
Czech Technical University in Prague

Faculty of Electrical Engineering

BACHELOR THESIS

Albershteyn Andrey

Data recorder for observatory magnetometer

Department of Measurement

Supervisor of the bachelor thesis: Ing. Michal Janošek, Ph.D.

Study programme: Cybernetics and Robotics

Specialization: Sensors and measurement

Prague 2016

Acknowledgements

I would like to express my gratitude to my supervisor, Ing. Michal Janošek, Ph.D., for

his supporting and given advice.

I hereby declare that I have completed this thesis with the topic ”Data recorder for

obserbatory magnetometer” independently and that I have included a full list of used

references. I have no objection to the usage of this work in compliance with the act

§60 Zákon è.121/2000 Sb. (copyright law).

In date signature of the author

Abstract:

This thesis aims to develop data logger based on a single-board computer Raspberry

Pi for an observatory magnetometer. The device receives data from a magnetometer

by the serial bus, and then data are processed in agreement with IAGA standard and

transformed to physical quantity with a usage of already known calibration matrices.

Obtained data are stored on an internal SD-card and uploaded to remote FTP-server.

The device contains 13.8 V battery and dpi 800x480 display which is used for data

visualization.

Abstrakt: Ćılem této práce je návrh záznamńıku dat ze sériové linky, pro použit́ı

s observatoryńım magnetometrem. S pomoćı single-board poč́ıtače Raspberry Pi a

v́ıcevláknového programu v prostřed́ı Python je vytvořen př́ıstroj pro záznam a přepočet

dat přij́ımaných z observatorńıho magnetometeru včetně vizualizace s displejem 800x480

dpi. Orthogonalizace a filtrace se provád́ı v souladu s IAGA standardem a źıskaná data

se ukládaj́ı na interńı SD kartu, zároveň pravidelně zaśılaj́ı pomoćı protokolu FTP na

vzdálený server. Záznamńık je napájen z 13.8 V stejnosměrného zdroje a je zálohován

interńım akumulátorem.

Keywords: Magnetometer, Sensor, Raspberry Pi, Model 2 B, Observatory Magne-

tometer, Python, Data Recorder

Contents

1 Introduction 3

1.1 Outline . 3

1.2 Objectives . 5

2 Used devices 7

2.1 Raspberry Pi 2 Model B . 7

2.2 Raspberry Pi Touchscreen Display . 8

2.3 Magnetometer . 8

2.4 DC/DC converter . 10

3 Comparison to the state-of-the-art 11

4 Theory 15

4.0.1 Fluxgate types . 15

4.0.2 Orthogonalization . 16

4.0.3 Used orthogonalization . 17

5 Hardware part 19

6 Software part 23

6.1 Program for receiving information from sensor 23

6.1.1 Description . 23

6.1.2 Program structure . 24

6.1.3 Configuration settings . 28

6.2 Program for plotting data to the display 29

6.2.1 Description . 29

6.2.2 GUI program structure . 30

6.2.3 GUI program configuration settings 32

6.3 GUI program for presentation purpose 33

7 Tests and results 35

8 Conclusion 37

1

9 CD contents 43

10 Appendix 45

10.1 processor.py . 45

10.2 main.py . 46

10.3 saver.py . 49

2

1. Introduction

Magnetometers are devices used for measuring the intensity and direction of magnetic

fields. They are widely used for measuring Earth’s magnetic field, metal detection,

aerospace navigation and for orientation in space by using it like a compass, for example,

when GPS [1] isn’t avaiilable. Magnetometers are also used for reading magnetic tags

and labels [2] and for detection of ships and submarines [3].

Data acquisition from a magnetometer provides data, which can be used in many

domains in geomagnetic studies [4] and scientific research. Large data sets show trends

in the magnetic field changes and can provide us information that isn’t visible in a

short time measurement. For example year’s season fluctuations and other long term

changes in magnetic field.

The data can be recorded by a specific device called data logger or data recorder.

These devices should have some basic characteristics, such as being able to function for

a long time period, assuring data consistency, even in case of power failure or internet

disconnection, and easy access to stored data.

1.1 Outline

This thesis aims to develop a device which will be used to record data from an ob-

servatory magnetometer and transform it to easily accessible format. The project is

divided into two parts. In the first part I will develop a device with hardware ports to

communicate with sensors and an external computer. In the second part I will describe

three programs which should provide correct data transformation and representation.

The main piece of the project is software which consist of two separate programs re-

sponsible for communication with the sensor and plotting a data graph on the display,

respectively.

Now let’s look more precisely at what every section stands for:

• Used devices

In this section I provide some information about hardware devices which I used

in this work. This section is divided into a four subsections with a description of

every part:

1. Raspberry Pi 2 Model B - description of single-board computer Raspberry

Pi 2 Model B and why it was choosen.

2. Raspberry Pi touchscreen display - display used in the project.

3. Magnetometer - description of used fluxgate.

4. DC/DC converter - voltage converter used to convert battery voltage level

to voltage required by Raspberry Pi.

3

• Comparison to the state-of-the-art

Comparison to other devices used to receive and store data from sensors. I will

provide some examples of historically used devices and also devices used nowa-

days.

• Theory

In this section I give brief overview of fluxgate magnetometers, their types and

working principle.

Then I explain what orthogonalization is and why we need it in this data logger.

At the end I will explain why we need to perform data processing and how or-

thogonalization is implemented in the program written for this project.

• Hardware part

In this part I will describe hardware part of this project, such as inner connec-

tion of the device and why each parts is used. Then I overview some achived

characteristics of the device.

• Software part

In this section I will describe programs which I wrote for this project.

Firstly, I describe the main program of this project, which receives data from

the sensor and performs calibration. I will provide the full description of pro-

gram’s cycle including communication with the sensor, communication between

processes, processing, saving data and sending it to network socket etc.

The next significant piece of software is the GUI (Graphical User Interface) pro-

gram for displaying all calculated data on the screen. I will talk about the QT

framework, why it is used and why it is good. Also I describe configuration

settings for this program.

At the end I will describe program for presentation, which consists of the GUI

program mentioned before and part of the main program used for calibration.

• Test runs and results

In this section I will show some results of this work such as format of obtained

data, resulting graph and appearence of the device.

• Conclusion

In the last section I will talk about the results of the project.

4

1.2 Objectives

The main objective of this thesis is to develop a device for reading data from the

observatory magnetometer, perform orhogonalization and data processing according to

IAGA standard [5] and then save it to an internal SD-card and upload to remote FTP

server. The device should also contain a display which shows graphs with actual data

recorded in last few hours.

The device should be able to work reliably even with unstable power supply. For

example, in case of power failure device should be able to continue collecting data.

Also, the internet connection safety should be assured. Thus, while the connection is

unavailable, the device should continue to store data on the disk and be able to upload

it to the server upon re-establishing a connection.

5

6

2. Used devices

In this section devices used in this project are shown. The main piece is microcomputer

which performs all calculations and executes programs for communicating with sensor

and displaying charts.

2.1 Raspberry Pi 2 Model B

Raspberry Pi is single-board micro computer of a credit-card size. It has basic at-

tributes of desktop PC (USB ports, HDMI port, operating system), but also contains

GPIO interface to communicate with peripherals. On the board there is SD card with

preinstalled operating system (in this case it is Raspbian Wheezy [6], linux based sys-

tem).

Even with a such small size it has enough computation power to perform online compu-

tation of received data, run linux system, work with display, communicate with remote

FTP-server etc.

Table 2.1: Raspberry Pi characteristics

Chatacteristic Value

Name Raspberry Pi 2 Model B

Chip Broadcom BCM2836 SoC

Core architecture Quad-core ARM Cortex-A7

CPU 900MHz

GPU Dual Core VideoCore IV Multimedia Co-Processor

Memory 1GB LPDDR2

Operating system Raspbian Wheezy

Dimensions 85 x 56 x 17mm

Power Micro USB socket 5V, 2A

Figure 2.1: Photo of Raspberry Pi 2 Model B from the top [7]

7

2.2 Raspberry Pi Touchscreen Display

The main purpose of the developed program is to get raw data, perform data processing

and save it to SD card. The device is also equipped with a display which allows

visualization of obtained data.

On top of the Raspberry PI touchscreen display is connected, which is used to visualize

processed data for a predefined time period. There are also control elements imple-

mented on the screen allowing a user to move graph, change it time range and turning

on/off auto-range mode.

Display characteristics:

Table 2.2: Display characteristics

Characteristic Value

Name 7” touchscreen display

Screen Dimensions 194mm x 110mm x 20mm

Viewable screen size 155mm x 86mm

Screen Resolution 800 x 480 pixels

Touchscreen 10 finger capacitive touch

Photo of the display with driver and connectors:

Figure 2.2: Photo of Raspberry Pi touchscreen Dispay and some other components for
dispay’s connection [8]

2.3 Magnetometer

Magnetometer used in this project is fluxgate parallel magnetometer with low-noise

performance and high stability. The sensor consists of two parts: sensor head containing

three fluxgates orthogonal to each other, and electronics which reads data from the

sensor and generates data stream sent out by the serial bus.

8

Figure 2.3: Photo of the observatory magnetometer with periphery [9]

This sensor has the serial interface which is set up to 115 200 baudrate and sends 207

samples per second. Every sample consists of three values corresponing to magnetic

field intensity in each direction measured by each of fluxgates and temperature of the

sensor head. Interface uses ASCII coding with one stop bit and no parity bit [9].

Figure 2.4: Photo of observatory magnetometer with shown directions of axes [9]

Low noise level is reached by using compensation in the Z and H axes (axes are defined

in section 4.0.3). Details of the compensation and how it affects the calculations is de-

scribed in section 4.0.3. All sensors are mounted on a ceramic cube which is attached to

a triangular holder. As it was mentioned, temperature of the cube holder is monitored

and sent in data sample.

9

2.4 DC/DC converter

Complete device can be powered either by a battery or by a power source. The power

source is connected to the power grid and gives an output of 13.8 V. It is used power

the device and charge the battery.

Battery is used to power the device in case of power failure. It has approximately the

same voltage level, around 13.8 V. However, Raspberry Pi is powered by 5 V DC, hence

there is a need for DC/DC converter from 13.8 V to 5 V.

Table 2.3: DC/DC converter characteristics

Chatacteristic Value

Name Mean Well SD-15A-5

Model SD-15A-5

Input voltage 9.2 - 18V

Input DC current 1.9A/12VDC

Efficiency 68%

Output voltage 5 V

Output voltage regulation 4.75 - 5.5V

Output current 3 A

Power 15 W

Weight 0.68 kg

Dimensions 78mm x 51mm x 28mm

Converter Mean Well SD-15A-5 is used to convert 13.8 V to 5 V. Input of the converter

is connected to the battery. Output is connected to Raspberry Pi with power LED

indicator and switch to turning it off when Raspberry is shut down .

Figure 2.5: Photo of DC/DC converter Mean Well SD-15A-5 [10]

10

3. Comparison to the

state-of-the-art

Magnetometer data loggers are already used for a long time. Main purpose of this type

of devices is to collect data generated by a sensor and store it on some kind of storage

device.

A lot of data recorders just record data without any calculations. The recorded data

is then transformed from raw sensor output to usable physical quantities, for example

components of magnetic field vector B.

The problem arises from the fact that raw data is not suitable for future calculations,

consequently every time you need to perform transformation. Another problem is that

real sensors are not ideal devices and have offsets, thus there is also need for calibration.

One very important feature of data recorders is mobility: it can be easily installed in

different places. The sensor and the data recorder can easily be moved in case of some

problems, for example unwanted sources of magnetic field.

Figure 3.1: The AMOS Mk 3 is an automated Observatory system deployed [11]

In Figure 3.1 data recorder from 1980s can be seen. It has large dimensions and is

equipped with a lot of hardware. Such old data acquisition systems are rarely used

nowadays.

However some of the old facilities are still in use. In Figure 3.2 you can see curretnly

used data recorder in Budkov observatory [11]. It is commonly used in a modern

magnetic observatory. It is hard to access the sotred data, because the periferals of

these data recorders are outdated and are never used in modern computers.

11

Figure 3.2: Instruments typical of a modern magnetic observatory [11]

There is another example of data logger in Figure 3.3. It is small and has standard

RS232 serial link, but its does not have any kind of indicators to display devices status.

Figure 3.3: Magnetometer sensor with data logger [12]

Raspberry Pi is very popular single-board computer and there exist other data loggers

based on it. For example, Rapberry Pi has been used as data logger for observatory

magnetometer [13] before, but it stores data without any calibration, conversion or

data preprocessing.

Last exapmle of very good data recorder is recorder used with observatory magnetome-

ter LEMI-025 [14]. As it can be seen in Figure 3.4, this device has compact plastic case

with control buttons and SD-card slot. But in comparison to device made in this work

it does not have any display to show actual information about collected data.

12

Figure 3.4: Data recorder fo 3-component 1-second observatory Magnetometer LEMI-
025 [14]

All these devices have some disadvangates which I attempt to solve in this project.

Device, developed in this project, has all these characteristics which were mentioned

before. It doesn’t need external computer and any other kind of periferals. The device

has internal accumulator and can be powered even in case of power supply failure, but

only for a short period of time.

Communication with the devices is easy enough and uses standard communication

protocols. All computed data is stored on disk and showed on display for a quick

check. To download data directly from the device, computer must be connected to it

through Ethernet cable. SSH protocol [15] can be used for data transfer in this case.

All files are uploaded to remote FTP-server, stored in data catalog and can be easily

downloaded, for example by Midnight commander [16].

The device is also equpped with touchscreen display which provide user a brief overview

of obtained data.

13

14

4. Theory

4.0.1 Fluxgate types

Fluxgate is a very common sensor of magnetic flux density with a wide range of appli-

cations. They are used when there is a need for precise measurement of magnetic field.

Two main types of fluxgate magnetometers exist, parallel and orthogonal. Although

both types of sensors were invented almost at the same time, the parallel principle of

sensor became more popular. Only in the last decade orthogonal sensors became pop-

ular due to new technology which allows us to manufacture small orthogonal fluxgates

compare to parallel one [17].

In our case we are using parallel fluxgate which characteristics can be found in ”Used

devices” (Section 2) section. Difference between parallel and orthogonal fluxgate can

be observed in Figure 4.1:

Figure 4.1: Structure of parallel (A) and orthogonal (B) fluxgates [17]

Parallel fluxgate consists of ferromagnetic ring wound with an exitation and a pick-

up coils. This types of fluxgates is called parallel because measured magnetic field

is parallel to exitation field. Ferromagnetic core is periodicaly saturated by excitation

magnetic field generated by AC current. Saturations occures twice during one period of

exitation current, consquently two voltage pulses are induced in the secondary (pick-up)

coil. Fluxtage principle is explained in more details in [17].

In orthogonal fluxgate, we have ferromagnetic core and excitation toroidal coil. The

pick-up coil is wound around the core. In this case exication field lies in XY plane and

is orthogonal to sensed magnetic field which lies in Z direction [17].

We are using parallel fluxgate of race-track type [9]. Therefore, we need three flux-

gate heads directed in all three Cartesian axes, in other words, all sensors should be

perpendicular to each other.

15

4.0.2 Orthogonalization

x

y

z

x'

y'

z'

Figure 4.2: Orthogonal and non-orthogonal basis

Let us look at what orthogonalization is. Initially we receive data in the non-orthogonal

magnetc sensor axes coordinate system, because sensors are not located perfectly. There

is a need for transformation to an orthogonal coordinate system for easier future cal-

culations.

This transformation is named orthogonalization. According to [18] orthogonalization

is method that finds an orthonormal basis of the span of given vectors:

S = span{a1, ..., ak} = span{q1, ..., qn},

where a1, ..., ak ∈ Rn are given vectors, and q1, ..., qn ∈ Rn are computed orthogonal

vectors.

For orthogonal vectors next condition must hold:

qTi qj = 0 for i 6= j.

If this condition is valid for every pair of vectors qi, qj (i, j = 1...n, i 6= j), then

span{q1, ..., qn} forms an orthogonal basis of Rn space.

In Figure 4.2 a difference between non-orthogonal space and orthogonal space is shown.

If we have some vector in non-orthogonal space, it has scalar projections on every

16

axis. The these values of these projections are different in orthogonal space. Thus,

orthogonalization transforms vector elements from one basis to another. In this case its

tramsformation is performed from the non-orthogonal magnetic sensor axes coordinate

system to orthogonal magnetic axes system.

4.0.3 Used orthogonalization

Obtaining of calibration coefficients is out of the scope of this thesis, only implementa-

tion of a software program with already known data is required. The orthogonalization

is implemented in the software in according to [19].

B = PS(F − O), where

B - result value of vector intensity coresponding to sensor direction [T]

P - orthogonalization matrix [-]

S - sensivity matrix [LSB/T, LSB - least significant bit]

F - raw data vector received from the sensor, in Engeeniring Units [EU]

O - offsets vector for all three directions [LSB, LSB - least significant bit]

In matrix form:

∆H

∆Z

∆E

 =

p11 p12 p13

p21 p22 p23

p31 p32 p33

 ˙


1

SH
0 0

0
1

SZ
0

0 0
1

SE

 ˙

RH − OH

RZ − OZ

RE − OE

 =

=

p11 p12 p13

p21 p22 p23

p31 p32 p33

 ˙


1

SH
(̇RH − OH)

1

SZ
(̇RZ − OZ)

1

SE
(̇RE − OE)

 (4.1)

As mentioned before OH , OZ , OE - are offsets of sensor [EU], SH , SZ , SE - are sensitiv-

ity for every direction [LSB/T], P - is orthogonalization matrix [-], CH , CZ , CE - are

elements of compensation field [T].

Subindexes mean H - North-South direction, E - East-West direction and Z - vertical

direction.

If we are intrested in complete value of vector intensity, not its variation, we need to

add applied compensation field:HZ
E

 =

CH + ∆H

CZ + ∆Z

CE + ∆E


17

∆E is approximately zero in comparison to other components and compensation is not

used in this axis. For example for Prague, corresponding to World Magnetic Model

[20], magnetic field is:

Figure 4.3: Magnetic field in Prague according to World Magnetic Model [20]

There is table of calibration values provided by supervisor [9] :

Table 4.1: Parameters for used magnetometer

CTU-Vario

Axis H (North-South) Z (vertical) E (East-West)

Offset [LSB] -2338 -632 -1823

Sensitivity [LSB/T] 1.8802E+12 1.8714E+12 1.8583E+12

Compensation field [T] 2.6580E-5 3.7380E-5 0

Orthogonalization matrix [-]

 1 0 0

0.003272853 1.000005356 0

−0.008173561 −0.023780785 1.000315443



18

5. Hardware part

The project is based on Raspberry Pi [21] microcomputer. Even with such small size it

has enough computation power to allow communication with the sensor, data processing

and plotting at the same time.

Figure 5.1: Photo of the device

Complete device, which I have built, is represented as a plastic box with the display

and few connection ports such as Ethernet, RS-232 serial port and two connectors for

power supply. In Figure 5.1 disconnected, unpowered device is shown.

Figure 5.2: Schematic of connection device with perpherials

19

In Figure 5.3 schematic of the internal configuration of the instrument is shown. As it

can be seen, the device contains battery for the purpose of stable work even in case of

power supply problem (for example blackout).

Raspberry Pi and display are powered by 5 V DC. However, the battery supplies 13.8

V. Because of this fact the battery is connected to DC/DC converter [Section 2.4] which

converts 13.8 V to 5 V. The converter is connected to Raspberry GPIO DC power pins

04 (5 V) and 06 (Ground).

The display can be powered both from the micro-USB connector and on-board pins.

Because there is no need to use micro-USB, wires from display driver are connected to

GPIO pins 09 (ground) and 02 (5 V). It should be noted that data bus which transfers

signals between Raspberry Pi and its display is not shown on the schematic. On both

boards, there is a particular connector for this interconnection.

Figure 5.3: Inner connection of the device.

Communication of a magnetometer electronics and Raspberry Pi is carried out by the

20

serial link. There is 5 V signal on the output of RS-232 port of the sensor but GPIO

serial pins are designed for 3 V communication. Therefore, there is a need for digital

transceiver between mentioned voltage levels.

I chose to make it based on the MAXIM3232 chip. It is true RS-232 transceiver from 5

to 3 V which use four 0.1 µF external capacitors. I connected it using standard wiring

represented as an example in datasheet MAXIM3232, page 12.

Because the battery is connected to Raspberry through DC/DC converter, there is

switch to disable powering of the converter in case Raspberry Pi is turned off.

The device can be powered by internal battery or power source. If a power supply is

connected it charges the battery and powers the device. If power supply is not connected

energy is taken from the battery. Because input of power supply is connected in parallel

with the battery, there is a need for a diode. Otherwise, the battery will give some

amount of current to the power source which is unwanted.

In Figure 5.4 side panel of device is shown with all parts marked:

Figure 5.4: Devices connectors.

In the table 5.1 some power characteristics of the device are shown. For power saving

there is a screensaver mode in-built in Raspbian operating system. The device turns

off the screen after ten minutes of inactivity.

21

http://pdfserv.maximintegrated.com/en/ds/MAX3222-MAX3241.pdf
http://pdfserv.maximintegrated.com/en/ds/MAX3222-MAX3241.pdf

Table 5.1: Table of device power characteristics

Characteristic Value

Voltage 13.8 DC Volts

Current without display ≈ 0.43 A

Current with display ≈ 0.75 - 0.80 A

Estimated working time using battery without display ≈ 4 - 5 hours

Table 5.2: Battery Characteristics

Model NPG 2.2-12, 12V2.2Ah

Type Voltage Regulation Inital Current

Stand-by use 13.5 ∼ 13.8 V No Limit

Cycle use 14.4 ∼ 15.0 V 0.66 A Max

22

6. Software part

6.1 Program for receiving information from sensor

6.1.1 Description

Firstly, let’s look at the main program I have developed which is responsible for commu-

nications with the sensor by the RS-232 serial bus, receiving data samples, performing

calibration and storing obtained values on a disk with respective timestamps.

The program is separated into three different processes. First ”main” process is a

main flow of the program, it communicates with the sensor and sends requests for raw

data. The second process, ”processor”, is responsible for data averaging and orthog-

onalization. The last one, the third process saves obtained data to files and sends

it to predefined network socket. Processes are connected by two pipelines, and they

are independent, only in case of terminating the main process, other processes are killed.

This program has a few test functions for debugging. One of them is that program can

indicate every received sample by changing state of one of the GPIO pins, available on

Raspberry Pi. This pin can be chosen in the configuration file, by default it is pin 4.

This functionality can be used for confirming that all samples sent by sensor electronics

are received by Raspberry Pi.

Another option is that program can be run in ”virtual” mode and does not need a real

sensor. In this mode program generates random data and uses it as an input stream.

It can be used for verification that calibration is working correctly and it also can test

program functionality.

Finally, the data flow of the whole program cycle can be monitored by turning on

logging procedure. The program contains information messages in different places to

inform a user about currently performed task. It is possible to turn on/off this option

in the configuration file. Logging is written using built-in ”logging” library and can be

set up to different levels of message importance.

The program is written using numerical library NumPy [22], which allows easy use of

matrix operations and works with big data arrays. GPIO library is also used to provide

a communication interface with on-board pins. In case debug mode is turned on (thus

some of the GPIO pins are used for samples indication) it is necessary to install GPIO

library to communicate with those pins; otherwise this library isn’t used and can be

skipped.

The code is written and tested in Python 3.2, so it should be compatible with all Python

3.* versions.

23

6.1.2 Program structure

Now let us overview the program structure. As mentioned previously, the program

consists of three independent processes. The need for independent processes was found

during testing: possible data drop-out due to heavy load dit not allow a single-process

program. Also the CPU load is low in this case: 30 - 40 %. In Figure 6.1 a simplified

diagram of program structure and data flow can be seen.

Indicate that data

is receiving

Send data to

pipeline

Save calibrated

data to le

Generator

Main Processor Saver

Raw data

from sensor

If virtual

mode turn on

Transform

data

Make

calibration

Send to

pipeline

Calibrated

data to le

Raw data Calibrated

data

GPIO pin Process Process Process

Figure 6.1: Structure of main program that communicats with sensor

List of files:

1. main.py - This file is main input point to the program. Runs as a separate

process and performs data reading from the serial port and then sends it to a

pipeline to the following calibration.

2. saver.py - contains only one function, which is run as a separate process and

performs data saving.

3. calibration.py - contains a few utility functions, which are used in ”processor”

for data processing and calibration.

4. processor.py - contains one function, which is run as a separate process. This

function perform data processing and send obtained values by pipeline to ”saving”

process.

5. reader.py - this file contains functions for serial communication setup and func-

tions for communication with the device.

6. generator.py - contains class, which is used as a generator of random numbers.

It is used only in debug mode when we do not have real sensor and we use this

generator to test program functionality.

24

7. settings.py - this file contains two classes which are responsible for program and

data processing settings 6.1.3.

There are three main files which should be discussed in detail. ”main.py” is the main

file of the program which runs other processes. This file contains only one function

”init sensor” which checks if initialization of sensor is successful and starts it with

”CN” command.

Let us overview what happens when the application is started. At first, the program

gets some configuration settings from the settings file. Then, program checks which

mode is chosen; if arguments of the program contain word ”virtual” then the program

runs in virtual mode. In this case instead of using the real sensor, ”Generator” object

is used. This ”virtual sensor” creates random data used only for testing. Note that it

does not behave like a real magnetometer.

The pipeline connected between the main and calibration processes is created. After

that data handling process is run.

The main loop of the main process receive data from a sensor and send it to the pipeline.

However, in case debug mode is on (it can be turned on/off in the config file) the pro-

gram also indicates every sample by changing state of GPIO pin.

Next vital process is ”processor” which performs all calculations in the program. File

”processor.py” contains only one function and definition of Gaussian distribution rep-

resented as a numpy [22] array, which later will be used for averaging of collected

samples.

Function ”process data” (name of a function in file ”processor.py”) is run as a separate

process from the main file with a few parameters including binding pipeline. First of

all, some variable initializations are performed. Then new pipeline is created which will

be connected to this process and process which saves data.

After that main loop is run. In the main loop the process receives samples from the

pipeline and if a buffer is already full it performs orthogonalization and sends calculated

samples to next process. Otherwise, it add new sample to the buffer.

The buffer is used for finding mean value before orthogonalization. Resulting samples

are generated every second, but raw samples received from the sensor are generated

207 times per second. Thus, at first, program accumulates some amount of data and

then start performing all calculations.

Let us overview implemented data processing. In ”processor” two functions are called,

”find mean” and ”calibrate”.

Calcu la te mean value and make c a l i b r a t i o n

mean value = find mean (data se t , gauss)

r e s u l t = c a l i b r a t e (mean value)

25

Figure 6.2: Applience of Gaussian Window [5]

The first function receives data set of samples obtained by the sensor and defines an

array (”window”) with Gaussian distribution. Then the Gaussian array is multiplied

by data set and arithmetic mean is found every second according to IAGA standard,

by using numpy library [22].

de f f ind mean (data , gauss) :

r e turn np . mean(gauss [np . newaxis , :] . T∗data , a x i s =0)∗2

In Figure 6.2 diagram of this process can be seen. After applying a window with

Gaussian distribution on data set, program finds mean value and returns it as the

result.

Next important function is ”calibrate”. It receives data sample generated by the pre-

viously mentioned function as parameter. Only first three componentes are taken from

the sample, fourth component is temperature which is not needed in conducted cal-

culation. Then we get calibration settings from the configuration file and perform

calculation by method, described in the capitol 4.1. At the end we add temperature to

resulting array.

de f c a l i b r a t e (data) :

raw = data [0 : 3]

comp = np . array (c a l c o n f i g [’ comp ’])

o f s = np . array (c a l c o n f i g [’ o f s ’])

sen = np . array (c a l c o n f i g [’ sen ’])

P = np . array (c a l c o n f i g [’ ort mat ’])

eu = raw − o f s

B = np . array (1/ sen ∗eu)

M = np . dot (P, B)

M = M + comp

M = l i s t (M)

return M. append (data [3])

26

Figure 6.3: Structure diagram of ”saver” process. ”Msg” - received message

All processes have simple structure and can be easily understood. However, ”saver”

has more complicated construction. In Figure 6.3 structure diagram of this process can

be senn:

27

Main function ”data saver” creates data queue and one more thread which is responsible

for communication with clients by network socket. After that in while loop function

starts receiving data from the pipeline, putting it into queue and save it to disk.

Socket thread runs a loop which is waiting for a client to connect. If a connection is

detected one more loop is started. In this loop program receives one symbol from user

and if it is the EOL symbol (”\n”) loop breaks. Otherwise, the thread gets data from

the queue and sends it to the socket.

6.1.3 Configuration settings

In this section the description of the configuration file can be found. Program has two

configuration classes. One of them is responsible for program configuration: path to

data file storage, debug mode, serial communication settings, commands for communi-

cation with the sensor, etc. The second class is responsible for data processing settings,

such as offsets, sensitivity, orthogonalization and compensation field.

Program configuration:

1. samples - the number of samples received per second.

2. debug - Turn on or turn off debug mode. If debug is on the program will indicate

every sample on debug pin by sending impulses and all program actions will be

logged.

3. debug pin - GPIO pin which is used to indicate samples received from the sensor.

This pin will change its state before and after receiving data sample.

4. path - path where the program will storing all its files.

5. port - port for serial communication. The sensor should be connected to this

port. By default this port is ’/dev/ttyAMA0’.

6. baudrate - serial communication speed. By default, speed is set to 115 200

baudrate.

7. timeout - timeout for serial communication. By default, the value is 3 seconds.

8. start cmd - byte string, which is sent to the sensor to start it. In other words,

command to start data stream.

9. stop cmd - byte string, which is sent to the sensor to stop it.

10. file name format - string, which defines a format of names of files with obtained

data.

Calibration settings:

1. comp - compensation field.

28

2. ofs - offsets.

3. sen - sensitivity.

4. ort mat - orthogonalization matrix.

6.2 Program for plotting data to the display

6.2.1 Description

One of the next steps of this work is to implement visualization of received and processed

data. The device is equipped with the color touchscreen display which is used for

displaying variations in the magnetic field in the last few hours.

Main program (Chapter 6.1) saves calibrated data on disk and in the same time send

it to localhost socket. One of the thread in ”saver” process is waiting for a client to

connect to specified localhost port and start transmitting requests for new data.

Because the program is using multithreading concept, multiple clients can be connected

at the same time.

In the configuration file a correct port which can be used to open a new socket must

be chosen. GUI program automatically tries to connect to specified port and log the

whole process of connection for troubleshooting purpose.

If the connection is successful, program starts collecting data for offsets calculation.

Because received data ranges are very narrow, compared to their mean value, they can

not be plotted on one graph; they will be represented by three straight lines. Hence,

offset adjustment is required.

Offsets are calculated by taking average value of some number of received samples.

This number, size of the buffer, can be changed in the configuration file. Thus, at first,

the program is collecting samples to fill up the buffer and after it is full, offsets are

calculated and a loop starts to send obtained samples to the GUI thread.

It happens only in case if the program is run the first time. When offsets are calculated,

they are saved to file (filename is specified in the configurations), and next calculations

of offsets are performed with 24 hours period by taking average value from the mea-

surements obtained during the last day. Thus, if the program runs not the first time,

it loads offsets and start displaying data without delay.

The graph shows three lines which correspond to values of H, Z and E sensors (directions

of sensors can be seen in Figure 2.4). The graph is in scope mode, thus, at the beginning

graph starts to fill in with the data until specified time point (for instance, 12 hours)

on the x-axis (time axis) is reached. Then plot starts to move left as it receives new

data samples.

In left-top conrner the legend is displayed. It contains offsets for every data stream.

The legend is updated periodically with new offsets (because new offsets are calculated

29

every 24 hours the legend is updated with the same period).

The program is written using the QT Framework [23]. It is big collection of libraries

with wide possibility to create advanced graphic user interface applications. This frame-

work has bindings library for Python, which allows using the whole set of available

functions. Also, QT applications can be run without any desktop environment, which

is suitable for this project because desktop functionality is not required and can be

omitted.

6.2.2 GUI program structure

The program is based on MVP pattern [24] which consists of three main parts: Model,

Presenter, and View. Every module is responsible for specified purpose: Model for

data representation, View for user interface and Presenter for communications between

other modules. Let us consider each parts separately.

Figure 6.4: MVP programming pattern [25]

Model is a separate thread represented by one class named ”Model”. This class contains

function ”run” which is the main loop of this thread. All other functions are secondary

and used in the main loop, except ”stop” and ”getQueue”, which stop thread and

return data queue, respectively.

First of all, in ”run” function program tries to connect to local server socket which

address is set in the configuration file. After starting the main loop of the Model, the

30

program starts trying to get samples from local server and put it in the data queue, if

it is not full. Otherwise, it repeats until the queue has free space or thread is stopped.

Figure 6.5: Structure of process represented data in GUI application

In case the queue is empty, the program gets a raw sample and takes data items, without

timestamps. Then programs tries to load offsets from the file which is specificated in

the settings. If loading is failed (because the file doesn’t exist), program starts to fill

31

sample buffer for calculating offsets. Otherwise, the program loads offsets from the file

and continues.

After the sample is received program checks if decimation is set up and if received

sample number is demanded. If not, program returns to step one, where it receives

sample, otherwise it subtract offsets from the sample and sends it to the data queue.

Because offsets are calculated every 24 hours, in every loop cycle program checks if

there is a need for calculating new offsets.

Next part of the program is Presenter. It acts upon the Model and the View: it

receives signals from the View and performs predefined reaction on them. For example,

when the View is closed it sends ”quit” signal which is handled by the Presenter. The

Presenter then sends a stop command to the Model thread.

The Presenter also performs initialization of other signals between the View and the

Model. These signals are handled by the View and perform data transfer between the

Model and the View.

The last significant part of the program is the View. It is an interface which visualizes

data. In this case, it is GUI (Graphical User Interface) based on QT framework [26].

The View contains two classes: ”view” and ”plot ui”. These class are responsible

for window initialization, such as setting title, showing window in fullscreen, creating

widgets layout, etc. In the function ”initScene” initialization of Plot object, which is

the main widget of the application, is called.

PyQtGraph library [27] was used for plotting data. At first, class calculates how many

samples does it need to show a full graph. The time range is set up in the configuration

file and determines range of x-axis in hours. However, the program needs to know the

amount of samples displayed, hence we need to convert the dimensions of x-axis from

hours to number of samples.

6.2.3 GUI program configuration settings

In this section a description of all configurations settings can be found. The GUI

program and the main program are two different entities and they are completely

independent; they have separate settings files.

Program defined settings in ”settings.py”:

1. time axis range - this value sets how wide is x-axis (time axis). For example,

if the value is set to 12, x-axis will be 12 hours long.

2. off filename - filename where the program will store offsets. If there is need to

calculate new offsets, the file can be deleted, and after that program should be

run. This action will force the program to calculate new offsets instead of waiting

to end of the period. Some amount of time will be needed to fill up offsets buffer

and then calculate them.

32

3. o buffer - this value defines size is offset buffer. Offsets are calculated by taking

arithmetic mean from samples added to this array.

4. p offsets - if there is a need for decimation while calculating offsets this setting

can be set to some value which will be the period of taking the sample for offset.

For example, if p offsets is equal 5, every 5-th sample will be added to the offset

buffer.

5. host - host IP address. The program gets samples from a network socket. There-

fore, some IP address should be specified. It does not have to be local IP, global

IP can also be used.

6. port - this is the port which program will use to listen for new data.

7. time format - this value specifies time format which is used to show time marks

on the x-axis.

8. min stack size - this value is used for the offsets buffer size if the value specified

for time axis is too small. For example, if time axis range = 1/60 (one minute),

the program will use the value from min stack size because offsets buffer size is

calculated from the size of the x-axis. When calculated value is smaller than

min stack size default value is used. It is made because in case of a small x-range

the graph looks uninformative. This setting can be set to some small value and

will not affect time axis.

6.3 GUI program for presentation purpose

This program is a combination of the two previously described programs. Essentially

it consists of GUI program described in the previous section (Chpater 6.2) and orthog-

onalization took from the first program (Chapter 6.1). The purpose of the program is

presentation of the observatory data in Kelčany [28].

It is made because the remote server with magnetometer at the Kelčany observatory

[28] provides data samples which are already represented as an average value of all

samples collected in a period of one second but without applied orthogonalization on

it.

The given program is a modification of the GUI program (Chapter 6.2). Changes

are applied to Model class which now receives samples until samples buffer is full.

The formula 4.1 is then applied to perform orthogonalization and transformation from

engineering units to nT (nano-Tesla).

The configuration file was also changed. It contains settings for the GUI program which

are described in section 6.2.3 and orthogonalization settings, such as compensation field,

offsets, sensitivity and orthogonalization matrix.

33

34

7. Tests and results

There is representation of work of the device. In Figure 7.1 graph of collected data in a

last 12 hours is shown. The data was remotely obtained from the observatory Kelčany

[28]

Figure 7.1: Screenshot of the display with data recorded in a last 12 hours

In Figure 7.2 the working device with recorded data from an attached magnetometer

is shown. The data is noisy because the trial was run in the laboratory.

Figure 7.2: Photo of the device with recorded data

35

There is example of data saved on disk and sent to FTP-server, every line is represent

one second sample. First three components are values of flux density [T] in every

direction and fourth component is temperature dependent signal (in a raw format,

calibration was not provided):

[[2.687517901e-05, 4.020859125e-05, 2.864210491e-06, 5355661.3762318091]]

[[2.687523858e-05, 4.020941633e-05, 2.864372418e-06, 5354517.6652289182]]

[[2.687520694e-05, 4.020929451e-05, 2.863581765e-06, 5355942.2798640989]]

[[2.687522087e-05, 4.020885831e-05, 2.864254739e-06, 5354436.5794289177]]

[[2.687526896e-05, 4.020845596e-05, 2.864223554e-06, 5355283.0826091589]]

[[2.687526815e-05, 4.020914851e-05, 2.864313906e-06, 5355692.7078081947]]

[[2.687519589e-05, 4.020854741e-05, 2.864268183e-06, 5355440.3208371103]]

[[2.687521406e-05, 4.020918601e-05, 2.863392786e-06, 5354719.3055286761]]

[[2.687526172e-05, 4.020863121e-05, 2.863977543e-06, 5354886.5044245804]]

[[2.687521947e-05, 4.020905604e-05, 2.864000686e-06, 5354836.4953571102]]

Photo of the device from the side with ports 7.3.

Figure 7.3: Photo of the device

36

8. Conclusion

The objective was to get a working device to collect and store data received from an

observatory magnetometer.

As a result of this project I made a device based on Rapberry Pi installed inside a

portable box with touchscreen display.

The software part of the project consist of two programs writen in Python and run

inside of Raspbian operating system [6].

To assure maximal efficiency and consistency of data, the program has multiprocessing

structure allows simultaneious communication with the sensor, saving data to disk and

sending it to a plotting program without delays.

In accordance to IAGA [5] standard was implemented orthogonalization and averaging

of data for obtaining values of magnetic field flux density vector components. Thus, in

result, data are stored in physical units (concretely nano-Tesla) after applied orthogo-

nalization and offset calibration.

Obtained data is stored on an internal SD card in a predefined catalog structure. Also

every thirty minutes a script is run which connects to remote FTP-server, scans it for

all already uploaded data and upload new records there, if available.

In combination with remote storage, the device contains an internal battery which

prevent data loss in case of power failure or internet disconnection up to 4 hours.

There are few things which can be further improved in a future development of the

recorder: adding a hardware RTC clock to keep information about time during long-

term power outage and also the used 13.8 - 5 V converter could have better efficiency.

37

38

Bibliography

[1] Official U.S. Government information about the Global Positioning System (GPS)

and related topics. http://www.gps.gov/.

[2] Pavel Ripka. Advances in fluxgate sensors. Sensors and Actuators A: Physical,

106(1):8–14, 2003.

[3] DT Germain-Jones. Post-war developments in geophysical instrumentation for oil

prospecting. Journal of Scientific Instruments, 34(1):1, 1957.

[4] HANS Aschenbrenner and GEORGE Goubau. Eine anordnung zur reg-

istrierung rascher magnetischer störungen. Hochfrequenztechnik und Elek-

troakustik, 47(6):117–181, 1936.

[5] Jerzy Jankowski and Christian Sucksdorff. IAGA - Guide for magnetic measure-

ments and observatory practice. 1996.

[6] Raspbian - free operating system based on Debian optimized for the Raspberry Pi

hardware. https://www.raspbian.org/.

[7] Raspberry Pi 2 model B. http://www.wikiwand.com/en/Raspberry_Pi.

[8] Raspberry Pi touchscreen display. http://cz.farnell.com/raspberry-pi/

raspberrypi-display/raspberry-pi-7inch-touchscreen/dp/2473872.

[9] JANOŠEK, M.; PETRUCHA, V.; VLK, M. Low-noise magnetic observatory vari-

ometer with race-track sensors. In: IOP Conference Series: Materials Science and

Engineering. IOP Publishing, 2016. p. 012026.

[10] DC/DC měnič MEAN WELL SD-15A-5. http://www.gme.cz/

dc-dc-menic-mean-well-sd-15a-5-p332-448.

[11] Ivan Hrvoic and Lawrence R Newitt. Instruments and methodologies for mea-

surement of the earth’s magnetic field. In Geomagnetic Observations and Models,

pages 105–126. Springer, 2011.

[12] Fluxgate magnetometer. http://www.space.dtu.dk/english/-/media/

Institutter/Space/English/instruments_systems_methods/3-axis_

fluxgate_magnetometer_model_fgm-fge/FGEFluxgateMagnetometerManual.

ashx, 2014.

[13] Veronika Barta Dóra Bán László Bányai József Bór Árpád Kis Dávid Koronczay

István Lemperger János Lichtenberger Attila Novák Sándor Szalai Judit Szendrői

Eszter Szűcs Viktor Wesztergom Dániel Piri, Tamás Nagy. Universal Raspberry PI

based data logger developed for the NCK geophysical obsevatory - IAGA division

5. Observatory, instruments, suveys and analyses. Hungarian National Report on

IUGG, 2011-2014.

39

http://www.gps.gov/
https://www.raspbian.org/
http://www.wikiwand.com/en/Raspberry_Pi
http://cz.farnell.com/raspberry-pi/raspberrypi-display/raspberry-pi-7inch-touchscreen/dp/2473872
http://cz.farnell.com/raspberry-pi/raspberrypi-display/raspberry-pi-7inch-touchscreen/dp/2473872
http://www.gme.cz/dc-dc-menic-mean-well-sd-15a-5-p332-448
http://www.gme.cz/dc-dc-menic-mean-well-sd-15a-5-p332-448
http://www.space.dtu.dk/english/-/media/Institutter/Space/English/instruments_systems_methods/3-axis_fluxgate_magnetometer_model_fgm-fge/FGEFluxgateMagnetometerManual.ashx
http://www.space.dtu.dk/english/-/media/Institutter/Space/English/instruments_systems_methods/3-axis_fluxgate_magnetometer_model_fgm-fge/FGEFluxgateMagnetometerManual.ashx
http://www.space.dtu.dk/english/-/media/Institutter/Space/English/instruments_systems_methods/3-axis_fluxgate_magnetometer_model_fgm-fge/FGEFluxgateMagnetometerManual.ashx
http://www.space.dtu.dk/english/-/media/Institutter/Space/English/instruments_systems_methods/3-axis_fluxgate_magnetometer_model_fgm-fge/FGEFluxgateMagnetometerManual.ashx

[14] Lviv of institute for space recearch - LEMI 025. http://www.isr.lviv.ua/

lemi025.htm.

[15] Network Working Group of the IETF, January 2006, RFC 4251, The Secure Shell

(SSH) Protocol Architecture.

[16] GNU Midnight Commander is a visual file manager, licensed under GNU Gen-

eral Public License and therefore qualifies as Free Software. https://www.

midnight-commander.org/.

[17] Mattia Butta. Magnetic Sensors - Principles and Applications. Chapter 2. 2012.

[18] Orthogonalization: the Gram-Schmidt procedure. https://inst.eecs.

berkeley.edu/~ee127a/book/login/l_vecs_orth.html, 2014.

[19] Nils Olsen, Torben Risbo, Peter Brauer, Jose Merayo, Fritz Primdahl, and Terry

Sabaka. In-flight calibration methods used for the ørsted mission. 2001.

[20] NOAA, National centers for enviromental information. World Magnetic Model.

http://www.ngdc.noaa.gov/geomag-web/#igrfwmm.

[21] Raspberry Pi - Teach, Learn, and Make with Raspberry Pi. https://www.

raspberrypi.org/.

[22] NumPy is the fundamental package for scientific computing with Python. http:

//www.numpy.org/.

[23] Qt Framework and Tools. https://www.qt.io/qt-framework/.

[24] The Model-View-Presenter (MVP) Pattern. https://msdn.microsoft.com/

en-us/library/ff649571.aspx.

[25] Model-View-Controller. https://blogs.msdn.microsoft.com/ukadc/2010/07/

06/model-view/, 2010.

[26] Qt Framework 5.5 Documentation. http://doc.qt.io/qt-5/.

[27] PyQtGraph library Documentation. http://www.pyqtgraph.org/

documentation/.

[28] Geomagnetic observatory of Kelčany. http://measure.feld.cvut.cz/groups/

maglab/geomagnetic/index.php.

[29] Putty - a free SSH and Telnet client. http://www.putty.org/.

[30] PySide Project Documentation. https://pyside.readthedocs.org/en/

latest/.

[31] Python 3.* Documentation. https://docs.python.org/3/.

[32] MONK, Simon. Raspberry Pi Cookbook. O’Reilly Media, Inc., 2013.

40

http://www.isr.lviv.ua/lemi025.htm
http://www.isr.lviv.ua/lemi025.htm
https://www.midnight-commander.org/
https://www.midnight-commander.org/
https://inst.eecs.berkeley.edu/~ee127a/book/login/l_vecs_orth.html
https://inst.eecs.berkeley.edu/~ee127a/book/login/l_vecs_orth.html
http://www.ngdc.noaa.gov/geomag-web/#igrfwmm
https://www.raspberrypi.org/
https://www.raspberrypi.org/
http://www.numpy.org/
http://www.numpy.org/
https://www.qt.io/qt-framework/
https://msdn.microsoft.com/en-us/library/ff649571.aspx
https://msdn.microsoft.com/en-us/library/ff649571.aspx
https://blogs.msdn.microsoft.com/ukadc/2010/07/06/model-view/
https://blogs.msdn.microsoft.com/ukadc/2010/07/06/model-view/
http://doc.qt.io/qt-5/
http://www.pyqtgraph.org/documentation/
http://www.pyqtgraph.org/documentation/
http://measure.feld.cvut.cz/groups/maglab/geomagnetic/index.php
http://measure.feld.cvut.cz/groups/maglab/geomagnetic/index.php
http://www.putty.org/
https://pyside.readthedocs.org/en/latest/
https://pyside.readthedocs.org/en/latest/
https://docs.python.org/3/

List of Figures

2.1 Photo of Raspberry Pi 2 Model B from the top [7] 7

2.2 Photo of Raspberry Pi touchscreen Dispay and some other components

for dispay’s connection [8] . 8

2.3 Photo of the observatory magnetometer with periphery [9] 9

2.4 Photo of observatory magnetometer with shown directions of axes [9] . . 9

2.5 Photo of DC/DC converter Mean Well SD-15A-5 [10] 10

3.1 The AMOS Mk 3 is an automated Observatory system deployed [11] . . 11

3.2 Instruments typical of a modern magnetic observatory [11] 12

3.3 Magnetometer sensor with data logger [12] 12

3.4 Data recorder fo 3-component 1-second observatory Magnetometer LEMI-

025 [14] . 13

4.1 Structure of parallel (A) and orthogonal (B) fluxgates [17] 15

4.2 Orthogonal and non-orthogonal basis . 16

4.3 Magnetic field in Prague according to World Magnetic Model [20] 18

5.1 Photo of the device . 19

5.2 Schematic of connection device with perpherials 19

5.3 Inner connection of the device. 20

5.4 Devices connectors. 21

6.1 Structure of main program that communicats with sensor 24

6.2 Applience of Gaussian Window [5] . 26

6.3 Structure diagram of ”saver” process. ”Msg” - received message 27

6.4 MVP programming pattern [25] . 30

6.5 Structure of process represented data in GUI application 31

7.1 Screenshot of the display with data recorded in a last 12 hours 35

7.2 Photo of the device with recorded data 35

7.3 Photo of the device . 36

41

42

9. CD contents

./
logger......................................Main program
GUI.....................GUI program used for visualization
stand........................Program used for presentation
scriptsUseful scripts

connect................Set local network with the device
disconnect........................Discard local settings
internet.................................Share internet
id rsa.pub.............................Public key. SSH.

data.................................Example of saved files
14052016

07:35.txt
08:00.txt
09:00.txt
10:00.txt

BP Albershteyn 2016.pdf...........................Thesis

43

44

10. Appendix

List of main functions.

10.1 processor.py

def process_data(pipeline , samples , path=’./’):

’’’

Process data from sensor. Accordingly get n samples and

calculate average value from this samples. Then use

Gauss window and finally make

processing.

Args:

pipeline: pipeline where from this function will

receive samples

samples: number of samples per second

path: path where we will save our files

’’’

logger = logging.getLogger(__name__)

Data set [[H], [Z], [E], [T]]

buffersize = 2* samples + 1

data_set = np.zeros ((buffersize , 4))

Number of samples

number_of_samples = 0

Get time for every second saving

firsttime = datetime.datetime.now()

Create pipeline for communication with ’saver ’

parent_conn , child_conn = Pipe(True)

Create new process for data saver.

data_saver_proc = Process(target=data_saver ,

args=(child_conn , path))

data_saver_proc.start ()

Start main cycle

try:

while True:

Get data from pipeline

data = pipeline.recv()

Get current time

currtime = datetime.datetime.now()

45

if data:

If array isn’t full add new line

if number_of_samples < buffersize:

data_set[number_of_samples] = data

number_of_samples += 1

else:

Otherwise make roll and calculate

calibrated values

data_set = np.roll(data_set , 1, axis =0)

data_set [0] = data

mean_value = find_mean(data_set , gauss)

result = calibrate(mean_value)

Send calibrated data to ’saver ’ process.

if currtime.microsecond < firsttime.microsecond:

Calculate mean value and make calibration

if config[’debug ’]:

logger.info(

"Result is [{:1.9f}, {:1.9f}, {:1.9f}]"

.format(result [0], result [1], result [2]))

parent_conn.send(result)

firsttime = currtime

except KeyboardInterrupt:

logger.info(’Keyboard interrupt in process

\’processor\’.’)

sys.exit (0)

10.2 main.py

Load the logging configuration

logging.config.fileConfig(’logging.ini’)

logger = logging.getLogger(__name__)

Path where should be stored all received

and calculated data

path = config[’path’]

Number of samples per second

samples = config[’samples ’]

Initialize port communication with sensor

Virtual mode mean that we don’t have a real sensor

and we will just

generate random numbers. Its mode used for testing.

virtual = False

46

if ’virtual ’ in sys.argv:

logger.info(’Run in virtual mode.’)

virtual = True

inpoint = Generator ()

else:

logger.info(’Run in normal mode.’)

while True:

try:

inpoint = init_sensor ()

except KeyboardInterrupt:

logger.error(’Exiting ...’)

sys.exit (1)

A few reading

if not readline(inpoint):

logger.error(’Error while reading

from sensor. Try to connect

to sensor.’)

inpoint = init_sensor ()

else:

break

readline(inpoint)

logger.info(’Sensor successfully initialized.’)

GPIO setup

This section is for testing

if config[’debug’]:

import RPi.GPIO as GPIO

debug_pin = config[’debug_pin ’]

GPIO.setmode(GPIO.BCM)

Broadcom pin -numbering scheme

GPIO.setup(debug_pin , GPIO.OUT)

GPIO.output(debug_pin , GPIO.LOW)

Create pipeline

logger.info(’Creating pipeline.’)

parent_conn , child_conn = Pipe(True)

#======================================

Start another process , which will be

calculate data and save it to file

#======================================

47

logger.info(’Creating data processer process.’)

data_processor = Process(target=process_data ,

args=(child_conn , samples , path))

data_processor.start()

#=====================================

Run main cycle

#=====================================

logger.info(’Running main cycle.’)

try:

while True:

Debug

if config[’debug’]:

GPIO.output(debug_pin , GPIO.LOW)

time.sleep (0.0001)

GPIO.output(debug_pin , GPIO.HIGH)

Debug end

try:

Get data from the sensor

data = parse_data_string(inpoint.readline ())

parent_conn.send(data)

print(’Main is runnign ’)

except SerialException as e:

logger.error(’Main cycle: Error

occured while reading from port.’)

logger.error(’Excpetion: ’ + str(e))

inpoint = init_sensor ()

continue

except ValueError:

logger.error(’Wrong format of data.

Can\’t parse the string. Contunue.’)

continue

Debug

if config[’debug’]:

GPIO.output(debug_pin , GPIO.HIGH)

time.sleep (0.0001)

GPIO.output(debug_pin , GPIO.LOW)

Debug end

except KeyboardInterrupt:

if not virtual:

inpoint.flush()

inpoint.close()

48

logger.info(’Exiting.’)

time.sleep (1)

if config[’debug’]:

GPIO.cleanup ()

sys.exit (0)

10.3 saver.py

Part of "saver.py" file.

def data_saver(pipeline , path=’./’):

’’’

This function is run as a process and its

save data getted from pipeline.

Args:

pipeline: pipeline

path: path where to save data

’’’

logger = logging.getLogger(__name__)

Queue between threads

d_queue = queue.Queue(maxsize =1)

Start thread which will send data to socket.

socket_th = SocketCommunication(d_queue)

socket_th.start ()

current_time = datetime.datetime.now()

chours = datetime.datetime.now (). hour

fname = time.strftime(

config[’file_name_format ’]) + ’.txt’

save_path = path + ’/’ + \

datetime.date.today (). strftime(’%d%m%Y’) + ’/’

if not os.path.exists(save_path):

os.makedirs(save_path)

if config[’debug’]:

logger.info(’Path to save ’ + str(save_path))

try:

while True:

data = list()

Get data

49

data.append(pipeline.recv ())

if not d_queue.full ():

d_queue.put(data)

#logger.info(’Save calibrated data.’)

ctime = datetime.datetime.now()

if ctime.hour < current_time.hour:

current_time = ctime

save_path = path + ’/’ + \

datetime.date.today (). strftime(’%d%m%Y’) + ’/’

if not os.path.exists(save_path):

os.makedirs(save_path)

if ctime.hour != chours:

chours = ctime.hour

fname = datetime.datetime.now(). strftime(

config[’file_name_format ’]) + ’.txt’

if config[’debug ’]:

logger.info(’Create new file with name ’ \

+ str(fname))

if config[’debug’]:

logger.info(’Complete save path is ’ \

+ str(save_path))

save_data(data , path=save_path , filename=fname)

except KeyboardInterrupt:

logger.info(’Keyboard interrupt

in process \’saver\’.’)

socket_th.stop()

socket_th.join()

sys.exit (0)

50

	Introduction
	Outline
	Objectives

	Used devices
	Raspberry Pi 2 Model B
	Raspberry Pi Touchscreen Display
	Magnetometer
	DC/DC converter

	Comparison to the state-of-the-art
	Theory
	Fluxgate types
	Orthogonalization
	Used orthogonalization

	Hardware part
	Software part
	Program for receiving information from sensor
	Description
	Program structure
	Configuration settings

	Program for plotting data to the display
	Description
	GUI program structure
	GUI program configuration settings

	GUI program for presentation purpose

	Tests and results
	Conclusion
	CD contents
	Appendix
	processor.py
	main.py
	saver.py

