
Czech Technical University in Prague
Faculty of Electrical Engineering
Department of Computer Science

Master’s thesis

Remote user interface for the control system of the
COMPASS experiment at CERN

Bc. Antonín Květoň

Supervisor: Ing. Tomáš Černý, Ph.D.

Study programme: Open Informatics

Specialization: Software Engineering

2 May 2017

Acknowledgment:
I would like to thank Ing. Tomáš Černý, Ph.D. for supervising my master’s thesis, prof. Ing. Miroslav
Finger, DrSc. for making my journeys to CERN possible and all my CERN colleagues for always being
so willing and enthusiastic to explain any complex subject to me.

Prohlášení:
Prohlašuji, že jsem předloženou práci vypracoval samostatně a že jsem uvedl veškeré použité informační
zdroje v souladu s Metodickým pokynem o dodržování etických principů při přípravě vysokoškolských
závěrečných prací.

V Praze, 2. května 2017 Antonín Květoň

Declaration:
I hereby declare that I have written the submitted thesis myself and quoted all sources used in accord
with the Methodical directive concerning ethical principles regarding academic theses.

Prague, May 2, 2017 Antonín Květoň

Název práce česky:

Vzdálené uživatelské rozhraní pro řídící systém experimentu COMPASS v CERN

Autor: Bc. Antonín Květoň

Program: Otevřená Informatika

Obor: Softwarové Inženýrství

Druh práce: Diplomová práce

Vedoucí práce: Ing. Tomáš Černý, Ph.D., FEL ČVUT v Praze

Abstrakt: Částí řídícího systému sběru dat experimentu COMPASS v CERN je grafické uživatelské roz-
hraní, které je navrženo s ohledem na lokální přístup – jedinou možnou metodou vzdáleného přístupu
je protokol Secure Shell s X11 přesměrováním. Nicméně, k tomuto systému je ve skutečnosti často při-
stupováno vzdáleně, což tento způsob přístupu činí nevhodným pro uživatele nacházející se v sít’ovém
prostředí s nízkou šířkou pásma a vysokou latencí. Tato práce se zabývá analýzou funkcionality tohoto
grafického uživatelského rozhraní a zhodnocením nejvhodnější metody vzdáleného přístupu. Nejvhod-
nějším řešením je zvoleno konzolové uživatelské rozhraní a zbytek této práce se zabývá jeho návrhem,
implementací a testováním.

Klíčová slova: CERN, COMPASS, DAQ, GUI, CLI

Title:

Remote user interface for the control system of the COMPASS experiment at CERN

Author: Bc. Antonín Květoň

Abstract: The data acquisition control system of the COMPASS experiment at CERN includes a graphi-
cal user interface which is designed to be accessed locally, the only method of accessing it remotely being
the Secure Shell protocol with X11 forwarding. However, the system is in fact often accessed remotely
and this approach is unsuitable for users in a low-bandwidth, high-latency network environment. This
work is concerned with analysis of the functionality of the graphical user interface as well as evaluation
of the most suitable approach to remote access. A command-line interface is chosen as the most suitable
solution and the rest of this work deals with its design, implementation, and testing.

Key words: CERN, COMPASS, DAQ, GUI, CLI

Contents

Introduction 9

1 COMPASS experiment 11
1.1 COMPASS data acquisition system . 12

1.1.1 User profile . 14
1.1.2 The COMPASS DAQ control system . 14

2 Run control GUI 21
2.1 DAQ monitoring functionality . 21

2.1.1 State machine monitoring . 21
2.1.2 Trigger control system channel monitoring . 21
2.1.3 FPGA register monitoring . 22
2.1.4 DAQ hardware link status monitoring . 22

2.2 DAQ control functionality . 24
2.2.1 Run control . 24
2.2.2 TCS prescaler setup . 25
2.2.3 Calibration trigger setup . 25
2.2.4 DAQ structure type configuration . 25
2.2.5 Run configuration . 25
2.2.6 DAQ hardware link configuration . 26
2.2.7 Hardware error masking . 26
2.2.8 Front-end electronics loading . 26
2.2.9 DAQ dead-time configuration . 26

3 Pictorial description of the GUI 29
3.1 Main window . 29
3.2 Link status window . 31
3.3 LOAD window . 34
3.4 Data view . 35
3.5 Error view . 36

4 Analysis 37
4.1 Related work . 37
4.2 GUI implementation . 38

4.2.1 Class description . 40
4.3 Motivation for the creation of a remote DAQ control system interface 41
4.4 CERN Security restrictions . 42

7

4.5 Possible remote access solutions . 43
4.5.1 Command line interface . 43
4.5.2 Remote GUI client . 43
4.5.3 Web interface . 44
4.5.4 Analysis conclusion . 44

5 Solution design and description 47
5.1 Basic design questions . 47
5.2 Commands . 48

5.2.1 Main menu . 52
5.2.2 TCS menu . 56
5.2.3 Run configuration menu . 57
5.2.4 S-Link menu and its sub-menus . 58

5.3 Command argument input . 61
5.3.1 Non-promptive approach . 61

5.4 User experience features . 63

6 Implementation 65
6.1 Base_command class . 66
6.2 Input_object class . 68
6.3 Ui_object classs . 71
6.4 Slinks class . 71
6.5 Input_checker class . 72
6.6 Maskerror_s_command . 73

7 Testing 77
7.1 Integration tests . 77
7.2 Functional tests . 80
7.3 Performance analysis . 81
7.4 Usability tests . 82

Conclusion 85

Bibliography 87

Appendix 91

A CD contents 91

B User manual 93

8

Introduction

In Chapter 1, this work gives a short account of the COMPASS experiment at CERN, its data acquisition
system and the related control system, including an overview of the dependencies used.

The graphical user interface of the control system is thoroughly analyzed in Chapter 2, providing an
overview of its functionality as well as descriptions of related concepts and systems as the Chapter
proceeds. A complete pictorial description of the interface is shown in Chapter 3.

Chapter 4 deals with analysis of the internal implementation of the graphical user interface, general re-
quirements for remote access, and CERN security restrictions. It then provides a list of possible solutions
to the problem and presents arguments as to why a command-line interface can be considered the most
suitable solution.

The aim of Chapter 5 is to provide a short summary of the requirements for the command-line interface
as well as a complete overview of the functionality of the related application developed as a part of this
Master’s thesis. Chapter 6 describes its internal implementation and Chapter 7 deals with its testing.

The design, implementation, deployment, and testing of the command-line interface comprise the prac-
tical part of this work and were carried out solely by its author.

9

10

Chapter 1

COMPASS experiment

COMPASS (Common Muon and Proton Apparatus for Structure and Spectroscopy) is a fixed-target
experiment at the Super Proton Synchrotron (SPS) accelerator at CERN near Geneva, Switzerland. It
was proposed and approved in 1996, commissioned in 2001, and started taking physics data in 2002.
The main objective of the experiment is study of hadron structure and spectroscopy using high intensity
muon and hadron beams [1].

The lifetime of the COMPASS program was extended in 2012, and the experiment has been operating
under the name COMPASS II since, utilizing phenomena such as Deep Virtual Compton Scattering,
Hard Exclusive Meson Production, Semi-inclusive Deeply Inelastic Scattering, Drell-Yan process, and
Primakoff reactions in order to make progress in carrying out its objective [2].

The spectrometer of the experiment consists of a number of detectors used for particle identification,
tracking and energy measurements. Particle detectors used at COMPASS include, but are not limited
to: electro-magnetic calorimeters, hadron calorimeters, gaseous electron multipliers, micro mesh gas de-
tectors, drift chambers, multi-wire proportional chambers, scintillating fiber stations and a ring-imaging
cherenkov detector [1, 2].

The experiment is currently planned to operate until the end of 2018 [CERN research board meeting,
7 December 2016] and the facilities are subsequently expected to undergo another lifetime extension,
operating under a completely new name and classification [3].

11

Figure 1.1: COMPASS location within the CERN accelerator complex [4]

1.1 COMPASS data acquisition system

The current COMPASS data acquisition system (DAQ) has been in use since 2014, replacing the old
DAQ, which had been in use since the conception of the experiment. Its objective is to read out raw data
concerning physics events1 from detectors and store them on hard drives. These data are subsequently
sent to the CASTOR (CERN Advanced STORage manager) system – a hierarchical storage management
system for managing physics data files in the order of petabytes, using both tape and hard drive storage
[5].

Since the number of physics events occurring in collider and fixed-target experiments is generally far too
large to store and subsequently analyze, systems referred to as trigger systems (TS) are utilized in such
experiments, including COMPASS. When a physics event is captured by the detectors, the TS makes a
decision whether the event is to be read out from the detectors or discarded. The decision is made in real
time based on several criteria which ensure that only events relevant to physics analysis are captured,
decreasing the amount of recorded data by several orders of magnitude. A typical example is filtering of
physics events caused by cosmic rays [6].

1A physics event is the outcome of a fundamental interaction between subatomic particles

12

A single physics event is almost always described by readings from multiple detectors, whose number of
output channels is in the order of thousands – in total, there are about 300 000 channels from which the
DAQ receives data. The channels are then multiplexed, using three layers of multiplexers:

1. HGeSiCA, CATCH and Gandalf modules [7, 8, 9]

2. Slink multiplexers and TIGER VXS data concentrators

3. FPGA multiplexers [10]

After the multiplexing process is finished, the data are sent into an FPGA switch which handles event
building. The events are recombined during the event building process – data concerning each event,
despite originating in multiple detectors counting thousands of channels, are unified into a single contin-
uous stream in a single channel.

Finally, the data are read out by readout computers using Spillbuffers and stored on hard drives. A
Spillbuffer is a PCI express card with an FPGA chip which handles the connection of an S-Link (a CERN
standard for connection of multiple layers of front-end and readout electronics) [23] and the RAM of a
computer.

CERN inner network

CASTOR

64-120x Slinks

(8-15 Slinks

per card x 8 cards)

......

8x SLink

8x SLink

~1000 links

C
O

M
P

A
S

S
 T

ri
g

g
e

r
C

o
n

tr
o

l
S

y
s

te
m

C
o

n
tr

o
l

n
e

tw
o

rk

Gateway

Slink

multiplexers

2-4 SLinks

Slink

multiplexers

2-4 SLinks

TIGER VXS data

concentrators

(up to 18 links)

~250 Modules

28 VME crates......
......

............

8 readout

computers

~60 TB disk

pool

Figure 1.2: Hardware structure of the DAQ [11]

13

1.1.1 User profile

There exist numerous software systems which are used to control and/or monitor various parts of the
COMPASS experiment. For example, the CESAR (CERN Experimental areas SoftwAre Renovation)
system is used to control aspects pertaining to the beam line, allowing the user to alter the character of the
particle beam up to a certain degree [12]. Another example is the DCS (Detector Control System) [13],
which provides detailed real-time information concerning the numerous detectors of the experiment, as
well as the capability to adjust their low-level hardware settings, such as various voltages.

When the experiment is in the phase of data taking, it is necessary that operators are present in the
control room in order to oversee the process of data taking as well as the condition of the experiment.
Since the experiment takes data 24 hours a day, 7 days a week during a physics data-taking period (with
the exception of emergency and machine development stops), continuous presence of staff at the site
is ensured using a shift-work model. A shift lasts 8 hours and two staff members are present during
it. There are 3 shifts per day throughout all days of the week. The staff are normally members of the
COMPASS collaboration (each member institution of the COMPASS collaboration is obligated to carry
out a given number of shifts).

As the COMPASS experiment is vastly complex, the staff members are normally experts in a single area
of the experiment – their knowledge of the other areas might be limited or very basic. According to [14],
over 100 different collaboration members partook in data-taking shifts in 2016 alone. The training to
become an operator consists of a single 8-hour training shift and cannot possibly explain all the intricacies
behind the experiment – most staff learn "on-the-go".

The COMPASS DAQ control system is one of the previously mentioned software systems – it is used to
oversee the data taking process. Being central to data taking, it is the system the staff come into contact
with most frequently – for this reason, it is necessary for its usability to be held up to a certain standard.

1.1.2 The COMPASS DAQ control system

The DAQ control system is a software system used for control and monitoring of the final three layers
of the DAQ hardware (FPGA multiplexers, FPGA switch, and readout engines). It consists of several
processes:

• Slave readout – a process which runs on the readout computers and handles processing of physics
data

• Slave control – a process which runs on the readout computers and handles monitoring and config-
uration of the FPGA cards (including the spillbuffers), using direct communication through IPbus
(an interface for UDP-based control of Ethernet-attached hardware devices) [15]

• Run control GUI – A graphical user interface used to control the DAQ, described in Chapters 2
and 3

• Master – a process which runs on a dedicated computer and acts as the mediator of communication
between the DAQ processes. It incorporates state control of the DAQ control system and most of
the error handling [16].

14

• Message logger – a process which collects messages from the slave and master processes and
stores them in a database (the messages are divided into four types: information, warning, error,
and fatal error)

• Message browser – a graphical user interface which allows the user to view messages from the
slave and master processes in real time or retroactively browse the messages stored in a database

1.1.2.1 State machines

The Master and each of the slave processes all have a state machine associated with them, serving as
an indicator of the nature of the process’ activity at a given time. This Chapter only provides a diagram
of the Master process state machine for informative purposes, as the subject is rather complex and has
already been described to great detail in [16].

1.1.2.2 Dependencies

The DIALOG communication library

The DAQ control system uses a custom-built communication library for network communication – DIA-
LOG. It is implemented in C++, using the Qt framework and offering a C++ API. This library replaced
the DIM (Distributed Information Management) library [17, 18, 16], which had been in use until April
2016. While all the processes of the DAQ use DIALOG for communication with one another, some of
the DAQ processes are still dependent on the DIM library, as several other COMPASS systems, such as
the Trigger Control system, still utilize it for network communication.

Similarly to the DIM library, the DIALOG library is based on the philosophy of services and commands
and a control server which functions as the mediator of initial connection information.

Services serve as a means of 1 to n communication. Once a process registers a service on the control
server, it becomes a "publisher" – any data published using this service will be sent directly to all pro-
cesses subscribed to the service. Other processes can subscribe to the service by requesting network
information concerning it from the control server and connecting directly to the publisher after having
received it.

Contrary to DIM commands, which serve as a means of 1 to 1 communication, DIALOG commands
serve as a means of 1 to n communication. Once a process registers a command on the control server,
it will receive data sent by any process to the control server using that given command – the data is
forwarded to it by the control server. Commands are different from services in that the sender is not
required to possess a list of receivers, reducing overhead resource costs at the expense of higher strain
on network resources of the control server [O. Šubrt (CERN), personal communication, August 2016].

15

D
A
Q
c
o
n
tr
o
l
s
y
s
te
m

d
e
p
lo
y
m
e
n
t

Figure 1.3: The deployment diagram of the DAQ control system. Dependencies related to the DIALOG
control server have been omitted from this figure

16

Closing Error 1

Turned off

Waiting

Starting

Error 11 Error 10 Error 2
Turning slaves

off

Starting

slaves

Ready

Error 4 Error 9 Error 3

Configured

Unconfiguring Configuring

Error 7 Error 8

Error 5

Error 6

Stopping

Run

Starting

Run

Dry Run

Run

Figure 1.4: The state machine diagram of the Master process [16]

17

DIALOG serviceinteraction

Figure 1.5: The concept of network communication using services in DIALOG

DIALOG commandinteraction

Figure 1.6: The concept of network communication using commands in DIALOG

Qt framework

The Qt framework is a cross-platform application framework originally conceived by Trolltech in 1991.
As of 2017, the development is supervised by The Qt Company. While the main purpose of the frame-
work is development of applications with graphical user interfaces, it also provides tools for development

18

of applications without graphical user interfaces [19]. The Qt framework is utilized in all processes of
the DAQ control system [4].

Graphical user interaces in the Qt framework

The Qt framework uses the ui format to describe structure of graphical user interfaces. Internally, the ui
format is an XML file specifying the types and properties of individual Qt widgets present within a given
window. A Qt widget is a single user interface element which can display data and status information,
receive user input, and provide a container for other widgets that should be grouped together. The Qt
framework provides a basic set of Qt widgets to create classic desktop-style graphical user interfaces.
The common base class for all Qt widgets is QtWidgets. It provides capability to render to the screen and
handle user input events. A ui file can be either written manually, or automatically generated using the
Qt Creator IDE.

The Qt framework uses a preprocessor tool called the User Interface Compiler (uic) to generate C++
header files associated with given ui files. Each window has a class associated with it, creating a frame-
work hot spot for implementation of graphical user interface application logic. Individual widgets can
be accessed through a private pointer attribute of the class. User input events are represented as signals
whose corresponding private slots are situated within the given window class [19].

Figure 1.7: A simple window created in Qt (Operating system: Ubuntu 14.10)

class MainWindow : public QMainWindow

{

Q_OBJECT

public:

explicit MainWindow(QWidget *parent = 0);

~MainWindow();

private slots:

void on_pushButton_clicked();

private:

Ui::MainWindow *ui;

};

Listing 1.1: The class associated with the window in Figure 1.7

19

<?xml version="1.0" encoding="UTF-8"?>

<ui version="4.0">

<class>MainWindow</class>

<widget class="QMainWindow" name="MainWindow">

<property name="geometry">

<rect>

<x>0</x>

<y>0</y>

<width>140</width>

<height>66</height>

</rect>

</property>

<property name="windowTitle">

<string>Window</string>

</property>

<widget class="QWidget" name="centralWidget">

<widget class="QPushButton" name="pushButton">

<property name="geometry">

<rect>

<x>20</x>

<y>20</y>

<width>99</width>

<height>27</height>

</rect>

</property>

<property name="text">

<string>Button</string>

</property>

</widget>

</widget>

</widget>

<layoutdefault spacing="6" margin="11"/>

<resources/>

<connections/>

</ui>

Listing 1.2: The ui file associated with the window in Figure 1.7

20

Chapter 2

Run control GUI

As mentioned previously, a graphical user interface is part of the COMPASS DAQ control system. Being
a separate process, the GUI1 process can be launched or terminated independently of the other DAQ
processes. The GUI serves for both control and monitoring purposes. While there can exist at most a
single instance of the GUI which is allowed to control the DAQ, the maximum number of instances which
provide only monitoring capabilities is not explicitly limited. This is made possible by the two modes
the GUI provides – Control and Monitoring. All GUI instances start in the Monitoring mode and the
user is able to "lock into" the GUI into the Control mode at any time, without the need for in-application
authentication. If there is an instance of the GUI already in the Control mode when a lock-in happens in
a different instance of the GUI, the former will transition back into the Monitoring mode. A messaging
feature is provided in order that "lock-in wars" are less likely to occur.

2.1 DAQ monitoring functionality

A list containing descriptions of individual DAQ monitoring features of the GUI follows.

2.1.1 State machine monitoring

The GUI provides the user with information concerning states of all the state machines of the DAQ,
Master and Slave processes alike.

2.1.2 Trigger control system channel monitoring

The Trigger Control System (TCS) connects the trigger logic with the DAQ [6]. The GUI allows the
user to monitor 12 trigger channels of the TCS. In particular, three values are provided for each channel

1While this acronym is normally used to represent the generic term "graphical user interface", it is important to note that the
name of the application itself is also "GUI". So as to avoid confusion, the acronym GUI, as well as the phrase "the GUI", will
be used solely when referring to the application name. Therefore, when referring to the generic meaning of the term "graphical
user interface", this acronym will not be used.

21

– In, Out and Div. In represents the number of events read out by a given trigger in the last spill2, Div
represents the setting of the prescaler, i.e., the inverse proportion of events to be purposefully discarded,
and finally, Out represents the number of retained events in the last spill. In an ideal case, these variables
will behave according to the following formula:

Out = In
Div

2.1.2.1 TCS overview

The GUI displays values read out from the TCS, containing the following information for each active
DAQ3:

• DAQ id

• Whether a run4 is in process

• Number of physics events recorded

2.1.3 FPGA register monitoring

The GUI allows the user to view the register values of the FPGA cards involved in the new5 DAQ in real
time. A multitude of register values is provided for each FPGA and all its ports, most of which manifest
elsewhere in the GUI, taking on a more accessible form. This functionality is therefore mostly used only
by DAQ experts for fault-finding.

2.1.4 DAQ hardware link status monitoring

The GUI provides hardware link status monitoring of the new DAQ. The term "link status" represents
the status of data flow between individual hardware components of the new DAQ. The three types of
hardware components being monitored are listed below:

FPGA multiplexers

The GUI provides the following information concerning the FPGA multiplexers:

2A spill is the extraction period of the SPS accelerator cycle, also referred to as on-spill time. During this period, physics
data concerning collisions of the extracted particles with the fixed target are produced. The entire SPS accelerator cycle consists
of injection, acceleration, and extraction of the particles. Cf. [1], [6], and [21] for more information.

3The TCS controller (cf. [4]) can manage more DAQs at once. The id of the new COMPASS DAQ is 0.
4A run is the period of time between the start and stop of data taking. Physics data concerning individual spills are taken

during a run. While the number of spills per run is arbitrary, a run normally consists of 200 spills. This term can also be used to
refer to a period of calendar time between the start and stop of formally declared SPS activity – e.g. the 2014 run, which lasted
from October 6 to December 15.

5"New DAQ" refers to the DAQ system developed in [4] and [11] and deployed in 2014. When using this expression in
relation to the DAQ hardware, this refers to the FPGA multiplexers, FPGA switch and event-builder, and the readout engine.

22

• Source id errors – should an error occur on a port associated with a given source id6, the GUI will
warn the user and provide information concerning the error.

• Memory usage – each port of an FPGA multiplexer is assigned a segment of the on-board memory.
The occupancy of this segment is shown.

• Accepted data – the number of accepted incoming 32-bit words in the last and current spill on a
given FPGA card and all its individual ports.

FPGA switch

The information provided concerning the FPGA switch is analogous to the information provided con-
cerning the FPGA multiplexers.

Readout computers

The following information pertaining to the readout computers can be retrieved from the GUI:

• Port errors – data concerning port errors as well as propagated port errors (cf. section 2.1.4.2)

• Spillbuffer usage – information related to the occupancy of the Spillbuffer associated with a given
readout computer.

• Readout computer hardware monitoring information – information concering the CPU and
RAM loads of the readout computers as well as the availability of HDD storage.

• Accepted data – the number of accepted incoming 32-bit words in the last and current spill on a
given readout computer.

2.1.4.1 Port errors

There are several types of port errors which are detectable by the system. Each batch of data sent along
the DAQ hardware consists of an S-link header and body (cf. [23, 16]). The S-link header contains
meta-information concerning the data, as well as 11 error bits. A listing of errors associated with these
bits follows:

1. Timeout on port – Each port has a timeout value associated with it – should an event not be sent
within a given period of time of a trigger activating, this error will occur. The timeout value is
carefully tailored to each specific port – values too large could lead to an event being attributed to
an incorrect trigger activation, resulting in desynchronization of the DAQ.

2. Event size mismatch on port – The size of the event data does not correspond to the size specified
in the header. This is normally a result of front-end electronics sending incorrect data, or data being
incorrectly trimmed in the communication process.

6A source id is a unique integer used to identify detector front-end electronics as well as DAQ electronics.

23

3. Event number mismatch on port – Event number in received data does not correspond to the
one specified in the header, indicating DAQ desynchronization.

4. Spill number mismatch on port – Spill number in received data does not correspond to the one
specified in the header, indicating DAQ desynchronization.

5. Event type mismatch on port – Event type in received data does not correspond to the one
specified in the header, indicating DAQ desynchronization.

6. First S-Link event word is not an S-Link header word – The data lack a header, indicating the
data being incorrectly trimmed in the communication process.

7. Maximum event size exceeded – The size of the body has exceeded a pre-defined size.

8. TCS FIFO full – The TCS FIFO is full, indicating that the new DAQ hardware is receiving events
faster than it can process them.

9. DDR memory full – This indicates 100% occupancy of the FPGA memory associated with a given
port or a given spillbuffer.

10. Slink CRC error – The S-link checksum is incorrect, indicating corruption of data during the
communication process.

11. Control bit set but no control word – This indicates a serious firmware malfunction.

12. Unexpected FE SourceID – Source id specified in received data does not correspond to one
specified in the header, indicating incorrect DAQ structure type configuration (cf. section 2.2.4) or
a critical frontend error (such errors can cause a corrupted source id to be sent).

2.1.4.2 Port error propagation

Whenever an error occurs in the new DAQ hardware, it propagates down the data processing chain. This
phenomenon takes place owing to the fact that whenever several channels of data are being merged, the
firmware checks whether any of the error bits are set to 1. Should this be true for any error bit, its value
in the newly merged stream will also be set to 1.

Errors can also propagate by a cascade effect – errors associated with DAQ desynchronization have a
tendency to cause different errors farther down the readout chain.

2.2 DAQ control functionality

A list containing descriptions of individual DAQ control functionalities of the GUI follows.

2.2.1 Run control

The most important control functionality of the GUI is the ability to control the state machines (STMs)
of the DAQ. This feature is only available when the Master’s STM is in a stable or a working state (i.e.,
the states denoted by blue and purple color in Fig. 1.4, respectively).

24

2.2.2 TCS prescaler setup

The possibility of altering the value of the TCS prescalers (i.e., div) is not excluded from the GUI. This
option is offered for all 12 trigger channels. The values can be either set arbitrarily or to various template
presets.

2.2.2.1 Monitoring prescaler setup

Similarly to the TCS prescalers, this prescaler affects the ratio of monitoring data to be purposefully
discarded. This comprises information regarding the quality of the physics data, such as hit rates or
occupancies per given detector frontend channel. These data are visualised using external tools imple-
mented in the ROOT framework7. The value of the prescaler can be set for each readout computer
independently.

2.2.3 Calibration trigger setup

The calibration trigger is an artificial trigger which generates special events that serve for calorimeter
calibration. The rate (how often the events are generated) can be set to one of three given settings. The
generation can also be set to be triggered "on spill" or "off spill" separately, meaning the generation starts
with the start of a spill and ends with the end of a spill, and vice versa. The generation can also be set
to be triggered both "on spill" and "off spill", or on neither, resulting in continuous or disabled event
generation, respectively.

2.2.4 DAQ structure type configuration

The information regarding the hardware configuration (i.e., the relationship between the individual source
ids and ports) of the new DAQ is stored in a database. It is necessary for the DAQ control system to re-
trieve this configuration from the database while transitioning from the ready state to the configured
state. The GUI allows the user to choose between individual configuration profiles which are stored in a
database8 (but does not offer the option to alter them – this can be realized through a web interface).

2.2.5 Run configuration

The GUI allows the user to set the number of taken spills after which the run will terminate, the run type
(an id stored in the database, helping analysts identify the type of physics data contained), whether the
recorded data is to be stored or not, and spill structure. There exist two types of spill structure: SPS
and Artificial. In actual data taking, the spill structure is always set to SPS – it contains information
concerning when a spill is to occur, received directly from SPS systems. However, as the period of the

7A C++-based data analysis and data mining tool developed by CERN [22]
8The COMPASS DAQ database, which stores not only these profiles, but also other data related to data acquisiton, such as

logbook events and comments

25

SPS spill cycle is rather long (typically 30 to 40 seconds), this is suboptimal for diagnostics. For this
reason, the option to switch to an artificial spill structure with a much shorter period is present.

2.2.6 DAQ hardware link configuration

The ability to toggle individual ports of the new DAQ electronics is undoubtedly the most important
functionality pertaining to the DAQ hardware. This feature is most commonly used in order to disable
individual ports of the FPGA multiplexers. This resolves problematic situations which occur when an
erroneous data stream coming from a source id associated with a malfunctioning detector "clogs up"
a large part of the DAQ. Less frequently, it can also be used for detector diagnostics – by toggling
individual source ids sequentially, the user can sometimes identify the problematic one.

2.2.7 Hardware error masking

The GUI allows the user to mask errors on individual ports of the new DAQ electronics. The masking
status is stored directly in the electronics’ registries and is therefore not dependent on the individual GUI
instances.

2.2.8 Front-end electronics loading

Using the GUI, it is possible to send a "LOAD" command to the frontend detector electronics. Sending
the LOAD command to a source id is an universal method of solving problems which arose on the
hardware associated with the source id. Its internal behavior varies depending on the source id (i.e., the
LOAD command could reinstall the firmware of a given control unit, re-initialize detector settings to
default values etc.). It is important to note that this command is not only used to solve problems, but also
serves as a means to configure and generally remotely interact with frontend detector electronics.

The LOAD command is already available through console commands, so its presence in the GUI is
merely a "quality of life" improvement. The possibility of filtering source ids by the name of the detector
or by integer range, as well as automation of arguments sent with the LOAD command are the features
which provide an advantage over the console environment.

2.2.9 DAQ dead-time configuration

The application also provides the possibility of changing the DAQ dead-time. The DAQ dead-time is
a collection of trigger settings which constrain the temporal distance between triggers – specifically, it
defines constraints for the following three cases:

• Minimum temporal distance between any two triggers

• Minimum temporal distance between the first and last trigger of any sequence of three triggers

• Minimum temporal distance between the first and last trigger of any sequence of ten triggers
26

These constraints arise from firmware and hardware limitations of the detectors and their electronics.
Too short dead-time can lead to problems such as detector noise, cache overflow, or event discarding. As
the detector capabilities vary depending on the type, energy and intensity of the particle beam, there exist
several pre-defined configurations which allow the detector experts to fine-tune the dead-time settings in
order to maximize performance while keeping the detector hardware and firmware stable. Using the
GUI, it is possible to switch between the pre-defined profiles, but it is not possible to edit them.

27

28

Chapter 3

Pictorial description of the GUI

This chapter provides labeled pictures of the application’s graphical user interface, describing the func-
tionality of its individual elements.

3.1 Main window

The Main window implements the following functionality: state machine monitoring, TCS channel mon-
itoring, FPGA register monitoring, run control, prescaler setup, calibration trigger setup, DAQ structure
type configuration, and run configuration.

A convenience function of adding comments to the COMPASS logbook and shift manager systems is
also provided by this window. The add_coment and shift manager are independent applications which
serve for the purpose of storing information concerning the data-taking process, general condition of the
experiment and technical issues. Internally, the GUI only launches these applications [24].

29

Figure 3.1: The Main window

30

1. A button which allows the user to lock-in into the control mode

2. A label indicating whether the given GUI instance is in the monitoring mode or the control mode

3. Run configuration area: dropdown menus which allow the user to choose the DAQ structure type,
run type, and trigger settings preset for a given run, as well as items which can be used to set the
number of spills, spill structure and trigger recording

4. TCS overview

5. The prescaler widget, allowing for monitoring and configuration of individual trigger channels

6. Calibration trigger setup

7. State transition buttons which induce STM state shifts

8. The status widget, displaying states of individual STMs of the DAQ

9. A tree widget allowing for FPGA register monitoring

10. A button which opens the Link status window

11. A button which opens the Load window

12. A textbox allowing for text messages to be sent to other instances of the GUI

13. A message log used to display basic system messages, lock-in messages and messages from users
of other instances of the GUI

14. A graph widget showing event size in real time

3.2 Link status window

The Link status window implements the following functionality: DAQ hardware link status monitoring
and DAQ hardware link configuration.

Along with the Main window, the Link status window is the most comprehensive monitoring tool in
the GUI. The individual Error view buttons light up in red color whenever an error occurs on a given
port, attracting the user’s attention. If a hardware component is disabled as a result of structure type
configuration, the corresponding part of the Link status window is stylized in gray.

The visual structure of the Link status window is split into three distinct parts, each representing a single
hardware layer of the new DAQ (described from top to bottom: 8 FPGA multiplexers, 1 FPGA switch, 8
readout computers).

31

Figure 3.2: The link status window

32

The areas framed by the red rectangles mark the following elements of individual hardware layers, from
top to bottom:

• A Mux frame, each representing a single Multiplexer

• The switch frame, representing the switch

• A PCCORE1 frame, each representing a single readout computer

The labels denote the following:

1. A button used to enable the control features of the Link status window, so as unwanted changes
are not inadvertently made during a run

2. A button used to disable the control features of the Link status window

3. A button used to toggle the outgoing port of the given multiplexer

4. A button used to toggle a single ingoing port of the given multiplexer

5. A button used to open the Error view window associated with a single incoming port of the given
multiplexer

6. A convenience button used to send the LOAD command to the source id associated with a single
incoming port of the given multiplexer

7. Multiplexer Port memory occupancy

8. A button used to open the Data detail window associated with the multiplexer (current spill)

9. A button used to open the Data detail window associated with the multiplexer (last spill)

10. A label indicating the status of the outgoing port of the given multiplexer

11. A button used to toggle a single ingoing port of the switch

12. A button used to open the Error view window associated with a single ingoing port of the switch

13. Switch port memory occupancy

14. A bar representing the overall state of the switch

15. A button used to open the Data detail window associated with the switch (current spill)

16. A button used to open the Data detail window associated with the switch (last spill)

17. A button used to toggle a single outgoing port of the switch

1An acronym used to refer to the readout computers of the DAQ (Personal Computer COMPASS Readout). This acronym
is also often used to refer to the spillbuffers, or shortened to "CORE".

33

18. A button used to open the Error view window associated with a single outgoing port of the switch

19. A button used to toggle the incoming port of the given readout computer

20. A button used to open the Error view window associated with the given readout computer

21. A textbox containing the div value of the monitoring prescaler associated with the given readout
computer

22. A button used to set the value of the monitoring prescaler given in 21.

3.3 LOAD window

The Load window implements the frontend electronics loading functionality.

The window is split into two distinct parts: the left part displays frames, each representing a single
detector (source id group), and listing all source ids associated with it. The following information is
displayed for each source id: PCCOFE2 id, s-link multiplexer source id (cf. [34]), multiplexer source id,
related multiplexer port, related switch port. The right part consists of input items which can be used to
filter the frames in the left part.

Figure 3.3: The LOAD window

2An acronym used to refer to the computers which are used to control COMPASS detector front-end electronics (Personal
Computer COMPASS FrontEnd)

34

The red labels in Figure 3.3 denote the following:

1. A drop-down menu allowing for the selection of the argument to be sent with the LOAD command.
This feature is scarcely (if at all) used, as most front-end electronics are re-initialized with one
specific argument. The correct argument for re-initialization is pre-selected for user convenience.

2. A button used to send the LOAD command to a single source id

3. Cf. 1.

4. A button used to send the LOAD command to all source ids associated with a given detector

5. A convenience button used to toggle all new DAQ ports associated with a given detector

6. Input items allowing the user to filter the detectors by a single source id of their frontend electronics

7. Input items allowing the user to filter the detectors by the S-link multiplexer source id

8. Input items allowing the user to filter the detectors by the multiplexer source id they are associated
with

3.4 Data view

The Data view window implements the accepted data monitoring functionality.

Figure 3.4: The Data view window

35

3.5 Error view

The Error view window implements the following functionality: error monitoring and hardware error
masking.

The Error view window can be accessed through the Link status window. Values of the individual error
bits are represented by the background color of the labels.

• Gray – error not occurring

• Red – error occurring

• Yellow – error masked

Figure 3.5: The Error view window

36

Chapter 4

Analysis

This Chapter deals with related work, analysis of the internal implementation of the GUI, and overall
requirements for a remote interface for the DAQ control system.

4.1 Related work

The software of the control system of the original DAQ, described in [25], was heavily based on DATE
(Data Acquisition and Test Environment). DATE is a software system developed by the ALICE DAQ
group designed to perform data-acquisition activities in a distributed multi-processor environment, of-
fering a C++ API. DATE has been designed with emphasis on scalability, fit for large systems counting
hundreds of computers, but is suitable for small systems as well, even as small as a single machine with
one processor – in such case, that machine will assume the entirety of all roles (LDC1, GDC2, run con-
trol, and monitoring) and perform their functions [26]. The TCS mentioned in Chapter 1 was deeply
intertwined with the old DAQ (the same applies for the new DAQ) and its detailed description can be
found in [6].

According to [25], the run control part of DATE was adapted to the needs of COMPASS, incorporating
a trigger interface. A graphical user interface which was used for run control was part of this system,
offering only very limited monitoring capabilities of the event building network [27]. It was allowed for
more than a single instance of this graphical user interface to run simultaneously, but a user switching
mechanism was not present. Error handling capabilities were not present either – problems had to be
resolved by restarting the control system.

The fundamental ideas behind the new DAQ and its control system described in Chapters 1 and 2 are
presented in [4]. A snapshot of the GUI process during early development stages is included, putting
emphasis on modularity. A list of DAQ user roles and their respective privileges is also conceived in [4]
(Administrator, Expert HW, Expert DAQ, Operator, Visitor), giving rise to the philosophy of GUI lock-
in – the Operator role being privileged to using the GUI in control mode and Visitor role in Monitoring

1Local data concentrator, equivalent to a readout buffer in COMPASS terminology
2Global data collector, equvialent to an event builder in COMPASS terminology

37

mode (later, these two user roles were merged into a single role privileged to using the GUI in both
modes).

The concept is further expanded on in [11] – here, the emphasis shifts from modularity to ergonomy. The
reason for the usage of the Qt framework is also given here – originally, the main reason behind its use
was to only simplify implementation of the GUI, but its role has changed during early development due
to its extensive multi-threading and XML processing support – it was soon included in all processes of
the DAQ. The Qt framework was especially useful for implementation of the state machines, which were
originally implemented in SMI++3, but Qt proved to be far more flexible and time efficient. A detailed
account of the implementation of the GUI is given in [30].

Results of COMPASS DAQ prototype tests are presented in [29], focusing on readout speed tests rather
than user interace testing, the peak rate at which the DAQ can acquire data was measured to be 1.1 GB/s
(for comparison, the data flow from all 4 LHC experiments combined is about 25 GB/s).

Results of the pilot run of the system and their analysis are shown in [31], amounting to 195 TB of
recorded data during a period of two months. The final, user-tested version of the GUI is shown as well.
Future plans for the DAQ are discussed in [32] – in the future, a fully programmable crosspoint switch
will be introduced in order to provide a fully customizable DAQ network topology between readout
buffers, event builders and readout computers.

A different approach to implementation of run control software can be found at the CMS experiment,
whose DAQ runs online software on about 3000 computers used for intelligent buffering and processing
of event data [33]. Unlike COMPASS, whose run control is unified for all detectors, the CMS run control
structure is organized into eleven different sub-systems, each sub-system corresponding to a detector.
The run control system is implemented using web technologies, particularly Java 1.5.0 Web Services.
Inter-process communication is realised using the XML data format and the SOAP protocol and the web
service interfaces are specified with WSDL using the Apache Axis WS implementation. The service
functionalities include, but are not limited to: authentication, account management and job control. The
job control service allows for execution and supervision of any software process involved in data taking.
These services are then exposed to software referred to as the Function Manager (FM), which is the basic
element of the control system, consisting of an input handler, state machine engine, event processor and
a resource proxy. Various applications for control and monitoring of the CMS DAQ can be created by
writing code against the interfaces provided by the FM, appropriate functionality being provided upon
authentication.

4.2 GUI implementation

Being a multi-threaded application, the GUI comprises four threads:

• The main thread, which handles interaction with the user and most of the application logic of the
GUI

• The thread associated with the CommObj (Communication object) class, which handles all DIM
communication

3State Manager Interface, a framework for implementing distributed control systems using (finite) state machines, originally
developed at the DELPHI experiment at CERN

38

• The receiver processor thread, which handles inbound DIALOG communication

• The sender processor thread, which handles outbound DIALOG communication

The GUI is based on the model-view-controller design pattern – the information displayed and actions
available are completely reliant on the information messages it receives from the Master. If an instance
of the Master is not present when the GUI is launched, an error message will be displayed.

The information messages come in the form of a DIALOG service approximately every 50 milliseconds.
Each message contains the following information:

• Master process state

• Slave process names, types, states and monitoring prescaler values

• Current spill number

• The value of the maximum spill number setting

• Event size information

• Id of the control GUI instance (if one exists) – this is used to decide whether the instance is in
control mode

• A complete list of FPGA register values – this includes information such as error bit values, error
mask values, memory occupancies, node-local spill numbers, node-local event number and event
type, source id, firmware version, etc. In total, there are 35 registers per multiplexer, 30 on the
switch, 24 per spillbuffer, as well as 15 per each multiplexer port, 14 per each switch port and 9
per each spillbuffer port.

Whenever an information message is received, it is subsequently parsed and the displayed information is
updated.

Several of the GUI functionalities are not directly part of the new DAQ – while they were not originally
meant to be included in the GUI, it was requested for them to be added in order to make the interface
more comprehensive for shift work – over time, many connections to other systems and tools were added,
namely:

• TCS – DIM is used for communication with this system, and the Master is not used as the mediator
in this case – the GUI communicates with this system directly

• LOAD command – in this case, the GUI directly issues a shell command which launches the
LOAD script with appropriate arguments

• DAQ dead-time configuration – several database queries have to be performed in order to change
the DAQ dead-time – the GUI performs these queries directly

• Logbook tools – this is another case where the GUI issues a shell command in order to launch an
application

• Logbook database – when a new run is started, the meta-information concerning the run is created
and stored into the database directly by the GUI

39

4.2.1 Class description

This section provides a brief overview of the internal class structure of the GUI. A description of roles
of a selection of several essential classes is provided below.

CoreFrame

Source

Tree

DataDetail

RunType

Process

ProcType

EquipPcDb

ErrorView

LoadOutput

MuxFrame

StructService

SpeedService

InfoService

ChatService

TcsStatus

TcsPrescaler

SwitchFrame

2

n

n

12

n

n

8

8

MainWindow

CommObj

Detector

DaqStructure

DbData

EventSizeLite EventSize

EventCurve

OtherCurve

TimeScaleDraw

LoadDetectorBlock

LoadOneSourceId

LoadScreen

NewMessage

RunEntry

DbService

Slinks

StatusWidget

TcsWindowTcsChannel

TriggerRatesTriggerCurve

Figure 4.1: UML class diagram of the GUI. Not included: low-level classes used for registry representa-
tion and message encapsulation. Cf. section 1.5.2 of [16] for more information.

• MainWindow – Implements the logic of the Main Window, i.e. run control, DAQ configuration,
TCS control, FPGA monitoring and event size monitoring

40

• MuxFrame, SwitchFrame, CoreFrame – Implement the monitoring and control functionalities
related to the FPGA multiplexers, FPGA switch, and readout computers in the Link status window,
respectively.

• Slinks – Contains instances of the MuxFrame, SwitchFrame and CoreFrame classes and conducts
their individual method calls.

• DataDetail – Implements functionalities of the Data detail window, i.e., accepted data monitoring
on individual ports of the FPGA multiplexers and the switch.

• ErrorView – Implements functionalities of the Error view window, i.e., source id error monitoring
for a given port and the ability to mask the errors.

• TcsChannel – Implements the monitoring functionalities of the trigger system channel monitoring
window pertaining to individual channels.

• TcsWindow – Contains instances of the TcsChannel class and implements the control functional-
ities related to the TCS, i.e., setting of the prescaler and calibration triggers.

• LoadScreen – Implements the LOAD window – in particular, its filtering functionalities. Instances
of the LoadDetectorBlock class are contained within this class.

• LoadDetectorBlock – Implements one of the LOAD window functionalities – the ability to load
a group of source IDs at once. Instances of the LoadOneSourceId are contained within this class.

• LoadOneSourceId – Implements one of the LOAD window functionalities – the ability to load a
single source ID.

• LoadOutput – Implements the Load output window functionality, i.e., output of the LOAD com-
mand displaying.

• DaqStructure – Used to create and store an abstract representation of the hardware structure of
the DAQ. The representation is created by reading an XML file containing information concerning
the hardware structure. This class contains instances of the Detector class.

• Detector – Represents structural information concerning a single detector, i.e., which source ids
are associated with it. This class contains instances of the Source class.

• Source – Represents all relevant information concerning a single source id.

• TriggerRates, Trigger, Curve, EventSize, EventsizeLite, EventCurve, OtherCurve, TimeScale-
Draw – Implement functionalities related to the event size display widget.

4.3 Motivation for the creation of a remote DAQ control system interface

If a system (i.e., a detector) malfunctions during a run, an on-call expert for that given system is notified
by the shift crew. He or she then proceeds to find the cause of the problem – most such analyses can
be performed remotely, be it through verbal communication with the shift crew or connecting to the
COMPASS local area network using the SSH (Secure Shell) protocol and making use of various software
tools.

41

A vast majority of such problems are false alarms or software problems and can be solved remotely –
only a small portion actually requires the expert’s presence in the experiment area.

The DAQ is a system fundamental for most of the diagnosis processes – the on-call expert normally
needs to utilize it in order to carry out analysis of the problem or to perform testing after having solved
it. Currently, the only method to control the DAQ remotely is to connect to the COMPASS local area
network using the SSH protocol with X11 forwarding and launch the GUI or to verbally communicate
with the shift crew, both options being highly impractical – an instance of the GUI launched in such a
manner requires a network bandwidth far larger than what is normally available to most of the experts.
A suitable remote access solution for the DAQ would hasten the process of such diagnostic processes or
even eliminate the need for the experts to arrive in person.

4.4 CERN Security restrictions

The CERN Computing and Network Infrastructure Security Policy for Controls [35] states that all in-
teractive access to a domain from users external to that domain must pass application gateways and that
the application gateways must not be directly visible from outside CERN. As a result, when accessing a
domain from outside CERN, the users have to authenticate against the CERN outer perimeter gateways
and the gateways to that domain.

The control applications, such as the COMPASS DAQ control system, are then to be run on such gate-
ways or on computers accessible via SSH or RDP protocols from that gateway. In the case of COMPASS
network, this means the PCCOGW014 and PCCOGW02 gateways.

Figure 4.2 presents a visualization of how one can access computers in the COMPASS domain from
outside the CERN GPN (general purpose network). The user first has to authenticate against the lx-
plus.cern.ch cluster, enabling them to authenticate again against the PCCOGW## computers, from which
they can access individual computers in the internal COMPASS network using SSH. All computers in
the COMPASS network use the SLC 6 (Scientific Linux CERN [38]) operating system.

4Stands for Personal Computer COmpass GateWay

42

lxplus##.cern.ch pccogw## pccoXX##

CERN GPN

COMPASS network

User

SSH SSH SSH

Figure 4.2: A depiction of how computers in the internal COMPASS network can be accessed from
outside of the CERN GPN

4.5 Possible remote access solutions

This section discusses several alternatives of approach to DAQ control system remote access and weighs
their respective advantages and disadvantages.

4.5.1 Command line interface

One of the possible remote access solutions would be a command line interface (CLI) with functionality
similar to the GUI. The user would connect to a control computer using SSH and launch the application
on that computer. This would eliminate the need for X11 forwarding and allow for the use in a low-
bandwidth, high-latency network environment.

4.5.2 Remote GUI client

The most bandwidth-heavy portion of the current remote control model is the transfer of the graphics
using the X11 system. If the GUI was to be run locally on a computer outside of the CERN GPN and
forward the network communication with the rest of the DAQ through the CERN GPN and COMPASS
gateways using the Transport Layer Security (TLS) protocol [37] and the Socket Secure (SOCKS) proto-
col [36], the bandwidth requirements would be reduced significantly while preserving the functionality
of the GUI.

43

Internally, such functionality could be implemented using the Qt framework – the QSslSocket and the
QNetworkProxy classes support TLS and SOCKS protocols, respectively [19].

4.5.3 Web interface

Remote access could also be provided by a web application interface hosted on a computer in the COM-
PASS domain. Such an interface could then be viewed on computers outside the CERN GPN using one
of the commercially available web browsers which support the SOCKS protocol. In this scenario, HTTP
would be tunelled through a SOCKS proxy, which would eliminate the need to transfer X11 graphics
over the network, transferring solely the internal data using HTTP [36, 39].

4.5.4 Analysis conclusion

It would seem as a logical conclusion to choose the Remote GUI client option as the solution – it would be
merely an internal modification of an existing interface. However, such a solution would have numerous
disadvantages:

As mentioned in section 4.2, the GUI implements several functions which communicate directly with
systems present in the COMPASS network environment. Such features would cease functioning if the
GUI was to be run outside of this environment.

One of the possible solutions of this problem would be to move the implementation of these features to
the Master process, removing them from the GUI. This modification would also result in the need for
major network communication adjustments. It would not be possible to test such major changes during
a run, resulting in the need to defer the deployment until the next long shutdown of the experiment
(currently, there exists no full-fledged testing environment which simulates the entire hardware setup of
the DAQ and its interactions with the TCS).

DAQ structure type configuration is another feature implemented in a way that is incompatible with
the idea of a remote GUI client. Once a structure type is chosen, the GUI performs a large number of
database queries directly, creating an XML file which describes the structure. The implementation of
this functionality would also have to be moved to the Master process, putting additional computational
strain on it – the loading of DAQ structure is the most expensive action in the GUI in terms of processing
power.

Another disadvantage of this approach would be the need for installation and setup on the user’s com-
puters. The Qt framework is a pivotal dependency of the GUI and would have to be installed by the user,
followed by installation and setup of the remote GUI.

A web application interface would present similar problems – it would necessitate major changes in the
DAQ infrastructure, moving the implementation to the Master process, prompting for a re-implementation
of the GUI as well. Furthermore, this would also require a certain degree of user-side setup.

On the contrary, the command-line interface approach would preserve the current DAQ software archi-
tecture, internal interaction with other systems, as well as user interaction with the DAQ interface – the
user would connect to the COMPASS network as normal, but would merely need to use a CLI command

44

instead of the GUI command to launch such an interface, resulting in a flat learning curve when it comes
to launching the interface for the first time, as opposed to the previous solutions. However, the learning
curve would possibly not be entirely flat when it comes to using the interface.

Another argument for the command-line interface approach is the possibility of use on mobile devices
through an SSH client. Therefore, taking all circumstances into account, it can be concluded that the
command-line interface approach is a suitable solution and this work is hereinafter concerned with its
creation.

45

46

Chapter 5

Solution design and description

This chapter deals with the design of a command-line interface for the COMPASS DAQ control system
as well as with description of the solution.

5.1 Basic design questions

The main idea was to design a command-line interface which would mimic the structure of the GUI to a
certain degree, while still respecting the limitations and advantages of a text-based interface – emphasis
was placed on the following aspects:

• Dynamicity – the information displayed and actions available should react to the state of the DAQ
in real time without the need for user input

• Self-descriptiveness – it should be possible to use the CLI1 without the need to peruse a manual
beforehand (but one should be available)

• Ease of use – the interface should feel intuitive and employ features the user may already be
familiar with from other environments or tools

• System consistency – the CLI should provide exactly the same features the GUI provides and
implement them in the same manner

The first questions which had to be addressed were the method of interaction with the user and the way
of launching the application. While there exist stateless command-line applications which are launched
from an outside shell with given arguments for the purpose of processing a single command (e.g., the
Unix grep utility), this approach is unfit for this particular case, given the dynamic nature of the system.
A stateful approach, where a command-line application "captures" the shell it is launched from (e.g., the
MySql command-line tool) would be far more suitable – therefore, this approach was chosen. The way of
launching the CLI should be analogous to the way of launching the GUI – the ideal approach is therefore

1"CLI" represents the name of the application, rather than the acronym – a convention analogous to the one introduced
earlier concerning the GUI acronym will be used hereinafter

47

for CLI to be launchable on any compatible computer within the COMPASS network by simply typing
CLI into its respective terminal.

Another issue was how to deal with the dynamic nature of the system as well as the large quantity of
monitoring data being produced while preventing the interface from becoming overly convoluted. The
following ground rules were established to address it:

• The information provided by the interface should be divided into a number of distinct categories
and should be only shown when the user explicitly requests it

• There should exist methods to monitor the dynamic aspects of the DAQ in real time without the
need for any user interaction once launched

• Only one dynamic aspect of the DAQ should be allowed to be monitored at a time per instance
of the CLI – in order to monitor more aspects at a time, multiple CLI instances would have to be
launched

• While not monitoring a dynamic part of the DAQ, the amount of dynamic output should be minimal
(limited only to critical messages)

These design concepts gave rose to the current existing implementation of the CLI, described in the
sections below.

5.2 Commands

Once launched and initialized, the application prints out a welcome message, prompting the user to input
commands. The most basic command, which is always available, is the c command. This command,
whose existence is announced in the welcome message, prints the list of available commands at a given
time with their respective descriptions. The descriptions are brief, but comprehensive – designed in a
way such that a user which is already familiar with the DAQ control system can immediately grasp the
functionality of the command.

The set of available commands changes depending on the state of the Master process – whenever the
Master process enters a state classified as a transfer state or an error state, a message is printed in the
CLI, informing the user and disabling most commands, re-enabling them only once it has returned to a
stable or a working state.

Furthermore, the commands take on a tree hierarchy. In other words, not all commands are available
immediately (from the main menu). Several of the commands are classified as menu commands which
enable commands belonging to a given sub-menu, disabling all other commands for clarity. Whenever
the user leaves the root node of the menu structure, the b command, which is used to return back a level
in the menu structure, becomes available.

A large portion of the commands, especially those used for monitoring purposes, display dynamic output.
In other words, such a command will "capture" the CLI, barring it from displaying any other output,
while displaying information which updates in real time. Such output is always printed to the same
visual position when updated, such that it is effortless to read. Once an instance of the CLI is requested

48

to display dynamic output, it remains in that state until the return key is pressed. This also holds true
when the Master process enters a state incompatible with producing information associated with the
output, or even crashes. In practice, this means CLI instances intended for monitoring do not have to be
re-launched or re-configured whenever the Master process enters a different state, is restarted, or crashes.

The CLI assumes the same lock-in philosophy as the GUI. The user can lock into the control mode using
the lock command, enabling control functionality. This turns any other existing control instance of the
CLI or GUI into the monitoring mode. For this purpose, the commands are divided into two classes:
monitoring commands and control commands. The control commands are only available when the CLI
is in the control mode. It should be noted that a command’s being classified as monitoring does not
necessarily imply that it performs actual monitoring capabilities – the classification only represents the
fact that the command is available in the monitoring mode of the CLI. A listing of commands with their
descriptions follows.

Welcome to RCCARS Command line UI 1.0

The user guide is at the COMPASS wiki

Bugs/suggestions to: antonin.kveton@cern.ch

Press c at any time for a list of available commands

Listing 5.1: The welcome message which is printed when the CLI is launched

Executing command "c"

c - Shows all available commands

chat_send - Sends a chat message

lock - Locks into control

poststates - Shows the states of the master and the slaves

quit - Closes the CLI

runconfig_menu - Enters the run configuration menu

runinfo - Shows comprehensive information about the current run

tcs_menu - Enters the TCS menu

Listing 5.2: Output produced by the c command in a monitoring instance of the CLI during the Ready
Master process state

49

Command: Command type: Availability in stable and
working states:

Availability in transfer and
error states:

b Monitoring All All
c Monitoring All All

calibration_info Monitoring All None
chat_send Monitoring All None

configureslaves Control Ready None
coreinfo Monitoring Configured, Dry run None

daqdeadtime_change Control Waiting, Ready, Configured None
datadetail_m Monitoring Configured, Dry run None
datadetail_s Monitoring Configured, Dry run None

errormonitoring Monitoring Configured, Dry run None
fpgainfo Monitoring Configured, Dry run None
LOAD Control All None

loadprescalers Control All None
lock Monitoring All All

maskerror_m Monitoring Configured, Dry run None
maskerror_r Monitoring Configured, Dry run None
maskerror_s Monitoring Configured, Dry run None
mux_menu Monitoring Configured, Dry run None

muxinfo Monitoring Configured, Dry run None
numberofspills_set Control Waiting, Ready, Configured None

numberofspills_show Monitoring Waiting, Ready, Configured None
pccore_menu Monitoring Configured, Dry run None
pdatadetail_m Monitoring Configured, Dry run None
pdatadetail_s Monitoring Configured, Dry run None
portinfo_m Monitoring Configured, Dry run None
portinfo_s Monitoring Configured, Dry run None
poststates Monitoring All All

quit Monitoring All All
recording_set Control Waiting, Ready, Configured None

runconfig_menu Monitoring Waiting, Ready, Configured None
runconfig_show Monitoring Waiting, Ready, Configured None

runinfo Monitoring All None
runnumber_show Monitoring Waiting, Ready, Configured None

runtype_set Control Waiting, Ready, Configured None
calibration_set Control All None

channel_set Control All None
setmonprescaler_r Control Configured, Dry run None

setport_m Control Configured, Dry run None
setport_s Control Configured, Dry run None

slinks_menu Monitoring Configured, Dry run None
spillstructure_show Monitoring Waiting, Ready, Configured None

startrun Control Configured None
startslaves Control Waiting None

stoprun Control Dry run None
stopslaves Control Ready None

structuretype_set Control Waiting None
switch_menu Monitoring Configured, Dry run None

switchinfo Monitoring Configured, Dry run None
spillstructure_switch Control Waiting, Ready, Configured None

tcs_menu Monitoring All None
triggervalues_show Monitoring All None
unconfigureslaves Control Configured None

viewmux Monitoring Configured, Dry run None
viewport_m Monitoring Configured, Dry run None
viewport_r Monitoring Configured, Dry run None
viewport_s Monitoring Configured, Dry run None

Table 5.1: A complete list of the 56 CLI commands, their types, and their availabilities based on the
Master process state

50

Main menu

c

lock

LOAD

startslaves

structuretype_set

poststates

chat_send

runinfo

daqdeadtime_change

configureslaves

stopslaves

errormonitoring

startrun

unconfigureslaves

fpgainfo

stoprun

tcs_menu

runconfig_menu

slinks_menu

quit

switch_menu

mux_menu

pccore_menu

runconfig_show

spillstructure_switch

spillstructure_show

recording_set

numberofspills_set

runtype_set

runnumber_show

numberofspills_show

triggervalues_show

calibration_info

calibration_set

channel_set

loadprescalers

viewmux

muxinfo

datadetail_s

switchinfo

portinfo_s

pdatadetail_s

maskerror_r

viewport_r

viewport_s

setport_s

coreinfo

maskerror_s

setmonprescaler_r

portinfo_m

pdatadetail_m

viewport_m

setport_m

maskerror_m

datadetail_m

Figure 5.1: The menu structure of the CLI

51

5.2.1 Main menu

This section provides a description of commands available immediately upon launching the CLI, pro-
vided the Master process is in the appropriate state for that command to become available.

5.2.1.1 Chat_send

This command can be utilized to send a custom chat message to all other instances of the CLI/GUI.

5.2.1.2 Lock

As mentioned previously, once the lock command is used, the CLI enters the control mode. The user
is prompted for their name and an optional message which is to be sent to all other instances of the
CLI/GUI.

5.2.1.3 Quit

This command terminates the CLI.

5.2.1.4 Poststates

The poststates command is a command with dynamic output which is used to view the states of the
individual processes of the DAQ. It displays information identical to that displayed in the status window
in the GUI.

Master1: dry run

SC_RE11: dry run

SMC01_RE11: dry run

SC_RE12: dry run

SMC02_RE12: dry run

SMC03_RE13: dry run

SMC04_RE14: dry run

SWITCH_RE11: dry run

SMC05_RE15: dry run

SC_RE14: dry run

SC_RE13: dry run

SMC06_RE15: dry run

SR_RE11: dry run

SR_RE12: dry run

SR_RE14: dry run

SR_RE13: dry run

Dynamic output: to end, press ENTER

Listing 5.3: Output produced by the poststates command – as with all dynamic output commands, the
values update in real time without changing location

52

5.2.1.5 Errormonitoring

This command was created to serve as an easy way to monitor hardware errors of the DAQ. In the GUI,
the link status window serves for this purpose – whenever an error occurs, a given error window or port
lights up in red color. Such design would be very difficult to visually comprehend when implemented in
text form, and therefore a different approach was chosen for the CLI.

The dynamic output of this command functions as follows: if there are hardware errors occurring in the
DAQ, details concerning those errors are printed. Otherwise, a "No errors occurring on slinks" message
is printed.

This approach allows the user to see the details of the error immediately, whereas in the GUI, the user
normally has to perform several other actions in order to find out the details concerning the error. Namely,
the actions of mouseovering the given port in order to determine the detector associated with it and
opening the Error detail window in order to determine the type of the error occurring are the most time-
consuming actions and it is not commonplace that the error disappears before the user performs these
actions, forcing them to use the Message Browser application to retroactively view the errors.

The output of this command displays each error in a single line of text, decreasing the likelihood of
having to resort to use of the Message Browser. The information displayed for each error occurring is as
follows:

• Hardware component name

• Port index

• Source id

• Name of the detector associated with the source id, if applicable

• Error type

Port communication is also monitored by this command – if a port, the communication with which has
been lost, is present, the following information is shown:

• Hardware component name

• Port index

• Source id

• Name of the detector associated with the source id, if applicable

Slinks error overview:

Error on MUX04, port 10 (source id 983 - SMUX-SciFI-D-6), Timeout on port

MUX04, port 4 enabled but not up (source id 635 - ECAL0_635)

Dynamic output: to end, press ENTER

Listing 5.4: Output produced by the errormonitoring command

53

5.2.1.6 Runinfo

The runinfo command is a command which dynamically prints meta-information concerning the current
data-taking run. If no run is active when this command is used, information concerning the last run is
posted instead. The following information is printed:

• Current run number

• Current spill count

• Maximum spill count setting

• Burst (whether a spill is occurring)

• Current spill structure setting

Run number: 276989

Spillcount: 293/2000

Burst: 1

Spill structure: Artificial

Dynamic output: to end, press ENTER

Listing 5.5: Output produced by the runinfo command

5.2.1.7 Fpgainfo

Using dynamic output, this command allows for direct FPGA register value monitoring in real time.
First, the list of FPGAs is printed, and the user is prompted to select one. Next, the list of register groups
is printed for that given FPGA (one group for meta-information concerning the FPGA itself and one
group for each of its ports). After the user selects which register group they wish to view, the values
concerning that group are displayed in real time.

5.2.1.8 Daqdeadtime_change

The DAQ deadtime configuration file can be changed using this command.

5.2.1.9 LOAD

This command serves as the means of front-end electronics loading. Internally, this command calls the
console LOAD script which can also be used outside of the CLI, and therefore, the syntax is identical.

54

5.2.1.10 Structuretype_set

This command allows for DAQ structure type configuration – the user can choose between various struc-
ture types retrieved from the database before transitioning to the configured state.

FPGA fw version 2015072410

Source ID 0x385|901

Global reset 0

Event number 0x3763|14179

Current spill number 0xb6|182

bx0 0

Event type of current event 1b

Time of current event 401a97

LEvent number 0x371a|14106

Last spill number 0xb5|181

Lbx0 0

LEvent type of current event 1f

LTime of current event 9a49e2

Header enable 1

Reserve 0

Slink UP 1

Time enable 1

bx000 reserved 0

TCS receiver enabled 1

ECC mode 0

TCS receiver ID 0

TCS errors 8

TCS DAQ mask 1

Number of connected RE 3

Dynamic output: to end, press ENTER

Listing 5.6: Output produced by the fpgainfo command, displaying the register values of a spillbuffer

5.2.1.11 Startrun

This command can be used to start a run (i.e. perform a Master state shift from the configured state
into the dry run state). As mentioned previously, there are several parameters that need to be set before
starting a run (number of spills, recording setting, run type, TCS prescaler template). If these parameters
are not set, the default values are used – in the case of the number of spills and recording values, this
is desirable behavior, as the maximum number of spills seldom changes, and the data should be almost
always recorded (with the exception of SPS technical stops etc.). However, the run type should always
be set manually before a run is started, as this is a parameter that tends to change often.

If the run type is of the default value (not_defined), this command will print a message conveying this
information to the user, prompting them about their desire to proceed and start the run. If the recording is
disabled, the user will be warned in a similar way. Once a run is started, all of the important parameters
are also printed.

5.2.1.12 Other run control commands

Startrun is not the only command which allows to induce a Master state shift. The rest is listed below:

55

• startslaves: Waiting→Ready

• stopslaves: Ready→Waiting

• configureslaves: Ready→Configured

• unconfigureslaves: Configured→Ready

• stoprun: Dry run→Configured

5.2.2 TCS menu

This section describes all commands related to the trigger control system, which can be accessed by
using the tcs_menu command.

5.2.2.1 Triggervalues_show

This is yet another command which uses dynamic output. It allows for TCS channel monitoring, dis-
playing the In, Out and Div values for each channel. If the value of In is equal to 0 and the value of Div is
not equal to 0 for the same channel, the line describing that channel lights up in red, indicating a trigger
problem.

Ch: Name: In: Out: Div:

0 TigerDT0 5050 5049 1

1 MT 501353 5014 100

2 LT 1453 1453 1

3 OT 36371 36371 1

4 CT 3719013 0 0

5 VI 10476135 0 0

6 Halo 1592531 0 0

7 BT 60676834 1734 35000

8 ECAL0 2454 0 0

9 LAST 758408 1517 500

10 TRand 422965 0 0

11 NRand 991525 0 0

Dynamic output: to end, press ENTER

Listing 5.7: Output produced by the triggervalues_show command

56

5.2.2.2 Calibration_info

This command displays information pertaining to the calorimeter calibration channels. The rate, onspill
and offspill settings are displayed for each channel.

5.2.2.3 Calibration_set

The calibration_set command serves as a means of calorimeter calibration trigger setup. The trigger
rates can be set to three different values for each channel. The setting concerning onspill and offspill
event generation is also set using this command.

5.2.2.4 Channel_set

This command allows the user to set the div value of a single TCS channel prescaler.

5.2.2.5 Loadprescalers

Using this command, it is possible to load one of the TCS channel prescaler templates from a database.
This sets the div values of all the TCS channels to those defined by the template.

5.2.3 Run configuration menu

The description of commands included in the runconfig_menu can be found below.

5.2.3.1 Spillstructure_switch

Using this command, one can change the spill structure from SPS to artificial and vice versa.

5.2.3.2 Recording_set

This command allows the user to choose whether data taken during a run will be stored. If this command
is not used before a run is started, the value will default to true.

5.2.3.3 Numberofspills_set

The numberofspills_set command can be used to change the maximum number of spills per run. If this
command is not used before a run is started, the value will default to a value received from the Master
process (the value from the last run, usually 200).

57

5.2.3.4 Runtype_set

This command can be utilized in order to set the run type before starting a run. If not specified before a
run is started, the run type will default to the not_defined run type.

5.2.3.5 Spillstructure_show, runnumber_show, numberofspills_show

These commands print the spill structure being used, current run number, or the current maximum spill
count setting, resepectively.

5.2.3.6 Runconfig_show

The runconfig_show command can be used to confirm the run configuration before starting a run. In
other words, values of all settings which need to be set in order to start a run are printed:

• Run type

• Maximum spill count

• Whether the data is to be recorded or not

• Spill structure

5.2.4 S-Link menu and its sub-menus

This section provides a description of commands enabled after using the slinks_menu command, or any
of its related sub-menu commands.

5.2.4.1 Muxinfo, switchinfo, coreinfo

Using dynamic output, these commands print the following meta-information concerning each of the
connected multiplexers, the switch, or the readout computers, respectively:

• Current node-local spill number

• Current node-local event number

• Total data accepted during current spill

• Total data accepted during previous spill

• Port status

In the case of coreinfo, the monitoring prescaler setting is also shown.
58

5.2.4.2 Viewmux

The viewmux command is a de-facto menu command – after the user selects a multiplexer to view, a
set of commands related to that given multiplexer is enabled (the complete list of enabled commands is
shown in fig 5.1).

5.2.4.3 Datadetail_s, Pdatadetail_s

These commands use dynamic output in order to display data accepted during current and previous spill
on each of the ingoing ports of the switch, respectively.

5.2.4.4 Portinfo_s

The portinfo_s command displays the following information concerning each of the switch ports:

• Port index

• Whether the port is ingoing or outgoing

• Whether the port is enabled or disabled

• Source id (for ingoing ports only)

5.2.4.5 Viewport_m, viewport_s, viewport_r

These commands allow for dynamic monitoring of errors on a given multiplexer, switch, or readout
computer port, respectively. When one or more errors occur on the port, the error types are posted. This
is a built-in redundancy with the errormonitoring command, allowing the user to monitor a faulty port
elaborately.

5.2.4.6 Portinfo_m

The portinfo_m command displays information concerning the ports of a given multiplexer and its related
source ids. Specifically, the following information is posted for each port:

• Port index

• Source id

• Associated source ids2 and related detector names
2If a given source id corresponds to a multiplexer, the associated source ids are those that correspond to electronics connected

to that multiplexer

59

• Whether the port is enabled or disabled

VIEWING MUX01, srcid: 945

Port 1 srcid: 2 (Mastertime_1)

Associated srcids:

2 - Mastertime

Port 2 srcid: 978 (SMUX-Mastertime/Trigger)

Associated srcids:

3 - Mastertime 65 - Trigger 66 - Trigger 67 - Trigger

Port 3 srcid: 977 (SMUX-Trigger1)

Associated srcids:

68 - Trigger 69 - Trigger 70 - Trigger

Port 4 srcid: 976 (SMUX-Trigger2)

Associated srcids:

71 - Trigger 72 - Trigger 73 - Trigger 74 - Trigger

Port 5 srcid: 16 (Scaler_1)

Associated srcids:

16 - Scaler

Port 6 srcid: 17 (Scaler_2)

Associated srcids:

17 - Scaler

Port 7 disabled

Port 8 disabled

Port 9 disabled

Port 10 disabled

Port 11 disabled

Port 12 disabled

Port 13 disabled

Port 14 disabled

Port 15 disabled

Listing 5.8: Output produced by the portinfo_m command

5.2.4.7 Datadetail_m, Pdatadetail_m

These commands use dynamic output in order to display data accepted during current or previous spill
on each of the ingoing ports of the given multiplexer, respectively.

5.2.4.8 Maskerror_m, maskerror_s

These commands can be used to perform hardware masking of multiplexer, switch or spillbuffer errors,
respectively – the user selects the port and error type to be masked. This mask is then applied into the
FPGA registry.

5.2.4.9 Setport_m, setport_s

These commands allow the user to toggle a single multiplexer or switch port, respectively.
60

5.2.4.10 Setmonprescaler_r

This command serves as the means of setting the value of the monitoring prescaler on a single readout
computer.

5.3 Command argument input

While the CLI is designed to have a mostly flat learning curve, there should also be tools which allow
advanced users to speed up their work at the expense of the curve becoming steeper. This is why the CLI
allows for two approaches when using commands which require arguments.

The first approach is to simply use commands without specifying arguments at all. If any arguments are
required, the user will be prompted for them.

The other approach is to specify the parameters after having typed the command. While the disadvantage
of this method is the user having to learn the parameters used, this manner of using commands can be
faster and more comfortable for the user. The user themself can choose which approach suits them the
most. If the arguments are input incorrectly or insufficiently using this method, the user will be prompted
for them using the first method. The following section describes how the non-promptive approach is
structured.

>viewmux -m this_is_incorrect

Executing command "viewmux"

Invalid input

Which mux?

>

Listing 5.9: An example of incorrect direct argument input and the following prompt

5.3.1 Non-promptive approach

The CLI uses "switches" to pass arguments directly. A switch is a pair of characters, consisting of the
hyphen character and one or more alphabetic characters (i.e. -e). This method is advantageous in that
the order of the parameters is arbitrary. There exist four different classes of switches:

5.3.1.1 Required parametric switches

These switches comprise parameters which are necessary for a command to run and have a numeric or
string input value associated with them.

Input format: <command> -<switch> <value>

Example: viewmux -m 5

61

5.3.1.2 Optional parametric switches

These switches are used to represent parameters which have a numeric or string input value associated
with them, but are not necessary for a command to run.

Input format: <command> -<switch> <value>

Example: lock -m Hello

Here, -m is used to send an optional message to other users when locking into control

5.3.1.3 Required non-parametric switches

These switches represent arguments which are necessary for the command to run, but do not have a nu-
meric input value associated with them. The options are grouped into sets whose members are mutually
exclusive. It is necessary to provide at least one member of each set for the command to run successfully
– in other words, this switch class forces the user to make a choice between several options. A typical
example of such a set is {enable, disable}. While such a set could be represented by the values 0 and
1 using the required parametric switch approach, this method converts the values into a human-readable
format.

Input format: <command> -<switch>

Example: setport_m -e

-e is used to enable a port. For this command to function, the required parametric switch -p <port index>
has to be included as well.

5.3.1.4 Optional non-parametric switches

This switch type does not have a numeric input value associated with it and is not needed in order for the
command to run. Similarly to the previously listed switch class, these parameters are also grouped into
sets whose members are mutually exclusive. However, as opposed to required non-parametric switches,
sets of size equal to 1 can also be present.

In the case of required non-parametric switches, sets of size lesser than 2 are not logical, as the idea of
such switches is to force the user to make a choose a single member of the set. In optional non-parametric
switches however, the optionality can be represented by either having selected a member from the set, or
no member at all, which is consistent with the existence of a set of size equal to 1.

Input format: <command> -<switch>

Example: calibration_set -on

Here, -on represents "onspill" and is not mutually exclusive with -off

62

5.4 User experience features

In order to enhance user experience, several features which improve ease of use were added:

• Tab completion – when in the midst of typing a command, the user can press the tab key to
complete it. If the string used is ambiguous (i.e., more than one command begins with such a
sub-string), a list of such commands is printed. This feature is almost a necessary one in the case
of this application, as the self-descriptive names of commands are often substantially long.

• Command history – the CLI stores command history during individual sessions. The up and
down keys can be used to cycle through recently used commands.

• Expert mode – this is a feature which allows experienced users to speed up their usage of the
CLI. When the CLI is launched with the e argument, this mode will be triggered, which results in
elimination of the menu hierarchy. Therefore, all commands related to the active Master process
state are available immediately. This feature is the reason for the need to differentiate the names of
commands which serve the same purpose, but are situated in different parts of the menu hierarchy
(e.g., setport_m, setport_s).

63

64

Chapter 6

Implementation

Counting over 10 thousand single lines of code, the application is based on C++11 and extensively
utilizes the Qt framework, especially for inter-thread communication using the signal-slot system. Inte-
gration with the rest of the DAQ is implemented using the DIALOG network communication library. The
DIM network communication system is also utilized in the application, particularly for communication
with the TCS.

In total, the CLI utilizes 5 threads: the main thread, which handles most of the application logic, two
threads which handle inbound and outbound network DIALOG communication, one thread which han-
dles DIM network communication and lastly, a thread dedicated to interaction with the user.

In terms of class structure, the ui_object class is central to the application, as it aggregates the class which
handles network communication with those that are used to represent various subsystems of the DAQ as
well as those which handle interaction with the user.

The communication_object class is the class responsible for network communication. It mantains signal-
slot connections to the receiver_processor_thread, sender_processor_thread classes and aggregates var-
ious TCS DIM service classes. Whenever a message is received from the Master process or from the
TCS, an appropriate signal is emitted by the communication_object class, being connected to a slot in
the ui_object class, which then parses the message and updates the representations in the various classes
it manages.

The input_object class implements most of the interaction with the user – it handles interpretation of
user input and implements the user experience features from the previous chapter as well as general
mechanisms used to display dynamic output in the terminal.

Every command is implemented as a separate class derived from the base_command class. The ui_object
manages all such classes and based on messages it receives from the Master process, it decides which
commands are available to the user at a given time.

A detailed description of a selection of classes follows.

65

(56 _command
classes in total)

12

2

n n n

source
nn

nn

ui_object

communication_object

input_object

fpga_object

db_service

db_data

tcs_object

slinks

load_object

b_command

quit_command

mux_objectswitch_objectcore_object

vec_daq_structure

tcs_channel

calibration_channel

error_object

tcs_status_service

tcs_prescaler_service

tcs_spil_indicator_service

sender_processor_thread

receiver_processor_thread

base_command

fpga_card reg_group one_reg

input_checker

command_completion

daq_structure

detector_blockdetector

daq_deadtime

struct_service

8 8

Figure 6.1: A simplified UML class diagram of the application

6.1 Base_command class

The base_command class serves as the base class for all commands. The derived classes override its
virtual methods:

• Initialize_inputchecker – this method is used to setup the instance of the inputchecker class, i.e.,
to specify which parameters and their respective values are valid for that given command.

• Ask_for_args – if the arguments have not been received directly, this method is called to prompt
the user for them. The return value is 1 or 0 depending on whether correct arguments have been
received, 1 indicating success. If a command has no arguments associated with it and does not
override this method, then the return value will default to 1.

• Process_args – this method is called to process arguments received directly, which includes setting
necessary flags, values, etc.

• Perform – this method is used to implement the logic of the command.

• Compose_dynamic_output – if the command is one that produces dynamic output, then the con-
struction of its contents is defined in this method.

66

Concerning non-virtual methods, parse_args is a notable method of this class which is used to parse
and convert direct argument input into a valid inner argument representation without the need to be
overridden by every _command1 class separately.

Once the input_object class emits the command_entered_signal, the connected process_input_slot of
the ui_object class is executed in the main thread, parsing the input so that it is split into the command
name and arguments. Using the command name as a key, the instance of the related _command class is
retrieved from a container and the exec method is called. Its source code can be seen in listing 6.1.

QVariant base_command::exec()

{

if(arg_n > 0)

{

if(input_checker->is_absolute_leeway())

{

process_args();

return perform();

}

if(input_checker->check_args(arguments))

{

parse_args();

process_args();

return perform();

}

else

{

if(ask_for_args() == 1)

{

return perform();

}

else

{

return QVariant(0);

}

}

}

else

{

if(ask_for_args() == 1)

{

return perform();

}

else

{

return QVariant(0);

}

}

}

Listing 6.1: The exec method of the base_command class

1This expression will be used to refer to any class derived from base_command

67

6.2 Input_object class

In order to provide the desired functionality, a separate thread had to be dedicated to execute the logic
provided within this class. Specifically, the tab-command completion and command history functions
are impossible to implement in an environment which only scans user input upon the press of the return
key. The thread is used to observe the standard input continuously – without the need for the return
key to be pressed. This allows for multiple keys to serve as "special keys", which induce an immediate
action, such as a command being completed upon a press of the tab key.

Internally, this behavior is implemented using the POSIX functions included in the termios header (cf.
[41]). In order to achieve the desired behavior, canonical2 mode has to be disabled as well as echo mode.
An infinite loop is then used to monitor the standard input buffer. This approach necessitates building the
terminal environment from the ground up – the basic input features, such as functionality of the delete,
backspace, and other keys had to be re-implemented.

For this reason, a multitude of elementary terminal manipulation methods are present within this class:

• Get_term_row – returns the size of the terminal in rows

• Get_term_col – returns the size of the terminal in columns

• Move_cursor – moves the cursor visual to the specified row and column. This, and other various
cursor and text manipulation (such as coloring) is handled using ANSI escape sequences (cf. [42]).

• Clear_command – mimics the visual of the return key functionality in canonical mode, i.e., when
the return key is pressed, the visual input buffer is cleared, and the cursor visual is moved to the
beginning of the last terminal row

This way of managing the terminal is however not always the one used. When the user is being prompted
for command arguments, the terminal returns to canonical mode, the sole reason being ease of imple-
mentation. The aforementioned input-observing loop is situated In the get_input_slot method, which is
called once when the thread starts, and every time a command has finished executing. Once a command
has been entered, and the return key pressed, the thread of execution leaves this method, enabling canon-
ical mode and prompting the main thread, namely ui_object, to take over user input and output. The
implementation of this behavior is shown in Figure 6.2.

2An input processing mode in which no input is available to the program until it has been terminated by newline, EOF, or
EOL characters [40]

68

Command Callinteraction

Figure 6.2: Signal-slot structure of a command call

Lastly, this class plays a major role in displaying dynamic output. When a command which prints
dynamic output is called, the information is passed to this class using a signal-slot connection, and the
main thread is used to call the refresh_dynamic_command_slot of this class, printing output and updating
it whenever a message from the relevant system is received. Figure 6.3 displays the call structure for
Master process messages. Output produced by the overridden compose_dynamic_output method of the
given command class is passed to this slot, the terminal is cleared using an ANSI escape sequence, and
the passed output is printed. If a press of the return key is detected, the dynamic flag is unset and the
terminal returns to normal mode in which it accepts commands.

69

D
y
n

a
m

ic
 o

u
tp

u
t

in
te
r
a
c
ti
o
n

Figure 6.3: Signal-slot structure of the dynamic output feature. Note the two lower direct connections,
meaning the calls are executed in the main thread. This is so the input thread can scan for a press of the
return key to end dynamic output. The _command class represents only commands with dynamic output
capabilities in this case. Parameters have been omitted in this figure.

70

6.3 Ui_object classs

The main role of the ui_object class is to implement the reactive logic of the application in respect
to the rest of the DAQ. Parsing of messages received from the Master process is implemented in its
parse_message method, being the second most demanding part of the application in terms of processing
power – as mentioned previously, these messages are received every 50 milliseconds on average.

A major portion of the messages consists of a complete list of FPGA register values – the FPGA_object
class is used govern and store this information. Furthermore, some of the register values are also passed
to the classes aggregated by the slinks class. The RegistersLib class is used to represent the registers,
being a standardized class shared by several processes of the DAQ.

The ui_object class also manages command availability. The class uses three attributes for this purpose:
commands (a hash table mapping string keys to base_command class pointers), available_commands
(analogous to commands) and commands_lifo (a stack of such hash tables). Commands is used to con-
tain pointers to all instances of _command classes, available_commands stores only those which are
available to the user at a given time, and commands_lifo is used to manage the menu structure. The
enable_command and disable_command methods are used to toggle availability of the individual com-
mands, using the key (command name) as a parameter. These methods are then called with the appropri-
ate arguments in the update_state method, which occurs when the Master process state changes.

The tcs_object class is another class aggregated by the ui_object class, managing information concerning
the TCS. Using a signal-slot connection with the communication_object class, the ui_object updates the
TCS information encapsulated within it received from the DIM system. There are three DIM services
which provide information concerning the TCS: TCS_prescaler_service (trigger values and prescaler
values), TCS_status_service (calibration trigger configuration) and TCS_spill_indicator_service (burst
information). Finally, the ui_object class also manages a connection to the database (using DIALOG to
communicate with a process which communicates with the database directly). This represents informa-
tion such as the lists of structure types, run types, or prescaler presets. This information is requested
during initialization or based on the Master process state.

6.4 Slinks class

This class aggregates classes related to the new DAQ hardware, i.e., mux_object, switch_object and
core_object – its main role is to initialize and manage the instances of these classes. Since this class is
used to represent the hardware structure of the DAQ, it is only instantiated once the Master process has
entered the configured state (i.e., after a structure type has been chosen and an XML file describing it
has been created by the Master process). Similarly to the GUI, the daq_structure class aggregated by
this class handles parsing of the DAQ structure file and maintains a direct connection to the database to
retrieve additional information related to the individual source ids.

The update_link method of this class is called every time a message is received from the Master process,
passing an updated representation of the register values to mux_object, switch_object and core_object

71

classes. The update_state_slot method is called every time the DAQ is reconfigured, re-reading the DAQ
structure file.

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"

attributeFormDefault="unqualified">

<xs:element name="structure">

<xs:complexType>

<xs:sequence>

<xs:element name="hardware">

<xs:complexType>

<xs:sequence>

<xs:element name="controlPR" type="xs:int"/>

<xs:element name="type" type="xs:string"/>

<xs:element name="action" type="xs:string"/>

<xs:element name="port" type="xs:int"/>

<xs:element name="source" type="xs:int"/>

<xs:element name="process" type="xs:int"/>

<xs:element name="name" type="xs:string"/>

<xs:element name="contact" type="xs:string"/>

<xs:element name="Tooltip" type="xs:string"/>

<xs:element ref="hardware" minOccurs="0"

maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>

Listing 6.2: XML schema definition of the DAQ structure file created by the Master process

The mux_object, switch_object and core_object classes also contain methods named update_link and
update_state, both handling the updating of inner representations when the corresponding Slinks class
method is called.

6.5 Input_checker class

The input_checker class handles input validation of command arguments. A single instance is present in
each _command class whose related command accepts arguments. After initialization, the input can be
checked for validity using the overloaded is_valid method.

This class uses the concept of "phases" when pertaining to promptive input, each phase corresponding
to a set of valid inputs that is available at a point in time when asking the user using the overriden
ask_for_args method of a given _command class. For direct input, the phases are mapped to individual
switches.

Parametric switches can be flagged as "leeway switches", meaning no input validation will be performed
for that switch (e.g., lock-in messages). A command can also be flagged as absolute leeway. This means

72

no input checking will be done and any parameters the user might have input will be passed over to the
command. The LOAD command is flagged as such, as it only internally calls the LOAD utility which
implements its own input validation.

>LOAD -A pccofe01 800 810 811 1024

Listing 6.3: An example of LOAD command argument input

input_checker

-absolute_leeway: bool

-available_arguments: QVector<QSet<QString>>

-ranges: QVector<QVector<range>>

-available_indices: QVector<QSet<int>>

-s_sets: switch_sets

-switch_to_phase_map: QMap<QString,int>

-switches_with_leeway_parameters: QSet<QString>

+input_checker(phases:int)

+is_valid(argument:QString,phase:int,): bool

+is_valid(index:int,phase:int,stream:QTextStream*): bool

+is_a_number(stream:QTextStream*): bool

+make_valid(argument:QString,phase:int): void

+make_valid(index:int,phase:int): void

+make_valid(from:int,to:int,phase:int): void

+make_invalid(argument:QString,phase:int): void

+make_invalid(phase:int,index:int): void

+invalidate_all(phase:int): void

+add_par_switch(switch_name:QString,required:bool,leeway:bool=false): void

+add_non_par_switch(switch_variants:QSet<QString>,required:bool): void

+set_absolute_leeway(leeway:bool): void

+get_absolute_leeway(): bool

+assign_switch_to_phase(switch_s:QString,phase:int): void

+check_args(args:QStringList): bool

+get_switch_type(s:QString): int

-nested_set_remove(switch_arg:QString,set_arg:QVector<QSet<QString>>*): void

Figure 6.4: The input_checker class

6.6 Maskerror_s_command

Out of the 56 _command classes, this class has been selected as a representative to demonstrate typical
command implementation.

Initialization of the two-phase input_checker is shown in listing 6.4. A required parametric switch is then
associated with each phase, -p representing the switch port index with the range of 0 to 15, and -i the error

73

index with the range of 0 to 11. A required non-parametric switch is also added, indicating whether the
given mask should be enabled or disabled. Note there are only two phases despite there being three bits
of information. This is given by the nature of the promptive argument input in this particular command,
which shows the status of the masks to the user, and if a port and index are chosen, the mask is set to the
other possible state (i.e., unmasked, if the error is already masked, and vice-versa).

void maskerror_s_command::initialize_inputchecker()

{

ipc = new input_checker(2);

ipc->make_valid(0,15,0);

ipc->make_valid(0,11,1);

ipc->add_par_switch("-p",true);

ipc->assign_switch_to_phase("-p",0);

ipc->add_par_switch("-i",true);

ipc->assign_switch_to_phase("-i", 1);

QSet<QString> variants;

variants.insert("-e");

variants.insert("-d");

ipc->add_non_par_switch(variants,true);

}

Listing 6.4: The implementation of the initialize_inputchecker method in the maskerror_s_command
class

The process_args method shown in listing 6.5 sets the required values after extracting the direct argument
information from the representation created by the parse_args method. By convention, the names of all
attributes which represent the value of user input are prepended with user_i_, no matter which way they
were received.

QVariant maskerror_s_command::process_args()

{

if(non_par_switches.contains("-e"))

user_i_mask = true;

if(non_par_switches.contains("-d"))

user_i_mask = false;

user_i_port = switch_to_val_map["-p"].toUInt();

user_i_error_num = switch_to_val_map["-i"].toUInt();

return QVariant(1);

}

Listing 6.5: The implementation of the process_args method in the maskerror_s_command class

The listing of the ask_for_args method shows the implementation of how the user is prompted for input
in the two separate phases, first being prompted for the port and then the error index. Note the canonical
input processing mode.

74

QVariant maskerror_s_command::ask_for_args()

{

QTextStream(stdout) << "Which port?" << endl;

QTextStream input(stdin);

input >> user_i_port;

if(!ipc->is_valid(user_i_port,0,&input))

return QVariant(0);

for (quint8 i = 0; i < 12; i++)

{

QTextStream(stdout) << "Mask " << i << ": " << slinks_ptr->error_descriptions[i] << " - ";

if(switch_object_ptr->error_objects[user_i_port]->is_masked(i))

QTextStream(stdout) << "Masked";

else

QTextStream(stdout) << "Not masked";

QTextStream(stdout) << " " << endl;

}

QTextStream(stdout) << "Enter the index of error which you would like to mask/unmask:" << endl;

QTextStream input2(stdin);

input2 >> user_i_error_num;

if(!ipc->is_valid(user_i_error_num,1,&input2))

return QVariant(0);

if(switch_object_ptr->error_objects[user_i_port]->is_masked(user_i_error_num))

user_i_mask = false;

else

user_i_mask = true;

return QVariant(1);

}

Listing 6.6: The implementation of the ask_for_args method in the maskerror_s_command class

Finally, the perform method, the implementation of which is shown in listing 6.7, composes a message to
be sent to the Master process. The user input is serialized into a pre-defined format, encapsulated using
the Transport Protocol (a standard for message encapsulation within the DAQ, see section 1.5.2 of [16]
for details), and a signal which triggers its sending to the Master process using DIALOG is emitted.

75

QVariant maskerror_s_command::perform()

{

QByteArray msg;

QByteArray temp("SCCM");

if(user_i_mask)

temp.append("13 |");

else

temp.append("12 |");

temp.append(QByteArray::number(switch_object_ptr->error_objects[user_i_port]->get_cprocessid()));

temp.append("|");

temp.append(QByteArray::number(user_i_port));

temp.append("|");

temp.append(QByteArray::number(user_i_error_num));

temp.append(" ");

msg=transportProtocol.makeMsg(*gui_id,42,"1111",temp);

emit sendCommandMessageSignal("S_RUN_CONTROL",msg);

return QVariant(1);

}

Listing 6.7: The implementation of the perform method in the maskerror_s_command class

76

Chapter 7

Testing

This Chapter aims to describe the philosophy and methodology used during the testing of the application.

7.1 Integration tests

As the application interacts with a number of different systems, it was essential to test whether the
interaction between systems behaves as expected, especially in error states, e.g. one of the systems being
unavailable.

In order to monitor the network behavior of the application, the DIALOGcommunicationGUI and DIM
information display (DID) applications were used for DIALOG and DIM network communication, re-
spectively. These applications allow for monitoring of commands and services registered with the DI-
ALOG/DIM application server, as well as their subscribed clients, and the messages being sent. This
was used to confirm the process subscribes to the services correctly and sends correct commands.

77

Figure 7.1: The DIALOGcommunicationGUI utility

Figure 7.2: Monitoring subscribed services and their output using DIALOGcommunicationGUI

78

Figure 7.3: The DIM information display utility

The selection of test cases described below combines the use of the above mentioned tools with functional
tests.

Test case 1 – TCS DIM unavailable
This test case evaluates the behavior of every TCS-related command while the various TCS DIM com-
mands/services are unavailable.

Command: Behavior: Expected?

Calibration_info
Prints a "DIM error"

message
Yes

Triggervalues_show
Values show -1, channels

named "DIM error"
Yes

Channel_set

Prints a "DIM command

TCS/main/Prescaler

unknown" message

Yes

Calibration_set

Prints a "DIM command

TCS/main/Control unknown"

message

Yes

Table 7.1: TCS related commands evaluated during integration testing

Test case 2 – Spill structure DIM unavailable
The need to possess information concerning the spill structure creates dependency on yet another external
system. All commands interacting with this information were tested. Note that the commands print a
"Not yet received" value instead of an error value, as spill structure information is only received every
30s.

79

Command: Behavior: Expected?

Runinfo

Prints a Value of the

spill structure cell reads

"Not yet received"

Yes

Startrun

Value of the spill

structure cell reads "Not

yet received"

Yes

Spillstructure_show

Value of the spill

structure cell reads "Not

yet received"

Yes

Runconfig_show

Value of the spill

structure cell reads "Not

yet received"

Yes

Spillstructure_switch

Prints a "DIM command

SSS.command unavailable"

message

Yes

Table 7.2: Spill structure related commands evaluated during integration testing

Test case 3 – Master process unavailable
In this test case, the CLI was started during absence of the Master process. In this case, a "No Master
process found" message was printed repeatedly every time the application tried to establish a connection,
which is the expected behavior.

Test case 4 – Master process crash and restart
This test case evaluates the behavior of the application during a Master process crash and its subsequent
restart. The SIGKILL signal was sent to the Master process to simulate a crash, followed by a command
to start the process again.

Behavior during two different states of the application was tested: non-canonical input mode and dy-
namic output mode. In the first case, a "No Master process found" message was printed repeatedly,
similarly to the previous test case. Once the Master process had been restarted, the application printed
a "Master state changed, please wait" message followed by a ". . . done" message, enabling commands
appropriate for the Master waiting state, which is the expected behavior.

In the second case, the dynamic output stopped updating once the Master process was killed, and resumed
updating as soon as it was restarted and transitioned to a compatible state, which is the expected behavior.

7.2 Functional tests

Automated functional testing was performed using Expect [41] – a tcl-based utility for programmed
dialogue with interactive programs, simulating user interaction. As it would be highly impractical and
time consuming to create a multitude of tests manually, the Autoexpect utility is provided along with
Expect – a tool for Expect code generation based on user-recorded interaction. As such, Autoexpect was

80

used to create to generate a basis of the tests, which was then subsequently modified. A selection of the
tests performed can be found below.
set timeout -1

spawn $env(SHELL)

match_max 100000

send -- "CLI\r"

expect -exact "...done\r"

send -- "tcs "

expect -exact "tcs [47;0H[Ktcs_menu"

send -- "\r"

expect -exact "\r

Executing command \"tcs_menu\"\r

Enabling command: c\r

Enabling command: b\r

Enabling command: trigger_values\r

Enabling command: calibration_info\r"

send -- "c\r"

expect -exact "c\r

Executing command \"c\"\r

b - Returns back a level in the menu\r

c - Shows all available commands\r

calibration_info - Posts current calibration settings\r

trigger_values - Posts current trigger info and settings\r"

send -- "b\r"

expect -exact "b\r

Executing command \"b\"\r"

send -- "q "

expect -exact "q [47;0H[Kquit"

send -- "\r"

expect -exact "\r

Executing command \"quit\"

sleep 1

send -- "exit\r"

expect eof

Listing 7.1: An Expect test which launches the application, waits for initialization to finish, enters the
TCS menu using tab completion, uses the c command, validates its output, and exits the application

7.3 Performance analysis

Effective performance is a feature vital to the CLI, as several instances need to be run at the same time.
It is thus essential the application is not CPU or memory-heavy. The Linux Pidstat utility was used to
log CPU and memory usage statistics of CLI instances in various states for the duration of one week,
peaking at 3% CPU usage and 1% memory usage on the target machines, which is an acceptable result.
Linux 2.6.32-573.22.1.el6.x86_64 (pccorc31.cern.ch) 27.2.2017 _x86_64_ (2 CPU)

Time PID %usr %system %guest %CPU CPU minflt/s majflt/s VSZ RSS %MEM Command

1488194684 13821 2,00 0,00 0,00 2,00 0 0,00 0,00 1189896 17908 0,46 CLI

Listing 7.2: Output of the pidstat -r -h -u -p <PID> 15 command

Furthermore, the Valgrind memory analyzer tool was used to check for memory leaks, confirming their
absence. The Valgrind function profiler tool was also used in order to optimize the application.

81

set timeout -1

spawn $env(SHELL)

match_max 100000

send -- "CLI\r"

expect -exact "

...done\r"

send -- "runconfig_menu\r"

expect -exact "runconfig_menu\r

Executing command \"runconfig_menu\"\r

Enabling command: c\r

Enabling command: b\r

Enabling command: runconfig_show\r

Enabling command: spillstructure_show\r

Enabling command: runnumber_show\r

Enabling command: numberofspills_show\r"

send -- "numb "

expect -exact "numb [59;0H[Knumberofspills_show"

send -- "\r"

expect -exact "\r

Executing command \"numberofspills_show\"\r"

expect -re "The active spillcount is: (\[0-9]+)\r"

send -- "b\r"

expect -exact "b\r

Executing command \"b\"\r"

send -- "q "

expect -exact "q [59;0H[Kquit"

send -- "\r"

expect -exact "\r

Executing command \"quit\"

sleep 1

send -- "exit\r"

expect eof

Listing 7.3: An Expect test which launches the application, waits for initialization to finish, enters the
run configuration menu, uses the numberofspills_show command, validates its output, and exits the ap-
plication

7.4 Usability tests

Five different participants which regularly need to access the DAQ remotely were selected for usability
testing. They were asked to try to carry out the tasks they normally perform remotely. This included:

• Starting a run

• Viewing FPGA register values

• Changing the DAQ deadtime

• Viewing trigger values

After a short period of familiarization with the interface, the participants managed to carry out all the
tasks with relative ease. The only exception was the action of starting a run, during which one participant

82

was unsure how to set the parameters and needed assistance. This could be possibly solved by reworking
the startrun command to accept direct argument input in the future after further evaluation. For the time
being, the command description printed out by the c command was updated to address this issue.

One of the participants also inquired about viewing the history of the trigger values (i.e., being able
to scroll up and view previous values). As it is possible to view the history once dynamic output is
terminated, the participant was informed and this information was subsequently included in the user
manual of the application.

83

84

Conclusion

After a thorough analysis of the COMPASS DAQ control system, its graphical user interface and related
systems, a command-line interface was designed, developed, deployed and successfully tested in the
CERN environment – it has been a part of the software equipment of the COMPASS experiment since
September 2016. A presentation on the interface was given at the COMPASS weekly meeting, and the
application has been met with positive feedback. Members of the COMPASS collaboration now make
use of this interface in order to access the DAQ remotely.

Suggestions to rework the software architecture of the DAQ and the integration with other systems have
also been given in order to improve modularity of the system, especially for reuse at other experiments,
but also to facilitate conversion of the GUI to a process disjoint from the COMPASS network. These
changes are currently planned to be carried out by the author of this thesis over the course of the years
2017 and 2018.

The new DAQ and its control system are currently planned to be used at one physics experiment other
than COMPASS – the experiment NA64, whose aim is to extend the current understanding of dark matter
and possibly prove its existence [43]. In conclusion, the application developed in this thesis currently
sees frequent use at the COMPASS experiment, and is likely to enjoy the privilege of being used at
additional experiments in the future.

85

86

Bibliography

[1] P. Abbon et al.: The COMPASS experiment at CERN, CERN-PH-EP/2007-001, January 2007

[2] V. Yu. Alexakhin et al.: COMPASS-II Proposal, CERN-SPSC-2010-014; SPSC-P-340, May 2010

[3] COMPASS: COmmon Muon Proton Apparatus for Structure and Spectroscopy [online] Avail-
able at: http://wwwcompass.cern.ch [Accessed 15 February 2017]

[4] J. Nový: COMPASS DAQ - Basic Control System; Diploma thesis, Faculty of Nuclear Sciences
and Physical Engineering, Czech Technical University, 2012

[5] CASTOR - CERN Advanced Storage manager [online] Available at: http://castor.web.cern.ch
[Accessed 2 February 2017]

[6] B. Grube: A Trigger Control System for COMPASS and A Measurement of the Transverse Po-
larization of Λ and Ξ Hyperons from Quasi-Real Photo-Production; Doctoral Thesis, Technical
University of Munich, 2006

[7] iMUX/HGESICA module [online] Available at:
http://wwwcompass.cern.ch/twiki/pub/Detectors/FrontEndElectronics/imux_manual.pdf [Accessed
2 February 2017]

[8] Electronic developments for COMPASS at Freiburg [online] Available at:
http://hpfr02.physik.uni-freiburg.de/projects/compass/electronics/catch.html [Accessed 2 February
2017]

[9] The GANDALF Module [online] Available at: http://wwwhad.physik.uni-
freiburg.de/gandalf/pages/hardware/the-gandalf-module.php?lang=EN [Accessed 2 February
2017].

[10] H. Sakulin: Field Programmable Gate Arrays, In: International School of Trigger and Data
Acquisition, Krakow, February 2012

[11] J. Nový: Processing of large quantity of data from the COMPASS experiment; Written disserta-
tion preparation, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University,
2016

[12] V. Baggiolini et al.: The CESAR project - Using J2EE for accelerator con-
trols; In: 9th International Conference on Accelerator and Large Experimental
Physics Control Systems, Gyeongju, Korea, 13-17 October 2003, pp.269 Available at:
http://accelconf.web.cern.ch/AccelConf/ica03/PAPERS/TU512.PDF

87

[13] P. Bordalo et al. Control Systems: an Application to a High Energy Physics Experiment (COM-
PASS); In: Proceedings of the 2012 IEEE International Conference on Automation, Quality and
Testing, Robotics (AQTR 2012) 20-25 arXiv:1206.3709

[14] COMPASS shift list [online] Available at: https://compassshifts.web.cern.ch (credentials required)
[Accessed 17 February 2017]

[15] The IPbus Protocol [online] Available at: http://ohm.bu.edu/ chill90/ipbus/ipbus_protocol_v2_0.pdf
[Accessed 12 December 2016]

[16] A. Květoň: State machines of the data acquisition system of the COMPASS experiment at
CERN; Bachelor’s thesis, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical
University, 2015

[17] Gaspar C., Dönszelmann: DIM, a Portable, LightWeight Package for Information Publish-
ing, Data Transfer and Inter-process Communication, Presented at: International Conference on
Computing in High Energy and Nuclear Physics (Padova, Italy, February 2000)

[18] Distributed Information Management System [online] Available at: http://dim.web.cern.ch/dim/
[Accessed 4 February 2017]

[19] Qt documentantion [online] : Available at: http://doc.qt.io [Accessed 4 February 2017]

[20] Qt developer network [online] Available at: http://www.qt.io/developers/ [Accessed 4 February
2017]

[21] P. Abbon et al.: The COMPASS Setup for Physics with Hadron Beams, CERN-PH-EP-2014-
247, October 2014

[22] I. Antcheva et al.: ROOT – A C++ framework for petabyte data storage, statistical analysis
and visualization In: Computer Physics Communications Volume 180, Issue 12, December 2009,
Pages 2499–2512

[23] The S-LINK Interface Specification [online] Available at: http://hsi.web.cern.ch/HSI/s-
link/spec/spec/s-link.pdf [Accessed 4 June 2015]

[24] M. Jandek: User interface for control of logbook of COMPASS experiment at CERN; Bach-
elor’s thesis, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University,
2016

[25] L. Schmitt et al: The DAQ of the COMPASS experiment In: 13th IEEE-NPSS Real Time Conf.,
Montreal, Canada, 1823 May 2003 p 439-444

[26] T. Anticic et al.: ALICE DAQ and ECS User’s Guide CERN, EDMS 616039, January 2006

[27] L. Schmit: DATE Run Control Tutorial for COMPASS [online] Available at:
http://wwwcompass.cern.ch/compass/detector/daq/date/runControl/ [Accessed 18 April 2017]

[28] B. Franek et al.: SMI++ object oriented framework for designing and implementing dis-
tributed control systems In: Nuclear Science Symposium Conference Record, October 2004 IEEE
DOI: 10.1109/NSSMIC.2004.1462600

88

[29] M. Bodlák et al.: FPGA based data acquisition system for COMPASS experiment In: Journal of
Physics: Conference Series. 2014-06-11, vol. 513, issue 1 DOI: 10.1088/1742-6596/513/1/012029
Available at: http://iopscience.iop.org/1742-6596/513/1/012029/

[30] J. Vondra: Graphical user interface for control system of the COMPASS experiment at CERN;
Bachelor’s thesis, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical Univer-
sity, 2014

[31] J. Nový et al.: Pilot run of the new DAQ of the COMPASS experiment In: Journal of Physics:
Conference Series. 2015-06-11, vol. 664, issue 8. DOI: 10.1088/1742-6596/664/8/082042 Available
at: http://iopscience.iop.org/article/10.1088/1742-6596/664/8/082042

[32] Y. bai et al.: Overview and future developments of the FPGA-based DAQ
of COMPASS In: Journal of Instrumentation. 2016-02-09, vol. 11 Available at:
http://iopscience.iop.org/article/10.1088/1748-0221/11/02/C02025

[33] G. Bauer et al.: The run control system of the CMS experiment In: Journal of Physics: Con-
ference Series, Volume 119, Part 2 Available at: http://iopscience.iop.org/article/10.1088/1742-
6596/119/2/022010

[34] T. Schmidt: A Common Readout Driver for the COMPASS Experiment; Doctoral Thesis, Al-
bert Ludwigs University of Freiburg, May 2002

[35] CNIC security policy for controls [online] Available at:
https://edms.cern.ch/ui/file/584092/2.4/CNIC_Security_Policy_V2.4.pdf [Accessed 17 Febru-
ary 2017]

[36] SOCKS protocol version 5 [online] Available at: https://tools.ietf.org/html/rfc1928 [Accessed 12
February 2017]

[37] The Transport Layer Security (TLS) Protocol Version 1.2 [online] Available at:
https://tools.ietf.org/html/rfc5246 [Accessed 12 February 2017]

[38] Linux at CERN [online] Available at: http://linux.web.cern.ch/linux/scientific6/ [Accessed Febru-
ary 20176]

[39] Tips & tricks for software used at COMPASS [online] Available at:
http://physics.mff.cuni.cz/kfnt/cern/softintro/ [Accessed 12 February 2017]

[40] The GNU C Library manual [online] Available at: https://www.gnu.org/software/libc/manual/
[Accessed 24 february 2017]

[41] The Linux man-pages project [online] Available at: https://www.kernel.org/doc/man-pages/ [Ac-
cessed 21 february 2017]

[42] The Linux Documentation Project [online] Available at: http://www.tldp.org [Accessed 21
February 2017]

[43] S. Andreas et al.: Proposal for an Experiment to Search for Light Dark Matter at the SPS
arXiv:1312.3309 [hep-ex]

89

90

Appendix A

CD contents

• This document in the pdf and tex formats

• Source code of the CLI application

• User manual

91

92

Appendix B

User manual

93

DAQ CLI user guide

Antońın Květoň
Report bugs/send suggestions to: antonin.kveton@cern.ch

February 27, 2017

Contents

1 Introduction 3

2 Dynamic output 3

3 Parameters 3

4 Quality of life features 3

5 Menu hierarchy 4

6 A brief how-to 4

6.1 Viewing DAQ process states . 4

6.1.1 Changing DAQ structure type 4

6.2 Run control . 4

6.2.1 Configuring and starting a run 5

6.3 Monitoring of DAQ errors . 5

6.4 Frontend loading . 5

7 Command parameters 5

7.1 lock . 6

7.2 chat send . 6

7.3 structuretype set . 6

7.4 runtype set . 6

7.5 numberofspills set . 6

7.6 loadprescalers . 6

7.7 recording set . 6

7.8 spillstructure switch . 6

7.9 viewmux . 6

7.10 setport m . 6

7.11 viewport m . 7

7.12 maskerror m . 7

7.13 portinfo m . 7

1

7.14 datadetail m . 7

7.15 pdatadetail m . 7

7.16 setport s . 7

7.17 maskerror s . 7

7.18 maskerror r . 7

7.19 setmonprescaler r . 7

7.20 channel set . 7

7.21 calibration set . 8

8 Expert mode 8

9 Known bugs 8

2

1 Introduction

The daq CLI operates under the same locking philosophy as the GUI. The func-
tionality it provides is identical to that of the GUI. The main advantage of the
CLI is the fact that one does not need ssh -X in order to connect to it remotely.
Therefore, one can even control the DAQ from their smartphone, if they so
desire.

To launch the CLI, simply type CLI on any compass machine.

To view commands available at a given time, use the c command (a brief de-
scription of what the command does will be printed as well).

2 Dynamic output

A large portion of the commands prints dynamic output, i.e., the values update
in real time. Such a command will ”capture” the CLI - no other output will be
printed. Dynamic mode can be left by pressing the enter key, as prompted on
the screen. Should the terminal window be too small to contain the dynamic
output, it can be resized - the output will adjust to the size with the next value
update.

As it is only possible to launch one dynamic command at a time, multiple
instances of the CLI need to be launched simultaneously, should the user wish
to use several dynamic commands at a time and/or control the DAQ. The CLI
is very light-weight, so there is no problem to run multiple instances of it on the
PCCORC machines.

If one wishes to view history of the values of a command with dynamic out-
put, they should terminate dynamic output and simply scroll up.

3 Parameters

Some of the CLI commands take parameters, but entering them along with the
command is never mandatory - if the user does not know the format of the
parameters, they should simply launch the command without parameters, as
they will be prompted for them afterwards.

4 Quality of life features

It is worth mention that the CLI supports classic TAB command completion,
as well as command history (up and down arrow).

3

5 Menu hierarchy

Many of the commands are hidden under the menu hierarchy - this means when-

ever a ”menu” command is entered, all current commands are disabled and new

commands are enabled. The menu hierarchy is the following:

6 A brief how-to

Please bear in mind that control commands will only show up if the CLI is

locked in and that the availability of commands is entirely dependent on the

state of the Master process.

6.1 Viewing DAQ process states

In order to view the states of the daq processes, use the poststates command.

6.1.1 Changing DAQ structure type

In order to change the DAQ structure type, make sure the state of the Master

is waiting, and subsequently use the structuretype command.

6.2 Run control

The following commands are identical to the run control arrow buttons in the

GUI:

1. startslaves

2. stopslaves

3. configureslaves

4

4. unconfigureslaves

5. startrun

6. stoprun

6.2.1 Configuring and starting a run

The following items need to be set before starting a run:

1. Number of spills

2. Prescaler settings

3. Recording enable

4. Run type

If not explicitly set, the values of Number of spills and Prescaler settings will
be pulled from the database, Recording enable will default to true and Run type

to not defined. This makes it so that for normal use, the user only has to select
the run type.

If recording is disabled or run type not defined, the user will be warned upon
starting a run.

All of the above (except for prescaler settings) can be changed in the runconfig
menu. The prescaler settings can be changed in the tcs menu.

6.3 Monitoring of DAQ errors

The command errormonitoring can be used to quickly display any FPGA reg-
ister enabled error bits or port errors. This dynamic command provides defacto
identical information to the slinks window in the GUI.

6.4 Frontend loading

The LOAD command can be executed from the main menu in exactly the
same manner as in any other enviroment on a compass machine, i.e. LOAD

〈parameters〉.

7 Command parameters

This section describes parameters of the individual commands if one wishes to
input arguments directly instead of being prompted for them.

Parameters which are marked as required are necessary to include for direct

5

argument input to work, otherwise the user will be prompted for them.

If the category required exclusive is present, exactly one argument from the
category has to be included in order for the command to function.

7.1 lock

Required: -n 〈name of the user〉
Optional: -m 〈lock-in message〉

7.2 chat send

Required: -n 〈name of the user〉, -n 〈message to send〉

7.3 structuretype set

Required: -i 〈index of the structure type〉

7.4 runtype set

Required: -i 〈index of the run type〉

7.5 numberofspills set

Required: -n 〈number of spills〉

7.6 loadprescalers

Required: -i 〈index of the database-pulled prescaler setting〉

7.7 recording set

Required exclusive: -e (enable) or -d (disable)

7.8 spillstructure switch

Required exclusive: -a (artificial spill structure) or -s (SPS spill structure)

7.9 viewmux

Required: -m 〈mux to view〉

7.10 setport m

Required: -m 〈mux to set〉, -p 〈port to set〉
Required exclusive: -e (enable) or -d (disable)

6

7.11 viewport m

Required: -m 〈mux to view〉, -p 〈port to view〉

7.12 maskerror m

Required: -m 〈mux to set〉, -p 〈port to view〉, -i 〈error number to mask〉
Required exclusive: -e (enable mask) or -d (disable mask)

7.13 portinfo m

Required: -m 〈mux to view〉

7.14 datadetail m

Required: -m 〈mux to view〉

7.15 pdatadetail m

Required: -m 〈mux to view〉

7.16 setport s

Required: -p 〈port to set〉
Required exclusive: -e (enable) or -d (disable)

7.17 maskerror s

Required: -p 〈port to set〉, -i 〈error number to mask〉
Required exclusive: -e (enable mask) or -d (disable mask)

7.18 maskerror r

Required: -r 〈PCCORE to set〉, -i 〈error number to mask〉
Required exclusive: -e (enable mask) or -d (disable mask)

7.19 setmonprescaler r

Required: -r 〈PCCORE to set〉, -s 〈prescaling value to set〉

7.20 channel set

Required: -ch 〈channel to set〉, -v 〈prescaling value to set〉

7

7.21 calibration set

Required: -ch 〈channel to set〉, -v 〈prescaling value to set〉, -r 〈rate to set〉:
Optional: -on (set onspill to true, else false), -off (set offspill to true, else
false),

8 Expert mode

When lauching the CLI with the e argument, i.e., ”CLI e”, the interface will be
launched in expert mode. The sole purpose of expert mode is to make command
input faster - the menu hierarchy is eliminated and all commands are available
immediately.
Please note: mux commands have to be executed with parameters in this
mode, as there was no input from the viewmux command! If not launched with
parameters, the command will assume mux = 1.

9 Known bugs

8

