
Ing. Michal Valenta, Ph.D.
Head of Department

prof. Ing. Pavel Tvrdík, CSc.
Dean

Prague January 20, 2017

CZECH TECHNICAL UNIVERSITY IN PRAGUE

FACULTY OF INFORMATION TECHNOLOGY

ASSIGNMENT OF MASTER’S THESIS

 Title: Impementation of simultaneous application of several surrogate models to evolutionary
optimization

 Student: Bc. Ján Juranko

 Supervisor: doc. Ing. RNDr. Martin Holeňa, CSc.

 Study Programme: Informatics

 Study Branch: Web and Software Engineering

 Department: Department of Software Engineering

 Validity: Until the end of summer semester 2017/18

Instructions

1. Get acquainted with surrogate modelling for black-box optimization and with an implementation of the
Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES).
 2. 2. Gain practical experience with the software platform Comparing Continuous Optimisers (COCO).
 3. 3. Design and implement several additional variants of Gaussian processes (GP) complementing the
available integration of CMA-ES and GP into the COCO platform.
 4. 4. Test all the integrated GP implementations on noiseless and noisy benchmarks available in the COCO
platform.
 5. 5. Improve the integration through an automatic selection of the most appropriate GP implementation.
 6. 6. Evaluate the impact of automatic selection of the GP implementation on the success of optimization
by the CMA-ES for the benchmarks considered in 4.

References

Will be provided by the supervisor.

Czech Technical University in Prague

Faculty of Information Technology

Department of Software Engineering

Master’s thesis

Implementation of simultaneous
application of several surrogate models to
evolutionary optimization

Bc. Ján Juranko

Supervisor: doc. Ing. RNDr. Martin Holeňa CSc.

9th May 2017

Acknowledgements

I would like to thank my supervisor doc. Ing. RNDr. Martin Holeňa CSc. as
well as Mgr. Lukáš Bajer for their guidance and advice. I would also like to
thank my family and Viktória Fedorová for their support. Access to comput-
ing and storage facilities owned by parties and projects contributing to the
National Grid Infrastructure MetaCentrum provided under the programme
”Projects of Large Research, Development, and Innovations Infrastructures”
(CESNET LM2015042), is greatly appreciated.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on 9th May 2017 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2017 Ján Juranko. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Juranko, Ján. Implementation of simultaneous application of several surrog-
ate models to evolutionary optimization. Master’s thesis. Czech Technical
University in Prague, Faculty of Information Technology, 2017.

Abstrakt

Táto práca sa zameriava na súčasné použitie viacerých Gaussovských pro-
cesov (GP) ako náhradných modelov metódy Covariance Matrix Adaptation
Evolution Strategy (CMA-ES), ktorá je významným algoritmom v oblasti
black-box optimalizácie. Práca obsahuje implementáciu v prostred́ı MAT-
LAB v spojeńı s knižnicou Gaussian Processes for Machine Learning (GPML)
a benchmarkovými testami z platformy COmparing Continuous Optimisers
(COCO). Taktiež sa zaoberá výberom modelov, ktoré budú natrénované, ako
aj určeńım najlepšieho z implementovaných algoritmov pre výber náhradného
modelu, ktorý určuje model použitý pre budúcu generáciu CMA-ES. Práca ob-
sahuje aj výsledky experimentov, ktoré preukázali zlepšenie celkového výkonu
v porovnańı s použit́ım len jediného náhradného modelu.

Klúčové slová black-box optimalizácia, CMA-ES, náhradné modely, Gaus-
sovské procesy.

ix

Abstract

This thesis is focused on using multiple Gaussian processes (GP) simultan-
eously as surrogate models for the Covariance Matrix Adaptation Evolution
Strategy (CMA-ES) method, which is an important algorithm in the black-box
optimization. The thesis contains an implementation in the MATLAB envir-
oment, which uses the Gaussian Processes for Machine Learning (GPML)
library and benchmark tests from the COmparing Continuous Optimisers
(COCO) platform. It also investigates the process of choosing the right mod-
els, which will be trained, as well as algorithms for the selection of the best
surrogate model, which will be used for the next generation of CMA-ES. The
thesis also contains the results of performed experiments that prove the im-
provement of overall performance when compared to using only one surrogate
model.

Keywords black-box optimization, CMA-ES, surrogate models, Gaussian
processes.

x

Contents

Introduction 1

1 State-of-the-art 3
1.1 Black-box optimization . 3
1.2 Noiseless and noisy functions 3
1.3 Covariance Matrix Adaptation Evolution Strategy 5
1.4 Gaussian processes . 7

2 Analysis and design 11
2.1 COCO platform . 11
2.2 CMA-ES . 14
2.3 Surrogate models . 14
2.4 Gaussian processes . 19
2.5 ModelPool . 19

3 Implementation 25
3.1 Gaussian processes . 25
3.2 ModelPool . 26
3.3 Choosing the best parameters for the ModelPool 29
3.4 Testing . 30

4 Experiments 31
4.1 Noiseless functions . 31
4.2 Noisy functions . 71

5 Conclusion 87

Bibliography 89

A Acronyms 91

xi

B Contents of enclosed CD 93

C Tables of GpModels chosen for the ModelPool experiments 95

xii

List of Figures

1.1 Noiseless Rosenbrock function [6] 4
1.2 Noisy Rosenbrock function with uniform noise [5] 4
1.3 Different multivariate normal distributions [4] 6
1.4 Example of progress of the CMA-ES [7] 6
1.5 Example of modelling with a 1-dimensional GP. [10] 9

2.1 Example of a graph from a generated report. 12
2.2 Part of the class diagram - EvolutionControl 15
2.3 Part of the class diagram - Model class 17
2.4 Part of the class diagram - training of the Model class 18
2.5 ModelPool class . 21

4.1 Experiments exp doubleEC 23, exp doubleEC 23 pool and exp doubleEC 23 pool re,
2D, f1 to f8. 33

4.2 Experiments exp doubleEC 23, exp doubleEC 23 pool and exp doubleEC 23 pool re,
2D, f9 to f16. 34

4.3 Experiments exp doubleEC 23, exp doubleEC 23 pool and exp doubleEC 23 pool re,
2D, f17 to f24. 35

4.4 Experiments exp doubleEC 23, exp doubleEC 23 pool and exp doubleEC 23 pool re,
5D, f1 to f8. 36

4.5 Experiments exp doubleEC 23, exp doubleEC 23 pool and exp doubleEC 23 pool re,
5D, f9 to f16. 37

4.6 Experiments exp doubleEC 23, exp doubleEC 23 pool and exp doubleEC 23 pool re,
5D, f17 to f24. 38

4.7 Experiments exp doubleEC 23 and exp doubleEC 23 pool re, 10D,
f1 to f8. 39

4.8 Experiments exp doubleEC 23 and exp doubleEC 23 pool re, 10D,
f9 to f16. 40

4.9 Experiments exp doubleEC 23 and exp doubleEC 23 pool re, 10D,
f17 to f24. 41

xiii

4.10 Experiments exp doubleEC 23, exp doubleEC MP 01 (RDE) and
exp doubleEC MP 03 (MSE), 2D, f1 to f8. 44

4.11 Experiments exp doubleEC 23, exp doubleEC MP 01 (RDE) and
exp doubleEC MP 03 (MSE), 2D, f9 to f16. 45

4.12 Experiments exp doubleEC 23, exp doubleEC MP 01 (RDE) and
exp doubleEC MP 03 (MSE), 2D, f17 to f24. 46

4.13 Experiments exp doubleEC 23, exp doubleEC MP 02 (RDE) and
exp doubleEC MP 04 (MSE), 5D, f1 to f8. 47

4.14 Experiments exp doubleEC 23, exp doubleEC MP 02 (RDE) and
exp doubleEC MP 04 (MSE), 5D, f9 to f16. 48

4.15 Experiments exp doubleEC 23, exp doubleEC MP 02 (RDE) and
exp doubleEC MP 04 (MSE), 5D, f17 to f24. 49

4.16 Experiments exp doubleEC 23, exp doubleEC MP 05 (RDE) and
exp doubleEC MP 06 (MSE), 10D, f1 to f8. 50

4.17 Experiments exp doubleEC 23, exp doubleEC MP 05 (RDE) and
exp doubleEC MP 06 (MSE), 10D, f9 to f16. 51

4.18 Experiments exp doubleEC 23, exp doubleEC MP 05 (RDE) and
exp doubleEC MP 06 (MSE), 10D, f17 to f24. 52

4.19 Experiments exp doubleEC 23, exp doubleEC 25 and exp doubleEC 26,
f2 to f18. 54

4.20 Experiments exp doubleEC 23, exp doubleEC 25 and exp doubleEC 26,
f22 and f23. 55

4.21 Experiments exp doubleEC 23, exp doubleEC 23 pool re and exp doubleEC MP 13,
2D, f1 to f8. 58

4.22 Experiments exp doubleEC 23, exp doubleEC 23 pool re and exp doubleEC MP 13,
2D, f9 to f16. 59

4.23 Experiments exp doubleEC 23, exp doubleEC 23 pool re and exp doubleEC MP 13,
2D, f17 to f24. 60

4.24 Experiments exp doubleEC 23, exp doubleEC 23 pool re and exp doubleEC MP 14,
5D, f1 to f8. 61

4.25 Experiments exp doubleEC 23, exp doubleEC 23 pool re and exp doubleEC MP 14,
5D, f9 to f16. 62

4.26 Experiments exp doubleEC 23, exp doubleEC 23 pool re and exp doubleEC MP 14,
5D, f17 to f24. 63

4.27 Experiments exp doubleEC 23, exp doubleEC 23 pool re and exp doubleEC MP 15,
10D, f1 to f8. 64

4.28 Experiments exp doubleEC 23, exp doubleEC 23 pool re and exp doubleEC MP 15,
10D, f9 to f16. 65

4.29 Experiments exp doubleEC 23, exp doubleEC 23 pool re and exp doubleEC MP 15,
10D, f17 to f24. 66

4.30 The graph of average of the results of all 24 noiseless functions, 2D. 68
4.31 The graph of average of the results of all 24 noiseless functions, 5D. 69
4.32 The graph of average of the results of all 24 noiseless functions, 10D. 70

xiv

4.33 Experiments exp doubleEC 24 noisy, exp doubleEC 24 noisy pool,
2D. 72

4.34 Experiments exp doubleEC 24 noisy, exp doubleEC 24 noisy pool,
5D. 73

4.35 Experiments exp doubleEC 24 noisy, 10D. 74
4.36 Experiments exp doubleEC 24 noisy, exp doubleEC MP 07 noisy

(RDE) and exp doubleEC MP 09 noisy (MSE), 2D. 76
4.37 Experiments exp doubleEC 24 noisy, exp doubleEC MP 08 noisy

(RDE) and exp doubleEC MP 10 noisy (MSE), 5D. 77
4.38 Experiments exp doubleEC 24 noisy, exp doubleEC MP 11 noisy

(RDE) and exp doubleEC MP 12 noisy (MSE), 10D. 78
4.39 Experiments exp doubleEC 24 noisy, exp doubleEC MP 07 noisy

and exp doubleEC MP 16 noisy, 2D. 80
4.40 Experiments exp doubleEC 24 noisy, exp doubleEC MP 08 noisy

and exp doubleEC MP 17 noisy, 5D. 81
4.41 Experiments exp doubleEC 24 noisy, exp doubleEC MP 11 noisy

and exp doubleEC MP 18 noisy, 10D. 82
4.42 The graph of average of the results of 6 noisy functions, 2D. 83
4.43 The graph of average of the results of 6 noisy functions, 5D. 84
4.44 The graph of average of the results of 6 noisy functions, 10D. . . . 85

xv

List of Tables

4.1 Table of the references to the chosen GpModels from exp GPtest 01. 42
4.2 ModelPool parameters chosen by experiments exp MPtest 01 rde

to exp MPtest 06 mse. 42
4.3 Table of the references to the chosen GpModels from exp GPtest 02 noisy. 75
4.4 ModelPool parameters chosen by experiments exp MPtest 01 rde

to exp MPtest 06 mse. 75

C.1 GpModel in the experiment exp doubleEC 23. 95
C.2 3 GpModels chosen for the experiment exp doubleEC 23 pool. . . 95
C.3 3 GpModels chosen for the experiment exp doubleEC 23 pool diff. 95
C.4 11 GpModels chosen by the RDE for the 2D noiseless functions

from the set of 256 GpModels. 96
C.5 12 GpModels chosen by the RDE for the 5D noiseless functions

from the set of 256 GpModels. 96
C.6 15 GpModels chosen by the RDE for the 10D noiseless functions

from the set of 256 GpModels. 97
C.7 13 GpModels chosen by the MSE for the 2D noiseless functions

from the set of 256 GpModels. 97
C.8 11 GpModels chosen by the MSE for the 5D noiseless functions

from the set of 256 GpModels. 98
C.9 13 GpModels chosen by the MSE for the 10D noiseless functions

from the set of 256 GpModels. 98
C.10 5 GpModels chosen by the RDE for the 2D noisy functions from

the set of 256 GpModels. 98
C.11 7 GpModels chosen by the RDE for the 5D noisy functions from

the set of 256 GpModels. 99
C.12 5 GpModels chosen by the RDE for the 10D noisy functions from

the set of 256 GpModels. 99
C.13 7 GpModels chosen by the MSE for the 2D noisy functions from

the set of 256 GpModels. 99

xvii

List of Tables

C.14 6 GpModels chosen by the MSE for the 5D noisy functions from
the set of 256 GpModels. 99

C.15 6 GpModels chosen by the MSE for the 10D noisy functions from
the set of 256 GpModels. 100

C.16 4 GpModels chosen for the experiment exp doubleEC 25. 100
C.17 4 GpModels chosen for the experiment exp doubleEC 26. 100
C.18 5 GpModels chosen by the RDE for the 2D noiseless functions from

the set of 96 GpModels. 100
C.19 5 GpModels chosen by the RDE for the 5D noiseless functions from

the set of 96 GpModels. 101
C.20 3 GpModels chosen by the RDE for the 10D noiseless functions

from the set of 96 GpModels. 101
C.21 3 GpModels chosen by the RDE for the 2D noisy functions from

the set of 96 GpModels. 101
C.22 6 GpModels chosen by the RDE for the 5D noisy functions from

the set of 96 GpModels. 101
C.23 5 GpModels chosen by the RDE for the 10D noisy functions from

the set of 96 GpModels. 102

xviii

Introduction

The black-box optimization has been proven to be useful in multiple real-world
scenarios, for example reducing the noise of airplanes at the departures [1] or
analyzing the thermodynamic properties of acids [2]. Detailed informations
about the optimized functions are not available and each evaluation of such
functions has high cost. Evolutionary algorithms have been a successful ap-
proach in such situations.
In this thesis, the Covariance Matrix Adaptation Evolution Strategy (CMA-
ES), which is one of the best evolutionary algorithms, is being used together
with multiple surrogate models. The surrogate models are used to model the
black-box function during the algorithm and lower the number of needed eval-
uations. The models are trained on the data from previous evaluations of the
black-box function. Several types of surrogate models exists, such as Gaussian
processes (GPs), random forests or neural networks.
A part of the thesis is dedicated to choosing the right set of GPs for each
dimension and then using them simultaneously during the optimization. The
best GP is chosen in each generation by one of implemented algorithms and
it serves as the model for the next predictions. The performance is measured
with a COCO platform on 24 noiseless and 6 noisy functions in 3 dimensions
- 2D, 5D and 10D.
Chapter 1 introduces the black-box optimization, CMA-ES algorithm and GPs
as surrogate models.
Chapter 2 contains the analysis and design of changes in integration of GPs
and usage of multiple GPs.
Chapter 3 describes implementation and testing of the changes and algorithms
used to choose the set of GPs.
Chapter 4 describes experiments that were part of this thesis and their results.
Chapter 5 concludes the thesis.

1

Chapter 1
State-of-the-art

1.1 Black-box optimization

Black-box function is defined as a function for which an analytic form is not
known [3]. Available operations are therefore very restricted, usually only to
evaluation in desired point. In case of minimalization, the objective is to find
a point with functional value, f(x), as small as possible [4]. Needless to say,
it is a difficult task, especially when the search cost of the function (defined
as number of evaluation) needs to be considered. Multiple approaches to
this task have been developed, such as random search, swarm algorithms,
evolution strategies (ES), etc. This thesis focuses on particular ES, which is
called Covariance Matrix Adaptation Evolution Strategy (CMA-ES) and will
be described in details in 1.3.

1.2 Noiseless and noisy functions

The difference between noiseless and noisy functions is modification of output
values of function by some type of noise. This thesis consideres three types of
noise [5]:

1. Gaussian noise
fGN (f, β) = f×exp(βN (0, 1))

2. Uniform noise
fUN (f, α, β) = f × U(0, 1)βmax

(
1, (109

f+ε)
αU(0,1)

)
3. Cauchy noise

fCN (f, α, p) = f + αmax
(
0, 1000 + I{U(0,1)<p}

N (0,1)
|N (0,1)|+ε

)
3

1. State-of-the-art

For better illustration graphs of Rosenbrock function

frosenbrock(x) =
D−1∑
i=1

100(z2
i − zi+1)2 + (zi − 1)2

• z =max(1,
√
D
8)(x− xopt) + 1

• zopt = 1

with and without noise are included in Figures 1.1 and 1.2.

Figure 1.1: Noiseless Rosenbrock function [6]
Black arrow shows the position of optimum.

Figure 1.2: Noisy Rosenbrock function with uniform noise [5]

4

1.3. Covariance Matrix Adaptation Evolution Strategy

1.3 Covariance Matrix Adaptation Evolution
Strategy

The covariance Matrix Adaptation Evolution Strategy (CMA-ES) is a stochastic
method for optimization of functions with continuous domain. It works with
symmetric, positive definite covariance matrix C, which can be decomposed
as

C = BD2BT ,

where:
B is an orthogonal matrix, BTB = BBT = I. Columns of B form an or-
thonormal basis of eigenvectors.
D = diag(d1, ..., dn) is a diagonal matrix with square roots of eigenvalues of
C as diagonal elements.
This matrix is calculated for each generation (iteration of algorithm). It is
used to generate λ new points using this formula:

x
(g+1)
k ∼ m(g) + σ(g)N

(
0, C(g)

)
for k = 1, ...λ,

where:
x are points (also called offsprings/individuals),
m is the mean value of the distribution,
σ is a step-size, it is used to control how far from mean can the values be
generated,
N(0, C) is a multivariate normal distribution with covariance matrix C. Fig-
ure 1.3 is enclosed for an illustration of how the distributions can look like.

Points generated from this distribution are evaluated and best µ (µ is a para-
meter of the CMA-ES) points are used to calculate the parameters for next
generation of the CMA-ES. This cycle repeats until some termination criterion
is met.
Short pseudo-code of the CMA-ES algorithm:

1. Initialize distribution parameters θ(0)

2. For generation g = 0, 1, 2, ...
3. Sample λ independent points from multivariate normal
distribution
4. Evaluate the f on sample x1, ..., xλ
5. Update parameters θg for next generation

6. break, if termination criterion met

An example of the progress of the CMA-ES can be found in Figure 1.4.
One of the advantages of the CMA-ES is that it can be used when derivation is
not available or not very useful (for example when optimizing noisy functions).
More details about the CMA-ES can be found in [4].

5

1. State-of-the-art

Figure 1.3: Different multivariate normal distributions [4]
Two different distributions are shown on each of the three pictures.
The first picture explains function of σ (step-size) with C = I.
The second pictore shows how the D2 matrix modifies a circle into an ellipse.
The third picture uses C that is equal to BD2BT , which rotates the ellipse
into desired direction.

Figure 1.4: Example of progress of the CMA-ES [7]
Orange ellipse represents C, black dots are sampled points, white color rep-
resents area with optimal function values.

6

1.4. Gaussian processes

1.3.1 Surrogate models

One way to decrease the search cost of CMA-ES is to use a surrogate model,
which models the black-box function. The surrogate model is a regression
model, which is built using data available from previous iterations of the
algorithm and is used for prediction of function value in sampled points instead
of evaluation, which uses the function. That splits the points encountered by
the algorithm into two types:

1. evaluated with the original black-box objective function, which increases
the search cost,

2. evaluated with the surrogate model, which doesn’t increase the search
cost, but on the other hand is imprecise.

The goal of creating a surrogate model is for it to be as precise as possible.
For the CMA-ES algorithm, it is also possible to focus only on the area that
is being currently sampled. Choosing the right training data for the surrogate
model is a great challenge. On the one hand, we don’t want to choose too
many points for the training set, because we want the model to be optimized
for the area needed in current iteration. On the other hand we need to choose
enought points for the model to be useful. The location of the data (for
example, closest to currently sampled points or mean) is also a factor that
should be considered in choosing the right set of training data.

1.4 Gaussian processes

Gaussian processes (GPs) specify a probabilistic model over a given set of data
points. This model can then be extended to predict the mean and standard
deviation of the function value at new data points. GPs have a small number
of hyperparameters which can be set by the user, or optimized via a maximum
likelihood approach. GPs can approximate any function. One drawback of
GPs is their computational cost: for N data points, it takes O(N3) steps to
construct the GP, O(N) to predict the mean function value at a new point,
and O(N2) to predict the standard deviation.

Let f(x) be an unknown scalar function and x ∈ Rn a point in an n-
dimensional decision space. Evaluating f atN data pointsXN = {x1, x2, ..., xN}
yelds the function values yN = {y1, y2, ..., yN}, where (∀i)yi = f(xi). The
modeling task is to predict the function value yN+1 at a new point xN+1. The
GP model imposes a probabilistic model on the data: the vector of known
function values yN is one sample of a N -dimensional multivariate Gaussian
distribution

N (m(XN),K(X∗, X∗))

with the value of the probability density p(yN |XN). The mean functionm(XN)
can be set to 0, a constant, a linear function, etc. The value of the probability

7

1. State-of-the-art

density in the new point xN+1 is defined as (see [8] for details):

p(yN+1|XN+1) =
exp(−1

2y
T
N+1C

−1
N+1yN+1)√

(2π)N+1det(CN+1)

CN+1 is the covariance matrix of the Gaussian distribution for the N + 1
points and can be written as

CN+1 =
(
CN k
kT κ

)

where
CN is the covariance matrix of the Gaussian distribution constructed from
trainig data,
k is a vector containing covariances between the N training data and the new
point
and κ is the variance of the new point.
The covariance matrix CN can be constructed from training data using the
covariance-function matrix KN described below and signal noise σ as CN =
KN + σIN where IN is the identity matrix of order N .

1.4.1 Covariance functions

The matrix KN can be defined by different so-called covariance functions, for
example in [9] squared exponential function is used, which is defined as

K(xi, xj) = θexp
(
− 1

2(xi − xj)TM(xi − xj)
)

where xi and xj are data points, θ is a parameter called signal variance and
M is a symmetric matrix, which can be set to:

• M1 = l−2I,

• M1 = diag(l)−2 - this is a variant with so-called automatic relevance
determination (ARD).

l is a parameter called characteristic lengthscale with which the distance of
two considered data points is compared.
An additional example of covariance functions is Matérn class:

kMatern(r) = 21−ν

Γ(ν)

(√
2νr
l

)ν
Kν

(√
2νr
l

)

where r is distance between the two points, Γ is the gamma function, Kν is
the modified Bessel function, and l and ν are positive parameters.

8

1.4. Gaussian processes

The two variants of this function, which are used in this thesis, are:

kν=3/2(r) =
(

1 +
√

3r
l

)
exp

(
−
√

3r
l

)
,

kν=5/2(r) =
(

1 +
√

5r
l

+ 5r2

3l2

)
exp

(
−
√

5r
l

)
.

Figure 1.5: Example of modelling with a 1-dimensional GP. [10]
Grey area represents predictive 95% confidence bounds, red crosses represent

training points and blue line represents predictive mean.

1.4.2 Prediction

Prediction of the value of function in GPs in a new point xN+1 is governed by
a probability distribution with the density:

p(yN+1|XN+1, yN) ∝ exp
(
− 1

2
(yN+1 − ŷN+1)2

s2
yN+1

)
where ŷN+1 is its given by

ŷN+1 = m(xN+1) + kTC−1
N yN −m(xN+1)

(m(xN+1) is a mean function) and s2
yN+1 is its variance given by

s2
yN+1 = κ− kTC−1

N k.

For more information about GPs, see sources of this section: [8], [9], [11], [12].

9

Chapter 2
Analysis and design

The author of this thesis was participating in a project that was already
developed by several authors. The source code can be found at https://
github.com/bajeluk/surrogate-cmaes [13].

2.1 COCO platform

”The COCO (COmparing Continuous Optimisers) is a platform for systematic
and sound comparisons of real-parameter global optimisers. COCO provides
benchmark function testbeds, experimentation templates which are easy to
parallelize, and tools for processing and visualizing data generated by one or
several optimizers. The COCO platform has been used for the Black-Box-
Optimization-Benchmarking (BBOB) workshops that took place during the
GECCO conferences in 2009, 2010, 2012, 2013 and 2015. It was also used
at the IEEE Congress on Evolutionary Computation (CEC’2015) in Sendai,
Japan.” [14] Optimization in COCO stops when the difference of achieved
function value from optimal function value is smaller than 10−8, or when the
maximal number of evaluations is reached (usually 250 ∗ dimension in this
project).
The COCO platform was already integrated in the project, as well as gener-
ating reports from results. Example of one graph can be found in Figure 2.1.
The project was focused on optimizing noiseless functions, but in this thesis,
noisy functions are used as well.
The current 24 noiseless test functions in COCO platform are [14]:

1. Separable Functions

f1 Sphere Function
f2 Ellipsoidal Function
f3 Rastrigin Function
f4 Büche-Rastrigin Function

11

https://github.com/bajeluk/surrogate-cmaes
https://github.com/bajeluk/surrogate-cmaes

2. Analysis and design

Figure 2.1: Example of a graph from a generated report.
The axis X represents the number of evaluations divided by the dimension (in
this case 5). In the case of multiple instances, the median of the values from
all instances is shown.
The axis Y represents difference between the optimal function value and the
current function value. ALG1 represents tested algorithm, others are different
algorithms for comparison.

12

2.1. COCO platform

f5 Linear Slope

2. Functions with low or moderate conditioning

f6 Attractive Sector Function
f7 Step Ellipsoidal Function
f8 Rosenbrock Function, original
f9 Rosenbrock Function, rotated

3. Functions with high conditioning and unimodal

f10 Ellipsoidal Function
f11 Discus Function
f12 Bent Cigar Function
f13 Sharp Ridge Function
f14 Different Powers Function

4. Multi-modal functions with adequate global structure

f15 Rastrigin Function
f16 Weierstrass Function
f17 Schaffers F7 Function
f18 Schaffers F7 Functions, moderately ill-conditioned
f19 Composite Griewank-Rosenbrock Function F8F2

5. Multi-modal functions with weak global structure

f20 Schwefel Function
f21 Gallagher’s Gaussian 101-me Peaks Function
f22 Gallagher’s Gaussian 21-hi Peaks Function
f23 Katsuura Function
f24 Lunacek bi-Rastrigin Function

There are 30 noisy functions in COCO, this thesis is deals only with the
functions with moderate noise, which are:

f101 Sphere with moderate Gaussian noise

f102 Sphere with moderate uniform noise

f103 Sphere with moderate seldom Cauchy noise

f104 Rosenbrock with moderate Gaussian noise

13

2. Analysis and design

f105 Rosenbrock with moderate uniform noise

f106 Rosenbrock with moderate seldom Cauchy noise

All of the functions are available in different dimensions, as well as different
instances of a function. ”For each instance the randomly chosen values are
drawn anew. The implementation provides an instance ID as input, such
that a set of uniquely specified instances can be explicitly chosen.” [6] In this
project, 15 instances of each function are tested and their IDs are 1 to 5 and
41 to 50. That was a setting used at the GECCO conference in 2015.

2.2 CMA-ES

The CMA-ES is integrated using several different strategies that implement
the class EvolutionControl and are created by an instance of the class ECFact-
ory. Parameters of the CMA-ES (C, σ, λ,m, etc.) are passed as a value of the
variable cmaesState and options that are used to create a surrogate model are
passed as a value of the variable surrogateOpts. The strategy DoubleTraine-
dEC has been most successful evolution control in this project so far and for
that reason this thesis uses only the DoubleTrainedEC.

2.3 Surrogate models

DoubleTrainedEC, as well as others, use a surrogate model that is an instance
of the Model class. The Model class has following methods:

• getNTrainData() - returns minimal number of points for training the
model,

• trainModel(X, y, xMean, generation) - used to train the model on data
X with function values y, usually called from method train,

• modelPredict(X) - predicts function values in data X,

• train(X, y, stateVariables, sampleOpts) - main method for the training,
usually used as a wrapper of the trainModel method.

• isTrained() - training of the model is not always successful, for example
model is considered untrained if the difference between maximal and
minimal predicted values of the population is lower than
MIN RESPONSE DIFFERENCE (constant that is set in project). This
method returns whether or not the model is trained,

• getTrainsetSize() - returns the size of training data,

• shift(xMean) - transforms the trained model to new coordinates,

14

2.3. Surrogate models

Figure
2.2:

Part
ofthe

class
diagram

-EvolutionC
ontrol

15

2. Analysis and design

• generationUpdate(...) - deprecated, also used for shifting the model to
new coordinates,

• predict(X) - predicts function values, usually used as wrapper for mod-
elPredict,

• getModelOutput(X) - returns different criteria for different ECs,

• getNearMean(xMean, deniedIdxs) - returns a point from the training
set, which is near to the mean.

Previously, the EC was calling the Archive to get the training data and passed
them as parameter to the Model in the train method. The description of
the training data for the surrogate models was moved into the Model class.
Choosing the training set was moved into the Archive class and is now called
directly from the Model class during the training of the model. Following
options for choosing the training data were designed:

trainRange Only the points that are in this range are considered. It is
χ2 percentile (with degree of freedom parameter set to dimension of
the black-box function) of the maximum squared σ2C-distance from
the current CMA-ES mean, or from any point in population in case of
nearestToPopulation trainsetType (see next item). Tested options were
99.9% and 100% (which means no limitation).

trainsetType defines which points will be chosen in case of multiple points
in trainRange. Options are:

• allPoints - No special algorithm, in case of too many points in
trainRange, newer ones (that means points from newer generations)
are chosen.

• clustering - The points are divided into clusters and from each
cluster, one point is chosen. This algorithm has been already im-
plemented and used in the project.

• nearest - The points that are nearest to the mean are chosen.

• nearestToPopulation - The points are sorted by the distance to
their closest point from the population and those for which that
distance is the lowest are chosen.

trainsetSizeMax used to control maximal number of points used for training
the model. Tested options were ’5*dim’, ’10*dim’, ’15*dim’, ’20*dim’
(dim is dimension of the black-box function).

16

2.3. Surrogate models

Figure
2.3:

Part
ofthe

class
diagram

-M
odelclass

17

2. Analysis and design

Figure
2.4:

Part
ofthe

class
diagram

-training
ofthe

M
odelclass

18

2.4. Gaussian processes

2.4 Gaussian processes

Gaussian processes are integrated by using Gaussian Processes for Machine
Learning (GPML) library. This library offers different parameters for GPs:

• covariance functions,

• mean functions,

• hyperparameters of GPs.

Following covariance functions were chosen to be examined:

• {@covMaterniso, 3} - Matérn, ν = 3/2,

• {@covMaterniso, 5} - Matérn, ν = 5/2,

• {@covSEiso}, - Squared exponential,

• {@covSEard} - Squared exponential with ARD.

GPML contains a lot more of covariance functions, testing all of them would
require too much computational power, that is why only 4 of them were chosen.
Covariance functions are passed as ”covFcn” option to the GpModel. A com-
plete list of covariance functions in GPML with descriptions is available here:
http://www.gaussianprocess.org/gpml/code/matlab/cov/.
Two options were chosen as the mean functions:

• meanConst - constant mean function,

• meanLinear - linear mean function.

List of all possible mean functions in GPML is available here:
http://www.gaussianprocess.org/gpml/code/matlab/meanFunctions.m.
Hyperparameters of GPs were not optimized in this thesis (also because of re-
quired computational power) and were set to their default values ”struct(’lik’,
log(0.01), ’cov’, log([0.5; 2]))”. Hyperparameters are passed as the ”hyp” op-
tion to the GpModel.

2.5 ModelPool

The ModelPool class is designed to contain multiple instances of GpModel
objects. It inherits from the Model class and implements its abstract methods
in a following way:

• getNTrainData() - returns the minimum of values returned by the get-
NTrainData() function over the GpModels contained in the pool.

19

http://www.gaussianprocess.org/gpml/code/matlab/cov/
http://www.gaussianprocess.org/gpml/code/matlab/meanFunctions.m

2. Analysis and design

• trainModel(X, y, xMean, generation) - this method is empty, as it is not
needed,

• modelPredict(X) - calls modelPredict(X) of the GpModel found, accord-
ing to a given criteria as the best in the current iteration.

The ModelPool class is not a typical representant of the Model class, mainly
because the training of the model, which was ment to be in trainModel
method, is not needed. The training of ModelPool is done by overriding
the method train and calling the same method in each of the GpModels. The
isTrained method is overriden as well, and returns true if at least 1 of the
contained models is trained. Another specificity of the ModelPool is that it is
ment to be trained multiple times, not only once, as other types of models.
Multiple options for ModelPool were designed, such as:

historyLength Used to control how many generations of the older models
are saved. The older models are used to choose the best model.

retrainPeriod Used to control how often should the ModelPool train Gp-
Models. Training is done only in the generations that are multiples of
the retrainPeriod. Benefit of setting this option to higher than 1 is lower
computational cost. This option is always set to 1 in the experiments
performed in this thesis, because that leads to training with most recent
data, which should generate more precise GpModels.

bestModelSelection Sets the algorithm of choosing the best model. De-
scribed in details in 2.5.1 below.

minTrainedModelsPercentileForModelChoice When the percentile of
the trained GpModels in the oldest generation is lower than this value,
a whole generation is not used to compare which models are the best.
In that case, the next generation of models is used for comparison. The
motivation for this option is the following - in case of a lot of untrained
models in an older generation, only those newest models could be chosen
as the best, whose older generation was considered as trained. That can
lead to having trained models, that could not be chosen as the best. This
problem can be partially solved by setting this option together with the
next option - maxGenerationShiftForModelChoice.

maxGenerationShiftForModelChoice Choosing newer generations because
of untrained models can be done only as many times as is the value of
this parameter. The reason for this is that when a generation that is
used to compare the performance of models is too young, there are not
enough points evaluated using the original black-box function for com-
paring the performance of GpModels.

20

2.5. ModelPool

Figure
2.5:

M
odelPoolclass

21

2. Analysis and design

2.5.1 Choosing the best model in ModelPool

After training all of the models in the ModelPool, one needs to be chosen as
the best and will be used to predict values in modelPredict method. Several
options for this choice have been designed using the following criteria:

RDE Ranking difference error :

RDE(y∗1, y∗2, µ) =
∑
i:τ2(i)≤µ |τ2(i)− τ1(i)|

maxπ∈Permutations of (1,...,λ)
∑
i:π(i)≤µ |i− π(i)| ∈ 〈0, 1〉.

RDE measures how much would the difference between ranking of y∗1 and
y∗2 (possibly negatively) contribute for the CMA-ES µ-updates where
µ, 1 ≤ µ ≤ λ is the number of best-ranked individuals which are solely
used for the CMA-ES updates.
The measure takes rankings τ1, τ2 of the values of the input vectors (e.g.
τ1(1) is the rank of the y∗1(1) - the first element of the vector y∗1), and
calculates the ranking distance as a normalized sum of the element-wise
differences between these two rankings while ommiting the indices for
which the rank of y∗2 is larger than µ. The second vector y∗2 is considered
as being more precisely measured.

MAE Mean absolute error:

MAE(y1, y2) = 1
n

n∑
i=1

(|y1(i) − y2(i)|)

MSE Mean squared error:

MSE(y1, y2) = 1
n

n∑
i=1

(y1(i) − y2(i))2

The MSE penalizes the larger differences when compared to MAE.

Likelihood For each set of parameters of the GpModels a likelihood property
is calculated which expresses how well the model describes the training
data. In this project, the lower value of likelihood property is better,
because the value saved in the property is a negative log-likelihood.

The options for choosing the best model are:

rdeOrig Calculates RDE using points evaluated with black-box function and
values predicted by each of the oldest GpModels. µ parameter is set to
number of such points.

rdeAll Calculates RDE using whole populations in each of the generations
(not only the oldest one). If the population of the current generation

22

2.5. ModelPool

contains some evaluated points, those are considered as well. The partial
RDE results from each of the generations are then given weights. The
sum of the weights is 1 and the weight of each newer result is half of the
weight of the previous one.

mae Calculates MAE using points evaluated with black-box function and
values predicted by each of the oldest GpModels.

mse Calculates MSE using points evaluated with black-box function and val-
ues predicted by each of the oldest GpModels.

likelihood GpModel with lowest value of likelihood property is chosen. In
this case, only 1 generation of models is trained. This option is also
used, when there are not enough of the trained generations (beginning
of the CMA-ES), because it does not need older generations.

In each of the options the model whose result is the lowest one is chosen for
the next predictions. The options that are calculated from the function values
(all except the likelihood option) are using only the points from generations
that are newer than generation of their training. Desired option is passed in
the ”bestModelSelection” option for the ModelPool.

23

Chapter 3
Implementation

All of the changes in the training of the models that were done needed to be
backwards compatible to ensure that older experiments done in this project
will be still working as intended when run again. That is accomplished by us-
ing optional parameters (Archive and Population) in the train method, as well
as using a default option ”parameters” when setting the trainsetType option,
which causes the model to be trained using the data passed in parameters (X,
y) instead of retrieving the data from the Archive.

3.1 Gaussian processes

The process of choosing the GPs for the ModelPool was based on data from
a previous experiment in the project (exp doubleEC 21), which was run with
options that enable the logging of the CMA-ES progress. That caused para-
meters of the CMA-ES to be saved for each of the generations. After the ex-
periment finished, a file called ”dataset” was created using the function ”mod-
elTestSets(exp id, fun, dim, inst, opts)”, which created 10 so-called snapshots
for each function, dimension and instance. Each of the 10 snapshots represent
one generation of the algorithm, with equal number of generations between
each of the snapshots.
The following set of options was chosen to be tested for choosing the best GPs
for ModelPool :

trainsetSizeMax ’5*dim’, ’10*dim’, ’15*dim’, ’20*dim’,

trainsetType ’allPoints’, ’clustering’, ’nearest’, ’nearestToPopulation’,

trainRange ’0.999’, ’1’,

covFcn ’{@covMaterniso, 3}’, ’{@covMaterniso, 5}’, ’{@covSEiso}’,
’{@covSEard}’,

meanFcn ’meanConst’, ’meanLinear’,

25

3. Implementation

which gives a total of 256 different GpModel combinations. These settings
can be found in experiments exp GPtest 01 and exp GPtest 02 noisy. The
generated dataset was then used to train all of the chosen 256 GpModels
in each of the functions, dimensions and instances for snapshots 1, 3 and
9. Those snapshots were chosen because the beginning and the end of the
run of the CMA-ES algorithm were considered more crucial than the rest.
Each of the trained models was then used to predict the function values of
all sampled points in the population of next generation of those snapshots.
Original function values were also evaluated for those sampled points and
from the results, the mean and the 3rd quartile statistics of RDE and MSE
were calculated.
Choosing the GpModels for ModelPool was done using the rde ranking and
mse ranking scripts contained in the project, which do the following:

1. For each of the models, calculate the percentile of how many times was
it successfully trained on the data of the used instances (result of the
isTrained function) and omit the models whose percentile is less than
minTrainedPerc parameter (set to 0.85).

2. Sort the models using the 3rd quartile of RDE, respectively MSE, for
each function and save the rank of each of the models.

3. For each of the models, calculate in how many snapshots of each of the
functions, that are not yet covered by any of the chosen models, was the
rank of the model better than maxRank parameter (set to 25).

4. Choose the model that will cover most of the uncovered snapshots of the
functions and repeat until all snapshots of the functions are covered. In
case where the amount of the covered snapshots is the same for multiple
models, choose the one with better average rank (calculated in 1).

This algorithm was used to determine which models will be used for each of
the dimensions separately. Moreover, different models were chosen for noise-
less and noisy functions according to the results of the experiments made for
noiseless (exp doubleEC 21 log15) and noisy (exp doubleEC 21 log15 noisy)
functions.

3.2 ModelPool

Different models which will be contained in the ModelPool are set by
modelOptions.parameterSets struct in constructor. For the options that are
not specified, default values are used, which are:

historyLength 4

minTrainedModelsPercentileForModelChoice 0.25

26

3.2. ModelPool

maxGenerationShiftForModelChoice 1

retrainPeriod 1

bestModelSelection rdeAll

Parameters, that are used in all GpModels with the same value
(predictionType, transformCoordinates, dimReduction
and options.normalizeY) are set once in the options of ModelPool instead
of setting them separately for each of the GpModels. An instance of the
GpModel is created using the following function:

function gpModel = createGpModel(obj, modelIndex, xMean)
newModelOptions = obj.modelPoolOptions.parameterSets(modelIndex);
newModelOptions.predictionType = obj.predictionType;
newModelOptions.transformCoordinates = obj.transformCoordinates;
newModelOptions.dimReduction = obj.dimReduction;
newModelOptions.options.normalizeY = obj.options.normalizeY;
gpModel = ModelFactory.createModel(’gp’, newModelOptions, xMean);

end

As can be seen, the ModelFactory is called with ’gp’ parameter, which means
the GpModels are created. If there was a need for different types of models,
this parameter would need to be extracted into the options. The ModelPool
class was, however, designed with the focus on GpModels.
A cell array of size modelsCount ∗ (historyLength+ 1) is created in the con-
structor and stored in the property models. It contains the chosen GpModels
trained in the newest generation (accessed by models.{modelId, 1}, where
modelId defines which of the GpModels defined in parameterSets is being
accessed). A logical array isModelTrained with the same size as models ar-
ray is created, which is used to store the results of the isTrained method for
each of the contained GpModels.
The overriding of the isTrained method can be seen here:

function trained = isTrained(obj)
% check whether the model chosen as the best
% in the newest generation is trained
if (isempty(obj.isModelTrained(obj.bestModelIndex,1)))

trained = false;
else

trained = obj.isModelTrained(obj.bestModelIndex,1);
end

end

The trainModel function is not needed, because the training is done by over-
riding the train method, which then calls the train method of each of the
GpModels. That is why is its body empty.

27

3. Implementation

The train method, which handles the training of models, can be seen here:

function obj = train(obj, X, y, stateVariables, sampleOpts, ...
archive, population)

obj.archive = archive;
obj.stateVariables = stateVariables;
obj.sampleOpts = sampleOpts;
obj.xMean = stateVariables.xmean’;
generation = stateVariables.countiter;
if (mod(generation,obj.retrainPeriod)==0)

trainedModelsCount=0;
for i=1:obj.modelsCount

obj.models(i,:) = circshift(obj.models(i,:),[0,1]);
obj.isModelTrained(i,:) = ...

circshift(obj.isModelTrained(i,:),[0,1]);
obj.models{i,1} = obj.createGpModel(i, obj.xMean);
obj.models{i,1} = obj.models{i,1}.train(X, y, ...

stateVariables, sampleOpts, obj.archive, population);

if (obj.models{i,1}.isTrained())
trainedModelsCount = trainedModelsCount+1;
obj.isModelTrained(i,1) = 1;

else
obj.isModelTrained(i,1) = 0;
obj.models{i,1}.trainGeneration = -1;

end
end

if (trainedModelsCount==0)
warning(’ModelPool.trainModel(): trainedModelsCount == 0’);

else
obj.trainGeneration = generation;

[obj.bestModelIndex,obj.choosingCriterium] = ...
obj.chooseBestModel(generation, population);

obj.bestModelsHistory(obj.bestModelIndex) = ...
obj.bestModelsHistory(obj.bestModelIndex)+1;

obj = obj.copyPropertiesFromBestModel();
end

end
end

In the beginning, properties of the Model class are stored from the passed
parameters. Then, models are trained in a cycle. The shifting of the mod-
els is done by using built-in Matlab function circshift. Oldest of the models,
which is in the obj.models{i, 1} cell after the shifting, is then rewritten by the
model created in the current generation. Finally, best model is chosen using

28

3.3. Choosing the best parameters for the ModelPool

the specified criterium and properties of the best GpModel are copied to the
ModelPool, so that it behaves as the best GpModel to the outside callers.
The prediction is simple - override the modelPredict function with call of the
modelPredict of the best GpModel of the newest generation:

function [y, sd2] = modelPredict(obj, X)
[y,sd2] = obj.models{obj.bestModelIndex,1}.modelPredict(X);

end

3.3 Choosing the best parameters for the
ModelPool

Two different types of errors were used in choosing the GpModels for the Mod-
elPool - the RDE and the MSE. That is why the parameters of the ModelPool
were chosen separately for those errors. The same approach for choosing the
parameters for GpModels that will be used in the ModelPool was used to find
the best parameters for the ModelPool in each of the dimensions. Noisy and
noiseless functions were also differentiated. That creates a combination of 12
experiments - 3 dimensions, noiseless or noisy and RDE or MSE. Two differ-
ent options for the bestModelSelection parameter for the RDE are available
(”rdeOrig” and ”rdeAll”), so both were used. Other parameters, that were
tested, were the same for RDE and MSE:

historyLength 3, 5, 7,

minTrainedModelsPercentileForModelChoice 0.25, 0.5,

maxGenerationShiftForModelChoice 0, 2.

That creates 24 combinations of parameters for the RDE and 12 combinations
for the MSE. The retrainPeriod parameter was always set to 1.
Because of the changes between usage of the GpModel and the ModelPool
classes, the testing scripts needed to be slightly modified:

1. Creation of the dataset was changed to include up to n previous gen-
erations for each of the snapshots (n = 8 in this case). That is needed
because the previous training is important in the ModelPool class and it
affects the selection of the best model, which then affects the prediction.

2. Training of the model needed to be done multiple times with corres-
ponding generation.

3. Snapshot 1 was not part of the training and testing, as there were mul-
tiple functions where this snapshot did not have enough previous gener-

29

3. Implementation

ations to fill the whole models array and therefore the algorithm for the
selection of the best model was not used (instead, likelihood was used).

4. Only 5 instead of 15 instances (with IDs 1 to 5) for all functions were
tested to decrease needed computational time, which was increased by
using multiple GpModels.

Results of each of the experiments will be described in chapter 4.

3.4 Testing

Testing of the GpModel training as well as ModelPool class was done mostly
manually, with tools provided by the Matlab software, such as debugger, con-
sole, etc. An automatic test was written to ensure proper creation of the
ModelPool class, which can be found in
”surrogate-cmaes/test/unit/model/modelPoolTest.m”. Moreover, testing of
the ModelPool class was done using an additional experiment
(exp doubleEC 23 pool) with the same GpModel from exp doubleEC 23 (en-
sured by using trainsetType ’parameters’) with 2 additional GpModels chosen
by the author. This experiment was expected to give similiar results as the
exp doubleEC 23. Results of this experiment, as well as others, will be de-
scribed in details in chapter 4.

30

Chapter 4
Experiments

All of the experiments were divided between 2 categories - noiseless and noisy
functions. In the following text, multiple experiments are being compared.
They are always given colors that depend on the order of the experiment
in the report. The names of experiments are shortened in the legends -
”exp doubleEC ” is removed from the beginning of the name.

4.1 Noiseless functions

4.1.1 Experiments exp doubleEC 23, exp doubleEC 23 pool

An experiment which had the best results so far in this project was exp doubleEC 23.
This experiment had only 1 GpModel, whose settings could be interperted as
the ones defined in Table C.1. It has set the base performance, which was ment
to be increased by using the ModelPool class. The trainRange was set in a
different when the GpModel was defined by settings used before the changes
described in 2.3.
Results of this experiment can be found in Figures 4.1 to 4.9 and this experi-
ment was given the green color.
For the testing of the ModelPool class, experiment exp doubleEC 23 pool was
created. GpModels that were used can be found in the Table C.2 and the op-
tions for the ModelPool were:

historyLength 6

bestModelSelection ’rdeAll’

retrainPeriod 1

minTrainedModelsPercentileForModelChoice 0.25

maxGenerationShiftForModelChoice 1

31

4. Experiments

These settings have been chosen by the author. The experiment was run only
in 2D and 5D to save the CPU time. Its results were expected to be similiar
to the base experiment exp doubleEC 23, as the first GpModel was the same.
The results were actually better than the results of the base experiment and
can be found in Figures 4.1 to 4.9. This experiment was given the cyan
color. When compared by each function to the exp doubleEC 23, most visible
improvements can be seen in following functions:

2D: f12, f16, f21, f23, f24,

5D: f12, f16, f23.

This proved several statements:

• GpModels work as expected - different GpModels give different results.

• The ModelPool class works as expected - in this case, the ModelPool was
successful in choosing appropriate GpModels where it was beneficial.

• The usage of the ModelPool class can improve the results of optimiza-
tion.

32

4.1. Noiseless functions

Figure 4.1: Experiments exp doubleEC 23, exp doubleEC 23 pool and
exp doubleEC 23 pool re, 2D, f1 to f8. 33

4. Experiments

Figure 4.2: Experiments exp doubleEC 23, exp doubleEC 23 pool and
exp doubleEC 23 pool re, 2D, f9 to f16.34

4.1. Noiseless functions

Figure 4.3: Experiments exp doubleEC 23, exp doubleEC 23 pool and
exp doubleEC 23 pool re, 2D, f17 to f24. 35

4. Experiments

Figure 4.4: Experiments exp doubleEC 23, exp doubleEC 23 pool and
exp doubleEC 23 pool re, 5D, f1 to f8.36

4.1. Noiseless functions

Figure 4.5: Experiments exp doubleEC 23, exp doubleEC 23 pool and
exp doubleEC 23 pool re, 5D, f9 to f16. 37

4. Experiments

Figure 4.6: Experiments exp doubleEC 23, exp doubleEC 23 pool and
exp doubleEC 23 pool re, 5D, f17 to f24.38

4.1. Noiseless functions

Figure 4.7: Experiments exp doubleEC 23 and exp doubleEC 23 pool re,
10D, f1 to f8. 39

4. Experiments

Figure 4.8: Experiments exp doubleEC 23 and exp doubleEC 23 pool re,
10D, f9 to f16.40

4.1. Noiseless functions

Figure 4.9: Experiments exp doubleEC 23 and exp doubleEC 23 pool re,
10D, f17 to f24. 41

4. Experiments

4.1.2 Experiment exp GPtest 01 for choosing the GpModels

The process of choosing the GpModels was described in 3.1. Different Gp-
Models have been chosen for different criteria (RDE and MSE), as well as
for different dimensions. The chosen models can be found in different Tables
shown here:

Dimension Criterium Table
2 RDE C.4
5 RDE C.5
10 RDE C.6
2 MSE C.7
5 MSE C.8
10 MSE C.9

Table 4.1: Table of the references to the chosen GpModels from
exp GPtest 01.

4.1.3 Experiments exp MPtest 01 rde to exp MPtest 06 mse

As the GpModels were chosen, experiments, whose targets were to choose
optimal values of the parameters for the ModelPool, were started. The chosen
parameters 1 can be found in following Table:

Dim. Criterium bestModelSel. historyL. minTr.Perc. maxGen.Shift
2 RDE ’rdeAll’ 7 0.25 2
5 RDE ’rdeAll’ 7 0.5 0
10 RDE ’rdeOrig’ 5 0.25 2
2 MSE ’mse’ 3 0.25 0
5 MSE ’mse’ 3 0.25 1
10 MSE ’mse’ 3 0.5 1

Table 4.2: ModelPool parameters chosen by experiments exp MPtest 01 rde
to exp MPtest 06 mse.

4.1.4 Experiments exp doubleEC MP 01 to
exp doubleEC MP 06

After choosing the best ModelPool parameters for each of the cases, corres-
ponding experiments (exp doubleEC MP 01 to exp doubleEC MP 06) were
created, calculated and examined. The results can be found in Figures 4.11 to

1The ModelPool class automatically decrease the maxGenerationShift to from 2 to 1
when historyLenght is set to 3 to ensure enought points for the best model selection.

42

4.1. Noiseless functions

4.18. Both RDE (cyan) and MSE (red) results are shown together for better
comparison.

43

4. Experiments

Figure 4.10: Experiments exp doubleEC 23, exp doubleEC MP 01 (RDE)
and exp doubleEC MP 03 (MSE), 2D, f1 to f8.44

4.1. Noiseless functions

Figure 4.11: Experiments exp doubleEC 23, exp doubleEC MP 01 (RDE)
and exp doubleEC MP 03 (MSE), 2D, f9 to f16. 45

4. Experiments

Figure 4.12: Experiments exp doubleEC 23, exp doubleEC MP 01 (RDE)
and exp doubleEC MP 03 (MSE), 2D, f17 to f24.46

4.1. Noiseless functions

Figure 4.13: Experiments exp doubleEC 23, exp doubleEC MP 02 (RDE)
and exp doubleEC MP 04 (MSE), 5D, f1 to f8. 47

4. Experiments

Figure 4.14: Experiments exp doubleEC 23, exp doubleEC MP 02 (RDE)
and exp doubleEC MP 04 (MSE), 5D, f9 to f16.48

4.1. Noiseless functions

Figure 4.15: Experiments exp doubleEC 23, exp doubleEC MP 02 (RDE)
and exp doubleEC MP 04 (MSE), 5D, f17 to f24. 49

4. Experiments

Figure 4.16: Experiments exp doubleEC 23, exp doubleEC MP 05 (RDE)
and exp doubleEC MP 06 (MSE), 10D, f1 to f8.50

4.1. Noiseless functions

Figure 4.17: Experiments exp doubleEC 23, exp doubleEC MP 05 (RDE)
and exp doubleEC MP 06 (MSE), 10D, f9 to f16. 51

4. Experiments

Figure 4.18: Experiments exp doubleEC 23, exp doubleEC MP 05 (RDE)
and exp doubleEC MP 06 (MSE), 10D, f17 to f24.52

4.1. Noiseless functions

One of the conclusions of these experiments was that the MSE caused worse
performance than RDE in 2D and 5D. That is the reason why MSE was
not considered in further experiments. In 10D, where ’rdeOrig’ option was
chosen, results were also worse than those with MSE option. The problem
in comparing 10D was that the experiment exp doubleEC 23 pool was run
only in 2D and 5D and therefore no results were available for 10D ’rdeAll’
option. That is why the experiment exp doubleEC 23 pool was run again as
exp doubleEC 23 pool re in all 3 dimensions. The results can be found in
Figures 4.1 to 4.9 and this experiment was given the red color. As expected
from the 2D and 5D dimensions, ’rdeAll’ was the best of the three options for
the selection of the best model in 10D as well and that is why the ’rdeOrig’
option was no longer considered in the next experiments.

4.1.5 Reasons of a failure of the experiments
exp doubleEC MP 01 and exp doubleEC MP 03

Comparing the results of the experiments that were run so far created an
important task - finding a reason of decrease of the performance in experiments
exp doubleEC MP 01 and exp doubleEC MP 03 (both with ’rdeAll’ option)
when compared to experiments exp doubleEC 23 (base experiment with 1
GpModel) and exp doubleEC 23 pool (also with ’rdeAll’ option). The last set
of experiments had the GpModels chosen by the rde ranking script from all
of the 256 combinations. On the other hand, exp doubleEC 23 pool run with
GpModels that had the meanFcn option set only to ’meanConst’. The count
of the GpModels used was also lower. Another experiment (exp doubleEC 25)
was created to find out if any of these differences could be the reason of the
failure. The number of GpModels was decreased to 4 and the chosen GpModels
with ’meanConst’ mean function can be found in Table C.16. To lower the
CPU time needed for the experiment, only 10 functions (f2, f4, f6, f8, f10, f12,
f16, f18, f22, f23) in 2D were part of the experiment. The results are compared
to the base experiment in Figures 4.19 and 4.20 and are given the cyan color.

53

4. Experiments

Figure 4.19: Experiments exp doubleEC 23, exp doubleEC 25 and
exp doubleEC 26, f2 to f18.54

4.1. Noiseless functions

Figure 4.20: Experiments exp doubleEC 23, exp doubleEC 25 and
exp doubleEC 26, f22 and f23.

55

4. Experiments

This experiment did not prove that the ’meanLinear’ mean function was the
cause of the bad performance, as it also did not match the expected results
in functions f2, f6, f10 and f22. The performance in functions f4 and f12 was
improved, however, it was not enough when looked at all of the functions
together. Results in other functions were similiar to the base experiment. Al-
though the reason of decreased performance was not proven to be only in using
the linear mean function, when looked at the average statistics of ’meanConst’
and ’meanLinear’ of the GpModels from exp GPtest 01, the linear mean func-
tion was rejected from the next experiments.
Next step was creating another experiment for the same functions as exp doubleEC 25
called exp doubleEC 26. However, in this case, none of the GpModels had
the ’{@covSEard}’ covariance function (which was not part of the experiment
exp doubleEC 23 pool). Two of the models with SE ARD covariance function
were replaced and all 4 are shown in the Table C.17. Results of the exper-
iment exp doubleEC 26 are in Figures 4.19 and 4.20 and are given the red
color. The functions f2, f6, f10 and f22, where the experiment with SE ARD
covariance functions was unsuccesfull, were improved almost to the level of the
base experiment. The function 4 was improved even more and the difference
is clearly visible. The performance in function 12 was worse than the experi-
ment with ARD functions, but this was the only case. For those reasons, SE
ARD function was no longer considered in next experiments.

4.1.6 Experiments exp MPtest 13 to exp MPtest 15

Despite the fact that the experiments exp MPtest 01 rde to exp MPtest 06 mse
were not successful, they provided a lot of information about the ModelPool
parameters for a series of next experiments. Following options were set for
the series:

bestModelSelection ’rdeAll’,

historyLength 7,

minTrainedModelsPercentileForModelChoice 0.5,

maxGenerationShiftForModelChoice 2.

From already calculated statistics, a new set of GpModels was created. This
time, only 96 models were taken into the consideration and the rde ranking
script was updated by Mgr. Lukáš Bajer, so that it generates more sets of
the GpModels. From the generated sets, the script choosed the one with the
best average statistics. Models chosen for the next set of experiments are in
Tables C.18 (2D), C.19 (5D) and C.20 (10D). The results are in figures 4.21 to
4.29 and are given the red color. The base experiment exp doubleEC 23 has
green color in this report, exp doubleEC 23 pool re has cyan color and other

56

4.1. Noiseless functions

algorithms, whose data are available in the project, are included in those
figures as well, so that the performance can be compared to them easily.

57

4. Experiments

Figure 4.21: Experiments exp doubleEC 23, exp doubleEC 23 pool re and
exp doubleEC MP 13, 2D, f1 to f8.58

4.1. Noiseless functions

Figure 4.22: Experiments exp doubleEC 23, exp doubleEC 23 pool re and
exp doubleEC MP 13, 2D, f9 to f16. 59

4. Experiments

Figure 4.23: Experiments exp doubleEC 23, exp doubleEC 23 pool re and
exp doubleEC MP 13, 2D, f17 to f24.60

4.1. Noiseless functions

Figure 4.24: Experiments exp doubleEC 23, exp doubleEC 23 pool re and
exp doubleEC MP 14, 5D, f1 to f8. 61

4. Experiments

Figure 4.25: Experiments exp doubleEC 23, exp doubleEC 23 pool re and
exp doubleEC MP 14, 5D, f9 to f16.62

4.1. Noiseless functions

Figure 4.26: Experiments exp doubleEC 23, exp doubleEC 23 pool re and
exp doubleEC MP 14, 5D, f17 to f24. 63

4. Experiments

Figure 4.27: Experiments exp doubleEC 23, exp doubleEC 23 pool re and
exp doubleEC MP 15, 10D, f1 to f8.64

4.1. Noiseless functions

Figure 4.28: Experiments exp doubleEC 23, exp doubleEC 23 pool re and
exp doubleEC MP 15, 10D, f9 to f16. 65

4. Experiments

Figure 4.29: Experiments exp doubleEC 23, exp doubleEC 23 pool re and
exp doubleEC MP 15, 10D, f17 to f24.66

4.1. Noiseless functions

Graphs of average of all functions in each dimension are shown in Figures 4.30
to 4.32. As can be seen on the results, this set of experiments was successful
and improved the performance when compared to the base experiment. In
some functions the experiment exp doubleEC 23 pool re had better results,
but when looked at the overall performance, the experiments with the best
results are exp doubleEC MP 13 to exp doubleEC MP 15.

67

4. Experiments

Figure 4.30: The graph of average of the results of all 24 noiseless functions,
2D.

The experiments are exp doubleEC 23, exp doubleEC 23 pool re and
exp doubleEC MP 13 and exp doubleEC MP 14.

68

4.1. Noiseless functions

Figure 4.31: The graph of average of the results of all 24 noiseless functions,
5D.

The experiments are exp doubleEC 23, exp doubleEC 23 pool re and
exp doubleEC MP 13 and exp doubleEC MP 14.

69

4. Experiments

Figure 4.32: The graph of average of the results of all 24 noiseless functions,
10D.

The experiments are exp doubleEC 23, exp doubleEC 23 pool re and
exp doubleEC MP 15.

70

4.2. Noisy functions

4.2 Noisy functions

4.2.1 Experiments exp doubleEC 24 noisy,
exp doubleEC 24 noisy pool

Experiments for noisy functions were created in a similiar way as the ones
for the noiseless functions. The base experiment for the noisy function was
exp doubleEC 24 noisy and it uses the same model as exp doubleEC 23, which
can be found in Table C.1. The results of this experiment can be found in Fig-
ures 4.33 to 4.35 and are given the green color. They are shown together with
the experiment exp doubleEC 24 noisy pool, which had the same GpModels
(found in Table C.2) as the experiment exp doubleEC 23 pool and are given
the cyan color. This experiment was also run only in 2D and 5D. The per-
formance, unlike in the case of noiseless functions, was decreased, except for
the function f106 in 2D.

71

4. Experiments

Figure 4.33: Experiments exp doubleEC 24 noisy,
exp doubleEC 24 noisy pool, 2D.

72

4.2. Noisy functions

Figure 4.34: Experiments exp doubleEC 24 noisy,
exp doubleEC 24 noisy pool, 5D.

73

4. Experiments

Figure 4.35: Experiments exp doubleEC 24 noisy, 10D.

74

4.2. Noisy functions

4.2.2 Experiment exp GPtest 02 noisy for choosing the
GpModels

The same process of choosing the GpModels as in the case of noiseless functions
was used on noisy functions. Refrences to the appropriate tables can be found
in following table:

Dimension Criterium Table
2 RDE C.10
5 RDE C.11
10 RDE C.12
2 MSE C.13
5 MSE C.14
10 MSE C.15

Table 4.3: Table of the references to the chosen GpModels from
exp GPtest 02 noisy.

The parameters for the ModelPool class were not specially chosen, results
from the noiseless functions were used instead:

Dim. Criterium bestModelSel. historyL. minTr.Perc. maxGen.Shift
2 RDE ’rdeAll’ 7 0.25 2
5 RDE ’rdeAll’ 7 0.5 0
10 RDE ’rdeOrig’ 5 0.25 2
2 MSE ’mse’ 3 0.25 0
5 MSE ’mse’ 3 0.25 1
10 MSE ’mse’ 3 0.5 1

Table 4.4: ModelPool parameters chosen by experiments exp MPtest 01 rde
to exp MPtest 06 mse.

Using these settings, experiments exp doubleEC MP 07 noisy
to exp doubleEC MP 12 noisy were created and their results are in Figures
4.36 to 4.38 with cyan (RDE) and red (MSE) color.

75

4. Experiments

Figure 4.36: Experiments exp doubleEC 24 noisy,
exp doubleEC MP 07 noisy (RDE) and exp doubleEC MP 09 noisy (MSE),

2D.

76

4.2. Noisy functions

Figure 4.37: Experiments exp doubleEC 24 noisy,
exp doubleEC MP 08 noisy (RDE) and exp doubleEC MP 10 noisy (MSE),

5D.

77

4. Experiments

Figure 4.38: Experiments exp doubleEC 24 noisy,
exp doubleEC MP 11 noisy (RDE) and exp doubleEC MP 12 noisy (MSE),

10D.

78

4.2. Noisy functions

The same conclusion as in the case of noiseless functions was made - the best
option for the selection of the best model is the ’rdeAll’. However, in this case,
the performance in 2D and 5D was slightly improved. The biggest difference
can be seen in the functions f103 2D, f106 2D and f104 in 5D. In 10D, the
’rdeOrig’ option was used instead of ’rdeAll’, which was the cause of the worse
performance in this dimension.

4.2.3 Experiments exp MPtest 16 noisy to
exp MPtest 18 noisy

Again, the set of possible GpModels used for the selection was reduced to 96
by removing the models with SE ARD covariance function and linear mean
function. The parameters of the ModelPool were also defined as those for the
last noiseless experiments:

bestModelSelection ’rdeAll’,

historyLength 7,

minTrainedModelsPercentileForModelChoice 0.5,

maxGenerationShiftForModelChoice 2.

The chosen GpModels are in the Tables C.21 (2D), C.22 (5D) and C.23 (10D).
The results are shown together with the base experiment exp doubleEC 24 noisy
and RDE version of experiments from previous set of tests in Figures 4.39 to
4.41. Unfortunately, results of other algorithms, that were used in comparing
the final results of the noiseless functions, were not available for the noisy func-
tions. Graphs with average of all functions in each dimension are in Figures
4.42 to 4.44.

79

4. Experiments

Figure 4.39: Experiments exp doubleEC 24 noisy,
exp doubleEC MP 07 noisy and exp doubleEC MP 16 noisy, 2D.

80

4.2. Noisy functions

Figure 4.40: Experiments exp doubleEC 24 noisy,
exp doubleEC MP 08 noisy and exp doubleEC MP 17 noisy, 5D.

81

4. Experiments

Figure 4.41: Experiments exp doubleEC 24 noisy,
exp doubleEC MP 11 noisy and exp doubleEC MP 18 noisy, 10D.

82

4.2. Noisy functions

Figure 4.42: The graph of average of the results of 6 noisy functions, 2D.
The experiments are exp doubleEC 24 noisy, exp doubleEC MP 07 noisy

and exp doubleEC MP 16 noisy.

83

4. Experiments

Figure 4.43: The graph of average of the results of 6 noisy functions, 5D.
The experiments are exp doubleEC 24 noisy, exp doubleEC MP 08 noisy

and exp doubleEC MP 17 noisy.

84

4.2. Noisy functions

Figure 4.44: The graph of average of the results of 6 noisy functions, 10D.
The experiments are exp doubleEC 24 noisy, exp doubleEC MP 11 noisy

and exp doubleEC MP 18 noisy.

85

4. Experiments

The graphs of averages show that the best results in 2D and 5D had the ex-
periments that had GpModels chosen from all 256 combinations - that means
with linear mean function and SE ARD covariance function. The difference in
2D is, however, very small when looked at each of the functions. The results
of 5D are visibly better for the GpModels chosen from all 256 combinations.
The 10D results of models chosen from the second set of 96 GpModels are very
similiar to the results of the base experiment. Small improvements can be seen
in functions f101, f102 and f104 and functions f105 and f106 are the opposite
case. Results of the exp doubleEC MP 11 noisy in 10D are worse because of
the ’rdeOrig’ option of the selection of the best model in the ModelPool.

86

Chapter 5
Conclusion

In this thesis, the author was improving the performance of the CMA-ES
algorithm by using multiple Gaussian processes as surrogate models simul-
taneously. The measurements were done using the COCO platform on 24
noiseless and 6 noisy functions in 2D, 5D and 10D dimensions. Appropriate
changes to the implementation of surrogate models were done in a project that
the author was part of. The class for a simultaneous usage of multiple GP
called ModelPool was created with several possible options for the selection of
the best model. Experiments dedicated to choosing the best set of GP models
were performed. Another experiments were done to find the right settings for
the ModelPool class.
From the performed experiments, multiple conclusions were made for the
noiseless functions:

• The SE ARD covariance function was causing the problems in perform-
ance.

• Overall performance of GP models with the linear mean function was
worse than GP models with the constant mean function.

• The GPs chosen from a set of 96 combinations were succesful in creating
a visible improvement when compared to the best of previous experi-
ments in the project.

Similiar experiments were done for the noisy functions. In this case the results
of GP models with SE ARD covariance function and linear mean function were
better and caused improvements as well when compared to the best of previous
experiments.

87

Bibliography

[1] Digabel, S. L. Blackbox Optimization: Algorithm and Applic-
ations. March 2014. Available from: https://www.gerad.ca/
Sebastien.Le.Digabel/talks/2014_LANL_50mins.pdf

[2] von Stockar, U.; van der Wielen, L. A. M. Biothermodynamics: The
Role of Thermodynamics in Biochemical Engineering. EFPL Press, 2013,
ISBN 9781466582163.

[3] Cassioli, A. A Tutorial on Black-Box Optimization [online]. April 2013,
[Cited 23.3.2017]. Available from: https://www.lix.polytechnique.fr/
˜dambrosio/blackbox_material/Cassioli_1.pdf

[4] Hansen, N. The CMA Evolution Strategy: A Tutorial. 2016: pp. 4–
16, [Cited 22.3.2017], arXiv:1604.00772. Available from: https://
arxiv.org/pdf/1604.00772v1

[5] Hansen, N.; Auger, A.; et al. Real-parameter black-box optimization
benchmarking 2010: Presentation of the noisy functions. Working Paper
2009/21, 2010: pp. 5,20–21, [Cited 31.3.2017]. Available from: http://
coco.lri.fr/downloads/download15.01/bbobdocnoisyfunctions.pdf

[6] Hansen, N.; Auger, A.; et al. Real-parameter black-box optimiza-
tion benchmarking 2010: Presentation of the Noiseless Functions.
Working Paper 2009/20, 2010: pp. 2,33–34, [Cited 31.3.2017].
Available from: http://coco.lri.fr/downloads/download15.01/
bbobdocfunctions.pdf

[7] Concept of directional optimization in CMA-ES algorithm [online].
[Cited 22.3.2017]. Available from: https://en.wikipedia.org/wiki/
CMA-ES#/media/File:Concept_of_directional_optimization_in_
CMA-ES_algorithm.png

89

https://www.gerad.ca/Sebastien.Le.Digabel/talks/2014_LANL_50mins.pdf
https://www.gerad.ca/Sebastien.Le.Digabel/talks/2014_LANL_50mins.pdf
https://www.lix.polytechnique.fr/~dambrosio/blackbox_material/Cassioli_1.pdf
https://www.lix.polytechnique.fr/~dambrosio/blackbox_material/Cassioli_1.pdf
arXiv:1604.00772
https://arxiv.org/pdf/1604.00772v1
https://arxiv.org/pdf/1604.00772v1
http://coco.lri.fr/downloads/download15.01/bbobdocnoisyfunctions.pdf
http://coco.lri.fr/downloads/download15.01/bbobdocnoisyfunctions.pdf
http://coco.lri.fr/downloads/download15.01/bbobdocfunctions.pdf
http://coco.lri.fr/downloads/download15.01/bbobdocfunctions.pdf
https://en.wikipedia.org/wiki/CMA-ES#/media/File:Concept_of_directional_optimization_in_CMA-ES_algorithm.png
https://en.wikipedia.org/wiki/CMA-ES#/media/File:Concept_of_directional_optimization_in_CMA-ES_algorithm.png
https://en.wikipedia.org/wiki/CMA-ES#/media/File:Concept_of_directional_optimization_in_CMA-ES_algorithm.png

Bibliography

[8] Buche, D.; Schraudolph, N. N.; et al. Accelerating evolutionary al-
gorithms with Gaussian process fitness function models. IEEE Trans-
actions on Systems, Man, and Cybernetics, Part C (Applications and
Reviews), volume 35, no. 2, 2005: pp. 185–194, [Cited 5.4.2017]. Avail-
able from: http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=
1424193

[9] Bajer, L.; Holeňa, M. Model Guided Sampling Optimization for Low-
dimensional Problems. CoRR, volume abs/1508.07741, 2015, [Cited
5.4.2017]. Available from: http://arxiv.org/abs/1508.07741

[10] Documentation for GPML Matlab Code version 4.0 [online]. [Cited
31.3.2017]. Available from: http://www.gaussianprocess.org/gpml/
code/matlab/doc/

[11] Bajer, L.; Charypar, V.; et al. Model guided sampling optimization
with gaussian processes for expensive black box optimization. 2013:
pp. 1715–1716, doi:10.1145/2464576.2480794, [Cited 5.4.2017]. Available
from: http://doi.acm.org/10.1145/2464576.2480794

[12] Rasmussen, C. E.; Williams, C. K. I. Gaussian processes for
machine learning. Cambridge, Mass.: MIT Press, c2006, ISBN
026218253x, 8–31 pp., [Cited 5.4.2017]. Available from: http://
www.gaussianprocess.org/gpml/chapters/RW.pdf

[13] Bajer, L. Surrogate CMA-ES [online]. Available from: https://
github.com/bajeluk/surrogate-cmaes/

[14] COmparing Continuous Optimisers [online]. January 2016, [Cited
22.3.2017]. Available from: http://coco.gforge.inria.fr

90

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1424193
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1424193
http://arxiv.org/abs/1508.07741
http://www.gaussianprocess.org/gpml/code/matlab/doc/
http://www.gaussianprocess.org/gpml/code/matlab/doc/
http://doi.acm.org/10.1145/2464576.2480794
http://www.gaussianprocess.org/gpml/chapters/RW.pdf
http://www.gaussianprocess.org/gpml/chapters/RW.pdf
https://github.com/bajeluk/surrogate-cmaes/
https://github.com/bajeluk/surrogate-cmaes/
http://coco.gforge.inria.fr

Appendix A
Acronyms

ARD Automatic Relevance Determination

BBOB Black-Box Optimization Benchmarking

CMA-ES Covariance Matrix Adaptation Evolution Strategy

COCO Comparing Continuous Optimisers

GP Gaussian Process

MAE Mean Absolute Error

RDE Ranking Difference Error

(R)MSE (Root) Mean Squared Error

SE Squared Exponential

91

Appendix B
Contents of enclosed CD

readme.txt the file with CD contents description
surrogate-cmaes....................the directory with implementation

src.......................the directory with MATLAB source codes
exp.....................the directory with definitions of experiments

reports...........................the directory with generated reports
datasets.........the directory with datasets used for some experiments
text..the thesis text directory

latex...............the directory of LATEX source codes of the thesis
DP Juranko Jan 2017.pdf.............the thesis text in PDF format

93

Appendix C
Tables of GpModels chosen for

the ModelPool experiments

In case of the ’nearestToPopulation’ trainsetType, ’nearestToPop’ is shown in
the tables to decrease the width of the tables.

covFcn trainsetType trainRange trainsetSizeMax meanFcn
’{@covMaterniso, 5}’ ’parameters’ 10 ∗ σ* ’15*dim’ ’meanConst’

Table C.1: GpModel in the experiment exp doubleEC 23.

covFcn trainsetType trainRange trainsetSizeMax meanFcn
’{@covMaterniso, 5}’ ’parameters’ not used ’15*dim’ ’meanConst’
’{@covMaterniso, 3}’ ’allPoints’ 0.999 ’20*dim’ ’meanConst’
’{@covSEiso}’ ’nearest’ 0.999 ’15*dim’ ’meanConst’

Table C.2: 3 GpModels chosen for the experiment exp doubleEC 23 pool.

covFcn trainsetType trainRange trainsetSizeMax meanFcn
’{@covMaterniso, 5}’ ’clustering’ 0.999 ’15*dim’ ’meanConst’
’{@covMaterniso, 3}’ ’allPoints’ 0.999 ’20*dim’ ’meanConst’
’{@covSEiso}’ ’nearest’ 0.999 ’15*dim’ ’meanConst’

Table C.3: 3 GpModels chosen for the experiment
exp doubleEC 23 pool diff.

95

C. Tables of GpModels chosen for the ModelPool experiments

covFcn trainsetType trainRange trainsetSizeMax meanFcn
’{@covSEiso}’ ’nearest’ 1 ’20*dim’ ’meanConst’
’{@covSEard}’ ’clustering’ 1 ’5*dim’ ’meanConst’
’{@covSEard}’ ’clustering’ 1 ’10*dim’ ’meanConst’
’{@covSEard}’ ’allPoints’ 0.999 ’5*dim’ ’meanConst’
’{@covSEard}’ ’clustering’ 1 ’5*dim’ ’meanLinear’
’{@covSEiso}’ ’allPoints’ 0.999 ’5*dim’ ’meanLinear’
’{@covMaterniso,3}’ ’nearest’ 1 ’20*dim’ ’meanConst’
’{@covMaterniso,5}’ ’allPoints’ 1 ’5*dim’ ’meanConst’
’{@covMaterniso,3}’ ’allPoints’ 0.999 ’20*dim’ ’meanConst’
’{@covMaterniso,5}’ ’clustering’ 1 ’10*dim’ ’meanLinear’
’{@covMaterniso,3}’ ’clustering’ 1 ’15*dim’ ’meanLinear’

Table C.4: 11 GpModels chosen by the RDE for the 2D noiseless functions
from the set of 256 GpModels.

covFcn trainsetType trainRange trainsetSizeMax meanFcn
’{@covSEard}’ ’clustering’ 1 ’20*dim’ ’meanConst’
’{@covSEiso}’ ’clustering’ 1 ’5*dim’ ’meanLinear’
’{@covSEard}’ ’clustering’ 0.999 ’5*dim’ ’meanLinear’
’{@covMaterniso, 3}’ ’nearest’ 1 ’5*dim’ ’meanLinear’
’{@covMaterniso, 3}’ ’nearest’ 1 ’20*dim’ ’meanLinear’
’{@covMaterniso, 5}’ ’nearest’ 0.999 ’15*dim’ ’meanConst’
’{@covMaterniso, 5}’ ’allPoints’ 1 ’5*dim’ ’meanLinear’
’{@covMaterniso, 5}’ ’allPoints’ 1 ’20*dim’ ’meanLinear’
’{@covMaterniso, 3}’ ’clustering’ 1 ’10*dim’ ’meanConst’
’{@covMaterniso, 3}’ ’clustering’ 0.999 ’10*dim’ ’meanConst’
’{@covMaterniso, 3}’ ’clustering’ 0.999 ’5*dim’ ’meanLinear’
’{@covSEard}’ ’nearestToPop’ 1 ’15*dim’ ’meanLinear’

Table C.5: 12 GpModels chosen by the RDE for the 5D noiseless functions
from the set of 256 GpModels.

96

covFcn trainsetType trainRange trainsetSizeMax meanFcn
’{@covSEard}’ ’nearest’ 1 ’5*dim’ ’meanLinear’
’{@covSEard}’ ’nearest’ 1 ’10*dim’ ’meanLinear’
’{@covSEard}’ ’nearest’ 1 ’20*dim’ ’meanLinear’
’{@covSEiso}’ ’nearest’ 0.999 ’10*dim’ ’meanConst’
’{@covSEard}’ ’allPoints’ 1 ’5*dim’ ’meanLinear’
’{@covSEard}’ ’clustering’ 1 ’5*dim’ ’meanLinear’
’{@covSEiso}’ ’clustering’ 1 ’20*dim’ ’meanLinear’
’{@covSEiso}’ ’allPoints’ 0.999 ’5*dim’ ’meanLinear’
’{@covSEard}’ ’allPoints’ 0.999 ’15*dim’ ’meanLinear’
’{@covMaterniso, 3}’ ’nearest’ 1 ’5*dim’ ’meanConst’
’{@covMaterniso, 3}’ ’allPoints’ 1 ’5*dim’ ’meanConst’
’{@covMaterniso, 5}’ ’allPoints’ 1 ’20*dim’ ’meanLinear’
’{@covMaterniso, 3}’ ’clustering’ 1 ’10*dim’ ’meanConst’
’{@covMaterniso, 5}’ ’clustering’ 1 ’15*dim’ ’meanConst’
’{@covMaterniso, 3}’ ’nearestToPop’ 1 ’10*dim’ ’meanConst’

Table C.6: 15 GpModels chosen by the RDE for the 10D noiseless functions
from the set of 256 GpModels.

covFcn trainsetType trainRange trainsetSizeMax meanFcn
’{@covSEiso}’ ’nearest’ 1 ’10*dim’ ’meanLinear’
’{@covSEard}’ ’allPoints’ 1 ’5*dim’ ’meanConst’
’{@covSEiso}’ ’clustering’ 0.999 ’5*dim’ ’meanConst’
’{@covSEard}’ ’clustering’ 0.999 ’20*dim’ ’meanConst’
’{@covMaterniso, 5}’ ’nearest’ 1 ’20*dim’ ’meanLinear’
’{@covMaterniso, 5}’ ’nearest’ 0.999 ’5*dim’ ’meanConst’
’{@covMaterniso, 3}’ ’allPoints’ 1 ’10*dim’ ’meanConst’
’{@covMaterniso, 3}’ ’allPoints’ 1 ’5*dim’ ’meanLinear’
’{@covMaterniso, 5}’ ’clustering’ 1 ’15*dim’ ’meanConst’
’{@covMaterniso, 3}’ ’clustering’ 0.999 ’10*dim’ ’meanConst’
’{@covMaterniso, 3}’ ’clustering’ 0.999 ’10*dim’ ’meanLinear’
’{@covSEard}’ ’nearestToPop’ 1 ’20*dim’ ’meanLinear’
’{@covMaterniso, 3}’ ’nearestToPop’ 1 ’15*dim’ ’meanLinear’

Table C.7: 13 GpModels chosen by the MSE for the 2D noiseless functions
from the set of 256 GpModels.

97

C. Tables of GpModels chosen for the ModelPool experiments

covFcn trainsetType trainRange trainsetSizeMax meanFcn
’{@covSEiso}’ ’allPoints’ 0.999 ’20*dim’ ’meanConst’
’{@covSEard}’ ’allPoints’ 0.999 ’15*dim’ ’meanLinear’
’{@covMaterniso, 3}’ ’nearest’ 1 ’5*dim’ ’meanConst’
’{@covMaterniso, 5}’ ’allPoints’ 1 ’10*dim’ ’meanConst’
’{@covMaterniso, 5}’ ’allPoints’ 1 ’5*dim’ ’meanLinear’
’{@covMaterniso, 3}’ ’allPoints’ 1 ’15*dim’ ’meanLinear’
’{@covMaterniso, 5}’ ’clustering’ 0.999 ’20*dim’ ’meanConst’
’{@covMaterniso, 5}’ ’clustering’ 0.999 ’15*dim’ ’meanLinear’
’{@covSEard}’ ’nearestToPop’ 1 ’5*dim’ ’meanConst’
’{@covSEard}’ ’nearestToPop’ 1 ’20*dim’ ’meanLinear’
’{@covMaterniso, 3}’ ’nearestToPop’ 1 ’20*dim’ ’meanConst’

Table C.8: 11 GpModels chosen by the MSE for the 5D noiseless functions
from the set of 256 GpModels.

covFcn trainsetType trainRange trainsetSizeMax meanFcn
’{@covSEard}’ ’nearest’ 1 ’20*dim’ ’meanConst’
’{@covSEard}’ ’nearest’ 1 ’15*dim’ ’meanConst’
’{@covSEard}’ ’allPoints’ 1 ’5*dim’ ’meanConst’
’{@covMaterniso, 3}’ ’nearest’ 1 ’5*dim’ ’meanConst’
’{@covSEard}’ ’clustering’ 0.999 ’20*dim’ ’meanConst’
’{@covMaterniso, 3}’ ’nearest’ 1 ’5*dim’ ’meanLinear’
’{@covMaterniso, 3}’ ’allPoints’ 1 ’5*dim’ ’meanConst’
’{@covMaterniso, 3}’ ’allPoints’ 1 ’10*dim’ ’meanConst’
’{@covMaterniso, 3}’ ’allPoints’ 1 ’20*dim’ ’meanConst’
’{@covMaterniso, 5}’ ’allPoints’ 1 ’20*dim’ ’meanConst’
’{@covMaterniso, 3}’ ’allPoints’ 0.999 ’20*dim’ ’meanConst’
’{@covMaterniso, 3}’ ’clustering’ 0.999 ’15*dim’ ’meanLinear’
’{@covMaterniso, 3}’ ’nearestToPop’ 1 ’15*dim’ ’meanConst’

Table C.9: 13 GpModels chosen by the MSE for the 10D noiseless functions
from the set of 256 GpModels.

covFcn trainsetType trainRange trainsetSizeMax meanFcn
’{@covSEard}’ ’nearest’ 1 ’5*dim’ ’meanConst’
’{@covSEard}’ ’allPoints’ 1 ’5*dim’ ’meanConst’
’{@covSEiso}’ ’allPoints’ 1 ’10*dim’ ’meanConst’
’{@covSEiso}’ ’allPoints’ 1 ’5*dim’ ’meanLinear’
’{@covMaterniso, 5}’ ’nearestToPop’ 1 ’10*dim’ ’meanLinear’
’{@covSEard}’ ’clustering’ 1 ’5*dim’ ’meanLinear’

Table C.10: 5 GpModels chosen by the RDE for the 2D noisy functions from
the set of 256 GpModels.

98

covFcn trainsetType trainRange trainsetSizeMax meanFcn
’{@covSEard}’ ’allPoints’ 1 ’10*dim’ ’meanConst’
’{@covSEiso}’ ’allPoints’ 1 ’5*dim’ ’meanLinear’
’{@covMaterniso, 3}’ ’nearest’ 1 ’10*dim’ ’meanConst’
’{@covMaterniso, 5}’ ’nearest’ 1 ’20*dim’ ’meanConst’
’{@covMaterniso, 3}’ ’allPoints’ 1 ’20*dim’ ’meanLinear’
’{@covMaterniso, 3}’ ’clustering’ 0.999 ’5*dim’ ’meanConst’
’{@covSEard}’ ’nearestToPop’ 0.999 ’20*dim’ ’meanLinear’

Table C.11: 7 GpModels chosen by the RDE for the 5D noisy functions from
the set of 256 GpModels.

covFcn trainsetType trainRange trainsetSizeMax meanFcn
’{@covSEard}’ ’allPoints’ 1 ’10*dim’ ’meanConst’
’{@covSEard}’ ’nearest’ 0.999 ’10*dim’ ’meanLinear’
’{@covMaterniso, 3}’ ’nearest’ 1 ’10*dim’ ’meanConst’
’{@covMaterniso, 3}’ ’allPoints’ 1 ’5*dim’ ’meanConst’
’{@covMaterniso, 5}’ ’allPoints’ 1 ’15*dim’ ’meanConst’

Table C.12: 5 GpModels chosen by the RDE for the 10D noisy functions
from the set of 256 GpModels.

covFcn trainsetType trainRange trainsetSizeMax meanFcn
’{@covSEard}’ ’nearest’ 1 ’5*dim’ ’meanLinear’
’{@covSEiso}’ ’allPoints’ 1 ’5*dim’ ’meanLinear’
’{@covSEard}’ ’clustering’ 0.999 ’5*dim’ ’meanLinear’
’{@covMaterniso, 5}’ ’allPoints’ 1 ’5*dim’ ’meanConst’
’{@covMaterniso, 3}’ ’allPoints’ 1 ’15*dim’ ’meanConst’
’{@covMaterniso, 5}’ ’clustering’ 1 ’5*dim’ ’meanConst’
’{@covMaterniso, 3}’ ’clustering’ 0.999 ’10*dim’ ’meanLinear’

Table C.13: 7 GpModels chosen by the MSE for the 2D noisy functions from
the set of 256 GpModels.

covFcn trainsetType trainRange trainsetSizeMax meanFcn
’{@covSEard}’ ’nearest’ 1 ’10*dim’ ’meanConst’
’{@covSEard}’ ’allPoints’ 1 ’5*dim’ ’meanConst’
’{@covSEiso}’ ’allPoints’ 0.999 ’5*dim’ ’meanConst’
’{@covMaterniso, 5}’ ’allPoints’ 1 ’10*dim’ ’meanConst’
’{@covMaterniso, 3}’ ’allPoints’ 1 ’10*dim’ ’meanLinear’
’{@covMaterniso, 5}’ ’allPoints’ 1 ’15*dim’ ’meanLinear’

Table C.14: 6 GpModels chosen by the MSE for the 5D noisy functions from
the set of 256 GpModels.

99

C. Tables of GpModels chosen for the ModelPool experiments

covFcn trainsetType trainRange trainsetSizeMax meanFcn
’{@covMaterniso, 5}’ ’nearest’ 1 ’10*dim’ ’meanConst’
’{@covMaterniso, 3}’ ’allPoints’ 1 ’5*dim’ ’meanLinear’
’{@covMaterniso, 3}’ ’allPoints’ 1 ’10*dim’ ’meanLinear’
’{@covMaterniso, 5}’ ’allPoints’ 1 ’10*dim’ ’meanLinear’
’{@covMaterniso, 5}’ ’nearestToPop’ 1 ’5*dim’ ’meanConst’
’{@covMaterniso, 5}’ ’nearestToPop’ 1 ’20*dim’ ’meanLinear’

Table C.15: 6 GpModels chosen by the MSE for the 10D noisy functions
from the set of 256 GpModels.

covFcn trainsetType trainRange trainsetSizeMax meanFcn
’{@covSEiso}’ ’nearest’ 1 ’20*dim’ ’meanConst’
’{@covSEard}’ ’clustering’ 1 ’5*dim’ ’meanConst’
’{@covSEard}’ ’clustering’ 1 ’10*dim’ ’meanConst’
’{@covSEiso}’ ’allPoints’ 0.999 ’20*dim’ ’meanConst’

Table C.16: 4 GpModels chosen for the experiment exp doubleEC 25.

covFcn trainsetType trainRange trainsetSizeMax meanFcn
’{@covSEiso}’ ’nearest’ 1 ’20*dim’ ’meanConst’
’{@covMaterniso, 3}’ ’nearest’ 1 ’20*dim’ ’meanConst’
’{@covMaterniso, 5}’ ’allPoints’ 1 ’5*dim’ ’meanConst’
’{@covSEiso}’ ’allPoints’ 0.999 ’20*dim’ ’meanConst’

Table C.17: 4 GpModels chosen for the experiment exp doubleEC 26.

covFcn trainsetType trainRange trainsetSizeMax meanFcn
’{@covSEiso}’ ’nearest’ 1 ’5*dim’ ’meanConst’
’{@covMaterniso, 5}’ ’allPoints’ 1 ’5*dim’ ’meanConst’
’{@covMaterniso, 3}’ ’allPoints’ 1 ’10*dim’ ’meanConst’
’{@covMaterniso, 3}’ ’clustering’ 0.999 ’20*dim’ ’meanConst’
’{@covMaterniso, 5}’ ’nearestToPop’ 0.999 ’5*dim’ ’meanConst’

Table C.18: 5 GpModels chosen by the RDE for the 2D noiseless functions
from the set of 96 GpModels.

100

covFcn trainsetType trainRange trainsetSizeMax meanFcn
’{@covMaterniso, 3}’ ’allPoints’ 1 ’5*dim’ ’meanConst’
’{@covMaterniso, 3}’ ’allPoints’ 1 ’10*dim’ ’meanConst’
’{@covMaterniso, 5}’ ’allPoints’ 1 ’15*dim’ ’meanConst’
’{@covMaterniso, 5}’ ’clustering’ 0.999 ’20*dim’ ’meanConst’
’{@covMaterniso, 3}’ ’nearestToPop’ 1 ’5*dim’ ’meanConst’

Table C.19: 5 GpModels chosen by the RDE for the 5D noiseless functions
from the set of 96 GpModels.

covFcn trainsetType trainRange trainsetSizeMax meanFcn
’{@covMaterniso, 5}’ ’allPoints’ 1 ’10*dim’ ’meanConst’
’{@covMaterniso, 5}’ ’clustering’ 0.999 ’15*dim’ ’meanConst’
’{@covMaterniso, 3}’ ’nearestToPop’ 1 ’20*dim’ ’meanConst’

Table C.20: 3 GpModels chosen by the RDE for the 10D noiseless functions
from the set of 96 GpModels.

covFcn trainsetType trainRange trainsetSizeMax meanFcn
’{@covMaterniso, 3}’ ’nearest’ 1 ’20*dim’ ’meanConst’
’{@covMaterniso, 3}’ ’allPoints’ 1 ’5*dim’ ’meanConst’
’{@covMaterniso, 5}’ ’allPoints’ 1 ’10*dim’ ’meanConst’

Table C.21: 3 GpModels chosen by the RDE for the 2D noisy functions from
the set of 96 GpModels.

covFcn trainsetType trainRange trainsetSizeMax meanFcn
’{@covSEiso}’ ’allPoints’ 1 ’5*dim’ ’meanConst’
’{@covSEiso}’ ’allPoints’ 1 ’10*dim’ ’meanConst’
’{@covSEiso}’ ’clustering’ 1 ’15*dim’ ’meanConst’
’{@covMaterniso, 3}’ ’nearest’ 1 ’10*dim’ ’meanConst’
’{@covMaterniso, 5}’ ’nearest’ 1 ’20*dim’ ’meanConst’
’{@covMaterniso, 3}’ ’allPoints’ 1 ’15*dim’ ’meanConst’

Table C.22: 6 GpModels chosen by the RDE for the 5D noisy functions from
the set of 96 GpModels.

101

C. Tables of GpModels chosen for the ModelPool experiments

covFcn trainsetType trainRange trainsetSizeMax meanFcn
’{@covMaterniso, 3}’ ’allPoints’ 1 ’5*dim’ ’meanConst’
’{@covMaterniso, 5}’ ’allPoints’ 1 ’10*dim’ ’meanConst’
’{@covMaterniso, 5}’ ’allPoints’ 1 ’15*dim’ ’meanConst’
’{@covMaterniso, 5}’ ’allPoints’ 0.999 ’15*dim’ ’meanConst’
’{@covMaterniso, 5}’ ’nearestToPop’ 1 ’15*dim’ ’meanConst’

Table C.23: 5 GpModels chosen by the RDE for the 10D noisy functions
from the set of 96 GpModels.

102

	Introduction
	State-of-the-art
	Black-box optimization
	Noiseless and noisy functions
	Covariance Matrix Adaptation Evolution Strategy
	Gaussian processes

	Analysis and design
	COCO platform
	CMA-ES
	Surrogate models
	Gaussian processes
	ModelPool

	Implementation
	Gaussian processes
	ModelPool
	Choosing the best parameters for the ModelPool
	Testing

	Experiments
	Noiseless functions
	Noisy functions

	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed CD
	Tables of GpModels chosen for the ModelPool experiments

