Čestné prohlášení

Prohlašuji, že jsem svou diplomovou prací vypracoval samostatně a použil jsem pouze podklady (literaturu, projekty, SW atd.) uvedené v přiloženém seznamu. Nemám závažný důvod proti užití tohoto školního díla ve smyslu § 60 zákona č.121/2000 Sb., o právu autorském, o právech souvisejících s právem autorským a o změně některých zákonů (autorský zákon).

V Praze dne: 6.6.2017
Diplomová práce

Tomáš Hruška

Anotační list

Jméno autora: Tomáš Hruška
Název DP: Úspory energie v jednotlivých sektorech její spotřeby a jejich ekonomie
Anglický název: Energy savings in various sectors of their needs and their economy
Akademický rok: 2016/2017
Ústav: 12115: Ústav energetiky
Bibliografické údaje: Počet stran: 88
Počet obrázků: 10
Počet grafů: 31
Počet tabulek: 22
Počet příloh: 0
Klíčová slova: dotační programy, úspora energie, budova, teplárenství, spotřeba energie
Keyword: grant program, saving, building, heating plant, power consumption

Anotace:

Abstract:
Diploma thesis deals with reducing energy demand of the Czech economy. It is aimed at reducing power consumption in sector of building where is the greatest potential for savings. The first part describes the current status of accomplishment with energy goals. The next part describes the various grant programmes, judge the potential of building stock and evaluate a national program Nova Zelena usporam in terms of its effectiveness. The next part works with aspects affecting optimal savings in the reconstruction and construction of buildings. The knowledge gained is used and applied for specific family and apartment building. The last part is devoted to heating plants due to the reducing of heat consumption, emissions and decentralization of energetics gets into difficult situation.
Poděkování

Tímto bych rád poděkoval především svému vedoucímu bakalářské práce panu prof. Ing. Františkovi Hrdličkovi, CSc., za odborné vedení, jeho pomoc, čas a cenné rady, které mi při zpracování této práce věnoval.

Dále chci poděkovat svým rodičům, kteří mi po dobu mého studia poskytovali pevné zázemí, obětavou a finanční podporu.
Obsah

1 Úvod ... 1
2 Sektory české ekonomiky ... 2
 2.1 Doprava .. 3
 2.2 Průmysl ... 3
 2.3 Zemědělství .. 4
2.4 Sektor služeb ... 4
 2.5 Sektor domácností .. 4
3 Současná situace .. 6
 3.1 Politika Evropské Unie ... 6
 3.2 Situace v ČR ... 7
 3.1 Nástroje plnění .. 8
 3.2 Systém povinného zvyšování energetické účinnosti 9
 3.3 Makroekonomický prospěch .. 10
4 Přehled dotačních programů .. 11
 4.1 Operační program Praha-Pól růstu .. 11
 4.2 IROP - Integrovaný regionální operační program 11
 4.3 OPŽP - Operační program životního prostředí 12
 4.4 Operační program Podnikání a inovace pro konkurenceschopnost 14
 4.5 Nová zelená úsporám .. 15
 4.6 Vyhodnocení programu NZÚ 2014 ... 17
5 Vyhodnocení dostupného potenciálu v oblasti RD a BD 21
 5.1 Přehled fondu budov .. 21
 5.2 Náklady na zateplení fondu budov ... 21
 5.3 Bytové domy .. 22
 5.4 Rodinné domy ... 23
6 Legislativa ... 25
 6.1 Zákon č. 406/2000 Sb... 25
 6.2 Vyhláška 78/2013 Sb... 25
7 Analýza bytového sektoru ... 27
 7.1 Rodinný dům: Typ 1 .. 31
7.2 Rodinný dům: Typ 2... 34
7.3 Rodinný dům: Typ 3... 36
7.4 Rodinný dům: Typ 4... 38
7.5 Rodinný dům: Typ 5... 41
7.6 Bytový dům: Typ 1... 43
7.1 Bytový dům: Typ 2... 45
7.2 Bytový dům: Typ 3... 47
7.3 Bytový dům: Typ 4... 49
7.4 Bytový dům: Typ 5... 52
8 Shrnutí dosažených výsledků ... 55
8.1 Rodinné domy ... 55
8.2 Bytové domy ... 56
8.3 Vyhodnocení energetické náročnosti z hlediska primární energie .. 57
8.4 Vliv dotací ... 59
8.5 Bariéry realizace ekonomicky proveditelných úspor ... 60
8.6 Skutečné snížení spotřeby tepla při zateplení objektu ... 62
9 Alternativní metody snižování energetické náročnosti ... 65
10 Budoucnost českého teplárenství ... 67
10.1 Teplárenství ... 67
10.2 Konkurenceschopnost ... 67
10.3 Vliv dotacích programů ... 68
10.4 Vliv státu ... 69
10.5 Dodavatelé ... 70
10.6 Dopad na snížení konkurenceschopnosti tepláren ... 70
11 Závěr ... 72
12 Seznam grafů ... 75
13 Seznam tabulek .. 76
14 Seznam obrázků ... 77
15 Použitá literatura .. 78
Seznam zkratek

ASEK Aktualizace státní energetické koncepce
BD Bytový dům
CZT Centrální zásobování teplem
ČR Česká republika
EED Směrnice o energetické účinnosti
EPC Energy Performance Contracting
EPBD Směrnice o energetické náročnosti budov
ERÚ Energetický regulační úřad
EU Evropská unie
EUR Euro
KVET Kombinovaná výroba elektřiny a tepla
MPO Ministerstvo průmyslu a obchodu
MŽP Ministerstvo životního prostředí
NAPEE Národní akční plán energetické účinnosti
NZÚ Nová Zelená úsporám
OP PRAHA Operační program Praha-Pól růstu
OPPIK Operační program
OPŽP Operační program životního prostředí
OZE Obnovitelné zdroje energie
RD Rodinný dům
SPF Sezonní topný faktor
TUV Teplá užitková voda
1 Úvod

Struktura zdrojů je v České republice (dále jen ČR) stabilní a současná energetická spotřeba je kryta více než 50 % domácími zdroji primární energie. ČR patří mezi země s nejnižším ukazatelem dovozní energetické závislosti a je soběstačná ve výrobě elektřiny a tepla. Do roku 1989 trvale docházelo ke zvyšování energetické náročnosti české ekonomiky. Důvodem bylo pod investování výrobních zařízení, upřednostňování těžkého průmyslu a státem regulované ceny energií, které nereagovaly na globální změny.

Dne 18. května 2015 byl v souladu s dokumentem Aktualizace Státní energetické koncepce ČR (dále ASEK) schválen orientační vnitrostátní cíl ČR. Cílem tohoto klíčového dokumentu je zajistit spolehlivou, bezpečnou a k životnímu prostředí šetrnou dodávku energie pro potřeby obyvatelstva a ekonomiky ČR, a to za konkurenceschopné a přijatelné ceny za standardních podmínek. Vnitrostátní orientační cíl byl tedy stanoven k 31. 1. 2015 ve výši 50,67 PJ (14,08 TWh) nových úspor v konečné spotřebě v roce 2020. Tato stanovená výše odpovídá každoročním úsporám ve výši 1,5 % objemu prodeje energie konečným zákazníkům. Stanoveného cíle bude chtít ČR dosáhnout pomocí dotačních programů. [1]

Sektor budov tvoří 37 % celkové konečné spotřeby energie v ČR. Větší část bytového fondu dosud nebyla rekonstruována a je zde velký potenciál úspor, který zatím zůstává nevyužitý. V dnešní době je kladen velký důraz na energetickou náročnost budov, proto dochází k neustálému vývoji materiálů a systémů s nimi spojených. Zateplování je však velice finančně náročné. Aby se zateplení na spotřebě energie projevilo v dostatečné míře, musí být odborně provedeno a aplikováno na celou budovu. I v případě splnění tohoto předpokladu se návratnosti pohybují v desítkách let.

Cílem práce je zhodnotit ekonomickou efektivnost úsporných opatření na rodinných a bytových domech. Dále vyhodnotit dostupný potenciál úspor a jejich proveditelnost. V poslední fázi bude zhodnocen celospolečenský přínos a doporučení k trvalému snižování energetické náročnosti budov.
2 Sektory české ekonomiky

Cílem práce je zhodnocení úspor energie v jednotlivých sektorech její spotřeby a jejich ekonomie. Zhodnocení úspor energie všech sektorů ekonomie v jedné diplomové práci není možné, protože se jedná o velice obsáhlý a složitý problém. V této kapitole budou zkráceně představeny jednotlivé sektory a zhodnocen důvěr výběru sektoru domácností.

Pro vyhodnocení efektivity ve využívání energie lze použít dva indikátory:

- Energetická náročnost na spotřebu primární energie- je podíl spotřeby primárních energetických zdrojů a HDP a udává efektivnost celého národního hospodářství.
- Energetická náročnost na konečnou spotřebu energie- je podíl konečné spotřeby energie a HDP a udává energetickou efektivitu spotřebitelských odvětví. [2]

Na spotřebě energie se v národním hospodářství podílejí jednotlivé sektory ekonomiky. Těmito sektory jsou průmysl, doprava, zemědělství, domácnosti a služby.

![Graf 1 Vývoj konečné spotřeby energie v jednotlivých sektorech ekonomiky](image-url)
2.1 Doprava

Doprava je velmi náročným sektorem spotřeby energie. Energetická náročnost dopravy navíc dlouhodobě roste. V roce 2014 v ČR byl podíl spotřeby na celkové konečné spotřebě energie 27%. Silniční doprava má největší podíl na spotřebě energie v tomto sektoru, proto jsou v posledních letech zaváděny stále přísnější limity pro osobní a nákladní vozy. V příštích letech lze také očekávat zvýšení počtu aut na LPG, CNG, či elektrickou energii. Dále by bylo vhodné využívání energeticky úsporných druhů nákladní dopravy, jako je železniční či vodní. Dalším možným způsobem snížení energetické náročnosti by mohlo být cestování hromadnými dopravními prostředky. Sektor dopravy je samostatnou kapitolou, a proto se jím nebudu v dalších částech zabývat.

2.2 Průmysl

Průmysl je důležitým odvětvím českého hospodářství s hlubokými historickými kořeny a je zde zaměstnána velká část populace ČR. Hlavními pilíři je průmysl strojírenský, hutníčky, chemický, potravinářský, energetický, stavební a spotřební. Energetická náročnost českého průmyslu neustále klesá, ale stále je nad úrovní vyspělých států, což naznačuje stále potenciál úspor. V ČR průmysl tvoří 33 % spotřeby. Sektor průmyslu je velice rozsáhlou a obtížnou kapitolou s ohledem na jeho diversitu, která přesahuje rámec diplomové práce. Bylo by velice obtížné zhodnotit úspory energie v tomto odvětví.
2.3 Zemědělství

Z grafu je patrné, že zemědělství tvoří 3% spotřeby energie českého hospodářství. Snížování energetické náročnosti v zemědělství je důležité pro udržení konkurenceschopnosti. Úspor v tomto odvětví lze dosáhnout optimalizací a modernizací jednotlivých procesů zemědělské výroby. V oblasti zemědělství existuje potenciál úspor, ale v porovnání s oblastí budov a služeb je poměrně nízký, a proto již nebude dále zmiňován.

2.4 Sektor služeb

Sektor služeb je také nazýván jako nerezidenční nebo terciární sektor. Sektor služeb obsahuje veškeré budovy, které nejsou určeny k bydlení. Tento sektor zahrnuje budovy průmyslové, komerční, budovy veřejné správy, budovy určené pro vzdělávání, zdravotnické budovy, kulturní zařízení a ostatní budovy. Podílí se 12% na celkové spotřebě energie ČR. Obecná data k nerezidenčnímu sektoru nejsou příliš dostupná. Ve studiích jsou základní údaje, počty budov, kategorie, druh využití budovy či velikost vytápěných prostor vzhledem k potenciálu úspor pouze odhadovány. Z důvodu různého způsobu využívání a nedostatku potřebných dat nebudou nerezidenční budovy dále uváděny.

2.5 Sektor domácností

Rozložení spotřeby energie v budovách

Dříve platilo, a stále ještě platí, že nejvíce energie v budovách se spotřebuje na vytápění a ohřev užitkové vody. V posledních letech spotřeba klesá a přibližuje se spotřebě na provoz elektrických spotřebičů. Tato skutečnost je zčásti dína tím, že nové nebo rekonstruované domy mají často více než poloviční tepelné ztráty. Zatímco účinnost elektrických spotřebičů roste pomalu a navíc jejich množství stále narůstá. Přibývá tedy domácností, u kterých se náklady na běžný provoz (spotřeba elektrických spotřebičů) přibližují nákladům na vytápění.
Graf ukazuje, že více než tři čtvrtiny z celkové spotřeby v budovách jsou využívány na vytápění, přípravu TUV a vaření. Dotační programy jsou namířeny na renovace obálek a modernizaci otopných soustav, které by měly snížit spotřebu na vytápění a přípravu TUV.

3 Současná situace

3.1 Politika Evropské Unie

Evropská energetická politika patří v současnosti mezi hlavní priority EU. Energetická politika má 3 hlavní cíle: bezpečnost dodávek, konkurenceschopnost a udržitelnost. Pro zjednodušení legislativy a pro zrychlení v zavádění opatření evropská komise předložila plán na vytvoření Energetické unie, která má zajistit občanům a podnikům bezpečnou, cenově dostupnou energii šetrnou ke klimatu. Energetická unie navazuje na stávající energetickou politiku EU. Instalace nových technologií, zvýšení energetické účinnosti a modernizace infrastruktury pomohou snížit náklady pro domácnosti, vytvořit nová pracovní místa a stimulovat hospodářský růst v obecnějším měřítku.

Strategie energetické unie by měla být založena na pěti úzce souvisejících dimenzích:

- Bezpečnost dodávek energie
- Jednotný vnitřní trh s energií
- Energetická účinnost
- Snižování emisí
- Výzkum a inovace v oblasti energetiky

Cíle EU v oblasti energetiky a oblasti klimatu:

Cíle pro rok 2020:

- Snižení emisí skleníkových plynů a zvýšení energetické účinnosti od roku 1990 nejméně o 20 %
- Získávat 20 % energie z obnovitelných zdrojů

Cíle pro rok 2030:

- Snižení emisí skleníkových plynů o 40 %
- Alespoň 27 % energie v EU z obnovitelných zdrojů
- Zvýšení energetické účinnosti o 27-30 %
- Propojení 15 % rozvodných sítí

Cíl pro rok 2050 je snížení skleníkových plynů o 80-95% oproti hodnotám z roku 1990. [5]
3.2 Situace v ČR

Stát musí zajišťovat stabilní zásobování a hospodaření s energií, vzhledem k dlouhodobému dopadu řídících a regulačních kroků, je zpracovávána dlouhodobá strategie na období 20-30 let. Česká energetika je posledních letech výrazně ovlivňována tzv. klimaticko-energetickým balíčkem, který určuje klimatické a energetické cíle EU. Do roku 2020 má být zvýšena energetická účinnost EU o 20 % a tím EU směřuje k vizi dekarbonizované energetiky v roce 2050. ČR již tohoto cíle dosáhla a stanovila si nové cíle předpokládaných úspor. [6]

Energetická náročnost ČR má dlouhodobě klesající trend, přesto se česká ekonomika vyznačuje vyšší energetickou náročností než země západní Evropy. ČR má 6. nejnáročnější ekonomiku v porovnání se všemi 28 státy EU. Všechny země střední a východní Evropy se vyznačují vysokou náročností ekonomik a figurují na prvních 11 místech v míře energetické náročnosti. Tato skutečnost je také dáná tím, že tyto země prošly transformací z centrálně plánovaných ekonomí na tržní. Navíc se česká ekonomika vyznačuje relativně velkým podílem energeticky náročných sektorů. Obecně platí, že méně vyspělé ekonomiky vykazují větší energetickou spotřebu na produkci jedné jednotky hospodářského výstupu. Česká republika opožděně implementovala EED do české legislativy a tím došlo ke vzniku deficitu, který se bude snažit dohnat s ohledem na nákladovou efektivnost a udržitelnost daných opatření. [7]
Dne 25. října 2012 byla vydána nová směrnice o energetické účinnosti, která zavádí společný rámec opatření na podporu energetické účinnosti v EU. Cílem je zajistit splnění cíle EU pro energetickou účinnost do roku 2020 a vytvořit podmínky pro další zvyšování energetické účinnosti pro další období. Směrnice stanovuje pravidla zaměřující se na odstranění překážek na trhu s energií a překonání některých nedokonalostí trhu.

Cíle zvyšování energetické účinnosti se ČR snaží dosáhnout legislativními a nelegislativními opatřeními. Směrnice o energetické účinnosti má široký rozsah, proto její zanesení do českého práva probíhalo v rámci novelizace tří zákonů. Jednalo se o zákon o podmínkách podnikání a o výkonu státní správy v energetických odvětvích, zákon o hospodaření s energií a zákona o podporovaných zdrojích.

Opatření nelegislativní

Vláda v roce 2015/2016 schválila dva důležité strategické materiály a to NAPEE-IV a plán rekonstrukce objektů ve vlastnictví státu. V souladu se směrnicí Ministerstvo průmyslu a obchodu provedlo analýzu potenciálu kombinované výroby elektřiny a tepla. Na základě analýzy nákladů a přínosů byl zjištěn celospolečenský přínos při realizaci scénáře KVET.

Ekonomická opatření

Dotační programy jsou zatím v ČR hlavním nástrojem pro plnění národního cíle. I přesto, že úsporná opatření jsou opatřeními návratnými, k jejich realizaci nedochází z následujících důvodů. Nejčastějšími důvody je počáteční investice, nedostatečná informovanost, potřeba přípravy projektové dokumentace a energetické optimalizace, nedůvěra v dosažené úspory a zhoršené užívání budovy po dobu renovace.
Na podporu snižování energetické náročnosti ČR využívá čtyři operační programy (OPŽP, OPPIK, IROP, OP Praha) a tři národních programů (Nová zelená úsporám, Panel 2013+, Efekt). Tyto programy poskytují dotace na renovace nebo výstavbu nových budov. Uvedené programy mají především pomoci překonat finanční bariéru a motivovat vlastníky k úsporným opatřením.

Programy se liší podle místa, typu budovy, podmínek a výše podpory. Stálé zjednodušování administrativy a sjednocování podmínek jednotlivých programů by mělo nastartovat investice do renovace a stavby nových budov a tím zajistit plnění závazků EU. Vyhlášení dlouhodobých výzev je důležité a přispívá ke stabilitě a předvidatelnosti investičního prostředí. [6]

3.2 Systém povinného zvyšování energetické účinnosti

Předpokládané úspory jsou stanoveny na 14,61 PJ. Po aktualizaci dat by dosažené úspory z operačních a národních měly dosáhnout výše 48,028 PJ. Sečteme-li opatření navržených v NAPEE III a nová opatření v rámci NAPEE-IV mělo by být dosaženo 62,642 PJ úspor energie v konečné spotřebě. Z uvedeného grafu je patrná hypotetická rezerva ve výši 11,97 PJ.

Pro období 2014-2016 dle aktualizace NAPEE-IV je očekávaná úspora 10,86 PJ. Z toho 10,823 PJ by mělo být z úspor navržených v rámci NAPEE-III a pouze 0,036 PJ z dodatečně navržených opatření plynoucí z NAPEE-IV. Toto nízké číslo je dáno tím, že během roku 2016 budou detailně dojednány závěrečné podmínky těchto opatření. Z důvodu zpožděného čerpání dotací z operačních programů jsou předpokládané úspory pouze na 50 % objemu ročních kumulativních úspor dle čl. 7.

V období 2017-2020 se předpokládá plné čerpání z operačních programů a celkové zapojení dodatečných politických opatření, a to by mělo přinést úspory ve výši 51,783 PJ. Celkové výdaje ve stavebnictví potřebné k dosažení cílů jsou odhadovány na 240 mld. Kč do roku 2020. [8]
3.3 Makroekonomický prospěch

Investice do snížení energetické náročnosti jsou obecně uznávané jako prorůstová opatření s pozitivními dopady. Tyto investice mohou zvýšit lokální zaměstnanost a přivést peníze do veřejných rozpočtů. [9]

Dle studie operační programy podporující úspory energie v budovách mohou za 1 investovanou korunu přinést růst DPH 2,13 až 3,59 Kč a na daních vrátit zpět do rozpočtu 0,96 až 1,21 Kč. Dále by bylo možné vytvořit až 35 000 pracovních míst při celkových investicích 35-40 mld. Kč. Dalším pozitivním přínosem by mohlo být snižování dovozní závislosti zemního plynu, kde by se dalo uspořit až 1,9 mld. m³. [10]
4 Přehled dotačních programů

4.1 Operační program Praha-Pól růstu

Praha je městem nadregionálního významu, které zvyšuje konkurenceschopnost a ekonomický růst ČR. Praha je také klíčová v kulturních a společenských oblastech, tedy tzv. polem růstu. Tento program byl schválen v roce 2015 a má za úkol podporovat strategii pro inteligentní a udržitelný růst podporující začlenění a k dosažení hospodářské, sociální a územní soudržnosti.

Alokace EU je ve výši 201,6 mil. EUR, protože Praha je více rozvinutý region, byla stanovena podmínka 50% spolufinancování z národních zdrojů. Celková alokace programu tedy bude 403,2 mil. EUR (příspěvek EU a národních fondů). Z hlediska požadavků na úspory energie je důležitá investiční priorita

Prioritní osa 2: Udržitelná mobilita a energetické úspory

Specifický cíl 2.1: Energetické úspory v městských objektech dosažené také s využitím vhodných obnovitelných zdrojů energie, energeticky efektivních zařízení a inteligentních systémů řízení.

Měl být tedy naplňován zejména podporou snižování energetické náročnosti objektů a technických zařízení sloužících pro zajištění provozu městské, veřejné a silniční dopravy a dále realizaci pilotních projektů přeměny energeticky náročných veřejných budov na budovy s téměř nulovou spotřebou energie (příspěvky EU) s integrovanými inteligentními systémy. V rámci celého specifického cíle bude podporováno využití řešení založených na ICT technologiích pro energetickou efektivnost, inteligentní řízení spotřeby energie a systémy ITS.

Specifický cíl 2.2: Zvyšování atraktivity užívání městské veřejné dopravy

Specifický cíl by měl být naplňován podporou realizace záchytých parkovišť systému P+R (park & ride) u stanic a zastávek drážní dopravy a podporou opatření pro preferenci povrchové městské veřejné dopravy v uličním provozu. Oba uvedené typy opatření mají nadregionální rozměr, směřují ke snižování objemu vnější automobilové dopravy na území města, ke snižování produkce hluku a emisí z automobilů a tím k udržitelné mobilitě. Cílovou skupinou je hlavní město Praha a také organizace a podniky, podílející se na chodu města.

Opatření lze aplikovat pouze na území hl. m. Prahy a jeho životnost by měla být 30 let a více. [11]

4.2 IROP - Integrovaný regionální operační program

IROP vznikl na základech realizace Integrovaného operačního programu a regionálních operačních programů. Aktuální program prošel změnami respektující vývoj ekonomiky a regionů a také evropské a národní dokumenty. Strategií operačního programu je přispívání ke strategii Unie pro inteligentní a udržitelný růst, který bude podporovat začlenění a dosažení hospodářské, sociální a územní soudržnosti.

Program je rozdělen do pěti prioritních os. Z hlediska energetický úspor je důležitá prioritní osa 2 a její investiční priorita 4c – Podpora energetické účinnosti, inteligentních systémů hospodaření s energii a využívání energie z obnovitelných zdrojů ve veřejných infrastrukturách, mimo jiné ve veřejných budovách a v oblasti bydlení.

Toto opatření povede k významnému snížení dodávané spotřeby budov a kromě snížení emisí se zlepší životní úroveň domácností v důsledku snížované nákladů na bydlení.

Příklady podporovaných opatření:

- Snížování spotřeby energie zlepšením tepelných vlastností budov
- Zařízení pro vytápění nebo přípravu teplé vody
- Přechod na šetrné ekologické zdroje

Cílovou skupinou jsou obyvatelé a majitelé bytových domů. Podpora formou dotace bude poskytnuta na celém území ČR mimo hl. m. Prahy. Průměrná životnost by měla být ve výši 15-30 let. [12]

4.3 OPŽP- Operační program životního prostředí

OPŽP reaguje na aktuální varování, která jsou spojená zejména s rostoucím rizikem změny klimatu. Je koordinován s dalšími operačními programy, jako jsou IROP, Operační program doprava, Program rozvoje venkova a Operační program Podnikání a Inovace pro konkurenceschopnost.

Operační program je zaměřený na ochranu a zlepšování životního prostředí v ČR. Podporuje zlepšování stavu ovzduší, vody i půdy, zamýšlí se na problematiku odpadů a průmyslového znečištění, podporuje také péči o krajinu a využívání obnovitelných zdrojů energie a budování nové infrastruktury. OPŽP je rozdělen do pěti prioritních os, ve kterých jsou významné prioritní osy 2 a 5.
Prioritní osa 2: Zlepšování kvality ovzduší v lidských sídlech

Globálním cílem pro období 2014-2020 je zlepšení kvality ovzduší v oblastech, kde jsou překračovány emisní limity a udržení kvality ovzduší tam, kde je kvalita dobrá.

Specifický cíl 2.1 - Snížit emise z lokálního vytápění domácností, podílejících se na expozici obyvatelstva nadlimitním koncentracím znečišťujících látek.

Specifický cíl 2.2 - Snížit emise stacionárních zdrojů podílejících se na expozici obyvatelstva nadlimitním koncentracím znečišťujících látek

Typy podporovaných projektů:

- náhrada a rekonstrukce stávajících stacionárních zdrojů znečišťování
- pořízení technologií a změny technologických postupů vedoucích ke snížení emisí znečišťujících látek nebo ke snížení úrovně znečištění ovzduší

Prioritní osa 5: Energetické úspory

Zaměřuje se na snížení konečné spotřeby energie a na nahrazení primárních neobnovitelných zdrojů lokálními obnovitelnými zdroji ve veřejných budovách. Existuje významná synergie s prioritní osou 2, protože podporovaná opatření přispějí ke snížení emisí.

Specifický cíl 5.1 – Snížit energetickou náročnost veřejných budov a zvýšit využití obnovitelných zdrojů energie

Typy podporovaných projektů:

- Celkově nebo dílčí energeticky úsporné renovace veřejných budov
- Samostatná opatření výměny zdroje tepla pro vytápění nebo přípravu teplé vody, instalace solárně termických kolektorů a instalace nuceného větrání s rekuperací odpadního tepla, tam kde veřejná budova splňuje určitou energetickou náročnost.

Program je určen krajům, obcím, veřejnoprávním institucím, školám, městským částem hl. města Prahy a další státním i nestátním organizacím.
Specifický cíl 5.2 – Dosáhnout vysokého energetického standardu nových veřejných budov

Veřejná zpráva by měla jít příkladem a udávat směr v oblasti energetické náročnosti budov. Veřejné budovy blížící se standardu pasivního domu se v současnosti v ČR téměř nevyskytují. Obdobně jako v SC 5.1 lze očekávat přínosy v mnohých oblastech (hospodářské, regionálního rozvoje, zaměstnanosti, energetické bezpečnosti, životního prostředí a klimatu, zdravotnictví). Pro specifický cíl 5.2 je očekávaná alokace 4 % z celkové částky pro prioritní osu 5.

Podporovanými aktivitami budou zvýšené náklady na dosažení pasivního energetického standardu u nových budov. Toto opatření cíli na stavebníky a lze ho uplatnit na celém území ČR kromě Prahy a je tedy určen pro kraje, obce, školy a veřejné instituce. [9]

4.4 Operační program Podnikání a inovace pro konkurenceschopnost

Operační program Podnikání a inovace pro konkurenceschopnost 2014-2020 (OPPIK) byl vypracován Ministerstvem průmyslu a obchodu ve spolupráci ve spolupráci s partnery za účelem dosažení konkurenceschopné a udržitelné ekonomiky založené na znalostech a inovacích. V OPPIK je možnost získat dotaci ve čtyřech oblastech podpory. Z hlediska úspor je zajímavá prioritní osa 3 a její specifické cíle 3.1, 3.2 a 3.5. Projekty si mezi sebe rozdělí téměř 120 miliard Kč a na efektivnější nakládání s energií bude možné využít až 36 mld. Kč.

Prioritní osa 3- Efektivnější nakládání energií

Hlavním cílem je zvyšování energetické účinnosti a zabezpečení dodávek prostřednictvím rozvoje inteligentních systémů pro distribuci, skladování a přenos energie. Komplexní přístup povede k vyššímu příjmu pro posílení bezpečnosti, spolehlivosti a kvality dodávky elektrické energie a zároveň umožní dobudovat vnitřní trh s elektrínou a neposlední řadě umožní integraci decentralizních zdrojů včetně OZE do distribučních soustav a efektivnější nakládání energií.

Specifický cíl 3.1- Zvýšit podíl výroby energie z obnovitelných zdrojů na hrubé konečné spotřebě ČR

V ČR hrají nejvýznamnější roli klasické zdroje energie na úkor moderních, obnovitelných zdrojů. Příčinou je vysoká vstupní investice a také ne příliš vhodné podmínky pro využívání obnovitelných zdrojů energie. ČR s podporou Unie chce dosáhnout zvýšení podílu produkce energie z OZE, snížení dovozní závislosti a rozvoji podnikatelských aktivit v oblasti OZE. Tohoto cíle by chtěla ČR dosáhnout výstavbou a rekonstrukcí malých vodních elektráren, výstavbou a rekonstrukcí zdrojů tepla s kombinovanou výrobou elektřiny a tepla z biomasy a vyvodením tepla ze stávajících bioplynových stanic.
Specifický cíl 3.2 - Zvýšit energetickou účinnost podnikatelského sektoru

ČR udělala za dobu své existence zásadní pokrok, ale ekonomický potenciál úspor energie je v podnikatelském sektoru stále nevyčerpán. Energetická účinnost je důležitým faktorem pro udržení konkurenceschopnosti podniků resp. celé ekonomiky. Hlavním cílem tohoto opatření je podpora konkurenceschopnosti podnikatelských subjektů a udržitelnosti české ekonomiky prostřednictvím snižení energetické náročnosti podnikatelského sektoru. Orientační cíl ČR je stanoven ve výši 50,67 PJ úspor v konečné spotřebě energie. V tomto specifickém cíli budou podporovány aktivity jako modernizace a rekonstrukce rozvodů elektřin, plynu a tepla, dále zavádění a modernizace měření a regulace, snižování energetické náročnosti budov a výrobních procesů a instalace OZE.

Specifický cíl 3.5 - Zvýšit účinnost soustav zásobování teplem

Hlavním cílem specifického cíle 3.5 je podpora konkurence schopnosti a udržitelnosti české ekonomiky s vyšším využíváním kombinované výroby tepla a elektřiny. ČR využívá rozsáhlých soustav zásobování teplem, avšak dnes už velká část neodpovídá požadovaným parametřům. Je nutná modernizace, optimalizace jejich provozu a snižování ztrát tepla v rozvodech. Zároveň jsou některé soustavy zásobování teplém napájeny ze zdrojů monovýroby tepla, tudíž zde existuje potenciál kombinované výroby tepla a elektřiny.

Tento program je určen pro podnikatelské podniky (malé, střední i velké), jejichž předmětem podnikání je výroba a dodávka tepla systémem zásobování teplem vyprodukovaného v kombinované výrobě elektřiny a tepla. Toto opatření lze aplikovat na celém území ČR mimo Prahu. [13]

4.5 Nová zelená úsporám

Nová zelená úsporám (dále NZÚ) je program Ministerstva životního prostředí administrovaný Státním fondem životního prostředí ČR. Zaměřuje se na úspory energie a efektivní využití zdrojů energie staveb. NZÚ se orientuje na podporu instalací zdrojů na vytápění s využitím obnovitelných zdrojů energie, ale také na investice energetických úspor při rekonstrukcích i při výstavbě nových domů. O dotaci z programu NZÚ je možné žádat v letech 2014-2020. Bude z něj možnost čerpat na energeticky úsporná opatření v rodinných a bytových domech, ale i v budovách veřejného sektoru. Finanční prostředky byly získány prodejem tzv. emisních povolenek. Financování programu probíhá přes státní rozpočet ČR.

Hlavní cílem úspora energie v konečné spotřebě a snižení produkcí emisí znečišťujících látek a skleníkových plynů. To povede ke stimulaci ekonomiky ČR s dalšími sociálními přínosy, jako například zvýšení kvality bydlení občanů, zlepšení vzhledu měst a obcí, nastartování progresivních trendů. Oprávněnými žadateli a příjemci mohou být vlastníci rodinných a bytových domů. Podpory z NZÚ mohou využívat fyzické i právnické osoby, bytová družstva, města, obce a podnikatelské subjekty.
Rodinné domy (RD)

První výzva

První výzva s alokací 500 mil. Kč byla zaměřena na snižování energetické náročnosti stávajících RD a výstavbu nových domů velmi nízkou energetickou náročností a na efektivní využití efektivní využití zdrojů energie.

Druhá výzva

Druhá výzva s alokací 600 mil. Kč byla zaměřena na snižování energetické náročnosti stávajících RD, na výstavbu RD s velmi nízkou energetickou náročností a na efektivní využívání zdrojů energie.

Třetí výzva

Třetí výzva je aktuálně probíhající a podporuje stejná opatření, jako dvě předcházející. Přijem žádostí bude probíhat kontinuálně v závislosti na zajištění finančních zdrojů z prodeje emisních povolenek.

V aktuální výzvě jsou zahrnuty následující oblasti podpory:

A. Snižování energetické náročnosti stávajících rodinných domů

Jsou podporována dílčí i komplexní opatření, kde platí pravidlo: čím více opatření vedoucích k úspore energie bude realizováno, tím bude podpora větší. Není přesně dáno, jaká opatření je nutné provést, ale jasně dané jsou například dosažené hodnoty sledovaných technických parametrů nebo procentuální snížení měrné roční spotřeby.

B. Výstavba rodinných domů s velmi nízkou energetickou náročností

Jedná se o dotaci na výstavbu nových rodinných domů s velmi nízkou energetickou náročností. Podporovány jsou také změny dokončených budov, které před zahájením nesplňují definici podporovaných rodinných domů.

C. Efektivní využití zdrojů energie

Podpora je zaměřena na výměnu neekologického zdroje tepla (kotel na uhli, koks, uhelné brikety) za ekologicky šetrné zdroje (kotle na biomasu, tepelné čerpadlo či plynový kondenzační kotel) a také na napojení na soustavu centrálního zásobování teplom. Dále jsou podporovány výměny elektrických vytápění za systémy s tepelným čerpadlem. V neposlední řadě podpora instalace solárních termických a fotovoltaických systémů a instalace systému nuceného větrání se zpětným získáváním tepla z odpadního vzduchu.

Výše podpory je dána rozsahem a kvalitou provedených opatření, tzn. čím více provedených opatření, tím vyšší dotace. Maximální výše dotace na jednu žádost je omezena na 50 % doložených způsobilých výdajů.
Diplomová práce

Tomáš Hruška

Bytové domy

První výzva byla vyhlášena pro bytové domy současně s druhou výzvou pro RD. Byla zaměřena na snižování energetické náročnosti stávajících bytových domů v Praze.

Druhá výzva je také určena pro vlastníky bytových domů v Praze. Tato výzva je kontinuální celková alokace bude záležet na výnosech z prodeje emisních povolenek. Je zaměřena na snižování energetické náročnosti stávajících bytových domů a také na efektivní využívání zdrojů energie.

Ve 3. výzvě jsou podporovány bytové domy na celém území ČR., jelikož NZÚ. Oblasti podpory jsou stejně jako u RD s výjimkou oblasti podpory B. Podpora je tedy poskytována v následujících oblastech.

A. Snižování energetické náročnosti stávajících bytových domů

B. Efektivní využití zdrojů energie

Celková výše podpory na jednu žádost je omezena na max. 30% doložitelných způsobilých výdajů. Přípravuje se výzva pro budovy veřejného sektoru. [14]

4.6 Vyhodnocení programu NZÚ 2014

<table>
<thead>
<tr>
<th>Tabulka 1 Předpokládané úspory a alokace v programu NZÚ [1]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sektor</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Domácnosti</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Celkem</td>
</tr>
</tbody>
</table>

NZÚ se zaměřuje, stejně jako předchůdce, na podporu opatření vedoucích ke snížení energetické náročnosti staveb, výměnou nevyhovujících zdrojů vytápění a na podporu využívání obnovitelných zdrojů energie. Příjem žádostí v 1. výzvě probíhal od 1. dubna do 31. prosince 2014 a bylo na ní vyčleněno 1,98 miliardy korun. Celková vyplacená částka byla nakonec 1,483 mld. Kč na 17 357
podaných žádostí. O oblast podpory C byl největší zájem za těsně následovanou oblast podpory A. Přes 96 % žadatelů byly nepodnikající fyzické osoby. [15]

Tabulka 2 Vyhodnocení NZÚ 2014 [15]

<table>
<thead>
<tr>
<th>Oblast podpory</th>
<th>Popis</th>
<th>Počet požadavek</th>
<th>%</th>
<th>Objem podpory (mil. Kč)</th>
<th>%</th>
<th>Průměrná podpora na jeden projekt (Kč)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-celkem</td>
<td></td>
<td>7 753</td>
<td>44,67</td>
<td>808,13</td>
<td>53,95</td>
<td>103208</td>
</tr>
<tr>
<td>A.1</td>
<td>Hladina 1</td>
<td>1 403</td>
<td>8,06</td>
<td>268,94</td>
<td>18,13</td>
<td>191689</td>
</tr>
<tr>
<td>A.2</td>
<td>Hladina 2</td>
<td>1 059</td>
<td>6,15</td>
<td>344,47</td>
<td>23,23</td>
<td>325279</td>
</tr>
<tr>
<td>A.3</td>
<td>Hladina 3</td>
<td>254</td>
<td>1,46</td>
<td>124,15</td>
<td>8,37</td>
<td>488790</td>
</tr>
<tr>
<td>A.4</td>
<td>Zpracování odborného posudku</td>
<td>2 547</td>
<td>14,67</td>
<td>50,17</td>
<td>3,38</td>
<td>19698</td>
</tr>
<tr>
<td>A.5</td>
<td>Zajištění odborného technického dozoru</td>
<td>2 490</td>
<td>14,35</td>
<td>42,11</td>
<td>0,84</td>
<td>4964</td>
</tr>
<tr>
<td>B-celkem</td>
<td></td>
<td>1 668</td>
<td>9,61</td>
<td>428,03</td>
<td>28,86</td>
<td>256619</td>
</tr>
<tr>
<td>B.1</td>
<td>Hladina 1</td>
<td>495</td>
<td>2,85</td>
<td>201,72</td>
<td>13,6</td>
<td>400000</td>
</tr>
<tr>
<td>B.2</td>
<td>Hladina 2</td>
<td>353</td>
<td>2,03</td>
<td>197,65</td>
<td>13,33</td>
<td>550000</td>
</tr>
<tr>
<td>B.3</td>
<td>Zpracování odborného posudku a měření průznadlity</td>
<td>820</td>
<td>4,72</td>
<td>28,66</td>
<td>1,93</td>
<td>34951</td>
</tr>
<tr>
<td>C-celkem</td>
<td></td>
<td>7 936</td>
<td>45,72</td>
<td>254,98</td>
<td>17,19</td>
<td>32130</td>
</tr>
<tr>
<td>C.1</td>
<td>Výmena zdrojů tepla (při realizaci opatření A)</td>
<td>798</td>
<td>4,65</td>
<td>47,81</td>
<td>3,22</td>
<td>59912</td>
</tr>
<tr>
<td>C.2</td>
<td>Výmena zdrojů tepla (bez realizace opatření A)</td>
<td>714</td>
<td>4,11</td>
<td>45,22</td>
<td>3,01</td>
<td>60552</td>
</tr>
<tr>
<td>C.3</td>
<td>Instalace solárních termických systémů</td>
<td>3 131</td>
<td>19,11</td>
<td>120,98</td>
<td>8,16</td>
<td>36473</td>
</tr>
<tr>
<td>C.4</td>
<td>Instalace systémů ruceného větrání</td>
<td>286</td>
<td>1,65</td>
<td>29,03</td>
<td>1,96</td>
<td>101502</td>
</tr>
<tr>
<td>C.5</td>
<td>Zpracování odborného posudku pro oblast podpory C2</td>
<td>615</td>
<td>3,54</td>
<td>3,07</td>
<td>0,21</td>
<td>4922</td>
</tr>
<tr>
<td>C.6</td>
<td>Zpracování odborného posudku pro oblast podpory C3</td>
<td>2 206</td>
<td>12,71</td>
<td>10,88</td>
<td>0,73</td>
<td>4932</td>
</tr>
<tr>
<td>Celkový součet</td>
<td></td>
<td>17 357</td>
<td>100</td>
<td>1480,13</td>
<td>100</td>
<td>85450</td>
</tr>
</tbody>
</table>

Metodika výpočtu

Předpoklady výpočtu:

- Cena uspořené energie je počítána s cenou tepla 500 Kč/GJ
- Byla uvažována průměrná plocha rodinného domu- 125 m²
- Byla určena referenční hodnota roční spotřeby energie na úrovni 250 kWh/m².rok
- Průměrná hodnota proplacených způsobilých výdajů byla stanovena na 40 %
- Předpokládaná doba životnosti je 30 let

Určení průměrné dotace:

$$D_{prům.} = \frac{O}{N}$$

$D_{prům.}$- průměrná dotace na jeden projekt [Kč]

O-celkový objem podpory [Kč]

N-počet požadavků [-]
Diplomová práce

Průměrná podlahová plocha byla vypočtena jako podíl celkové podlahové plochy RD a celkového počtu RD. Měrná spotřeba energie referenční budovy před renovací byla pro zjednodušení určena na 250 kWh/m².rok. Měrné spotřeby energie jednotlivých oblastí podpory byly vypočteny tak, aby vyhovovaly kritériím pro získání dotace. Při úvaze, že 40 % proplacených výdajů tvoří dotace, byla dopočítána celková investice do projektu.

Roční úspora:

\[
CF = \left(EP_{\text{ř.př}} - EP_{\text{po}} \right) \times S \times C \times 0,0036
\]

CF- roční úspora nákladů [Kč]

EP_{ř.př}- měrná roční spotřeba před rekonstrukcí [kWh/m².rok]

EP_{po}- měrná roční spotřeba po rekonstrukci [kWh/m².rok]

S-průměrná plocha RD [m²]

C-cena tepla [Kč/GJ]

Podpora na uspořený GJ:

\[
P = \frac{D_{\text{prům}}}{CF}
\]

P- podpora na uspořený GJ [Kč/GJ]

Prostá návratnost investice:

\[
T_s = \frac{IN}{CF}
\]

Ts- prostá doba návratnosti investice [rok]

IN- Investice [Kč]

1. Hodnocení oblasti A

Tabulka 3 Vyhodnocení oblasti A

<table>
<thead>
<tr>
<th>Oblast podpory</th>
<th>Počet poládacích podpory</th>
<th>Objem podpory</th>
<th>Objem celkových investic</th>
<th>Průměrná celková investice na jeden projekt</th>
<th>Průměrná celková investice po rekonstrukci</th>
<th>Měrná roční spotřeba RD</th>
<th>Měrná roční spotřeba po rekonstrukci</th>
<th>Roční úspora energie</th>
<th>Úspora na vytápění za rok</th>
<th>Podpora na uspořaný GJ</th>
<th>Návratnost investice bez dotace</th>
<th>Návratnost investice s dotací</th>
</tr>
</thead>
<tbody>
<tr>
<td>A celkem</td>
<td>2716</td>
<td>739</td>
<td>1844</td>
<td>678903</td>
<td>271561</td>
<td>125</td>
<td>250</td>
<td>40%</td>
<td>10%</td>
<td>10%</td>
<td>33750</td>
<td>2840</td>
</tr>
<tr>
<td>A.1</td>
<td>1403</td>
<td>269</td>
<td>672</td>
<td>479223</td>
<td>191689</td>
<td>125</td>
<td>250</td>
<td>67,5</td>
<td>33750</td>
<td>2840</td>
<td>14,2 8,5</td>
<td></td>
</tr>
<tr>
<td>A.2</td>
<td>1059</td>
<td>344</td>
<td>861</td>
<td>813196</td>
<td>325279</td>
<td>125</td>
<td>250</td>
<td>85,5</td>
<td>42750</td>
<td>3804</td>
<td>19 11,4</td>
<td></td>
</tr>
<tr>
<td>A.3</td>
<td>254</td>
<td>124</td>
<td>310</td>
<td>1221949</td>
<td>488780</td>
<td>125</td>
<td>250</td>
<td>99</td>
<td>49500</td>
<td>4937</td>
<td>24,7 14,8</td>
<td></td>
</tr>
</tbody>
</table>

V oblasti podpory A bylo zažádáno o celkový objem podpor na úrovni 738 mil. Kč. Nejvíce lidí využilo dílčího opatření A.1, ve které je potřeba snížit roční potřebu tepla alespoň o 40 %, dále A.2 (snížení alespoň o 50%) a v poslední řadě A.3 (snížení o více než 60 %). Průměrná výše dotace v oblasti A byla
vypočtena na 271 tis. Kč a při úvaze průměrné dotace 40 % způsobilých by celkové náklady na jeden projekt byly 679 tis. Kč.

Při předpokládané alokaci a predikovaných úsporách dle NAPEE lze počítat s průměrnou výši dotace 1871 Kč na uspořený GJ. Při porovnání s průměrnou výši dotace se vypočtená v oblasti A jeví jako neefektivní. V případě oblasti A.3, kde se stát snaží motivovat investory pro dosažení co největších úspor, je dotace neúměrně vysoká.

Při hodnocení efektivnosti projektu z hlediska návratnosti investice tabulka ukazuje pozitivnější čísla. Vzhledem k době technologické životnosti, která je u těchto projektů odhadována na 30 let, je v oblastech A.1 a A.2 investice návratní téměř do poloviny své životnosti. Při započtení dotace do třetiny doby životnosti v oblasti A.3, kde je snažena o dosažení pasivního standardu se doba životnosti se bliží doby splacení investice a při započtení dotací může být investice splacena již v polovině doby své životnosti. V tomto případě dochází k nárůstu financovaných prostředků, ale nedochází zde k významnějším úsporám energie. Je tedy na investorovi jestli chce mít pasivní dům za každou cenu, i když to není až tak ekonomicky efektivní nebo jestli není lepší finanční prostředky investovat do jiných technologií (výměna zdrojů, instalace solárních termických systémů a další).

2. Hodnocení oblasti B

3. Hodnocení oblasti C

V oblasti C bylo využito necelých 17 % z celkové alokace. Výše dotace je dána maximální fixní částkou a navíc v oblasti C.1 a C.2 se rozlišuje jestli dům zateplený či nikoliv. Téměř půlka z dotačních zdrojů v oblasti C byla využita na instalaci solárních termických systémů s průměrnou dotací 36 tis. Dále žadatelé využili dotací na výměnu zdrojů tepla, kde průměrná výše dotace byla 60 tis. Kč a v poslední řadě na instalaci systémů nuceného větrání s průměrnou dotací 102 tis. Kč. Při využití dotace v rámci oblasti C žadatelé mohou při poměrně nízké investici uspořit energii a dosáhnout rychlé návratnosti investice. Pro skupinu lidí s nízkými příjmy to může být jednodušší, a možná i jediná možná cesta, jak uspořit energii a tím i peníze, než snaž o dosažení pasivního standardu.
5 Vyhodnocení dostupného potenciálu v oblasti RD a BD

5.1 Přehled fondu budov

V oblasti budov je velký potenciál úspor, proto se domy, kanceláře, obchody a jiné budovy stávají stěžejním bodem EU v rámci politiky energetické účinnosti. Budovy představují 37% konečné spotřeby energie a 36% emisí skleníkových plynů. Je evidentní, že bez zlepšování energetické účinnosti budov nebude možné splnit cíle EU do roku 2020, proto byly spuštěny programy na podporu realizace úsporných opatření v sektoru rodinných a bytových domů.

V následující tabulce jsou uvedeny spotřeby budov při realizaci různých energeticky úsporných opatření. Celková spotřeba tepla na vytápění dle údajů z MPO v roce 2011 byla 172 PJ. Možná úspora je vztažena k této hodnotě. Původní modelový stav má informativní funkci naznačující, jaká by byla spotřeba při zcela nerenovovaném fondu budov. Dosažitelné výsledky jsou vypočteny pro různou kvalitu renovace, kde je uvažován 35% podíl již zrenovovaných budov. Při výpočtu dvou řešených stavů bylo počítáno se 100% renovací dostupného rezidenčního fondu na doporučené hodnoty U (dle ČSN 730540-2 (2011))- střední renovace a při důkladné renovaci na pasivní standard byly navíc uvažovány technologie nuceného větrání ze zpětným získáváním tepla. Při renovaci na doporučené hodnoty by teoretická úspora mohla činit 76,7 PJ (45% původní spotřeby). Teoretická úspora při renovaci na pasivní standard byla stanovena na 140,1 PJ (81% původní spotřeby). [16]

<table>
<thead>
<tr>
<th>Stav budov</th>
<th>RD [PJ]</th>
<th>BD [PJ]</th>
<th>Celkem [PJ]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Původní stav- modelový</td>
<td>139</td>
<td>72</td>
<td>211</td>
</tr>
<tr>
<td>Spotřeba na vytápění-statistika MPO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nový stav/uvážovaný standard renovace</td>
<td></td>
<td></td>
<td>172</td>
</tr>
<tr>
<td>Mělká renovace, požadované hodnoty U</td>
<td>111</td>
<td>49</td>
<td>160</td>
</tr>
<tr>
<td>Střední renovace,doporučené hodnoty U</td>
<td>66</td>
<td>29</td>
<td>95</td>
</tr>
<tr>
<td>Důkladná renovace, pasivní hodnoty</td>
<td>22</td>
<td>10</td>
<td>32</td>
</tr>
</tbody>
</table>

5.2 Náklady na zateplení fondu budov

Tabulky ukazují výsledné náklady pro renovaci obálek budov. Byl uvažován 25% podíl již zrekonstruovaných budov, 5% RD u kterých nebude možná renovace fasád a 60% podíl podlah, které se nebudou renovovat. Do celkové ceny renovace obálek budov byla započtena cena za projekční práce ve výši 20 tis. Kč na budovu. Po odečtení, již rekonstruovaných RD nebo nerealizovaných opatření
od původní vypočtené investice, byla celková investice do renovace obálky dostupného fondu RD stanovena na 582 mld. Kč pro doporučený resp. 675 mld. Kč pro standard pasivní.

Pro BD bylo uvažován 41 % podíl již zrekonstruovaných domů, 10 % podíl nezateplitelných fasád a 20 % podíl podlah, u kterých nebude možná renovace. Cena projekčních prací na jeden BD byla uvažována 70 tis. Kč. V. Vypočtená investice do renovace obálky byla stanovena na 231 mld. Kč pro doporučený standard resp. 266 mld. Kč pro pasivní standard.

Tabulka 5 Náklady na renovaci RD a BD na pasivní standard [16]

<table>
<thead>
<tr>
<th>Plocha [mil. m²]</th>
<th>Obvodové stěny</th>
<th>Střechy</th>
<th>Podlahy</th>
<th>Výplně otvorů</th>
<th>Obálka+ projekt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plocha [mil. m²]</td>
<td>279</td>
<td>217</td>
<td>193</td>
<td>85</td>
<td>774</td>
</tr>
<tr>
<td>Měrný náklad RD [Kč/m²]</td>
<td>1285</td>
<td>1410</td>
<td>982</td>
<td>6500</td>
<td></td>
</tr>
<tr>
<td>Měrný náklad BD [Kč/m²]</td>
<td>1483</td>
<td>1376</td>
<td>982</td>
<td>6500</td>
<td></td>
</tr>
<tr>
<td>Investice do RD [mld. Kč]</td>
<td>178</td>
<td>191</td>
<td>46</td>
<td>237</td>
<td>675</td>
</tr>
<tr>
<td>Investice do BD [mld. Kč]</td>
<td>68</td>
<td>30</td>
<td>17</td>
<td>142</td>
<td>266</td>
</tr>
<tr>
<td>Celkem [mld. Kč]</td>
<td>246</td>
<td>221</td>
<td>63</td>
<td>379</td>
<td>941</td>
</tr>
</tbody>
</table>

Tabulka 6 Náklady na renovaci RD a BD na doporučený standard [16]

<table>
<thead>
<tr>
<th>Plocha [mil. m²]</th>
<th>Obvodové stěny</th>
<th>Střechy</th>
<th>Podlahy</th>
<th>Výplně otvorů</th>
<th>Obálka+ projekt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plocha [mil. m²]</td>
<td>279</td>
<td>217</td>
<td>193</td>
<td>85</td>
<td>774</td>
</tr>
<tr>
<td>Měrný náklad RD [Kč/m²]</td>
<td>1145</td>
<td>1110</td>
<td>824</td>
<td>5800</td>
<td></td>
</tr>
<tr>
<td>Měrný náklad BD [Kč/m²]</td>
<td>1278</td>
<td>1026</td>
<td>824</td>
<td>5800</td>
<td></td>
</tr>
<tr>
<td>Investice do RD [mld. Kč]</td>
<td>158</td>
<td>151</td>
<td>39</td>
<td>211</td>
<td>582</td>
</tr>
</tbody>
</table>

5.3 Bytové domy

Byty v ČR přibývají průběžně, ale střídají se pouze období vyššího a nižšího tempa přírůstku a poměr výstavby RD a BD. Graf znázorňuje vývoj bytového fondu, který poukazuje na snížení ročního přírůstku nových bytů v souvislosti s ekonomickou krizí. V dnešní době již vrací k původním hodnotám.
Nejvíce panelových bytů se začalo stavět v padesátých letech a v období 1965-1985 výstavba BD dosahovala svého vrcholu. V ČR máme 1 200 000 panelových bytů a 960 000 nepanelových bytů s průměrnou celkovou plochou bytu 68,5 m². Z tabulky je patrný deficit v zateplení nepanelových bytů.

Tabulka 7 Počet a vývoj součinitele prostupu tepla v jednotlivých obdobích výstavby [16]

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>[W/m².K]</td>
<td>[W/m².K]</td>
<td>[W/m².K]</td>
<td>[W/m².K]</td>
<td>[W/m².K]</td>
<td></td>
</tr>
<tr>
<td>strop/stěcha</td>
<td>1,10</td>
<td>3,09</td>
<td>0,43</td>
<td>1,78</td>
<td>0,43</td>
</tr>
<tr>
<td>stěna</td>
<td>0,83</td>
<td>1,62</td>
<td>0,70</td>
<td>1,70</td>
<td>0,70</td>
</tr>
<tr>
<td>podlah</td>
<td>0,49</td>
<td>0,77</td>
<td>0,09</td>
<td>1,22</td>
<td>0,69</td>
</tr>
<tr>
<td>výplň</td>
<td>1,80</td>
<td>2,85</td>
<td>1,80</td>
<td>3,44</td>
<td>1,83</td>
</tr>
<tr>
<td>Počet</td>
<td>26 077</td>
<td>91 625</td>
<td>38 152</td>
<td>25 358</td>
<td>25 358</td>
</tr>
</tbody>
</table>

Průměrné investiční náklady v programu ZÚ v období 2009-2011 byly 313 tis. Kč. Jednotkové investiční náklady na úsporu 1 GJ v ZÚ jsou 6000 Kč/GJ. Pro srovnání v rámci podpory 3.2 OPŽP v případě opatření na veřejných budovách se jednalo o hodnotu 14 000 Kč/GJ. Renovace veřejných budov jsou náročnější, tudíž ve skutečnosti tento rozdíl nebude tak zásadní. Ve veřejných budovách je snaha o dosažení nízkoenergetického nebo pasivního standardu, proto budou náklady vyšší. Skutečné jednotkové náklady se tedy budou pohybovat v rozmezí 6-15 000 Kč/GJ.

5.4 Rodinné domy

Celkový fond RD je 1 554 794 budov s celkovou podlahovou plochou 194 957 505 m². Průměrná podlahová plocha RD činí 125 m². Dle průzkumu budov v roce 2014 bylo již 25% budov

Tabulka 8 Počet a plocha RD [16]

<table>
<thead>
<tr>
<th>RD samostatné</th>
<th>RD dvoudomky</th>
<th>RD řadové</th>
<th>Celkem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Celkový počet rodinných domů</td>
<td>1 163 655</td>
<td>133 877</td>
<td>257 262</td>
</tr>
<tr>
<td>Celkový potenciál budov k rekonstrukci</td>
<td>1166096</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Celková podlahová plocha [m²]</td>
<td>146 673 210</td>
<td>16 405 534</td>
<td>31 878 760</td>
</tr>
<tr>
<td>Celkový potenciál podl. Plochy k rekonstrukci [m²]</td>
<td>146218129</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
zrekonstruováno. Při úvaze 25% zrekonstruovaných RD je teoretický potenciál 1 166 096 budov s vnitřní podlahovou plochou 194 957 505 m².

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>W/m².K</td>
<td>W/m².K</td>
<td>W/m².K</td>
<td>W/m².K</td>
<td>W/m².K</td>
</tr>
<tr>
<td>střešní stěna</td>
<td>0,66</td>
<td>1,05</td>
<td>0,64</td>
<td>1,48</td>
<td>0,64</td>
</tr>
<tr>
<td>podlaha</td>
<td>0,83</td>
<td>1,31</td>
<td>0,90</td>
<td>1,70</td>
<td>0,90</td>
</tr>
<tr>
<td>výplň</td>
<td>2,42</td>
<td>3,84</td>
<td>2,68</td>
<td>1,78</td>
<td>0,68</td>
</tr>
<tr>
<td>Počet</td>
<td>199 845</td>
<td>526 348</td>
<td>229 096</td>
<td>186 638</td>
<td>384 424</td>
</tr>
</tbody>
</table>

Tabulka 9 Počet a vývoj součinitele prostupu tepla v jednotlivých obdobích výstavby [16]
6 Legislativa

6.2 Vyhláška 78/2013 Sb.

Tato vyhláška stanovuje náležitosti, které se týkají metodiky výpočtu energetické náročnosti budov. Jsou zde definovány požadavky na energetickou náročnost pro nové budovy, větší změny již dokončených budov a pro budovy s téměř nulovou spotřebu energie. Ve vyhlášce je dále definován způsob posuzování technické, ekonomické a ekologické proveditelnosti. Vyhláška definuje vzorová doporučená opatření vedoucí ke snížování energetické náročnosti budov. V neposlední řadě definuje vzor a obsah průkazu energetické náročnosti budov a způsob jeho zpracování a popřípadě umístění v budově v případě, že zde existuje takováto povinnost.

V předchozí vyhlášce 148/2007 Sb. se energetická náročnost posuzované budovy vyhodnocovala dle stanovených energetických tříd. Dle staré metodiky se u daných objektů určovaly hodnoty spotřeby energie na m² a rok pro jednotlivé třídy energetické náročnosti na stupnici A až G. V praxi toto hodnocení bez ohledu na posuzovanou budovu způsobovalo problémy se zatříděním. Ve vyhlášce 78/2013 Sb. bylo dosaženo přesnějšího posuzování a klasifikování energetických tříd pomocí zavedení referenční budovy. Referenční budova má definované užívání, stavební parametry a technické zařízení budov dle stávajících zákonůch předpisů. Při vyhodnocení je porovnávána dodaná energie mezi referenční a hodnocenou budovou a na základě tohoto srovnání je stanovena třída energetické náročnosti. Není tedy daná pevná hranice dodané energie pro jednotlivé kategorie A až G, ale záleží na porovnání s referenční budovou. [10]

Hodnocení energetické náročnosti je závislé na splnění některých ukazatelů energetické náročnosti dle 78/2013 Sb.

Ukazatele EN:
- celková primární energie za rok
- neobnovitelná primární energie za rok
Celková primární energie je jedním z nových ukazatelů energetické náročnosti budov. Primární energií je označována energie, která neprošla žádným procesem přeměny. Celková primární energie je rovna součtu obnovitelné a neobnovitelné energie. Neobnovitelná energie je hlavním hodnoceným ukazatelem energetické náročnosti a požaduje se jeho splnění. Jako neobnovitelný zdroj energie je považován takový zdroj, u kterého je očekáváno vyčerpání v horizontu maximálně stovek let. [17]

Nové budovy

Nové budovy musí splnit současně tři ukazatele energetické náročnosti:

- neobnovitelné primární energie za rok
- celkové dodané energie za rok
- průměrného součinitele prostupu tepla obálkou budovy [17]

Budovy rekonstruované

Při větší změně dokončené budovy a při jiné, než větší změně dokončené budovy, lze zvolit výběr kombinace ukazatelů, který je nutné splnit. Větší změna dokončené budovy vyžaduje splnění současně požadavky na neobnovitelnou primární energii za rok a součinitel přestupu tepla obálkou budovy; nebo celkovou dodanou energií za rok a součinitel tepla obálkou budovy. Je možné pro měněné prvky obálky budovy nebo technické systémy splnit pouze požadavky týkající se měněných prvků součinitele prostupu tepla jednotlivých konstrukcí na systémové hranici a účinnost technických systémů.

Požadavky na energetickou náročnost při větší změně dokončené budovy a při jiné než větší změně dokončené budovy, stanovené výpočtem na nákladově optimální úrovni, jsou splněny v případě, že hodnoty těchto ukazatelů nejsou vyšší než jejich referenční hodnoty pro referenční budovu, nebo hodnota ukazatele pro všechny měněné stavební prvky obálky budovy není vyšší než jeho referenční hodnota, a pro všechny měněné technické systémy není nižší než jeho referenční hodnota stanovená vyhláškou. Požadavky na ENB jsou s výjimkou budovy s téměř nulovou spotřebou energie stanovené vyhláškou tak, aby byla zajištěna nákladově optimální úroveň energetické náročnosti budov a prvků budov vypočtenou pro jejich předpokládanou životnost. Hodnoty ukazatelů energetické náročnosti budovy hodnocené a budovy referenční jsou stanoveny výpočtem na základě technické dokumentace. V praxi je obvykle energetická náročnost počítána s pomocí specializovaného software. [10]
7 Analýza bytového sektoru

Nová směrnice pro energetickou náročnost mění hodnocení budov a zabývá se i ekonomikou projektů. Pro porovnávání rozsahu energetických úspor bylo zavedeno tzv. nákladové optimum (optimální náklady). Je to energetická náročnost (kWh/m²), která slouží k určení co nejnižších nákladů v průběhu odhadovaného životního cyklu budovy (30 let obytné a 20 let neobytné budovy).

Investice do úsporných opatření má finanční, technické a ostatní přínosy. Primárním cílem je úspora energie na vytápění a ohřev TUV. Mimořádně důležité je to, aby se vynaložené náklady do úsporných opatření investorovi vrátily. Ekonomickou efektivnost bude vyjadřovat doba návratnosti. Stavby nemají
neomezenou životnost. Technickým přínosem zateplování je prodloužení životnosti budov. Ostatních přínosů může být celá řada, a to například estetické hledisko, zlepšení vnitřního prostředí v domě, či přínos ekologický. Hlavním ekonomickým kritériem bude prostá doba návratnosti vypočtená dle rovnice 4.

Stanovení výše dotace

Pro rodinné domy:
- Oblast A.0 a A.1- snížení měrné roční potřeby na vytápění o 20-50 % - dotace 30 % ze způsobilých výdajů
- Oblasti A.2- snížení měrné roční potřeby na vytápění o 50-60 % - dotace 40 % ze způsobilých výdajů
- Oblast A.3- snížení měrné roční potřeby na vytápění o 60 % a více- dotace 50 % ze způsobilých výdajů s nutností instalace nuceného větrání

Pro bytové domy:
- Oblast A.0 a A.1- snížení měrné roční potřeby na vytápění o 20-40 % - dotace 20 % ze způsobilých výdajů
- Oblast A.2- snížení měrné roční potřeby na vytápění o 40 % a více- dotace 30% ze způsobilých výdajů [14]

Porovnání nákladů na vytápění podle druhu paliva

Cena elektrické energie pro tepelné čerpadlo byla vypočítána jako cena za 1 kWh v nízkém tarifu D56d. Byl uvažován sezonní topný faktor 3 (SPF3) a k této ceně byl připočten měsíční paušál za jistič. Takto byla kalkulována také cena pro přímotop a elektrokotel, ale bylo využito tarifu D45d od E.ON. Zbylé údaje potřebné k výpočtu byly získány z portálu tzb-info.cz, kde jsou k dispozici srovnání cen paliv a tarifů od různých zprostředkovatelů. Cena tepla z CZT se po celé ČR velmi liší a pohybuje se v rozmezí 500-900 Kč/GJ. Pro srovnání byla zvolena cena 600 Kč/GJ. V cenách tepla mimo CZT nejsou zahrnuty náklady na investice a údržbu.

Cena elektrické energie pro tepelné čerpadlo byla vypočítána jako cena za 1 kWh v nízkém tarifu D56d. Byl uvažován sezonní topný faktor 3 (SPF3) a k této ceně byl připočten měsíční paušál za jistič. Takto byla kalkulována také cena pro přímotop a elektrokotel, ale bylo využito tarifu D45d od E.ON. Zbylé údaje potřebné k výpočtu byly získány z portálu tzb-info.cz, kde jsou k dispozici srovnání cen paliv a tarifů od různých zprostředkovatelů. Cena tepla z CZT se po celé ČR velmi liší a pohybuje se v rozmezí 500-900 Kč/GJ. Pro srovnání byla zvolena cena 600 Kč/GJ. V cenách tepla mimo CZT nejsou zahrnuty náklady na investice a údržbu.

Spalováním paliv k energetickým účelům vzniká značné množství emisí. U velkých zdrojů se daří snižovat produkci škodlivin, ale u malých zdrojů se situace zlepšuje mnohem pomaleji. Omezování produkce škodlivin je vždy ekonomicky náročné. Jasným trendem je ustupování od spalování fosilních paliv a náhradou ekologičtějšími palivy. Hlavním cílem je tedy postupné omezování uhli, jakožto nejlevnějšího a nejméně ekologického paliva. MŽP se snaží v tomto směru podporovat výměnu neekologických zdrojů. Ve vládě se budou projednávat legislativní možnosti zákazu prodeje kotlů.

Dalším hodnotícím kritériem budou požadavky na primární neobnovitelnou energii. Je to energie, která nebyla předmětem žádného konverzního nebo transformačního procesu. Lze ji také vyjádřit jako energii užitou k výrobě energie dodané do budovy. Výhodou neobnovitelné primární energie jako měřítka efektivity je možnost sčítání energetické efektivity na společného jmenovatele vyjadřující „ekologičnost“ dané soustavy či zařízení. Primární energie bude vypočítána přes konverzní faktor primární energie (vychází ze statistik) a účinnost jednotlivých zdrojů dle vztahu: [19]

\[
P_{E} \times \eta = \frac{Q}{F}
\]

kde:
- \(P_{E}\) Primární energie [kWh]
- \(Q\) Teplo dodané soustavou (vytápění, ohřev TUV) [kWh]
- \(F\) Faktor neobnovitelné primární energie [-]
- \(\eta\) Provozní účinnost soustavy [-]

Konverzní faktor se v jednotlivých státech může lišit v závislosti na zvolené metodě výpočtu a na energetickém mixu. Primární neobnovitelná energie bude vypočítána pro jednotlivé varianty opatření z měrné potřeby tepla na vytápění a ohřev TUV.

<table>
<thead>
<tr>
<th>Zdroj tepla</th>
<th>Konverzní faktor</th>
<th>Účinnost zdroje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hnědý uhlí</td>
<td>1,1</td>
<td>0,8</td>
</tr>
<tr>
<td>Dřevo</td>
<td>0,2</td>
<td>0,8</td>
</tr>
<tr>
<td>ZP</td>
<td>1,1</td>
<td>1</td>
</tr>
<tr>
<td>CZT</td>
<td>1</td>
<td>0,6</td>
</tr>
<tr>
<td>Elektrokolot</td>
<td>3</td>
<td>0,95</td>
</tr>
<tr>
<td>Tepelné čerpadlo</td>
<td>3</td>
<td>2,9</td>
</tr>
</tbody>
</table>

Tabulka 11 Určení hodnot potřebných pro výpočet potřeby primární energie [19]

V následující části bude vyhodnoceno 5 rodinných a 5 bytových domů. Jeden rodinný a jeden bytový dům budou vyhodnoceny podrobněji z důvodu znalosti místních poměrů a také zde bude ukážána metodika vyhodnocení společná pro ostatní domy. U těchto dvou domů budou ukázány různé varianty zateplení, výměny zdroje a jejich kombinace. V ostatních případech budou zobrazovány jen nejlepší varianty.
7.1 Rodinný dům: Typ 1

Počet podlaží 2
Počet bytových jednotek 2
Vytápěná plocha 280m²
Rok výstavby 1937

Původní potřeba energie 296 kWh/m².rok

<table>
<thead>
<tr>
<th>Tabulka 12 Rodinný dům: Typ 1- Vyhodnocení realizovaných opatření</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opatření</td>
</tr>
<tr>
<td>---------------</td>
</tr>
<tr>
<td>Výměna zdroje</td>
</tr>
<tr>
<td>Původní</td>
</tr>
<tr>
<td>Výměna kotle ZP</td>
</tr>
<tr>
<td>K+S</td>
</tr>
<tr>
<td>Té (V)</td>
</tr>
<tr>
<td>Té (P)</td>
</tr>
<tr>
<td>Zateplení</td>
</tr>
<tr>
<td>O</td>
</tr>
<tr>
<td>O+T12</td>
</tr>
<tr>
<td>O+T16</td>
</tr>
<tr>
<td>O+T20</td>
</tr>
<tr>
<td>O+T30</td>
</tr>
<tr>
<td>O+T16+TUT8</td>
</tr>
<tr>
<td>O+T16+T20</td>
</tr>
<tr>
<td>O+T16+T16</td>
</tr>
<tr>
<td>O+T16+T30</td>
</tr>
<tr>
<td>O+T16+T16+T8</td>
</tr>
<tr>
<td>O+T16+T16+T20</td>
</tr>
<tr>
<td>Kombinace</td>
</tr>
<tr>
<td>O+T16+K(ZP)</td>
</tr>
<tr>
<td>O+T16+T(V)</td>
</tr>
<tr>
<td>O+T16+T(P)</td>
</tr>
<tr>
<td>O+T16+T16+T(V)</td>
</tr>
<tr>
<td>O+T16+T16+T(P)</td>
</tr>
<tr>
<td>O+T16+T8+T16+T(V)</td>
</tr>
<tr>
<td>O+T30+T30+T20+T(V)</td>
</tr>
<tr>
<td>O+T30+T30+T20+T(C)</td>
</tr>
</tbody>
</table>
A. Zateplení

V tomto případě je uvažováno zachování původního zdroje a jsou aplikována opatření na obálce budovy. Z tabulky je patrné, že vyšší efekt má kombinace více opatření najednou. Pokud dojde pouze k výměně oken, dosáhneme úspory asi 11 %, ale v kombinaci se zateplením fasád lze dosáhnout téměř 30 % úspor a zkrácení doby návratnosti. Nejvhodnější variantou je komplexní zateplení (okna, fasáda, střecha případně strop suterénu). Při zateplení střední tloušťkou izolace vycházejí návratnost srovnatelně a je jen na majitelových finančních možnostech. Při navýšování tloušťky izolace dochází k růstu nákladu vzhledem k uspořené energii. Timto navýšením je splněna podmínka úspory oproti původnímu stavu, tudíž roste výše dotace, která je v této kategorii velmi vysoká. Má tak za úkol motivovat k dosahování
co nejnižších standardů. Při výměně oken, zateplení fasády budovy 30 cm, střechy 30 cm a stropu suterénu by návratnost byla 26 let. Pokud by bylo využito 40 % dotace, návratnost investice by klesla na 15 let. Podmínkou by byla instalace nuceného větrání. V tomto případě má dotace smysl a tato varianta vychází srovnatelně s ostatními. Návratnost investice je závislá na ceně tepla. V případě poměrně nízkých cen tepla je pro dosažení co nejkratší závislosti vhodnější zateplovat menší tloušťkou izolace. Kdyby došlo k výraznému zdražení cen tepla, bylo by vhodnější zateplovat silnějšími vrstvami izolace.

B. Výměna zdroje

Dále budou porovnávány nové zdroje, a to tepelná čerpadla vzduch/voda nebo země/voda. Litoměřice leží v části ČR, která patří mezi teplejší, proto je možné použít obě varianty. Tepelné čerpadlo země/voda je vhodné pro chladnější oblasti a v podstatě mu nezáleží na venkovní teplotě. Na zahradě je nutné položit kolektor, což vyžaduje určité nároky na prostor a také se zvyšují investiční náklady. Spotřeba tepelných čerpadel země/voda je v porovnání vzduch/voda nižší, ale za vyšších investičních nákladů a delší návratnosti. Tepelné čerpadlo vzduch/voda je levnější, s menším nároky na prostor, ale při velmi nízkých teplotách dosahuje nižších účinností. Obě varianty mají své výhody a nevýhody, proto je potřeba vzít v úvahu mnoho konkrétních podmínek dané instalace (možnosti investorů, způsob využití atd.). Návratnost investice bude pro tepelné čerpadlo vzduch-voda 5 let a pro země-voda 7 let. Na výměnu plynového zdroje není možné získat dotaci, proto zde není zmiňována.

C. Kombinace

Jak bylo uvedeno výše, tepelná čerpadla mají své různé specifikace, a je jen na majitele, pro kterou variantu se rozhodne. V první nejlevnější variantě lze dosáhnout znatelných úspor energie s krátkou dobou návratnosti, jak s tepelným čerpadlem vzduch/voda, tak země/voda. Tato varianta se zdá být nejvýhodnější, ale větši smysl dává v kombinaci s komplexním zateplením stavby. Nejlevnější varianta s dobrými návratnostmi do holoviny životnosti opatření vychází výměna oken se zateplením fasády 16 cm v kombinaci s tepelným čerpadlem. S dotací je návratnost pouhých 7 let. Když už bychom se rozhodli pro tak vysokou investici, bylo by vhodné se snažit o dosažení pasivního standardu (procentuální snížení o více než 60% a měrná potřeba pod 35 kWh/m².rok) je dotace 50 %. V tomto případě by muselo...
dojít k téměř kompletní rekonstrukci celého domu (případně rozkopání části zahrady). To však může být pro konzervativnější typy lidí společně s vysokými investičními náklady problém. V kombinaci co největších úsporných opatření je nutná instalace nuceného větrání. Návratnost investice by byla 21 resp. 11 let s dotací. Ani přes veškerá opatření nebude možné pasivního standardu dosáhnout (spotřeby do 15 kWh/m².rok). Je to dáno nevhodným tvarovým poměrem, umístěním na pozemku a natočením ke světovým stranám. Takovýto handicap není možné vyrovnat nekonečným navýšováním tepelné izolační vrstvy. Obecně lze dosáhnout až 90 % úspory oproti původnímu stavu. Cílem nemusí být dosažení čísla 15, ale spíš ekonomické a kvalitativní navýšení standardu bydlení pro uživatele.

7.2 Rodinný dům: Typ 2

Počet podlaží	1
Počet bytových jednotek	1
Vytápěná plocha	82 m²
Rok výstavby	1910
Původní potřeba energie	374 kWh/m².rok

Obrázek 2 Rodinný dům: Typ 2 [33]

Jedná se o jednopatrový samostatně stojící dům s jednou bytovou jednotkou o vytápěné ploše 82 m². Obvodové stěny v tomto období byly z pálených cihel či různých tvárnic o tloušťce 600 mm. Dům je nepodsklepený. Střecha sedlová s dřevěnými krovy. Podkroví nevytápěné. Okna jsou dvojitá špaletová. Vytápění a ohřev TUV je zajišťován starším kotlem na hnědě uhlí s účinností 60%.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>O+F16</td>
<td>278</td>
<td>26</td>
<td>28</td>
<td>27</td>
<td>9</td>
<td>385</td>
<td>86</td>
<td>31</td>
</tr>
<tr>
<td>O+F16+STR16=SU18</td>
<td>191</td>
<td>49</td>
<td>54</td>
<td>19</td>
<td>18</td>
<td>454</td>
<td>136</td>
<td>26</td>
</tr>
<tr>
<td>K (df/m2o)</td>
<td>351</td>
<td>11</td>
<td>13</td>
<td>11</td>
<td>14</td>
<td>277</td>
<td>127</td>
<td>25</td>
</tr>
<tr>
<td>TČ (V)</td>
<td>103</td>
<td>72</td>
<td>80</td>
<td>58</td>
<td>57</td>
<td>297</td>
<td>127</td>
<td>22</td>
</tr>
<tr>
<td>O+F16+K(Dřev)</td>
<td>248</td>
<td>34</td>
<td>38</td>
<td>19</td>
<td>11</td>
<td>362</td>
<td>169</td>
<td>50</td>
</tr>
<tr>
<td>O+F16+TČ(V)</td>
<td>77</td>
<td>79</td>
<td>88</td>
<td>17</td>
<td>19</td>
<td>582</td>
<td>291</td>
<td>30</td>
</tr>
<tr>
<td>O+F16+SU18+STR16+TČ(V)</td>
<td>55</td>
<td>86</td>
<td>95</td>
<td>12</td>
<td>25</td>
<td>751</td>
<td>375</td>
<td>31</td>
</tr>
</tbody>
</table>

Tabulka 13 Rodinný dům: Typ 2- Vyhodnocení realizovaných opatření
A. Zateplení

Vytápění uhlím patří mezi nejlevnější paliva a po zateplení (i přes velkou procentuální úsporu) dojde k absolutně nízké finanční úspěchu. Tato skutečnost vede k dlouhým návratnostem investic. Ve všech sledovaných případech zateplení se návratnost investice pohybovala kolem třiceti let. Nejoptimálnější variantou se ukázalo komplexní zateplení střední tloušťkou izolace s návratností 26 let resp. 18 let s dotací.

B. Výměna zdroje

Z podporovaných zdrojů se nabízí výměna uhlí za dřevo, plyn či tepelné čerpadlo. Jelikož se jedná o starý dům, lze očekávat zastaralou otopnou soustavu, a bude potřeba renovace. Náklady na obnovu

S využitím dotace je návratnost na hraně životnosti zařízení, ale tím se vyhnout energetické chudobě.

C. Kombinace

V kombinaci úsporných opatření nedojde ke snížení návratnosti pod dobu životnosti. Lze dosáhnout téměř 90 % úspory energie oproti původnímu stavu, ale absolutní velikost úspory v tisících Kč, oproti původnímu uhelnému zdroji, je nízká pro dosažení kratší doby splacení investice. Nejvýhodnější variantou je opět kombinace střední tlušťkou izolace s tepelným čerpadlem vzduch-voda. Návratnost tohoto opatření bude 30 resp. 15 let s poskytnutím dotace. U všech domů vytápěných levným palivem (dřevo, uhlí) budou návratnosti investic hodně dlouhé. Navíc rodinné domy z těchto období budou pravděpodobně vlastnit lidé sociálně slabší, což může být velkým problémem při renovaci bytového fondu a také při dosahování závazných predikovaných cílů ČR.

7.3 Rodinný dům: Typ 3

Počet podlaží	2
Počet bytových jednotek	1
Vytápěná plocha	157 m²
Rok výstavby	1955
Původní potřeba energie	292 kWh/m².rok

[Obrázek 3 Rodinný dům: Typ 3 [33]]

Jedná se o dvoupatrový rodinný dům s jedinou bytovou jednotkou o rozloze 157 m². Železobetonový strop. Dvojitá špaletová okna. Podkroví s části vytápěné. Obvodové zdivo z pálených cihel 450 mm. Vytápění a ohře TUV je zajišťován kotlem na dřevo s účinností 60 %.
Tabulka 14 Rodinný dům: Typ 3- Vyhodnocení realizovaných opatření

<table>
<thead>
<tr>
<th>Opatření</th>
<th>Měrná potřeba tepla po renovaci kWh/m².rok</th>
<th>%</th>
<th>GI</th>
<th>Úspora energetického nákladu za rok tis. Kč</th>
<th>Náklady na vytápění za rok tis. Kč</th>
<th>Úspora investiční náklady tis. Kč</th>
<th>Dotace</th>
<th>Návratnost bez dotace rok</th>
<th>Návratnost dotace s dotací rok</th>
</tr>
</thead>
<tbody>
<tr>
<td>O+F12</td>
<td>191</td>
<td>35</td>
<td>57</td>
<td>43</td>
<td>23</td>
<td>603</td>
<td>181</td>
<td>26</td>
<td>18</td>
</tr>
<tr>
<td>O+F16+STR16+SU18</td>
<td>151</td>
<td>48</td>
<td>80</td>
<td>34</td>
<td>32</td>
<td>867</td>
<td>260</td>
<td>27</td>
<td>19</td>
</tr>
<tr>
<td>K(dřev)</td>
<td>271</td>
<td>7</td>
<td>12</td>
<td>46</td>
<td>20</td>
<td>277</td>
<td>-</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>TČ(V)</td>
<td>78</td>
<td>73</td>
<td>121</td>
<td>33</td>
<td>33</td>
<td>293</td>
<td>-</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>O+F16+K(dřev)</td>
<td>177</td>
<td>39</td>
<td>65</td>
<td>50</td>
<td>35</td>
<td>911</td>
<td>273</td>
<td>25</td>
<td>18</td>
</tr>
<tr>
<td>O+F16+TČ(V)</td>
<td>52</td>
<td>82</td>
<td>136</td>
<td>19</td>
<td>47</td>
<td>1102</td>
<td>551</td>
<td>23</td>
<td>12</td>
</tr>
<tr>
<td>O+F16+SU18+STR16+TČ(V)</td>
<td>45</td>
<td>85</td>
<td>140</td>
<td>16</td>
<td>50</td>
<td>1523</td>
<td>627</td>
<td>25</td>
<td>12</td>
</tr>
<tr>
<td>O+F30+STR30+SU20+TČ(V)</td>
<td>33</td>
<td>89</td>
<td>146</td>
<td>14</td>
<td>52</td>
<td>1395</td>
<td>697</td>
<td>27</td>
<td>13</td>
</tr>
</tbody>
</table>

Graf 11 Rodinný dům: Typ 3- Srovnání měrné potřeby tepla a měrné primární energie

Graf 12 Rodinný dům: Typ 3- Přehled nákladů na vytápění a prostých dob návratnosti investic
A. Zateplení
V rodinném domě je jako palivo používáno dřevo, tudíž se jedná o levné palivo. Peněžní úspora nebude absolutně velká a to povede k prodloužení návratnosti jak je patrné v tabulce. Ve všech analyzovaných variantách vychází návratnost na hranici životnosti opatření s dotací do 20 let. Pokud dům nebyl do současnosti rekonstruován, může mít investice technické a také ostatní přínosy (zlepšení vzhledu, ekologie, zlepšení vnitřních podmínek a navýšení ceny domu).

B. Výměna zdroje
Zde se nabízí výměna stávajícího zdroje, výměna stávajícího zdroje s rekonstrukcí otopné soustavy, nahrazení plynovým kotlem nebo náhrada tepelným čerpadlem. Pokud se v domě nachází původní otopná soustava, bude vhodná její rekonstrukce, avšak náklady jdou do stastisců korun. Pří výměně původního kotle s ručným přikládáním za automatický kotel, lze uspořit část energie díky vyšší účinnosti zdroje. Na toto opatření lze získat až 80 % dotací s podmínkou realizace dalších opatření vedoucí k úspore. Ministerstvo životního prostředí se prostřednictvím této dotace snaží omezit emise z lokálních topeníšť, které se velkou měrou podílejí na znečišťování ovzduší.

C. Kombinace
Ani v kombinaci opatření není možné bez dotace docílit návratnosti investice technických zařízení, ale při využití 50 % dotace lze dosáhnout návratnosti 11 let, což by při rostoucích cenách energií mohlo mít smysl. U toho domu je dotace jedinou možností, jak dosáhnout realizace úsporných opatření tak, aby byla investice splacená. Lze dosáhnout snížení potřeby tepla o téměř 90 %, ale při investici přes milion korun a návratnosti 21 let (životnost tepelného čerpadla max. 20) není jisté, jestli o tom bude majitel uvažovat.

7.4 Rodinný dům: Typ 4

Počet podlaží	2
Počet bytových jednotek	1
Vytápěná plocha	170 m²
Rok výstavby	1978
Původní potřeba energie	243 kWh/m².rok

![Obrázek 4 Rodinný dům: Typ 4][33]

prefabrikovaný dílec z křemeliny 40 cm. Dům je vytápěný elektrokotlem, který také zajišťuje ohřev TUV.

Tabulka 15 Rodinný dům: Typ 4- Vyhodnocení realizovaných opatření

<table>
<thead>
<tr>
<th>Opatření</th>
<th>Úspora energie za rok (kWh/m².rok)</th>
<th>Úspora energie za rok (GJ)</th>
<th>Náklady na vytápění za rok (Kč)</th>
<th>Investiční náklady (Kč)</th>
<th>Dotace (Kč)</th>
<th>Návratnost bez dotace (roky)</th>
<th>Návratnost s dotací (roky)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O+F12</td>
<td>188</td>
<td>23</td>
<td>34</td>
<td>81</td>
<td>24</td>
<td>559</td>
<td>168</td>
</tr>
<tr>
<td>O+F16+STR16+SUT8</td>
<td>159</td>
<td>35</td>
<td>51</td>
<td>68</td>
<td>36</td>
<td>763</td>
<td>229</td>
</tr>
<tr>
<td>K(ZP)</td>
<td>207</td>
<td>15</td>
<td>22</td>
<td>49</td>
<td>55</td>
<td>173</td>
<td>-</td>
</tr>
<tr>
<td>TČ (V)</td>
<td>60</td>
<td>75</td>
<td>112</td>
<td>28</td>
<td>77</td>
<td>293</td>
<td>-</td>
</tr>
<tr>
<td>O+F16+K(ZP)</td>
<td>155</td>
<td>36</td>
<td>54</td>
<td>37</td>
<td>67</td>
<td>698</td>
<td>210</td>
</tr>
<tr>
<td>O+F16+TČ (V)</td>
<td>46</td>
<td>81</td>
<td>121</td>
<td>21</td>
<td>83</td>
<td>878</td>
<td>351</td>
</tr>
<tr>
<td>O+F16+SUT8+STR16+TČ(V)</td>
<td>39</td>
<td>84</td>
<td>125</td>
<td>18</td>
<td>86</td>
<td>1036</td>
<td>422</td>
</tr>
</tbody>
</table>

Graf 13 Rodinný dům: Typ 4- Srovnání měrné potřeby tepla a měrné primární energie

Graf 14 Rodinný dům: Typ 4- Přehled nákladů na vytápění a prostých dob návratnosti investic
A. Zateplení

Tento typ rodinného domu má o trochu lepší vlastnosti než předchozí starší domy, proto bude procentuální úspora o něco nižší. Původním zdrojem tepla byl elektrokotel. Tento způsob vytápění patří mezi nejdražší varianty, z toho důvodu bude návratnost investic kratší. Je nutno věnovat pozornost zateplení staré dvouplášťové střeše a zateplení stropu mezi přízemím a 1. patrem. Vzhledem k finančně náročnému způsobu vytápění je výhodné zateplit dům komplexně. Nejoptimálnější variantou je opět zateplení střední tloušťkou izolace a výměna oken (fasáda 16 cm, střecha 16 cm, strop v přízemí 8 cm).

Zde je možné dosáhnout návratnosti do 21 let resp. 15 let s dotací 30 %.

B. Výměna zdroje

Náklady na vytápění z původního zdroje přesahují 100 tis. Kč, proto se nabízí výměna za jiný levnější zdroj tepla. S kotlem na zemní plyn lze dosáhnout snížení nákladů na polovinu. Při poměrně nízkých investičních nákladech lze dosáhnout návratnosti do 4 let. Dle programu jsou investiční náklady na plynový zdroj společně s rekonstrukcí otopné soustavy poměrně nízké. Ve skutečnosti lze tyto náklady očekávat vyšší, ale i přes to bude návratnost investice rychlá. Navíc zde nebude plynová připojka, což by přineslo další prodražení. Nejvhodnější variantou z hlediska dlouhodobějšího používání je instalace tepelného čerpadla, kde se návratnost pohybuje mezi 4-6 lety dle typu a je možné uspořit až 75 % energie.

C. Kombinace

Drahé elektrické vytápění je velice vhodné pro realizaci úsporných opatření, protože lze dosáhnout velmi vysoké roční úspory při poměrně nízkých investičních nákladech. Při výměně zdroje za tepelné čerpadlo, výměně oken a zateplením fasády 16 cm polystyrenu je možná návratnost investice do 10 let, s využitím dotace pouze 6 let a to při investicích necelých 900 tis. Kč. Ve snaze o dosažení co nejnižší potřeby tepla a zateplením silnou vrstvou izolace (fasáda 30 cm, střecha 30 cm, suterén 20 cm), výměnou oken za izolační trojskla a výměnou tepelného čerpadla země-voda je možné dosáhnout 88 % úspory s podmínkou instalace nuceného větrání. Do 15 let bez dotace a do 8 let s 50% dotací, může být investice splacena.
7.5 Rodinný dům: Typ 5

Počet podlaží 2
Počet bytových jednotek 1
Vytápěná plocha 128 m²
Rok výstavby 1992
Původní potřeba energie 188 kWh/m².rok

Jedná se o bytový dům se dvěma podlažími a pouze jednou bytovou jednotkou s vytápěnou plochou 128 m². Dům má půdorys obdélníku. Železobetonový strop s minerální vlnou tloušťky 10 cm. Stěna z příčně děrovaných cihelných bloků s 8 cm minerální vlny. Okna s izolačním dvojsklem. Vytápění a ohřev TUV jsou zajišťovány plynovým kotlem s účinností 85%.

Tabulka 16 Rodinný dům: Typ 5- Vyhodnocení realizovaných opatření

<table>
<thead>
<tr>
<th>Opatření</th>
<th>Měrná potřeba tepla po renovaci kWh/m².rok</th>
<th>Procentuální snížení potřeby tepla %</th>
<th>Úspora energie za rok tis. Kč</th>
<th>Náklady na vytápění za rok tis. Kč</th>
<th>Úspora investiční náklady tis. Kč</th>
<th>Dotace</th>
<th>Návratnost bez dotace rok</th>
<th>Návratnost s dotací rok</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>172</td>
<td>9</td>
<td>7</td>
<td>31</td>
<td>3</td>
<td>187</td>
<td>-</td>
<td>65</td>
</tr>
<tr>
<td>O+F16</td>
<td>156</td>
<td>17</td>
<td>15</td>
<td>28</td>
<td>6</td>
<td>490</td>
<td>-</td>
<td>85</td>
</tr>
<tr>
<td>O+F16+STR16+SUT8</td>
<td>148</td>
<td>21</td>
<td>18</td>
<td>27</td>
<td>7</td>
<td>657</td>
<td>197</td>
<td>92</td>
</tr>
<tr>
<td>K(ZP)</td>
<td>158</td>
<td>15</td>
<td>15</td>
<td>28</td>
<td>5</td>
<td>162</td>
<td>-</td>
<td>30</td>
</tr>
<tr>
<td>TČ(V)</td>
<td>47</td>
<td>75</td>
<td>65</td>
<td>16</td>
<td>17</td>
<td>294</td>
<td>-</td>
<td>17</td>
</tr>
<tr>
<td>O+F16+TČ(V)</td>
<td>38</td>
<td>80</td>
<td>69</td>
<td>13</td>
<td>21</td>
<td>780</td>
<td>312</td>
<td>38</td>
</tr>
<tr>
<td>O+F16+SUT8+STR16+TČ(V)</td>
<td>36</td>
<td>81</td>
<td>70</td>
<td>12</td>
<td>21</td>
<td>947</td>
<td>473</td>
<td>45</td>
</tr>
</tbody>
</table>

Srovnání měrné potřeby tepla a měrné primární energie

Graf 15 Rodinný dům: Typ 5- Srovnání měrné potřeby tepla a měrné primární energie
A. Zateplení

B. Výměna zdroje

Otopná soustava v tomto domě není příliš stará a mohla by být zachována. Poté by bylo nutné vyměnit pouze plynový kotel. Další variantou je výměna za tepelné čerpadlo, zde je však návratnost na úrovni udávané životnosti tepelných čerpadel. U tepelných čerpadel je udávaná maximální životnost 20 let. Po uplynutí této doby lze očekávat další investice a prodlužování návratnosti.

C. Kombinace

Při uvažování kombinace úsporných opatření na obálce budovy a výměny zdroje vychází doby návratnosti přes 40 let. S dotací se lze dostat k návratnostem kolem 20 let.. Fond rodinných domů postavených v tomto období či později bude velmi obtížné renovovat vzhledem k ekonomii úsporných opatření. Majitele mohou být motivování dotacemi ze strany státu či jinými nástroji. Eventuálně mohou být donuceni k úsporným opatření kvůli špatnému technickému stavu budovy.
7.6 Bytový dům: Typ 1

Počet podlaží 5
Počet bytových jednotek 20
Vytápěná plocha 960 m²
Rok výstavby 1932
Původní potřeba energie 128 kWh/m².rok

Bytový dům se nachází v Praze Dejvicích nedaleko Vítězného náměstí. Jedná se o řadový BD obdélníkového typu o rozměrech 14x15 m, který má společné zdi s dvěma sousedícími domy. Dům byl postaven v roce 1932. Uvnitř se nachází 5 nadzemních podlaží a 20 různě velkých bytových jednotek. Střecha je sedlová s dřevěnými krovy, nevytápěná. Celý dům je podsklený. Vytápěná plocha je 960 m². Okna jsou dvojitá, dřevěná špaletová. Stěny jsou vystavěny z cihelného zdiva tloušťky 450 mm. Byty jsou vytápěny plynovými kotli nebo starými „vařkami“.

<table>
<thead>
<tr>
<th>Opotřebení</th>
<th>Měrná potřeba teplo po renovaci</th>
<th>Procentuální snížení potřeby tepla</th>
<th>Úspora energie za rok</th>
<th>Náklady na vytápění za rok</th>
<th>Úspora</th>
<th>Investiční náklady</th>
<th>Dotace</th>
<th>Návratnost bez dotace</th>
<th>Návratnost s dotací</th>
</tr>
</thead>
<tbody>
<tr>
<td>Výměna zdroje</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Původní</td>
<td>167</td>
<td>-</td>
<td>260</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K-zemní plyn</td>
<td>156</td>
<td>7</td>
<td>210</td>
<td>50</td>
<td>152</td>
<td>11</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TČ (V)</td>
<td>50</td>
<td>70</td>
<td>404</td>
<td>150</td>
<td>150</td>
<td>788</td>
<td>6</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Zateplení</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>133</td>
<td>20</td>
<td>118</td>
<td>207</td>
<td>53</td>
<td>1517</td>
<td>302</td>
<td>29</td>
<td>23</td>
</tr>
<tr>
<td>OF12</td>
<td>102</td>
<td>39</td>
<td>225</td>
<td>159</td>
<td>101</td>
<td>2234</td>
<td>467</td>
<td>23</td>
<td>18</td>
</tr>
<tr>
<td>OF18</td>
<td>101</td>
<td>40</td>
<td>228</td>
<td>157</td>
<td>103</td>
<td>2402</td>
<td>721</td>
<td>15</td>
<td>13</td>
</tr>
<tr>
<td>O=F20</td>
<td>100</td>
<td>40</td>
<td>232</td>
<td>156</td>
<td>104</td>
<td>2471</td>
<td>741</td>
<td>14</td>
<td>17</td>
</tr>
<tr>
<td>O=F30</td>
<td>99</td>
<td>41</td>
<td>235</td>
<td>154</td>
<td>106</td>
<td>2641</td>
<td>792</td>
<td>15</td>
<td>17</td>
</tr>
<tr>
<td>O=F16SUT8</td>
<td>94</td>
<td>44</td>
<td>252</td>
<td>146</td>
<td>114</td>
<td>2555</td>
<td>767</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>O=F16SUT20</td>
<td>92</td>
<td>45</td>
<td>259</td>
<td>143</td>
<td>117</td>
<td>2610</td>
<td>783</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>O=F16STROP10</td>
<td>95</td>
<td>44</td>
<td>256</td>
<td>145</td>
<td>115</td>
<td>2567</td>
<td>770</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>O=F16STROP20</td>
<td>92</td>
<td>45</td>
<td>259</td>
<td>143</td>
<td>117</td>
<td>2618</td>
<td>785</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>O=F16STROP10+SUT8</td>
<td>86</td>
<td>49</td>
<td>280</td>
<td>134</td>
<td>126</td>
<td>2720</td>
<td>816</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>O=F30STROP20+SUT20</td>
<td>82</td>
<td>51</td>
<td>294</td>
<td>128</td>
<td>132</td>
<td>3032</td>
<td>909</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Kombinace</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O=TČ (V)</td>
<td>40</td>
<td>76</td>
<td>459</td>
<td>104</td>
<td>156</td>
<td>2505</td>
<td>692</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>O=647TC (V)</td>
<td>31</td>
<td>81</td>
<td>470</td>
<td>80</td>
<td>179</td>
<td>3191</td>
<td>957</td>
<td>18</td>
<td>12</td>
</tr>
<tr>
<td>O=F16STROP10+TČ (V)</td>
<td>29</td>
<td>83</td>
<td>477</td>
<td>75</td>
<td>185</td>
<td>3355</td>
<td>1007</td>
<td>18</td>
<td>13</td>
</tr>
<tr>
<td>O=F16STROP10+SUT8+TČ (V)</td>
<td>27</td>
<td>84</td>
<td>484</td>
<td>70</td>
<td>190</td>
<td>5508</td>
<td>1052</td>
<td>18</td>
<td>13</td>
</tr>
<tr>
<td>O=F30STROP20+SUT20+TČ (V)</td>
<td>26</td>
<td>84</td>
<td>487</td>
<td>67</td>
<td>192</td>
<td>3820</td>
<td>1146</td>
<td>20</td>
<td>14</td>
</tr>
</tbody>
</table>
A. Zateplení

Stejně jako u rodinných domů, jednotlivá opatření samostatně nejsou natolik efektivní z hlediska návratnosti investice. Je výhodnější kombinovat více dílčích opatření najednou. Z tabulky je patrné, že s rostoucí tloušťkou izolace, dochází k navyšování ceny vzhledem k uspořané energii. Tím je prodlužována návratnost investice. Dále tabulka objasňuje, že zateplením stropu je možné uspořit významnou část energie v porovnání se zateplením suterénu. V tomto případě by nebylo nutné zateplovat nevytápěnou střechu, ale postačovalo by zateplení stropu nejvyššího patra. Ideální z hlediska úspor i dosažitelné ekonomické návratnosti vychází varianta kompletního zateplení domu (zateplení fasády, stropu, výměna oken a zateplení suterénu) středně silnou tloušťkou izolace. Tímto způsobem by bylo možné uspořit 49 % energie při návratnosti 22 let resp. 15 let při využití 30 % dotace z NZÚ. Při snaži dosažení nízkoenergetického standardu dochází k nárůstu ceny. Jsou zde navíc požadavky
na nucené větrání, které zvyšují cenu a vyžadují stavební zásahy do bytových jednotek. Návratnost investice by byla 23 let resp. 16 s dotací. Z pohledu majitele nemovitostí by bylo nejvýhodnější nerealizovat žádné opatření. Pro rozhodnutí o investici by mohl rozhodnout špatný stav budovy, zvýšení ceny nemovitosti nebo legislativní požadavky na budovy. Majitel navýšší hodnotu budovy a prodlouží její životnost, ale v případě nájemního domu může být pro majitele tato investice nenávratná.

B. Výměna zdroje

Pro rozhodnutí o investici do tepelného čerpadla a rekonstrukci rozvodů by bylo dosaženo 70 % úspory energie při investičních nákladech 788 tis. Kč. Návratnost investice bez dotace by byla 6 let. I přesto, že návratnost investice je velice krátká, jedná se o nájemní dům, tudíž majitel domu se investice vrátí, jen kdyby zvýšil nájmy. Dalším negativním aspektem, který by ohrožoval investici, by mohla být rekonstrukce stávající otopné soustavy, a tím snížení komfortu bydlení v budově po dobu realizace.

C. Kombinace

Výměna oken a přebudování otopné soustavy je při relativně nízkých nákladech a nejkratší dobou návratnosti zajímavou variantou. V ostatních případech s více opatřeními vychází návratnost do 20 let a s 30 % dotací již do ½ své životnosti, což je hranice životnosti zdroje. Z tabulky je zřejmé, že instalace tepelného čerpadla výrazně snižuje dobu návratnosti. Při nahrazení zdroje je vždy výhodnější mít již kompletně zrenovovaný dům, aby byl jeho výkon dimenzován a optimalizován na současnou tepelnou ztrátu budovy.

7.1 Bytový dům: Typ 2

Počet podlaží	2
Počet bytových jednotek	4
Vytápěná plocha	258 m²
Rok výstavby	1915
Původní spotřeba energie	195 kWh/m².rok

Obrázek 7 Bytový dům: Typ 2 [33]
Jedná o samostatně stojící bytový dům z roku 1915. V tomto domě se nachází ve dvou patrech čtyři bytové jednotky s celkovou vytápěnou plochou 258 m². Stěny budovy jsou postaveny z pálených cihel tloušťky 45 cm. Pod celým domem jsou nevytápěné sklepní prostory. Podkroví domu je nevytápěné a střecha je pokryta keramickou krytinou bez zateplení. Okna jsou dvojitá špaletová. Dům je vytápěný elektrickými přimotopty a TÜV je ohřívána pomocí elektrických průtokových ohřívačů.

Tabulka 18 Bytový dům: Typ 2- Vyhodnocení realizovaných opatření

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>O+F16</td>
<td>127</td>
<td>35</td>
<td>63</td>
<td>80</td>
<td>43</td>
<td>816</td>
<td>163</td>
<td>19</td>
<td>15</td>
</tr>
<tr>
<td>O+F16+ST8+3UT8</td>
<td>87</td>
<td>55</td>
<td>100</td>
<td>55</td>
<td>68</td>
<td>1 074</td>
<td>322</td>
<td>16</td>
<td>11</td>
</tr>
<tr>
<td>TČ(V)</td>
<td>71</td>
<td>64</td>
<td>115</td>
<td>49</td>
<td>74</td>
<td>540</td>
<td>-</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>O+TČ(V)</td>
<td>62</td>
<td>68</td>
<td>124</td>
<td>43</td>
<td>80</td>
<td>947</td>
<td>284</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>O+F16+TČ(V)</td>
<td>49</td>
<td>75</td>
<td>136</td>
<td>34</td>
<td>89</td>
<td>1 356</td>
<td>407</td>
<td>15</td>
<td>11</td>
</tr>
<tr>
<td>O+F16+ST8+3UT8+TČ(V)</td>
<td>36</td>
<td>82</td>
<td>148</td>
<td>25</td>
<td>98</td>
<td>1 614</td>
<td>484</td>
<td>16</td>
<td>12</td>
</tr>
<tr>
<td>O+F30+STR20+3UT20+TČ(V)</td>
<td>31</td>
<td>83</td>
<td>150</td>
<td>23</td>
<td>100</td>
<td>1 839</td>
<td>546</td>
<td>18</td>
<td>13</td>
</tr>
</tbody>
</table>

Graf 19 Bytový dům: Typ 2- Srovnání měrné potřeby tepla a měrné primární energie

Graf 20 Bytový dům: Typ 2- Přehled nákladů na vytápění a prostých dob návratnosti investic
A. Zateplení

Domy postavené do roku 1920 se vyznačovaly silnou tloušťkou zdiva. Při zachování původních zdrojů tepla pro vytápění a ohřev TUV, které patří mezi nejdražší způsoby, budou investice do úsporných opatření velice výhodné. Již při výměně oken izolačními dvojskly a zateplením fasády 16 cm je možné investicí splatit do 19 let resp. 15 let s dotací 20 %. Vzhledem k drahému způsobu zdrojů tepla je výhodné aplikovat úsporná opatření v celém objektu, kde při výměně oken, zateplením fasády 16 cm, izolaci stropu 8 cm a isolaci suterénu 8 cm, lze dosáhnout návratnosti již do 16 let a s využitím 30 % dotace 11 let. Dražší zdroje tepla jsou vhodnější pro investice do úsporných opatření a lze zde dosáhnout krátkých dob návratnosti.

B. Výměna zdroje

V domě se nenachází plynová přípojka, kterou by bylo nutno dobudovat, tedy z dostupných podporovaných zdrojů je nejvýhodnější volbou tepelné čerpadlo. Ve sklepních prostorech by nebyl problém s vybudováním technického zázemí. Návratnost by se pohybovalo od 6-8 let dle zvoleného typu a ročně by bylo možné ušetřit až 80 000 Kč.

C. Kombinace

V kombinaci opatření byly vždy využívána tepelné čerpadlo jako zdroj a k tomu byly aplikovány různé stupně zateplení. Nejlépe z pohledu doby návratnost vycházela variantu pouhé výměny oken s izolačním dvojsklem, kde byla doba návratnosti na úrovni 11 let resp. 8 let s dotací. Ostatní varianty s komplexnějším zateplením vycházely rovněž efektivní a u většiny sledovaných případů byla návratnost do 16 let s dotací do 12 let. Dotace zajistí navrácení investice před dobou životnosti zdroje. Ve snaze o dosažení co nejnižšího standardu lze dosáhnout úspory 86 % a snížení nákladů na vytápění a ohřev TUV na pouhých 20 tis. Kč za rok. V tomto případě je doba návratnosti 19 let s dotací 30 % 13 let.

7.2 Bytový dům: Typ 3

<table>
<thead>
<tr>
<th>Počet podlaží</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Počet bytových jednotek</td>
<td>12</td>
</tr>
<tr>
<td>Vytápěná plocha</td>
<td>876 m²</td>
</tr>
<tr>
<td>Rok výstavby</td>
<td>1958</td>
</tr>
<tr>
<td>Původní potřeba energie</td>
<td>205 kWh/m².rok</td>
</tr>
</tbody>
</table>

Obrázek 8 Bytový dům: Typ 3 [33]
A. Zateplení

V tomto období se stavěly typizované bytové domy s označením T. Tyto bytové domy neměly dobré tepelně izolační vlastnosti. Z tabulky analyzovaných variant vyplývá, že velká část tepla odchází stropem budovy. Po zateplení fasády, suterénu či výměně oken nedosáhneme výraznější úspor a kratších návratností, ale až po zateplení stropu 16 cm izolace dojde k padesáti procentnímu snížení potřeby tepla. Komplexním zateplením je investice návratná do 18 let bez dotace a s využitím dotace 13 let. Doby návratnosti se můžou v jiných budovách lišit v závislosti na ceně tepla z domovní kotelny.

B. Výměna zdroje

V domě se nachází starší méně hospodárná plynová kotelna. Ze zkušeností z předešlých případů vyplývá, že tepelné čerpadlo vychází jako nejlevnější zdroj a nejúspornější zdroj tepla, proto bude nahrazen za domovní kotelnu. Lze zde použít tepelné čerpadlo vzduch-voda, kde klesnou náklady na vytápění na polovinu a investice se vrátí do 4 let. Pokud je v okolí bytového domu dostatečný prostor, je možné použít tepelné čerpadlo země-voda s úsporou 60 % oproti původnímu stavu. Zde bude předpokládaná návratnost do 7 let.

C. Kombinace

V kombinaci opět vychází nejlépe nejlevnější varianta (výměna oken a tepelné čerpadlo jako zdroj), kde lze dosáhnout návratnosti 10 let resp. 7 let s dotací. I když je tento případ z ekonomického hlediska nejvýhodnější, z hlediska zlepšení vnitřního prostředí a vyšší atraktivity objektu, je stále výhodné zateplit dům komplexně střední tloušťkou. Zde vychází návratnost do 14 let, s připočtením 30 % dotace pouze 10 let. I z hlediska tepelného čerpadla je vhodné nejprve zateplit a až poté dimenzovat na současnou tepelnou ztrátu domu. U tohoto bytového domu můžeme přemýšlet o dosažení nízkoenergetického standardu s instalací nuceného větrání a tím k snížení nákladů na vytápění na velmi nízkou úroveň s přijatelnou dobou návratnosti.

7.3 Bytový dům: Typ 4

<table>
<thead>
<tr>
<th>Specifikace</th>
<th>Kvalitativní hodnota</th>
</tr>
</thead>
<tbody>
<tr>
<td>Počet podlaží</td>
<td>8</td>
</tr>
<tr>
<td>Počet bytových jednotek</td>
<td>40</td>
</tr>
<tr>
<td>Vytápěná plocha</td>
<td>2600 m²</td>
</tr>
<tr>
<td>Rok výstavby</td>
<td>1975</td>
</tr>
<tr>
<td>Původní potřeba energie</td>
<td>137 kWh/m².rok</td>
</tr>
</tbody>
</table>

Obrázek 9 Bytový dům: Typ 4 [33]
Tento bytový dům je osmipatrový se čtyřiceti různě velkými bytovými jednotkami a vytápěnou plochou 2600 m². Dům je samostatně stojící. Pod celým domem je nevytápěné technické zázemí. Obvodový plášť je tvořen železobetonovými dílci s pěti centimetrovou polystyrenovou vrstvou. Okna jsou typizovaná zdvojená a střecha domu je jednoplašťová s pěti cm izolací. Teplota je získávána ze sítě CZT. U tohoto bytového domu budou uvažovány dvě ceny tepla (600 a 900 Kč/GJ) a jejich vliv na návratnost investice.

<table>
<thead>
<tr>
<th>Opatření</th>
<th>Měrná potřeba tepla po renovaci kWh/m².rok</th>
<th>Měrná primární energie GJ</th>
<th>Procentuální snížení potřeby tepla %</th>
<th>Úspora energie za rok tis. Kč</th>
<th>Náklady na vytápění za rok tis. Kč</th>
<th>Úspora investiční náklady tis. Kč</th>
<th>Dotace</th>
<th>Návratnost bez dotace rok</th>
<th>Návratnost s dotací rok</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>125</td>
<td>10</td>
<td>112</td>
<td>67</td>
<td>3755</td>
<td>-</td>
<td>55</td>
<td>55</td>
<td>55</td>
</tr>
<tr>
<td>O+F16</td>
<td>114</td>
<td>16</td>
<td>180</td>
<td>640</td>
<td>768</td>
<td>1345</td>
<td>63</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>O+F16+STR16+ST8</td>
<td>96</td>
<td>50</td>
<td>515</td>
<td>559</td>
<td>185</td>
<td>762</td>
<td>2287</td>
<td>40</td>
<td>28</td>
</tr>
<tr>
<td>TČ(V)</td>
<td>65</td>
<td>69</td>
<td>445</td>
<td>281</td>
<td>489</td>
<td>1600</td>
<td>-</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>O+TČ(V)</td>
<td>55</td>
<td>73</td>
<td>473</td>
<td>130</td>
<td>639</td>
<td>5355</td>
<td>-</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>O+F16+TČ(V)</td>
<td>45</td>
<td>78</td>
<td>505</td>
<td>106</td>
<td>663</td>
<td>8388</td>
<td>2916</td>
<td>13</td>
<td>9</td>
</tr>
<tr>
<td>O+F16+STR8+SUT8+TČ(V)</td>
<td>91</td>
<td>85</td>
<td>549</td>
<td>73</td>
<td>696</td>
<td>9242</td>
<td>2773</td>
<td>13</td>
<td>9</td>
</tr>
<tr>
<td>O+F30+STR20+SUT20+TČ(V)</td>
<td>29</td>
<td>85</td>
<td>555</td>
<td>69</td>
<td>701</td>
<td>10375</td>
<td>8115</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>Cena tepla 900 Kč/GJ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>125</td>
<td>10</td>
<td>112</td>
<td>101</td>
<td>3755</td>
<td>-</td>
<td>37</td>
<td>37</td>
<td>37</td>
</tr>
<tr>
<td>O+F16</td>
<td>114</td>
<td>16</td>
<td>180</td>
<td>162</td>
<td>768</td>
<td>1345</td>
<td>42</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>O+F16+STR16+ST8</td>
<td>96</td>
<td>50</td>
<td>515</td>
<td>284</td>
<td>762</td>
<td>2287</td>
<td>27</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>TČ(V)</td>
<td>65</td>
<td>69</td>
<td>445</td>
<td>873</td>
<td>1620</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>O+TČ(V)</td>
<td>55</td>
<td>73</td>
<td>473</td>
<td>981</td>
<td>5355</td>
<td>1600</td>
<td>-</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>O+F16+TČ(V)</td>
<td>45</td>
<td>78</td>
<td>505</td>
<td>970</td>
<td>8388</td>
<td>2516</td>
<td>9</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>O+F16+STR8+SUT8+TČ(V)</td>
<td>91</td>
<td>85</td>
<td>549</td>
<td>958</td>
<td>9242</td>
<td>2773</td>
<td>10</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>O+F30+STR20+SUT20+TČ(V)</td>
<td>29</td>
<td>85</td>
<td>555</td>
<td>951</td>
<td>10375</td>
<td>8115</td>
<td>11</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

Srovnání měrné potřeby tepla a primární energie

Graf 23 Bytový dům: Typ 4 - Srovnání měrné potřeby tepla a měrné primární energie
A. Zateplení

V tomto období již existovaly určité normy pro panelové domy. V tomto případě byla použita izolace tloušťky 5 cm na střechu panelového domu a 5 cm na vnější stěny. Při cenách tepla 600 Kč/GJ doba návratnosti neklesne pod 40 let, protože zateplovaný dům byl z části zateplen. Tato izolace byla instalována před více než 40 lety a bude nutná její výměna, která při těchto cenách dosahuje dlouhé doby návratnosti. Do budoucna se očekává růst cen tepla, který by zkrátil tuto dobu. V případě ceny 900 Kč/GJ se situace poměrně zásadně mění. Doba návratnosti klesá pod 30 let, a to konkrétně při zateplení fasády 16 cm, střechy 16 cm, suterené 8 cm a současné výměně oken lze dosáhnout 27 let resp. 19 let s dotací. Při této ceně již dává investice do úsporných opatření z ekonomického hlediska smysl a navíc dojde ke zvýšení komfortu bydlení. Při takto vysoké ceně tepla je otázkou, zda nepřejít na jiný levnější zdroj.

B. Výměna zdroje

Cena 600 Kč/GJ je hraniční cenou pro uvažování o odpojení od CZT. Uvádí se, že tepelná čerpadla mají návratnost v řádu několika let (v závislosti na stavě a typu budovy) v oblastech s cenou 500 Kč/GJ. Je pravděpodobné, že ceny tepla z CZT nebudou v příštích letech dramaticky klesat, ale očekává se spíše opačný trend. U tohoto panelového domu by byla návratnost investice do tepelného čerpadla vzduchovoda do 4 let (cena tepla 600 Kč/GJ) resp. do 2 let (cena tepla 900 Kč/GJ). Jedná se pouze o vypočtené hodnoty, skutečně budou pravděpodobně o něco vyšší při započtem ostatních nákladů. Ceny tepla z CZT jsou velmi vysoko a levnějších alternativ je na trhu celá řada. Problémem může být povolení o odpojení od sítě CZT, které může návratnost investice prodloužit. S rostoucí cenou a případně větším množstvím odpojených zákazníků se bude dálkové vytápění stávat nekonkurenceschopné.
C. Kombinace

Je výhodnější nejdříve zatepíti, a až poté na současnou tepelnou ztrátu dimenzovat zdroj, než naopak. Při ceně tepla 600 Kč/GJ je možné navrácení investice, při výměně zdroje za tepelné čerpadlo vzduch-voda a komplexním zateplení, do 13 let. Pokud uvažujeme horní hranici tepla, návratnost by byla do 10 let resp. 6 let s využitím dotace. Z výše uvedených příkladů je vhodný přechod na jiný zdroj. I přesto, že CZT je spolehlivý, nenáročný na provoz a uživatelsky komfortní, jeho cena se stává neattractivní, proto mnoho uživatelů uvažuje o jiném alternativním zdroji. Ze získaných výsledků je evidentní, že eventuální změna zdroje přinese velké úspory v krátkém časovém horizontu.

7.4 Bytový dům: Typ 5

Počet podlaží	4
Počet bytových jednotek	8
Vytápěná plocha	700 m²
Rok výstavby	1988
Původní spotřeba energie	123 kWh/m².rok

Tabulka 21 Bytový dům: Typ 5- Vyhodnocení realizovaných opatření

<table>
<thead>
<tr>
<th>Opatření</th>
<th>Měrná potřeba tepla po renovaci kWh/m².rok</th>
<th>Procentuální snížení potřeby tepla %</th>
<th>Úspora energie za rok tis. Kč</th>
<th>Náklady na vytápění za rok tis. Kč</th>
<th>Úspora investiční náklady tis. Kč</th>
<th>dotace tis. Kč</th>
<th>Návratnost bez dotace rok</th>
<th>Návratnost s dotací rok</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cena tepla 600 Kč/GJ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>107</td>
<td>12</td>
<td>95</td>
<td>162</td>
<td>21</td>
<td>1005</td>
<td>-</td>
<td>48</td>
</tr>
<tr>
<td>O+F16</td>
<td>100</td>
<td>17</td>
<td>53</td>
<td>153</td>
<td>32</td>
<td>2034</td>
<td>-</td>
<td>64</td>
</tr>
<tr>
<td>O+F16STR16+SUṬB</td>
<td>92</td>
<td>24</td>
<td>73</td>
<td>139</td>
<td>44</td>
<td>2491</td>
<td>498</td>
<td>57</td>
</tr>
<tr>
<td>TČ (V)</td>
<td>87</td>
<td>69</td>
<td>212</td>
<td>70</td>
<td>113</td>
<td>785</td>
<td>-</td>
<td>7</td>
</tr>
<tr>
<td>O+TČ (V)</td>
<td>85</td>
<td>75</td>
<td>222</td>
<td>62</td>
<td>121</td>
<td>1788</td>
<td>558</td>
<td>15</td>
</tr>
<tr>
<td>O+F16+TČ (V)</td>
<td>80</td>
<td>75</td>
<td>229</td>
<td>57</td>
<td>126</td>
<td>2817</td>
<td>558</td>
<td>22</td>
</tr>
<tr>
<td>O+F16STR16+SUṬB+TČ (V)</td>
<td>88</td>
<td>77</td>
<td>234</td>
<td>53</td>
<td>130</td>
<td>3274</td>
<td>655</td>
<td>25</td>
</tr>
<tr>
<td>O+F30+STR20+SUṬ20+TČ (V)</td>
<td>27</td>
<td>78</td>
<td>237</td>
<td>51</td>
<td>132</td>
<td>3699</td>
<td>740</td>
<td>28</td>
</tr>
<tr>
<td>Cena tepla 900 Kč/GJ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>107</td>
<td>12</td>
<td>95</td>
<td>243</td>
<td>32</td>
<td>1005</td>
<td>-</td>
<td>32</td>
</tr>
<tr>
<td>O+F16</td>
<td>100</td>
<td>17</td>
<td>53</td>
<td>237</td>
<td>48</td>
<td>2034</td>
<td>-</td>
<td>43</td>
</tr>
<tr>
<td>O+F16STR16+SUṬB</td>
<td>92</td>
<td>24</td>
<td>73</td>
<td>209</td>
<td>66</td>
<td>2491</td>
<td>498</td>
<td>38</td>
</tr>
<tr>
<td>TČ (V)</td>
<td>87</td>
<td>69</td>
<td>212</td>
<td>70</td>
<td>204</td>
<td>783</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>O+TČ (V)</td>
<td>85</td>
<td>75</td>
<td>222</td>
<td>62</td>
<td>212</td>
<td>1788</td>
<td>558</td>
<td>8</td>
</tr>
<tr>
<td>O+F16+TČ (V)</td>
<td>80</td>
<td>75</td>
<td>229</td>
<td>57</td>
<td>218</td>
<td>2817</td>
<td>558</td>
<td>13</td>
</tr>
<tr>
<td>O+F16STR16+SUṬB+TČ (V)</td>
<td>88</td>
<td>77</td>
<td>234</td>
<td>53</td>
<td>232</td>
<td>3274</td>
<td>655</td>
<td>15</td>
</tr>
<tr>
<td>O+F30+STR20+SUṬ20+TČ (V)</td>
<td>27</td>
<td>78</td>
<td>237</td>
<td>51</td>
<td>233</td>
<td>3699</td>
<td>740</td>
<td>17</td>
</tr>
</tbody>
</table>
Graf 25 Bytový dům: Typ 5- Srovnání měrné potřeby tepla a měrné primární energie

Graf 26 Bytový dům: Typ 5- Přehled nákladů na vytápění a prostých dob návratnosti investic
A. Zateplení

V osmdesátých letech se zateplovala obálka panelových domů 8 cm pěnového polystyrenu. V tomto období také vrcholila snaha o eliminaci tepelných mostů a tím se zlepšovaly tepelně-technické a energetické vlastnosti panelových domů. Ze získaných výsledků je patrné, že pouhým zateplováním nelze dostat velkou procentuální úsporu, jako u starších budov. Okna z této doby neměla příliš dobré tepelně izolační vlastnosti a lze zde získat úsporu 12 % s návratnosti dlouhých 48 let při cenách tepla 600 Kč/GJ. Návratnosti ostatních opatření se při těchto cenách blíží k 60 letům. Ani při vysokých cenách 900 Kč/GJ nevychází na návratnosti optimisticky a z ekonomického hlediska se zateplování již zateplených budov nevyplati.

B. Výměna zdroje

Tento panelový dům nevykazuje příliš vysokou tepelnou ztrátu, proto je možné uvažovat o pouhé výměně zdroje. Jako technicky i ekonomicky nejvýhodnějším systémem je tepelné čerpadlo vzduch-voda. V panelovém domě by nemělo být problémem umístění tepelného čerpadla do technického zázemí ve sklepě nebo na střechu budovy. S tepelným čerpadlem země-voda může být problém s instalací podzemního kolektoru v panelové zástavbě, proto není tak často využíváno jako vzduch-voda. Instalace tepelného čerpadlo se jeví jako nejlevnější variantu s nejkratší dobou návratnosti v jednotkách let při cenách 600 i 900 Kč/GJ. Možným problémem by mohla být původní otopná soustava, která by byla dílenována na jiné parametry, než jsou potřebné k systému tepelného čerpadla. Tento fakt by mohl vést k výměně otopných těles předimenzované otopné soustavy, a tím i navýšení nákladů.

C. Kombinace

Nejlevnější a ekonomicky nejvýhodnější se jeví výměna oken společně s odpojením od CZT a nahrazením tepelným čerpadlem vzduch-voda. Návratnost tohoto opatření je 14 let resp. 11 s dotací (cena tepla 600 Kč/GJ), či 8 let resp. 6 let s dotací (cena tepla 900 Kč/GJ). Ani při komplexnějším opatření při nižších cenách tepla nedojde k navracení investice alespoň do 20 let, což je hranice životnosti tepelných čerpadel. Při cenách 900 Kč/GJ je při komplexnější renovaci návratnost do 15 let s dotací o 3 roky méně. Stejně jako u rodinných domů bude renovace fondej bytových domů problematická z důvodu ekonomické návratnosti. Pokud budou chtít majitelé bytů dosáhnout snížení poplatků za energie pouze zateplením, nebude možné v horizontu předpokládané doby životnosti tohoto cíle dosáhnout. Budou se muset poohlížet po levnějším alternativním zdroji, což může být dalším problémem pro provozovatele zařízení zajišťující dálkové vytápění.
8 Shrnutí dosažených výsledků

Dvě třetiny energie je spotřebováno na vytápění a přípravu TUV. Větší část fondu budov nebyla dosud zrekonstruována, což značí stále velký prostor k úsporám. Ten však zůstává nevyužitý. Po analýze 5 rodinných a 5 bytových domů s různými způsoby vytápění a postavených v různých časových obdobích byly zjištěny velké rozdíly. Pro výpočet byl využit program, který využívá statistických dat z předchozích realizovaných projektů. Vypočtené hodnoty jsou pouze odhadem stanoveny na základě průměrných nákladů. Skutečné technické i ekonomické údaje se mohou lišit, ale i tak lze z těchto výsledků vyvodit obecné závěry.

8.1 Rodinné domy

V rámci celého fondu rodinných domů existuje celá řada budov různých tvarů, tepelně izolačních vlastností a také s různými zdroji tepla. Domy byly vybrány z každého období výstavby od roku 1910 až 1988, což je velký rozptyl. I rozdíly jsou velmi výrazné.

U rodinných domů vytápěných zemním plynem se výsledky liší dle stárší a tepelně izolačních vlastností analyzovaných budov. Dům z roku 1937 již neodpovídá dnešním technickým standardům, jak z hlediska

Tato situace neplatí u domu postaveného na přelomu devadesátých let, kde platily určité energetické standardy. Dům byl zateplen 8 cm polystyrenu na vnějších stěnách a 10 cm minerální vlny byla zateplena střecha. Původní měrná spotřeba tepla nebyla vysoká a prostor pro významné úspory nebyl velký. Po kompletním zateplení střední tloušťkou izolace byla úspora pouze 21 %, což negeneruje vysokou peněžní úsporu z původních nákladů na vytápění a ohřev TUV ve výši 34 tis. Kč. Prostá doba návratnosti již zatepleného domu se pohybovala na úrovni 60 let a více, což není ekonomicky proveditelné. V kombinaci úsporných opatření s využitím dotace vycházely prosté doby návratnosti okolo 20 let. Životnost čerpadla může být maximálně právě 20 let a po uplynutí této doby bude nutná výměna zdroje. Zde by musela být dotace o něco vyšší, aby motivovala majitele do úsporných opatření. Bez dotace by nebylo možné návratnosti investic dosáhnout. Po uplynutí doby životnosti bude obtížné zajistit renovaci rodinných domů postavených v nižších energetických standardech, což může být překážkou při plnění stanovených cílů ČR. Do domů postavených v lepších energetických třídách od roku 1990 nemá smysl dotovat. Možným řešením by byla „měkká“ opatření (regulace nebo řízení a monitoring spotřeby) vedoucí k možnému snížení spotřeby. V této práci nebyly tyto způsoby řešeny.

8.2 Bytové domy

U bytových domů rovněž jako u rodinných byly analyzovány budovy z bytového fondu od roku 1915 do 1988. Také zde byly použity jako zdroje tepla různá paliva, ale typičtější a používanější v sektoru bytových domů.

Bytový dům z roku 1915 je vytápěn elektrickými přimotopy a TUV je ohřívána elektrickými průtokovými ohřívači. Z důvodu vyšších cen a stárání budovy byly návratnosti ze všech sledovaných domů nejkratší. Jen při zateplení objektu byly návratnosti okolo 17 let, s dotací o 5 let méně. Z důvodu neekonomického zdroje je vhodnou alternativou tepelné čerpadlo, u kterého se návratnosti pohybují mezi 7-9 lety. Starší domy zejména s tímto druhem vytápění jsou vhodně pro aplikaci úsporných opatření, které jsou ekonomicky efektivní a mají velký přínos pro obyvatele.

U pražského bytového domu z roku 1937, který je vytápěn plynovými kotly v jednotlivých bytech by mohla být problémem výměna původních zdrojů za jeden centrální, i když doba návratnosti je příznivá. Jedná se o nájemní dům a bylo by nutné předělat rozvody v celému domě, což by znepříjemňovalo život nájemníků. Při zachování původních zdrojů vychází doby návratnosti
komplexním zateplení do 25 let s využitím dotace 18 let. Navíc vzrostou cena nemovitosti, zlepší se vnitřní podmínky k bydlení a navýší se atraktivita pro nájemce.

V poslední části byly posuzovány dva panelové domy z různých časových období s rozdílnými tepelně izolačními vlastnostmi. Byla zde posuzována ekonomická efektivnost při cenách 600 a 900 Kč/GJ. U staršího typu panelového domu při cenách 900 Kč/GJ je zateplení dostatečně efektivní, aby se investice vrátila v podobě úspory nákladů. V ostatních případech nikoliv a nabízí se výměna centrálního zdroje za lokální. Před výměnou zdroje je doporučeno nejdříve provést zateplení a co nejvíce snížit tepelný ztrátu a poté přesně optimalizovat zdroj tepla pro vytápění. Tím předejdeme předmětu zdroje a s tím spojených vyšších nákladů na jeho pořízení a provoz. Snížení tepelných ztrát umožňuje nainstalovat nízkotepelný systém vytápění, kde je nutná důkladná regulace soustavy. Potom je možné uspořit až 80 % nákladů a úsporná opatření se stávají efektivními. Alternativ k centrálnímu zásobování teplem je celá řada. Je však důležité věnovat se přesně analýze pro konkrétní panelový dům v dané lokalitě. V případě instalace lokálního zdroje tepla musí stavební úřad vyhodnotit a schválit tuto alternativu k CZT. I když se může v mnoha případech jednat o velmi efektivní úsporné opatření s kratší návratností, je její využití před změnou legislativy velmi obtížné a nákladné. Ze strany tepláren by měla být větší snaha o uspokojoval povinnou dohodu k přechodu k alternativním zdrojům.

8.3 Vyhodnocení energetické náročnosti z hlediska primární energie

Klíčovými faktory posuzování energetické náročnosti budov dle energetických standardů slouží celková dodaná energie za rok, neobnovitelná primární energie za rok a průměrný součinitel prostupu tepla
obálkou. V průkazech energetické náročnosti se objevují právě tyto tři parametry. V této kapitole budou budovy hodnoceny jen z pohledu dodané energie na vytápění a ohřev TUV (potřeba energie) a neobnovitelné energie primární energie. Potřeba energie charakterizuje kvalitu návrhu energetického konceptu budovy z architektonického i stavebního hlediska za standardizovaného způsobu užívání bez ohledu na účinnost využití zdrojů energie a využití obnovitelných zdrojů. Neobnovitelná primární energie charakterizuje vliv budovy na životní prostředí, tedy celkové množství energie, kterou budova spotřebovává ze neobnovitelných zdrojů. [19]

Uhlí je neobnovitelným zdrojem, který by měl být nahrazen v nejlepším případě biomasou. Vhodnými náhradami by mohlo být tepelné čerpadlo nebo plyn,

České teplárenství je založeno na spalování hnědého uhlí, proto není z pohledu primární energie příliš efektivní. Snížení by bylo možné dosáhnout zvýšením kombinované výroby a současný přechod na spalování OZE.

V následujícím grafu je znázorněna bilance primární energie pro rodinný dům s celkovou dodanou energii na vytápění a ohřev TUV ve výši 6000 kWh/rok. Hodnoty pro jednotlivé zdroje byly vypočítány dle rovnice 5.

Graf 27 Bilance primární energie RD
Nejvýhodnějšími zdroji se ukázala biomasa, tepelné čerpadlo a kondenzační kotel na zemní plyn. Tyto zdroje jsou také podporovány vládou ČR a jsou pro ně vysažené dotace. Dalším zlepšením využití primární energie je instalace termálních solárních systémů nebo fotovoltaických systémů pro výrobu elektrické energie.

8.4 Vliv dotací

NZÚ je nastaven tak, aby motivoval k co největším úsporám, tedy s rostoucí tloušťkou izolace roste i výše dotace. Dále může být problémem estetický nebo konstrukční problém při zateplování až 40 cm izolace. Majitelé domů mají často obavy z náročné administrativy, proto nevyužívají dotací. Lidé si začínají uvědomovat přínosy nízkoenergetických domů, ale stále potřeba vzdělávat a ukazovat příklady dobré praxe ke zvýšení zájmu o renovace budov. Velkým problémem je, že vláda není v oblasti dotačních programů koordinovaná. V roce 2015 běžela podpora úspor energie v osmi celostátních i evropských programech řízených čtyřmi úřady. Mělo by dojít ke sjednocení a zjednodušení administrativy.

8.5 Bariéry realizace ekonomicky proveditelných úspor

Bariéry při realizaci úspor energie lze rozdělit do čtyř skupin. Technickými bariérami jsou myšleny překážky ve fázi realizace konkrétních opatření, ale finanční prostředky jsou k dispozici. Informační bariéry jsou dány především nedostatečnou informovaností o možnostech úspor energie. Koncepčními překážkami se myslí kolize, nekoncepčnost a neprovažanost v legislativě a strategických dokumentech působících konfliktně vůči principu snižování energetické náročnosti. Ekonomickými bariérami se rozumí překážky spočívající v nedostatku finančních prostředků nebo skutečnosti, které zhoršují ekonomickou návratnost úspor energie. Tato kapitola bude dále věnována ekonomické situaci obyvatel ČR, energetické chudobě a možnosti realizace úsporných opatření.

Energetická chudoba se dá definovat různými způsoby, ale obecně se jedná o domácnosti, které si nemohou dovolit adekvátní vytápění své byty. Účty za energie nepřiměřeně zatěžují jejich rozpočty a jejich byty mají velké energetické ztráty. Evropská komise využívá následující definici. [22]

„Energetická chudoba nastává tehdy, když domácnost má potíže nebo nemůže vytípat své byty. Účty za energie nepřiměřeně zatěžují jejich rozpočty a jejich byty mají velké energetické ztráty. Evropská komise využívá následující definici. [22]

Hranice energetické chudoby je také definována jako situace, kdy je nejméně 10 % příjmů domácnosti spotřebováno na energie a služby spojené s jejich dodáním.

V ČR dle Evropské komise je ohroženo energetickou chudobou téměř 20 % domácností. Jako obecné příčiny se udávají nedostatečný příjem domácností, neefektivní způsob vytápění, nedostatečná izolace a vysoké ceny energií. I přes poměrně velkou část obyvatelstva ohrožených energetickou chudobou není v ČR tomuto problému věnována velká pozornost. [22] Nejvíce ohroženými skupinami jsou lidé v důchodovém věku, domácnosti bez jednoho z rodičů a domácnosti s více dětmi. Dle Ústavu územního rozvoje vytváří tyto domácnosti za energie až 20 % svých příjmů. Tito lidé žijí v nízkopříjmových domácnostech a nemají dostatek financí na zatepleňování domů.

Vláda se snaží systémem státních podpor v bydlení a dalších sociálních dávek a příspěvků zmírnovat riziko chudoby jako takové. Stát také poskytuje řadu dotací v oblasti úspor energie, ale ohrožené domácnosti s nízkými příjmy, žijící ve svém domě nebo v nájmech, nemohou nabídky dotací využít. IROP určený na energetické renovace bytových domů měl být přínosný právě pro domácnosti v nájmech, ale dosud z něho bylo čerpáno minimálně. Dotace na bytové domy je možné získat v nových výzvách NZÚ. [23]

Stát selhává v zacílení podpory na příčiny energetické chudoby a současný systém sociálních dávek pouze konzervuje stav bydlení v nevyhovujících podmínkách. Současná politika státu nijak nemotivuje majitele nemovitosti dosahovat úspor a chudým domácnostem v nájmu neumožňuje tento stav změnit. V oblasti investiční podpory je nutné zlepsit zacílení dotací, aby byly dostupné i pro nízkopříjmové skupiny a například je doplnit dalšími nástroji pro řešení případů energetické chudoby. Ve problémových krajích či obcích zapojit obce, sociální úřady a nevládní organizace do rozhodování o rozdělování dotací. Energetická chudoba by mohla být problémem při zlepšování kvality bydlení a mohla by ohrozit dosažení energetických cílů.
8.6 Skutečné snížení spotřeby tepla při zateplení objektu

Metodika výpočtu potřeby tepla:

Roční potřeba tepla na vytápění byla vypočtena denostupňovou metodou. Základem použití metody je znalost průběhů venkovních teplot z meteorologických dat. Potřebná data byla získána z portálu TZB-info. Pro výpočet byl zvolen nezateplený dům s tepelnou ztrátou 20 kW.

Základní výpočtový vztah:

\[D = d \cdot (t_i - t_e) \]

\(d \)- počet dnů za rok s teplotou nižší než \(13\, ^\circ\text{C}\), tj. počet dnů otopného období

\(t_i \)- průměrná teplota v budově \([{}^\circ\text{C}]\)

\(t_e \)- průměrná venkovní teplota v otopném období \([{}^\circ\text{C}]\)

\(D \)- počet denostupňů

\[
Q_{VYT} = \frac{24 \cdot Q_c \cdot D \cdot \varepsilon}{t_i - t_e}
\]

\(Q_{VYT} \)- roční/měsíční potřeba tepla na vytápění \([\text{Wh/rok}]\)

\(Q_c \)- tepelná ztráta objektu \([\text{W}]\)

\(\varepsilon \)- opravný součinitel

\(t_i \)-vnitřní výpočtová teplota \([{}^\circ\text{C}]\)

\(t_e \)- vnější výpočtová teplota \([{}^\circ\text{C}]\)

Parametry potřebné k výpočtu:

\(t_e \)	-12 °C
\(t_{e,s} \)	6,7 °C
\(t_i \)	19 °C
\(Q_c \)	20 kW
\(d \)	239

Spotřeba tepla pro teplou užitkovou vodu (TUV) byla uvažována jako 30 % z potřeby tepla pro vytápění. Ohřev TUV je uvažován v jednotlivých měsících konstantní. Ztráty byly stanoveny jako 10% z celkové spotřeby tepla. Pro výpočet byla vybrána meteorologická data v obci Doksany, ležící v ústeckém kraji v nadmořské výšce 158 m.n.m. Průměrné venkovní teploty a počet dnů vytápění vycházejí z místních meteorologických dat naměřených ve sledovaném období. Tyto dva parametry značně ovlivňují potřebu tepla na vytápění.
Diplomová práce

Tomáš Hruška

Tabulka 22 Snížení spotřeby tepla při realizaci úsporných opatření

<table>
<thead>
<tr>
<th>Měsíc</th>
<th>TUV</th>
<th>Ztráty</th>
<th>Potřeba tepla nezateplený dům</th>
<th>Potřeba tepla na vytápění - snížení o 30%</th>
<th>Potřeba tepla na vytápění - snížení o 50%</th>
<th>Potřeba tepla na vytápění - snížení o 70%</th>
<th>Celková spotřeba nezateplený dům</th>
<th>Celková spotřeba snížení o 30%</th>
<th>Celková spotřeba snížení o 50%</th>
<th>Celková spotřeba snížení o 70%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leden</td>
<td>1349</td>
<td>540</td>
<td>9600</td>
<td>6720</td>
<td>5092</td>
<td>3637</td>
<td>2182</td>
<td>11489</td>
<td>609</td>
<td>6689</td>
</tr>
<tr>
<td>Únor</td>
<td>1349</td>
<td>540</td>
<td>7274</td>
<td>5092</td>
<td>3637</td>
<td>2182</td>
<td>11489</td>
<td>609</td>
<td>6689</td>
<td></td>
</tr>
<tr>
<td>Březen</td>
<td>1349</td>
<td>540</td>
<td>9600</td>
<td>6720</td>
<td>5092</td>
<td>3637</td>
<td>2182</td>
<td>11489</td>
<td>609</td>
<td>6689</td>
</tr>
<tr>
<td>Duben</td>
<td>1349</td>
<td>540</td>
<td>9600</td>
<td>6720</td>
<td>5092</td>
<td>3637</td>
<td>2182</td>
<td>11489</td>
<td>609</td>
<td>6689</td>
</tr>
<tr>
<td>Květen</td>
<td>1349</td>
<td>540</td>
<td>9600</td>
<td>6720</td>
<td>5092</td>
<td>3637</td>
<td>2182</td>
<td>11489</td>
<td>609</td>
<td>6689</td>
</tr>
<tr>
<td>Červen</td>
<td>1349</td>
<td>540</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1889</td>
<td>1889</td>
<td>1889</td>
</tr>
<tr>
<td>Červenc</td>
<td>1349</td>
<td>540</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1889</td>
<td>1889</td>
<td>1889</td>
</tr>
<tr>
<td>Srpen</td>
<td>1349</td>
<td>540</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1889</td>
<td>1889</td>
<td>1889</td>
</tr>
<tr>
<td>Září</td>
<td>1349</td>
<td>540</td>
<td>500</td>
<td>1050</td>
<td>750</td>
<td>450</td>
<td>3389</td>
<td>2393</td>
<td>2393</td>
<td></td>
</tr>
<tr>
<td>Říjen</td>
<td>1349</td>
<td>540</td>
<td>4682</td>
<td>3278</td>
<td>2341</td>
<td>1405</td>
<td>6571</td>
<td>5167</td>
<td>4230</td>
<td></td>
</tr>
<tr>
<td>Listopad</td>
<td>1349</td>
<td>540</td>
<td>5899</td>
<td>4130</td>
<td>2950</td>
<td>1770</td>
<td>7788</td>
<td>609</td>
<td>4839</td>
<td></td>
</tr>
<tr>
<td>Prosinec</td>
<td>1349</td>
<td>540</td>
<td>6912</td>
<td>4838</td>
<td>3456</td>
<td>2074</td>
<td>8801</td>
<td>6727</td>
<td>5345</td>
<td></td>
</tr>
<tr>
<td>Celkem [kWh/rok]</td>
<td>16 188</td>
<td>6 480</td>
<td>48 613</td>
<td>34 029</td>
<td>24 307</td>
<td>14 584</td>
<td>71 281</td>
<td>56 698</td>
<td>46 975</td>
<td>37 252</td>
</tr>
</tbody>
</table>

Graf 29 Celkové roční spotřeby tepla

Graf 28 Procentuální snížení spotřeby tepla

Zateplení objektu, které vyžaduje velké investice, se očekávají úspory příslušné úspory energie na vytápění. Při snižování energetické náročnosti budov je vždy nutný optimalizační výpočet otopné soustavy, abychom dosáhli požadovaných úspor a navrácení vložených investic.
9 Alternativní metody snižování energetické náročnosti

Dotační programy jsou prozatím v ČR hlavním nástrojem pro plnění národního cíle. Do budoucna je však potřeba uvažovat nad jinými metodami podpory investic pro zvyšování energetické účinnosti. Jelikož dotační programy jsou financovány především z evropských fondů, Čerpání z evropských fondů po roce 2020 nebude pravděpodobně možné. [6]

Evropská komise by měla v nejbližší době představit přepracované směrnice o energetické účinnosti (EED) a směrnici o energetické náročnosti budov (EPBD). Tyto směrnice budou hrát v dalším vývoji realizaci úspor energie a zvyšování energetické účinnosti po roce 2020. Pro ČR je nyní důležité nastavení nástrojů do roku 2020 tak, aby nedošlo k pozdní implementaci a rozběhu programů jako ve stávajícím období. [6]

ČR se bude snažit o zachování některých dotačních programů (v modifikované podobě) a také o zachování možnosti financování z prostředků EU. Je však důležité nastavit programy tak, aby byly finanční prostředky vynaladány efektivněji. MŽP uvádí, že by ČR měla mít k dispozici výnosy z prodeje emisních povolenek a nově také z Mezinárodního fondu v rámci EU ETS. V období 2021-2030 by mohlo být k dispozici více jak 20 mld. Kč.

Infrastrukturní investice pro rozběh ekonomiky jsou vážným tématem v řadě zemí EU. V kvalitě infrastruktury ČR zaostává ještě za západními státy, ale i za zeměmi se srovnatelným HDP na osobu. Česká vláda o rozsáhlejších investicích mluví, ale zatím je dostatek konkrétních plánů chybí. V některých státech již fungují alternativní mechanismy k financování infrastruktury.

Další alternativou by mohl být fungující model v Německu, kde jsou projekty podporovány rozvojovou bankou KfW. Banka vlastněná státem poskytuje výhodné půjčky malým a středním podnikům. Ve velkém financuje bydlení a komunální infrastrukturu. Devadesát procent financí banka získává vydáváním dluhopisů, které jsou garantovány spolkovou vládou. [24]

Další přínosy by mohly plynout z tzv. měkkých opatření, které mají vliv na změnu chování konečného spotřebitele. Tyto opatření nejsou ze strany státní správy podporovány. Po zavedení systémů hospodaření s energií v podobě provádění energetického managementu, bylo možné nastavit standardní pravidla v chování spotřebitelů. Výše zmíněné příklady byly ukázky, kam by česká vláda mohla směřovat po roce 2020, a kde bude potřebné mobilizovat soukromý kapitál k investicím do energeticky úsporných opatření.

Pro nastavení nedotačních nástrojů se musí stát jasně vyslovit, že energetická účinnost je prioritou, dále podporovat iniciativy a projekty vedoucí ke snižování energetické náročnosti ČR v oblasti průmyslu, ve veřejné správě, u dodavatelů energie, finančních institucí a stavebnictví. [26] [27]
10 Budoucnost českého teplárenství

České teplárenství, které je postavené na spalování především hnědého uhlí, čeká revoluce. Zásoby hnědého uhlí se tenčí a teplárně budou muset najít náhradu nebo se spokojit s vyšší cenou. Vlivem snahy o dosažení lepší energetické efektivity české ekonomiky bude množství spotřebované energie za účelem vytápění stále klesat. V neproběhnutých centralizovaných zdrojů tepla působí hned několik faktorů: ztenčující se zásoby a růst ceny uhlí, dochází k masivnímu zateplování, a dle zjištěných informací v rámci diplomové práce existují na trhu levnější alternativní zdroje energie. Teplárenství bylo do diplomové práce zařazeno z důvodu velkého podílu na trhu s teplem. Vlivem zateplování, dotačních programů, omezeným zásobám uhlí a nové legislativě bude české teplárenství v příštích letech čelit mnoha výzvám.

10.1 Teplárenství

ČR patří mezi tradiční teplárenské země s vysokým podílem centralizovaného zásobování teplem na energetickém trhu. Teplárenství zajišťuje teplo pro 1,5 milionu domácností a také významný podíl na energetickém trhu. Centrální výroby tepla v ČR je zajišťována teplárnami, výtopnami a elektrárnami. Dodávka je zajišťována síťí různě dimenzovaných horkovodů nebo parovodů. Spolu s hlavními výrobními zdroji tepla a záložními zdroji vytváří různě velké systémy CZT. Délka sítí je odhadována na 10 tis. km. Až 75 % zdrojů výroby tepla pracuje v režimu KVET. To zajišťuje efektivnější využití primárních paliv, což je v souladu s požadavky na efektivní hospodaření se zdroji energie. Účinnost KVET je podminěna využitím vyrobeného tepla, jehož spotřeba závisí na počasí a sezónnosti.

Vzhledem k přírodním podmínkám a historickému vývoji převládá v energetickém mixu hnědé uhlí, následované zemním plynem a černým uhlím. Tato skutečnost byla díky nízké ceně konkurenční výhodou, ale v posledních letech díky omezeným zásobám se hnědé uhlí stává zdrojem nejistoty. Dalším destabilizačním prvkem je regulatorní rámec vyvíjející nároky na realizaci dodatečných investic. Tyto okolnosti se naplno odrážejí ve snížení konkurenceschopnosti Českého teplárenství a snižují konkurenceschopnost tepla v porovnání s ostatními alternativami. [28]

10.2 Konkurenceschopnost

Cena, za kterou teplárenské společnosti teplotu nabízí, je klíčovým kritériem rozhodujícím o tom, jaký způsob vytápění odběratele tepla zvolí. Zákazník se na základě účtované ceny rozhoduje o tom, zda zůstane připojen k soustavě CZT nebo jestli nebude výhodnější zvolit alternativní zdroj. Energetický úřad reguluje ceny na základě cenových rozhodnutí, kde je stanoven závazný způsob kalkulace ceny tepelné energie. Zde jsou zahrnuty pouze ekonomicky oprávněné náklady a přiměřený zisk.
Charakteristickým znakem českého teplárenství je nižší cena tepla z uhlí než cena tepla z ostatních paliv. Je to dán doposud dobrou dostupností těženého uhlí v ČR.

V případě, že by teplárenská společnost nenabízela teplo za konkurenceschopnou cenu, může docházet k odpojování zákazníků. Společnosti vlastníci soustavy CZT mají ve srovnání s ostatními podnikatelskými subjekty na trhu s teplom poměrně vysoce fixní náklady. Variabilní složky nákladů jsou obvykle konkurenceschopné. Náklady na distribuci tepla mají významný vliv na cenu. Důvodem často bývají předem určené distribuční systémy ve vztahu k současné poptávce po teple nebo zastaralé potrubní systémy s velkými ztrátami. Ztráty v rozvodných sítích lze považovat absolutně za konstantní, ale při trvalém snižování spotřeby budou stále významnější. To znamená, že v případě snižování výroby nabývají fixní náklady za význam v celkové kalkulaci jednotkové ceny tepla, což způsobí její růst. V následujícím modelovém příkladu bude ukázán možný scenář růstu cen. [28]

V modelové distribuční síti zahrnující 1000 shodných domácností by docházelo k postupné realizaci úsporných opatření, tím by klesala reálná spotřeba objektů. Výchozí cena tepla je zvolena 650 Kč/GJ. Byly zvoleny fixní náklady 30 % z celkových nákladů dodavatele tepla. V grafu je uvedena závislost růstu ceny na snížení spotřeby tepla.

![Graf 31 Závislost ceny tepla na procentuálním snížení spotřeby tepla](graf31.png)

10.3 Vliv dotačních programů

Stát pomocí operačních programů vlastníkům nemovitostí přispívá na investice pro zlepšení energetické náročnosti a výměny zdroje jejich objektů. Majitelé BD obvykle využijí dotaci na zlepšení tepelně izolačních vlastností. Samozřejmě klesne spotřeba tepla na vytápění, ale pokud není vyregulovaná otopná soustava, nebude pracovat efektivně a nedosáhne se požadovaných úspor. Tento problém
je zejména u bytových domů, kde je potřebně nastavit desítky regulačních prvků, ale majitel již nechce investovat peníze do regulace ze svého.

V situaci, kdy neproběhne renovace objektů v rámci celé CZT, teplárna bude muset držet teplotu teplonošného média nejslabšího článku soustavy (dům bez jakéhokoliv opatření). V tomto případě se neušetří náklady na distribuci (provozní teplota je stejná), ale klesá objem výroby, což se projeví růstem ceny tepla. S rostoucími cenami tepla a nevyregulované soustavě nedochází k naplňení očekávaných úspor a prodlužuje se návratnost investice, což může majitele domů vést k hledání alternativního zdroje až k případnému odpojení. S každým dalším odpojeným objektem se situace zhoršuje.

Stát poskytuje dotace na výměnu zdrojů pro rodinné i obytné domy. Výměnou neekologického kotle za ekologický klesnou emise až o 90%, toto množství je podmíněno technologickou kázní uživatelů kotlů. Při stálém růstu paliv se dá předpokládat, že někteří uživatelé budou nadále pálit horší paliva a v tomto případě nebude vyřešena situace zhoršeného lokálního znečištění. V oblastech, kde by bylo možné napojení na současnou síť CZT, by tato možnost z ekologického hlediska byla výhodnější. V určitých oblastech mohl stát podporovat napojení na CZT, které je i díky novým emisním limitům ekologičtější než lokální topiště, které nepodléhají emisním normám. [29]

10.4 Vliv státu

Stát určuje a hlídá férové podmínky na trhu prostřednictvím ERÚ a Státní energetické inspekce a ovlivňuje tedy svými kroky fungování teplárenství. Prostřednictvím ASEK jsou určovány strategické plány pro rozvoj jednotlivých měst a obcí. V poslední aktualizaci není podpora CZT tak jednoznačná, přesto avizuje další rozvoj. Teplárné jsou podporovány pomocí finančních bonusů za efektivní výrobu elektriny a tepla v kombinovaném režimu, za decentralizované zdroje, nebo za výrobu tepla s využitím podílu biomasy či druhotných surovin.

Snahou státu a provozovatelů by mělo být zatrativnění CZT pro konečné spotřebitele, aby začali k němu dobrovolně přecházet ze stávajících lokalních zdrojů. Hlavními bariérami přechodu na CZT je omezená síť teplovodů, k jejíž rozšířením do nových lokalit je potřeba vysokých investic a hlavně ochota odběratelů na změnu přistoupit. Současní majitelé DZT budou o změně uvažovat jen v případě, že to pro ně bude finančně a provozně výhodné, což za současných cen v určitých lokalitách není.

Při současném trendu růstu cen paliv, jedinou možnou variantou pro udržení konkurenceschopnosti, je rozšířování rozvodných sítí. Dodavatelé tepla i odběratele by měli dostat záruku, že CZT bude nadále preferovanou variantou vytápění. Dále by mohl stát snížit DPH ze současných 15 % na 10%. Když stát poskytuje finanční prostředky na výměnu neekologických kotlů, mohl by investovat tyto prostředky do výstavby nových předávacích stanic. [30]
10.5 Dodavatelé

Dodavatelům se při snižování výroby mění poměr fixních a variabilních nákladů. Pro zvyšování konkurenceschopnosti by se dodavatelé měli snažit snížit své náklady na minimum. Fixní náklady nelze příliš měnit, proto by se měli dodavatelé soustředit na účinnost procesů v oblasti výroby a distribuce.

Stále více tepláren zavádí kogenerační výrobu, která zvyšuje účinnost přeměny paliva na energii. Většina rozvodných sítí je více než 40 let stará a je potřeba její významná renovace. Další možností je rozšiřování služeb o dodávky chladu či dalších medií pro centrální distribuci. Tyto kroky by mohly pomoci teplárnám omezit dopady na klesající výrobu tepla, ale potenciál těchto kroků není nekonečný. Po vyčerpání výše zmíněných možností má teplána poslední možnost, a to rozšiřování distribuční sítě a získání nových zákazníků. Náklady na rozšiřování sítě jsou vysoké a cena musí být konkurenceschopná lokálním zdrojům. Aktuální ceny některých tepláren nejsou příliš konkurenceschopné a spíše dochází k postupnému odpojování spotřebitelů.

Pokud by se stát zaručil a tlačil na dodavatele, že bude podporovat rozšiřování rozvodných sítí, by mohly rodičové začít s jejich rozšiřováním. Pro teplárně je příliš riskantní rozšiřovat sítě bez podpory státu. Po celé ČR se ceny tepla velmi liší, proto by měl ERÚ více tlačit na snižování cen tepla. Při splnění těchto podmínek a získání nových zákazníků by mohly teplárné získat svoji konkurenceschopnost. Je evidentní, že cena tepla bude nadále stoupat a pokud samy teplárně i stát nebude vyvíjet vhodné aktivity v oblasti, bude docházet k pomalému útlumu či ukončení výroby a její přesun do zahraničí.

10.6 Dopad na snížení konkurenceschopnosti tepláren

Tento vývoj by vedl ke značným sociálním dopadům na obyvatelstvo, nebot' většina bytového odběru je určena pro občany s nižšími příjmy žijící v panelových domech. To by mohlo velkou část obyvatel uvrhnout do energetické chudoby. Pří masivním odpojování a zvýšení by začala hromadná výstavba
lokálních kotelen na zemní plyn. Znamenalo by to velkou přestavbu infrastruktury a obrovské náklady na přestavbu.

Při náhradě CZT by došlo k enormní výstavbě lokálních kotelen, které nejsou limitovány emisními požadavky. To povede k většímu znečišťování životního prostředí. Většina tepláren pracuje v režimu KVET, která dodává nemalou část elektrické energie do sítě. Rozpad teplárenských zdrojů by mohl ohrozit elektrizační soustavu. Decentralizace nemůže být universálním řešením, ale v určitých městech může být řešením. [31]
11 Závěr

Na vytápění, chlazení a přípravu teplé vody je spotřebováno téměř 80 % energie v budovách, proto na tuto oblast cíli většina operačních programů. Z analýzy bytového fondu vzešlo, že 37 % konečné spotřeby energie představují právě budovy. V současné době je zrekonstruováno 25 % rodinných domů a 40 % bytových domů. Při renovaci celého fondu budov na doporučené hodnoty by teoretická úspora mohla činit 76,7 PJ resp. 140,1 PJ na pasivní standard. V oblasti budov je obrovský potenciál úspor, který je potřeba v příštích letech vyžít.

NZÚ patří mezi nejúspěšnější programy, i přes to je zde deficit v predikovaných úsporách ve výši 1,2 PJ. Tento program motivuje k investicím do energetických úspor. I tak tohoto programu využívá jen pětina domácností, kteří se rozhodnou pro rekonstrukci. Majitelé domů mají často obavy z náročné administrativy, proto nevyužívají dotaci. To způsobuje, že většina domů je zateplena neodborně a trpí mnoha vadami. NZÚ je nastavena tak, aby motivovala k co největším úsporám. S rostoucí tloušťkou izolace a kvalitou výplně otvorů roste dotace. Ve všech sledovaných případech dotace měla pozitivní vliv na snižování doby návratnosti. U některých budov by dotace napomohla k realizacím opatření, bez kterých by nebyly ekonomicky proveditelné.

V diplomové práci byla provedena analýza bytového sektoru, kde bylo vyhodnoceno 5 bytových a 5 rodinných domů z různých období výstavby. Na jednotlivých domech byla aplikována různá technická opatření vedoucí ke zlepšení energetické náročnosti jednotlivých budov. U vybraných budov byly zvoleny různé zdroje tepla, které byly nahrazovány efektivnějšími. Realizovaná opatření byla hodnocena z hlediska ekonomické návratnosti a z hlediska primární neobnovitelné energie. Jako nejvýhodnější zdroje se ukázaly biomasa, tepelné čerpadlo a kondenzační kotel. Tyto zdroje jsou podporovány vládou ČR a jejich výměna je podporována dotacemi. Naopak z pohledu primární neobnovitelné energie by se mělo ustupovat od vytápění elektřinou a uhlím. Dalším možným zlepšením využití primární energie je instalace termálních solárních systémů nebo fotovoltaických systémů pro výrobu elektrické energie.

U starších rodinných domů, kde se používají levná paliva jako uhlí nebo dřevo, je obtížné dosáhnout kratších dob návratnosti. I když lze dosáhnout vysokých procentuálních úspor, v tisících korun nejsou oproti investičním nákladům dostatečné, proto jsou návratnosti investic na úrovni doby životnosti opatření. Snaživost vlád ČR je výměna 400 tisíc těžkoekologických kotlů na tuhá paliva. Timto krokem si slibuje významné snížení emisí znečišťujících látek.

pro konkrétní dům a lokalitu. Z pohledu legislativy je odpojení od CZT poměrně náročnou administrativní akcí a navíc je zpoplatněno. Tímto jsou teplárny částečně chráněny před hromadným odpojováním.

Ze zjištěných informací o cenách tepla z alternativních zdrojů se bude české teplárenství dostávat do nelehké situace a bude se muset stát konkurenceschopnější. ČR patří mezi tradiční teplárenské země s vysokým podílem centralizovaného zásobování teplem na energetickém trhu. Teplárenství zprostředkovává teplo pro 1,5 milionu domácností a také zajišťuje významný podíl na energetickém trhu. Vlivem snahy o dosažení lepší energetické efektivity české ekonomiky bude množství spotřebované energie za účelem vytápění stále klesat. Cena je klíčovým kritériem rozhodujícím o konkurenceschopnosti. Cena tepelné energie z CZT neustále roste a při překročení určitého meze mohou odběratelé přizpůsobit spotřebu tepla, čímž již zmíncená situace se zhorší.

Ze strany tepláren by měla být větší snaha o uspokojování tepelných potřeb konečných zákazníků a případná odborná či finanční pomoc při realizaci úsporných opatření, tak aby nedocházelo k přechodu k alternativním zdrojům. Každá racionální investice do snižování energetické náročnosti by se měla vrátit bez pomoci dotací. Při odpojování odběratelů a snižování spotřeby tepla bude exponenciálně růst. V oblastech, kde by bylo možné napojení na soustavu CZT, by z hlediska lokálního znečištění bylo vhodné podporovat teplárny ve výstavbě nových rozvodných sítí. Vláda by měla mít jasnou představu, kam by mělo teplárenství směřovat. Decentralizace může být v určitých městech řešením, nemůže však být řešením celostátním. Ze strany tepláren by měla být větší snaha o uspokojování tepelných potřeb konečných zákazníků a případná odborná či finanční pomoc při realizaci úsporných opatření, tak aby nedocházelo k přechodu k alternativním zdrojům.

Seznam grafů

Graf 1 Vývoj konečné spotřeby energie v jednotlivých sektorech ekonomiky [32] 2
Graf 2 Rozdělení konečné spotřeby energie mezi jednotlivé sektory ekonomiky [32] 3
Graf 3 Rozdělení spotřeby energie v budovách pro bydlení [3] 5
Graf 4 Zobrazení vývoje konečné energetické náročnosti v porovnání s EU a světem [6] 7
Graf 6 Porovnání nákladů na vytápění 29
Graf 7 Rodinný dům: Typ 1- Srovnání měrné potřeby tepla a měrné primární energie 32
Graf 8 Rodinný dům: Typ 1- Přehled nákladů na vytápění a prostých dob návratnosti investic 32
Graf 9 Rodinný dům: Typ 2- Srovnání měrné potřeby tepla a měrné primární energie 35
Graf 10 Rodinný dům: Typ 2- Přehled nákladů na vytápění a prostých dob návratnosti investic 35
Graf 11 Rodinný dům: Typ 3- Srovnání měrné potřeby tepla a měrné primární energie 37
Graf 12 Rodinný dům: Typ 3- Přehled nákladů na vytápění a prostých dob návratnosti investic 37
Graf 13 Rodinný dům: Typ 4- Srovnání měrné potřeby tepla a měrné primární energie 39
Graf 14 Rodinný dům: Typ 4- Přehled nákladů na vytápění a prostých dob návratnosti investic 39
Graf 15 Rodinný dům: Typ 5- Srovnání měrné potřeby tepla a měrné primární energie 41
Graf 16 Rodinný dům: Typ 5- Přehled nákladů na vytápění a prostých dob návratnosti investic 42
Graf 17 Bytový dům: Typ 1- Srovnání měrné potřeby tepla a měrné primární energie 44
Graf 18 Bytový dům: Typ 1- Přehled nákladů na vytápění a prostých dob návratnosti investic 44
Graf 19 Bytový dům: Typ 2- Srovnání měrné potřeby tepla a měrné primární energie 46
Graf 20 Bytový dům: Typ 2- Přehled nákladů na vytápění a prostých dob návratnosti investic 46
Graf 21 Bytový dům: Typ 3- Srovnání měrné potřeby tepla a měrné primární energie 48
Graf 22 Bytový dům: Typ 3- Přehled nákladů na vytápění a prostých dob návratnosti investic 48
Graf 23 Bytový dům: Typ 4- Srovnání měrné potřeby tepla a měrné primární energie 50
Graf 24 Bytový dům: Typ 4- Přehled nákladů na vytápění a prostých dob návratnosti investic 51
Graf 25 Bytový dům: Typ 5- Srovnání měrné potřeby tepla a měrné primární energie 53
Graf 26 Bytový dům: Typ 5- Přehled nákladů na vytápění a prostých dob návratnosti investic 53
Graf 27 Bilance primární energie RD 58
Graf 28 Procentuální snížení spotřeby tepla 63
Graf 29 Celkové roční spotřeby tepla 63
Graf 30 Vývoj potřeby tepla v jednotlivých oblastech spotřeby 64
Graf 31 Závislost ceny tepla na procentuálním snížení spotřeby tepla 68
13 Seznam tabulek

Tabulka 1 Předpokládané úspory a alokace v programu NZÚ [1] ... 17
Tabulka 3 Vyhodnocení oblasti A .. 19
Tabulka 4 Úspora energie při různých stupních renovace [16] ... 21
Tabulka 5 Náklady na renovaci RD a BD na pasivní standard [16] ... 22
Tabulka 6 Náklady na renovaci RD a BD na doporučený standard [16] ... 22
Tabulka 7 Počet a vývoj součinitele prostupu tepla v jednotlivých obdobích výstavby [16] 23
Tabulka 8 Počet a plocha RD [16] ... 23
Tabulka 9 Počet a vývoj součinitele prostupu tepla v jednotlivých obdobích výstavby [16] 24
Tabulka 10 Vyhodnocení a porovnání cen jednotlivých paliv ... 29
Tabulka 11 Určení hodnot potřebných pro výpočet potřeby primární energie [19] ... 30
Tabulka 12 Rodinný dům: Typ 1- Vyhodnocení realizovaných opatření .. 31
Tabulka 13 Rodinný dům: Typ 2- Vyhodnocení realizovaných opatření .. 34
Tabulka 14 Rodinný dům: Typ 3- Vyhodnocení realizovaných opatření ... 37
Tabulka 15 Rodinný dům: Typ 4- Vyhodnocení realizovaných opatření ... 39
Tabulka 16 Rodinný dům: Typ 5- Vyhodnocení realizovaných opatření .. 41
Tabulka 17 Bytový dům: Typ 1- Vyhodnocení realizovaných opatření ... 43
Tabulka 18 Bytový dům: Typ 2- Vyhodnocení realizovaných opatření ... 46
Tabulka 19 Bytový dům: Typ 3- Vyhodnocení realizovaných opatření ... 48
Tabulka 20 Bytový dům: Typ 4- Vyhodnocení realizovaných opatření ... 50
Tabulka 21 Bytový dům: Typ 5- Vyhodnocení realizovaných opatření ... 52
Tabulka 22 Snížení spotřeby tepla při realizaci úsporných opatření .. 63
14 Seznam obrázků

Obrázek 1 Rodinný dům: Typ 1 [33] ... 31
Obrázek 2 Rodinný dům: Typ 2 [33] ... 34
Obrázek 3 Rodinný dům: Typ 3 [33] ... 36
Obrázek 4 Rodinný dům: Typ 4 [33] ... 38
Obrázek 5 Rodinný dům: Typ 5 ... 41
Obrázek 6 Bytový dům: Typ 1 [33] ... 43
Obrázek 7 Bytový dům: Typ 2 [33] ... 45
Obrázek 8 Bytový dům: Typ 3 [33] ... 47
Obrázek 9 Bytový dům: Typ 4 [33] ... 49
Obrázek 10 Bytový dům: Typ 5 [33] ... 52
15 Použitá literatura

