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ABSTRACT 

Machine-type communication (MTC) can generate numerous connection requests 

and bring explosive load within small time interval. A massive amount of simultaneous 

random access attempts results in a high collision probability and intolerable access 

delay because more devices contend in shared random access channels (RACH) with 

limited capacity. Thus, this thesis addressed a novel mechanism, denoted as two-phase 

random access (TPRA) procedure, for MTC in mobile networks to relieve the load of 

RACH. The proposed TPRA reduces probability of collision among the MTC devices 

when accessing radio resources by separation of the massive number of devices into 

small groups. The proposed concept allows a base station to adjust the number of 

additional access channels according to their current load. Furthermore, we propose an 

analytical model to evaluate the performance of the proposed TPRA by estimating the 

access success probability and average access delay. The simulations results validate 

the accuracy of the performance metrics derived analytically. The results further 

demonstrate that the proposed TPRA can improve the access success probability by 9% 

and reduce the access delay by 50% for a high density of the MTC devices comparing 

to the standard LTE-A random access procedure. 

 

Keywords- Random access, machine-type communications, mobile networks, 

analytical analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

ANOTACE 

 

Komunikace strojů (Machine-type communication, MTC) v mobilních sítích může 

vést k velkému množství požadavků na přístup k médiu a způsobit tak krátkodobá, ale 

častá přetížení sítě. Velké množství MTC zařízení přistupujících náhodně k radiovému 

kanálu vede k vysoké pravděpodobnosti kolize a neúnosné době přístupu k médiu, 

jelikož velké množství MTC zařízení přistupuje ke sdílenému kanálu pro náhodný 

přístup (Random Access Channel, RACH), který má však omezenou kapacitu. Tato 

diplomová práce se zabývá novou procedurou dvoufázového náhodného přístupu (Two-

Phase Random Access, TPRA). Navržená procedura TPRA pro přístup MTC zařízení v 

mobilních sítích umožňuje snížit zátěž kanálu pro náhodný přístup tím, že redukuje 

pravděpodobnost kolize mezi MTC zařízeními při jejich přístupu k radiovým 

prostředkům. Toho je dosaženo rozdělením všech zařízení do malých skupin. Navržený 

koncept umožňuje základnové stanici přizpůsobit počet přístupových kanálů podle 

jejich aktuálního zatížení. V práci je dále navržen analytický model k vyhodnocení 

výkonnosti navržené procedury TPRA ve smyslu pravděpodobnosti úspěšného přístupu 

a doby přístupu. Výsledky simulací potvrzují přesnost těchto metrik odvozených 

analyticky. Výsledky dále ukazují, že TPRA umožnuje zvýšit pravděpodobnost 

úspěšného přístupu o 9% a zároveň snížit dobu přístupu o 50% pro vysokou hustotu 

MTC zařízení v porovnání se standardní LTE-A procedurou náhodného přístupu. 

 

Klíčová slova- Náhodný přístup, Komunikace strojů, mobilní sítě, analytická 

analýza. 
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I. INTRODUCTION 

Machine-type communication (MTC), also known as machine-to-machine (M2M) 

communication, is a new service defined by standardization organization the 3rd 

Generation Partnership Project (3GPP) in current Long Term Evolved-Advanced (LTE-

A) networks [1]. MTC introduces a communication from MTC devices to other MTC 

devices, a central MTC server or a set of MTC servers [2] without human intervention. 

Machine-type communication usually considers a huge number of devices deployed in 

the world interacting with each other, and with human-beings. In order to transmit data, 

the MTC device requests the resources for uplink data transmission. To that end, the 

MTC device sends a request to access radio channel. Unfortunately, the technologies 

that can support MTC are currently incapable of fulfilling the demand for ubiquitous 

access of a massive number of devices to the communication systems [3]. The 

concurrent access requests from the massive number of devices may congest the radio 

access network (RAN) and cause a high probability of collision in radio access among 

devices. The high probability of collision results in intolerable access delay, packet 

losses or even service unavailability to human-to-human (H2H) communication 

services. Hence, RAN overload control is identified as the first priority improvement 

area by 3GPP [1]. In [1], 3GPP aims to improve the usage of RAN resources efficiently, 

and handle high MTC access load with the minimal changes of existing specifications 

and small impaction of H2H communication. 3GPP further classifies the RAN overload 

control scheme into two categories: push-based and pull-based [4]. 

In push-based approaches, the devices can transmit data to the network automatically 

whenever they have data to be sent. Examples of solutions for push-based RAN 

overload control schemes are: Access class barring (ACB) [5][6], separated Random 

Access Channel (RACH) resources for MTC [7][8], dynamic allocation of RACH 

resource, MTC specific backoff scheme [9], or slotted access. In the ACB scheme 

[10][11], the network divides the MTC devices into several access classes and assigns 

an ACB factor to each access class. Each device then selects a random number before 

accessing RAN. The MTC devices can only transmit data when the random number 

selected by the device exceeds the ACB factor. Thus, the network can control the 

channel access probability of a specific MTC access class by setting the ACB factor. In 

the separated RACH scheme [7][8], the network assigns a distinct set of dedicated 

RACH resources to MTC and H2H devices to offer them different probabilities of the 

collision during radio resource access. In the dynamic allocation of RACH resource 

scheme [9], the network can dynamically increase or decrease the number of resources 

allocated to the access of the MTC devices (by means of the number of RACHs) by 

forecasting the access load from the MTC devices. In the MTC specific backoff scheme 
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[10], the network can delay a retransmission of the random access attempts of the MTC 

devices by assigning MTC-specific random backoff parameters. In the slotted access 

scheme [1], each MTC device is associated with a dedicated access cycles/slots through 

its identity. Each MTC device can transmit the random access attempt only at its random 

access slot. 

The devices in pull-based approaches can only transmit data when they are invited 

to do so by the network. Therefore, the network with the pull-based approaches may 

more properly control the MTC traffic load than with pushed-based approaches. In 

pulled-based approaches, the network may properly handle the MTC traffic load by 

activating the appropriate number of devices to prevent RAN overload [12]. Paging and 

group paging are potential pull-based RAN overload control schemes [13][14]. In LTE, 

a downlink paging channel is defined to transmit the paging information from an 

evolved Node B (eNB) to a user equipment (UE). The paging channel informs the UEs 

about an update of system information and provides emergency notifications. The eNB 

may transmit a paging message to trigger a specific UE at the UE's paging occasion. 

The paging occasion of each UE is determined based on its UE identity (UE-ID). The 

paging mechanism that was originally designed for H2H services can only page up to 

16 devices with a single paging message and only two paging occasions are available 

per 10 ms radio frame [14]. Therefore, the eNB have to spend a long period transmitting 

several paging messages to trigger a huge number of MTC devices. Thus, a group 

paging mechanism is proposed to overcome this limitation by sending just one single 

group paging message to trigger a group of MTC devices [1]. In the group paging, each 

MTC device is assigned with a distinct group identity (GID) after camping on a network 

and joining a group. All of the MTC devices in the same group listen to the same paging 

channel at the same paging occasion. The paging occasion is derived from the GID [15]. 

The MTC devices belonging to the same group should simultaneously perform the 

standard LTE random access procedure to access the network after finding their GID in 

the group paging message sent by the eNB.  

Another pull-based approach based on paging scheme is described below. An 

optimization of the access to radio resource by massive MTC devices in LTE is called 

distributed queuing mechanism. Distributed queuing is based on a m-ary tree spitting 

algorithm with a simple set of rules to organize devices in virtual queues during an 

access procedure. One of the example of distributed queuing is Distributed Queuing-

based Random Access Procedure (DQRAP), proposed in [17]. DQRAP is the random 

access procedure in LTE and it is based on a combination of a tree-spitting algorithm 

and the distributed queuing mechanism. By the distributed scheduling of the MTC 

devices accessing the channel in time domain, DQRAP provides an efficient channel 

utilization regardless of the number of accessing MTC devices and reduces the average 
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access delay comparing with the standard-LTE procedure. Consequently, DQRAP also 

reduces an energy consumption and blocking probability for a massive number of 

simultaneously accessing devices [17]. The performance analysis and an analytical 

model for DQRAP can be found in [17] and [18], respectively. 

Another implementation of distributed queuing idea, denoted as Distributed Queuing 

Access for LTE (DQAL) presented in [8]. DQAL not only divides the channel resources 

into H2H part and MTC part, but also separates the radio access resources for the MTC 

devices into a number of groups. Thus, DQAL can perform distributed queuing 

mechanism in both time domain and frequency domain by assigning different group of 

access resources to the different groups of devices. DQAL reduces the collision 

probability and enhances both the access success probability and access delay for MTC. 

Furthermore, it guarantees the non-machine equipment can access the network without 

any modification. 

In the thesis, a novel solution of random access procedure is proposed. The novelty 

consists in splitting the access procedure into two phase. In the first phase, an additional 

selection of access resources is added to separate the devices into several groups by the 

access resources they selected; in the second phase, the standard LTE-A access 

procedure is independently performed in each group. To access performance of 

proposed algorithm, analytical model for the access success probability and access 

delay are developed. The results of analysis are compared with the simulations to 

validate the accuracy of the analytical model. 

The remainder of this thesis is organized as follows. In Section II, the standard LTE-

A random access procedure is described and then the proposed two-phase random 

access procedure is introduced. The system model is presented in Section III. In Section 

IV, the proposed mechanism is analytically formulated. The metrics for performance 

assessment are described in Section V. Simulation and analytical results are presented 

and discussed in Section VI to verify the accuracy of models and to compare the 

performance of the proposed access procedure with other approaches. Last, major 

conclusions and potential future research directions are given in Section VII. 
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II. RANDOM ACCESS PROCEDURE 

In this section, the standard LTE random access procedure is briefly outlined and 

then the two-phase random access procedure proposed in this thesis is described. 

A. LTE-A Random Access Procedure 

In LTE-A, there are two types of the random access procedure: contention-based 

and contention-free. Usually, the contention-free random access is used in some special 

cases like handover and related management ensures low or no probability of collisions 

[19] . Thus, this sub-section is focused on the contention-based random access 

procedure (RAP) defined for LTE-A network.  

LTE-A RAP is composed of four steps, represented by messages exchanged 

between the UE and the eNB, as shown in Figure 1. In the first step, the device, which 

is willing to access the channel for communication randomly selects the RA preamble 

and transmits it in Msg1. In LTE-A, time is divided into fix-length frames with a 

duration of 10s and each frame consists of 10 sub-frames [20]. One PRACH consists 

of 72 continuous carriers, i.e., six Resource Blocks (RBs) with the duration of one sub-

frame [20]. The Msg1 is transmitted on the shared Physical Random Access Channel 

(PRACH) and one or more PRACHs are reserved in the frame for the RAP. The 

location of the PRACH in time domain is defined by the parameter PRACH 

Configuration Index broadcasted by the eNB in System Information Block 2 (SIB 2) 

[20]. If the eNB detects the preamble(s) transmitted by the devices, it replies with the 

Msg2, denoted as Random Access Response (RAR), on a Physical Downlink Shared 

Channel (PDSCH). This response is sent just after a processing time required by the 

eNB to detect the preambles. The RAR contains the identity of the detected preamble(s), 

an uplink timing alignment, and dedicated uplink resources reserved for the accessing 

devices to transmit following message, i.e., Msg3. Each RAR carries one Medium 

Access Control (MAC) header, and one or more MAC RAR(s). In MAC header, there 

are several sub-headers indicating the RAR corresponding to the individual preambles. 

Then, one optional backoff parameter value, denoted as Backoff Indicator (BI), is 

carried for: i) the devices whose preamble is not detected by the eNB, ii) the devices 

whose preamble is collided with the preamble selected by other device(s), or iii) the 

devices that cannot be accommodated due to insufficient RAR capacity. After the 

device receives RAR within the RAR window size (WRAR), it can continue to the next 

step; otherwise, it re-transmits a new random preamble (Msg1) and restarts the random 

access procedure after waiting a random backoff time BI indicated in the RAR. The 

procedure continues until the maximal number of preamble transmission is reached. If 
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the maximal number of transmissions is reached, the MAC layer will indicate a Random 

Access problem to an upper layer in real networks [21]. In our model, additional 

attempts of the device are blocked if the maximum number of preamble transmissions 

is reached and we leave the interaction with the upper layers for future research. 

 

Figure 1. LTE-A four-step RA procedure 

 

After the device receives the RAR from the eNB, it transmits the Radio Resource 

Control (RRC) Connection Request message (Msg3) and starts a Contention Resolution 

timer. The Msg3, carrying the UE identity and the reason of connection establishment, 

is transmitted in the dedicated uplink resource on the Physical Uplink Shared Channel 

(PUSCH) indicated in the Msg2. The UE identity is either a Temporary Mobile 

Subscriber Identity (TMSI) or a random value generated by the UE if the UE is not 

registered into the current cell [21]. Note that the devices transmitting the same 

preamble, which is detected by the eNB may still receive the RAR. However, these 

devices collide with each other because of transmitting the Msg3 with different content 

(UE identity) on the identical uplink resources. Non-adaptive Hybrid Automatic Repeat 

Request (HARQ) is enabled to protect the reliable message exchange [21]. After the 

device transmits the Msg3, it waits for a HARQ acknowledgement (ACK) or a 

negative- acknowledgment (NACK) from the eNB within the time interval required for 

receiving the HARQ ACK (denoted as THARQ with unit: sub-frame) [12]. If the eNB 

receives the Msg3 successfully, it replies with the ACK; otherwise, it replies with the 

NACK. When the device receives the NACK, it waits for TM3 sub-frames before re-

transmitting the Msg3 again. This process is repeated until the device correctly receives 

the ACK.  

As the last step, the eNB waits for TA_M4 sub-frames (after the ACK of the Msg3) 

and transmits Msg4. The Msg4 indicates that the Msg3 is successfully received. 

Similarly, the eNB receives another ACK in THARQ sub-frames if the Msg4 is 

successfully received by the device; otherwise, the eNB waits for the ACK within THARQ 

sub-frames. If the ACK is not received within THARQ sub-frames, the eNB re-transmits 
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the Msg4 again after TM4 sub-frames. The number of re-transmission of the Msg3 and 

the Msg4 are limited to NHARQ. 

 

B. Two-phase Random Access Procedure (TPRA) 

In this subsection, we provide detailed description of TPRA. The message 

sequence chart of the proposed two-phase random access procedure is shown in Figure 

2. Comparing to the conventional LTE-A RAP, TPRA is composed of two phases. Two 

messages (pre-Msg1 and pre-Msg2) are defined in Phase-I to separate devices into 

smaller groups and assign each group a dedicated channel. We denote the two messages 

as the pre-Msg1 and the pre-Msg2 since they share the same functionality as the Msg1 

and the Msg2 in LTE-A RAP. The preambles are used to indicate the pre-Msg1 and the 

Msg1. For differentiation, we use a preamble-I and a preamble-II to denote the 

preamble used for the pre-Msg1 in the Phase-I and the Msg1 in the Phase-II, 

respectively. In the Phase-I, the devices transmit a randomly chosen preamble-I (pre-

Msg1) on a shared common-PRACH (C-PRACH). Note that the C-PRACH in TPRA 

utilizes the same PRACH as those used in the standard LTE-A RAP. Thus, the position 

of C-PRACH in time-frequency domains is defined by PRACH Configuration Index as 

it is done in the standard LTE RAP. This ensures compatibility of the proposed solution 

with the LTE-A procedure. In the second step of the Phase-I, the eNB replies with the 

RAR-I (pre-Msg2) over the PDSCH carrying a dedicated-PRACH (D-PRACH) 

allocated to the detected preamble-I. Note that the C-PRACH and the D-PRACH utilize 

the PRACH and PUSCH defined in LTE-A, respectively. The allocation of PRACH is 

fixed (i.e., defined in SIB2) and the allocation of PUSCH can be dynamically adjusted. 

One D-PRACH is made up of the same number of continuous RBs as the PRACH in 

LTE-A. 

After the devices successfully receive the RAR-I indicating the preamble-I they sent 

in the pre-Msg1, they transmit the preamble-II (Msg1) on the assigned D-PRACH and 

start a modified four-step RAP. A key aspect and a difference with respect to the 

standard LTE four-step RAP, is that the resources assigned by the eNB to the devices 

on the D-PRACH are not the same for all devices. The eNB groups the devices 

according to their selected preamble-Is in the Phase-I. The devices grouped together 

then continue the Phase-II at the dedicated resources, but do not compete with the 

devices in other groups. Thanks to this grouping, the probability of collisions in the 

Phase-II is significantly lowered due to less competing devices at the same resources. 

The remaining processes in the Phase-II are similar to the processes in the standard 

LTE-A RAP, but take advantage of the split of devices onto groups during the Phase-I.  
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The devices, which fail in the Phase-I (due to the failure of the pre-Msg2) or in the 

Phase-II (due to the failure of the Msg2, Msg3, or Msg4) should perform the random 

backoff and start over the RAP from the Phase-I at the next available C-PRACH. The 

process repeats until the number of attempts exceeds the preamble-I transmission 

limitation. Thus, the maximal number of assignable D-PRACHs is restricted not only 

to the maximal number of the acknowledged RAR-I, but also to the amount of available 

PUSCH resources at the eNB. Note that the selection of the preamble-I in the Phase-I 

divides devices into multiple groups and all devices in the same group contend in the 

same dedicated D-PRACH in the Phase-II. The devices from different groups do not 

contend with each other. 

The benefit of TPRA consists in the flexibility of the PRACH allocation. In LTE-A 

RAP, the PRACH is periodically allocated by the eNB. The allocation may be based 

on mean arrival rate of the access requests, which is inflexible in supporting MTC 

services. In TPRA, the C-PRACH is periodically allocated and the D-PRACH can be 

dynamically allocated based on the instantaneous access requests injected in the C-

PRACH. 

 

 

Figure 2. Proposed TPRA procedure 
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III. SYSTEM MODEL 

 This work considers M MTC devices in a paging area simultaneously performing 

the random access procedure after receiving a group paging massage in the LTE-A 

network. Once the group paging message is received from the eNB, all of M MTC 

devices establish the connection with the eNB by following the TPRA procedure. The 

performance of TPRA is investgated from the first C-PRACH to the Imax-th C-PRACH, 

where Imax is the number of C-PRACH within the investigated interval and is calculated 

by the maximal number of preamble transmissions. Let TCP is the periodicity of C-

PRACHs; RC and RD are the number of preamble-I and preamble-II reserved for C-

PRACH and D-PRACH, respectively. For simplicity, it is assumed that all D-PRACHs 

are allocated in different sub-carriers at the same sub-frame. Therefore, the maximal 

number of assignable D-RPACH is restricted to the bandwidth of uplink defined in 

LTE-A and to the maximal number of RARs which can be acknowleged by the eNB 

within one RAR window size. We assumed that eNB is available to assigned the 

maximal number of D-PRACH to the devices in each C-PRACH. The common 

parameters used in both LTE-A RAP and TPRA are summarized as follows: 

• TRAR is the time required for receiving RAR after the preamble transmission; 

• NUL is the maximal number of RARs, which can be acknowledged by the 

eNB; 

• THARQ is the time interval required for reception of the acknowledgement of 

the Msg3 and the Msg4; 

• TA_M4 is the time for monitoring the Msg4.  

The relationship among TCP, TRAR, THARQ, and TA_M4 is illustrated in Figure 3. The 

arrow represents the colliding attempts, i.e., the situation requesting a retransmisison of 

the preamble due to followng problems: i) the preamble-Is and the preamble-IIs are not 

indicated in the pre-Msg2 or in the Msg2, respectively; ii) the preamble-IIs coliding in 

the Phase-II. All devices, which collides perform backoff mechanism with a Backoff 

window size (WBO). Note that the proposed model can be easily extended to 

accommodate a general arrival process based on the technique shown in [8]. 
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Figure 3. Timing diagram of TPRA 
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IV. ANALYTICAL MODEL 

 

In this section, an analytical model is presented to estimate the access success 

probability PS and the average access delay 𝐷𝑎
̅̅̅̅   for the proposed TPRA. Both 

performance metrics for TPRA are derived based on the estimation of the number of 

contending devices in each C-PRACH, and the number of successful and failed devices 

after the reception of Msg2. Only the device successfully accessing the channel without 

exceeding the maximal number of preamble transmissions (NPTmax) can be counted into 

successfully accessing devices. Thus, we investigate the performance within an interval 

of a fix duration. The duration, denoted as Imax, is decided by the maximal number of 

preamble-I transmission (NPTmax). Imax, is the maximal duration for the devices that 

succeed to access the channel by transmitting the maximal number of preamble-I 

transmissions (NPTmax). It represents a situation when the device transmits preamble-I 

with ( 𝑁𝑃𝑇𝑚𝑎𝑥 − 1 ) times and each of preamble-I transmission are failed before 

successfully accessing the channel, and the device consumes the longest possible 

duration for each failed transmission. The longest duration for each failed transmission 

means that the device selects the maximal value of backoff time (WBO) and with the 

fixed value 2 ( )RAR RART W  +1 where 1 is the time for D-PRACH; 2 ( )RAR RART W   is 

the time for learning the result of the C-PRACH and the D-PRACH transmissions. Imax 

is expressed in the number of C-PRACH because the following formulas are derived 

with the number of C-PRACH. Thus, Imax equals to the sum of 1 (the successful attempt 

at the last transmission) and  
2 ( ) 1

1 RAR RAR BO
PTmax

CP

T W W
N

T

    
   

 
 (the number of C-

PRACH within (𝑁𝑃𝑇𝑚𝑎𝑥 − 1) times failed transmissions). Thus, Imax can be derived as  

 
2 ( ) 1

1 1 .RAR RAR BO
max PTmax

CP

T W W
I N

T

    
     

 
              (1) 

Let NDP is the number of assigned D-PRACH, Mi[n] is the number of devices 

contending at the i-th C-PRACH with the n-th preamble-I transmission, Mi,S[n] is the 

average number of MTC devices that transmit the n-th preamble-I at the i-th C-PRACH 

and learn the successful preamble transmission after receiving the Msg2 with the 

specified RAR, Mi,F[n] is the average number of MTC devices that transmit the n-th 

preamble-I at the i-th C-PRACH, but fail in this transmission because of the failure of 

receiving the pre-Msg2 or the Msg2, Mi is the total number of MTC devices that 

transmit their preamble-I at the i-th C-PRACH. Thus, the total number of contending 

devices in each C-PRACH is the sum of the n-th preamble-I transmission at the i-th C-
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PRACH that 1 ≤ 𝑛 ≤ 𝑁𝑃𝑇𝑚𝑎𝑥. That is, 

1 [ ].PTmaxN

ni i
M M n                              (2)                       

All transmissions of the preamble-II are detected by the eNB with the preamble-II 

detection probability 
1

1n n
p

e
   where n is the number of the preamble-I transmission 

[1]. However, we assume the eNB is able to detect all transmissions of the preamble-I 

because of the simplification of equation (4). According to [22], the Mi,s[n] of the group 

paging in LTE is approximated by  

1

,

1

[ ] ,                if [ ] ,

[ ]
[ ]

,  otherwise.                               

[ ]

i iPTmax

i

iPTmax

M MN

R R
i n i n UL

n

M

Ri S
i n

ULMN

R
i n

n

M n e p M n e p N

M n
M n e p

N

M n e p

 















 









      (3) 

In TPRA, all contending devices are divided into RC group in the Phase-I and we 

assume to always assign the maximal number of D-PRACH (NDP) in each procedure. 

Therefore, only NDP of RC groups can be assigned D-PRACHs when RC>NDP. Thus, the 

maximal number of assignable DPRACH is bounded by the number of acknowledged 

RARs within a RAR window ( ULN ) and the channel bandwidth of uplink. The number 

of D-PRACHs is restricted to the channel bandwidth of uplink because we assumed 

that all D-PRACHs are at the same sub-frame but different subcarriers. Thus, let NRB is 

the number of available continuous RBs at the same sub-frame in the PUSCH. Each D-

PRACH occupies 72 continuous subcarriers (i.e., 6 RBs) as the PRACH in LTE-A. 

Thus, = min  ( , )
6

RB
DP UL

N
N N  . Thus, one D-PRACH in TPRA is the same as one 

standard four-step RAP in LTE-A and there are 
[ ]i

C

M n

R
 contending devices in each D-

PRACH. Then, 
, [ ]i SM n  can be determined as:  

i i
PTmax

D D

i

D

i
PTmax

D

-M -MN
R R R Ri i

DP UL

n=1

-M

R Ri
i,S

UL DP-MN
R Ri

n=1

M [n] M [n]
×e N , if  e  N     

R R

M [n]M [n]= ×e
R

N N , otherwise.
M [n]

×e
R

C C

C

C

n n

C C

n

C

n

C

p p

p

p

 






    




 


 
 






   (4) 
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 All successfully accessing devices in a D-PRACH can receive the RARs if the 

total number of the successful devices in the D-PRACH does not exceed NUL (i.e., 

i
PTmax

D

-MN
R Ri

UL

n=1

M [n]
e  N

R
C

n

C

p


   ). Otherwise, the eNB replies with the RAR only to NUL 

devices selected randomly. The number of the acknowledged RARs is proportional to 

the total number of the successful devices with the same number of preamble-I 

transmissions. The result is calculated for one D-PRACH. Therefore, the number of 

successful devices in one D-PRACH is multiplied with the number of assigned D-

PRACH (NDP) and then the total number of successful devices in both C-PRACH and 

D-PRACH transmission is acquired.  

 The number of devices, which fail in the preamble transmission is equal to the 

number of the contending devices minus the number of successful devices. That is  

, ,
[ ] [ ] [ ]

i F i i S
M n M n M n                            (5) 

Mi[n] can be derived by recursive accumulation with Mi,S[n-1] and Mi,F[n-1]:  

max max

min min

, , , , ,[ ] [ 1] [ 1]
K J

i k i k F j i e MSG j S

k K j J

M n M n p M n 
 

               (6) 

(6) contains two parts: the devices with failure in transmission at the C-PRACH or 

the D-PRACH and those who fail in the Msg3 or Msg4 transmission/reception. The 

first term in (6) ( , , [ 1]k i k FM n  ) represents the condition where the devices transmit 

the (n-1)-th preamble-I at the k-th C-PRACH, but they fail to accomplish the preamble-

I or the preamble-II transmission. Among these devices with failed C-PRACH/D-

PRACH transmissions, ,k i  of them perform random backoff and retransmit the n-th 

preamble-I at the i-th C-PRACH with backoff window (WBO). Kmin and Kmax indicate 

the minimal and maximal value of k, respectively. Hence, we accumulate any k from 

Kmin to Kmax to acquire the number of devices with failed preamble-I or preamble-II 

transmission. The second term in (6) ( , , , [ 1]j i e MSG j Sp M n  ) represents the condition 

where the devices transmit the (n-1)-th preamble-I at the j-th C-PRACH and finish both 

the preamble-I and the preamble-II transmissions, but fail in the Msg3 transmission or 

the Msg4 reception with the error probability ,e MSGp . Among these devices with failed 

Msg3 transmissions or Msg4 receptions, ,j i   of them perform random backoff and 
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retransmit the n-th preamble-I at the i-th C-PRACH. Jmin and Jmax indicate the minimal 

and maximal value of j. Hence, we accumulate any j from Jmin to Jmax to acquire the 

number of devices failed in the Msg3 transmissions or the Msg4 receptions. Note that 

the Msg3 transmission or the Msg4 reception is failed when the number of Msg3 

transmissions exceeds NHARQ, or Msg3 transmission is successful, but the number of 

Msg4 transmission exceeds NHARQ. Thus, ,e MSGp  can be determined by:  

 
1

,

0

1 .
HARQ

HARQ HARQ

N
N Nj

e MSG f f f f

j

P p p p p





                   (7) 

Referring to [19] and [1], NHARQ and pf are set to 5, and 0.1, respectively (NHARQ=5, pf 

=0.1). With these parameters, the 
,e MSGP  equals to 52 10 . Due to a small value of 

,e MSGp   and ,j i ≤ 1 , the second term in (6) can be neglected. Therefore, 𝑀𝑖[𝑛]  is 

simplified to: 

max

min

, ,[ ] [ 1].
K

i k i k F

k K

M n M n


                       (8)  

 The relationship among ,k i  
minK  and 

maxK  in (8) can be explained from Figure 

4. The device, whose preamble-I or preamble-II transmission is failed at the k-th C-

PRACH, may re-transmit a new preamble-I at the i-th C-PRACH only if the backoff 

interval of the k-th C-PRACH transmission is overlapping with the transmission 

interval of the i-th C-PRACH. Moreover, ,k i  is the portion of the backoff interval of 

the k-th C-PRACH that overlaps with the transmission interval of the i-th C-PRACH 

 k i . As illustrated in Figure 4, the devices transmitting the preamble at the k-th C-

PRACH at time ( 1) CPk T   can recognize their preamble-I or preamble-II failure after 

(2 1)RART   sub-frames. Each failed device starts to perform random backoff at time 

( 1) +2 1 1CP RARk T T     . Hence, the backoff interval of the k-th C-PRACH begins at 

time ( 1) +2 1 1CP RARk T T      , and ends at time ( 1) +2 1CP RAR BOk T T W      . The 

devices transmit their preamble-I at the i-th C-PRACH if their random backoff counters 

reach zero during the interval between ( 2) 1CPi T     and ( 1) CPi T   . The minimal 

value of k (Kmin) is obtained when the right boundary of the random backoff interval of 

the k-th C-PRACH reaches the left boundary of the preamble transmission interval of 
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the i-th C-PRACH ( ( 2) 1CPi T    ) (i.e., 

min( 2) 1 ( 1) 2 1CP CP RAR BOi T K T T W           ). Therefore, Kmin is expressed as: 

  BO2 W
1 ( ) .RAR

min

CP

T
K i

T

  
   
 

                      (9) 

The maximal value of k (Kmax) is obtained when the left boundary of the random backoff 

interval of the k-th C-PRACH exceeds the right boundary of the preamble transmission 

interval of the i-th C-PRACH ( ( 1) CPi T   ) (i.e., 

max( 1) ( 1) 2 1CP CP RARi T K T T        ). Thus, Kmax is expressed as:  

max

2 1
( )RAR

CP

T
K i

T

  
  
 

                        (10) 

,k i  can be determined according to k in three conditions presented in Figure 4. In the 

first condition, the right boundary of the random backoff interval of the k-th C-PRACH 

is between the transmission interval of the i-th C-PRACH (i.e., 

( 2) 1 ( 1) 2 1 ( 1)CP CP RAR BO CPi T k T T W i T              ). In this case, 

CP

2 1
( )RAR BO

min

T W
K k i

T

  
    and the overlapped area starts from the left boundary of 

the transmission interval of the i-th C-PRACH and ends at the right boundary of the 

random backoff interval of the k-th C-PRACH. In the second condition, the 

transmission interval of the i-th C-PRACH fully overlaps with the random backoff 

interval of the k-th C-PRACH. Hence, the overlapping area is of the length of TCP. In 

the third condition, the left boundary of the random backoff for the k-th C-PRACH is 

between the transmission interval of the i-th C-PRACH (i.e., 

( 1) ( 1) 2 1 ( 2) 1CP CP RAR CPi T k T T i T             ). In this case, 

 
2

1 RAR
max

CP

T
i k K

T


     and the overlapping area starts from the left boundary of the 

random backoff interval for the k-th C-PRACH and ends at the right boundary of the 

transmission interval of the i-th C-PRACH. Thus, ,k i  is defined below: 
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 

CP

,

CP

( 1) +2 T +1 ( 2) 2 1
, if  ( ),

2 12
,                                             if  1 ( ),

( 1) ( 1) 2 1
,          

CP RAR BO CP RAR BO
min

BO

CP RAR BORAR
k i

BO CP

CP RAR

BO

k T W i T T W
K k i

W T

T T WT
i k i

W T T

i T k T

W



         
  

  
     

      
 

2
if 1 ,                  

otherwise.0,

RAR
max

CP

T
i k K

T









 

   




 

   (11) 

At the beginning, all of the M devices transmit their first preamble-I at the first C-

PRACH. Thus, the initial conditions are: M1=M1[1]=M, and M1[n]=0, for n ≠ 1. Let 

i=1 in (3), then, we derive 

D D

i

D

-M -M

R R R R

DP UL

1,S -M

R R

UL DP UL

M M
×e N  ,if  1 and 0 e  N

R R
M [n]=

M
N N               ,if  1 and e > N

R

C C

C

n n

C C

n

C

p n p

n p

 




      





   


     (12) 

and 

- -

1,F -

1
(1 )  ,if  1 and 0  

M [n]=

              ,if  1 and > 

C D C D

i

C D

M M

R R R R

n DP n UL

C C

M

R R

UL DP n UL

C

M
M e p N n e p N

R R

M
M N N n e p N

R

 




        





    


(13) 

For 𝑖 ≥ 2, , [ ]i SM n , , [ ]i FM n  and Mi can be determined by recursive accumulation from 

(3), (4) and (5), respectively. 

 

 

 

Figure 4. Demonstration for deriving (11) 

 

Figure. 4   
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V. PERFORMANCE METRIC 

The access success probability and the average access delay are selected as the 

performance metrics to evaluate the performance of TPRA in this thesis. The access 

success probability Ps, defined as the probability of successful completion of the 

random access procedure within the maximal number of preamble transmissions [1]. 

Hence, Ps is the ratio between the number of devices, which success in access without 

exceeding the maximal number of preamble transmissions (NPTmax) and within the 

investigated interval Imax and the total number of devices paged by the eNB in the 

beginning (M). The number of successful devices that transmit their n-th preamble-I at 

the i-th C-PRACH is equal to 
, ,[ ](1 )i S e MSGM n p . The total number of the successful 

devices is the sum of the devices successfully accessing the resources for each C-

PRACH. Thus, Ps is expressed as: 

max max

, ,

1 1

[ ](1 )
PTI N

i S e MSG

i n
s

M n p

P
M

 




 

                         (14) 

The average access delay, aD , is the average time duration needed to complete the 

random access procedure for the successfully accessing devices (unit: sub-frame). aD

is the ratio of the total access delay for all successfully accessing devices to the total 

number of devices, which complete RAP successfully within investigated time interval 

Imax. The total access delay for all successfully accessing devices, which transmit their 

last preamble-I at the i-th C-PRACH is 
, ,

1

[ ](1 )
PTmaxN

i S e MSG i

n

M n p T


 . Hence, aD  is 

expressed as 

max max max max

max max max max

, , ,

1 1 1 1

, , ,

1 1 1 1

[ ](1 ) [ ]

[ ](1 ) [ ]

PT PT

PT PT

I N I N

i S e MSG i i S i

i n i n
a I N I N

i S e MSG i S

i n i n

M n p T M n T

D

M n p M n

   

   



 



   

   

             (15) 

Let iT  is the time required to access the network for the device that transmit the last 

preamble-I at the i-th C-PRACH and complete successfully the preamble transmission 

(preamble-I and preamble-II) and the Msg3/Msg4 transmission/reception. iT  starts 
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from the first C-PRACH because all of devices transmit their first preamble-I at the 

first C-PRACH. Therefore, ( 1) CPi T  is the time before the last transmission of 

preamble-I at the i-th C-PRACH. The remaining parts are the time to transmit 

preamble-II (1 sub-frame), to receive the RAR-I and the RAR-II ( 2 RART ) and to finish 

the Msg3/Msg4 transmission/reception ( MSGT ). That is 

( 1) 2 1i CP RAR MSGT i T T T                         (16) 

where MSGT  is the average time required by the device to complete the transmission of 

the Msg3 and the reception of the Msg4. Consider a situation that the successful 

transmission of the Msg3 by using u HARQ transmissions and the successful 

transmission of Msg4 by using v HARQ transmissions. The time required to transmit u 

Msg3 and v Msg4 is equal to   31 1 ( )M HARQ HARQu T T T      and 

 _ 4 41 ( )A M M HARQ HARQT v T T T     , respectively. The probability that the device that 

successfully transmits the Msg3 using u HARQ transmissions and receives the Msg4 

using v HARQ transmissions is    1 11 1 .u v

f f f fP P P P    Hence, MSGT  is expressed 

as 

   
  

  

      

3
1 1

1 1
_ 4 4

2
2

3 4 _ 4

1 1

1 1 ( )
1 1

1 ( )

       1 1 1 ( ) 1 .

HARQ HARQ

HARQ HARQ

N N
M HARQ HARQ

u v

MSG f f f f

u v
A M M HARQ HARQ

N N

u v

f f M M HARQ A M

u v

u T T T
T P P P P

T v T T T

P P u T v T u v T T

 

 

 

 

    
   
     
 

        

 

 

 

(17) 
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VI. NUMERICAL RESULTS 

Computer simulations are conducted on top of a C-based simulator to verify the 

effectiveness of the proposed analytical model. In the simulation, each point is obtained 

by 105 samples. Each sample is acquired by preforming the random access procedure 

in an investigated interval. We adjust the parameters of number of devices (M), total 

number of preamble-I reserved for C-PRACH (RC), total number of preambles reserved 

for D-PRACH (RD), and maximal number of preamble-I transmission (NPTmax) to 

evaluate the performance of the access success probability (PS) and the average access 

delay (𝐷𝑎
̅̅̅̅ ). The same random access preamble set as in LTE-A is used for RD. Hence, 

RD is fixed in all simulation. All of random access parameters refers to [12], and the 

setting values of all simulation parameters are summarized in Table 1.  

Three scenarios are considered in this thesis. Scenario I is defined to verify the 

accuracy of the analytical models. We consider the case when the eNB reserves 5, 10 

and 15 preambles for C-PRACH (RC= 5, 10, 15) and 54 preambles for each D-PRACH 

(RD=54) to page a group of a size of 10–1000 MTC devices (M=10–1000) with a 

different number of the maximal preamble-I transmission. The results of the maximal 

number of preamble-I transmission, which equals to 3, 5 and 10 (NPTmax=3, 5, 10), are 

shown in the Figure 5 to Figure 10.  

Scenario II is designed to evaluate an effect of the variable parameters setting and 

the tradeoff between RC and NPTmax with M=1000. The range we used in RC is from 1 to 

15 because the maximum number of D-PRACH is also set to 15 in our simulations. 

Thus, any higher number of the reserved RC would cause more failures in the Phase-I 

because of lack of the D-PRACHs. The results are shown in Figure 11 and Figure 12.  

Scenario III is presented to compare the group paging in proposed TPRA with group 

paging in the standard LTE RAP [12]. We take two cases (RC=5 and 15) of the proposed 

TPRA into account. The value of the maximal number of preamble-I transmission is set 

to 10 for both LTE RAP and TPRA (NPTmax=10). Figure 13 and Figure 14 show the 

comparisons of the access success probability and average access delay, respectively. 

Thus, Figure 15 and Figure 16 demonstrate the number of contending and successful 

devices for each C-PRACH in TPRA and each PRACH in LTE RAP. 
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Notation Definition Value 

NRB System bandwidth for uplink [unit: GHz] 20 

M Number of initial devices 1-1000 

RC Total number of preambles reserved for C-PRACH 5, 10 , 15, 30, 54 

RD Total number of preambles reserved for D-PRACH 54 

NDPmax Maximal number of assigned D-PRACH min (NUL, 
NRB

6
) 

NPTmax Maximal number of preamble-I transmission 3, 5, 10 

WBO Backoff window size [unit: sub-frame] 21 

NUL 

Maximal number of acknowledged RAR within the 

random access window size 
15 

TCP 

Interval between successive C-PRACH [unit: sub-

frame] 
10 

TRAR 

Time required for receiving the RAR after preamble 

transmission (=processing time+ RAR window size) 

[unit: sub-frame] 

7 

TCR Contention resolution timer [unit: sub-frame] 48 

pf 
Failed probability of HARQ transmissions for Msg3 

and Msg4 
0.1 

NHARQ 
Maximal number of HARQ transmission for Msg3 and 

Msg4 
5 

pn 
Preamble detection probability of the nth preamble-I 

transmission 

1
1

n n
p

e
   

THARQ 
Time interval required for receiving HARQ ACK  

[unit: sub-frame] 
4 

TM3  Gap of Msg3 retransmission [unit: sub-frame] 4 

TA_M4  Gap of monitoring Msg4 [unit: sub-frame] 1 

TM4  Gap of Msg4 retransmission [unit: sub-frame] 1 

Table 1. Simulation parameters 
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In Scenario I, the analytical and simulation results of PS and 𝐷𝑎
̅̅̅̅  are shown in Figure 

5 to Figure 10. Markers and lines in Figure 5 to Figure 10 are used to present simulation 

and analytical results, respectively. The analytical results of PS and 𝐷𝑎
̅̅̅̅  are obtained 

based on (13), and (14), respectively. In Figure 5 to Figure 10, variable RC is evaluated 

and three cases of NPTmax are investigated including NPTmax=3 for Figure 5 to Figure 6, 

NPTmax=5 for Figure 7 to Figure 8, and NPTmax=10 for Figure 9 to Figure 10. In Figure 5, 

the access success probability (PS) is obviously increasing with RC. However, in Figure 

7 and Figure 9, all of the devices successfully complete the random access procedure 

(PS=1) when the number of devices is below 600 (M≤600). For M>600, the access 

success probability (PS) is still 1 (PS=1) when NPTmax=10, but it is getting smaller when 

NPTmax=5. In Figure 6, Figure 8, and Figure 10, the average access delay (𝐷𝑎
̅̅̅̅  ) is 

decreasing with increasing RC. If we compare with the results in Figure 6, Figure 8, and 

Figure 10, the average access delay (𝐷𝑎
̅̅̅̅ ) for the case of NPTmax=3 is lower than the 

others because a small maximal number of preamble-I transmission causes less 

successful devices and influences the time required to succeed in the random access. In 

both Figure 8 and Figure 10, the average access delay for the case of RC=10 has the 

same value as for the case of RC=15. We can conclude that 5-times preamble-I 

transmission is enough to complete the random access procedure for cases of RC=10 

and 15 because the access success probability (𝐷𝑎
̅̅̅̅ ) has already been 1 when NPTmax=5. 

Although, the case for NPTmax=3 reaches the lowest average access delay (𝐷𝑎
̅̅̅̅  ), the 

access success probability (PS) is much worse than for all other cases even with the high 

number of RC. Thus, among these results, the accuracy can be verified by the perfect 

matching between the analytical and the simulation results. 
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Figure 5. Access success probability (NPTmax=3) 

 

Figure 6. Average access delay (NPTmax=3) 
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Figure 7. Access success probability (NPTmax=5) 

 

Figure 8. Average access delay (NPTmax=5) 
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Figure 9. Access success probability (NPTmax=10) 

 

Figure 10. Average access delay (NPTmax=10) 
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In Scenario II, the access success probability (PS) and average access delay (D𝑎
̅̅̅̅ ) of 

the case for M=1000 with variable 𝑅𝐶 (1 ≤ 𝑅𝐶 ≤ 15) are presented in Figure 11 and 

Figure 12, respectively. We discussed three cases (𝑁𝑃𝑇𝑚𝑎𝑥 = 3 , 𝑁𝑃𝑇𝑚𝑎𝑥 = 5  and 

𝑁𝑃𝑇𝑚𝑎𝑥 = 10 ) with RC ranging from 1 to 15. Figure 11 shows that all devices can 

successfully access the channel in both cases (𝑁𝑃𝑇𝑚𝑎𝑥 = 5 and 10) when RC≥ 8 and 

RC≥ 3, respectively. On the other hand, in the case with NPTmax= 3, only around 90% of 

devices can successfully access the channel even when the eNB allocates 15 D-

PRACHs. The access success probability for the three cases (NPTmax=3, 5, and 10) are 

increasing with RC until the access success probability equals to 1.  

 

 

Figure 11. Access success probability with variable 𝑅𝐶 (1 ≤ 𝑅𝐶 ≤ 15) 

 

Figure 12 shows that the average access delay is high when NPTmax=5 and 10 with 

low RC because a higher NPTmax provides the devices with more chances to access the 

channel even for a low number of the preamble-I reserved in the C-PRACH. However, 

the most interesting conclusion in Figure 12 is that the results for two cases (NPTmax=5 

and 10) are converging to a low delay (below 60 ms) for a larger RC (approximately for 

Rc>10) The reason is that RC gradually increases to the optimal situation (PS=1) and this 

means that it is not necessary to reserve more RC. Thus, from Figure 11 and Figure 12, 

we can study the effect of the different combination of setting parameters NPTmax and RC 

according to the service quality constraints. 
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Figure 12. Average access delay with variable 𝑅𝐶 (1 ≤ 𝑅𝐶 ≤ 15) 

 

In scenario III, a comparisons of the access success probability (PS) and the average 

access delay (𝐷𝑎
̅̅̅̅ ) for the group paging in the standard LTE RAP and the group paging 

for TPRA with NPTmax=10, and RC=5, 15 are demonstrated (Figure 13and Figure 14).  

Figure 13 shows that all the devices successfully access the network for both LTE 

RAP and TPRA when the number of initial devices in the first PRACH/C-PRACH (M) 

is up to 250. Then, the access success probability (PS) in the case of LTE RPA drops 

down by 90% when the number of initial devices (M) increased to 1000. Obviously, the 

performance of the access success probability (PS) in the case of TPRA is much higher 

than in the case of LTE RAP even though the eNB reserves only few preambles for the 

C-PRACH.  



 

-30- 
 

 

Figure 13. Comparison between group paging for LTE RAP and TPRA of success 

access probability 

 

In Figure 14, we find that both values of RC for TPRA (RC=5 and 15) allows to reach 

a lower average access delay (𝐷𝑎
̅̅̅̅ ) than the standard LTE RAP when the number of 

initial devices is higher than 70 (M>70). The access delay (𝐷𝑎
̅̅̅̅ ) for the TPRA is slightly 

higher than the case of LTE RAP when the number of initial devices (M) is below 70 

because an additional preamble-I transmission in TPRA is required and it causes a 

longer preamble transmission time. It is important to mention, that the proposed TPRA 

is intended for massive MTC and thus low number of devices are not expected.  

 

Figure 14. Comparison between group paging for LTE RAP and TPRA of average 

access delay 
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Figure 15 and Figure 16 show that the comparison of the number of contending 

devices and the number of successful devices in each C-PRACH/PRACH between LTE 

RAP and TPRA for the case M=1000. Figure 15 and Figure 16 show that the number of 

contending devices for the standard LTE RAP is high in most of the PRACHs because 

the number of successful devices is always small and most of the devices perform 

random backoff to re-transmit again. In Figure 15Figure 16, the number of the 

contending devices in the second C-PRACH in the both cases of TPRA is zero because 

the time to learn the failure of the preamble transmission (including preamble-I and 

preamble-II) in TPRA is longer than one C-PRACH interval (TCP). Figure 16 shows 

that the number of successful devices for the two cases of TPRA in each C-PRACH 

does not exceed the maximal number of acknowledged RAR for all D-PRACHs. The 

maximal number of acknowledged RAR is calculated as 𝑅𝐶×𝑁𝑈𝐿 if 𝑅𝐶 < 𝑁𝑈𝐿. Thus, 

the maximal numbers of the acknowledged RAR-I are 75 and 225 for RC=5 and 15, 

respectively. 

 

 

 

Figure 15. Number of contending devices in each C-PRACH and PRACH (M=1000, 

NPTmax=10) 
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Figure 16.  Number of successful devices in each C-PRACH and PRACH (M=1000, 

NPTmax=10) 
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VII. CONCLUSIONS AND FUTURE WORKS 

This thesis has proposed two-phase random access procedure for machine-type 

communication in LTE-A system. The proposed TPRA is based on the LTE-A RAP and 

extends it towards suitability for a simultaneous access of massive amount of MTC 

devices. Also, the analytical model is derived to estimate the access success probability 

and average access delay during the random access procedure considering the 

implementation constraints of the random access procedure. The accuracy of the 

analytical model is verified by the computer simulation and the numerical results show 

that the proposed TPRA can be applied for high density of the devices. In TPRA, the 

eNB can immediately adjust the number of preamble-Is reserved for the C-PRACH (RC) 

based on the instantons offered load. Thus, TPRA makes the system more flexible in 

order to arrange the unexpected bursty arrivals. The numerical results demonstrate that, 

compare with the standard LTE-A RAP, the proposed TPRA can improve the access 

success probability by 9% and save around 50% of access delay, especially under high 

density of devices. Also, it shows that the two additional steps doesn’t bring negative 

influence to the performance. 

In the future, the model proposed in this thesis can be widely adopted to study the 

impact of different system parameter configurations and consider the influences of the 

distribution of bursty arrival during the random access procedure. Also, the model can 

be extended to design the timely dynamic allocation mechanism for the D-PRACH to 

efficiently utilize the PRACH resources. 
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