 0.52 2.00 0.19 0.52 M C NCC* 0.50 11.34 0.08 154.98 C
TGPR* 0.48 2.31 0.19 0.35 M C PTZ-MOSSE 0.20 7.27 0.03 18.73 C

Table 3.5: The table shows raw accuracy and the average number of failures, expected
average overlap, tracking speed (in EFO) and implementation details (M is Matlab, C
is C or C++, G is GPU). Trackers marked with * have been verified by the VOT2015
committee.
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Chapter 4

Short-Term Tracking Beyond the
Real-Time

A short-term frame-to-frame tracking is the most commonly required task in appli-
cations, which employ visual tracking algorithms. Prominent examples of the fastest
short-term tracking methods are the Lucas-Kanade [LK81], mean-shift [CRM00] and
correlation [BBDL10, HCMB12] based trackers. The popularity of short-term trackers
stem from their simplicity and, consequently, high speed and applicability in a wide
range of conditions.

A short-term frame-to-frame tracking is formulated as a sequential casual estimation
of the pose of an object in the next frame given the pose in the current frame. Short
term trackers do not consider the problems of object re-detection after occlusion or
disappearance - some pose parameters are always outputted, regardless of the fact that
the tracked entity is no more visible in the field of view. This does not exclude tracking-
by-detection or correlation methods since their region of interest is usually a small area
around the target and does not perform a global detection of the target, therefore relies
on sequential detections to keep the track of the target motion.

The following sections presents two new short-term tracking methods whose design
is focused on simple, fast and robust tracking. Section 4.1 presents the Flock of Track-
ers (FoT) approach where the object motion is estimated from the displacements, or,
more generally, transformation estimates, of many independent local trackers covering
the object. Each local tracker is attached to a particular area specified in the object
coordinate frame. The local trackers are not robust and assume that the tracked area
is visible in all images and that it all undergoes a simple motion, e.g. translation. The
Flock of Trackers object motion estimate is robust if it is obtained by a combination of
local tracker motions which is insensitive to failures. This approach allows to estimate
more complex transformation (mostly for a rigid object) such as affine transformation
robustly while running at hundreds of frames per second, moreover, it is also robust to
partial occlusions or deformations by its design.

The scale adaptive mean-shift tracker (ASMS) is proposed in Section 4.2. The
ASMS is based on the mean-shift tracker [CRM00] and addresses the general problem
of a scale adaptation in the mean-shift tracking formulation, proposes a pixel weighing
to exploit the context information (i.e. take into account a background color during
mean-shift iteration) and introduces a forward-backward validation and scale regular-
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ization for a robust motion and scale estimation. By combining all the above con-
tributions the resulting novel ASMS tracker achieves the state-of-the-art results while
running in hundred of frames per second.

4.1 Flock of Tracker
This Section presents a tracking method called the Flock of Trackers (FoT). The name
and its design are inspired by the nature [Rey87] and by early methods by Kolsch and
Turk [KT04] and Kalal et al. [KMM10b] that exploit a similar design pattern.

The following section describes the method and presents contribution in two main
directions. First, methods of placement of local trackers on the object are revisited and
the novel idea of ”good points to track are those the tracker drifted to” is proposed. Sec-
ond, several contributions to the robustness of a pose estimation are proposed: (i) new
reliability predictors for the local trackers (displacements) - the Neighbourhood consis-
tency predictor and the Markov predictor, (ii) new rules for combining the predictions
and (iii) more robust pose estimator.

The FoT was extensively tested on the larger number of sequences that are stan-
dardly used in the literature and outperforms the reference methods. The FoT is also
evaluated on the standard VOT benchmarks, where in the VOT2013 [KPL+13] achieves
state-of-the-art results.

4.1.1 Introduction
The FoT is a very attractive tracker design. In comparison to many recently published
methods, it is relatively simple and transparent and yet its performance is competitive
with the state-of-the-art [KPL+13]. Its internal structure allows handling heavy partial
occlusion and local non-rigid changes and it makes the pose estimation robust since it
does not depend on a single global property of the object but rather on a composition of
many local (weak) features.

Recently, Kolsch and Turk [KT04] and Kalal et al. [KMM10b] have shown that
a very robust short-term tracker is obtained if a collection (a ”flock”) of local short-
term trackers covering the object is run in parallel and the object motion is estimated
from the displacements or, more generally, from transformation estimates of the lo-
cal trackers. Each local tracker is attached to a particular area specified in the object
coordinate frame. These two methods use different approaches to placement of local
trackers. The Kolsch and Turk method uses the good features to track approach [ST94]
where ”suitable” positions are detected and local trackers are placed at these locations.
Kalal et al. place the local trackers to the regular grid within the object rectangle. In
Section 4.1.2 a new method for handling the local tracker placements is proposed that
takes the best of both approaches. As the mentioned methods, we also adopted the
Lucas-Kanade [LK81] algorithm for local trackers.

The block structure of the Flock of Trackers is illustrated in Figure 4.1. In its sim-
plest form, the FoT requires only two components: a local short-term tracker, multiple
instances of which are run on different areas of the object and provide image-to-image
correspondence, and a global object motion estimation module that is robustly combin-
ing the local estimates.
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Figure 4.1: Block structure of the Flock of Trackers (FoT). Correspondences (motion
estimates) between two images, given the previous object pose and two consecutive
images, are produced by local trackers. Simultaneously, reliability is estimated for each
motion estimate. The object pose in the next frame is robustly estimated from a subset
of most reliable motion estimates called tentative inliers.

The local tracker reliability predictors, presented in Section 4.1.3, fall into two
groups. The first group contains methods that are applicable to any short-term tracker
and includes estimators based on the apparent magnitude of the intra-frame appear-
ance change like the sum of squared intensity differences (SSD), the normalized cross-
correlation (NCC) and the forward-backward procedure (FB). The forward-backward
procedure runs the Lucas-Kanade tracker [LK81] twice, once in the forward direction
time, as in a standard implementation, and then a second extra run is made in the reverse
direction. The probability of being an outlier, i.e. tracker failure, is a function of the
distance of the initial position and the position reached by the FB procedure.

The second group of local tracker reliability predictors includes two estimators ap-
plicable only to trackers running multiple local trackers, such as the FoT. One, a new
predictor based on the consistency of motion estimates in a local neighbourhood (PN ),
exploits the fact that it is unlikely for a local motion estimate to be correct if it differs
significantly from other motion estimates in its neighbourhood. The second new predic-
tor reflects past performance of the local tracker. If a local tracker motion estimate has
often been an outlier in the recent past, i.e. it was inconsistent with the global motion
estimate, it is not likely to be correct in the current frame. This occurs for instance when
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the area covered by the local tracker is occluded or because the area is not suitable for
tracking (e.g. it has near constant intensity). This local predictor of tracker reliability
is called the Markov predictor (PM ), since it models the sequence of predicted states,
either inlier or outlier, as a Markov chain.

The Markov predictor uses the global object motion estimates as ground truth in
judging the correctness of local tracker motion. Even though the global motion estimate
may be incorrect, this case does not need to be addressed since if the FoT global motion
estimation fails the tracker needs to be reinitialized anyway and the Markov predictor
model is reset.

Combination of predictors. With the exception of the forward-backward procedure,
the evaluation of the reliability prediction is fast in comparison with the time it takes
to calculate the local motion estimate. It is therefore reasonable to combine all fast
predictors to achieve a high accuracy and avoid, if possible, the FB procedure.

We show that the Markov and Neighbourhood predictors, both on their own and
when combined with the normalized cross-correlation predictor Pρ, are more reliable
than the normalized cross-correlation predictor combined with the FB procedure used
in the reference method [KMM10b]. The new predictors are computed efficiently at
a cost of about 10% of the complete FoT procedure whereas the forward-backward
procedure slows down tracking approximately by a factor of two, since the most time
consuming part of the process, the Lucas-Kanade local optimization, is run twice. With
the proposed combination of reliability predictors, a FoT with much higher robustness
to local tracker problems is obtained with a negligible extra computational cost.

Two predictor combination schemes are introduced: a predictor combination method
approximating a likelihood-based decision, denoted as PΘ, and a simple ad-hoc predic-
tor combination denoted as P∧ combination. The ad-hoc combination sets a reliability
threshold for each predictor (i.e. Pρ, PM , PN ) and the local tracker has to satisfy all
of the conditions to be used for pose estimation. The likelihood-based method orders
the local trackers based on their likelihood of being correct. It allows choosing either
the n best local trackers or a variable size subset that on average maintains a certain
level of the inlier ratio for a robust object pose estimation. In experiments, we set the
operating point of the PΘ combination so that the number of the local trackers in the
predicted inlier set (i.e. points, from which the object pose is estimated) is the same
in each frame for the P∧ and the PΘ methods. The methods are evaluated by inlier
prediction precision and by how many true inliers were in a predicted set.

Finally, a robust object motion estimation that takes as input the local motion es-
timates equipped with their reliability predictions is examined. The reference method
is the Median-Flow (MF) [KMM10b] tracker which was shown to be comparable to
the state-of-the-art where an object motion, which is assumed to be well modeled by
translation and scaling, is estimated by the median of a subset of local tracker responses.
Theoretically, the median with the breakdown point 0.5 is robust up to 50% of corrupted
data. Since a single displacement vector gives an estimate of the translation, the median
as a translation estimator is robust up to 50% of incorrect local trackers. For a scale
estimation a ratio of pairwise distances of local trackers is used as an estimate of scale
change, therefore a median is robust up to 100× (1−

√
0.5)%

.
= 29% of incorrect local

trackers for a scale estimation step.
In practice, the outlier tolerance is often lower since the outliers ”conspire”. The
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outlier motion estimates originate from occluded or background areas. All local motion
estimates in such areas are typically consistent with a motion of the occluding object or
the background, i.e. they are higher or lower than the tracked object motion and bias
the median based estimate. In challenging tracking scenarios presented in Section 4.1.6,
the inlier percentage was often not sufficient for the median-based estimation of global
motion and it failed when used without local tracker reliability prediction.

Section 4.1.5 shows that the proposed RANSAC [CMK03, FB81] followed by least
squares fitting of inliers (LS) as the model estimator is a preferable alternative to the
median estimator. There are three key benefits of using the RANSAC+LS estimator:
the model is estimated consistently (i.e. a translation estimation is not separated from a
scale estimation), the motion model is not constrained to translation, scale and rotation;
an affine transformation or a homography requires only to change the sample size and
it handles higher outlier percentages.

The rest of this FoT chapter is structured as follows. Section 4.1.2 discussed the
local tracker’s placement strategies and introduced a novel strategy. Section 4.1.3 pro-
poses two new predictors of local tracker failure and discusses the predictor parameters
selection. Section 4.1.4 discusses predictor combinations. Section 4.1.5 introduces
RANSAC as a model estimator. Finally, Section 4.1.6 evaluates the proposed improve-
ments. Conclusions are given in Section 4.1.7.

4.1.2 Local tracker placement in FoT

In the FoT, and in similar methods by design, the task of object tracking is usually
decomposed into two steps. First, interesting points to track are found (e.g. ”the good
features to track” [ST94]). Next, the selected points are tracked. Kalal et al. [KMM10b]
omit the first step and choose the points to cover evenly the object of interest - the local
trackers are laid out on a regular grid, whereas the Kolsch and Turk [KT04] use the
good features to track approach. It is clear that placing local trackers in a regular grid,
not all will be put at a location suitable for tracking. The poorly placed local trackers
drift away from the original position on the grid. On the other hand, detecting the
good features to track does not guarantee that the local trackers evenly cover the object.
This may decrease robustness in some cases, e.g. when the part of the object with the
majority of good features is occluded or during object deformation, where a particular
part of the object may lose its suitable properties for tracking. Moreover, detecting the
good features to track is more computationally demanding than just placing the point
onto a regular grid. Since we work with the processing speed in terms of milliseconds,
the computational burden of localizing the good features may be significant.

In [KMM10b], after estimating the global object motion all local trackers are reset
to their original place in the grid. We argue that this is a suboptimal approach because
local trackers reinitialized to the same position unsuitable for tracking will drift again.
Kolsch et al. [KT04] replenish the ”unreliable” local trackers by running the good fea-
tures to track detection and choosing new points in a defined area. Instead, we propose
the cell structure of placement, where each local tracker is allowed to ”find” a suit-
able offset from its default position in the grid, see Figure 4.3. The local trackers are
forced to stay in their cells, and thus guaranteeing to cover the tracked object evenly,
but within the cell, the local trackers are let to assume the best position for tracking.
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Figure 4.2: Synthetic test of drifting of the 200 KLT trackers. This experiments show
that in certain number of iteration (top left red number) the local trackers (green dots)
autonomously drift to the corner-like structures (black shapes). The left numbers denote
the amount of random uniform noise which is added to the original image in each frame
to produce a pair of images for the KLT local trackers.

This can be viewed as a combination of grid placement and good features to track ap-
proaches and represents the idea ”good points to track are those the tracker drifted to”.
This drifting behavior is demonstrated in the experiment with synthetic data shown in
Figure 4.2. The plot shows that the local trackers converge to the corner-like structures
given enough iterations. The rate of the convergence is affected by the noise of the
image. By increasing the noise (5, 10, 20, 30% of intensity range, 5% correspond to ±6
intensity value) the ”exploratory” power of the local trackers increases and they con-
verge much faster. The synthetic image resolution was 480x360 and the parameters for
the KLT algorithm were the same as in the FoT. Note that the experiment was demon-
strated on much larger images than the usual size of a target bounding box and also it is
completely homogeneous except the sparse structure, therefore the number of iterations
needed to converge is proportionally larger.

To avoid tracking points that are near each other, which could make the local track-
ers dependent and likely to fail simultaneously, the cells within which a local tracker
must stay may not completely cover the object, as depicted in Figure4.3. However, the
preliminary experiments show that slight changes of the cell parameters cw and ch from
the tight settings (cells share its borders) do not change results significantly, therefore,
to keep the method as simple as possible, they are set to the grid resolution, i.e. the local
trackers are allowed to assume any position on the object (the cells cover the object).
The experimental comparison of grid and cell approach is provided in Section 4.1.6.

4.1.3 Tracker reliability prediction methods

In this section, two novel methods for the local tracker reliability prediction are pre-
sented: Section 4.1.3 describes the Neighbourhood consistency reliability predictor and
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Figure 4.3: A comparison of the regular grid and the cell structure. In the regular grid,
in every frame, local trackers are placed on a regular grid. In the cell structure, after the
first frame where the local trackers are placed to the regular grid, the location the local
tracker drifts to is tracked - the offset with respect to the grid positions is stored. Only
local trackers that drifts away form their cells are reset.

Section 4.1.3 presents the Markov predictor based on the long-term behavior of the local
tracker. Before that, two predictors used in the literature are described: the reliability
predictor Pρ based on normalized cross-correlation of the corresponding patches in con-
secutive frames (Section 4.1.3) and the forward-backward predictor (Section 4.1.3

NCC reliability predictor Pρ

The first step of the predictor is to calculate for each local tracker the normalized cross-
correlation NCC, eq. 4.1 between the patches T1 and T2 at corresponding positions and
size (w, h) given by the motion estimate:

T ′1(x, y) = T1(x, y)− 1/(w · h) ·
∑

x′,y′ T1(x′, y′)

T ′2(x, y) = T2(x, y)− 1/(w · h) ·
∑

x′,y′ T2(x′, y′)

NCC =

∑
x,y(T

′
1(x, y) · T ′2(x, y))√∑

x,y T
′
1(x, y)2 ·

∑
x,y T

′
2(x, y)2

(4.1)

The Pρ predictor, introduced in [KMM10b] works as a ranking filter. It is hard to
find a general function linking the NCC to tracker reliability since NCC values for all
local trackers may change dramatically from frame to frame due to e.g. an illumination
change, shadows or small drifts. The local trackers are thus only sorted by NCC and
their rank is used as a predictor.

The top 50% of the local trackers are predicted to be inliers (correct motion es-
timate), the rest as outliers (incorrect motion estimate). The threshold was selected
empirically. Figure 4.4 shows the histogram of ranks for both inliers and outliers and
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Figure 4.4: Properties of the Pρ predictor averaged over a subset of the test sequences
and all frames. (a) The histogram of NCC ranks ρ for local trackers with correct motion
estimates (green) and incorrect motion estimates (red). (b) The correct/incorrect motion
estimate ratio as a function of NCC rank ρ (green), the reciprocal value in red.

supports the choice to filter 40%-50% of the worst local trackers, as the probability of
being an inlier in the bottom half of the ranks is smaller than the probability of being an
outlier. This is illustrated in Figure 4.4 in terms of the likelihood ratio of being an in-
lier/outlier. Another interesting fact is that probability of being an outlier slightly rises
around the 1-5 rank. This is caused by local trackers that are placed on the background
(due to the bounding box representation of object or tracker drift) where a zero motion
is estimated. The NCC values are very high on the static background.

Experimentally we observed that the Pρ predictor is sensitive to local tracking pre-
cision of the model and candidate patch - small misalignment may induce arbitrarily
large similarity difference. This often happens for articulated or non-rigid objects.

Forward step

Backward step

frame t
t+1

t+2

Figure 4.5: A reference point of a regions of interest is tracked forward in time (from
frame t → t + 1 → t + 2) and then backward. The positional forward-backward error
ε =‖ c− cfb ‖2 is then used as a measure of the tracker reliability.
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Forward-Backward reliability predictor PFB

The underlying idea behind the forward-backward predictor is that the process of mo-
tion estimation between two images is independent of the order of the images. In an
error-free situation, tracking an image region using Lucas and Kanade [LK81] gradient
optimization from frame 1 → 2 and then the resulting image region from 2 → 1 will
end up in the original position in frame 1.

When the deviation from the original position in frame 1 is large, then at least one of
the two motion estimates is inaccurate. It is not unreasonable to assume that reliability
of the motion estimate is a monotonic function of the distance of the original position
and the position reached by the forward-backward procedure. The process may be
generalized and the forward and backward direction tracking computed over a larger
number of frames. This is illustrated in Figure 4.5.

Figure 4.6 shows the histogram of FB distance ranks for correct and incorrect mo-
tion estimates and supports the choice to filter 30% − 50% of the worst local trackers,
as the probability of being an inlier in the bottom half of the ranks is smaller than the
probability of being an outlier. Figure 4.6 depicts the ratio of being an inlier or outlier
respectively as a function of the rank. Similarly to Pρ predictor, the probability of being
an outlier rises around the 1-5 rank. This is also caused by local trackers that are on the
background and thus are consistent with FB procedure.

0 20 40 60 80 100
0

0�00�

0�01

0�01�

0�02

P
F�

 ���

#
��
�
	
�

�
	
�
�


�
��
�

i��i� �

o���i� �

0 20 40 60 80 100
0

0��

1

1��

2

2��

3

P
F�

 ���

l�
�
�
l�
	




�

I��
� �
���
����

O���
� �
���
����

Figure 4.6: Properties of the PFB predictor averaged over a subset of the test sequences
and all frames. (a) The histogram of FB ranks for local trackers with correct motion
estimates (green) and incorrect motion estimates (red). (b) The correct/incorrect motion
estimate ratio as a function of the FB rank (green), the reciprocal value in red.

Neighbourhood consistency predictor PN

The assumption behind the neighbourhood consistency predictor is that the motion of
neighbouring local trackers is often very similar, whereas a failing local tracker returns
a random displacement.

The PN predictor is implemented as follows. For each local tracker i, a set of neigh-
bouring local trackers Ni is defined. In all experiments, Ni included the four nearest
neighbours of i. The neighbourhood consistency score SNi , the number of the neigh-
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frame t frame t+1
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         of x

Projection of tested 
correspondence x Reprojection 
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Similarity transformation between 
correspondences            ,

Figure 4.7: Neighbourhood score computation for two pairs of correspondences. Each
unique pair of correspondences (green) i, j ∈ 1, 2, 3, 4 generate a similarity transforma-
tion Tij . The tested (blue) correspondence x is transformed by the estimated similarities
and the reprojection error εij =‖ x̂ij −x′ ‖2 is computed. The final score is the number
of εij < εN (number of x̂ij points inside green circle around x′).

bourhood local trackers that have a similar displacement. The process is visualized in
Figure 4.7.

We proposed and tested two definitions of the scoring functions given in Eq. 4.2
and Eq. 4.3. The first scoring function considers only single point correspondence and
tests the points in neighbourhood for max angle and magnitude deviation. It is inspired
by the flocking behavior [Rey87], where the direction and velocity of the neighbours in
the flock is similar. This score function is easy to compute but suffers problems with
zooming scenarios or larger rotations. The second definition works with pairs of corre-
spondences from which a similarity transformation is estimated and a reprojection error
for other neighbourhood points is used as a score. By using the similarity transforma-
tion it naturally handles the previously mentioned issues; however, the computation is
more involved. From the preliminary experiments the latter score function has superior
performance and the computational cost of this more complex score function is compa-
rable with the computational cost of the first one, and therefore the latter function was
adopted.

S’Ni =
1

Z

∑
j∈Ni

[
|∠ij| < ε∠ &

‖∆j‖
‖∆i‖

∈ (εl, εh)

]
where [expression] =

{
1 if expression is true
0 otherwise

(4.2)

and where ε∠ is the maximum angle threshold, (εl, εh) is a bounding range for the ratio
of displacement magnitudes, ∆i is the displacement of the local tracker i and Z = 4

Ni
is

normalization to 4-neighbourhood (to account for corners and sides of bounding box).
A local tracker is defined to be consistent if SNi ≥ θ, where θ is a threshold for this
predictor.
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SNi =
1

Z

∑
j,k∈Ni
j 6=k

[
‖ Tjkxi − x′i ‖2< εN

]
where [expression] =

{
1 if expression is true
0 otherwise

(4.3)

Scoring function SNi counts the number of triplets of consistent local trackers. The
transformation Tjk calculated from motion estimates of trackers j and k is applied on
the reference point x of tracker i. If the transformed position Tjkxi is within εN of its
corresponding point x′i, one is added to the score. In experiments, εN was set to 2.
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Figure 4.8: Properties of the PN predictor averaged over a subset of test sequences and
all frames, (a) The normalized cumulative histogram of the local tracker state for SN ,
(b) The Precision-Recall curve for PN predictor.

When used as a decision function which is required in one of the predictors com-
bination methods described in the next section, there is a finite number of possible
thresholds depending on the number of neighbourhood local trackers.

Figure 4.8 shows a normalized cumulative histogram of the local tracker state for
values of SN normalized to range < 0, 1 >. Threshold θN = 1/6 is chosen (i.e. SN

greater or equal to 1/3 to predict an inlier state) as a good trade-off between the ratio of
filtered outliers and the false negative rate. Figure 4.8 shows the operating point of this
threshold on the Precision-Recall curve by the dashed lines.

Markov reliability predictor PM

The Markov reliability predictor PM is based on the model of the past performance of
a local tracker bounded to a region specified by an object coordinate frame. The model
is in the form of a Markov chain with two states, st ∈ {0, 1}, depicted in Figure 4.9.

The predicted state, i.e. being correct (inlier) or incorrect (outlier), of the local
tracker depends on its state in the previous time instance and on the transition probabil-
ities. The behaviour of each local tracker i at time t is modeled by transition matrix Ti

t

described in Eq. 4.4, where st is the current state of the local tracker, whose columns
sum to 1.

58



Ti
t =

[
pi(st+1 = 1 | st = 1) pi(st+1 = 1 | st = 0)
pi(st+1 = 0 | st = 1) pi(st+1 = 0 | st = 0)

]
(4.4)

Inlier = 1

Outlier = 0

Figure 4.9: The state diagram of the Markov chain for the local tracker in the form of a
two-state probabilistic automaton with transition probabilities pi, where i identifies the
local tracker and the initial state st=0 = 1.

The prediction that certain local tracker would be tentative inlier (or an outlier) is
done according to Eq. 4.5.[

pi(st+1 = 1)
pi(st+1 = 0)

]
= Ti

t ·
[
pi(st = 1)
pi(st = 0)

]
(4.5)

where pi(st = 1) ∈ {0, 1} is binary and depends on the previous state (inlier/outlier) of
the ith local tracker. The left side of Eq. 4.5 are probabilities that the next state would
be an inlier (outlier).

In the update stage, transition probabilities are re-estimated as follows :

pi(st+1 = 1 | st = 1) =
ni11

ni1

pi(st+1 = 1 | st = 0) =
ni01

ni0

(4.6)

where n1 and n0 are numbers for the local tracker i being an inlier (outlier respec-
tively), and n11 and n01 are frequencies for event that the local tracker i was an inlier
(outlier respectively) in time t and inlier in time t + 1, for t ∈ (0, t〉. The current state
of the local tracker being an inlier (outlier) is obtained by identifying local trackers that
support the estimated global motion model.

When used as a decision function which is required in one of the predictor combi-
nation methods described in the next section, the observed characteristics support the
natural choice of thresholding the inlier probability at 0.5. Figure 4.10 depicts the nor-
malized cumulative histograms of a local tracker state for the Markov predictor values
quantized to 100 bins. It shows how many inliers/outliers would be filtered out for dif-
ferent values of the θM threshold. The selected threshold 0.5 filtered out 4% of inliers
and more than 35% of outliers. Figure 4.10 shows the operating point for threshold 0.5
on the Precision-Recall curve.
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Figure 4.10: Properties of the PM predictor averaged over a subset of test sequences
and all frames, (a) The normalized cumulative histograms of a local tracker state for
p(st+1 = 1) values quantized to 100 bins, (b) The Precision-Recall curve for the PM
predictor

4.1.4 Methods for combining tracker reliability predictions.
This section describes two predictor combination methods – PΘ and P∧ and discusses
their advantages and disadvantages. The explanation of the combination methods is
elaborate for the combination of three predictors Pρ, PN , PM .

PΘ combination method

ThePΘ combination estimates the likelihood of a local tracker being an inlier. The local
tracker inlier likelihood is a function of three variables (i) Pρ rank ∈ {1, 2, . . . , 100}
quantized equally to 25 bins, ρ = d rank

25
e (ii) The PN score ∈ {0, 1, 2, 3, 4} in case of

four neighbourhood (iii) PM probability ∈ (0, 1) quantized equally to 25 bins. In the
training phase, an inlier/outlier likelihood ratio is estimated for all the combinations of
variables using a Bayesian inference, which results in a table with dimension 25×5×25.
The combination can work in two modes (1) choose the fixed threshold for local trackers
inlier/outlier likelihood (2) take the n best local trackers, to form a local trackers subset
for object pose estimation.

The advantage of this combination is a possibility to take a quasi-optimal decision
(assuming independence of the individual predictors). The problem is formulated as a
hypothesis test whether a local tracker is an inlier (outlier) given the likelihood ratio
using a standard criterion such as Neyman–Pearson or min-max. The disadvantage is a
need for a learning phase to estimate a local tracker inlier likelihood, which may overfit
to the training data. In practice, the likelihood estimate generalized well enough to work
in various scenarios.

P∧ combination method

The P∧ predictor combination method computes responses of its constituent predictors
and makes a binary decision for each of them (reliability below a threshold is interpreted
as an outlier and vice versa). The final decision about the local tracker failure is a logical
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”and” function:

f(Pρ,PN ,PM) = ρ > median(ρ)

∧ SN > θN

∧ p(st+1 = 1) > θM

(4.7)

The P∧ combination method assumes that since local tracker predictors exploit
complementary information (i.e. Pρ predictor – local appearance, PM – temporal be-
haviour, PN predictor – spatial consistency), parameters and threshold values of the
inlier/outlier decision may be set independently.

4.1.5 Pose Estimation
The median estimator is robust and has a breakdown point 0.5. However, as shown in
the experimental section, the percentage of correct local motion estimates is lower in
many situations. Moreover, the median is biased if the noise is biased, which causes
drifting of the tracker. This drifting happens in cases, where the background is static or
locally static around the object of interest, e.g. when the bounding box is not a precise
representation of the object shape and some local trackers are placed on the background.

We propose to use RANSAC for transformation estimation and show its superiority
experimentally. This method has two main advantages over the median: (1) Is more
robust to outliers (2) using an unbiased least-square fitting to estimate transformation
(up to homography).

4.1.6 Performance evaluation

Test data

The performance of the FoT with combined reliability prediction of local trackers
and RANSAC-based object motion estimation was tested on challenging video se-
quences collected from many recently published papers. The sequences include an
object occlusion (or disappearance), illumination changes, fast motion, different object
sizes and an object appearance variance. The videos vary in length, contain highly
articulated objects and a background clutter; some have poor visual quality. Targets
in the sequences exhibit out-of-plane and in-plane rotations and some have homoge-
neous surfaces almost without texture. For details about the sequences visit http:
//cmp.felk.cvut.cz/˜vojirtom/dataset.

Experimental set-up

In all experiments, a frame is considered correctly tracked if its overlap with the ground
truth is greater than 0.5, with the exception of experiment 4.1.6 where the influence of
the initialization of the tracker was assessed. Since in this case the bounding boxes are
randomly generated and may not fully overlap the object, the threshold was lowered to
0.3, see Figure 4.14. The overlap was measured as o = area(T∩G)

area(T∪G)
, where T is the object

bounding box reported by the tracker and G is the ground truth bounding box.
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In the experiments, the predictor of neighbourhood consistency (PN ) and the Markov
predictor (PM ) were run as explained in Section 4.1.3. The normalized cross-correlation
(Pρ) and the forward-backward procedure rank local trackers and treat the top 50% as
inliers. Combinations of two or more predictors use the P∧ approach. Predictors are
denoted by the names of their error measure, except for the combination PM + Pρ + PN
which is abbreviated to Σ.

Local trackers placement comparison

Two versions of the FoT that differ by local tracker placement — the cell structure and
the regular grid — along with the baseline median-flow [KMM10b] that also uses the
regular grid were compared on sequences presented in [KMM10b].

The performance was first measured by the number of consecutively correctly tracked
frames, i.e. until the first failure (overlap with ground truth less or equal to 0.5). This
criterion measures the short-term property of the tracker, which can be interpreted as
a robustness of the tracker. It also eliminates the random cases where the object is
oscillating around some position and the tracker is periodically on and off the object.
According to this criterion, the cell FoT outperforms the grid version as well as the
baseline method [KMM10b].

Sequence FoT-grid FoT-cell [KMM10b]
David 453 761 761

Jumping 76 76 36
Pedestrian1 125 140 45
Pedestrian2 153 264 90
Pedestrian3 52 52 52

Car 510 510 510

Table 4.1: A comparison of the grid and cell FoT and the baseline method [KMM10b] in
term of the number of consecutively correctly tracked frames, i.e. until the first failure
(overlap with groundtruth less or equal to 0.5).

Comparison of P∧ combination vs. PΘ combination

The P∧ predictor combination is compared with the PΘ combination in terms of an
inlier prediction precision. To make results comparable, the measurement was done at
the operating point ofP∧ combination because this method does not guarantee a number
of predicted inliers and does not have any means for choosing n-best in contrast to PΘ

combination.
The PΘ combination needs to learn likelihoods for the combined likelihood table of

three criterion variables. A leave one out cross-validation was used to split the dataset
into the training and validation sets. That means that for evaluation on sequence i the
table is learned on all sequences except the sequence i. True inliers were extracted by
comparing frame-to-frame tracking results with corresponding ground truth positions
and criteria variables were recorded. The recorded values (PN Score, PM probability,
Pρ rank) were quantized (to 5, 25, 25 bins) and used to compute the inlier - outlier
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likelihood. Entries of the combined likelihood table are addressed by the quantized
criteria values.

Results in Table 4.2 show that the two combination methods perform similarly. The
P∧ predictor combination has an advantage that it does not require learning in advance.
We choose to use the P∧ predictor combination to keep the tracker as independent as
possible of the training data and other external variables (e.g. the precision of the ground
truth used for extracting true inliers, the size of the dataset or diversity of dataset).

Seq. Θ ∧
gymnastics 0.713±0.132 0.738±0.134

torus 0.875±0.022 0.919±0.021
CarChase 0.894±0.040 0.922±0.043
Motocross 0.857±0.060 0.895±0.058

Panda 0.952±0.029 0.773±0.166
Volkswagen 0.943±0.007 0.965±0.005

car 0.958±0.008 0.977±0.008
david 0.945±0.006 0.966±0.004

jumping 0.680±0.073 0.730±0.068
pedestrian3 0.623±0.053 0.684±0.060
pedestrian4 0.925±0.013 0.945±0.026
pedestrian5 0.967±0.002 0.986±0.001

Sylvestr 0.980±0.006 0.986±0.006
coke 0.924±0.008 0.967±0.006
Mean 0.874±0.033 0.890±0.043

Table 4.2: The comparison of the P∧ predictor combination and the PΘ combination in
terms of inlier prediction precision ± variation. Averaged performance over a subset of
sequences is reported in the last row. The subset of sequences was selected such that it
includes mainly rigid objects; in some sequences also articulated objects (pedestrians)
are tracked.

Comparison of the reliability prediction methods

We compared performance of individual predictors and combinations PFB◦ρ (refer-
ence [KMM10b]), PN◦M and PΣ. All parameters for predictors were fixed for all se-
quences, as described in Section 4.1.4.

The performance was measured by the recall and the number of reinitializations
needed to track the whole sequence (reinitializations after object disappearance are not
counted). The recall is defined as the ratio of the number of frames where the estimated
object rectangle had an overlap with the ground truth rectangle higher than 0.5 and the
number of frames where the object is visible. Approximately speaking, recall is the
percentage of the frames, with the tracked object visible, where the object was correctly
tracked.

The average results are summarized in Tables 4.3a) and b). Both tables have the
same structure. The #best line compares the median flow object motion estimator
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(m, left) and the RANSAC-based estimator (r, right) by counting the number of se-
quences when median flow outperformed RANSAC (the number before the ”:”), where
RANSAC dominated (the number after the ”:”), the number of ”draws” is given in
parentheses.

According to both the recall and reinitialization (Table 4.3) criteria, RANSAC per-
forms better for all reliability predictors and their combinations. Results for different
predictors and combinations are presented in different columns. The ”mean” line of
the table compares the mean recall and reinitialization, where RANSAC also performs
better.

The ”mean” row allows comparison of the reliability predictors, both individually
and in combination. The combinations PN◦M and PΣ perform the best, clearly better
than any individual tracker and slightly better than the forward-backward procedure
combined with the NCC. Note that the PΣ and even more PN◦M are significantly faster
than the FB procedure.

Figure 4.11 visualizes the performance for selected combinations of predictors in
a manner facilitating comparison. Two combinations of predictors PΣ and PN◦M are
clearly the most reliable.

Visualization of predictor performance on selected frames from two challenging
sequences are shown in Figs. 4.12 (motor-bike) and 4.13 (woman). Predictor score
is encoded in a ”heat map” (red - high score, blue - low score). Green/Red boxes
below predictor score encode false positive (red dot with red background), false negative
(green dot with red background), true positive (green dot with green background) and
true negative (red dot with green background). On the right side of the image, a cut-out
shows the outlier (red) and inlier (green) motion estimates. The green-on-black images
show the area covered by inlier local trackers.

For the motor-bike sequence, it is somewhat surprising that the motion estimates on
the biker are small. The biker is tracked by the camera operator and the position of the
bike in the image stays roughly the same, the background exhibits fast apparent motion
in the opposite direction. The FoT handles a rather large change of appearance of the
biker between frames #31 and #77.

The woman sequence is more challenging, due to occlusions and changes of appear-
ance due to walking, the number of local trackers providing correct motion estimates is
small, as low as 19 out of 90 in frame # 18.

Comparison of the speed of the reliability prediction methods

The FoT tracker is intended for real-time performance and thus the speed of local tracker
predictor is important. Speed was measured as an average time needed for frame-to-
frame tracking on all available sequences. For results see Table. 4.4. Processing time for
I/O operations, including image loading, and other tasks not relevant to tracking were
excluded. The PΣ predictor performs 41% faster than PFB◦ρ. Most of the additional
computation of PΣ over the P∅ lies in computation of normalized cross-correlation.
Therefore, the PN◦M overhead is negligible compared to reference predictor P∅ (i.e.
tracker without any predictor) and is more than two times faster than PFB◦ρ.
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Figure 4.11: Comparison of the best performing predictor combinations and estimators
in terms (a) Recall and (b) the number of reinitialization. Sequences (x-axis) are sorted
by the recall measure of the PΣ with RANSAC estimator.

P ∅ ρ N FB M FB ◦ ρ N ◦M Σ
m � r m � r m � r m � r m � r m � r m � r m � r

#best 15:36 (11) 18:34 (10) 14:33 (15) 15:28 (19) 19:31 (12) 15:28 (19) 21:30 (11) 21:27 (14)
mean 0.26:0.34 0.26:0.32 0.27:0.35 0.27:0.32 0.30:0.35 0.27:0.32 0.30:0.36 0.30:0.36

(a) Recall

P ∅ ρ N FB M FB ◦ ρ N ◦M Σ
m � r m � r m � r m � r m � r m � r m � r m � r

#best 13:40 (9) 11:36 (15) 19:34 (9) 14:34 (14) 17:37 (8) 14:34 (14) 22:33 (7) 19:35 (8)
mean 20.4:14.9 19.8:14.7 15.8:14.6 18.9:17.1 18.0:13.4 18.9:17.1 15.1:13.3 15.1:13.5

(b) Number of reinitialisations

Table 4.3: The tables show the recall and the number of reinitialization for different
predictor combinations (top rows) and a pose estimation method (median flow - m,
RANSAC - r). The #best line counts sequences where the pose estimation (m or r)
outperformed the other and the number of ”draws” is given in parentheses. The ”mean”
line shows the mean values of recall and number of reitinializations.

Seq.
P ∅ ρ FB FB ◦ ρ N ◦M Σ

m � r m � r m � r m � r m � r m � r
Time [ms] 1.53 I 1.55 2.44 I 2.87 2.52 I 2.89 3.43 I 3.58 1.58 I 1.72 2.43 I 2.52

Table 4.4: A comparison of the speed of tracking reliability prediction methods. All
times are in milliseconds. The values are averaged over all sequences.
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#13 #31

#77 #152

Figure 4.12: Visualization of predictors performance on sequence mountain-bike. For
details, see text.

Robustness to bounding box initialization

For a tracking algorithm, it is highly desirable not to be sensitive to the initial pose
specified by the object bounding box as it is often selected manually, with an unknown
precision.

If a part of the bounding box does not cover the object, the PM predictor soon
discovers that the local trackers are consistent with the outlier set. This property can be
used to define the object more precisely, e.g. as the set of object parts that are likely to
be inliers according to PM (see Figs. 4.12 and 4.13 ). Thus, with PM , the global tracker
may be insensitive to the initialization.

This experiment tested the assumption on the challenging sequence Pedestrian 1,
where an articulated object is tracked in a sequence containing a background clutter
and fast motions, which emphasize the need for correct initialization. We randomly
generated 100 initial bounding boxes overlapping the object of interest (Figure 4.14)
and counted the correctly tracked frames (Table 4.5).

In the experiment, a frame was declared as correctly tracked if the overlap with the
ground truth was greater than 0.3. The tracker with the PΣ predictor performed about
90% better than the tracker with the PFB◦ρ predictor and it was able to track the object
correctly up to frame 84 on average.

Figures 4.15 a) and b) show the histograms of the number of correctly tracked
frames for 100 runs with different initialization and Figure 4.15 c) shows the 2D his-
togram of the number of correctly tracked frames by PFB◦ρ and PΣ initialized with the
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Figure 4.13: Visualization of predictors performance on sequence woman. For details,
see text.

Method Score mean (median)
PFB◦ρ [ref] 4493 45 (21)

PΣ 8438 84.4 (99.5)

Table 4.5: Evaluation of filtering methods in terms of the number of correctly tracked
frames with randomly initialized bounding box (see. Figure 4.14). The “score” is the
total number of correctly tracked frames, the mean and the median of the same quantity
are presented in the right column.

same random bounding box (to compare their performance for an individual random
initialization).
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Figure 4.14: Examples of randomly generated initial bounding boxes (yellow) ran-
domly generated within the red rectangle.
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Figure 4.15: Histograms of the number of correctly tracked frames for tracker with (a)
PFB◦ρ and (b) PΣ. (c) The 2D histogram of the number of correctly tracked frames by
PFB◦ρ and PΣ initialized with the same random bounding box for the sequence Pedes-
trian3.

VOT evaluation

The PΣ combination with RANSAC estimation, i.e. the winning combination of predic-
tors and estimators denoted as FoT, was evaluated in the VOT2013 Challenge (and all
following challenges). In the first challenge in 2013, there were three experiments: (i)
baseline experiments (same as described in Chapter 3.1), (ii) region noise experiment
where the initial bounding box position was perturbed and (iii) same as the baseline
but all sequences were converted to grayscale. The results in a form of the rank AR
plots are shown in the Figure 4.16. In the overall ranking on VOT2013, the FoT tracker
ended up second best and in terms of accuracy the FoT was first in two out of three ex-
periments. In the latest VOT2015 Challenge (results in Section 3.5), the FoT is not very
competitive in terms of performance with the most recent tracking algorithms. How-
ever, the FoT still has several features that the other methods lack, i.e. (i) is two order
of magnitude faster than the majority of the methods and (ii) is able to estimate robustly
the object pose up to homography. Thanks to these two features, the FoT is still relevant
in a specific application that demands high speed or precise robust estimation of higher
order models (such as an affine transformation).
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Figure 4.16: The ranking AR plots with respect to three experiments: (1) baseline (2)
region noise (3) grayscale, detailed description in the text. Tracker is better if it resides
closer to the top-right corner of the plot.

4.1.7 Conclusions

We have presented a set of enhancements of the Flock of Trackers. First, new reliability
prediction methods were introduced - the Neighbourhood consistency predictor and the
Markov predictor.

Next, two methods for combining predictors, the ad-hoc P∧ and the likelihood
thresholding PΘ, were proposed and compared and similar performance was achieved.
We decided to use P∧, because it is a straightforward approach without a need of learn-
ing the relevant statistics in advance.

Combined with the normalized cross-correlation predictor, the new Markov and
Neighbourhood consistency predictors form a reliable compound predictor PΣ. The PΣ

predictor was compared with the published PFB◦ρ predictor and outperformed it in all
criteria, i.e. in speed, recall, the number of reinitialization and the robustness to bound-
ing box initialization. The simpler PN◦M combination performed almost identically
and is faster. Finally, we have shown that the RANSAC-based global object motion
estimator outperforms the published median flow algorithm.

The enhanced FoT was extensively tested on a large dataset. Most of the sequences
are standard and used in the literature. The improved FoT showed performance superior
to the reference method, which competes well with the state-of-the-art [VM11].

For all sequences, the ground truth is available at http://cmp.felk.cvut.
cz/˜vojirtom/dataset. For some of these sequences, the ground truth has not
been in the public domain till now.

4.2 Scale-Adaptive Mean-Shift Tracker

The mean-shift procedure is a popular object tracking algorithm since it is fast, easy
to implement and performs well in a range of conditions. This section addresses the
problem of scale adaptation in mean-shift tracking and presents a novel theoretically
justified scale estimation mechanism which relies solely on the mean-shift procedure
for the Hellinger distance.

We also propose two improvements of the mean-shift tracker that make the scale
estimation more robust in the presence of a background clutter. The first one is a novel
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histogram color weighting that exploits the object neighbourhood to help discriminate
the target called background ratio weighting (BRW). The BRW improves the perfor-
mance of MS-like tracking methods in general, which is demonstrated by an experiment
with several MS-like methods. The second improvement boosts the performance of the
tracker with the proposed scale estimation by the introduction of a forward-backward
consistency check and by adopting regularization terms that counter two major prob-
lems: a scale expansion caused by background clutter and a scale implosion on self-
similar objects.

The proposed mean-shift tracker with the scale selection and BRW is compared with
recent state-of-the-art algorithms on a dataset of 77 public sequences. It outperforms the
reference algorithms in average recall, processing speed and it achieves the best score
for 30% of the sequences - the highest percentage among the reference algorithms. This
method is also evaluated on standard VOT benchmark [KML+15], where also achieves
state-of-the-art results in performance and also in processing speed.

4.2.1 Introduction

The mean-shift (MS) algorithm by [FH75] is a non-parametric mode-seeking method
for density functions. It was introduced to computer vision by [CRM00] who proposed
its use for object tracking. The MS algorithm tracks by minimizing the distance between
two probability density functions (pdfs) represented by a target and target candidate
histograms. Since the histogram distance (or, equivalently, similarity) does not depend
on the spatial structure within the search window, the method is suitable for deformable
and articulated objects.

The performance of the mean-shift algorithm suffers from the use of a fixed size
window if the scale of the target changes. When the projection of the tracked object be-
comes larger, localization becomes poor since some pixels on the object are not included
in the search window and the similarity function often has many local maxima. When
the object becomes smaller, the kernel window includes background clutter which often
leads to a tracking failure.

The seminal paper by [CRM00] already considered the problem and proposed
changing the window size over multiple runs by a constant factor (±10%). The window
size maximizing the similarity to the target histogram was chosen. This approach does
not cope well with an increase of the object size since the smaller windows usually have
higher similarity and therefore the scale is often underestimated.

[Col03] exploited image pyramids and used an additional mean-shift procedure for
scale selection after estimating the position. The method works well for objects with
a fixed aspect ratio, but this often does not hold for non-rigid or deformable objects.
Moreover, the method is significantly slower than the standard MS.

Image moments were used in [Bra98] and [NZZW12b] to determine the scale and
orientation of the target. The second moments are computed from an image of weights
that are proportional to the probability that a pixel belongs to the target model. [YDD05]
introduced a new similarity measure that estimates the scale by comparison of second
moments of the target model and the target candidate.

[PP06] assume target rigidity and restrict motion to scaling and translation. The
target is first tracked using the mean-shift both in the forward and backward direction
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to estimate the translation. A scale is then estimated from feature points matched by an
M-estimator with outlier rejection. Similarly, [LHJ+07] and [ZKR08] rely on ”support
features” for scale estimation after the mean-shift algorithm solves for the position.
[LHJ+07] search for the target boundary by correlating the image with four templates.
Positions of the boundaries directly determine the scale of the target. [ZKR08] exploit
affine structure to recover the target relative scale from feature point correspondences
between consecutive frames.

Methods depending on feature matching to estimate the scale robustly, however,
they cannot be seamlessly integrated into the mean-shift framework. Moreover, esti-
mating scale from feature correspondences takes times, requires a presence of well-
localised features that can be detected with high repeatability and it has difficulties
dealing with a non-rigid or deformable object.

We present a theoretically justified scale estimation mechanism which, unlike the
method listed above, relies solely on the mean-shift procedure for the Hellinger dis-
tance. Furthermore, we propose a formulation for background weighting that exploits
the tracked object neighbourhood to help discriminate the object from the background.
Additionally, we present two mechanisms that make the scale estimation more robust
in a presence of a background clutter and improve tracker performance to a level of the
state-of-the-art. The performance is compared to state-of-the-art algorithms on a large
tracking dataset and standard benchmark.

4.2.2 Mean-Shift Tracker with Scale Estimation

Standard Kernel-Based Object Tracking

In the standard mean-shift tracking of [CRM00], the target is modelled as an m-bin
kernel-estimated histogram in a feature space located at the origin:

q̂ = {q̂u}u=1...m

m∑
u=1

q̂u = 1. (4.8)

A target candidate at location y in the subsequent frame is described by its histogram

p̂(y) = {p̂u(y)}u=1...m

m∑
u=1

p̂u = 1; (4.9)

Let xi denote pixel locations, n be the number of pixels of the target and let {x∗i }i=1...n

be the pixel locations of the target centered at the origin. Spatially, the target covers a
unit circle and an isotropic, convex and monotonically decreasing kernel profile k(x)
is used. Function b : R2 → 1 . . .m maps the value of the pixel at location xi to the
index b(xi) of the corresponding bin in the feature space. The probability of the feature
u ∈ {1, . . . ,m} is estimated by the target histogram as follows:

q̂u = C

n∑
i=1

k
(
‖x∗i ‖

2) δ[b(x∗i )− u], (4.10)

where δ is the Kronecker delta and C is a normalization constant so that
∑m

u=1 q̂u = 1.
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Let {xi}i=1...nh
be pixel locations in the current frame where the target candidate is

centered at location y and nh be the number of pixels of the target candidate. Using the
same kernel profile k(x), but with a scale parameter h , the probability of the feature
u = 1 . . .m in the target candidate is

p̂u(y) = Ch

nh∑
i=1

k

(∥∥∥∥y − xi
h

∥∥∥∥2
)
δ[b(xi)− u], (4.11)

where Ch is a normalization constant. The difference between probability distributions
q̂ = {q̂u}u=1...m and {p̂u(y)}u=1...m is measured by the Hellinger distance of probability
measures, which is known to be a metric:

H(p̂(y), q̂) =
√

1− ρ[p̂(y), q̂] , (4.12)

where

ρ[p̂(y), q̂] =
m∑
u=1

√
p̂u(y)q̂u (4.13)

is the Bhattacharyya coefficient of q̂ and p̂(y). Minimizing the Hellinger distance is
equivalent to maximizing the Bhattacharyya coefficient ρ[p̂(y), q̂] . The search for the
new target location in the current frame starts at location ŷ0 of the target in the previous
frame using gradient ascent with a step size equivalent to the mean-shift method. The
kernel is repeatedly moved from the current location ŷ0 to the new location

ŷ1 =

∑nh

i=1 xiwig

(∥∥∥ (ŷ0−xi

h

∥∥∥2
)

∑nh

i=1wig

(∥∥∥ (ŷ0−xi

h

∥∥∥2
) , (4.14)

where

wi =
m∑
u=1

√
q̂u

p̂u(ŷ0)
δ[b(xi)− u] (4.15)

and g(x) = −k′(x) is the derivative of k(x), which is assumed to exist for all x ≥ 0,
except for a finite set of points.

Scale Estimation

Let us assume that the scale changes frame to frame in an isotropic manner1. Let
y = (y1, y2)T ,xi = (x1

i , x
2
i )
T denote pixel locations and N be the number of pixels

in the image. A target is represented by an ellipsoidal region (x∗1i )2

a2
+

(x∗2i )2

b2
< 1 in the

image and an isotropic kernel with profile k(x) as in [CRM00], restricted by a condition
k(x) = 0 for x ≥ 1, is used. The probability of the feature u ∈ {1, ..,m} is estimated
by the target histogram as

q̂u = C

N∑
i=1

k

(
(x∗1i )2

a2
+

(x∗2i )2

b2

)
δ[b(x∗i )− u], (4.16)

1Generalization to the anisotropic where h = (h1, h2)T is straightforward.
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whereC is a normalization constant. Let {xi}i=1...N be the pixel locations of the current
frame in which the target candidate is centered at location y. Using the same kernel
profile k(x), the probability of the feature u = 1 . . .m in the target candidate is given
by

p̂u(y, h) = Ch

N∑
i=1

k

(
(y1 − x1

i )
2

a2h2
+

(y2 − x2
i )

2

b2h2

)
δ[b(xi)− u], (4.17)

where

Ch =
1∑N

i=1 k
(

(y1−x1i )2

a2h2
+

(y2−x2i )2

b2h2

) . (4.18)

The parameter h defines the scale of the target candidate and thus the number of pixels
with non-zero values of the kernel function.

For a given kernel and variable h, Ch can be approximated in the following way:
Let n1 be the number of pixels in the ellipsoidal region of the target model, and let nh
be the number of pixels in the ellipsoidal region of the target candidate with a scale h;
then nh

.
= h2n1. Using the definition of Riemann integral we obtain:

1
Ch

πabh2

nh
=
∑N

i=1 k
(

(x1i )2

a2h2
+

(x2i )2

b2h2

)
πabh2

nh
≈
∫ ∫{

(x1)2

a2h2
+

(x2)2

b2h2
<1
} k ( (x1)2

a2h2
+ (x2)2

b2h2

)
dx1dx2

1
Ch

πabh2

nh
≈ h2ab

∫ ∫
‖x‖<1

k(‖x‖2)

Ch ≈ π
nh

1∫ ∫
‖x‖<1 k(‖x‖2)

= π
h2n1

1∫ ∫
‖x‖<1 k(‖x‖2)

(4.19)
similarly C can by approximated as C ≈ π

n1

1∫ ∫
‖x‖<1 k(‖x‖2)

, therefore Ch ≈ C 1
h2

and for

any two values h0, h1 Ch1 ≈ Ch0
h20
h21

. For justification of the approximation see 4.2.7.
As in [CRM00] the difference between probability distribution q̂ = {q̂u}u=1...m

and {p̂u(y, h)}u=1...m is measured by the Hellinger distance. Using the approximations
above for Ch in some neighbourhood of h0 we get

ρ[p̂(y, h), q̂] ≈ ρ̂(y, h) =

=
m∑
u=1

√
Ch0

h20
h2

N∑
i=1

k
(

(y1−x1i )2

a2h2
+

(y2−x2i )2

b2h2

)
δ[b(xi)− u]q̂u

(4.20)

Thus, to minimize the Hellinger distance, function ρ̂(y, h) is maximized using a gra-
dient method. In the proposed procedure, the kernel with a scale parameter h0 is it-
eratively moved from the current location ŷ0 in direction of 5ρ̂(ŷ1

0, ŷ
2
0, h0) to the new

location ŷ1, changing its scale to h1. The basic idea of this procedure is the same as the
mean-shift method.

Let us denote

wi =
m∑
u=1

√
q̂u

p̂u(ŷ0, h0)
δ[b(xi)− u], (4.21)

G =
N∑
i=1

wig

(
(ŷ1

0 − x1
i )

2

a2h2
0

+
(ŷ2

0 − x2
i )

2

b2h2
0

)
, (4.22)
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and

mk(ŷ0, h0) =

∑N
i=1 xiwig

(
(ŷ10−x1i )2

a2h20
+

(ŷ20−x2i )2

b2h20

)
G

− ŷ0, (4.23)

where mk(ŷ0, h0) = (m1
k(ŷ0, h0),m2

k(ŷ0, h0))
T . Then we get

∂ρ̂(y, h)

∂y1
(ŷ0, h0) =

Ch0
a2(h0)2

·G ·m1
k(ŷ0, h0), (4.24)

∂ρ̂(y, h)

∂y2
(ŷ0, h0) =

Ch0
b2(h0)2

·G ·m2
k(ŷ0, h0) (4.25)

and

∂ρ̂(y,h)
∂h

(ŷ0, h0) =
Ch0

(h0)2
·G ·

[
1
h0

∑N
i=1 wi·

(
(ŷ10−x1i )

2

a2
+

(ŷ20−x2i )
2

b2

)
·g
(

(ŷ10−x1i )
2

a2h20
+

(ŷ20−x2i )
2

b2h20

)
G

−h0

∑N
i=1 wi·k

(
(ŷ10−x1i )

2

a2h20
+

(ŷ20−x2i )
2

b2h20

)
G

]
.

(4.26)
Finally, the mean-shift update of y and h is obtained:

ŷ1
1 =

1

a2
m1
k(ŷ0, h0) + ŷ1

0, ŷ2
1 =

1

b2
m2
k(ŷ0, h0) + ŷ2

0 (4.27)

h1 =

[
1−

∑N
i=1 wi·k

(
(ŷ10−x1i )

2

a2h20
+

(ŷ20−x2i )
2

b2h20

)
G

]
h0

+ 1
h0

∑N
i=1 wi·

(
(ŷ10−x1i )

2

a2
+

(ŷ20−x2i )
2

b2

)
·g
(

(ŷ10−x1i )
2

a2h20
+

(ŷ20−x2i )
2

b2h20

)
G

.

(4.28)

Background Ration Weighting

To incorporate the background information, we can reformulate the maximization of
the Bhattacharyya coefficient to coefficient ratio maximization, where the numerator
and the denominator are defined as Bhattacharyya coefficients of a target candidate and
background respectively. We call this formulation background ratio weighting (BRW).
Intuitively, this ratio prefers the features (in our case RBG colors), which are more likely
to belong to the target and are unlikely in the background. This reformulation ultimately
only change the weights of the histogram bins (Eq. 4.30). Background histogram b̂g
is computed over the neighborhood of the target in the first frame (same as q̂, by the
same equation only from larger window (larger by half the width of the target window)
excluding the pixels in the region of the target) and the ratio is defined as follows:

R =
ρ̂[p̂(y, h), q̂]

ρ̂[p̂(y, h), b̂g]
. (4.29)

Using a gradient ascent method for maximization of log(R) we use the following for-
mula with weights wi changed to weights wbgi , where

wbgi = max
[
0,
∑m

u=1

(
1

ρ̂[p̂(ŷ0,h0),q̂]

√
q̂u

p̂u(ŷ0,h0)
−

− 1

ρ̂[p̂(ŷ0,h0),b̂g]

√
b̂gu

p̂u(ŷ0,h0)

)
δ[b(xi)− u]

]
.

(4.30)
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The max operator sets the weights wbgi to be non-negative. In the case of non-
negative weights, the mean-shift algorithm preserves its convergence properties. The
formulas for the mean-shift update remains the same except for the replaced weights by
wbgi .

4.2.3 Tracking Algorithm
Introducing scale estimation into the mean-shift procedure reveals two issues: Firstly,
there is a difference in the MS behavior when the position and scale estimation is im-
precise. While errors in position are usually corrected later on during the mean-shift
iteration, the error in scale estimation has no ”self-correcting” ability in the presence of
a non-trivial background. Secondly, the scale ambiguity of self-similar objects usually
leads to an underestimation of the scale and a tracking failure (see Figure 4.17).

0.5 1 1.5
0.8

0.85

0.9

0.95

1

h

ρ
(y

0,h
)

Figure 4.17: Illustration of the scale ambiguity problem. (a) target and target candidates
at different scales with fixed center location (green rectangle corresponds to h = 1), (b)
target candidate similarity with target as a function of the scale parameter measured by
Bhattacharyya coefficient.

To cope with this problem and make the tracking more robust, we propose a mean-
shift algorithm with regularized scale estimation. The algorithm, denoted MSs, is sum-
marized in Alg. 2.

Algorithm 2: MSs – mean-shift with regularized scale estimation.
Input: Target model q̂, starting position y0 and starting object size s0

Output: Position yt and scale ht
iter = 1;
repeat

Compute p̂u(yt−1, ht−1) using Eq. (4.17);
Compute weights wbgi according to Eq. (4.30);
Update position yt according to Eq. (4.27), neglecting the constants a, b
assuming that a ≈ b;
Update scale ht according to Eq. (4.28);
Apply corrections ht = ht + Eq. (4.31) + Eq. (4.32);
iter = iter + 1;

until ‖ yt − yt−1 ‖2< ε OR iter > maxIter;

The structure of the algorithm is similar to the standard mean-shift algorithm, except
for the scale update step. Two regularization terms are introduced in the scale update

75



step. The first term rs reflects our prior assumption that the target scale does not change
dramatically; therefore, the change of scale is penalized according to Eq. (4.31):

rs(h) =


− log(h) | log(h)| ≤ b2

b2 log(h) < −b2

−b2 log(h) > b2

(4.31)

where the h is a scaling factor and the function in absolute value is bounded by the
constant b2. The second term rb addresses the problem of scale ambiguity by forcing
the search window to include a portion of background pixels. In other words, from the
possible range of scales (generated by the object self-similarity), a slight bias towards
the largest is introduced. The rb function is defined by Eq. (4.32):

rb(y, h) =


%− B(y, h) |%− B(y, h)| ≤ b1

−b1 %− B(y, h) < −b1

b1 %− B(y, h) > b1

(4.32)

where (y, h) are the position and scaling factor and % define the percentage of
weighted background pixels that should be contained in the search window. The func-
tion response lies in the interval (−b1, b1). The percentage of weighted background
pixels is computed as follows:

B(y, h) =
n∑
i=1

δ[q̂b(xi)]
m∑
u=1

p̂uδ[b(xi)− u]

/
n∑
i=1

m∑
u=1

q̂uδ[b(xi)− u] (4.33)

where the numerator is the sum of bin weights of the target candidate for pixels in which
the target model has q̂u = 0, and the denominator is the sum of bin weights of the target
model over all pixels.

The MSs algorithm works well for sequences with scale change, but for sequences
without scale change or with a significant background clutter, the algorithm tends to
estimate non-zero scale, which may lead to accumulation of incorrect scale estimates
and a tracking failure. Therefore, we adopted a technique to validate the estimated
scale change: the Backward scale consistency check. The Backward check uses reverse
tracking from position yt obtained by forward tracking and validates the estimated scale
from step t − 1 to t and t to t − 1. This validation ensures that in the presence of
background clutter the scale estimation does not “grow without bounds” and enables
the tracker to recover from erroneous estimates. The algorithm using this technique is
summarized in Alg. 3, and we call it Adaptive Scale mean-shift (ASMS).

In the case of a detected scale inconsistency, the object size is computed as a
weighted combination of three parts: (i) the previous size; (ii) the new estimated size;
(iii) ”default” size, which in our case is the initial size of the object. The parameters for
this combination were selected experimentally on the subset of testing sequences as a
trade-off between scale adaptability of the MSs and stability of the standard mean-shift
algorithm.

We also noticed that mean-shift is more stable if the bandwidth size is biased toward
a larger size so that the whole target is included; therefore, the computation of the
weight α (Alg. 3) is not symmetric but it prefers enlarging the object size. The default
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Algorithm 3: ASMS – mean-shift with scale and backward consistency check.
Input: Target model q̂, starting position y0 and starting object size s0

Output: Position and scale in each frame (yt, st), where t ∈ {1, . . . , n}
foreach Frame t ∈ {1, . . . , n} do

[yt, h] = MSs(q, imaget, yt−1, st−1);
if |log(h)| > Θs then

// Scale change - proceed with consistency check

[∼, hback] = MSs(q, imaget−1, yt, hst−1);
if |log(h ∗ hback)| > Θc then

// Inconsistent scales

st = (1− α− β)st−1 + αsdefault + βhst−1 where α = c1( sdefault
st−1

);

else
st = (1− γ)st−1 + γhst−1;

size is kept constant during tracking, and preliminary experiments with size adaptation
show no significant benefit and only introduce error caused by incorrect updates. This
can be explained by the character of the data, where the target scale usually oscillates
around initial value.

4.2.4 Experimental Protocol

Experiments were conducted on 77 sequences2 collected from the literature. The se-
quences vary in length from dozens of frames to thousands, contain diverse object types
(rigid, articulated) and have different scene settings (indoor/outdoor, static/moving cam-
era, lighting conditions). Object occlusions and objects that disappear from the field of
view are also present in the data.

The proposed mean-shift algorithm ASMS is compared with the standard published
mean-shift algorithm (MS) and its scale adaptation (MS±) proposed by [CRM00]. All
algorithms are evaluated with and without the proposed background weighting.

The proposed method is also compared with the state-of-the-art tracking algorithms
that are available as source code, namely SOAMST by [NZZW12b] based on the mean-
shift algorithm, LGT by [ČKL11], TLD by [KMM10a], CT by [ZZY12] and STRUCK
by [HST11]. Parameters for these algorithms were left in default values as set by the
authors. Note that our results for those algorithms may differ from results reported in
other publications since we did not optimize their parameters for the best performance
for each sequence as was done, e.g., by [ZZY12], but were fixed for all experiments.
Moreover, the target was initialized in the first frame using the ground truth position for
all algorithms. Stochastic methods were run multiple times on each sequence and the
average result was reported.

Performance of the algorithms was measured by the recall: the number of correctly
tracked frames divided by the number of frames where the target is visible. Recall was
chosen because some of the algorithms exhibit detector-like behavior, and therefore,
other frequently used criteria, such as first failure frame or failure frame from which the

2http://cmp.felk.cvut.cz/∼vojirtom/dataset
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algorithm does not recover, will not capture the real performance of the algorithm, i.e.
in how many frames the algorithm locates the target correctly.

A frame is considered tracked correctly if the overlap with the ground truth is higher
than 0.5. The overlap is defined as o = area(T∩G)

area(T∪G)
, where T is an object bounding box

reported by the tracker and G is the ground truth bounding box.
The average running time per frame of each algorithm was measured to compare

their processing speed. Note that the algorithms are not implemented in the same pro-
gramming language (SOAMST, LGT, TLD, CT using matlab with MEX files, STRUCT
and mean-shift using C++), which may bias the speed measurement towards the more
efficient programming languages.

The proposed mean-shift algorithms are written in C++ without heavy optimization
or multithreading. All parameters of the algorithm were fixed for all experiments. Some
of the parameters are fairly standard (mean-shift termination criterion) and the rest were
chosen empirically as follows: bounds for regularization terms b1 = 0.05, b2 = 0.1
and % = 0.5; termination of the mean-shift algorithm ε = 0.1, and maxIter = 15;
scale consistency check Θs = 0.05 ≈ 5% of the scale change, Θc = 0.1; exponential
averaging c1 = 0.1, β = 0.1 and γ = 0.3. The pdf is represented as a histogram
computed over the RGB space and quantized into the 16× 16× 16 bins.

4.2.5 Results

Background Weighting Evaluation

The experiment evaluates the benefits of different histogram bin weighting based on the
background. The proposed BRW method is implemented into a different MS algorithms
(i.e. standard MS, the standard scale MS by [CRM00] and the proposed ASMS) and
compared to direct histogram weighting (CBWH) proposed by [NZZW12a].

Figure 4.18 shows the recall for 77 sequences. In general, using background weight-
ing improves MS performance. The BRW performs slightly better or equal to CBWH
for the standard mean-shift algorithms and dominates for the proposed AMSM. The av-
erage recall for the evaluated methods is shown by horizontal dashed lines in the plots.
From the experiment, we conclude that ASMS-BRW is superior to other combinations,
and therefore, it is used in all subsequent experiments. When not specified otherwise,
the abbreviation ASMS refers to ASMS-BRW.

Next, ASMS was compared with the scale adaptation proposed by [CRM00], de-
noted MS±, which runs the MS algorithm three times for different window sizes (1, 1±
0.1%) and the result with the minimum distance to the target histogram is used. The
comparison is included in Figure 4.19 which also shows the results of the state of the
art methods. ASMS outperforms MS± for average recall. It performs better on 48
sequences.

Comparison with the State-of-the-Art Methods

Result of the comparison of the ASMS and state-of-the-art algorithms is presented in
Figure 4.19, which shows that the performance of the ASMS tracker is comparable to
the state-of-the-art methods, and on a large fraction of the sequences (30%) it is the
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Figure 4.18: Background weighting methods - a comparison of the standard MS, stan-
dard scale MS and adaptive scale MS. CBWH denotes the background weighting of
[NZZW12a]; the proposed background ratio weighting is denoted BRW. In all plots,
sequences (x-axis) are sorted by the recall of the ASMS-BRW. The legend lists the
methods in the order of average performance. The dashed lines show average perfor-
mances.

top performer. However, Figure 4.19 also shows that ASMS performs poorly on some
sequences.

The results are summarized in two tables. Results for sequences with at least 30%
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object scale difference w.r.t the reference size in at least 20% frames of sequences are
presented in Table 4.6. Performance on the remaining ”small scale change” sequences
is shown in Table 4.7. The last two rows show the mean performance and the number
of sequences where the tracker performed best and second best.

There are few sequences in the set of the 32 sequences with object scale changes
where tracking without a re-detection mechanism fails. These “Long-term” sequences
with thousands of frames (e.g. CarChase, Motocross, Panda, Volkswagen) include
object disappearance from the field of view, scene cuts, significant object occlusion
and strong background clutter. Some shorter sequences with full object occlusion (e.g.
Vid F), cannot be successfully tracked without re-detection too. Since ASMS does not
provide any re-detection ability, it can not handle these cases. In these sequences, the
TLD tracker achieved the best results.

Sequence
Method

MS MS± ASMS SOAMST LGT TLD CT STRUCK

girl 0.70 0.55 0.24 0.14 0.34 0.69 0.13 0.72
surfer 0.17 0.14 0.32 0.23 0.12 0.16 0.10 0.22

Vid A ball 0.86 1.00 1.00 0.84 0.16 0.44 0.63 0.39
Vid C juice 0.49 0.78 0.78 0.44 0.62 0.44 0.47 0.48

Vid F person fully occluded 0.40 0.26 0.27 0.06 0.27 0.27 0.32 0.35
Vid I person crossing 0.82 0.76 0.87 0.06 0.13 0.85 0.19 0.29

Vid J person floor 0.93 0.85 0.79 0.08 0.13 0.50 0.44 0.33
Vid L coffee 0.24 0.68 0.27 0.51 0.22 0.23 0.19 0.23
gymnastics 0.16 0.46 0.24 0.50 0.21 0.14 0.14 0.16

hand 0.64 0.53 0.86 0.10 0.76 0.26 0.19 0.13
track running 0.02 0.11 0.33 na na 0.41 0.24 0.25

cliff-dive2 0.15 0.16 0.15 na 0.12 0.08 0.16 0.18
motocross1 0.16 0.10 0.13 0.01 0.17 0.16 0.08 0.14

mountain-bike 0.80 0.54 0.69 0.00 0.49 0.32 0.34 0.90
skiing 0.04 0.04 0.47 0.00 0.11 0.07 0.08 0.11

volleyball 0.54 0.50 0.57 na na 0.57 0.51 0.48
CarChase 0.07 0.08 0.06 na 0.02 0.18 0.00 0.06
Motocross 0.00 0.01 0.04 na 0.00 0.41 0.00 0.03

Panda 0.07 0.07 0.17 0.00 0.23 0.33 0.20 0.22
Volkswagen 0.00 0.00 0.01 na 0.00 0.57 0.01 0.06
pedestrian3 0.11 0.63 0.11 0.00 0.02 0.31 0.26 0.47

jump 0.31 0.34 0.35 0.01 0.12 0.09 0.09 0.14
animal 0.63 0.18 0.61 0.01 0.17 0.72 0.06 0.70
singer1 0.12 0.12 0.12 0.24 0.15 0.93 0.29 0.27

singer1(lowfps) 0.26 0.25 0.36 na 0.12 0.11 0.14 0.14
skating2 0.83 0.26 0.94 0.54 0.30 0.03 0.10 0.35
soccer 0.20 0.20 0.20 0.13 0.16 0.09 0.18 0.29
drunk2 0.03 0.03 0.02 0.01 0.17 0.60 0.24 0.29

lemming 0.83 0.83 0.97 0.85 0.77 0.63 0.27 0.66
dog1 0.18 0.20 0.07 na na 0.68 0.55 0.65
trellis 0.16 0.18 0.37 0.00 0.60 0.28 0.16 0.46
coke 0.05 0.07 0.03 0.00 0.32 0.92 0.30 0.88

Mean 0.34 0.34 0.39 0.20 0.24 0.39 0.22 0.34
Best+Second (out of 32) 2 + 8 4 + 6 11 + 3 1 + 3 2 + 4 11 + 2 0 + 2 4 + 9

Table 4.6: Recall on sequences with scale change (target was 30% smaller or larger on
at least 20% of frames of the sequence). Bold text - the best result for the sequence,
underscore - the second best. na indicates that the algorithm fails to process the whole
sequence.

ASMS achieved the best score on the Vid X sequences of [KSFC10]. The sequences
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Figure 4.19: ASMS and the state-of-the-art algorithms - comparison of the recall on 77
sequences. Sequences (x-axis) are sorted by the recall measure of the ASMS algorithm.
The legend lists the methods in the order of average performance. The dashed lines
show average performances.

contain small amounts of background clutter and out-of-plane or in-plane rotation,
which is difficult for many state-of-the-art algorithms whose representation of the object
is usually spatial dependent and out or in-plane rotation is not explicitly modeled.

The performance of the mean-shift algorithms, in general, drops in the presence of
significant background clutter. This issue is more prominent when the tracker estimates
more parameters (such as translation and scale) and the estimation errors induce a larger
drift (in scale dimension) than in the case of estimating pure translation. This was
mainly the case for the drunk2 and dinosaur sequences where the color distribution of
the target was similar to the background.

Due to RGB color histogram representation, MS algorithms also perform poorly for
grayscale sequences (e.g. track running, coke, dog1, OccludedFace2, david or shak-
ing).

Overall, ASMS achieved the best average performance along with the TLD tracker
on the sequences with scale and second best performance on the sequences without
scale where the STRUCK tracker performs best. ASMS achieved the best score for
30% (which is the highest among other methods) of the sequences and the second best
for 13%.

VOT Challenge Results

The proposed ASMS algorithm was also evaluated in the VOT2015 Challenge. The
evaluation protocol and results are described in Section 3.5. The ASMS tracker achieved
state-of-the-art results (performing above the state-of-the-art bound as estimated by the
VOT) and achieves overall rank 20 among the 62 submitted tracking methods. More-
over, the ASMS is the best method in trade off between performance and processing
speed, running at more than 100fps on average and the only real-time method from the
top 40 methods.
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Sequence
Method

MS MS± ASMS SOAMST LGT TLD CT STRUCK

OccludedFace2 0.44 0.28 0.16 0.00 0.35 0.68 0.73 1.00
Vid B cup 1.00 1.00 0.98 0.74 0.90 0.92 0.65 1.00

Vid D person 0.97 1.00 0.98 0.05 0.28 0.78 0.88 0.95
Vid E person part occluded 0.90 0.86 0.88 0.06 0.50 0.88 0.91 0.91

Vid G rubikscube 0.63 0.77 1.00 0.16 0.78 0.24 0.85 0.84
Vid H panda 1.00 0.88 1.00 0.00 1.00 1.00 1.00 1.00
Vid K cup 0.87 1.00 0.90 0.26 0.99 0.68 0.28 0.91
dinosaur 0.23 0.17 0.34 0.01 0.69 0.38 0.22 0.23
hand2 0.63 0.41 0.68 0.03 0.60 0.11 0.07 0.08
torus 0.65 0.60 0.95 0.17 0.82 0.16 0.35 0.13

head motion 0.70 0.64 0.37 na na 0.82 0.89 0.94
shaking camera 0.44 0.74 0.66 na na 0.92 0.05 0.35

cliff-dive1 0.99 0.66 0.76 0.18 0.95 0.58 0.66 0.87
motocross2 0.74 0.70 0.78 0.04 0.87 0.87 0.68 0.87

car 0.54 0.52 0.28 0.00 0.32 0.99 0.13 0.73
david 0.02 0.01 0.02 na 0.08 0.48 0.04 0.04

jumping 0.51 0.75 0.27 0.00 0.08 0.86 0.03 0.87
pedestrian4 0.56 0.41 0.92 0.00 0.14 0.60 0.20 0.22
pedestrian5 0.97 0.42 0.87 na 0.33 1.00 0.66 0.48

diving 0.18 0.18 0.21 0.04 0.33 0.15 0.16 0.25
gym 0.96 0.90 0.86 0.16 0.09 0.29 0.25 0.89
trans 0.55 0.55 0.31 0.57 0.99 0.44 0.47 0.55

basketball 0.48 0.45 0.47 0.45 0.73 0.02 0.27 0.02
football 0.16 0.16 0.01 0.00 0.49 0.76 0.73 0.86
shaking 0.07 0.05 0.02 0.01 0.05 0.16 0.42 0.16
singer2 0.21 0.19 0.56 0.03 0.45 0.03 0.30 0.04
skating1 0.16 0.12 0.40 0.01 0.23 0.38 0.34 0.65

skating1(lowfps) 0.14 0.09 0.11 0.01 0.15 0.23 0.23 0.57
Asada 0.66 0.64 0.72 0.54 0.58 0.08 0.27 0.38

dudek-face 0.47 0.18 0.24 na na 0.61 0.24 0.18
faceocc1 0.79 0.32 0.78 0.18 0.51 0.94 0.40 1.00

figure skating 0.61 0.32 0.82 0.20 0.79 0.04 0.23 0.84
woman 0.14 0.07 0.82 na 0.15 0.66 0.18 0.94
board 0.84 0.71 0.85 0.48 0.72 0.15 0.25 0.84
box 0.16 0.10 0.12 0.16 0.31 0.20 0.49 0.91

liquor 0.58 0.42 0.94 0.10 0.21 0.86 0.24 0.73
Sylvestr 0.72 0.55 0.62 na na 0.96 0.56 0.92

car11 0.29 0.04 0.38 0.00 0.12 0.62 0.19 0.99
person 0.99 0.92 0.88 0.00 0.08 0.20 0.23 0.48
tiger1 0.14 0.07 0.92 0.00 0.20 0.55 0.64 0.86
tiger2 0.02 0.02 0.01 0.00 0.70 0.33 0.62 0.59
bird 1 0.03 0.12 0.39 na 0.29 0.00 0.24 0.25
bird 2 0.13 0.38 0.52 0.10 0.63 0.75 0.48 0.51
bolt 0.21 0.48 0.42 0.00 0.03 0.01 0.01 0.01

girl mov 0.75 0.63 0.88 0.17 0.06 0.25 0.11 0.19

Mean 0.52 0.46 0.58 0.13 0.45 0.50 0.40 0.60
Best+Second (out of 45) 5 + 8 4 + 4 12 + 7 0 + 1 7 + 7 9 + 9 3 + 6 15 + 6

Table 4.7: Recall on sequences without a scale change. Bold text - the best result for the
sequence, underscore - the second best. na indicates that the algorithm fails to process
the whole sequence.

Speed

To characterize the speed, the average running time per frame of each algorithm was
measured across the whole testing dataset. The forward-backward (FB) validation step
has been shown to benefit the ASMS, but it comes at the price of slowing the tracking
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two times. The experiment in Table 4.8 shows that the slow down factor w.r.t. to
standard MS is 2 on average. However, ASMS is still faster then MS± and significantly
faster than the state-of-the-art algorithms.

Method MS MS± ASMS SOAMST LGT TLD CT STRUCK
max 14.4 61 48 6107 864 152 36 112
min 0.4 0.8 0.6 207 107 6 11 43

mean 2.9 7.3 6.1 816 250 51 21 82

Table 4.8: Processing speed in milliseconds. Max (min) are computed as a maximum
(minimum) of the average time per sequence; mean is the average time over all se-
quences.

4.2.6 Conclusions

In this work, a theoretically justified scale estimation for the mean-shift algorithm using
Hellinger distance has been proposed. The new scale estimation procedure is regular-
ized, which makes it more robust. Furthermore, we proposed a new formulation of the
histogram bin weighting function (BRW) that takes into account background appear-
ance. The formulation is general and can be used in any MS-based algorithm. The
increase in performance when using BRW is shown in Figure 4.18.

We introduced the Forward-Backward scheme for automatic decision to accept the
newly estimated scale or to use a more robust weighted combination, which is shown to
reduce erroneous scale updates. This technique reduces tracking speed twice, however,
ASMS is still faster then MS± and outperforms the speed of the state-of-the-art methods
by a large margin (see Table 4.8).

The newly proposed ASMS has been compared with the state-of-the-art algorithms
on a very large dataset of tracking sequences. It outperforms the reference algorithms
in the average recall, processing speed and it achieves the best score for 30% of the
sequences (the highest percentage among the reference algorithms) and it is the second
best performer for 13% of the sequences.

4.2.7 Appendix - Approximation of Ch

Let us assume we do not use an approximation for Ch. Thus to minimize the Hellinger
distance

ρ[p̂(y, h), q̂] =

=
∑m

u=1

√
Ch
∑N

i=1 k
(

(y1−x1i )2

a2h2
+

(y2−x2i )2

b2h2

)
δ[b(xi)− u]q̂u

(4.34)

is maximized using a gradient method. The only difference from the derivation using
the approximation (Eq. 4.20) is in the partial derivative w.r.t. h:
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∂ρ(y,h)
∂h

(ŷ0, h0) =

=
Ch0

(h0)2

[
1
h0

∑N
i=1wi ·

(
(ŷ10−x1i )2

a2
+

(ŷ20−x2i )2

b2

)
· g
(

(ŷ10−x1i )2

a2h20
+

(ŷ20−x2i )2

b2h20

)
−h0

∑N
i=1wi · k

(
(ŷ10−x1i )2

a2h20
+

(ŷ20−x2i )2

b2h20

)
· A
]
,

(4.35)

where

A =

∑N
i=1

(
(ŷ10−x1i )2

a2
+

(ŷ20−x2i )2

b2

)
· g
(

(ŷ10−x1i )2

a2h20
+

(ŷ20−x2i )2

b2h20

)
∑N

i=1 k
(

(ŷ10−x1i )2

a2h20
+

(ŷ20−x2i )2

b2h20

) , (4.36)

and A tends to 1 for large numbers of pixels in a target candidate. The proposed
approximation replaces A by 1 and therefore eliminates the noise caused by A term for
small scales of the objects. It is illustrated in Figure 4.20 for a target represented by an
ellipsoidal region with a = 10 and b = 10 (i.e. object size equal to 20x20px).

Figure 4.20: Behaviour of A term for a target represented by an ellipsoidal region with
Epanechnikov kernel and a = 10 and b = 10 for a variable scale parameter h.
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Chapter 5

Towards Long-Term Tracking by
Tracker Fusion

In this chapter, we propose a novel method for visual object tracking called HMMTxD.
The method fuses observations from complementary out-of-the-box trackers and a de-
tector by utilizing a hidden Markov model whose latent states correspond to a binary
vector expressing the failure of individual trackers. The Markov model is trained in an
unsupervised way, relying on an online learned detector to provide a source of tracker-
independent information for a modified Baum-Welch algorithm that updates the model
w.r.t. the partially annotated data.

We show the effectiveness of the proposed method on a combination of two and
three tracking algorithms. The performance of HMMTxD is evaluated on two stan-
dard benchmarks (CVPR2013 and VOT) and a rich collection of 77 publicly available
sequences. The HMMTxD outperforms the state-of-the-art, often significantly, on all
datasets in almost all criteria.

5.1 Introduction
In the last thirty years, a large number of diverse visual tracking methods has been
proposed [YJS06, SCC+13a]. The methods differ in the formulation of the problem,
assumptions made about the observed motion, in optimization techniques, the features
used, in the processing speed, and in the application domain. Some methods focus on
specific challenges like tracking of articulated or deformable objects [KL09, GRB11,
ČKL13], occlusion handling [GMVGCne], abrupt motion [ZL10] or long-term track-
ing [PB13, KMM12].

Three observations motivate the presented research. First, most trackers perform
poorly if run outside the scenario for which they were designed. Second, some trackers
make different and complementary assumptions and their failures are not highly cor-
related (called complementary trackers in the paper). And finally, even fairly complex
well-performing trackers run at the frame rate or faster on standard hardware, opening
the possibility for multiple trackers to run concurrently and yet in or near real-time.

We propose a novel methodology that exploits a hidden Markov model (HMM)
for fusion of non-uniform observables and pose prediction of multiple complementary
trackers using an on-line learned high-precision detector. The non-uniform observables,
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in this sense, means that each tracker can produce its ”confidence estimate” which may
not be directly comparable to each other.

The HMM, trained in an unsupervised manner, estimates the state of the trackers
– failed, operates correctly – and outputs the pose of the tracked object taking into
account the past performance and observations of the trackers and the detector. The
HMM treats the detector output as correct if it is not in contradiction with its current
most likely state in which the majority of trackers are correct. This limits the cases
where the HMM would be wrongly updated by a false detection. For the potentially
many frames where reliable detector output is not available, it combines the trackers.
The detector is trained on the first image and interacts with the learning of the HMM
by partially annotating the sequence of HMM states in the time of verified detections.
The recall of the detector is not critical, but it affects the learning rate of the HMM and
the long-term properties of the HMMTxD method, i.e. its ability to reinitialize trackers
after occlusions or object disappearance.

Related work. The most closely related approaches include Santner et al. [SLS+10],
where three tracking methods with different rates of appearance adaptation are com-
bined to prevent drift due to incorrect model updates. The approach uses simple,
hard-coded rules for tracker selection. Kalal et al. [KMM12] combine a tracking-
by-detection method with a short-term tracker that generates so-called P-N events to
learn new object appearance. The output is defined either by the detector or the tracker
based on visual similarity to the learned object model. Both these methods employ
pre-defined rules to make decisions about object pose and use one type of measure-
ment, a certain form of similarity between the object and the estimated location. In
contrary, HMMTxD learns continuously and causally the performance statistics of in-
dividual parts of the systems and fuses multiple ”confidence” measurements in the form
of probability densities of observables in the HMM. Zhang et al. [ZMS14] use a pool of
multiple classifiers learned from different time spans and chose the one that maximizes
an entropy-based cost function. This method addresses the problem of model drifting
due to wrong model updates, but the failure modes inherent to the classifier itself re-
mains the same. This is unlike the proposed method which allows combining diverse
tracking methods with different inherent failure modes and with various learning strate-
gies to balance their weaknesses.

Similarly to the proposed method, Wang et al. [WY14] and Bailer et at. [BPS14]
fuse different out-of-the-box tracking methods. Bailer et al. combine offline the out-
puts of multiple tracking algorithms. There is no interaction between trackers, which
for instance implies that the method avoids failure only if one method correctly tracks
the whole sequence. Wang et al. use a factorial hidden Markov model and a Bayesian
approach. The state space of their factorial HMM is the set of potential object posi-
tions, and therefore it is very large. The model contains a probability description of the
object motion based on a particle filter. Trackers interact by reinitializing those with
low reliability to the pose of the most confident one. The Yuan et al. [YYFL15] using
HMM in the same setup, but rather than merging multiple tracking methods, they focus
on modeling the temporal change of the target appearance in the HMM framework by
introducing an observational dependencies. In contrast, the HMMTxD method is on-
line with tracker interaction via a high precision object detector that supervises tracker
reinitializations which happen on the fly. The appearance modeling is performed inside
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of each tracker and the HMMTxD capture the relation of the confidence provided by
tracker and its performance, validated by the object detector, by the observable distri-
butions. Moreover, the HMMTxD confidence estimation is motion-model free and this
prevents biases towards support of trackers with a particular motion model.

Yoon et al. [YKY12] combines multiple trackers in a particle filter framework. This
approach models observables and transition behavior of individual trackers, but the
trackers are self-adapting which makes it prone to wrong model updates. The adapta-
tion of HMMTxD model is supervised by a detector method set to a specific mode of
operation – near 100% precision – alleviating the incorrect update problem.

The contributions of this approach are: a novel method for fusion of multiple track-
ers based on HMMs using non-uniform observables, a simple, and so far unused, unsu-
pervised method for HMMs training in the context of tracking, a tunable feature-based
detector with very low false positive rate, and the creation of a tracking system that
shows state-of-the-art performance.

5.2 Fusing Multiple Trackers

HMMTxD uses a hidden Markov model (HMM) to integrate pose and observational
confidence of different trackers and a detector and updates its confidence estimates that
in turn define the pose that it outputs. In the HMM, each tracker is modeled as work-
ing correctly (1) or incorrectly (0). The HMM poses no constraints on the definition
of tracker correctness, and we adopted target overlap above a threshold. Having at our
disposal n trackers, the set of all possible states is {s1, s2, . . . , sN} = {0, 1}n, N = 2n

and the initial state s1 = (1, 1, . . . , 1). Note that the trackers are not assumed to be inde-
pendent, because an independence of tracker correctness is not a realistic assumption.
For example, if the tracking problem is relatively easy, all trackers tend to be correct
and in the case of occlusion all tend to be incorrect (see the analysis in [KML+16]).
The number of states 2n grows exponentially with the number of trackers. However, we
do not consider this a significant issue – due to ”real-time” requirements of tracking,
the need to combine more than a small number of trackers, say n = 4, is unlikely.

The HMMTxD method overview is illustrated in Figure 5.1. Each tracker provides
an estimate of the object pose (Bi) and a vector of observables (xi), which may contain
a similarity measure to some model (such as normalized cross-correlation to the initial
image patch or a distance of template and current histograms at given position) or any
other estimates of the tracker performance. The xi, i = {1, 2, . . . ,n} serve as observ-
ables to relate the tracker current confidence to the HMM. Each individual observable
depends only on one particular tracker and its correctness, hence, they are assumed to
be conditionally independent conditioned on the state of the HMM (which encodes the
tracker correctness).

In general, there are no constraints on observable values, however, in the proposed
HMM the observable values are required to be normalized to the (0, 1) interval. The
observables are modeled as beta-distributed random variables (Eq. 5.1), and its param-
eters are estimated online. The beta distribution was chosen for its versatility, where
practically any kind of unimodal random variable on (0, 1) can be modeled by the beta
distribution, i.e. for any choice of any lower and upper quantiles, a beta distribution
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Figure 5.1: The structure of the HMMTxD. For each frame, the detector and trackers are
run. Each tracker outputs a new object pose and observables (Bi,xi) and the detector
outputs either the verified object pose Bd or nothing. If detector fires, HMM is updated
and trackers are reinitialized and the final output is the Bd, otherwise, HMM estimate
the most probable state s∗ and outputs an average bounding box B̄s∗ of trackers that are
correct in the estimated state s∗.

exists satisfying the given quantile constraint [GN04].
Learning the parameters of the beta distributions online is crucial for the adaptability

to particular tracking scenes, where the observable values from different trackers may
be biased due to scene properties, or to adapt to different types of observables of trackers
and their correlations to the ”real” tracker performance. For example, taking correlation
with the initial target patch as an observable for one tracker and color histogram distance
to an initial target for a second tracker, the correlation between their values and the
performance of the tracker may differ depending on object rigidity and color distribution
of object and background.

The HMM is parameterized by the pair λ = (A,F ), where A are the probabilities
of state transition and F are the beta distributions of observables with shape parameters
p, q > 0 and density defined for x ∈ (0, 1)

f(x|p, q) =
xp−1(1− x)q−1∫ 1

0
up−1(1− u)q−1du

. (5.1)

Since the goal is real-time tracking without any specific pre-processing, learning of
HMM parameters has to be done online. Towards this goal, the object detector, which is
set to operating mode with low false positive rate, is utilized to annotate the sequence of
hidden states partially. In contrast to classical HMM, where only a sequence of obser-
vations X = {Xt}Tt=1, Xt = (x1,x2, . . . ,xn) is available, we are in a semi-supervised
setting and have a time sequence 0 = t0 < t1 < t2 . . . < tK ≤ T of observed states
of a Markov chain S = {Stk = sik , {tk}Kk=1}, and Markov chain starting again in state
s1, all trackers correct, at any time {tk + 1, 0 ≤ k ≤ K}, since there are reinitialized
to common object pose. This information is provided by the detector, where {tk}Kk=1 is
a sequence of detection times. The HMM parameters are learned by a modified Baum-
Welch algorithm runs on the observations X and the annotated sequence of states S.
The partial annotation and HMM parameter estimation update is done strictly online.
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Figure 5.2: Illustration of HMM state and trackers probability estimation during track-
ing. The bottom graph shows the marginal probabilities for each tracker being correct
and the detection times (green spikes). Above the graph the inferred states s∗t with color
encoded correct trackers (1) are displayed. The final output is defined by the state s∗t
and the bounding box is highlighted by white color. Best viewed zoomed in color.

The output of the HMMTxD is an average bounding box of correct trackers of the
current most probable state s∗t . For t(k−1) < t < tk, 1 ≤ k ≤ K the forward-backward
procedure [Rab89] for HMM is used to calculate probability of each state at time t (see
Eq. 5.15-5.21) and the state s∗t ∈ {0, 1}n \ (0, 0, . . . , 0) is the state for which

P (St = si|X1, . . . , Xt, St1 , . . . , St(k−1)
, λ) (5.2)

is maximal. This equation is computed using Eq. 5.19 and maximized w.r.t i, 1 ≤
i ≤ N . For tK < t ≤ T the Eq. 5.2 holds with t(k−1) = tK . This ensures that the
algorithm outputs a pose for each frame which is required by most benchmark pro-
tocols. Illustration of the tracking process and HMM insight is shown in Figure 5.2.
Theoretically, the parameters of HMM could be updated after each frame. However,
in our implementation, learning takes place only at frames where the detector posi-
tively detects the object, i.e. the sequence of states starting and ending with observed
state inferred by the detector1. The detector is only used if the detection pose is not
in contradiction with the pose of the current most probable state in which the majority
of trackers are correct. This ensures that even when the detector makes a mistake, the
HMM is not wrongly updated. When we are in the state that one or none of the trackers
are correct, the detector gets precedence.

5.3 Learning the Hidden Markov Model

For learning of the parameters λ of the HMM an MLE inference is employed, how-
ever maximizing the likelihood function P (X,S|λ) is a complicated task that cannot
be solved analytically. In the proposed method, the Baum-Welch algorithm [BPSW70]
is adapted. The Baum-Welch algorithm is a widespread iterative procedure for esti-
mating parameters of HMM where each iteration increases the likelihood function but,

1If pure online fusion is not required, future observations can also be used to determine the probability
of each state.
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in general, the convergence to the global maximum is not guaranteed. The Baum-
Welch algorithm is, in fact, an application of the EM (Expectation-Maximization) algo-
rithm [DLR77].

5.3.1 Classical Baum-Welch Algorithm
Let us assume the HMM with N possible states {s1, s2, . . . , sN}, the matrix of state
transition probabilities A = {aij}Ni,j=1, the vector of initial state probabilities π =
(1, 0, 0, . . . , 0), the initial state s1 = (1, 1, . . . , 1), a sequence of observations X =
{Xt}Tt=1, Xt ∈ Rm and F = {fi(x)}Ni=1 the system of conditional probability densities
of observations conditioned on St = si

fi(x) = f(x|St = si) for 1 ≤ i ≤ N, 1 ≤ t ≤ T, x ∈ Rm (5.3)

where St are random variables representing the state at time t, and λ = (A,F ) is
denoting the parameter set of the model.

Let us denote
Q(λ, λ′) =

∑
s∈S

P (s|X, λ) log[P (s,X|λ′)], (5.4)

where S = {s1, s2, . . . , sN}T is a set of all possible T-tuples of states and
s ∈ S, s = (s1, . . . , st, . . . , sT ) is one sequence of states. According to Theorem 2.1.
in [BPSW70]

Q(λ, λ′) ≥ Q(λ, λ)⇒ P (X|λ′) ≥ P (X|λ) (5.5)

and the equality holds if and only if P (s|X, λ) = P (s|X, λ′) for ∀s ∈ S. The classical
Baum-Welch algorithm repeats the following steps until convergence:

1. Compute λ∗ = arg maxλQ(λn, λ)

2. Set λn+1 = λ∗.

5.3.2 Modified Baum-Welch Algorithm
We propose the modified Baum-Welch algorithm that exploits the partially annotated
sequence of states, where the known states are inferred from the detector output. Let
0 = t0 < t1 < t2 . . . < tK ≤ T be a sequence of detection times, S = {Stk =
sik , {tk}Kk=1} be observed states of Markov chain, marked by the detector, and Stk+1 =
s1 for 0 ≤ k ≤ K. So the sequence of observations of the HMM is divided into K + 1
independent subsequences, each with a fixed initial state s1, the first K subsequences
with a known terminal state defined by the detector and the last subsequence with an
unknown terminal state.

The following equations are obtained by employing the modification to the Baum-
Welch algorithm,

log[P (s,X, S|λ)] =
T−1∑
t=1

log astst+1 +
T∑
t=1

log fst(Xt), (5.6)
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Q(λn, λ) =
∑
s∈S

P (s|X,S, λn)
T−1∑
t=1

log astst+1+

∑
s∈S

P (s|X,S, λn)
T∑
t=1

log fst(Xt).

(5.7)

The maximization of theQ(λn, λ) can be separated to maximization w.r.t. transition
probability matrix A = {aij}Ni,j=1 by maximizing the first term and w.r.t. observable
densities F = {fi(x)}Ni=1 by maximizing the second term.

The maximization of Eq. 5.7 w.r.t. A constrained by
∑N

j=1 aij = 1 for 1 ≤ i ≤ N

is obtained by re-estimating the parameters Â = {âij}Ni,j=1 as follows:

âij =
expected number of transitions from state si to state sj

expected number of transitions from state si

=

∑T−1
(t=1 and t6=tk,1≤k≤K) P (St = si, St+1 = sj|X,S, λ)∑T−1

(t=1 and t6=tk,1≤k≤K) P (St = si|X,S, λ)
. (5.8)

This equation is computed using modified forward and backward variables of the
Baum-Welch algorithm to reflect the partially annotated states. For the exact derivation
of formulas for computation of âij see Appendix 5.8.

Learning Observable Distributions

The maximization of Eq. 5.7 w.r.t. F = {fi(x)}Ni=1 depends on assumptions on the
system of probability densities F . It is usually assumed (e.g. in [Rab89, BPSW70])
that F is a system of probability distributions of the same type and differ only in their
parameters.

In the HMMTxD the m-dimensional observed random variables
Xt = (X1

t , X
2
t , . . . , X

m
t ) ∈ Rm are assumed conditionally independent and to have the

beta-distribution, so fi(x), 1 ≤ i ≤ N are products of m one-dimensional beta distri-
butions with parameters of shape {(pij, qij)}mj=1, 1 ≤ i ≤ N . In this case maximization
of the second term of Eq. 5.7 is an iterative procedure using inverse digamma function
which is very computationally expensive [GN04].

We propose to estimate the shape parameters of the beta distributions with a gener-
alized method of moments. The classical method of moments is based on the fact that
sample moments of independent observations converge to its theoretical ones due to the
law of large numbers for independent random variables. In the HMMTxD observations
X = {Xt}Tt=1 are not independent. The generalized method of moments is based on the
fact that {Xt−E(Xt|X1, X2, . . . , Xt−1)}Tt=1 is a sequence of martingale differences for
which the law of large numbers also holds. Using the generalized method of moments
gives estimates of the parameters of shape

p̂ji = µ̂ji

(
µ̂ji (1− µ̂

j
i )

(σ̂ji )
2
− 1

)
(5.9)

and

q̂ji = (1− µ̂ji )

(
µ̂ji (1− µ̂

j
i )

(σ̂ji )
2
− 1

)
(5.10)
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where

µ̂ji =

∑T
t=1X

j
t P (St = si|X,S, λ)∑T

t=1 P (St = si|X,S, λ)
(5.11)

and

(σ̂ji )
2 =

∑T
t=1(Xj

t − µ̂
j
i )

2P (St = si|X,S, λ)∑T
t=1 P (St = si|X,S, λ)

. (5.12)

Let us denote the system of probability densities with re-estimated parameters as
F̂ = {f̂i(x)}Ni=1. The generalized method of moments is described in detail in the 5.9.

Algorithm Overview

The complete modified Baum-Welch algorithm is summarized in Alg. 4, where af-
ter each iteration P (X,S|λn+1) ≥ P (X,S|λn) and we repeat these steps until con-
vergence. Note that Ân is a maximum likelihood estimate of A therefore always in-
creases P (X,S|λn) (shown in [Rab89]) but F̂n is estimated by the method of moments
so the test on likelihood increase is required (”if statement” in the Alg. 4). In fact,
this algorithm structure matches to the generalized EM algorithm (GEM) introduced in
[DLR77].

Algorithm 4: Algorithm for HMM parameters learning
Input: X,S, λn = (An, Fn)
Output: λn+1 = (An+1, Fn+1)
repeat

Compute likelihood P (X,S|λn)

Estimate Ân by Eq. 5.8 and F̂n by Eq. 5.9, 5.10
if P (X,S|Ân, F̂n) < P (X,S|An, Fn) then

λn+1 = (Ân, Fn)
else

λn+1 = (Ân, F̂n)

λn = λn+1 = (An+1, Fn+1)

until convergence ∨ max number of iteration

5.4 Feature-Based Detector
The requirements for the detector are adjustable operation mode (e.g. set for high preci-
sion but possibly low recall), (near) real-time performance and the ability to model pose
transformations up to at least similarity (translation, rotation, isotropic scaling). Any
detector-like approach can be used and it may vary based on application. We choose to
adopt a feature-based detector which has been shown to perform well in image retrieval,
object detection and object tracking [PB13] tasks.

There are many possible combinations of features and their descriptors with differ-
ent advantages and drawbacks. We exploit multiple feature types: specifically, Hessian
key points with the SIFT [Low04] descriptor, ORB [RRKB11] with BRISK and ORB
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with FREAK [Ort12]. Each feature type is handled separately, up to the point where
point correspondences are established. A weight value is assigned to each feature type
wg and is set to be inversely proportional to the number of features on the reference
template, to balance the disparity in individual feature numbers.

The detector works as follows. In the initialization step, features are extracted from
the inside and the outside of the region specifying the tracked object. Descriptors of the
features outside of the region are stored as the background model.

Usually, the input region is not 100% occupied by the target; therefore, fast color
segmentation [KPSK14] attempts to delineate the object more precisely than the axis-
aligned bounding box to remove the features that are most likely not on the target. The
step is not critical for the function of the detector, since the bounding box is a fall-back
option. We assume that at least 50% of the bounding box is filled with pixels that belong
to the target, if the segmentation fails (returns a region containing less than 50% of the
area of the bounding box), all features in the initial bounding box are used.

Additionally, for each target feature, we use a normal distribution N (µf , σ2f ) to
model the similarity of the feature to other features. The parameters µf and σ2f are
estimated in the first frame by randomly sampling 100 features, other than f , and com-
puting distances to the feature f , from which the mean and variation are computed.
This allows defining the quality of correspondence matches in a probabilistic manner
for each feature, thus getting rid of a global static threshold for the acceptable corre-
spondence distance.

In the detection phase, features are detected and described in the whole image. For
each feature gi from the image the nearest neighbour (in Euclidean space or in Hamming
distance metric space, depending on the feature type) feature b∗ from the background
model and the nearest neighbour feature f ∗ from the foreground model are computed.
A tentative correspondence is formed if the feature match passes the second nearest
neighbour test and a probability that the correspondence distance belongs to the outlier
distribution is lower than a predefined significance set to 0.1%. So

d(gi, f
∗)

d(gi, b∗)
< 0.8 ∧ F(d(gi, f

∗)|µf∗ , σ2f∗) < 0.1% (5.13)

whereF(d|µf∗ , σ2f∗) is a c.d.f. of the normal distribution with parameters µf∗ and σ2f∗

of a distance distribution of features not corresponding to f ∗. The 0.1% significance
corresponds to the µ − 3σ threshold. Finally, RANSAC estimates the target current
pose using a sum of weighted inliers as a cost function for model support

cost =
∑
i

wgi ∗ [gi == inlier], (5.14)

which takes into account the different numbers of features per feature type on the target.
The decision whether the detected pose is considered correct depends on the number

of weighted inliers that supports the RANSAC-selected transformation and it controls
the trade-off between precision and recall of the method. This threshold is automatically
computed in the first frame of the sequence as max(5,min(0.03 ∗ #fc, 10)), where #fc
is the number of features in the initial bounding box. The threshold interval (5,10) and
the feature multiplier (0.03) were set experimentally to have the false positive rate close
to zero for the most of the testing sequences. Furthermore, majority voting is used to

93



si
ng
er
2

si
ng
er
1(
lo
w
fp
s)

so
cc
er

w
om

an

gy
m
na
st
ic
s

cl
iff
-d
iv
e2

di
vi
ng

p
er
so
n

sk
at
in
g1

P
an
da

ba
sk
et
ba
ll

gi
rl
m
ov

ha
nd
2

di
no
sa
ur

A
sa
da

bi
rd

1

tr
an
s

ca
r1
1

ju
m
p

V
ol
ks
w
ag
en

M
ot
oc
ro
ss

p
ed
es
tr
ia
n4

C
ar
C
ha
se

ti
ge
r2

sk
at
in
g2

sk
at
in
g1
(l
ow

fp
s)

bi
rd

2

an
im
al

p
ed
es
tr
ia
n3

ti
ge
r1

su
rf
er

fig
ur
e
sk
at
in
g

fo
ot
ba
ll

V
id

L

gy
m

vo
lle
yb
al
l

sk
iin
g

dr
un
k2

m
ot
oc
ro
ss
1

b
oa
rd

cl
iff
-d
iv
e1

V
id

J

gi
rl

ha
nd

co
ke

do
g1

V
id

K

sh
ak
in
g
ca
m
er
a

b
ol
t

V
id

E

ju
m
pi
ng

tr
el
lis

V
id

F

sh
ak
in
g

b
ox

to
ru
s

V
id

I

da
vi
d

V
id

D

V
id

A

Sy
lv
es
tr

si
ng
er
1

le
m
m
in
g

V
id

G

m
ou
nt
ai
n-
bi
ke

du
de
k-
fa
ce

liq
uo
r

he
ad

m
ot
io
n

V
id

B

O
cc
lu
de
dF
ac
e2ca
r

fa
ce
oc
c1

p
ed
es
tr
ia
n5

m
ot
oc
ro
ss
2

tr
ac
k
ru
nn
in
g

V
id

H

V
id

C

0

20

40

60

80

100

Figure 5.3: Frames with the detections for 77 sequences dataset. The green marks show
true positive detections and red marks are false positive. The blue line shows the recall
of the detector and blue dashed line shows the average recall over all sequences. The
length of each sequence is normalized to range (0, 100).

verify that the detection is not in contradiction to the estimated HMM state, i.e. if we
are in the state where two or more (majority) trackers are correct and the detector is
not consistent with them, the detection is not used. This mitigates the false positive
detections, therefore HMM updates, when the trackers work correctly (based on the
HMM model).

The true and false positives for 77 sequences are shown in Figure 5.3, where the
detector works on almost all sequences with zero false positive rate (0.46% average
false positive rate on the dataset) and 30% recall rate. The failure cases of this feature-
based detector are mostly caused by the imprecise initial bounding box, which contains
a significant portion of structured background (i.e. background where the detector finds
features) and due to the presence of a similar object in the scene, e.g. sequences hand2,
basketball, singer2.

5.5 HMMTxD Implementation

To demonstrate the performance of the proposed framework, a pair and a triplet of
published short-term trackers were plugged into the framework to show the performance
gain by a combination of a different number of trackers. As Bailer et al. [BPS14]
pointed out, not all trackers, when combined, can improve the overall performance (i.e.
adding tracking method with similar failure mode will not benefit).

Therefore, we choose methods that have different designs and work with differ-
ent assumptions (e.g. rigid global motion vs. color mean-shift estimation vs. maxi-
mum correlation response). These trackers are the Flock of Trackers (FoT) [VM14],
scale adaptive mean-shift tracker (ASMS) [VNM13] and kernelized correlation filters
(KCF) [HCMB15]. This choice shows that superior performance can be achieved by us-
ing simple, fast trackers (above 100fps) that may not represent the state-of-the-art. The
trackers can be arbitrarily replaced depending on the user application or requirements.
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Trackers

The Flock of Trackers (FoT) [VM14] evenly covers the object with patches and es-
tablishes a frame-to-frame correspondence by the Lucas-Kanade method [LK81]. The
global motion of the target is estimated by RANSAC.

The second tracker is a scale adaptive mean-shift tracker (ASMS) [VNM13] where
the object pose is estimated by minimizing the distance between RGB histograms of
the reference and the candidate bounding box. The KCF [HCMB15] tracker learns a
correlation filter by a ridge regression to have high response to the target object and low
response on a background. The correlation is done in the Fourier domain which is very
efficient.

These three trackers have been selected since they are complementary by design.
FoT enforces a global motion constraint and works best for a rigid object with texture.
On the other hand, ASMS does not enforce object rigidity and is well suited for artic-
ulated or deformable objects assuming their color distribution is discriminative w.r.t.
the background. KCF can be viewed as a tracking-by-detection approach using sliding
window like scanning.

For each tracker position, two global observable measurements are computed, namely
the Hellinger distance between the target template histogram and the histogram of the
current position and the normalized cross-correlation score of the current patch and
the target model patch. These target models are initialized in the first frame and then
updated exponentially with factor of 0.5 during each positive detection of the detector
part. Additionally, each tracker produces its estimate of performance. For FoT it is the
number of predicted correspondences (for details please see [VM14]) that support the
global model. For ASMS it is the Hellinger distance between its histogram model and
current neighbourhood background (i.e. color similarity of the object and background)
and for KCF it is a correlation response of the tracking procedure.
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Figure 5.4: CVPR2013 OPE benchmark comparison of individual trackers and their
combination in the proposed HMMTxD. The 2-HMMTxD denotes the combination of
FoT and ASMS trackers and 3-HMMTxD is a combination of FoT, ASMS and KCF
trackers. Det stands for the proposed detector. The right plot show simple combination
of individual trackers with the proposed detector. Suffix ”-D” refers to the combination
with detector.
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5.6 Experiments

The HMMTxD was compared with state-of-the-art methods on two standard bench-
marks and on a dataset TV772 containing 77 public video sequences collected from
tracking-related publications. The dataset exhibits a wider diversity of content and vari-
ability of conditions than the benchmarks.

Parameters of the method were fixed for all the experiments. In the HMM, the
initial beta distribution shape parameters (p, q) were set to (2, 1) for the correct state
(1) and (1, 2) for fail state (0) for all observations. The transition matrix was set to
prefer staying in the current state and has 0.98 on diagonal, 0 in fist column, 0.001 in
the last column, 1e − 10 in the last row and 0.05 otherwise. The matrix is normalized
so that rows sum to one. States in the matrix are binary encoded starting from the left
column which corresponds to the state s1 = (1, ..., 1). The number of iterations for the
Baum-Welch alg. was set to 3.

The processing speed on the VOT2015 dataset is (in frames per second) minimum
1.03, maximum 33.72 and average 10.83 measured on a standard notebook with Intel
Core-i7 processor. This speed is mostly affected by the number of features detected in
the images which correlate to the resolution of the image (in the dataset the range is
from 320x180 to 1280x720).

First, we compare the performance of individual parts of the HMMTxD framework
(i.e. KCF, ASMS, FoT trackers) and their combination via HMM as proposed in this
paper. Two variants of HMMTxD are evaluated – 2-HMMTxD refers to a combina-
tion of FoT and ASMS trackers and the 3-HMMTxD to a combination of all mentioned
trackers. We also show the benefit of the proposed detector when simply combined with
the individual trackers in such way that if detector fires the tracker is reinitialized. The
Figure 5.4 shows the benefit gained from the detector and further consistent improve-
ment achieved by the combination of the trackers. More detailed per sequence analysis
on the TV77 dataset (Figure 5.5 and Figure 5.6) shows more clearly the efficiency of
learning tracker performance online. In almost all sequences the HMMTxD is able to
identify and learn which trackers work correctly and achieve the performance of at least
the best tracker or higher (e.g. motocross1, skating1(low), Volkswagen, singer1, pedes-
trian3, surfer). Most notable failure cases are caused by the detector failure, e.g. in
sequences singer2, woman, skating1, basketball, girl mov.

In all other experiments, the abbreviation HMMTxD refers to the combination of
all 3 trackers.

Evaluation on the CVPR2013 Benchmark [WLY13] that contains 50 video se-
quences. Results on the benchmark have been published for about 30 trackers. The
benchmark defines three types of experiments: (i) one-pass evaluation (OPE) – a tracker
initialized in the first frame is run to the end of the sequence, (ii) temporal robustness
evaluation (TRE) – the tracker is initialized and starts at a random frame, and (iii) spa-
tial robustness evaluation (SRE) – the initialization is perturbed spatially. Performance
is measured by precision (spatial accuracy, i.e. a center distance of ground truth and
reported bounding box) and success rate (the number of frames where the overlap with
the ground truth was higher than a threshold). The results are visualized in Figure 5.7

2http://cmp.felk.cvut.cz/˜vojirtom/dataset/index.html
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Figure 5.5: Per sequence analysis of the single trackers (i.e. KCF, ASMS, FoT) and the
proposed HMMTxD. The average recall is shown by the dashed lines (precise number
is in the legend). Black circles mark grayscale sequences. The sequences are ordered
by HMMTxD performance.
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Figure 5.6: Per sequence analysis of the single trackers combined with the detector (i.e.
KCF-D, ASMS-D, FoT-D) and the proposed HMMTxD. The average recall is shown
by the dashed lines (precise number is in the legend). Black circles mark grayscale
sequences. The sequences are ordered by HMMTxD performance.

where only results of the 10 top performing trackers are plotted. Together with the
tracker from this benchmark, we also added the MEEM [ZMS14] tracker, which is a
recent state-of-the-art tracker. The proposed HMMTxD outperforms all trackers in the
success rate in all three experiments. Its precision is comparable to MEEM [ZMS14]
the top performing tracker in terms of precision. HMMTxD outperforms significantly
the OPE results reported in Wang et al. [WY14], where 5 top performing trackers from
this particular benchmark were used for combination (other experiments were not re-
ported in the paper).

VOT2013 benchmark [KPL+13] evaluates trackers on a collection containing 16
sequences carefully selected from a large pool by a semi- automatic clustering method.
For comparison, results of 27 tracking methods are available and the added MEEM
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Figure 5.7: Evaluation of HMMTxD on the CVPR2013 Benchmark [WLY13]. The
top row shows the success rate as a function of the overlap threshold. The bottom row
shows the precision as a function of the localization error threshold. The number in the
legend is AUC, the area under ROC-curve, which summarizes the overall performance
of the tracker for each experiment.

tracker was evaluated by us using default setting from the publicly available source
code. The performance is measured by accuracy – average overlap with the ground
truth – and robustness – the number of re-initialization of the tracker so that it is able to
track the whole sequence. Average rank of trackers is used as an overall performance
indicator.
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Figure 5.8: Evaluation of HMMTxD on the VOT 2013 Benchmark [KPL+13].
HMMTxD result is shown as the red circle. The left plot shows the ranking in ac-
curacy (vertical axis) and robustness (horizontal axis) and the right plot shows the raw
average values of accuracy and robustness (normalized to the (0, 1) interval). For both
plots the top right corner is the best performance.

In this benchmark, the proposed HMMTxD achieves clearly the best accuracy (Fig-
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Figure 5.9: Evaluation of state-of-the-art trackers on the TV77 dataset in terms of recall,
i.e. number of correctly tracked frames. The average recall is shown by the dashed
lines (precise number is in the legend). Black circles mark grayscale sequences. The
sequences are ordered by HMMTxD performance.

ure 5.8). With less than one re-initialization per sequence, it performs slightly worse in
terms of robustness due to two reasons.

Firstly, the HMM recognizes a tracker problem with a delay and switching to other
tracker (here even one frame where the overlap with the ground truth is zero leads to
penalization) and secondly the VOT evaluation protocol, which requires re-initialization
after failure and to forget all previously learned models (the VOT2013 refer to this as
causal tracking), therefore the learned performance of the trackers is forgotten and has
to be learned from scratch.

The results of the baseline and region-noise experiments are shown in Figure 5.8.
Note that the ranking of the methods differs from the original publication since two new
methods (HMMTxD and MEEM) were added and the relative ranking of the methods
changed. The top three performing trackers and their average ranks are HMMTxD
(8.77), PLT (9.24), LGTpp [XSL13] (10.11). MEEM tracker ends up at the fifth place
with average rank 10.87. The ranking was obtained by the provided VOT toolkit in
default settings for baseline and region noise experiments.

The second best performing method on the VOT2013 is the unpublished PLT for
which just a short description is available in [KPL+13]. PLT is a variation of structural
SVM that uses multiple features (color, gradients). STRUCK [HST11] and MEEM [ZMS14]
are similar methods to the PLT based on SVM classification. We compared these meth-
ods with HMMTxD on the diverse 77 videos along with the TLD [KMM12] which has
a similar design as HMMTxD. HMMTxD outperforms all these methods by a large
margin on average recall – measured as the number of frames where the tracker overlap
with the ground truth is higher than 0.5 averaged over all sequences. Results are shown
in Figure 5.9. Qualitative comparison of these state-of-the-art methods is shown in Fig-
ure 5.10. Even for sequences with lower recall (e.g. bird 1, skating2), the HMMTxD is
able to follow the object of interest.

Other VOT benchmarks (2014, 2015) [KPL+14, KML+15] were also used to eval-
uate the performance of the HMMTxD tracker. In the VOT2014 Challenge, described
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Figure 5.10: Qualitative comparison of the state-of-the-art trackers on challenging se-
quences from the TV77 dataset (from top bird 1, drunk2, singer1, skating2, surfer,
Vid J).

in the [KPL+14], the HMMTxD fused only the FoT and ASMS tracker and ranked 8
of 33 trackers. In the VOT 2015 Challenge, the HMMTxD, which was extended by
the baseline KCF tracker, achieved the state-of-the-art results i.e. outperformed the
state-of-the-art bound as estimated by the VOT, even though the individual trackers did
not score well (except ASMS). Moreover, the HMMTxD outperformed all the indi-
vidual trackers that are used for fusion, hence, demonstrating the effectiveness of the
proposed method. The VOT2015 results are described in Section 3.5. In overall rank,
the HMMTxD ranks as 19 of 62, whereas the ASMS ranks 20, FoT ranks 50 and im-
proved versions of the baseline KCF tracker rank 40 and 41. These ranks show that
the only tracker, from the combination, that performed well was ASMS tracker, which
was rightly identified by the HMMTxD and the performance was slightly improved by
exploiting the other trackers in small portions of the dataset.

5.7 Conclusions
A novel method called HMMTxD for fusion of multiple trackers had been proposed.
The method utilizes an on-line trained HMM to estimate the states of the individ-
ual trackers and to fuse different types of observables provided by the trackers. The
HMMTxD outperforms its constituent parts (FoT, ASMS, KCF, Detector and its com-
binations) by a large margin and shows the efficiency of the HMM with the combination
of three trackers.

HMMTxD outperforms all methods included in the CVPR2013 benchmark and
performs favorably against most recent state-of-the-art tracker. The HMMTxD also
outperforms all method of the VOT2013 benchmark in accuracy, while maintaining
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good robustness, and ranking in the first place in the overall ranking. Experiments con-
ducted on a diverse dataset TV77 show that the HMMTxD outperforms state-of-the-art
MEEM, STRUCK and TLD methods, which are similar in design, by a large margin.
The processing speed of the HMMTxD is 5− 15 frames per second on average, which
is comparable with other complex tracking methods.

5.8 Appendix - Forward-Backward Procedure for Mod-
ified Baum-Welch Algorithm

Let us assume the HMM with N possible states {s1, s2, . . . , sN}, the matrix of state
transition probabilities A = {aij}Ni,j=1, the vector of initial state probabilities π =
(1, 0, 0, . . . , 0), the initial state s1 = (1, 1, . . . , 1), a sequence of observations X =
{Xt}Tt=1, Xt ∈ Rm and F = {fi(x)}Ni=1 the system of conditional probability densities
of observations conditioned on St = si.

Let 0 = t0 < t1 < t2 . . . < tK ≤ T be a sequence of detection times, S =
{Stk = sik , {tk}Kk=1} be observed states of Markov chain, marked by the detector, and
Stk+1 = s1 for 0 ≤ k ≤ K.

The forward variable for the Baum-Welch algorithm is defined as follows. Let 1 ≤
i ≤ N, 1 ≤ k ≤ K, t(k−1) < t ≤ tk and

αt(i) = P (Xt(k−1)+1, . . . , Xt, St = si|λ) then (5.15)

αt(k−1)+1(1) = f1(Xt(k−1)+1), (5.16)

αt(k−1)+1(i) = 0 for i 6= 1 (5.17)

and for t(k−1) < t < tk

α(t+1)(i) =
N∑
j=1

αt(j)ajifi(Xt+1), (5.18)

P (St = si|X1, . . . Xt, St1 , St2 , . . . , St(k−1)
, λ) =

αt(i)∑N
j=1 αt(j)

. (5.19)

For tK < t < T the forward variable is in principle the same as above with t(k−1) = tK .
So

P (XtK+1, . . . , XT |λ) =
N∑
i=1

αT (i) (5.20)

P (X,S|λ) =
K∏
k=1

αtk(ik) ∗
N∑
i=1

αT (i) where Stk = sik . (5.21)

The backward variable for t(k−1) < t < tk is

βt(i) = P (Xt+1, . . . , Xtk , Stk |St = si, λ), (5.22)
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where βtk(ik) = 1 and βtk(i) = 0 for i 6= ik and

βt(i) =
N∑
j=1

aijfj(Xt+1)βt+1(j). (5.23)

For tK < t < T the backward variable is in principle the same as above where βT (i) =
1 for 1 ≤ i ≤ N .

Given the forward and backward variables, we get the following probabilities, that
are used to update parameters of HMM. For 0 < t < T and t 6= tk, 1 ≤ k ≤ K

P (St = si, St+1 = sj|X,S, λ) = (5.24)

αt(i)aijfj(Xt+1)β(t+1)(j)∑N
k=1

∑N
l=1 αt(k)aklfl(Xt+1)βt+1(l)

(5.25)

and for 0 < t ≤ T

P (St = si|X,S, λ) =
αt(i)βt(i)∑N
j=1 αt(j)βt(j)

. (5.26)

The final equation for the update of transition probabilitiesA of HMM is as follows.

âij =
expected number of transitions from state si to state sj

expected number of transitions from state si
(5.27)

=

∑T−1
(t=1 and t6=tk,1≤k≤K) P (St = si, St+1 = sj|X,S, λ)∑T−1

(t=1 and t6=tk,1≤k≤K) P (St = si|X,S, λ)
. (5.28)

5.9 Appendix - Generalized Method of Moments
For a simplification let us assume HMM with one-dimensional observed random vari-
ables {Xt}+∞

t=1 , Xt ∈ R. The sequence {Xt−E(Xt|X1, X2, . . . , Xt−1)}+∞
t=1 is a martin-

gale difference series where

E(Xt|X1, X2, . . . , Xt−1) =
N∑
i=1

E(Xt|X1, X2, . . . , Xt−1, St = i)P (St = i) (5.29)

=
N∑
i=1

E(Xt|St = i)P (St = i). (5.30)

Under the assumption that {Xt}+∞
t=1 are uniformly bounded random variables i.e.

|Xt| < c, c ∈ (0,+∞) for all t ≥ 1, the strong law of large numbers for a sum of
martingale differences can be used(see Theorem 2.19 in [HH80]). So

lim
T→+∞

1

T

T∑
t=1

[Xt −
N∑
i=1

E(Xt|St = i)P (St = i)] = 0 almost surely. (5.31)
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Let us denote µi = E(Xt|St = i) for 1 ≤ t ≤ T and µ̂i the estimate of µi based on
the modified method of moments. The estimate µ̂i is a solution of a following equation
w.r.t. µi

1

T

T∑
t=1

Xt =
1

T

T∑
t=1

N∑
i=1

µiP (St = i). (5.32)

Having one equation for N unknown variables µi, 1 ≤ i ≤ N it is necessary to add
some constrains to get a unique solution. We propose to minimize

T∑
t=1

N∑
i=1

(Xt − µi)2P (St = i), (5.33)

w.r.t. µi, 1 ≤ i ≤ N giving

µ̂i =

∑T
t=1XtP (St = si)∑T
t=1 P (St = si)

(5.34)

which satisfy the moment equation (5.32). The same way of reasoning can be used for
higher moments of {Xt}Tt=1. For example using {(Xt)

2}Tt=1 we get estimates σ̂2
i for

σ2
i = var(Xt|St = i) for 1 ≤ t ≤ T ,

σ̂2
i =

∑T
t=1(Xt − µ̂i)2P (St = si)∑T

t=1 P (St = si)
. (5.35)

In the HMMTxDm-dimensional observed random variablesXt = (X1
t , X

2
t , . . . , X

m
t )

are assumed, each of them having beta- distribution and being conditionally indepen-
dent. There are well-known relations for a mean value EX and a variance varX of a
random variable X having beta distribution and its shape parameters (p, q)

p = EX

(
EX(1− EX)

varX
− 1

)
(5.36)

and

q = (1− EX)

(
EX(1− EX)

varX
− 1

)
. (5.37)

Using the modified method of moments gives

µ̂ji =

∑T
t=1X

j
t P (St = si|X,S, λ)∑T

t=1 P (St = si|X,S, λ)
(5.38)

and

(σ̂ji )
2 =

∑T
t=1(Xj

t − µ̂
j
i )

2P (St = si|X,S, λ)∑T
t=1 P (St = si|X,S, λ)

. (5.39)

Then

p̂ji = µ̂ji

(
µ̂ji (1− µ̂

j
i )

(σ̂ji )
2
− 1

)
(5.40)
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and

q̂ji = (1− µ̂ji )

(
µ̂ji (1− µ̂

j
i )

(σ̂ji )
2
− 1

)
. (5.41)

If we assume in our model λ = (A,F ) that for some {(ir, jr) ∈ {1, 2, . . . , N} ×
{1, 2, . . . ,m} : pjrir = p, qjrir = q}Rr=1 then

p̂ = µ̂

(
µ̂(1− µ̂)

σ̂2
− 1

)
(5.42)

and

q̂ = (1− µ̂)

(
µ̂(1− µ̂)

σ̂2
− 1

)
(5.43)

where

µ̂ =

∑R
r=1

∑T
t=1X

jr
t P (St = sir |X,S, λ)∑R

r=1

∑T
t=1 P (St = sir |X,S, λ)

(5.44)

and

σ̂2 =

∑R
r=1

∑T
t=1(Xjr

t − µ̂)2P (St = sir |X, S, λ)∑R
r=1

∑T
t=1 P (St = sir |X,S, λ)

. (5.45)
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Chapter 6

Conclusions

In the thesis, contributions to the short-term single target visual object tracking are
presented. Three tracking approaches were proposed each addressing a different aspect
of the tracking task. The first two, Flock of Trackers (FoT) and scale-adaptive means-
shift (ASMS), are robust short-term tracking methods with extremely fast processing
speed. The FoT method computes sparse optical flow correspondences from which a
target pose is robustly estimated via RANSAC. The RANSAC as a target pose estimator
allows for range of complex rigid transformation (e.g. affine transformation) of the
target between consecutive frames of a video sequence. The FoT achieved state-of-
the-art performance in the VOT2013 benchmark at processing speed between 150-300
fames per second and was used as a building block for complex applications such as
multi-object tracking frameworks (e.g. car tracking on highways [CVT+12]) or as an
temporal link between text detection in the TextSpotter software1 for text localization in
the videos.

The ASMS tracker introduced two novelties to the mean-shift tracking. A theoret-
ically justified method to optimize the target window position and size jointly and a
technique to incorporate a background information into the optimization. The ASMS
achieved state-of-the-art results in the VOT2015 benchmark at a speed higher than 100
frames per second and was declared as the best performing method in terms of a trade-
off between performance and running time.

To take advantage of strengths of the proposed methods (FoT and ASMS), we pro-
posed a novel tracking framework HMMTxD that fuses multiple tracking methods to-
gether with an online detector. The framework utilizes a hidden Markov model (HMM)
to learn online how well each tracking method performs using sparse detector outputs
and the estimates of confidence provided by the trackers. The HMM estimates the
probability that a tracker is correct in the current frame given the previously learned
HMM model and the tracker confidence. The HMMTxD framework enables to fuse
several trackers with different designs to automatically adapt in general tracking sce-
narios. The HMMTxD demonstrated state-of-the-art performance in multiple bench-
marks (VOT2014, VOT2015 and OTB) while running at around 15 frames per second
on average.

The thesis provided an overview to the Visual Object Tracking (VOT) evaluation
methodology and proposed an automatic algorithm for creating a dataset in a systematic

1http://textspotter.org/
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and user unbiased manner and unified evaluation criterion (EAO) for tracker ranking.
The VOT methodology enables the evaluation of different tracking approaches in a
standard way and comparison of results across publications and time. Furthermore,
workshops and tracking challenges on major conferences (ICCV 2013, ECCV 2014,
ICCV 2015) were organized, where the most recent tracking methods, submitted by
their authors, as well as baseline methods are compared and the result are discussed.
These workshops allow the computer vision community to contribute to a discussion
on further improvements to the methodology and to monitor the advance in the state-
of-the-art in the visual object tracking.

6.1 Future Work Discussion
The possible feature work that would continue the direction of the HMMTxD method is
the full extension for long-term tracking. The current HMMTxD (mainly the detector) is
able to re-detect the object and therefore run in long-term tracking scenarios. However,
its power to adapt to object appearance change is limited by the generalization power (or
invariance) of features used in the detection part of the framework. To truly enable the
long-term tracking capabilities, the method needs to incorporate a technique for long-
term sustainable (i.e. drift-free) appearance model learning. In the case of HMMTxD, it
is required to update the feature based detector in a way that it remains very precise but
adapts to the varying object appearance. This is known to be a very difficult task that
receiving high interest from computer vision community, and yet, it is far from being
”reasonably solved”.

The current trends in visual object tracking are diverging from the presented ap-
proaches. The benchmark (and also real world) objects of interest vary widely and are
complex (e.g. deformable or articulated), which shifts the priorities in tracking such
that the discriminative ability to distinguish the object and a background are more cru-
cial than ever. Recent state-of-the-art methods are mostly a discriminative correlation
or deep neural network based approaches. Their success lies in their high discriminative
power, which is shown to be more valuable in tracking benchmarks (e.g. VOT or OTB)
than precise motion estimation or processing speed.

The Visual Object Tracking (VOT) benchmark and methodology is still improving
thanks to colleagues and continuing effort of the VOT community. There are several as-
pects of VOT which are planned to be improved in the future, i) the dataset (ground truth
quality, more diverse sequences), ii) different types of experiments and more robust and
expressive evaluation criteria and iii) the evaluation toolkit (support for other program-
ming languages, faster processing, more plotting and visualization capabilities). In our
effort to improving these parts of VOT, we are mainly limited by the time and human
power since this project is mostly self-sponsored.
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Appendix A Resumé in Czech language

V této práci navrhujeme dvě nové metody pro krátkodobé sledovánı́ objektů: Flock of
Trackers (FoT) a Scale-Adaptive Mean-Shift (ASMS), a systém pro spojenı́ několika
metod sledovánı́ objektu s detektorem. Práce také přispı́vá k řešenı́ problému vyhodno-
covánı́ metod pro sledovánı́ objektů v rámci Visual Object Tracking (VOT) iniciativy.

Flock of Trackers (FoT) je metoda, která rozdělı́ objekt zájmu na rovnoměrně velké
části. Pro každou tuto část FoT spočı́tá korespondenci přes optický tok a odhadne jejı́
spolehlivost. Spolehlivé korespondence jsou použity pro robustnı́ odhad geometrické
transformace objektu pomocı́ RANSAC algoritmu, který umožňuje odhadovat kom-
plexnı́ rigidnı́ transformace, např. Afinnı́ transformaci. ASMS metoda využı́vá gra-
dientnı́ optimalizaci k iterativnı́mu posunu vyhledávacı́ho okna do pozice, která min-
imalizuje vzdálenost modelu extrahovaného z vyhledávacı́ho okna k modelu objektu.
ASMS navrhuje teoretickou modifikaci Mean-Shift algoritmu, která je zaměřená na je-
den z hlavnı́ch nedostatků tohoto algoritmu, t.j. pevná velikost vyhledávacı́ho okna
neboli velikost objektu. ASMS dále představuje způsob využitı́ informace z okolı́ ob-
jektu k redukci chyb ve sledovánı́ objektu způsobených rušivými elementy v jeho okolı́.

Abychom využili rozdı́lných přednostı́ předchozı́ch metod, navrhujeme nový systém
HMMTxD, který umožňuje spojit vı́ce metod pro sledovánı́ objektů společně s de-
tektorem učeným za běhu algoritmu. Tento systém využı́vá skrytý Markovův model
(HMM) k učenı́ toho, jak jednotlivé sledovacı́ metody fungujı́ za pomoci řı́dce ”anoto-
vaných” dat z detektoru a konfidence odhadnuté danými metodami. Během sledovánı́
umožňuje HMM vypočı́tat pro každý sledovacı́ algoritmus pravděpodobnost, že fun-
guje správně vzhledem k doposud naučenému HMM a současné konfidenci odhadnuté
metodou. Tento způsob kombinace zmı́rňuje nevýhody jednotlivých sledovacı́ch metod,
jelikož HMMTxD se sám učı́, které sledovacı́ metody fungujı́ dobře, a vypı́ná zbylé
metody v průběhu sledovánı́.

Všechny nově představené metody byly rozsáhle vyhodnoceny na několika veřejně
dostupných datových sadách a dosáhly excelentnı́ch výsledků v různých kritériı́ch. FoT
dosáhl nejlepšı́ch výsledků ve VOT2013, kde skončil na druhém mı́stě. ASMS byla
jedna z nejlepšı́ch metod v VOT2015 a byla vybrána jako nejlepšı́ v poměru kvality
sledovánı́ objektů a rychlosti běhu algoritmu. Systém HMMTxD demonstroval výborné
výsledky ve vı́ce vyhodnocenı́ch (VOT2014, VOT2015 a OTB).

Práce také poskytuje přehled o vyhodnocovacı́ metodice Visual Object Tracking
(VOT) a přispı́vá k jejı́mu rozvoji. VOT poskytuje nástroje pro objektivnı́ porovnánı́
metod sledovánı́ objektů napřı́č publikacemi, což je stěžejnı́ pro rozvoj algoritmů v
dlouhodobém časovém horizontu. VOT kolektiv každoročně organizuje semináře na
hlavnı́ch konferencı́ch počı́tačového viděnı́, kde se diskutujı́ pokroky v oblasti sledovánı́
objektů a kam mohou autoři sledovacı́ch algoritmů posı́lat své nové metody a soutěžit
tak mezi sebou.
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[VNM16] T. Vojı́ř, J. Nosková, and J. Matas. Online Adaptive Hidden Markov Model

for Multi-Tracker Fusion. Computer Vision and Image Understanding,
Special issue on Visual Tracking volume 153, pages 109–119, 2016. 10

[KML+16] M. Kristan, J. Matas, A. Leonardis, T. Vojı́ř, R. Pflugfelder, G. Fernandez,
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