Master Thesis

Czech

Technical
University
in Prague

F 3 Faculty of Electrical Engineering
Department of Computers

Hybrid mobile application for project
planning system

Bc. Jan Teply

Supervisor: Mgr. Miroslav Blasko
May 2017

Ceské vysoké udeni technické v Praze
Fakulta elektrotechnicka

Katedra pocitact

ZADANi DIPLOMOVE PRACE

Student: Jan Teply

Studijni program: Otevfena informatika
Obor: Softwarové inzenyrstvi

Nazev tématu: Hybridni mobilni aplikace pro systém planovani projektu

Pokyny pro vypracovani:

Plantac je proprietarni webova aplikace pro planovani ¢asu a nakladu projektt na platformé Java EE as
vyzualizaci ve frameworku ZK. Cilem projektu je prozkoumat moznosti pro vytvoreni alternativniho
multiplatformniho uzivatelského rozhrani, které zpfistupni vybrané funkce systému Plantac na mobilnich
zafizenich i bez pfistupu k internetu.

1} Seznamte se s webovou aplikaci Plantac.

2) Analyzujte pozadavky pro rozhrani mobilni aplikace Plantac v online a offline rezimu, vytvorte technickou
specifikaci.

3) Prozkoumejte moZnosti multiplatformniho vyvoje aplikaci s vyuzitim JavaScriptovych frameworkd, JAVA
EE technologii a offline rezimu. Vytvofit porovnavaci studii studovanych frameworku.

4) Navrhnéte architekturu obecné aplikace pro béh v offline reZimu s vyuzitim cache-ovani REST-ovych
sluZeb.

5) Implementujte prototyp zaloZeny na navrZené architektufe.

6) Vysledny prototyp odtestujte.

Seznam odborné literatury:

[1] Lanthaler, Markus, and Christian Gitl. "On using JSON-LD to create evolvable RESTful services."
Proceedings of the Third International Workshop on RESTful Design. ACM, 2012.

[2] Lanthaler, Markus. "Creating 3rd generation web APIs with hydra."Proceedings of the 22nd international
conference on World Wide Web companion. International World Wide Web Conferences Steering
Committee, 2013.

[3] ReactJs framework, hitps://facebook.github.io/react/

[4] AngularJs framework, https://facebook.github.io/react/

[5] Apache Cordova -- an open-source mobile development framework, https://cordova.apache.org/

Vedouci: Mgr. Miroslav Blasko, Ph.D.
Platnost zadani do konce ;lmniho semestru 2017/2018
. Wr. Michal Péchouéek, MSc. prof. Ing. Pavel Ripka, CSc.
: e

vedouci katedry ' dékan

V Praze dne 12.9.2016

ii

Acknowledgements

I would like to thank Mgr. Miroslav
Blasko and Ing. Jindfich Hasek for guid-
ance in work on this thesis. And finally
I would like to thank the CTU in Prague
for being a very good alma mater.

iii

Declaration

I declare that this work is all my own work
and I have cited all sources I have used in
the bibliography.

Prague, May 25, 2017

Prohlasuji, ze jsem predlozenou praci
vypracoval samostatné, a ze jsem uvedl
veskerou pouzitou literaturu.

V Praze, 25. kvétna 2017

Be. Jan Teply

Abstract

Plantac is the proprietary web application
for project time and cost planning. Cur-
rently written on Java EE framework with
ZK framework for graphical user interface.
The goal of this thesis is to explore the
possibility of the creation of alternative
multi-platform user interface, that enables
chosen functions of Plantac on mobile de-
vices even without internet connection.

Keywords: web, mobile, hybrid, offline,
Angular, Progressive apps, Cordova

Supervisor: Mgr. Miroslav Blasko

iv

Abstrakt

Plantac je proprietarni webova aplikace
pro planovani ¢asu a nakladt projekta na
platformé Java EE a grafickym uzivatel-
skym rozhranim v frameworku ZK. Ci-
lem prace je prozkoumat moznosti pro vy-
tvoreni alternativniho multiplatformniho
uzivatelského rozhrani, které zpristupni
vybrané funkce systému Plantac na mobil-
nich zafizenich i bez pristupu k internetu.

Kli¢ova slova: web, mobil, hybridni,
offline, Angular, Progressive apps,
Cordova

Pteklad nazvu: Hybridni mobilni
aplikace pro systém planovani projekti

Contents

1 Introduction 1 4.2.9 Development
1.1 Goals and structure of the thesis. 43 React ...
1.1.1 Application requirents 4.3.1 One-Way data flow.........
1.1.2 Mobile application frameworks 4.3.2 VirtualDOM
CoOmparison 2] 433 JSX ...
1.1.3 JavaScript frameworks 4.4 Benchmarks..................
COMPATISON &« vt v v e 2] 4.5 Summary
1.1.4 Ofﬂir'le capabilities 5 Offline Capabilities
1.1.5 Archltecture: 51 Service Worker
1.1.6 Implementation of prototype . 5.1.1 Service worker life cycle.
2 Plantac 3 51.2Events....................
2.1 Categorization of application 5.1.3 Fetch strategies
2.2 Specification of Plantac......... 5.1.4 Other service worker features
2.2.1 Scenarios of usage 5.1.5 Sw-precache and sw-toolbox .
2.2.2 Restrictive conditions. 5l 5.1.6 Summary
2.2.3 Functional requirements 5.2 Problems with offline..........
3 Mobile development platforms 7 5.2.1 User authentication
3.1 Hybrid applications 5.2.2 User l‘ogout """"""""
3.1.1 Frameworks [7] 5.2.3 Secur.lty of locally stored data
3.1.2Plugins 9 5.2.4 Conﬂ1‘cts """""""""
3.2 Native Script, React Native 9 5.2.5 Too big cache
3.3 Progressive web applications [9 5.2.6 Cleared cache
3.4 Comparison of Native, Hybrid and 6 Architecture
Progressive apps on mobile platform 6.1 Problems addressed by
3.4.1 Native apps architecture
3.4.2 Hybrid apps oot 6.1.1 Performance...............
343 Webapps 6.1.2 Independence of client
3.4.4 Progressive web apps 6.1.3 Authentication and
3.5 Summary authorization
4 Java Script frontend frameworks 6.1.4 Offline . .. SARRERERERRRRREY
4.1 AngularJS 6.2 Proposed a?rchltecture """""
4.1.1 Directives 18] 621 Sel.rver S}de """"""""
4.1.2 Custom directives 18] 6.2.2 Client side
41.3Classes ... 18| 6.3 Summary ...
4.1.4 Services.ooviiiin.. 18] 7 Implementation of prototype
415 Filtersl 7.1 Serverside
4.2 Angular 2.................... 7T11RESTAPL................
4.2.1 Mobile first 7.2 Client side prototypes
4.2.2 Modular architecture 19 7.2.1 Web application
4.2.3 New directives............. 7.2.2 Hybrid application
424 Router 20) 7.3 Testing of prototype
4.2.5 TypeScript 8 Conclusion
4.2.6 Testing 8.1 Future work............... ...
4.2.7 Animations 21]
4.2.8 Angular Material

Bibliography
A Abbreviations
B Contents of CD

S K=

vi

Figures
2.1 Diagram of service-oriented
single-page web application.

3.1 Apache Cordova architecture. [9]
3.2 Identification of shell and conent in
app-shell architecture. [I6]

4.1 Graph showing time in millisecond
needed to add, remove and update
list of todos in each framework.[38]
4.2 Comparison of speed of framework
while manipulating big table.
Performed by methodology of Stefan

Krause [53]

5.1 Simplified diagram showing states

of Service worker life cycle.[2]
5.2 Diagram showing steps of Cache

only strategy.[I]
5.3 Diagram showing steps of Network

only strategy.[I]

5.4 Diagram showing steps of Cache,
falling back to network strategy.[I]
5.5 Diagram showing steps of Network
falling back to cache strategy.[1] ..
5.6 Diagram showing steps of Cache

then Network strategy.[1]
5.7 Diagram showing steps of Cache

and Network race strategy.[1]
5.8 Diagram showing steps of Generic

fallback strategy.[I]
6.1 Diagram showing architecture of

application.
7.1 Sreenshot of web application

prototype. il 146]
7.2 Sreenshot of hybrid mobile

application prototype.

vii

Tables

Chapter 1

Introduction

Mobile devices gain enormous popularity in past years, and it became essen-
tial for web applications and services to provide access from these devices.
Access from mobile devices may be easier and quicker and also possible in
environments where notebook or desktops are not usable. Plantac, web based
time planning and tracking application, is no exception. The application
is dedicated to being used at work by managers, developers and workers.
These users need an application that allows them to track time quickly and
easily. The previous version of Plantac is, based on user feedback, not great
at providing this. Developers of Plantac identified two possible sources of the
issue. The first problem of the previous version has been the too strict model
of the processes and structures of projects. The second source of the problem
was identified to be the slow user interface. We then decided to switch to
new technologies and concepts to create the new version of this application
that will provide a quick way of time logging, fast user interface and mobile
access to users. The application should also be capable of providing basic
functionality without the internet connection.

. 1.1 Goals and structure of the thesis

The main goal of this thesis is to examine options for development of the
multiplatform application that will provide functions of Plantac on mobile
devices and without proper internet connection. The examination should
lead to the definition of a category of applications where Plantac belongs and
proposal of an architecture that target requirement of the application and its
category.

B 1.1.1 Application requirents

The first task of this thesis is analysis and preparation of requirements
for the new version of Plantac, that will be developed under name Taglt.
Requirements of the application are described in Chapter 2.

1. Introduction

B 1.1.2 Mobile application frameworks comparison

Secondly, the thesis focuses on a comparison of approaches in development
for mobile devices. The main focus of Chapter 3 is possibilities of the usage
of web technologies, HTML, CSS and JavaScript in the development.

B 1.1.3 JavaScript frameworks comparison

JavaScript frameworks are the backbone of modern one-page web applications.
The framework gives developer scalable, reusable and maintainable way to
write code. In Chapter 4 thesis compares modern JavaScript framework that
can be used in the development of such applications. Chosen frameworks are
Angular JS, Angular2 and React.

B 1.1.4 Offline capabilities

The modern, user-friendly and engaging application can gain huge benefit from
running without the internet connection. In most essential way application
can cache its static resources in the browser and load faster, but going offline
with well written Service Worker application can also save data and request
for future use and background synchronisation. The thesis will summarise
capabilities of Service Worker and analyse problems that may occur in
Chapter 5.

B 1.1.5 Architecture

The goal of this thesis is also to design of general architecture for such appli-
cations and namely for future development of Plantac/Taglt. Architecture
based on finding from the previous research will be described in Chapter 6.

B 1.1.6 Implementation of prototype

Finally, analysed technologies and proposed architecture will be used in the
implementation of a prototype for application Taglt.

Chapter 2

Plantac

Plantac is cloud-based web application used for project planning and man-
agement. The application is also used by all workers in the company to log
their work time.

Plantac is currently developed with Java Enterprise Edition back-end and
ZK Framework frontend. The application is particularly designed to be
deployed on GlassFish Application Server with a connection to PostgreSQL
database server.

The project is now in a phase of the full rewrite with modern and more
suitable technologies and approaches. New version should rely on REST API
for communication and JavaScript Framework on the front end of the applica-
tions. The application should also provide new UI design and functions based
on feedback from the previous version of the application. New application
based on Plantac is developed under work name Taglt.

B 21 Categorization of application

Application functionally belongs to the category of office applications and
information systems that are used to help efficiently manage companies and
projects. The application also has similarities with issue tracking systems.

Similar applications on the market are e.g. Togl, TrackingTime, TimeCamp,
Timely or from more complex time planning and issue tracking application
its Jira or Redmine.

HOSTING SERVER CLIENT APPLICATION SERVER SIDE

Figure 2.1: Diagram of service-oriented single-page web application.
Technically, intended new version of Plantac/Tagit may belong to the

3

2. Plantac

category of service-oriented single-page web applications. Schema of said type
of web application can be seen on figure 2.1, Based on results of research in
this thesis client application may be switched or supplemented by a dedicated
mobile client.

. W) Specification of Plantac

This thesis mainly collects information about technologies that can be used
for the new version of Plantac that should also have a new mobile application
and also new fronted web client on the desktop. Great solution to fasten up
development could be the usage of same technology for both interfaces.

Since developers are more familiar with web technologies than native
application development, research focuses on the possibility of using HTML,
CSS, and JavaScript to create the mobile application. Same JavaScript
framework that will be chosen in this research will also be used for web
application front-end.

Mobile and also web application could benefit from offline capabilities, so
also new browser API called Service Worker is covered in this thesis.

B 2.2.1 Scenarios of usage

The application will be mostly used by users divided into three roles. Those
roles are employees, managers of projects and accountants.

B Employee

The employee uses the application to track his work time on an assigned task
and projects. Thanks to the application employee get an overview of tasks, he
should be working on and their due dates. The employee can see the amount
of time he spent working on each task. Employees can use the application to
communicate and share documents among themselves.

B Manager

A manager is in charge of a team of employees. His primary task is to manage
resources for projects efficiently. The manager uses the application in all
phases of a project. First, he creates the new project in the system, allocates
needed resources and sets estimated cost of the project. In the execution
phase of the project, with the use of the application, manager gains control
and oversight over the completion of tasks and workload of employees. The
manager can plan events and work to be done at specific times. At the end
of the project manager uses the application to generate time reports and
invoices. The manager can also use history of projects to analyse profits of
the whole company, track budget and use it as a source for estimation and
planning of future projects.

2.2. Specification of Plantac

B Accountant

The accountant uses the application to generate monthly work time reports for
each worker and issue paychecks on the end of each month. The accountant
can use the application to oversee whole company spends on running projects.

B 2.2.2 Restrictive conditions

Application, especially when used on the mobile device, should be able to
operate without the internet connection. The application will be dealing with
personal and company private data. Because of that communication between
the application and the server must be secured through SSL and HTTPs.

B 2.2.3 Functional requirements

In this section, I list examples of main functional requirements for the appli-
cation with assigned priority and sorted by user roles.

B Employee
® Application will allow the user to show a list of assigned tasks.[High]
® Application will allow the user to log work time. [High]

® Application will allow the user to start and stop time counter independent
of task. [Medium]

® Application will allow the user to sort and filter tasks and projects.
[High]

® Application will allow the user to show an overview of tasks for a day.
[High]

® Application will allow the user to show overview in the form of weekly
calendar. [High]

® Application will allow the user to plan vacations. [Low]

® Application will allow the user to set notification alerts for a task.
[Medium]

® Application will accept notifications created by the system. [High]

® Application will allow the user to show a list of news and changes in
selected tasks/projects. [Medium]

® Application will allow the user to create and save the report from the
meeting. [Low]

® Application will allow the user to download files saved with tasks/projects
on the server. [Medium]

2. Plantac

® Application will allow the user to add messages to discussions about
tasks/projects. [Medium]

B Manager

® Application will allow the user to show and edit details of owned projects
and tasks. [Low]

® Application will allow the user to show an overview of time logs in a
day/week across employees. [High]

® Application will allow the user to assign work to employees. [High]

® Application will allow the user to generated time and spending report
from the history of projects. [Medium]

Bl Accountant

® Application will allow the user to show reports of logged work time on
tasks and projects. [High]

® Application will allow the user to show reports of logged work time by
employee. [High]

Chapter 3

Mobile development platforms

In this chapter, I introduce possibilities and approaches of using web tech-
nologies in mobile application development and then compare them.

B 3.1 Hybrid applications

Hybrid mobile applications combine web applications with the native ap-
plication. Application itself is build using HTML, JavaScript, and CSS
while wrapped in native web view container and thin layer that provides
communication with platform APIs.[3]

This approach opens development of mobile applications to web developers,
which could be a great opportunity for teams that are focused on web apps
development but also wants to make a mobile application for their product.

Hybrid mobile applications are also cross-platform. Apache Cordova, for
example, offers good support for Android, 10S, Windows phone and even
desktop Windows 8-10 and Ubuntu and other not so widely used platforms
[8]. Thanks to native wrap of the application, application can be distributed
through platform specific application stores.

B 3.1.1 Frameworks

Developers can use frameworks and tool prepared for hybrid application
development.

B Apache Cordova

Cordova is the main framework used for development of hybrid mobile ap-
plications. Cordova was formerly developed by Adobe as PhoneGap but
then renamed and distributed under Apache Licence 2.0.[8]. Cordova frame-
work provides the environment for applications to run in, for Ul component
and JavaScript framework developer have to include those or use another
distribution of Cordova. For diagram of framework architecture see figure

3.1L

3. Mobile development platforms

Cordova Application

Web App CordovaPlugins

config.xml Accelerometer Geolocation

RIS Camera Media

Device Network

Contacts Storage

HTML Rendering
Engine(WebView)

Custom Plugins

Figure 3.1: Apache Cordova architecture. [9]

B Adobe PhoneGap

PhoneGap is the distribution of Apache Cordova developed by Adobe. On top
of Apache Cordova as and engine of PhoneGap, PhoneGap offers a tool for
developers to make development faster and easier. PhoneGap includes CLI
tools, Desktop and Mobile application for creating and deploying applications
during development and cloud service called PhoneGap Build that is used
for building application for multiple platforms ready for distribution on app
stores. [5]

B Ionic

The Ionic framework also offers tools for better development with Apache
Cordova. For example, Ionic Cloud offers notifications service, cloud-based
builds, which is very important in development for iOS without Mac computer,
since an iOS application can not be compiled on Windows, and analytics.

In my opinion, the main advantage of Ionic is the integration of Angular JS
and Angular 2, in Tonic 2. Tonic also includes natively looking UI components,
which will have a different style on each platform. If the developer decides
for Angular 2, as I did in following chapters of this thesis, Ionic might be the
choice for quick development of the natively looking application. Ionic was
only for Android and iOS, but Ionic 2 will also offer support for Windows
Phone 8.1.[6]

3.2. Native Script, React Native

B 3.1.2 Plugins

Plugins in Hybrid applications represents communication API between the
native layer and the web application. Plugins are enabling the application to
use resources of the platform, like camera, notifications, contacts, file system
and others.

Plugins, which can be utilised with Cordova framework or frameworks
based on Cordova can be found in Apache Cordova Plugins Registry. Plugins
are mostly open source and developed by community or companies behind
commercial distributions of Cordova.[9]

B 3.2 Native Script, React Native

Another approach in making the cross-platform mobile application using
JavaScript and web technologies is Native Script and React Native. These
frameworks use the similar approach in the creation of mobile applications.
Application logic is written with JavaScript, styles are using CSS, but instead
of HTML, these frameworks uses specific XML that is then compiled to
platform specific XML, which is rendered when the application is in use. That
means that there is no web view involved and it might solve some inconsistency
and performance issues of applications rendered in textitwebview component.
1] 2]

B 33 Progressive web applications

Progressive web applications are the new approach to the development of
web application. In core progressive web applications can use any familiar
technology which makes HTML, CSS and Java Script web applications. But
web applications adopt new technologies on top of those core and follows ten
key concepts advised by Google.[14]

® Safe — Served via HTTPS to prevent snooping and ensure content hasn’t
been tampered with.

B Progressive — Work for every user, regardless of browser choice because
they’re built with progressive enhancement as a core tenet.

® Responsive — Fit any form factor: desktop, mobile, tablet, or whatever
is next.

® Connectivity — independent — Enhanced with service workers to work
offline or on low-quality networks.

8 App-like — Feel like an app to the user with app-style interactions and
navigation because they’re built on the app shell model.

#8 Fresh — Always up-to-date thanks to the service worker update process.

9

3. Mobile development platforms

® Discoverable — Are identifiable as “applications” thanks to W3C man-
ifests and service worker registration scope allowing search engines to
find them.

B Re-engageable — Make re-engagement easy through features like push
notifications.

® Installable — Allow users to “keep” apps they find most useful on their
home screen without the hassle of an app store.

® Linkable — Easily share via URL and not require complex installation.

These concepts of the progressive web application are further explained in
following subsections.

Bl Safe

Since progressive web apps may deal with sensitive data via native APIs and
service worker, it’s advised to serve progressive web applications through
HTTPS connection.

B Progressive

Progressive enchantment is the technique used to enhance the content and
capabilities of the application as much as browser or internet connection
allows, but basic functionality or at least proper error message should be
accessible to everyone. [15]

The core of progressive web application is new browser API Service Worker
which is not jet available on all the browser, but the application should be
still able to run even without it.

Another example of new browser API is access to the camera on the
device through getUserMedia API. To ensure that more people can use this
functionality of the application, it necessary to cover all the specific prefixes
of API used by different browsers:

navigator.getMedia = (
navigator.getUserMedia | |
navigator.webkitGetUserMedia ||
navigator .mozGetUserMedia ||
navigator.msGetUserMedia

)

And if it is still unsupported user will be prompted for it.

if (!navigator.getMedia) {
displayErrorMessage ("Your browser doesn’t have support for
the navigator.getUserMedia interface.");

b

else {
// Use Camera API

10

3.3. Progressive web applications

Fallbacks and polyfills should be provided where possible. The same
principles go for the CSS and HTML code.

B Responsive

Responsive design means that user interface is rendered in a way that fits the
size of the device. The application should have a responsive design and work
on every screen size. Responsive design is very critical since progressive web
applications main aim to mobile devices. Responsive design can be achieved
using fluid grid concepts, flexible images and CSS3 media queries. [15]

B Connectivity independent

Service workers allow your app to work without internet connection.

A Service Worker a client-side proxy, written in JavaScript that puts the
developer in control of the cache and how to respond to resource requests.
By pre-caching essential resources, the application can eliminate dependence
on the network, ensuring an instant and reliable experience for your users.

Some application still heavily depend on the online dynamic content from
the servers, but even these applications can still cache UI elements and start
faster and even display some cached data from the previous interaction.

In order to use Service Worker, developer have to create JavaScript file
that will be registered as Service Worker and listen to at least two events,
install and fetch and implement basic logic. Service worker API is further
described in the following chapter.

With registered service worker, all files of the application can be saved in
the browser cache and available for the user, when he comes back. Responses
with data and variables of application can be saved in localStorage or IndexDB
where possible. [15]

Service worker is quite new technology and is not supported by all web
browsers.

B App-like

Design concept called App-shell architecture is recommended to use when
building Progressive web application UIL. This concept separates the applica-
tion into shell and content, as seen on figure 3.2

Shell is essentially all the static parts of the application needed to show
content. When is the application cached, it is necessary to cache the whole
shell on the device. Cached app shell warrants that even if there is no internet
connection and no cached dynamic content application will load at least
familiar UI and the user will not be presented with an empty screen or default
connection failure message. [16]

Content is shown within the shell. The content itself may also be cached,
but it heavily depends on the type of application.

11

3. Mobile development platforms

application shlell content
e |

Aoperell Cats are the best

When my cats look out the window at
another cat | like to pretend they're
judging and disparaging it with little

Cached shell loads i | f it Dynamic content then
ached shell loads instantly on repeat visits. S S

Figure 3.2: Identification of shell and conent in app-shell architecture. [16]

B Fresh

Application shell and cached content will always load from the local storage,
after its cached. However, browser checks if Service Worker file was changed
from the last visit and if so, the new version of Service Worker is installed

for the next page load. This new service worker can cache all resources again
and delete old cached data. [15]

B Discoverable

Usage of Web Manifest allows the developer to provide various information
about web application and additionally describe the way it should be displayed.
Web Manifest also makes application installable to the home screen and
openable in separate browser window. [15]

Web Manifest is a JSON file linked in the header of HTML document of
the index of application. [17]

"name": "Progressive Web App: Plantac",
"short_name": "Plantac",
"description": "Progressive web app prototype.",
"icons": [{
"src": "assets/icons/icon.png",
"type": "image/png",
"sizes": "72x72"
Iy

12

3.3. Progressive web applications

"src": "assets/icons/icon-large.png",
"type": "image/png",
"sizes": "144x144 256x256"

Wl
"start_url": "index.html",
"display": "standalone",

"background_color": "#fff",
"theme_color": "#fff",
"orientation": "portrait"

Shortname sets the name of application that will be displayed on the home
screen. Icons contains array of icons with different resolutions for different
devices. Display defines the way application is opened. Standalone states
that application will be opened in separate window without any browser UI.
Other options are fullscreen, minimal-iu and browser. [18]

B Re-engageable

Progressive application can make use of push notifications thanks to service
workers, Push API and Notifications API [19] . Thanks to those APIs web
application can receive messages pushed from the server. This messages
can be shown as notifications to the user and notify him about updates or
scheduled events. That makes it easier to re-engage with the user and bring
him back to the application. [15]

B Installable

Any website can be saved to the home screen on Android from Chrome using
"Add to Home screen" button in the menu. Unfortunately, it is not very
user-friendly. [21]

However, Chrome makes it possible to prompt the user with a pop-up
suggesting him to save the application to the home screen. This pop-up is not
accessible by the developer, but the browser will show pop-up automatically
if application fulfils three following requirements.

Web Manifest must be present and valid by the specification. The applica-
tion must have valid and installed Service Worker and Application must be
served over HT'TPS. [20]

If the user confirms the dialog, the application is immediately saved to the
home screen and can be comfortably accessed next time the user wants to
open it. [15]

I Linkable

Since progressive web applications are accessible to everyone with a browser,
they can be shared directly via URL. Also content and individual pages
of application should be linkable to provide shareability and possibility of
reopening application at the same place. [15]

13

3. Mobile development platforms

B Summary

Progressive web applications are not new technology or framework, but a
new approach to making web applications behave like native ones.[21] Google
makes a great effort in providing tutorials and support for this method, and
with more browser and platform support it might be future of mobile web.
Applications can also benefit from technologies mentioned above even on the
desktop, where fast and offline accessible web applications are also very useful.
Especially Service Worker for caching.[15]

B 34 Comparison of Native, Hybrid and Progressive
apps on mobile platform

This section contains summary and compassion of pros and cons of possible
approaches to development for mobile devices.

B 3.4.1 Native apps

Native apps have wide access to all features and APIs provided by operating
system and ecosystem on the mobile platform. [23] The application can
use platform specific Ul components, thus providing great integration and
consistent user experience on the platform. Native applications can be placed
in platform-specific app stores and, therefore, its installation can simply be
monetized [24].

Unfortunately, code of the native application is not, in most cases, portable
to another platform. In order to run the application user must have the
application installed on the device. Because of this, it takes longer to start
using the application, and it might be a big drawback if the user wants to
use the application just once or occasionally.

B 3.4.2 Hybrid apps

Application running and web view showing app written with web technologies,
essentially HTML, CSS, and Java Script.[3]

Hybrid mobile applications are portable and can be released on multiple
platforms. However, it depends on the accessibility of container and plug-ins
for the platform. Apache Cordova supports major desktop and mobile plat-
forms, Windows, OS X, iOS, Android, and Ubuntu. The hybrid application
can be distributed via app stores. Parts of application code can be updated
on start without reinstalling the whole application or update via platform
specific services. [§]

Access to the operating system APIs is possible, but depends on the
availability of plug-ins for the framework and also the platform, where the
application should run. [10]

Since hybrid application are wrapped in the native app and its web view,
it’s necessary to install the application on the device. [§]

14

3.5. Summary

B 3.43 Web apps

Since web apps on mobile are just Ul and performance optimised web pages,
they can be opened in browsers on every platform. However, they work only
with the internet connection. Possibilities of web apps are limited by mobile
browser APIs and performance.

B 3.4.4 Progressive web apps

Progressive web applications are web applications written in an offline-first
way using Service Worker and Manifest file to enable placement to the home
screen of Android devices. optionally [29]

The progressive web application can be installed very quickly, just by
accessing the website in the browser and clicking a button. Saving the
application makes a bookmark on the home screen and next time is the
application opened via the bookmark and in a separate window without
browser bar. Since progressive web application approach also covers caching
of application resources, next time user opens the application it loads instantly
from the cache. An application might show just placeholders or old data, but
it is much closer to the native or hybrid application feel of an app. Also, the
user does not wait while looking at the white screen until the page is loaded
from the internet. Progressive apps can even have an offline functionality.
Progressive web apps can also use push notifications and background sync
known from native applications. All communication done from service worker
is SSL/TSL secured through HTTPS protocol. [15]

Compared to native and hybrid applications, progressive web apps have
limited access to platform APIs. In Google Chrome on Android, it is Geoloca-
tion, Media Capture, Device orientation and Android Intent URI. Progressive
web applications does not have access to device filesystem and can store data
only in browser storage.[25]

In current time progressive web application works with its full potential
only on Android platform. The same approach also provides above listed
advantages, excluding installation, in desktop browser, but currently only in
Google Chrome and Mozilla Firefox.[30] Progressive web application can be
built with progressive enhancement. Therefore applications will be still useful
in browsers that do not provide needed APIs[28]

B 35 Summary

In my opinion, Taglt would benefit the most from the usage of progressive web
applications approach. Since Taglt is primarily desktop browser application,
it will benefit from most of the web applications features mentioned above.
Development of good responsive design would quickly bring all of the Taglt
functions to mobile devices. For this matter, I propose usage of Google
Material Design, which is prepared for use on mobile devices and is also very
useful in the desktop browser.

15

3. Mobile development platforms

The drawback for progressive web apps is limited support on other platforms
than Android. The application could still run in the browser, but without
caching, offline support and installations. If developer team of Taglt decides
rather to use the native app, I would suggest using the Ionic framework. Ionic
offers great Ul components, environment, and integration with Angular for
quick development of the application.

16

Chapter 4

Java Script frontend frameworks

This chapter will cover comparison of most used modern JavaScript frame-
works for front-end applications. For this comparison, I have chosen Angu-
larJS, Angular2 and React.

B a1 AngularJS

AngularJS, Angular or Angular 1 is complex JavaScript Framework for front-
end of web applications. AngularJS is created for making single-page web
applications. Development of the framework started in 2009 by Google. A
framework is accessible on the web for free under MIT license. Framework is
developed in the form of open source community project, and it’s now slowed
down due to reallocation of most of the developers to new project, which is
Angular 2, covered in next subsection.[7]

The framework includes all parts of the Model- View-Controller architecture
pattern. Model is connected via two-way data-binding to HTML template,
where is the data shown to user and user can manipulate it and interact with
the application. Data to View is delivered and controlled by the Controller,
which is connected to the template by ng-controller directive. Controller
stores data and functions, which are used by the template, in scope, which is
accessible from the template. Angular uses dirty-checking to catch changes
of data in Model and decides if View should be re-rendered with new data.
It’s suggested keeping fewer than 2000 watchers on any page/'

Example of AngularJS code[54]:

dbmonControllers.controller (’MainController’, [’$scope’, ’$timeout’,
function($scope, $timeout) {

$scope.loadCount = 0;

$scope.databases = {};

$scope.getClassName = function(query) {
var className = "elapsed short";
if (query.elapsed >= 10.0) {

"http:/ /stackoverflow.com/questions,;/ 9682092 /how-does-data-binding-work-in-
angularjs/9693933

17

4. Java Script frontend frameworks

className = "elapsed warn_long";
} else if (query.elapsed >= 1.0) {
className = "elapsed warn";
3
return "Query " + className;
i
/7C .0

)

B 4.1.1 Directives

Directives are the main part of the framework. Directives appear in View
templates in form of attributes of HTML tags, classes or even tags itself.
Angular provides many inbuilt directives, which offers easy implementation
of often used functions of the application.

Main directive is ng-app, which initialize application and establish scope.
Ng-controller directive bind Controllers to parts of View. Ng-model is used to
two-way bind variables to View templates. Ng-repeat, for example, is used to
iterate through data collections and display data in View, like a list or table.
Angular also allows developers to create their own directives to further widen
possibilities and functions of their applications.

B 4.1.2 Custom directives

Angular allows the creation of custom directives, that can be used as HTML
components, attributes, classes or comments. The developer is also able to
limit this usage for example just to be used as an attribute only. Documenta-
tion advice using directives mainly as attributes and HTML components.
With directive developer can, for example, create HTML component <per-
son>, with defined View template, attributes, style, Controller and Model.
These <person> components can be easily reused across whole application
without the need of copying or rewriting the same code. Componentsmake
templates more readable, and it also makes it easier to make changes in them.

B 4.1.3 Classes

Angular also includes inbuilt classes, that makes it easier for View to react to
changes in Model. For example, ng-dirty and ng-pristine are automatically
assigned to input fields if the user made changes to them or not. View can
react to these different states e.g. changing the colour of input.

B 4.1.4 Services

If the developer wants to share some functionality among different Controllers,
he may use Service. Service in Angular is a singleton, initialized at the moment,

18

4.2. Angular 2

when there is component depending in this Service. Angular also consists of
many built-in services, such as HTTP service used for HT'TP calls. Services
are connected and delivered to Controllers using Dependency Injection.

B 4.1.5 Filters

Filters are used to format data in View templates. For example, filter date is
used to display date in desired format or filter orderBy is used to order data
in collections. Filters take data and optionally other arguments and returns
filtered or formatted data. Filter is simply a function, but specifically, bind
to View template. Filters can also be chained one after another to make
more than one transformation of data. Angular as well allows the developer
to create custom Filters.

B a2 Angular 2

Angular 2 is a new rewrite of the previous Angular 1. Development started
at fall of the year 2014 and version 2.0.0 was released in September 2016.
Angular 2 is not backwards compatible with Angular 1, but most concepts
are very similar, and there are detailed guides how to migrate Angular 1
applications. This section covers new features of Angular 2 in comparison to
AngulalJS.

B 4.2.1 Mobile first

Angular 2.0 focuses on the mobile development of applications and mobile
web pages. Developers focus on performance problems of mobile applications
first. In most cases, the mobile platform provides limited processing power,
lower memory, and other limitations. [31]

All those limitations have been considered during Angular 2 development.
In result, it is claimed to bring better performance also on the desktop.

B 4.2.2 Modular architecture

Framework core consists only of a limited number of necessary modules, that
way developers are able to optimise the size of the application and limit
overhead of the framework in case of simple applications without the need
for certain modules. Angular 2 uses module system of ECMAScript 2015 and
is compatible with modern packaging tools like Webpack or SystemJS.[31]

Those modules are for example http or router module. Developers can
also write custom modules for Angular. Dependency injection has also been
improved.

B 4.2.3 New directives

Directives appear in Angular in three types. Component Directive creates
components with templates. Attribute Directive changes appearance or be-

19

4. Java Script frontend frameworks

haviour of element. Structural directives are used to modify DOM elements
in rendered template. Buil-in directives of this type are nglf, renders element
if conditions is fulfilled, ngSwitch, is template equivalent of switch known
from programing languages, and ngFor, is used to iterate through collections
of data. [33]

B 4.2.4 Router

One of the Angular modules is Router, that is used for work with URL and
navigation through application.[34]

Child Router enables developers to create sub-routes, for example, the
special router for user management subsection. The child router can be easily
separated from rest of the routes and used in more places across application,
or use the different base template.

Screen Activator is used to gain control over the process of navigation. For
example, if the user has some unfinished work on the page, the application
can react to it and prompt the user about it or save work automatically.
The router is built as pipeline architecture and enables developers to insert
functions to the pipeline. For example, preloading of next page or control
of authentication and authorization during navigation to subsections with
limited access.

B 4.2.5 TypeScript

Angular 2 is written in TypeScript. TypeScript is superset of Java Script
developed by Microsoft. TypeScript implement many of functions of ES20164-,
for example very useful lambda functions. Therefore, TypeScript have to be
compiled into pure Java Script that is readable by browsers. TypeScript is
recommended to be used in Angular 2 development, but it is not mandatory.
Angular 2 can by used with pure Java Script or e.g. Dart programing language.
137]
Example of Angular2 code in TypeScript[54]:

app.AppComponent = ng.core
.Component ({
selector: ’my-app’,
template:’
<td #*ngFor="#query of database.topFiveQueries"
[ngClass]="getClassName (query) ">

<div class="popover left">
<div class="popover-content">

</div>

<div class="arrow"></div>
</div>
</td>

20

4.3. React

)

//directives: [angular.NgFor]

)
.Class ({
/7C .0
getClassName: function(query) {
var className = "elapsed short";
if (query.elapsed >= 10.0) {
className = "elapsed warn_long";
} else if (query.elapsed >= 1.0) {
className = "elapsed warn";
b
return "Query " + className;
}
IbE

B 4.2.6 Testing

Angular 2 provides support for testing with Karma and Protractor.[31]

B 4.2.7 Animations

Support for complex and high-performance animations of Ul is also part of
Angular 2.[31]

B 4.2.8 Angular Material

Material Design components written in Angular 2 are also in development by
Angular 2 team. Material design is widely used concept of design presented by
Google for Android, that then expanded to all kind of design applications.[35]

B 4.2.9 Development

In the time of finishing this thesis, Angular 2 is in version 2.4, next major
version release with number 4.0.0 is planned for March 2017. This version,
skipping number 3 to avoid confusion in usage with Router 4.0, will be
compatible with Angular 2 with the possibility of breaking changes, but it
will not be ground up rewrite as version 2.0 was. [30]

. 4.3 React

React is JavaScript library dedicated to the creation of View in MVC archi-
tecture. React is developed by Facebook and community of developers under
BSD license with appended patent clause and source codes are accessible on
GitHub. View in React consists of components, which can recursively contain

21

4. Java Script frontend frameworks

other components, referenced by HTML tags. Main advantage of React is
VirtualDOM and rendering only changes to real DOM.[13]

B 4.3.1 One-Way data flow

Data is passed to View as the value of attributes in HTML tag of components.
Same way can be used to pass callback functions to components. Functions
are the only way to affect parent component because a change of data in child
component have no effect on parent component without invocation of assigned
callback function. Facebook describes this behaviour as Flux architecture.
3]

B 4.3.2 VirtualDOM

An important part of React is VirtualDOM. VirtualDOM is constructed
in memory, where the state of the View is rendered. This VirtualDOM is
compared to DOM displayed in the browser and minimal set of changes,
which are needed to be made real DOM to make it equal to VirtualDOM, is
computed. Those changes are then made to DOM. In practice it means, that
developer describes how the state of data should be rendered in View, rather
than describing changes of View. [13]

B 433 JSX

JSX is an extension of syntax for JavaScript, which enables writing of HTML
directly to JavaScript. This HTML code is translated to calls of function
from React library. There is also the possibility to develop in React without
JSX, but the syntax of the function is not much readable in development.
Therefore it is not recommended. [13]

Example of React code in JSX[54]:

var Query = React.createClass({
render: function() {

var className = "elapsed short";

if (this.props.elapsed >= 10.0) {
className = "elapsed warn_long";

b
else if (this.props.elapsed >= 1.0) {
className = "elapsed warn';

3

return (

<td className={"Query " + classNamel}>

{this.props.elapsed 7 formatElapsed(this.props.elapsed):’’}
<div className="popover left">

<div className="popover-content">{this.props.query}</div>
<div className="arrow"/>

22

4.4. Benchmarks

</div>
</td>
);
}
1))

. 4.4 Benchmarks

In this section, I will present performance benchmarks comparing the speed
of frameworks.

The first graph, see figure shows time needed to perform the action
on the list of 99 todos in simple ToDo applications. Angular performs much
better than React in this case. However, optimisation of React had a bigger
impact than optimisation of Angular 2. AngularJS stays in the middle in
both cases.

Benchmark Results
3500
3000
2500
2000

1500

1000

Milliseconds (lower is better)

500

React15.3.1 Angular 158 Angular 2 React15.3.1 Angular1.5.8 Angular 2

Figure 4.1: Graph showing time in millisecond needed to add, remove and
update list of todos in each framework.[38]

The second graph, see figure shows the comparison of a large amount
of data. Methodology, prepared by Stefan KrauseE] compares times of creation
of 1000 rows of the table, updating all of them, partial update and selection
and removal of row. In this benchmark much faster then React. In updating
rows React performs better or equally as Angular2. Removal of the element
is faster in Angular2.

This graph can also serve as a comparison with other JavaSript frameworks.

2lh‘l:tp ://www.stefankrause.net/wp/7p=2 18|

23

http://www.stefankrause.net/wp/?p=218

4. Java Script frontend frameworks

angular
angular2
aurelia 600
ember/dist 550
mithril m
ractive
react 450
vidom

mvue

|
\
150 }
\

Bl o i _1 HH

create 1000 rows update 1000 rows (hot) partial update select row remove row

Figure 4.2: Comparison of speed of framework while manipulating big table.
Performed by methodology of Stefan Krause [53]

B a5 Summary

For the development of mobile and also desktop web application I decided to
choose framework Angular 2.0. Angular 2.0 is a quality modern framework,
addressing many problems of development with ease. According to above-
mentioned benchmarks is Angular also very quick. I like the way Angular
organises code into components and services, the type system of TypeScript,
which makes the code more readable and safe and inbuild function and service.

In the time of finishing this thesis, Angular 2 is already released and used
by many developers. At the beginning of work, I had to consider a possibility
of developing in Angular 1 and then migrate to Angular 2, which is still
possible but I recommend working directly in Angular 2.

React, even if its rendering and component creation approach are easy
and innovative, is in my opinion too specialise on simplifying rendering and
description of View in MVC. In other parts of the system, the developer has
in my opinion, too much freedom and have to make most of it himself or find
another solution and integrate it with React framework. I like the simplicity
of Angular 2 solutions and that Angular 2 offers whole Model- View-Controller
architecture.

24

Chapter 5
Offline Capabilities

Even if mobile internet signal coverage got better with LTE technology, there
are still places where internet connection is not sufficient or even absolutely
unavailable. Two main examples in the Czech Republic are railway corridors
and subway. Average coverage of main railway corridors in the Czech Republic
is around 66 % [39] and is proposed to be 100 % first in 2021. The mobile
signal in Prague is now available only in stations and in test service between
stations Borislavka and Nemocnice Motol. Full coverage of Prague subway
is not proposed to any particular year, but some negotiations already took
place. [40]

Internet connection might not also be unavailable due to security policies
of companies. For example, if workers of the company, that is using Plantac,
where hired to do their work in the compound of the company, which forbids
internet access on their property, they would not be able to check their assigned
task or log their work time properly. DataVision also develops another
application to be used during inspections in factories. That application is
now also web based, and internet connection is essential, so application is
unusable during an inspection in factories with security policies forbidding
internet access.

The native and hybrid application can be programmed in a way that does
not require the internet connection for all operations. Since all the client logic
of the application is already saved on the device, the application might require
internet connection only for data fetching from and sending to the servers.
This problem can be solved by for example saving of unsuccessful request
in the device and retrying later the when application has the connection or
manual caching of data.

Web applications need internet connection from the start. Some web
application may be capable of working without the internet connection, but
after the user closes the window application never loads back without internet
access. To address this problem Service Worker was introduced in 2014[41].

Another possible solution for the offline desktop application made with
web technologies is Electron[42]. Electron uses the mixture of Chromium
and Node.js to wrap HTML, CSS, and JavaScript of the application and
runs on Windows, Mac or Linux systems. It is very similar to what hybrid
applications and Cordova do on mobile platforms.

25

5. Offline Capabilities

. 5.1 Service Worker

Service Worker is an event-driven worker script'| used to intercept the com-
munication of website or application with server and resources. Via Service
Worker, the developer can control caching of resources on a very precise level
and with high control over the process.

Service Worker gives developer ability to create his page or application in
an offline-first way or as a progressive app. That means that the web page
is accessible even offline, with cached data, or faster with bad connectivity.
For example, a simple web app managing users todos written without service
worker will show just standard “You are offline” message by the browser when
accessed without the internet connection.

However, the application is written with Service Worker can show cached
GUI, run scripts and show the user his cached todos from the previous visit.
Service worker can even register data sent to the server, like new ToDo or
change in existing ToDo, and send them when the internet connection is
available, or receive push notifications from the server.

Service worker is a progressive enhancement of the application or web page.
That way application should still run with good internet connectivity on any
device or platform it was compatible with before adding service workers. Users
with compatible browsers will get better user experience with the application.

B 5.1.1 Service worker life cycle

Service worker has its lifecycle separated from a web page. For simplified
lifecycle diagram see |5.1|Installation of the service worker starts by registration
of if in JavaScript.

if (’serviceWorker’ in navigator) {
// Path is relative to the origin, not project root.
navigator.serviceWorker.register(’/sw.js’)
.then(function(reg) {
console.log(’Registration succeeded.);
D
.catch(function(error) {
console.error(’Registration failed with ’ + error);

19N

After registration browser will start installing service worker in the back-
ground. In installation stage Service Worker is setting up an environment,
and it is the best time to cache static resources of the application or create
indexedDB scheme to store cached data. If any of operations fails service,
worker fails to install. An installation will be attempted again after the
refresh. If the installation of the Service Worker succeeded and everything is
prepared in the cache.

"https://developer.mozilla.org/en-US /docs/ Web / APT/Worker

26

5.1. Service Worker

No Service
Worker

i

Installing

Activated

el

Terminated Fetch /
Message

Figure 5.1: Simplified diagram showing states of Service worker life cycle.[2]

this.addEventListener(’install’, function(event) {
event.waitUntil(
caches.open(’v1’) .then(function(cache) {
return cache.addAll([
Ar
> /index.html’,
’/assets/css/styles.css’,
’/assets/js/script.js’,
’/assets/icons/icon.png’,
’/assets/icons/icon-large.png’,
’/manifest.json’
ID)
.then(function() {
console.log(’Success’) ;
b
b
)3

27

5. Offline Capabilities

B;

Next step is Activation. If there is no other window with same application
opened, it is time to clean previous Service Workers and cached static data.
Otherwise, service worker waits til all client windows are closed.

Activated service worker gains control over all pages under its scope. How-
ever, the first time service worker has registered it gains control of the page
after reload.

self.addEventListener (’fetch’, function(event) {
event.respondWith (
// Try the cache.
caches.match(event.request)
.then (function(response) {
// Cache, than fallback to network strategy.
return response || fetch(event.request);
b
)3
1)

Activated service worker can switch to two more states. Service worker can
be terminated, to save memory or proceeds to the state where it can handle
events, fetches, and messages. [2]

B 5.1.2 Events

Service responds to events fired during its lifecycle.

® Install

Event fired when installation starts. Service worker gains control and
can prepare the environment.

B Activate

Event fired when service worker is activating. Service worker can now,
for example, clean old cache.

B Message
Event fired when service worker gets the message from the application.
B Functional events

® Fetch

Fired when the application makes HT'TP request, navigation in scope
or resource call. Here developer can intercept the communication and
decide which strategy shout be used to fulfil the request.

® Sync

28

5.1. Service Worker

Fired when the internet connection is established, after a failed attempt
to, for example, save a todo. The application has to register for sync
event and when the sync event is fired service worker do the work. For
example, save new todos in the queue to the server.

® Push

Fired when a push notification come in from notification service. Then
service worker can for example update cache and show the notification
to the user.

B 5.1.3 Fetch strategies

There are several strategies how to react to Fetch event.

B Cache only

W

3 Cache

Figure 5.2: Diagram showing steps of Cache only strategy.[I]

Service worker goes for response to cache only, and the response goes
directly to the page, see figure Ideal for static parts of the app which are
cached in the install event handler and are determined to change only with
the new version and therefore new Service worker installation [IJ.

B Network only

Request goes straight to network and then back to the page, see figure 5.3
This strategy is ideal for operations that can’t be done offline, such as analytics
pings or request with other methods than GET[I].

B Cache, falling back to network

Service worker tries to look for a response in the cache first, if there is a
cached response, service worker returns the cached response to the app, else
service worker tries to get the response from the network and returns the
promise, see figure 5.4

29

5. Offline Capabilities

ServiceWorker Cache

Figure 5.4: Diagram showing steps of Cache, falling back to network strategy.[I]

This strategy handles a majority of the request in the offline-first app. This
strategy covers both cache only and network only strategies, so there is often
no need to cover them separately. [1]

B Network falling back to cache

In this strategy, request is send to the network. If this request fails, service
worker returns cached response, if there is any. For image representation see
Figure This strategy gives the on-line user all the new and up-to-date
data, and the offline user gets the cached version of the site. If the network
request is successful, service worker should save the response to the cache
for future use. This strategy is useful for frequently updated resources, such
as articles, messages, news feeds, etc. This method, however, does not work
properly if the user has slow or not reliable internet connection. In that case,
waiting for response from the network can take a long time and it is very
unpleasant user experience, see Cache then network for better strategy.[I]

30

5.1. Service Worker

ServiceWorker Network

Figure 5.5: Diagram showing steps of Network falling back to cache strategy. [I]

B Cache then network

/’iﬁfﬁ

- ServiceWorker
</>|°¢
‘K /

Pﬁ%&

Network

Cache

Figure 5.6: Diagram showing steps of Cache then Network strategy.[I]

This strategy is ideal for the same data as the previous one. But it requires
changes on the side of the application not only in the service worker. The
web application has to create two requests.

One for fresh data from the network and one straight to the cache for
the older cached version of data, see figure The application will show
user response from the cache, which, if i exists, probably responds first.
Then, when the application gets the response from the network, the view is
refreshed with new data or a new message is for example added to the list.
This behaviour depends on the type of application.

31

5. Offline Capabilities

Service worker in this strategy sends request to the network, then updates
the cache with the response and return response to the application. [1]

B Cache and Network race

Network

Figure 5.7: Diagram showing steps of Cache and Network race strategy.[I]

In this strategy service worker tries to get the response both the cache and
the network, then serves the app the faster response, see figure It can be
used on devices where it is faster to download something than find it on the
hard drive. [I]

B Generic fallback

ServiceWorker Network

Figure 5.8: Diagram showing steps of Generic fallback strategy. [I]

32

5.1. Service Worker

If either cache or network fails to serve response, service worker may provide
some generic response such as default avatar or some “No connection” error
page, see figure 5.8. If the request is for example POST with a message to
be send, service worker can save the request to indexedDB and send it later
when the connection is available, and for now respond with code that lets
page know what happened.[1]

B 5.1.4 Other service worker features

B Background Synchronization

Background synchronisation is a very useful feature of Service Worker. Sync
events the only when there is an available internet connection, and if actions
fail, it retries when there is a connection or after some time determined by
exponential back-off. This is useful for non-urgent updates, for example,
social media timeline or news feed. [44]

I Push Notification

Service worker can also be used to handle Push Notifications and show them to
the user. This feature relies on PushManager implementation in the browser,
which is now available only in Firefox, Chrome, and Chrome for Android
51.[45]

B 5.1.5 Sw-precache and sw-toolbox

Sw-precache? is the module for generating service worker in the build script,
for example, written with gulp. As part of the configuration, sw-precache
gets a list of URLs to static resources of the application. This list can also
be in the form of patterns that are matched to files using glob’| generates a
hash of files and stores this information in generated service worker. During
installation phase of service worker life cycle, files from the list are cached in
Cache Storage of the browser. Generated service worker also includes logic
that serves cached resources.

Sw-toolbox| is the library of useful functions and implemented caching
strategies for simple development of custom service workers.

Sw-precache and sw-toolbox can be used together, thanks to the runtime-
Caching option in the configuration of sw-precache. In runtimeCaching option
developer can specify urlPathern, handler, that is a name of strategy that will
be used, and optionally also options for cache, maximum of entries and name.
Sw-precache then generates calls for sw-toolbox that are used to process calls
for configured URLs.

https://github.com/GoogleChrome/sw-precache
Shttps://github.com /isaacs /node-glob
“https://github.com/CoogleChrome/sw-toolbox

33

5. Offline Capabilities

B 5.1.6 Summary

Service Worker is very useful new browser API. Developer gains full control
over communication of the application and especially over caching of requests
and static application resources. The application can be easily made in the
offline first way thanks to service worker.

Service workers are now supported in a limited number of browsers, but
their absence should not have any impact on usage of the application in
standard online mode. However, application and its users will benefit from
service worker in supported browsers.

With the usage of tools like sw-precache and sw-toolbox implementation
of service, worker can also be very quick.

. 5.2 Problems with offline

Making application run offline may bring problems with security and storage
persistence. [43]

B 5.2.1 User authentication

Standard authentication of user credentials can not happen without the
internet connection. Credential have to be checked against database entries.
However, we might create local copy of user account stored in LocalStorage
and check credentials locally if internet connection is not available.[47] This
solution might also create weak spot since a possible attacker can see how is
the password hash generated and password hash is stored locally [46].

B 5.2.2 User logout

If user logs out of the application, when the internet connection is unavailable
or data synchronisation is not done yet, all of the unsynchronized data might
be lost. The suggested solution is to prompt the user about it and let him
choose if he wants to log out and delete unsynchronized data. The application
could also store data in localStorage or IndexedDB even if the user is not
logged in but that data might not be secure and still could be lost if the user
never sings in again.

B 5.2.3 Security of locally stored data
By default, data stored in browser’s localStorage or indexedDB are not secured.
User or admin with privileges to the machine can access localStorage or

indexedDB and read, write or modify data stored there. Also, any JavaScript
served from the same origin can access data in storage.[4§]

34

5.2. Problems with offline

B 5.2.4 Conflicts

If the user works offline in collaboration with other users on same data,
conflicts may occur, and the application has to address them in some way. A
possible solution is, for example, informing the user about changes, which
have been done to data since the user cached them, and let him review
changed data if he wants to.

Another problem might be submitting same data twice. There can be
situations where these duplicates can be easily detected, e.g. in Plantac
creation of the same task with the same name, but there can also be situations
where detection is not possible. For example in Plantac user can log time
twice with same data in fields and it is correct. He just worked on the same
tasks in the morning and the evening but did not specify the start and finish
time while submitting the work time. However, there can be the situation
where the user submits time through mobile application in offline mode,
and later on the desktop, he may submit the same time again assuming the
submission from application failed. But the mobile application is not yet
synced due to some internet connection problems, and it submits the work
time to the server when mobile gains internet connection. Unfortunately, this
situation is hard to detect programmatically.

B 5.2.5 Too big cache

Offline applications have to store all the data in cache, localStorage or
indexedDB. Their stores have limited size. For example storage size in
Chrome is limited to 6% of free disc space[55]. The developer must have this
limitation in mind and cache only data needed to run the application and
clean old cache entries. Quota Management API can be used to check the
available storage space.

B 5.2.6 Cleared cache

By default data saved the in the cache, localStorage or IndexedDB can be

cleared by browser or user. In that case, all unsynchronized data will be lost.

The application is not informed about this action by the browser. [52]
However, storage can be set to two types:

B Persistent

Persistent data is data that is intended to be kept around for a long
time. This type will only be evicted if the user chooses to (for example
in Firefox there is a "clear storage" button on the page info dialog for
each page.)[50]

In Firefox developer can choose to save data to storage as persistent.
Chrome, since 55, have its own policy and sets storage to persistent if
any of following conditions is true.[51]

The site is bookmarked (and the user has 5 or fewer bookmarks)

35

5. Offline Capabilities

The site has high site engagement
The site has been added to home screen

The site has push notifications enabled
Persistent storage can be still cleared by the user.

® Temporary or best-effort

Temporary marked data is data that doesn’t need to persist for such
long time. This storage will be evicted under a least recently used policy
when storage limits are reached.

36

Chapter 6

Architecture

In this section, I will cover suggestions for making the application using web
technologies that can be used on mobile phones and in offline mode. First,
I will describe problems addressed by architecture and afterwards describe
server and client side in detail.

Architecture is intended for office applications or information systems.
With the aim to deliver fast and comfort interface for users of applications.

B 6.1 Problems addressed by architecture

Architecture is designed to address common problems and specific problems
derived from feedback to the previous version of the Plantac.

B 6.1.1 Performance

Previous version of Plantac running Java Enterprise Edition with ZK Frame-
work had problems with performance. Users reported inconvenience in usage
while they have to wait for long loading times. Proposed solution of this
problem is the usage of the JavaScript framework to create one-page client
side application. Application will communicate with server REST API over
HTTPs protocol. Transferred data will be compressed to speed up perfor-
mance further. For the JavaScript application I recommend usage of Angular
2 framework, but same architecture can be used with other JavaScript frame-
works as well.

B 6.1.2 Independence of client

Client and Server side of the application should be very loosely coupled, to
provide developers with the possibility of making multiple client applications,
e.g. separated desktop and mobile application or integration with other
applications. Independence will be achieved by separation of client and server

side code, which will in this proposed architecture communicate through
REST API over HTTPs.

37

6. Architecture

B 6.1.3 Authentication and authorization

Since communication between server and client side is stateless, server stores
no session cookie or session ID. Therefore we need another way to validate
authorization of that user. I propose usage of Json Web Token that is sent
alongside every request from the client to server and stored in the memory of
application or browser. Json Wen Token token which consists of three parts,
header, payload, and signature. The header contains information about token
itself, type of the token itself and the algorithm that is applied for hashing.
The second part, Payload, holds the claims. Claims are statements about
the user and additional meta-data about the token. For example expiration
date, username or roles. Both header and payload is encoded with Base64|ﬂ
Signature is created by hashing Base64 encoded header and payload together
with the secret that is stored on the server. Signature is used to verify that
the token is authentic and was not changed along the way. These three parts
are concatenated to one string separated by ".". Json Web Token is sent to
the server with every request in authentication header of HTTP requestﬁ

B 6.1.4 Offline

Application based on this architecture should be capable of providing client
functionality without an internet connection. This will be achieved using
Service Worker, REST API and following Progressive web applications rec-
ommendations. New proposed architecture also have the client more loosely
coupled with the server than the current solution used in Plantac, where
client side does work without an internet connection at all.

B 6.2 Proposed architecture

\ HTTPs
SERVICE [SOM SERVER SIDE
WDRKER EST A

=LA WED TOEST

Ijlﬁaa/\.

CLIENT SIDE
Angular 2 jOCJQ

DATABASE

Figure 6.1: Diagram showing architecture of application.

Yhttps:/ /tools.ietf.org/html/rfc4648
*https:/ /jwt.io/introduction/

38

6.2. Proposed architecture

B 6.2.1 Server side

Developers can choose from many frameworks and programming languages for
implementation the server side. For the implementation of Taglt back-end, we
have chosen the standard edition of Java with custom picked set of libraries.
Primarily Jersey servlets serving REST API, jOOQ library?®| for data layer
and Java JWTH,

The main feature of the server, in this context, is REST API for the client.
Resources, provided in the RESTful way, can be easily cached and stored for
offline use.

B 6.2.2 Client side

The user of application will interact with the client side of architecture.
Client side application will communicate with server side REST API to
access resources. Based on previous research I suggest client side application
made with Angular 2 framework and following Progressive web applications
concepts.

B Java Script

The client side of application should be developed using modern JavaScript
Framework for one-page applications, for example, as is suggested in previous
sections, Angular 2.

B Progressive Web Application

I strongly suggest usage of Progressive web application approach. Progressive
web application makes great use of modern browser API such as Service
Worker. Since application developed by this suggested architecture should
have offline capabilities, Service Worker and caching are essential. The
progressive web application also includes App-shell architecture of client
application. That means that client application should be divided to shell,
which is the static part of the application, and dynamic content accessed
from the server side. This way shell can be cached in Service Worker and
loaded even if the application is offline.

B User interface

The application should work well on mobile devices, therefore it should
provide special Ul optimised for the mobile device or fully responsive UL
Great way to achieve this is the usage of Google Material Design or Bootstrap
componen‘us5 A

3https://www.jooq.org/
*https://github.com /auth0/java-jwt
Shttp://getbootstrap.com/

39

6. Architecture

N 63 Summary

Application developed based on this type of architecture will benefit from
statelessness of REST API by increased performance thanks to the scalability
of server-side of the system. Single page application written with Angular 2
will have better performance than the currently used solution.

Con of the proposed architecture might be the usage of new technologies
that are not implemented in all of the browsers or platforms. For example
Service Worker is currently unavailable in Edge and Safari browsers [1].

40

Chapter 7

Implementation of prototype

To further investigate features of Angular 2 mentioned above, Progressive Web
Apps and Hybrid mobile applications two implementations of the prototype
were made.

Implemented prototype is capable of user authentication and management
of tracked work time in Plantac.

. 7.1 Server side

Server side, which is used with the prototype of application, runs on Jetty
server with Jersey servlets serving REST API. Data sent from and to API in
the form of JSON is parsed by Jackson to Java Objects. Persistence layer of
the application is provided by JOOQ library communication with PostgreSQL
database.

For user authentication application uses JSON Web Tokens, that are sent
alongside request.

B 7.1.1 REST API

The client side of application communicates with the server through REST
API with following resources.

B User

URL: /user/auth

Method: POST

Decsription: Call to this resource authenticate provided credentials and
return JSON Web Token or 401 response code.

Data:

Request:
{
tenant : [stringl, //Name of tenant, for example company,
that is used as name of database scheme
username : [string],
password : [string]

41

7. Implementation of prototype

+
Response:
{
token : [string], //JWT token encoded in base64
}
B Tag

Tags in Plantac(Taglt) are used to specify what kind of work time is logged
and to what it belongs. Every entity (Companies, Users, Projects, Tasks,
etc.) will have its unique tag.

URL: /[tag/

Method: GET

Decsription: This resource provides list of tags. Tags can be filtered by
query or category and paginated using skip and take parameters. By default
resource returns 5 tags for each available category.

Parameters:

Request:
query: [string] //search query for tags
category: [string] //category of tags
skip: [number]
take: [number]

Data:

Response:
L
id: [string],
name: [string],
category: [string],
childtags: [Tagl[l] //Tags assigned to tag. For example
company tag assigned to project.

}

B Timelog

TimeLog represents logged work time.
Base URL: /log/
URL: /log/:id
Method: GET
Description: This resource return one TimeLog with provided id.
Data:

Response:

{

42

7.1. Server side

id: [string],

message: [string],

teamMember: [string],//Id of user this time is assigned to

date: [string], //YYYY-MM-DD date of work

start: [string], //HH:mm time of start of work

end: [string], //HH:mm time of end of work

duration: [number], //Duration of work in minutes

event: [string], //Optional type of event instead of work.
For example vacation or illness

tags: [Tagl[l]l, //Tags assigned to timelog.
For example tag of project and task.

}

URL: /log/mine

Method: GET

Description: This resource return time assigned to authenticated user.
Timelog can be filted by date internal and paginated with skip and take
parameters

Parameters:

Request:
from: [string] //YYYY-MM-DD date
to: [string] //YYYY-MM-DD date
skip: [number]
take: [number]

Data:

Response:

{

id: [string],

message: [string],

teamMember: [string]l,//Id of user this time is assigned to

date: [stringl, //YYYY-MM-DD date of work

start: [string], //HH:mm time of start of work

end: [string], //HH:mm time of end of work

duration: [number], //Duration of work in minutes

event: [string], //Optional type of event instead of work.
For example vacation or illness

tags: [Tagl[l] //Tags assigned to timelog.
For example tag of project and task.

}

..

URL: /log/mine

Method: POST

Description: Creation of new TimeLog
Data:

43

7. Implementation of prototype

Request:

{

message: [string],

date: [stringl, //YYYY-MM-DD date of work

start: [stringl,//HH:mm time of start of work -optional
//Either start-end or duration is needed

end: [string], //HH:mm time of end of work -optional

duration: [number],//Duration of work in minutes -optional

event: [string], //Optional type of event instead of work.
For example vacation or illness -optional

tagids: [number] //List of ids of Tags assigned to timelog.
For example tag of project and task.

}

Response:

//Newly created TimeLog

{

id: [string],

message: [string],

teamMember: [string]l,//Id of user this time is assigned to

date: [stringl, //YYYY-MM-DD date of work

start: [string], //HH:mm time of start of work

end: [string]l, //HH:mm time of end of work

duration: [number], //Duration of work in minutes

event: [string], //Optional type of event instead of work.
For example vacation or illness

tags: [Tagl]l] //Tags assigned to timelog.
For example tag of project and task.

}

URL: /log/mine

Method: PUT

Decsription: Update of new TimeLog.
Data:

Request:

{

id: [string],

message: [string],

date: [stringl, //YYYY-MM-DD date of work

start: [string], //HH:mm time of start of work -optional
//Either start-end or duration is needed

end: [string], //HH:mm time of end of work -optional

duration: [number],//Duration of work in minutes -optional

event: [string], //Optional type of event instead of work.
For example vacation or illness -optional

tagids: [number],//List of ids of Tags assigned to timelog.

44

7.2. Client side prototypes

For example tag of project and task.

Response:

//Newly created TimeLog

{

id: [string],

message: [string],

teamMember: [stringl,//Id of user this time is assigned to

date: [string], //YYYY-MM-DD date of work

start: [string], //HH:mm time of start of work

end: [string]l, //HH:mm time of end of work

duration: [number], //Duration of work in minutes

event: [stringl, //Optional type of event instead of work.
For example vacation or illness

tags: [Tagll], //Tags assigned to timelog.
For example tag of project and task.

3

URL: /log/:id
Method: DELETE
Decsription: Deletes time log with specified id.

. 7.2 Client side prototypes

Two client side applications for research purposes were implemented. One
as the web application is Angular 2 and second is the Hybrid application
written in Angular 2 with Ionic 2 framework.

Bl 7.2.1 Web application

The web application is written in Angular 2 framework with the usage of
Angular Command Line Interface. Application is using Angular Material 2
components for User Interface. The structure of the application is based on
Angular 2 style guide.

The prototype allows users to create and edit their time logs and shows
them in simple one day view and whole week view, as shown on figure [7.1.
Users can also generate reports of logged time filtered by tags and team
members.

Service worker was also implemented as part of the prototype to test
possibilities of offline usage. /textitService Worker saves the application
shell and all request for tags and time logs into the cache. Service worker
also enables time logging without the internet connection by saving POST
requests in InderedDB and syncing when the internet connection is available.

"https://github.com/angular/material2

45

7. Implementation of prototype

-
#
® P Friday, 12. May 2017 o
1o830m N
& Today < >
Wednesday, 17. May 2017
activity
Log your activity @QG =
12h 20m
B o1t mornemerts s g vt comporect 13- Q)

Figure 7.1: Sreenshot of web application prototype.

B 7.2.2 Hybrid application

The hybrid application is developed in Ionic 2 framework. Since the applica-
tion is also written in Angular 2, the application can contain the majority of
the same code as the Web application. The mobile application also enables
the user to log their work time and shows time logs saved for chosen date, as
shown on figure

B 73 Testing of prototype

The prototypes were tested during development using manual tests following
common scenarios of user actions. For example, logging in with different sets
of credentials, logging time or showing reports of work time in past days. I
executed These tests against prototype of back-end server. Similar tests were
also run by developers of the server.

The prototype also contains set of unit test written in Jasmineﬂ with
Angular testing utilities[32] which create the test environment for Angular 2
application under test. Jasmine is behavior-driven development framework
with clean and obvious syntax. Angular testing utilities are used to specify
the environment in which tested component or whole application is running.
For example services or other parts of the application can be mocked or
replaced with studs, so tests will not interact with production servers or
services can be modified to return predefined data just for testing purposes.

Test written in Jasmine are driven by Karma test runner Pl Karma is a
testing tool that opens defined browser windows and runs the testing code.
Karma then shows the results of the tests and is also capable of watching for
changes is test code files and runs again with ever change.

https:/ /jasmine.github.io/
3https://karma-runner.github.io/1.0/

46

7.3. Testing of prototype

= Taglt Daily & Offline

o
Tuesday, January 24th 2017
7:20 reported today
@ 1:50
Programing
B DATATHERR spel s

RO/ G B e Acuaticn Ko kocteola inolace

o 530
Programing
M DATATHER spalira

RO/ GXET s A stica/ K koeteola inslace

Figure 7.2: Sreenshot of hybrid mobile application prototype.

To track test code coverage, I used Istanbul [to generate reports showing
a statistic of every component in the application.

The application has prepared the environment for Protractor | tests. The
Protractor is end-to-end test framework for Angular. Protractor lets developer
write Ul test in the way a user would interact with the application. Protractor
runs these test in real browser. Protractor uses Jasmine framework for test
description.

“https://istanbul.js.org/
Shttp://www.protractortest.org/

47

48

Chapter 8

Conclusion

The main goal of this thesis was to examine the option of the development
of multiplatform client application and propose the architecture for the new
version of Plantac time planning and logging application, that is currently
called Taglt.

To choose best technologies to fulfill requirements, I compared and studied
possibilities of cross-platform mobile development with emphasis on the use
of web technologies, CSS, HTML and JavaScript. Based on outcomes of this
comparison I suggest usage of Progressive web applications principles to make
the application that will be accessible from mobile platforms.

After that, I made a comparison study of modern JavaScript frameworks
Angular JS, Angular 2 and React JS. I have chosen Angular 2 to main front-
end framework used in further development of the application. Angular 2 is
based on my analysis best from studied frameworks mainly for its simplicity
and coverage of all parts of Model- View-Controller architecture.

Since one of the requirements of the application is to be operational in
situations without the internet connection, I examined new browser API
called Service Worker, which is prepared for those situations.

In hand with offline capabilities of the application, several problems may
appear. In section 5.2 I listed possible problems and discussed potential
solutions.

Based on previous research and requirements of the application I propose
architecture described in section 6 to be used in the development of the
application. Architecture is also applicable to a range of similar applications
with analogous requirements and functionality.

To further examine compared technologies I have developed two prototypes
of the client-side application based on proposed architecture and specification
of Platac/Taglt. The first prototype is a hybrid mobile application developed
with the use of Ionic 2 framework and Angular 2 framework. The second
prototype is web application developed following Progressive web applications
principles also written in JavaScript and Angular 2. Both applications allow
the user to sign in and log work time and are capable of limited functionality
without the internet connection. These prototypes were tested manually and
through unit test written in Jasmine.

49

8. Conclusion

. 8.1 Future work

Future development of Plantac and Taglt will be based on proposed architec-
ture and chosen technologies. Web application prototype will be extended to
cover more requirements and deployed for usage and beta testing in Datavision
company.

Next step process of development is user study, user-centered design and
usability testing. This phase will ensure good user experience with the new
version of the application. Part of this will also be the definition of the new
concept of processes and structures of projects that will make time logging
and planning easier.

50

Bibliography

[1] ARCHIBALD, Jake. The Offline Cookbook. In: Blog - JakeArchibald.com
[online]. 2014 [cit. 2016-12-06]. Available at: https://jakearchibald,
|com/2014/0ffline-cookbook/|

[2] GAUNT, Matt. Service Workers: an Introduction In: Web, Google
Developers [online]. 2016 [cit. 2016-12-20]. Available at:
|//developers.google.com/web/fundamentals/getting-started/ |
primers/service-workers|

[3] KORF, Mario and OKSMAN Eugene. Native, HTML5, or Hybrid:
Understanding Your Mobile Application Development Options In:
Salesforce developers [online]. 2016 [cit. 2016-12-20]. Available at:
|//developer.salesforce.com/page/Native, HTML5, or_Hybrid: |
| Understanding_Your_Mobile_Application_Development_Options|

[4] BRISTOWE, John. What is a Hybrid Mobile App? In: Telerik Developer
Network [online]. 2016 [cit. 2016-12-20]. Available at: http://developer)
telerik.com/featured/what-is-a-hybrid-mobile-app/|

[5] PhoneGap. [cit. 2016-12-20]. Available at:http://phonegap.com

[6] Ionic Framework. [cit. 2016-12-20]. Available at:
//ionicframework.]

[7) AngularJS - Superheroic Java Script MVW Framework . [cit. 2016-10-15].
Available at: https://angularjs.org

[8] Apache Cordova. [cit. 2016-12-20]. Available at: https://cordova,

[9] Archytectural overview of Cordova platform in Apache Cordova. [cit. 2016-
12-20]. Available at: |http://cordova.apache.org/docs/en/latest/
guide/overview/index.html|

[10] Diwakar, Sapan. Titanium wvs Phonegap vs Native appli-
cation development In: Sapan Diwakar [online]. 2012 [cit.
2016-12-20]. Available at: http://www.sapandiwakar.in/
lapi-research-study-iphone-and-android-applications/|

o1

https://jakearchibald.com/2014/offline-cookbook/
https://jakearchibald.com/2014/offline-cookbook/
https://developers.google.com/web/fundamentals/getting-started/primers/service-workers
https://developers.google.com/web/fundamentals/getting-started/primers/service-workers
https://developers.google.com/web/fundamentals/getting-started/primers/service-workers
https://developer.salesforce.com/page/Native,_HTML5,_or_Hybrid:_Understanding_Your_Mobile_Application_Development_Options
https://developer.salesforce.com/page/Native,_HTML5,_or_Hybrid:_Understanding_Your_Mobile_Application_Development_Options
https://developer.salesforce.com/page/Native,_HTML5,_or_Hybrid:_Understanding_Your_Mobile_Application_Development_Options
http://developer.telerik.com/featured/what-is-a-hybrid-mobile-app/
http://developer.telerik.com/featured/what-is-a-hybrid-mobile-app/
 http://phonegap.com
http://ionicframework.
http://ionicframework.
https://angularjs.org
https://cordova.apache.org/
https://cordova.apache.org/
http://cordova.apache.org/docs/en/latest/guide/overview/index.html
http://cordova.apache.org/docs/en/latest/guide/overview/index.html
http://www.sapandiwakar.in/api-research-study-iphone-and-android-applications/
http://www.sapandiwakar.in/api-research-study-iphone-and-android-applications/

Bibliography

[11] About NativeScript Open Source Cross Plaform Framework in Native-
Script. [cit. 2016-12-20]. Available at: https://www.nativescript.org/
labout!

[12] ReactNative. [cit. 2016-12-20]. Available at: https://facebook.github,
|io/react-native/|

[13] React. [cit. 2016-12-20]. Available at: https://facebook.github.io/

[14] LEPAGE, Pete. Your First Progressive Web App in Google Developers.
2017 [cit. 2017-1-2]. Available at: https://developers.google.com/
web/fundamentals/getting-started/codelabs/your-first-pwapp/|

[15] MARKOV, Danny. Fverything You Should Know About
Progressive Web Apps in Tutorialzine. 2015 [cit. 2016-
12-25]. Available at: http://tutorialzine.com/2016/09/
leverything-you-should-know-about-progressive-web-apps/|

[16] OSMANI, Addy and GAUNT, Matt. Instant Loading Web Apps with
an Application Shell Architecture in Google Developers. 2017 [cit. 2017-1-
2]. Available at: https://developers.google.com/web/updates/2015/
11/app-shell

[17] CACERES Marcos and CHRISTIANSEN, Kenneth Rohde and LAM-
OURI, Mounir and KOSTIAINEN, Anssi . Web App Manifest in W3C.
2017 [cit. 2017-1-5]. Available at: https://w3c.github.io/manifest/|

[18] Web App Manifest in Mozilla Developer Network. 2016 [cit. 2017-1-
5]. Available at: https://developer.mozilla.org/en-US/docs/Web/
Manifestl

[19] Push API in Mozilla Developer Network. 2016 [cit. 2017-1-5]. Available
at: https://developer.mozilla.org/en-US/docs/Web/API/Push_API]

[20] KINLAN, Paul. Installable Web Apps with the Web App Manifest
in Chrome for Android in Google Developers. 2014 [cit. 2017-1-
2]. Available at: |https://developers.google.com/web/updates/
[2014/11/Support-for-installable-web-apps-with-webapp*/ |
tmanifest-in-chrome-38-for-Android

[21] LYNCH, Max. What are Progressive Web Apps? in The Official
Ionic Blog. 2016 [cit. 2017-1-2]. Available at: http://blog.ionic.io/
what-is-a-progressive-web-app/|

[22] WASSERMAN, Anthony Software engineering issues for mobile applica-
tion development in Proceedings of the FSE/SDP workshop on Future of
software engineering research, pp. 397-400. 2010 [cit. 2016-12-20].

[23] Native vs Hybrid vs Web: A comparison study in Cabot technol-
ogy. [cit. 2017-1-2]. Available at: https://www.cabotsolutions.com/
mative-vs-hybrid-vs-web-comparison-study/

52

https://www.nativescript.org/about
https://www.nativescript.org/about
https://facebook.github.io/react-native/
https://facebook.github.io/react-native/
https://facebook.github.io/react/
https://facebook.github.io/react/
https://developers.google.com/web/fundamentals/getting-started/codelabs/your-first-pwapp/
https://developers.google.com/web/fundamentals/getting-started/codelabs/your-first-pwapp/
http://tutorialzine.com/2016/09/everything-you-should-know-about-progressive-web-apps/
http://tutorialzine.com/2016/09/everything-you-should-know-about-progressive-web-apps/
https://developers.google.com/web/updates/2015/11/app-shell
https://developers.google.com/web/updates/2015/11/app-shell
https://w3c.github.io/manifest/
https://developer.mozilla.org/en-US/docs/Web/Manifest
https://developer.mozilla.org/en-US/docs/Web/Manifest
https://developer.mozilla.org/en-US/docs/Web/API/Push_API
https://developers.google.com/web/updates/2014/11/Support-for-installable-web-apps-with-webapp*/-manifest-in-chrome-38-for-Android
https://developers.google.com/web/updates/2014/11/Support-for-installable-web-apps-with-webapp*/-manifest-in-chrome-38-for-Android
https://developers.google.com/web/updates/2014/11/Support-for-installable-web-apps-with-webapp*/-manifest-in-chrome-38-for-Android
http://blog.ionic.io/what-is-a-progressive-web-app/
http://blog.ionic.io/what-is-a-progressive-web-app/
https://www.cabotsolutions.com/native-vs-hybrid-vs-web-comparison-study/
https://www.cabotsolutions.com/native-vs-hybrid-vs-web-comparison-study/

Bibliography

[24] VISWANATHAN, Priya. Native Apps vs. Web Apps — What is the
Better Choice? in Lifewire. 2016 [cit. 2017-1-2]. Available at:
|//www.lifewire.com/native-apps-vs-web-apps-2373133

[25] ASAY, Matt. Can We Please Stop Fighting The Native vs. Web App
Wars? in Readwrite. 2015 [cit. 2017-1-2]. Available at: http://readwritel
lcom/2015/02/27/native-vs-web-apps-ceasefire/|

[26] DASCALESCU, Dan. Why “Progressive Web Apps wvs. na-
tive” is the wrong question to ask? in Medium. 2016 [cit.
2017-1-2]. Available at: https://medium.com/dev-channel/
why-progressive-web-apps-vs-native-is-the-wrong-question*/ |
to-ask- addcbb#.9951w725t

[27) WILLIS, Justin. Service Workers: Revolution Against the Network! in
The Official Ionic Blog. 2016 [cit. 2017-1-2]. Available at: http://blog

lionic.io/service-workers-revolution-against-the-network/|

[28] RUSSEL, Alex. Progressive Web Apps: Escaping Tabs With-
out Losing Our Soul in Infrequently Noted. 2015 [cit. 2017-
1-2]. Available at: https://infrequently.org/2015/06/
progressive-apps-escaping-tabs-without-losing-our-soul/|

[29] RUSSEL, Alex. What, FEzactly, Makes Something A Pro-
gressive Web App? in Infrequently Noted. 2015 [cit. 2017-
1-2]. Available at: https://infrequently.org/2016/09/
what-exactly-makes-something-a-progressive-web-app/|

[30) OSMANI, Andy. Getting started with Progressive Web Apps in AndyOs-
mani.com. 2015 [cit. 2017-1-2]. Available at: https://addyosmani . com/
blog/getting-started-with-progressive-web-apps/|

[31] PANDA, Preetish What’s New in AngularJS 2.0 in Sitepoint.
2015 [cit. 2016-10-2]. Available at: |https://www.sitepoint.com/
whats-new-in-angularjs-2|

[32] Testing - ts - Guide in Angular.io. [cit. 2017-6-2]. Available at:
//angular.io/docs/ts/latest/testing/|

[33] Structural Directives - ts - Guide in Angular.io. [cit. 2016-
10-2]. Available at: |https://angular.io/docs/ts/latest/guide/
|structural-directives.html

[34] Router & Navigation - ts - Guide in Angular.io. [cit. 2016-10-2]. Available
at: https://angular.io/docs/ts/latest/guide/router.html|

[35] Angular Material in Angular.io. [cit. 2016-10-2]. Available at:
|/ /material.angular.io/|

[36) AVRAM, Abel. The Next Major Version of Angular Will Be 4, Not 3
in InfoQ. 2016 [cit. 2016-10-2]. Available at: https://www.infoq.com/
news/2016/12/angular-4]

53

https://www.lifewire.com/native-apps-vs-web-apps-2373133
https://www.lifewire.com/native-apps-vs-web-apps-2373133
http://readwrite.com/2015/02/27/native-vs-web-apps-ceasefire/
http://readwrite.com/2015/02/27/native-vs-web-apps-ceasefire/
https://medium.com/dev-channel/why-progressive-web-apps-vs-native-is-the-wrong-question*/-to-ask-fb8555addcbb#.9q5lw725t
https://medium.com/dev-channel/why-progressive-web-apps-vs-native-is-the-wrong-question*/-to-ask-fb8555addcbb#.9q5lw725t
https://medium.com/dev-channel/why-progressive-web-apps-vs-native-is-the-wrong-question*/-to-ask-fb8555addcbb#.9q5lw725t
http://blog.ionic.io/service-workers-revolution-against-the-network/
http://blog.ionic.io/service-workers-revolution-against-the-network/
https://infrequently.org/2015/06/progressive-apps-escaping-tabs-without-losing-our-soul/
https://infrequently.org/2015/06/progressive-apps-escaping-tabs-without-losing-our-soul/
https://infrequently.org/2016/09/what-exactly-makes-something-a-progressive-web-app/
https://infrequently.org/2016/09/what-exactly-makes-something-a-progressive-web-app/
https://addyosmani.com/blog/getting-started-with-progressive-web-apps/
https://addyosmani.com/blog/getting-started-with-progressive-web-apps/
https://www.sitepoint.com/whats-new-in-angularjs-2
https://www.sitepoint.com/whats-new-in-angularjs-2
https://angular.io/docs/ts/latest/testing/
https://angular.io/docs/ts/latest/testing/
https://angular.io/docs/ts/latest/guide/structural-directives.html
https://angular.io/docs/ts/latest/guide/structural-directives.html
https://angular.io/docs/ts/latest/guide/router.html
https://material.angular.io/
https://material.angular.io/
https://www.infoq.com/news/2016/12/angular-4
https://www.infoq.com/news/2016/12/angular-4

Bibliography

[37] TypeScript - JavaScript that scales.[cit. 2016-10-2]. Available at:
|/ /wuw.typescriptlang.org/|

[38] CZAPLICKI, Evah Blazing Fast HTML in Elm-lang. 2016
[cit. 2016-10-2]. Available at: http://elm-lang.org/blog/
[blazing-fast-html-round-two

[39] Pokryti Zeleznicnich trati signdlem mobilnich siti.[cit. 2016-12-2]. Avail-
able at: http://www.ctu.cz/mereni-pokryti-zeleznice|

[40] MARES Prazané se snad konecné dockaji piného
pokryti metra mobilnim signdlem in Metro Praha. 2016
[cit. 2016-12-2]. Available at: http://metropraha.eu/
[prazane-se-snad-konecne-dockaji-plneho-pokryti-metra-*/ |
mobilnim-signalem/|

[41] RUSSELL, Alex and SONG, Jungkee and ARCHIBALD, Jake and
KRUISSELBRINK, Marijn. Service Workers Nightly in M3C. 2015 [cit.
2016-12-2]. Available at: https://www.w3.org/TR/service-workers/|

[42] Electron.[cit. 2016-10-2]. Available at: http://electron.atom.io/|

[43] FEYERKE, Alex. Designing Offline-First Web Apps. 2013 [cit. 2016-10-
2]. Available at: http://alistapart.com/article/offline-first|

[44] ARCHIBALD, Jake. Introducing Background Sync on Google Developers.
2015 [cit. 2016-10-2]. Available at: https://developers.google.com/|
web/updates/2015/12/background-sync|

[45] ARCHIBALD, Jake. Adding Push Notifications to a Web App
on Google Developers. 2016[cit. 2016-12-22]. Available at:
|//developers.google.com/web/fundamentals/getting-started/ |
|codelabs/push-notifications/|

[46] ABBOTT, Tom. Where to Store your JWTs — Cook-
ies wvs HTML5 Web Storage on Stormpath. 2016 [cit.
2016-10-2]. Available at: https://stormpath.com/blog/

where-to-store-your-jwts-cookies-vs—htmlb-web-storage

[47] Offline Authentication on IBM Mobile First Developer Center. 2016 [cit.
2016-10-2]. Available at: |https://mobilefirstplatform.ibmcloud,
|com/tutorials/en/foundation/6.3/authentication-security/ |
[offline-authentication/|

[48] HTMLS5 Security Cheat Sheet on Open Web Application Security Project.
2015 [cit. 2016-10-2]. Available at: https://www.owasp.org/index.php/
_Security_Cheat_sSheet

[49] Managing HTML5 Offline Storage on Google Chrome. [cit. 2016-10-21].
Available at: https://developer.chrome.com/apps/offline_storage|

o4

https://www.typescriptlang.org/
https://www.typescriptlang.org/
http://elm-lang.org/blog/blazing-fast-html-round-two
http://elm-lang.org/blog/blazing-fast-html-round-two
http://www.ctu.cz/mereni-pokryti-zeleznice
http://metropraha.eu/prazane-se-snad-konecne-dockaji-plneho-pokryti-metra-*/mobilnim-signalem/
http://metropraha.eu/prazane-se-snad-konecne-dockaji-plneho-pokryti-metra-*/mobilnim-signalem/
http://metropraha.eu/prazane-se-snad-konecne-dockaji-plneho-pokryti-metra-*/mobilnim-signalem/
https://www.w3.org/TR/service-workers/
http://electron.atom.io/
http://alistapart.com/article/offline-first
https://developers.google.com/web/updates/2015/12/background-sync
https://developers.google.com/web/updates/2015/12/background-sync
https://developers.google.com/web/fundamentals/getting-started/codelabs/push-notifications/
https://developers.google.com/web/fundamentals/getting-started/codelabs/push-notifications/
https://developers.google.com/web/fundamentals/getting-started/codelabs/push-notifications/
https://stormpath.com/blog/where-to-store-your-jwts-cookies-vs-html5-web-storage
https://stormpath.com/blog/where-to-store-your-jwts-cookies-vs-html5-web-storage
https://mobilefirstplatform.ibmcloud.com/tutorials/en/foundation/6.3/authentication-security/offline-authentication/
https://mobilefirstplatform.ibmcloud.com/tutorials/en/foundation/6.3/authentication-security/offline-authentication/
https://mobilefirstplatform.ibmcloud.com/tutorials/en/foundation/6.3/authentication-security/offline-authentication/
https://www.owasp.org/index.php/HTML5_Security_Cheat_Sheet
https://www.owasp.org/index.php/HTML5_Security_Cheat_Sheet
https://developer.chrome.com/apps/offline_storage

Bibliography

[50] Browser storage limits and eviction criteria on Mozilla Developer
Network. [cit. 2016-10-21]. Available at: https://developer.mozilla|
lorg/en-US/docs/Web/API/IndexedDB_API/Browser_storage_limits_|
land_eviction_criteria

[51] WILSON, Chris. Persistent Storage on Google Developers. 2016 [cit. 2016-
10-21]. Available at: https://developers.google.com/web/updates/
12016/06/persistent-storage|

[52] OSMANI, Addy. Offline Storage for Progressive Web Apps on Medium.
2016 [cit. 2016-10-21]. Available at: https://medium.com/dev-channel/
[offline-storage-for-progressive-web-apps-70d52695513c# |

badbwy4]6

[53] CIMPANU, Catalin. Recent Benchmark Shows the Speed
of AngularJS 2 on Softpedia. 2016 [cit. 2016-10-21].
Available at: http://webscripts.softpedia.com/blog/
[recent-benchmark-shows-the-speed-of-angularjs-2-499638. |

shtmll

[54] PEYROTT, Sebastian. More Benchmarks: Virtual DOM
vs Angular 1 and 2 ws Others on AuthO Blog. 2016
[cit. 2016-10-21]. Available at: https://auth0.com/blog/

more-benchmarks-virtual-dom-vs-angular-12-vs-mithril-js*/ |
+vs-the-rest/|

[55] OSMANI, Addy, COHEN, Marc. Offline Storage for Progres-
sive Web Apps on Web Fundamentals. 2017 [cit. 2017-05-15].
Available at: |https://developers.google.com/web/fundamentals/|
|instant-and-offline/web-storage/offline-for-pwal

[

'Due to too long URL sequences "*/" was used to brake lines in some urls.

55

https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Browser_storage_limits_and_eviction_criteria
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Browser_storage_limits_and_eviction_criteria
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Browser_storage_limits_and_eviction_criteria
https://developers.google.com/web/updates/2016/06/persistent-storage
https://developers.google.com/web/updates/2016/06/persistent-storage
https://medium.com/dev-channel/offline-storage-for-progressive-web-apps-70d52695513c#.ba4bwy4j6
https://medium.com/dev-channel/offline-storage-for-progressive-web-apps-70d52695513c#.ba4bwy4j6
https://medium.com/dev-channel/offline-storage-for-progressive-web-apps-70d52695513c#.ba4bwy4j6
http://webscripts.softpedia.com/blog/recent-benchmark-shows-the-speed-of-angularjs-2-499638.shtml
http://webscripts.softpedia.com/blog/recent-benchmark-shows-the-speed-of-angularjs-2-499638.shtml
http://webscripts.softpedia.com/blog/recent-benchmark-shows-the-speed-of-angularjs-2-499638.shtml
https://auth0.com/blog/more-benchmarks-virtual-dom-vs-angular-12-vs-mithril-js*/-vs-the-rest/
https://auth0.com/blog/more-benchmarks-virtual-dom-vs-angular-12-vs-mithril-js*/-vs-the-rest/
https://auth0.com/blog/more-benchmarks-virtual-dom-vs-angular-12-vs-mithril-js*/-vs-the-rest/
https://developers.google.com/web/fundamentals/instant-and-offline/web-storage/offline-for-pwa
https://developers.google.com/web/fundamentals/instant-and-offline/web-storage/offline-for-pwa

56

Appendix A

Abbreviations

SPA - Single Page Application

UX - User eXperience

UI - User Interface

API - Application Programming Interface
DOM - Document Object Model

API - Application Programming Interface
JSX - Javascript Syntax eXtension
MVC - Model View Controller

IDE - Integrated Development Environment
NPM - Node Package Manager

URL - Uniform Resource Locator

HTTP - Hypertext Transfer Protocol
HTML - HyperText Markup Language
CSS - Cascading Style Sheets

REST - Representational State Transfer

SW - Service Worker

o7

o8

Appendix B
Contents of CD

8 Tagltlonic - Source files of hybrid application prototype.
8 TagltWeb — Source files of web application prototype.
® latex-files.zip — Thesis in latex format.

® teplyjal-master-thesis.pdf — Thesis in PDF format.

99

	Introduction
	Goals and structure of the thesis
	Application requirents
	Mobile application frameworks comparison
	JavaScript frameworks comparison
	Offline capabilities
	Architecture
	Implementation of prototype

	Plantac
	Categorization of application
	Specification of Plantac
	Scenarios of usage
	Restrictive conditions
	Functional requirements

	Mobile development platforms
	Hybrid applications
	Frameworks
	Plugins

	Native Script, React Native
	Progressive web applications
	Comparison of Native, Hybrid and Progressive apps on mobile platform
	Native apps
	Hybrid apps
	Web apps
	Progressive web apps

	Summary

	Java Script frontend frameworks
	AngularJS
	Directives
	Custom directives
	Classes
	Services
	Filters

	Angular 2
	Mobile first
	Modular architecture
	New directives
	Router
	TypeScript
	Testing
	Animations
	Angular Material
	Development

	React
	One-Way data flow
	VirtualDOM
	JSX

	Benchmarks
	Summary

	Offline Capabilities
	Service Worker
	Service worker life cycle
	Events
	Fetch strategies
	Other service worker features
	Sw-precache and sw-toolbox
	Summary

	Problems with offline
	User authentication
	User logout
	Security of locally stored data
	Conflicts
	Too big cache
	Cleared cache

	Architecture
	Problems addressed by architecture
	Performance
	Independence of client
	Authentication and authorization
	Offline

	Proposed architecture
	Server side
	Client side

	Summary

	Implementation of prototype
	Server side
	REST API

	Client side prototypes
	Web application
	Hybrid application

	Testing of prototype

	Conclusion
	Future work

	Bibliography
	Abbreviations
	Contents of CD

