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May, 2017









Abstract

Poker is a popular scenario of the game theory, and it is used as the example of

sequential finite games, where players do not share the same information. In this thesis, we

use smaller poker variants with three players to compare and examine different approaches

to computing strategies. We study a strategy computed by Counterfactual Regret min-

imization algorithm, which is a very popular algorithm for three-player computer poker

players, in comparison with strategies computed by the concepts of MaxMin strategy and

Stackelberg equilibrium. We use a tournament based methods to compare and examine

computed strategies for Kuhn Poker and Leduc Hold’em. We have shown, it is a hard task

to find global optima for Stackelberg equilibrium, even the three-player Kuhn Poker. We

present a way to compute MaxMin strategy with the CFR algorithm. The tournaments

suggest the pessimistic MaxMin strategy is the best performing and the most robust strat-

egy. There is a tie for the second place between Stackelberg equilibrium strategy and CFR

strategy, where different approaches lead to similar total average payoffs. The experiments

also revealed the importance of different positions around the poker table and significance

of ordering of players.





Abstrakt

Poker je populárńı doména v teorii her a je využ́ıván jako př́ıklad sekvenčńı konečné

hry, kde hráči nesd́ılej́ı všechny informace. V této práci použ́ıváme zjednodušené vari-

anty tř́ıhráčového pokeru k porovnáńı a analýze r̊uzných př́ıstup̊u pro výpočet strategíı.

Zabýváme se Counterfactual Regret minimization algoritmem, což je populárńı algorit-

mus pro poč́ıtačové hráče pro tř́ıhráčový poker. Strategie z CFR algoritmu porovnáváme

se strategiemi vypoč́ıtaných podle konceptu MaxMin strategie a strategíı podle Stackel-

bergova equilibria. Strategie pro Kuhn Poker a Leduc Hold’em porovnáváme na základě

turnaj̊u. Ukázali jsme, že výpočet globálně optimálńı strategie dle Stackelbergova equilibria

je složitá úloha i pro malou doménu jakou je Kuhn Poker. Dále jsme představili zp̊usob

jak vypoč́ıtat MaxMin strategii za použit́ı CFR algoritmu. V turnaj́ıch se nejlépe umı́stila

pesimistická MaxMin strategie, která se zároveň zdá nejv́ıce robustńı strategíı. O druhé

mı́sto se děĺı strategie dle Stackelbergova equilibria a CFR strategie, kde r̊uzné př́ıstupy

dosáhly podobného pr̊uměrného zisku. Během experiment̊u se projevila d̊uležitost pozice

kolem pokerového stolu a také význam uspořádáńı hráč̊u.
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Chapter 1

Introduction

Field of game theory dates it beginning to the 40’s and 50’s of the previous century,

with work of O. Morgenstern and Von Neumann and much more. Game of poker is a

domain used since the beginning of the game theory field, for example, articles from 1950

for two-player poker [11] and three-player poker [16]. Poker is a card game, where imperfect

information is represented by hole cards, cards known only to the players who is holding

them, shared information, represented by table cards, known to all players and various

betting actions, in which players take turns. It is also known as the game of bluffing

and outplaying the opponents. This domain allows us to examine algorithms and solution

concepts for the multiplayer imperfect-information perfect-recall sequential games.

Computational game theory combines mathematics and informatics, using algorithms

and computers to find strategies according to theoretical concepts. This field is gaining

popularity in last years, mainly thanks to successes in defeating human players in chess [13],

Go [5] and also in one of the most popular poker variant Texas Hold’em, in the two-player

limit game [8] and the two-player no-limit game [7].

These achievements have happened in the two-player games, where the position of

both players is in the direct opposition. We focus only on three-player games, where this

opposition is not so clear and, for example, two players can have the same interest and

gain together from the loss of the third player. The indirect opposition also contributes to

increased computational complexity of strategies, than in two-player games.

For computations of strategies we use Kuhn poker and Leduc Hold’em as our domains.

Both variants have a small set of possible cards and limited bets. The Kuhn poker is a

one-round poker, where the winner is determined by the highest card. Leduc Hold’em is a

two-round game with the winner determined by a pair or the highest card.

In general, game theory focuses on describing scenarios containing players, payoffs,

actions. Players take actions according to their knowledge or belief of the state of the
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game and usually try to maximize their payoffs at the end. Besides the description of

the scenario, it aims at finding a solution for games. A solution of a game from game

theory perspective is a strategy. There are two most used strategy types; pure strategy

picks exactly one action for each decision node. On the other hand, mixed strategy is a

probability distribution over actions in each decision node. Simple games we can imagine

and use as examples are tic-tac-toe, chess, poker, prisoner’s dilemma or go. Besides these

there are multiple practical applications such as patrolling subway for passengers without

a valid ticket, planning patrols and checkpoints on airports, preventing pirates to take over

of cargo ships in Somalia.

Games differ in numerous aspects, cooperative vs. competitive, complete vs. incom-

plete information, simultaneous vs. turn base. For finding a strategy we usually use the

concept of equilibria, which is a strategy advantageous for every concerned player. In this

thesis, we are using two known equilibria: Nash equilibrium and Stackelberg equilibrium.

Equilibrium is a set of stable strategies, where no player wants to change her own strategy.

In Nash equilibrium, all players play best possible strategy to strategies of other players,

therefore if one player changes her strategy, she will get the same payoff or worse. Stackel-

berg equilibrium is the solution concept, where one player (leader) publicly commits to a

strategy and the rest of the players (followers) playing the best response against the leader’s

strategy.

We have these equilibria and maxmin as theoretical solution concepts, but they are

very hard to compute, and we can not be even sure, how they will work in the three-player

game because there are no theoretical guarantees in the current state of the art.

In this thesis, we work with three main strategies. One with computed with the

Counterfactual Regret Minimization algorithm (abbreviated as CFR in this thesis). The

first reason for using the CFR is that it is proven the algorithm converges to Nash equilibria

for two-player perfect-recall zero-sum games. Another reason is, the CFR is commonly

used for computing bots for three-player Kuhn poker (see [14] and [9] as an example).

Next strategies are computed as heuristical maxmin, which can be viewed as computing a

strategy against both opponents playing together. We sum the payoff for the other players

and run the CFR algorithm for this situation. The maxmin strategy seems pessimistic, but

it will hopefully lead to safe and careful strategy. The last strategy is computing a strategy

according to a Stackelberg equilibrium, which we do by solving a non-linear mathematical

program. As far as our knowledge goes, there is no comparison between CFR strategies,

MaxMin strategies, and strategies according to Stackelberg equilibrium.
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1.1 Thesis outline

In first two chapter, we start with a brief overview of used terms from game theory,

following the description of used algorithms and methods for computing the strategies. Af-

terward, in Chapter 4 we describe our modifications of algorithms, to compute the strategies

for three-player poker. Nextly, we describe poker, implementation details, compare results

of CFR algorithm with ε-Nash equilibrium and Nash equilibrium and show limitations

of computation Stackelberg equilibrium by nonlinear programming. Then we present the

tournament-based comparison of strategies for small poker variants with insight on strate-

gies behavior. At last, we sum up the algorithms, our modifications, results of tournaments

in the Conclusion.
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Chapter 2

Game Theory

Games are situations where players take actions that lead to outcomes. They can

represent conflict, negotiation, company mergers or board games. Every game or domain

has its parameters and properties, but all games have some things in common.

Games are played by players using their actions to influence the game and to reach

an outcome. Players usually act based on some strategy, rule-based system on how to

choose an action. Playing actions can be either sequential, when players take turns, or

simultaneous when players play their action at once. Action can be the purchase of an

estate in the game of Monopoly, placing a piece in Domino or moving a showing a sign in

the rock-paper-scissors game. Games also vary in their length, compare prisoner’s dilemma

with chess. Prisoner’s dilemma is a situation, where two players choose from two actions

(confess or remain silent) and then the game is concluded and years in prison dealt. Chess

is a game, where two players take turns, during which they move one piece on the chess

board. Game of chess can take from 3 turns to something around 40 turns (there is no

upper limit, but it is not probable to play a longer game then 80 turns).

Games in common view have a winner or winners at the end. Game theory describes

the conclusion of games in more detail by the utility function, which tells us what each

player receives for playing actions they played. Utilities distributed at the end do not have

units; they can be view as points, −1 for the loss and 1 for the win or they can represent an

amount of chip won/lost after the game of poker. When utilities for all players sum to zero

in each possible outcome of the game, the game is called the zero-sum game. Otherwise, it

is a general-sum game.

Some games have hidden information from a player, player’s hand cards as in poker,

player’s positions as in battleships. These are the games with imperfect information.

In this chapter we formalize games as extensive-form game, define strategies and

solution concepts as best response, Nash equilibrium and Stackelberg equilibrium. As the
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source of formal definitions we have used [15], [12], [19], [17], [9]

2.1 Games

Poker is a turn-based game, with a chance player dealing hole cards known only to

the players and table cards, known to all. We use the extensive form to describe the game

of poker because it is the most suitable form of representation. The extensive form can

be viewed as directed tree (see following Example 1), where vertices represent the states

of the game and the edges represent actions taken from the game state. Vertices grouped

into sets, which represent the knowledge as Information sets. Nodes in the information

set are indistinguishable for the acting player. The payoff function for every possible leaf

(sometimes called terminal node).

Example 1. This is an example of the game tree for the two-player imperfect-information

game. It can model a situation, where both players secretly choose from the same set of

actions {a, b} and the utilities are then distributed according to this choice. The first player

(the circle node) has one information set I1 containing one node, the second player (the

square node) also has one information set I2 containing two nodes. The I2 signals us that

the second players do not know the action player one took. Numbers in brackets are utilities

in the form (u1, u2).

Figure 2.1: Game tree example

We use term history for identifying the state of the game. The history is a specific

sequence of actions taken from the root node of the tree. The empty history, or history
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leading to the root node, is denoted as ∅. We use H as a set of all histories, and Z is a set

of all terminal histories Z ⊆ H. When the player is in node defined by h ∈ H and takes

action a, we write it as h′ = ha.

We formally define the extensive form as follows:

Definition 1. A imperfect-information game in extensive form is a tuple G = (N,A,H,Z, χ, ρ, σ, u, I),

where:

• N is a set of players

• A is a set of actions

• H is a set of all histories

• Z is a set of terminal histories, Z ⊆ H

• χ : H\Z → 2A is the action function, which assigns to each choice node a set of

possible actions

• ρ : H\Z → N is the player function, which assigns to each nonterminal node a player

i ∈ N who chooses an action at that node

• σ : H×A→ H∪Z is the successor function, which maps a choice node and an action

to a new choice node or terminal node such that ∀h1, h2 ∈ H,∀a1, a2 ∈ A : σ(h1, a1) =

σ(h2, a2)→ h1 = h2 ∧ a1 = a2

• u = (u1, . . . , un), where ui : Z → R is a real-valued utility function for player i on the

terminal nodes Z.

• I = (I1, . . . , In), where Ii = (Ii,1, . . . , Ii,ki) is a set of equivalence classes on (i.e., a

partition of) h ∈ H : ρ(h) = i with the property that χ(h) = χ(h′) and ρ(h) = ρ(h′)

whenever there exists a j for which h ∈ Ii,j and h′ ∈ Ii,j

Information sets are used for identifying histories, which are indistinguishable for

the acting player. Since these states look the same for the player, she has the same set

of possible actions in each state from the same information set. See Example 1 with two

information sets, one for each player. Information set for the circle player I1 contains only

one node. The information set for square player I2 contains two nodes and show, the square

player does not know, which action the circle player took.

For information set, we define the function A(I), which returns all possible actions

for the acting player.
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Dealing cards in the poker is a random event in the game. We use a nature player,

to model these random events. This player receives no payoff and plays according to the

mixed strategy, known to all players.

Games can also be distinct by what players know about previous states. If player

remembers all previous actions, the game is called perfect recall. Otherwise, if she forgets

some part of history, the game is called imperfect recall. More formally:

Definition 2. An extensive-form game has perfect recall if for every player i ∈ N , for

every information set I ∈ Ii, and for any h, h′ ∈ I,Xi(h) = Xi(h
′). Otherwise, the game

has the imperfect recall.

2.1.1 Strategies

The strategy is a very important concept of the game theory. Strategy for given

player defines a plan for all information sets of that player, where it specifies what actions

to play. The strategy is a very common result of algorithms/mathematical programs used in

computational game theory. The simplest strategies are Pure Strategies, Which prescribes

one action for each information set. More used are mixed strategies, which presents a

probabilistic distribution over actions for every information set.

Formally, pure strategies are defined as follows:

Definition 3. Let G = (N,A,H,Z, χ, ρ, σ, u, I) be an imperfect-information extensive-form

game. Then the pure strategies of player i consist of the Cartesian product ΠIi,j∈Iiχ(Ii,j).

The strategy profile is a Cartesian product of mixed strategies for all players.

For evaluation of the strategy in the tree-like games, we use a concept of expected

utility. Simply said, it is the sum of payoffs over all leafs, multiplied by the probability of

reaching each leaf. The reaching probability comes from the strategies of players.

We use a sequence as the main definition, for the player’s state, which are nodes in

the game tree. The sequence is a path of actions taken by the player. It can lead to many

states, and we need to know sequences of all players to determine the exact game state we

are in.

The sequence is formally defined as follows:

Definition 4. A sequence of actions of player i ∈ N , defined by a node h ∈ H ∪ Z of the

game tree, is the ordered set of player i’s actions that lie on the path from the root to h.

Let ∅ denote the sequence corresponding to the root node. The set of sequences of player i

is denoted Σi and Σ = Σ1 × . . .Σn is the set of all sequences.
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We use the sequence-form representation of games as a more refined representation

than the extensive form. We formally define sequence form:

Definition 5. Let G be an imperfect-information game. The sequence-form representation

is a tuple G = (N,Σ, g, C), where:

• N is a set of n players

• Σ = (Σ1, . . . ,Σn), where Σi is the set of sequences available to player i

• g = (g1, . . . , gn), where gi : Σ→ R is the payoff function for player i

• C = (C1, . . . , Cn, where Ci is a set of linear constrants on the realization probabilities

of player i

Payoff function is the same as in the extensive form, but instead of being defined

on leafs, it is defined for sequences leading into leafs as real-valued number and 0 for non-

terminal sequences. Formally:

Definition 6. The payoff function gi : Σ→ R for player i is given by g(σ) = u(z) if a leaf

node z ∈ Z would be reached when each player played his sequence σi ∈ σ, and by g(σ) = 0

otherwise.

Now we have the sequence form and payoffs for sequences, and we can continue to the

most important part: a realization plan. Realization plan is a form of strategy, for every

sequence it assigns a probability for following sequences. Defined as:

Definition 7. A realization plan for player i ∈ N is a function ri : Σi → [0, 1] satisfying

the following constraints:

ri(∅) = 1 (2.1)

∑
σ′i∈Exti(I)

ri(σ
′
i) = ri(seqi(I)), ∀I ∈ Ii (2.2)

ri(∅) = 1, ∀σi ∈ Σi (2.3)

Where seqi : Ii → Σi is a function returning sequence leading to the information set

Ii.

And where Exti : Σi → 2Σ is a function mapping from sequences to set of se-

quences. Exti(σi) denotes the sequences, that extends the σi by playing one action. For

leaf nodes Exti returns empty set. In the equation above, we used a shorthand Exti(I) =

Exti(seqi(I)).
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2.2 Solution concepts

The solution concept is a subset of possible outcomes, which has some predefined

property. In a single-player environment, we can restrict our computations simply to max-

imizing the player’s utility. In a multi-player environment, we have to find a solution based

not only on the environment but also on the other player’s strategies.

In this section, we firstly describe the concept of best response, secondly possibly

the most known solution concept of game theory: Nash equilibrium. Following with the

definition of the concept of MaxMin. Lastly, we will define the Stackelberg equilibrium.

2.2.1 Best response

The best response is a very simple concept of utility maximization. It is a solution for

one player, which knows other players strategies. Generally speaking, it is a simple utility

maximization problem for one player. Firstly, we define strategy profile s−i of all other

players but player i: [19]

Definition 8. s−i = (s1, . . . , si−1, si+1, . . . , sn) a strategy profile s without player i’s strat-

egy. Thus we can write s = (si, s−i).

With a fixed strategy profile s−i player can determine her best response strategy as:

Definition 9. Player i’s best response to the strategy profile s−i is a mixed strategy s∗i ∈ Si
such that ∀si ∈ Si : ui(s

∗
i , s−i) ≥ ui(si, s−i).

Recall our Example 1, if the first player plays action a with probability 1.0, then best

response for the second player is playing action b with probability 1.0. She selects better

option between a and b, which leads to utilities 0 and 5 respectively. Then, b is the best

possible response for the second player in this simple game.

2.2.2 Nash equilibrium

Since the player will not know the strategies of the opponents, it is difficult to use the

best response for finding a strategy. By abstracting the idea of best response for strategies

of all players, we will get a Nash equilibrium, which is a solution concept, where all players

play the best response.

Nash equilibrium is formally defined as follows:

Definition 10. A strategy profile s = (s1, . . . , sn) is a Nash Equilibrium if, for all players

i, si is a best response to s−i.
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When the strategy profile s is a Nash Equilibrium, deviation of a player from her

strategy is either another best response or strategy, which is worse than the one in s.

If the players do not care about small changes in the utility, it can lead to the concept

of an ε-Nash equilibrium. More formally:

Definition 11. Fix ε ≥ 0. A strategy profile s = (s1, . . . , sn) is an ε-Nash equilibrium if,

for all agents i and for all strategies s′i 6= si, ui(si, s−i) ≥ ui(s′i, s−i)− ε.

There are Pure Nash equilibria, where strategy profile contains only pure strategies,

and Mixed Nash Equilibriums, where the strategy profile contains mixed strategies.

Our previously used Example 1 has two Pure Nash Equilibria. Those are (a, b) and

(b, a). If some player deviated from the strategy, she would get worse payoff than which she

would get from following the equilibrium strategy. For example in strategy (a, b), if first

player will play b instead of a, the payoff will drop from 5 to 2. Assuming, the first player

plays a, if the second player rather plays a instead of the b, her payoff will drop from 2 to

0.

There is also a Mixed Nash Equilibrium in the Example 1. It has the same strategy

for both players: playing (a, b) with probability (0.6, 0.4). It will lead to an expected payoff

2 for both of them.

2.2.3 MaxMin

MaxMin is a concept suitable for games with more than two players. It models

situation of player i, where other players −i are trying to make the greatest harm to i.

Therefore the player i is playing strategy, maximizing her worst-case payoff. Even when

the strategy of −i is not to make the greatest harm to player i, playing according to maxmin

strategy ensures a minimal payoff, the i gets. Formally:

Definition 12. The maxmin strategy for player i is arg maxsi mins−i ui(si, s−i), and the

maxmin value for the player i is maxsi mins−i ui(si, s−i).

This solution concept leads to a conservative strategy, which prepares for the worst-

case opponents but does not have to make any assumptions about their rationality or their

interests.

2.2.4 Stackelberg equilibrium

Third solution concept we are using in this thesis is Stackelberg equilibrium proposed

by Heinrich Freiherr von Stackelberg in 1934. Originally, the von Stackelberg researched

the duopoly model, where two companies plan their production on the base of the other
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company’s production and market. He showed, the one company already in the market can

gain an advantage in committing to the strategy, and other company entering the market

would make their production strategy according to the leaders’ commitment. It can lead

to maximizing leader’s profit while playing best response as the follower. In this section,

we use [2] as the main source about Stackelberg equilibrium.

This solution concept is not approaching all players the same. One of the players is

the leader, which commits to her strategy and other players are followers, who play the

best response. The leader chooses the strategy, so the best response of followers maximizes

her expected utility.

Definition 13. A Strong Stackelberg Equilibrium is a strategy S = (δ∗, ρ∗), such that:

• The leader commits to his best response Vd(δ∗, ρ) ≥ Vd(δ, ρ),∀δ

• The follower plays his best response Va(δ, ρ
∗) ≥ Va(δ, ρ),∀ρ

• The follower breaks ties in leader’s favor Vd(δ
∗, ρ∗) ≥ Vd(δ∗, ρ)

Where d denotes defender or leader player and a follower player (or attacker). Vi

function returns expected utility for player i and strategies δ and ρ represents leader’s and

follower’s mixed strategies respectively.

The Stackelberg equilibrium provides us an interesting point of view on the strategies.

As our research of a state of the art goes, no paper dealing with three-player poker has

used a strategy based on Stackelberg equilibrium.
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Chapter 3

Algorithms

In this chapter, we provide a description of the two main methods of computing

strategies. Counterfactual Regret Minimization algorithm(abbreviated CFR in the rest of

the thesis) and nonlinear programming (abbreviated as NLP) formulations for computing

Stackelberg equilibrium.

3.1 Counterfactual Regret Minimization

As mentioned earlier in this thesis, CFR produces strategies convergent to an ε-Nash

equilibrium in two-player zero-sum games. There is no theoretical proof of any convergence

of CFR in games with more than two players. The experiments in [14] show the CFR

produced a strategy that is an ε-Nash equilibrium, but the strategy for the Leduc poker is

not even in a ε-Nash equilibrium. The current conjecture is, the CFR produces a coarse

correlated equilibrium.

The CFR traverses through the game tree and updates the regret for playing actions

according to current strategy profile. The strategy profile in the next step is made from

actions with the lowest regret in each information set. Intuitively, regret is a difference of

payoffs between action we play and action we do not play. The probability of playing an

action is calculated according to values of regrets which are then normalized by the sum of

all regrets for given information set.

Firstly, we make an overview of the theory behind CFR algorithm. Secondly, we

present pseudocodes with a description.
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3.1.1 Regret

The following formulations of the theory behind CFR along with the algorithm are

based on [9] and [12].

As stated above, the regret is a penalization for between action we take and the action

we do not take. Formally, we define regret as follows:

Definition 14. Given a sequence of strategy profiles σ1, . . . , σT , the external regret RTi for

player i is

RTi = max
σ′i∈Σi

ΣT
t=1(ui(σ

′
i, σ

t
−i)− ui(σt)) (3.1)

The Definition 14 gives RTi meaning of amount of the utility player i could gain if

she would follow one single strategy over all iterations T .

Counterfactual value is the expected utility of the information set for player i when

players follow strategy profile σ. We multiply payoff u by reaching probabilities of all

players in each leaf reachable from the information set I. The sum of the products we call

the counterfactual value. We follow by the definition of counterfactual value for player i

Definition 15. Let the ZI be the set of terminal histories passing through I, z[I] is the

history leading to leaf z ∈ Z contained in I. The σ is a strategy profile for all players. Then

we define counterfactual value vi(I, σ) for player i and information set I:

vi(I, σ) = Σz∈ZIui(z)π
σ
−i(z[I])πσ(z[I], z) (3.2)

The external regret for player i is a difference of utilities and is a cumulative sum

over all iterations. The value of external regret is calculated as the maximum from all

sequences of player i from strategy profile Σ. On the other hand, the counterfactual regret

is a difference of expected utilities for given time point t. The counterfactual regret is not

a single value as the external regret is, it is calculated for each information set separately.

From these v values, we can define the counterfactual regret in each iteration for every

action and information set. The counterfactual regret is the difference between playing

according to σt or playing according to σt with the exception in an information set I,

where we choose single action a, noted as σI→a.

Definition 16. Let the vi be counterfactual values, σI→a be a strategy profile, where we fix

the action a to be played in information set I. Then we define the counterfactual regret r

for every information set I and action a:
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r(I, a) = vi(σ
t
I→a, I)− vi(σt, I) (3.3)

Last variables and information CFR uses are cumulative counterfactual regretRTi (3.4),

current strategy profile σT+1
i (3.6) and cumulative profile sTi (3.7):

RTi (I, a) = ΣT
t=1r

t
i(I, a) (3.4)

RT,+i = max{RTi (I, a), 0} (3.5)

σT+1(I, a) =


RT,+i (I,a)

Σa′∈A(I)R
T,+
i (I,a′)

, if the denominator is positive

1
|A(I)| , otherwise

(3.6)

sTi (I, a) = ΣT
t=1π

σt(I)σti(I, a) (3.7)

The assignment into current strategy profile is called regret-matching [12]. It is a

mechanism of computing new strategy profile in each iteration of the algorithm. Regret-

matching normalizes the positive portions of accumulated regret for each action as shown

in 3.6.

If one or more actions have positive cumulative regret value R, then the probability of

playing the action a in given information I is normalized regret for playing that action (first

row of 3.6). If there is no action with positive cumulative regret value, regret-matching

assigns the probability of playing an action a in the information set I according to the

uniform distribution (second row of 3.6).

3.1.2 CFR Algorithm

In the previous section, we have described key concepts and notions used in CFR

algorithm. Now, we show pseudocodes with a description. We describe initialization of

CFR in the Algorihm 1 and recursive function of CFR in Algorithm 2. The variables r, s

and σ have the same meaning in the CFR algorithm pseudocode as they have in the previous

section. The counterfactual regret, cumulative profile and strategy profile respectively.

The CFR algorithm is an iterative algorithm, which recursively goes through the

game tree (in each iteration one pass through for every player) and updates the values of

regrets and strategies. The update of values in σ is taking place in updateRegretTable(),

which updates the values for all information sets in the game tree, according to (3.6).
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Its initialization and calling the iterations is described in Algorithm 1 and the recursive

function is described in Algorithm 2.

The following pseudocodes are what we used in experiments, and it is modified for

usage in three-player poker:

Algorithm 1 CFR initialization

1: ∀I, ∀a ∈ A(I) : rI [a] = 0, sI [a] = 0
2: ∀I, ∀a ∈ A(i) : σ(I, a) = 1

|A(I)|
3: for t = {1, 2, . . . , T} do
4: for i ∈ 1, 2, 3 do
5: updateRegretTable()
6: CFR(∅, i, 1, 1)
7: end for
8: end for

The CFR function takes 4 parameters h, i, πi, π−i, where h is a history, which denotes

state currently examined by the function, i is the searching player, whom point of view it is

at this moment, i changes only after the complete walkthrough of the game tree. Moreover

πi, π−i are probabilities of reaching the state for the searching player and all other players

combined, respectively.

CFR deals with leaves and chance nodes very straightforward. It returns the searching

player utility (Algorithm 2 lines 3-5) in the leaf node. Moreover, it expands the recursion

in chance nodes according to chance probability, which is stored in σc (Algorithm 2 line 7

- 13).

On the lines 22 - 25, the CFR goes through all possible actions and recursively

resolves the next states. Results are weighted by current strategy profile σ. If the state is

the decision node of the searching player, the update of r, s takes place on the lines 27 - 32.

CFR returns the weighted sum of the CFR value of the descendants (last line).
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Algorithm 2 CFR recursive function

1: function CFR(h, i, πi, π−i)
2:

3: if h is terminal then
4: return ui(h)
5: end if
6:

7: if h is chance node then
8: sum← 0
9: for a ∈ A(h) do

10: sum← sum+ σc(h, a) · CFR(ha, i, πi, σc(h, a) · π−i)
11: end for
12: return sum
13: end if
14:

15: Let I be the information set containing h
16: vσ ← 0
17:

18: for a ∈ A(I) do
19: vσI→a [a]← 0
20: end for
21:

22: for a ∈ A(I) do
23: vσI→a [a]← CFR(ha, i, σ(I, a) · πi, π−i)
24: vσ ← vσ + σ(I, a) · vσI→a [a]
25: end for
26:

27: if P (h) = i then
28: for a ∈ A(I) do
29: rI [a]← rI [a] + π−i · (vσI→a [a]− vσ)
30: sI [a]← sI [a] + πi · σ(I, a)
31: end for
32: end if
33:

34: return vσ

3.2 Stackelberg equilibrium

As mentioned earlier, we compute Stackelberg equilibrium with the non-linear pro-

gramming (abbreviated as NLP in the rest of the thesis). Mathematical programming is

a description of an optimization problem with a function that is maximized and set of

constraints, which the solution must be consistent with.
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Stackelberg equilibrium defined in the previous chapter is formulated for the two-

player game. For our three-player domain, we use the following with one leader and multiple

followers [2]:

Definition 17. A multi-follower game is a structure G = (N,A,U) such that

• N = (d,Ψ) is the set of players where d represents leader and Ψ is the set of followers

• A = Ad×AΨ is the set of players’ actions where Ad is the set of leader’s actions and

AΨ = A1 × . . . ×A|Ψ| is the set of followers’ actions

• U = (Ud, UΨ), where Ud : A → R and UΨ : A → R|Ψ| represent the utilities of all

players in each outcome of the game

There are few possible combinations of pure and mixed strategies for leader and

follower. Our focus is on the finding a mixed strategy for leader and followers. The com-

bination where all players play the mixed strategy leads to the most realistic and complex

model of the strategies for the game. For this purpose, we are using following nonlinear

program and mixed-integer nonlinear program: [2]

Formulation 1.

max
δ,ρ1,ρ2

∑
i∈D

∑
j∈Aa

∑
k∈Ab

δiρ
a
jρ
b
kUd(i, j, k) (3.8)

s.t.
∑
i∈D

∑
k∈Ab

va − δiρbkUa(i, j, k) ≥ 0 ∀j ∈ Aa, ∀a ∈ Ψ (3.9)

∑
i∈D

∑
k∈Ab

ρajva − δiρajρbkUa(i, j, k) = 0 ∀j ∈ Aa, ∀a ∈ Ψ (3.10)

∑
j∈Aa

ρaj = 1 ∀a ∈ Ψ (3.11)

va ∈ R ∀a ∈ Ψ (3.12)∑
i∈D

δi = 1 (3.13)

Maximization function is a simple expected utility function for the leader. The vari-

able va describes the value of the best response. Therefore, the constraint (3.9) forces

strategies of one follower and leader to be not lower than the best response of the other

follower. It sets the value of the best response for the other follower. The (3.10) provide a

guarantee, that follower either plays action leading to best response or not play the action
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at all. The Problem 1 has the non-convex constraint (3.10), which makes the computation

of global optimum a hard problem.

Formulation 2.

max
δ,ρ1,ρ2

∑
i∈D

∑
j∈Aa

∑
k∈Ab

δiρ
a
jρ
b
kUd(i, j, k) ∀a, b ∈ Ψ, b 6= a (3.14)

s.t.
∑
i∈D

δi = 1 (3.15)∑
j∈Aa

ρaj = 1 ∀a ∈ Ψ (3.16)

uaj =
∑
i∈D

∑
k∈Ab

δiρ
b
kUa(i, j, k) ≥ 0 ∀j ∈ Aa, ∀a, b ∈ Ψ, a 6= b (3.17)

va ≥ uaj ∀j ∈ Aa, ∀a ∈ Ψ (3.18)

raj = va − uaj ∀j ∈ Aa, ∀a ∈ Ψ (3.19)

ρaj ≤ 1− saj ∀j ∈ Aa, ∀a ∈ Ψ (3.20)

raj ≤Msaj ∀j ∈ Aa, ∀a ∈ Ψ (3.21)

saj ∈ {0, 1} ∀j ∈ Aa, ∀a ∈ Ψ (3.22)

ρaj ≥ 0 ∀j ∈ Aa, ∀a ∈ Ψ (3.23)

δi ≥ 0 ∀i ∈ D (3.24)

The Problem 2 describes the mixed-integer NLP without the nonconvex constraint (3.10)

and leads to a program, where a solver can find an optimal solution in finite time.

This formulation presents three support variables s, r, u. uaj describes utility for fol-

lower a taking action j on (3.18). These utilities than set va as high as they can (3.18),

which leads to finding a best-response. raj represents the difference between utility for

taking action and best response value (3.19).

Because the va is directly set by the highest ra, the difference can be either 0 or some

positive real number. If the raj is higher than 0, it sets the binary variable saj to 1 on (3.20).

This setting signals, action j has worse expected utility than is the best response; therefore

we do not play action j. Which is managed by the constraint on (3.21).
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Chapter 4

Algorithms modifications

We have the solution concepts, which produce reasonable strategies, defined in Chap-

ter 2, but the computation of the Nash Equilibrium for the n-player game is an FIXP-hard

problem. Besides the Nash equilibrium does not provide any guarantee against two players

deviating from their strategies in the n-player zero-sum game.

Therefore we are not explicitly computing the Nash equilibrium, but rather use a novel

approach for the domain of poker. We use solution concepts such as Stackelberg equilibrium

or modification of MaxMin strategy, which we compare against CFR strategy. We use the

CFR strategy because it is a common approach in the multiplayer poker community, for

example [14].

In this chapter, we describe our modifications of CFR and NLP for Stackelberg equi-

librium, to compute reasonable strategies, for three-player poker game. As presented ear-

lier, CFR converges to Nash Equilibrium only in two-player zero-sum games, without any

guarantee for games with more two players. We use the CFR algorithm to compute re-

gret minimizing strategy and modified CFR algorithm to compute the heuristical MaxMin

strategy. Lastly, we modify the NLP to reflect the structure of poker game.

4.1 Counterfactual Regret Minimization

The articles about the usage of CFR in multiplayer poker games were missing a

pseudocode for CFR with more than two players. In the previous chapter, we have described

multiplayer CFR algorithm, where we abstracted the probabilities πi, π−i. They originally

represented player 1 and player 2, in our formulation, they represent the probability of

searching player and the probability of all opponents of searching player combined. The

formulation of CFR in Algorithm 2 is applicable to n-player games as is.
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4.2 MaxMin computation

We want to compute a robust strategy according to the MaxMin concept. We assume

the MaxMin strategy will lead to a defensive strategy, that plays with same quality regard-

less of its opponents. The straightforward computation of MaxMin leads to the situation,

where both opponents can be seen as one player. It would mean, the opponents share

all their knowledge including the hand cards. Which is an unrealistic situation and very

pessimistic assumption for the searching player.

The less pessimistic approach is to see opponents as one player but merges only their

payoff. This situation is an imperfect-recall game, where the opponent player forgets the

card of the other teammate during her turn.

This leads to the reasonable model of the conservative player defending herself against

all other opponents, who align their interests against one player. This aligning of interests

is represented by merging their payoffs, but the opponents both act on their own. Which

is a more realistic situation, which aims to compute careful strategy focused on minimizing

exploitability by other players. The MM strategy does not try to model opponents in any

way; it assumes they try to do the most damage and therefore generates defensive approach

indifferent on the opponents.

We use CFR algorithm to heuristically approximate the MaxMin strategy. The two

players −i1 and −i2 are playing against the third one i. When the game is grouped into

two antagonistic sets of players, it is clear, the gain of one set is the direct loss of the other.

To compute this strategy (abbreviated in the rest of the thesis as MM), we have changed

a way of calculating payoffs. For the player i, the payoff is calculated the same way. The

new payoffs u′−i1 , u
′
−i2 for team-up players −i1 and −i2 are the sum of the original ones:

u−i = u′−i1 = u′−i2 = u−i1 + u−i2 (4.1)

4.3 Stackelberg equilibrium

The Formulation 1 and Formulation 2 are for the games, where players choose from a

single set of actions. We have modified the formulations in Formulation 3 and Formulation 4

specifically for the poker, which is the extensive-form game.

In the game of poker, the set of possible actions depends on information set, where

the player is. The possible action sets depend on player’s position1 and actions of previous

players.

1For explanation of positions see Section 5.1.3
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Table 4.1: Actions of players in betting round divided by positions and actions of other
players

Denoted Position 1 Position 2 Position 3

PA1 (check), (bet) (check), (bet) (check), (bet)

PA2 ∅ (call), (fold) (call), (fold)

PA3 (check, call), (check, fold) (check, call), (check, fold) ∅

The possible sets for each position are shown in the following Table 4.1. The PA1

represents the state, where other players played check. The PA2 is a set of actions, reacting

to a bet made by another player. The PA3 is a set, where the player played check, and

some of the following players played bet, so the player has to react to the bet.

The previous actions of betting round and hand card determine the information set.

We denote IPA1
a the set of all information sets, where player a can play actions from the

PA1 set.

To compute Stackelberg equilibrium, we have to work properly with information sets,

which occurs during the game. In the objective function and all following lines, we use only

combinations of actions, which lead to leaf.

The Aa in original formulation denotes set of all actions for player a. We have

extended this notation to AIa, which represents set of all possible actions given information

I. For example, Acheck,checka is a set of actions after other players both checked.

Secondly, the resulting strategies from the NLP are valid realization plans. The

probabilities of taking actions from IPA1
a sum to 1 and the probabilities of taking actions

from IPA2
a sum to 1 as well ((4.5), (4.7), (4.11) and (4.13). The probabilities of taking

actions from IPA3
a sum to a probability of playing (check) by the given player a in the

previous information set ((4.6), (4.8), (4.12) and (4.14)).

Thirdly, the va representing the best response value for player a is also extended, so

it represents best response value with respect to the information set. The va is a value of

best response for player a and we are using vIa with similar meaning as we used in AIa. The

vIa refers to the best-response value of player a given information I (4.16). There are v for

each action set, we distinct between them by information about player’s a action.

In the Formulation 3 and Formulation 4 we denote the I as the set of all information

sets, Ia as the set of all information sets for given player a.
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Formulation 3.

max
δ,ρ1,ρ2

∑
i∈D

∑
j∈Aδia

∑
k∈A

δiρ
a
j

b

δiρ
a
jρ
b
kUd(i, j, k) (4.2)

s.t.
∑
i∈Dρ

a
j

∑
k∈A

δiρ
a
j

b

vja − δiρbkUa(i, j, k) ≥ 0 ∀j ∈ Aa,∀a ∈ Ψ (4.3)

∑
i∈Dρ

a
j

∑
k∈A

δiρ
a
j

b

ρajv
j
a − δiρajρbkUa(i, j, k) = 0 ∀j ∈ Aa,∀a ∈ Ψ (4.4)

∑
j∈AIa

ρaj = 1 ∀a ∈ Ψ,∀I ∈ (Ia \ IPA3
a ) (4.5)

∑
j∈AIa

ρaj = ρacheck ∀a ∈ Ψ,∀I ∈ IPA3
a (4.6)

∑
i∈DI

δi = 1 ∀I ∈ (Id \ IPA3
d ) (4.7)

∑
j∈DI

δi = δcheck ∀I ∈ IPA3
d (4.8)

vIa ∈ R ∀a ∈ Ψ,∀I ∈ Ia (4.9)
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Formulation 4.

max
δ,ρ1,ρ2

∑
i∈D

∑
j∈Aδia

∑
k∈A

δiρ
a
j

b

δiρ
a
jρ
b
kUd(i, j, k) ∀a, b ∈ Ψ, b 6= a (4.10)

s.t.
∑
j∈AIa

ρaj = 1 ∀a ∈ Ψ,∀I ∈ (Ia \ IPA3
a ) (4.11)

∑
j∈AIa

ρaj = ρacheck ∀a ∈ Ψ, ∀I ∈ IPA3
a (4.12)

∑
i∈DI

δi = 1 ∀I ∈ (Ia \ IPA3
d ) (4.13)

∑
j∈DI

δi = δcheck ∀I ∈ IPA3
d (4.14)

uaj =
∑
i∈Dρ

a
j

∑
k∈A

δiρ
a
j

b

δiρ
b
kUa(i, j, k) ≥ 0 ∀j ∈ Aa,∀a, b ∈ Ψ, a 6= b (4.15)

vIa ≥ uaj ∀j ∈ Aa,∀a ∈ Ψ, ∀I ∈ Ia (4.16)

raj = vIa − uaj ∀j ∈ Aa,∀a ∈ Ψ, ∀I ∈ Ia (4.17)

ρaj ≤ 1− saj ∀j ∈ Aa,∀a ∈ Ψ (4.18)

raj ≤Msaj ∀j ∈ Aa,∀a ∈ Ψ (4.19)

saj ∈ {0, 1} ∀j ∈ Aa,∀a ∈ Ψ (4.20)

ρaj ≥ 0 ∀j ∈ Aa,∀a ∈ Ψ (4.21)

δi ≥ 0 ∀i ∈ D (4.22)
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Chapter 5

Computing poker strategies

In this chapter, we will describe poker and poker variants we are using and difficul-

ties we have to overcome during computing strategies with CFR algorithm and nonlinear

programming for Stackelberg equilibrium.

5.1 Poker variants

In the game of poker, players operate with cards and chips. Cards determine how

good is player standing; the player can have highest card, pair or straight made of several

cards. There are hand cards (or private cards), which are unique for each player, and table

cards, which are same for all players. Chips can be viewed as ”game money.” Players use

them to bet on their hands; they can be used, to ”pretend” (or bluff) better hand cards,

then the player has. Bets are made to the pot, which is the sum of all bets of all players.

The player can bet chips, reaction to this is a call (adding the same amount of chips into

the pot) or fold (giving up this hand with no possibility of winning). When the player

wants to continue in a game, her chip sum in the pot must equal to other playing players.

Actions can be divided into leading (check or bet) and following (call or fold) actions.

Until some player plays bet, we can choose only from leading actions. When some player

before us played bet, we can play only call or fold.

We are computing our strategies for two known poker variants: Kuhn poker and

Leduc Hold’em. Both these variants were created as two-player games (in [11] and [6]

respectively), and for our purposes, we are using three-player variants as described in [14].

Both variants have a very small deck, and the main difference is that Kuhn poker has only

one betting round and no table card and Leduc Hold’em has two betting rounds and one

table card.
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5.1.1 Kuhn poker

Kuhn poker is a one-round poker game, where the deck has four cards (A, K, Q, J).

Players can win only with the highest card, the order of cards is A > K > Q > J, with no

possible tie. Firstly, each player places one chip (called Ante) into the pot, then players get

one hand card randomly from the deck. After card dealing, players take actions in betting

round, where they take turns in the order determined before the hand. Lastly, when the

end of betting round is reached, the winner is declared, and she gets whole pot.

Kuhn poker has a 1-bet cap, which means, there can be only one bet action in betting

round. The bet value is one chip.

5.1.2 Leduc Hold’em

Leduc poker is a two-round poker game, where the deck has eight cards, four ranks

and two suits (As, Ad, Ks, Kd, Qs, Qd, Js, Jd). Order of cards is the same as in the Kuhn

poker, and tie is resolved by splitting the pot. Ante, dealing hand cards and first betting

round is the same as in the Kuhn poker, with one exception, bet in the first round has value

of 2 chips. When there are at least two players, who have not played fold in the first round,

the table card is dealt out of the remaining deck, and another betting round is played with

active players (not folded). In the second round, the bet has the value of four chips.

In Leduc Hold’em, the player can match their card with the table card, and the same

rank makes a pair, which beats all other hands. When no pair is showed, highest card wins.

5.1.3 Positions

The players take turns in each betting round until the betting round is resolved. The

order of taking turns is determined by the position of the player. We can imagine the

position as the place around the table, where the players sit. Player in position 1 plays

first after her action is the turn of the player in position 2 and so on. The order does not

change during the game, but it changes after each game of the tournament.

5.2 CFR computations

The CFR algorithm is symmetrical and it computes the strategy for all positions in

one run. CFR is trying to model the opponents for the searching player by the same way;

it is computing strategy for the searching player. The MM and Stackelberg equilibrium

strategies handle opponents for the searching player asymmetrically. The MM is expecting

them to be the worst possible enemies and the SE is modeling them to be the player playing
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Table 5.1: Expected utilities for Kuhn poker

Position 1 Position 2 Position 3

CFR -0.027914 -0.021318 0.049232

BR -0.02775 -0.019357 0.049311

|CFR - BR| 1.63565E-4 0.001961 7.91307E-5

Table 5.2: Expected utilities for Leduc Hold’em

Position 1 Position 2 Position 3

CFR 0.002381 -0.04881 0.046429

BR 1.063844 1.02619 0.332143

|CFR - BR| 1.061463 1.075 0.285714

the best response against the strategy of the searching player. The MM and SE compute

strategy only for one position in one run, and therefore it had to be computed for each

position separately and merged afterward.

For evaluation, whether the strategy is the ε-Nash or not, we compute best re-

sponse for each position with fixed strategy for the other two, as done in [14] σBR =

(σBR1 , σBR2 , σBR3 ). The comparison of expected utilities and best responses for Kuhn poker

and Leduc Hold’em are shown in Table 5.1 and Table 5.2 respectively. The values of the

CFR for Kuhn poker resulted in ε-Nash equilibrium with ε = 0.001961 (the maximum from

the last line in Table 5.1) and not resulted in ε-Nash equilibrium for Leduc Hold’em. These

results are in agreement with results from [14].

To compute MM strategies, we have altered game tree as described in the previous

chapter. After running CFR on this altered game for each position, we have merged strate-

gies on the positions, where the player plays against other players. This merged strategies

we abbreviate MM. The expected utilities are in Table 5.3 in comparison to SE3 (described

below) and CFR strategy, where the utilities suggest the MM strategy being the most

pessimistical strategy in expected utility point of view.

5.3 Stackelberg equilibrium computations

To compute the NLP for Stackelberg equilibrium, we use the formulation from For-

mulation 4 as a baseline, because it has a better possibility to find a global optimum in

real time. And formulation from Formulation 3 as more easily computable, but without

guarantee for global optimum, with the non-convex constraint.

The NLP formulation is different for each position, and the consequence is, searching

for the optimum is not equally difficult. We have used a NEOS Server for finding optima
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Table 5.3: Expected utilities for SE3 strategy and MM strategy

Position 1 Position 2 Position 3

CFR -0.027914 -0.021318 0.049232

SE3 0.0359 0.04167 0.1562

MM -0.03645 -0.020845 0.041679

for our NLPs1.

We have tried to compute the optimal solution for every position with Formulation 4,

where only Position 2 resulted in global optimum. The solver also found a local optimum

for Position 3. To compute the global optimum for Position 1 and 3, we tried to pre-set

the strategies to a strategy from CFR. The pre-configuration resulted in better expected

utility for Position 3. Therefore we are using this strategy. We were unable to calculate

strategy for Position 1 even with the manual setting of variables to CFR strategy.

Each strategy can be divided in the distinct strategy for each position s = (s1, s2, s3),

where s is complete strategy and si is a strategy for position i. Because the Formulation 4

did not returned any results for Position 1, we have filled the s1 in two ways: by s1 from

CFR strategy (denoted as SE2) and by result of 3 (denoted as SE3). This complementation

of s1 strategy implies, the SE2 and SE3 strategies differ only on Position 1.

Comparison of expected utilities for CFR, SE3, and MM for all three positions are

described in 5.3.

The limitations of finding a solution for NLP for Kuhn poker has lead to inability of

computing Stackelberg equilibria for Leduc Hold’em. Kuhn Poker has around 600 nodes

in 48 information sets, while Leduc Hold’em has almost 33000 nodes in 1200 information

sets, which is a much larger game and leads to uncomputable formulations by our NLPs in

real-time. Kuhn Poker has almost around 240 variables, a similar number of equations 250.

In the objective function, there are more than 300 multiplications of three variables. In

the Leduc Hold’em, the objective function would consist of almost 17000 of multiplications.

The counts are made estimated for Formulation 4.

5.4 Computations

Computation of strategies is not an easy nor quick task. To compute the CFR and

MM strategies, we have compiled executables and used MetaCentrum for evaluation. We

have run the CFR algorithm for computing CFR and MM strategies for 108 iterations each.

For example, Leduc Hold’em CFR strategy was computed in 9 days, and we have used 336

1See the following section for more information about the usage of NEOS Server
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days of CPU time to do all the computations.

We have used NEOS server ([3], [4], [10]) to compute the Stackelberg equilibrium

strategies for all positions. We have created the formulation for all three positions in

GAMS format and submitted them into NEOS. Tne NEOS server provides 8 hours of CPU

time and 3 GB of memory. We have tried several solvers (KNitro, Baron, scip, SNOPT),

out of which the KNitro solver was the most successful. The KNitro [18] found an optimal

solution for Position 2; it also found a locally optimal solution for Position 3 in a given

time. However, could not find a solution for Position 1.
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Chapter 6

Comparison of strategies

There is no concept of the value of the game (as is for two-player games), and no

other similar concept for multiplayer games exists. Thus, we analytically can not tell,

which strategy is better than the other. We use a tournament-bases evaluation to compare

the strategies for Kuhn poker and Leduc Hold’em. The tournament-based evaluation is a

commonly used method for multiplayer poker domain [1] and [14].

We follow the common practice and aggregate the results in the total average payoff

for each strategy. However, as we show later, there is a substantial difference in the perfor-

mance of different algorithms playing at different positions. There we compare the results

of the tournaments in a less aggregated way. We also look which strategies are defensive

and which tends to bluff and take more risky approach. Lastly, we examine how different

ordering around poker table changes the outcome for the same set of players.

For experiments besides our CFR, MM, SE2 and SE3 strategies (described before),

we are also using two simple heuristic strategies: Random and Aggressive (abbreviated

RND and Aggro respectively). The Random strategy sets uniform probability distribution

for all actions in every information set. Aggressive strategy always chooses the bet and call

actions.

6.1 Tournament comparison

6.1.1 Tournament setting

For running the tournaments, we used the ACPC1 server [1], which is the general

easily configurable server for different poker variations. ACPC server rotates the order of

given players. If we run the tournament between players A, B and C, they will rotate on

1Annual Computer Poker Competition, which usually takes place at the AAAI conference
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position. First dealing (A, B, C), second dealing (B, C, A), third (C, A, B) and fourth is

the same as first. Therefore, we have to run both (A, B, C) (table set-up I) and (A, C, B)

(table set-up II) to try all six possible orderings around the table.

For Kuhn poker, we have run 107 hands for each of the set-ups I and II. For Leduc

Hold’em, we have run 5 ·106 hands for each of the set-ups I and II to finish the tournaments

in the reasonable time.

6.1.2 Tournament results

We run the tournaments in both set-ups for the most significant and interesting

triplets. We sum payoffs over all hand in the set-up, calculate the standard deviation, and

the resulting score of strategy in the triplet is the 95% confidence interval. The values

in the tables are averages of milliantes per hand (ma/h), within interval stated in table

description. The last line is overall average for each strategy.

The values in cross-tables are for strategies noted in columns. The other two players

of the triplet are described in the row. All examined triplets2 for Kuhn poker are shown in

Table 6.1, with strategies order from the best to the worst: MM, SE3, CFR, SE2, Aggro

and RND. Few interesting points, the MM strategy not only is the best strategy in the

total payroll point of view, but it is also the only strategy ending up with the positive

score after each game. The aggressive strategy seems good on the first look, but when

examining results in more detail, this strategy gets the positive score only when one of the

other players is random players, the most exploitable strategy we have used. Against only

rational strategies, the aggressive strategy has the average score of −136.5.

The Table 6.2 shows the results for the triplets made out of rational players only. The

order of strategies changed only for CFR strategy, which dropped to the last place, ending

up with the only negative overall payoff. The CFR strategy plays reasonably well against

opponents, where at least one is the heuristic player, but against other rational strategies,

it does not do well.

The results for Leduc Hold’em are in Table 6.3, which shows similar results as seen in

Kuhn poker. Order of strategies is MM, CFR, Aggro and RND. Where aggressive strategy

again loses against (MM, CFR) opponents.

2Note, we are not comparing SE2 and SE3 directly since they differ with strategies only for Position 1.
We compare them on their score against other strategies
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Table 6.1: Cross-table for 3-player Kuhn poker tournament. Values are in ma/h within ±
1.2 ma/h with 95% confidence

mm cfr se3 se2 aggro rnd

cfr, mm † † 43.40 27.10 -211.20 -323.90

cfr, aggro 177.10 † 125.50 46.30 † -476.60

cfr, rnd 166.90 † 166.70 99.30 82.60 †
mm, aggro † 34.10 -10.80 -47.30 † -461.20

mm, rnd † 157.00 89.50 66.00 211.80 †
se2, cfr 79.50 † † † -125.60 -309.80

se2, mm † -106.60 † † -54.00 -187.00

se3, cfr 91.50 † † † -173.70 -336.70

se3, mm † -134.90 † † -117.80 -220.10

se2, aggro 101.30 79.30 † † † -412

se2, rnd 121.00 210.50 † † 335.80 †
se3, aggro 128.70 48.20 † † † -438.40

se3, rnd 130.60 170.00 † † 261.60 †
rnd, aggro 249.40 394.10 76.20 176.80 † †
Overall 138.44 94.63 98.52 44.6 23.28 -351.74

Table 6.2: Cross-table for 3-player Kuhn poker tournament for rational players. Values are
in ma/h within ± 1.2 ma/h with 95% confidence

mm cfr se3 se2

cfr, mm † † 43.40 27.10

se2, cfr 79.50 † † †
se2, mm † -106.60 † †
se3, cfr 91.50 † † †
se3, mm † -134.90 † †

Table 6.3: Cross-table for 3-player Leduc Hold’em tournament. Values are in ma/h within
± 4.5 ma/h with 95% confidence

mm cfr aggro rnd

mm, aggro † 293.2 † -1116.1

cfr, aggro 390.3 † † -1028.3

mm, rnd † 358.8 565 †
cfr, rnd 365.1 † 731.1 †
mm, cfr † † -683.5 -723.9

rnd, aggro 551.2 297.2 † †
Overall 436 316 204 -956
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6.2 Position comparison

In Texas Hold’em, the latter is the players turn, the better for her. Because she can

gather information from actions of the previous players. The last position (called dealer

position) is the best, from the general point of view.

Therefore we have analyzed the behavior of strategies based on position3 through all

hands played for Kuhn and Leduc experiments.

The Table 6.4 propose, the position is important, but each strategy handle position-

ing differently. Best scoring strategy MM has the highest average utility from the dealer

position. However, it is the only one. It seems that CFR strategy takes advantage of the

position in opposite from our belief. In fact, SE2, SE3, and MM take advantage of CFR

and simple strategies on the dealer position.

The SE2 and SE3 have the average payoffs for Position 2 and 3 in the interval of

confidence, which is expected. However, on Position 1 they score very differently, and it

seems, the NLP program for computing Stackelberg equilibrium come up with a very strong

strategy for starting position. Which we attribute to the nature of Stackelberg equilibrium,

where it commits to a strategy and the opponents follow, which is the situation on Position

1.

When we look at the Table 6.5, we see almost no change for aggressive and random

strategy. Interesting points, CFR is no longer losing on Position 3 but is still strongest on

Position 1. MM strategy looks balanced in Kuhn Poker, but in Leduc Hold’em, it relies

heavily on Position 2 with a good game on Position 1.

Our experiments showed, our strategies do not exploit dealer position at all. For

simple strategies, the dealer position is the most exploited. All strategies except MM got

the highest average values on Position 1. MM got highest on Dealer Position in Kuhn

poker and on Position 2 for Leduc Hold’em. Maybe this is the difference, which made MM

strategy successful in the tournament comparison.

Table 6.4: Average payoffs in ma/h based on positions for Kuhn poker

Position 1 Position 2 Position 3 Overall

MM 126.5 111.4 177.4 138.4

CFR 199.6 152.7 -68.5 94.6

SE3 297.8 -109.7 107.5 98.5

SE2 135.5 -109.4 107.7 44.6

Aggressive 124.7 40.2 -95.1 23.3

Random -282.5 -339.3 -433.5 -351.7

3Note, SE2 and SE3 have the same strategies for positions 1 and 2.
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Table 6.5: Average payoffs in ma/h based on positions for Leduc Hold’em

Position 1 Position 2 Position 3 Overall

MM 452 639 215 436

CFR 380 259 310 316

Aggressive 436 305 -129 204

Random -815 -967 -1085 -956

Another view on positions we show in Figure 6.1, where the x-axis divide payoffs for

different positions and the y-axis the payoffs. The bars in the graphs show the relative

number of payoffs of the same value. The red points show average payoff for given position,

and the green point is the overall average utility.

For example, first sub-graph shows the CFR strategy. The columns represent the

three positions around the poker table. For CFR in Position 1 the graph shows, the most

hands resulted in payoff -1A (the A stands for Ante).

Graphs suggest the CFR plays less safely than the rest of the strategies, by having

more loss of 2A chips, where other strategies have fewer of these situations. The CFR

compensate the loses by more wins.

This distinction can also be seen on Position 1 for SE2 and SE3, where SE3 has more

-2A loses and also more 4A wins.

The MM, SE2, and SE3 are trying to minimize the -2A loses, resulting in lower

number of wins.

The graphs in Figure 6.2 show the CFR and MM strategy for the Leduc Hold’em.

The Leduc Hold’em seems to bring complexity and randomness, which makes the MM and

CFR approach more similar to each other. The biggest difference is in position handling,

where the CFR loses less on Position 1 and more on Position 3, while the MM loses less on

Position 2 and the most loses takes on Position 1, which are compensated by higher wins.

6.3 Bluffing and value betting

In this section we look at the strategies from the point of their value betting, bluffing

and how safely/risky they play the game. Bluffing in our poker variants can be defined as

winning the hand with worse cards than one or both opponents. Safety of the strategy can

be viewed as how many instant folds strategy does (losing only the Ante), how much the

strategy bluffs, and so on. Value betting is a term from the game of poker, where the player

gets as many chips as they can get, from the dealt hand. It is easy to win with Ace in Kuhn

Poker, but it is not easy to win with Ace and make both opponents bet the maximum.



34 CHAPTER 6. COMPARISON OF STRATEGIES

Figure 6.1: Payoffs based on positions in Kuhn poker. Bars show number of payoffs of a
value noted on y-axis divided by positions

We analyze the overall percentage of winning hands (Wins), a number of wins with

the best hand (BH Wins), which also points to the number of wins by bluffing. To examine

the ability to win the most, we compare the number of wins with the best hand, where

both opponents folded (BH Wins FF). Last value we check, measure number of folds, when
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Figure 6.2: Payoffs based on positions in Leduc Hold’em. Bars show number of payoffs of
a value noted on y-axis divided by positions

someone placed a bet, with respect to the total number of loses.

Our assumption for good strategy is, that this strategy plays safe and waits for good

cards. Trying to minimize loss with bad cards and maximize winnings with good cards (by

value betting). Therefore solid strategy plays fewer hands by playing many folds and win

hands without other players folding.

Table 6.6: Behavior analysis of strategies in Kuhn Poker. Meaning of columns in order:
percentage of wins from all games; percentage of wins with the best hand from all wins;
percentage of wins with best hand, when both opponents folded; percentage of loss with
the best hand out of all loses; percentage of losing only ante from all loses

Wins BH
Wins

BH
Wins
FF

BH
loss

F/L

CFR 36% 86% 25% 3.4% 50%

MM 29% 98% 5.5% 6.5% 83%

SE2 28% 95% 9.1% 9.6% 83%

SE3 30% 94% 8.4% 7.3% 77%

Aggressive 45% 74% 45% 0% 0.0%

Random 28% 87% 22% 12% 41%

The values for strategies behavior are shown in Table 6.6 and Table 6.7 for Kuhn
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Table 6.7: Behavior analysis of strategies in Leduc Hold’em. Meaning of columns in order:
percentage of wins from all games; percentage of wins with the best hand from all wins;
percentage of wins with best hand, when both opponents folded; percentage of loss with
the best hand out of all loses; percentage of losing only ante from all loses

Wins 1st
Rnd
Wins

BH
Wins

BH
Wins
FF

BH
loss

IF/L

CFR 27% 5.3% 87% 11% 19% 53%

MM 30% 5.2% 86% 9.9% 18% 51%

Aggressive 62% 23% 65% 54% 0% 0%

Random 25% 9.2% 79% 21% 28% 46%

poker and Leduc Hold’em respectively. In the values for Kuhn poker, there are two distinct

groups of strategies, group 1 (CFR, Random and Aggressive) and group 2 (MM, SE2 and

SE3). Group 1 wins by bluffing more often, the wins with worse hands make 13% and more

out of all wins, where for the group 2 it is 6% and less (for MM it is even around 2%). The

bluffing itself is not an issue; the strategy can certainly win a lot by bluffing. The group

1 forces other players to fold their hands (which are worse) in 22% and more of wins with

the best hand. However, the group 2 forces all other players fold in 9.1% and less.

The other part of this behavior analysis is about losing in a showdown (comparing

cards at the end of the game) or by folding hand (where cards are not shown and the

folding player automatically loses). The groups are divided still the same. CFR instantly

folds only half of its lost hands. Others are lost by betting or passive checking. The group

2 folds more than 77% of hands. This also leads that the Group 2 loses some of their best

hands, but when compared to overall payrolls, it pays off to lose a few winning hand than

to lose much more with worse hands.

This analysis for Leduc Hold’em surprisingly differs from Kuhn poker. The CFR

and MM strategies behave very similarly, with differences only in the order of units of

percentages. They win by bluffing around 14% of the winning hands, which is closer to

CFR values from Kuhn poker. Forcing other players to fold are 10% of winnings and

playing with worse hands around 50% of hands. Except the forcing other players to fold,

all these parameters moved to the values of CFR from Kuhn poker. Which leads us to the

assumption, CFR has more stable strategy concept, which holds over poker variants, while

MM, is more instable and not as conceptual.
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6.3.1 Value betting

When we want to analyze value betting, we use graphs showing payoffs over cards

(similar to Figure 6.1) in Figure 6.3 for Kuhn poker and in Figure 6.4 for Leduc Hold’em.

The red points show average payoff for given position and the green point is the overall

average utility. These graphs agree with the conclusion made above, CFR plays with more

risk, thus losing more and winning more, while MM, SE2 and SE3 play more safely, trying

to get as much as it is possible from Ace, while SE3 is also playing more action with King

than MM and SE2.

The graphs for payoffs over different hand cards for Leduc Hold’em shown in Fig-

ure 6.4 again suggests the closer relationship between approaches of MM and CFR in

Leduc Hold’em than in Kuhn poker. This leads to the conclusion, the table card in Leduc

variant brings the insecure position of hand card in the first betting round. Therefore both

strategies take as little action with Jack and Queen card as possible.

6.4 Importance of player ordering

The last variety we examine is the importance of player ordering, which we have

discovered during experiments done by ACPC server, which preserves the order of players,

but rotate them on positions, which can be seen as (A, B, C) -> (C, A, B) -> (B, C, A).

Therefore we have run the two possible orderings (A, B, C) and (A, C, B), which covers

all possible orderings by rotating positions. During these separate runs, we have discovered

unexpected differences between the two basic orderings, shown in Table 6.8 and Table 6.9

for Kuhn poker and Leduc Hold’em respectively.

The tables are organized in the same manner as were in the previous sections. Each

strategy in column plays against the opponents in row two times, therefore the two columns

for each strategy. The first column is the ordering (A, B, C), where A and B are row

strategies and C is column strategy. The second column is the ordering (A, C, B), where

the column strategy sits between the row strategies for the whole tournament. For example,

the first column (MM) and second row (CFR, Aggressive), where the first column with

value 155.8 is for ordering CFR, Aggressive, MM and second column with value 198.4 is

for ordering CFR, MM, Aggressive.

The ordering around the game table is important and can make a big difference on the

performance of a strategy for Kuhn Poker. The data in Table 6.8 suggests the MM strategy

is more robust strategy than all others, because of the least differences between payouts

between two different orderings. The CFR strategy is the opposite and is experiencing big

differences against same opponents but different sitting.
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Figure 6.3: Payoffs based on cards for Kuhn poker. Bars show relative number of payoffs
of a given value (y-axis) divided by possible hand cards

The aggressive strategy is in the most of the big differences, and it points to the

conclusion, this strategy can exploit CFR, SE2 and SE3 when playing on position before

them.

The results for Leduc Hold’em (Table 6.9) do not show the same variation of payoffs

of CFR as in Kuhn Poker. We assume this is caused by the larger complexity of Leduc

variant, which reduces the exploitability of CFR and MM in different orderings. However,

the aggressive strategy is still able to gain from the random opponent and score a reasonably
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Figure 6.4: Payoffs based on cards for Leduc Hold’em. Bars show relative number of payoffs
of a given value (y-axis) divided by possible hand cards

good in tournaments against the rational opponent and random one.

6.4.1 Two same strategies in one hand in Leduc Hold’em

As the last experiments to see the behavior of strategies based on their order around

the table, we have run tournaments with (MM, MM, CFR) and (MM, CFR, CFR) for

Leduc Hold’em. For both of these triplets, there is only one order. We show the results

of the two tournaments in Table 6.10, the first column shows triplets, the rest of columns

show average payoffs in the same ordering as the triplets. Therefore, the first row (MM,

MM, CFR) shows the average payoffs in the same order as the triplet is written: -181.2 for

the first MM strategy, 132.2 for the second MM strategy and 49.1 for the CFR strategy,

The second row suggests the CFR strategy can exploit playing on position after the

player with the same strategy. Which is why the first CFR strategy is losing -63.5 and the

second CFR strategy is winning 151.9.

This reasoning does not hold for the first triplet (MM, MM, CFR), where the MM

strategies do not do any assumptions about the opponents. We are unsure about the reason

behind the exploitation of the first MM strategy in the triplet.
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Table 6.9: Cross-table with respect to ordering of players in Leduc Hold’em in ma/h.
Column strategies (C) plays according to ordered pairs of row strategies (A, B). The first
column for each triplet is value for (C) strategy in ordering (A, B, C), the second column
is for ordering (A, C, B)

C
mm cfr aggro rnd

A, B

cfr, mm † † † † -670.7 -696.3 -667.4 -780.3
cfr, aggro 346.2 434.4 † † † † -1085.8 -970.8
cfr, rnd 453.7 276.5 † † 751.1 711 † †
mm, aggro † † 236.2 350.1 † † -1178.1 -1054.1
mm, rnd † † 391 326.6 550.1 579.8 † †
rnd, aggro 504 598.3 219.6 374.8 † † † †

Table 6.10: Cross-table for 3-player Leduc Hold’em tournament, 2 instances of the same
rational strategy. Values are in ma/h within ± 3 ma/h with 95% confidence

Strategies Average payoffs

MM, MM, CFR -181.2 132.2 49.1

CFR, CFR, MM -63.5 151.9 -88.4
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Chapter 7

Conclusion

Poker is an interesting domain for testing solution concepts for turn-based zero-sum

games with imperfect-information. Nowadays, most of the focus goes to the two-player

variant, and the variants with more players have significantly less attention. We have

selected three-player poker, because of its bigger complexity and interesting features. Three-

player zero-sum games reduce the absolute opposition of players, which we observe in two-

player variants.

As the specific variants of poker, we have chosen relatively small Kuhn poker and

larger variant Leduc Hold’em. Even though the Kuhn poker is a small game with a number

of nodes in the game tree around 600, it is complex enough for finding a Stackelberg

equilibrium in reasonable time for all positions around the poker table.

For the chosen variants we have computed strategies according to CFR algorithm,

which is a commonly used approach for multiplayer poker domain and represents state of

the art. We approached the problem of strategy finding with two other solution concepts,

not used in the three-player poker domain: heuristic variant of MaxMin and Stackelberg

equilibrium strategy. We have suggested a reasonable way of computing the MaxMin for

the realistic situation in the three-player game and provided the formulation of a nonlinear

program for computing the Stackelberg equilibrium in the extensive-form game of poker.

Because the Kuhn poker is large enough nonlinear problem and the Solvers did not find

the solution for Position 1, we substituted the missing strategy for Position 1 by different

NLP with the non-optimal solution (SE3) and also by strategy for this position from CFR

(SE2).

Lastly, we have run the tournament-based comparison of computed strategies CFR,

MM, SE2, and SE3 against each other and also against simple random and aggressive play-

ers. During evaluation of tournaments by the total average payoff of strategy, as is common

in this domain, we have noticed incompleteness of information, this comparison provides
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us. Except for the total average payoff comparison, we have compared the strategies based

on their strategy for different positions around the table, their ability to bluff and take the

risk and also their robustness against different ordering of players in the tournament.

In the total average payoff comparison, the MM won and SE2 lost, while SE3 and

CFR scored statistically similar values and ties for the second and third place. MaxMin

strategy also shown a good robustness against changing the ordering of players and CFR

showed its weakness against aggressive strategy playing before CFR.

The MaxMin strategy along with the SE2 and SE3 strategies plays a careful game.

SE strategies are performing well on beginning positions, showing their ability to lead the

game in they favor while losing more on the last position around the table. CFR, which

is trying to model the opponents playing as best as they can, taking more risks, therefore

losing more compensated by winning more.

7.1 Further work

This thesis provides a detailed analysis of novel approaches for computer players in the

three-player poker. We recommend two main directions for following research: computing

the strategies from this thesis for larger games (CFR, MM) or with more resources (SE)

and analysis of other possible concepts for three-player poker games.

Therefore, we propose to extend our work to even larger variants of poker and evaluate

behavior and performance of the MM and SE strategies in the more complex games.

Secondly, computing the Stackelberg equilibrium with more resources and finding a

faster way of computing these strategies.

Thirdly, because the CFR algorithm produces different strategies based on imple-

mentation details. We suggest deeper analysis of the performances of these strategies along

with a method for choosing the best strategy.

Lastly, research other possible concepts for three-player games, such as minmax

strategies, correlated equilibrium, Stackelberg equilibrium, where followers play correlated

equilibrium. Also examine other possibilities than offline strategies (such as MM, CFR,

and SE) and include learning players into the multiplayer poker domain.
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Appendix A

Content of CD

• doc/ PDF file of the written part of this thesis. Folder with LaTeX source codes for

the written part.

• sources/src/ Folder with JAVA project, where algorithms are implemented

– Game package contains implementation of definition of Poker game tree

– Algorithms/CFR.java contains implementation of CFR Algorithm

– Algortihms/NFGStackelberg.java contains implementation of generation of

GAMS files for NLP in Formulation 4

– Algortihms/NFGStackelberg18.java contains implementation of generation of

GAMS files for NLP in Formulation 3

• strategies/ contains text files with definition of strategies for Kuhn poker and Leduc

Hold’em

• acpc server/ folder with ACPC server

• acpc server/play match.pl run script of ACPC server for one tournament

• acpc server/kuhn.limit.3p.game definition of Kuhn poker for ACPC Server

• acpc server/leduc.limit.3p.game definition of Leduc Hold’em for ACPC Server

• acpc server/KuhnYouHandleIt/ folder with implementation of poker bot player1 for

Kuhn Poker

1For implementation of both clients connecting to ACPC server, we have used KuhnYouHandleIt from
Charles Evans from UCL as a baseline
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• acpc server/LeducYouHandleIt/ folder with implementation of poker bot player for

Leduc Hold’em

• acpc server/run test experiments.sh example bash script of running experiments

for Kuhn poker and Leduc Hold’em


